]> git.karo-electronics.de Git - linux-beck.git/blob - mm/compaction.c
mm, compaction: simplify deferred compaction
[linux-beck.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24         count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29         count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43         struct page *page, *next;
44         unsigned long count = 0;
45
46         list_for_each_entry_safe(page, next, freelist, lru) {
47                 list_del(&page->lru);
48                 __free_page(page);
49                 count++;
50         }
51
52         return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57         struct page *page;
58
59         list_for_each_entry(page, list, lru) {
60                 arch_alloc_page(page, 0);
61                 kernel_map_pages(page, 1, 1);
62         }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 /*
71  * Check that the whole (or subset of) a pageblock given by the interval of
72  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73  * with the migration of free compaction scanner. The scanners then need to
74  * use only pfn_valid_within() check for arches that allow holes within
75  * pageblocks.
76  *
77  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78  *
79  * It's possible on some configurations to have a setup like node0 node1 node0
80  * i.e. it's possible that all pages within a zones range of pages do not
81  * belong to a single zone. We assume that a border between node0 and node1
82  * can occur within a single pageblock, but not a node0 node1 node0
83  * interleaving within a single pageblock. It is therefore sufficient to check
84  * the first and last page of a pageblock and avoid checking each individual
85  * page in a pageblock.
86  */
87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88                                 unsigned long end_pfn, struct zone *zone)
89 {
90         struct page *start_page;
91         struct page *end_page;
92
93         /* end_pfn is one past the range we are checking */
94         end_pfn--;
95
96         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97                 return NULL;
98
99         start_page = pfn_to_page(start_pfn);
100
101         if (page_zone(start_page) != zone)
102                 return NULL;
103
104         end_page = pfn_to_page(end_pfn);
105
106         /* This gives a shorter code than deriving page_zone(end_page) */
107         if (page_zone_id(start_page) != page_zone_id(end_page))
108                 return NULL;
109
110         return start_page;
111 }
112
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control *cc,
116                                         struct page *page)
117 {
118         if (cc->ignore_skip_hint)
119                 return true;
120
121         return !get_pageblock_skip(page);
122 }
123
124 /*
125  * This function is called to clear all cached information on pageblocks that
126  * should be skipped for page isolation when the migrate and free page scanner
127  * meet.
128  */
129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131         unsigned long start_pfn = zone->zone_start_pfn;
132         unsigned long end_pfn = zone_end_pfn(zone);
133         unsigned long pfn;
134
135         zone->compact_cached_migrate_pfn[0] = start_pfn;
136         zone->compact_cached_migrate_pfn[1] = start_pfn;
137         zone->compact_cached_free_pfn = end_pfn;
138         zone->compact_blockskip_flush = false;
139
140         /* Walk the zone and mark every pageblock as suitable for isolation */
141         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142                 struct page *page;
143
144                 cond_resched();
145
146                 if (!pfn_valid(pfn))
147                         continue;
148
149                 page = pfn_to_page(pfn);
150                 if (zone != page_zone(page))
151                         continue;
152
153                 clear_pageblock_skip(page);
154         }
155 }
156
157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159         int zoneid;
160
161         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162                 struct zone *zone = &pgdat->node_zones[zoneid];
163                 if (!populated_zone(zone))
164                         continue;
165
166                 /* Only flush if a full compaction finished recently */
167                 if (zone->compact_blockskip_flush)
168                         __reset_isolation_suitable(zone);
169         }
170 }
171
172 /*
173  * If no pages were isolated then mark this pageblock to be skipped in the
174  * future. The information is later cleared by __reset_isolation_suitable().
175  */
176 static void update_pageblock_skip(struct compact_control *cc,
177                         struct page *page, unsigned long nr_isolated,
178                         bool migrate_scanner)
179 {
180         struct zone *zone = cc->zone;
181         unsigned long pfn;
182
183         if (cc->ignore_skip_hint)
184                 return;
185
186         if (!page)
187                 return;
188
189         if (nr_isolated)
190                 return;
191
192         set_pageblock_skip(page);
193
194         pfn = page_to_pfn(page);
195
196         /* Update where async and sync compaction should restart */
197         if (migrate_scanner) {
198                 if (cc->finished_update_migrate)
199                         return;
200                 if (pfn > zone->compact_cached_migrate_pfn[0])
201                         zone->compact_cached_migrate_pfn[0] = pfn;
202                 if (cc->mode != MIGRATE_ASYNC &&
203                     pfn > zone->compact_cached_migrate_pfn[1])
204                         zone->compact_cached_migrate_pfn[1] = pfn;
205         } else {
206                 if (cc->finished_update_free)
207                         return;
208                 if (pfn < zone->compact_cached_free_pfn)
209                         zone->compact_cached_free_pfn = pfn;
210         }
211 }
212 #else
213 static inline bool isolation_suitable(struct compact_control *cc,
214                                         struct page *page)
215 {
216         return true;
217 }
218
219 static void update_pageblock_skip(struct compact_control *cc,
220                         struct page *page, unsigned long nr_isolated,
221                         bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225
226 /*
227  * Compaction requires the taking of some coarse locks that are potentially
228  * very heavily contended. For async compaction, back out if the lock cannot
229  * be taken immediately. For sync compaction, spin on the lock if needed.
230  *
231  * Returns true if the lock is held
232  * Returns false if the lock is not held and compaction should abort
233  */
234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235                                                 struct compact_control *cc)
236 {
237         if (cc->mode == MIGRATE_ASYNC) {
238                 if (!spin_trylock_irqsave(lock, *flags)) {
239                         cc->contended = COMPACT_CONTENDED_LOCK;
240                         return false;
241                 }
242         } else {
243                 spin_lock_irqsave(lock, *flags);
244         }
245
246         return true;
247 }
248
249 /*
250  * Compaction requires the taking of some coarse locks that are potentially
251  * very heavily contended. The lock should be periodically unlocked to avoid
252  * having disabled IRQs for a long time, even when there is nobody waiting on
253  * the lock. It might also be that allowing the IRQs will result in
254  * need_resched() becoming true. If scheduling is needed, async compaction
255  * aborts. Sync compaction schedules.
256  * Either compaction type will also abort if a fatal signal is pending.
257  * In either case if the lock was locked, it is dropped and not regained.
258  *
259  * Returns true if compaction should abort due to fatal signal pending, or
260  *              async compaction due to need_resched()
261  * Returns false when compaction can continue (sync compaction might have
262  *              scheduled)
263  */
264 static bool compact_unlock_should_abort(spinlock_t *lock,
265                 unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267         if (*locked) {
268                 spin_unlock_irqrestore(lock, flags);
269                 *locked = false;
270         }
271
272         if (fatal_signal_pending(current)) {
273                 cc->contended = COMPACT_CONTENDED_SCHED;
274                 return true;
275         }
276
277         if (need_resched()) {
278                 if (cc->mode == MIGRATE_ASYNC) {
279                         cc->contended = COMPACT_CONTENDED_SCHED;
280                         return true;
281                 }
282                 cond_resched();
283         }
284
285         return false;
286 }
287
288 /*
289  * Aside from avoiding lock contention, compaction also periodically checks
290  * need_resched() and either schedules in sync compaction or aborts async
291  * compaction. This is similar to what compact_unlock_should_abort() does, but
292  * is used where no lock is concerned.
293  *
294  * Returns false when no scheduling was needed, or sync compaction scheduled.
295  * Returns true when async compaction should abort.
296  */
297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299         /* async compaction aborts if contended */
300         if (need_resched()) {
301                 if (cc->mode == MIGRATE_ASYNC) {
302                         cc->contended = COMPACT_CONTENDED_SCHED;
303                         return true;
304                 }
305
306                 cond_resched();
307         }
308
309         return false;
310 }
311
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page *page)
314 {
315         /* If the page is a large free page, then disallow migration */
316         if (PageBuddy(page)) {
317                 /*
318                  * We are checking page_order without zone->lock taken. But
319                  * the only small danger is that we skip a potentially suitable
320                  * pageblock, so it's not worth to check order for valid range.
321                  */
322                 if (page_order_unsafe(page) >= pageblock_order)
323                         return false;
324         }
325
326         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327         if (migrate_async_suitable(get_pageblock_migratetype(page)))
328                 return true;
329
330         /* Otherwise skip the block */
331         return false;
332 }
333
334 /*
335  * Isolate free pages onto a private freelist. If @strict is true, will abort
336  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337  * (even though it may still end up isolating some pages).
338  */
339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340                                 unsigned long *start_pfn,
341                                 unsigned long end_pfn,
342                                 struct list_head *freelist,
343                                 bool strict)
344 {
345         int nr_scanned = 0, total_isolated = 0;
346         struct page *cursor, *valid_page = NULL;
347         unsigned long flags = 0;
348         bool locked = false;
349         unsigned long blockpfn = *start_pfn;
350
351         cursor = pfn_to_page(blockpfn);
352
353         /* Isolate free pages. */
354         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355                 int isolated, i;
356                 struct page *page = cursor;
357
358                 /*
359                  * Periodically drop the lock (if held) regardless of its
360                  * contention, to give chance to IRQs. Abort if fatal signal
361                  * pending or async compaction detects need_resched()
362                  */
363                 if (!(blockpfn % SWAP_CLUSTER_MAX)
364                     && compact_unlock_should_abort(&cc->zone->lock, flags,
365                                                                 &locked, cc))
366                         break;
367
368                 nr_scanned++;
369                 if (!pfn_valid_within(blockpfn))
370                         goto isolate_fail;
371
372                 if (!valid_page)
373                         valid_page = page;
374                 if (!PageBuddy(page))
375                         goto isolate_fail;
376
377                 /*
378                  * If we already hold the lock, we can skip some rechecking.
379                  * Note that if we hold the lock now, checked_pageblock was
380                  * already set in some previous iteration (or strict is true),
381                  * so it is correct to skip the suitable migration target
382                  * recheck as well.
383                  */
384                 if (!locked) {
385                         /*
386                          * The zone lock must be held to isolate freepages.
387                          * Unfortunately this is a very coarse lock and can be
388                          * heavily contended if there are parallel allocations
389                          * or parallel compactions. For async compaction do not
390                          * spin on the lock and we acquire the lock as late as
391                          * possible.
392                          */
393                         locked = compact_trylock_irqsave(&cc->zone->lock,
394                                                                 &flags, cc);
395                         if (!locked)
396                                 break;
397
398                         /* Recheck this is a buddy page under lock */
399                         if (!PageBuddy(page))
400                                 goto isolate_fail;
401                 }
402
403                 /* Found a free page, break it into order-0 pages */
404                 isolated = split_free_page(page);
405                 total_isolated += isolated;
406                 for (i = 0; i < isolated; i++) {
407                         list_add(&page->lru, freelist);
408                         page++;
409                 }
410
411                 /* If a page was split, advance to the end of it */
412                 if (isolated) {
413                         blockpfn += isolated - 1;
414                         cursor += isolated - 1;
415                         continue;
416                 }
417
418 isolate_fail:
419                 if (strict)
420                         break;
421                 else
422                         continue;
423
424         }
425
426         /* Record how far we have got within the block */
427         *start_pfn = blockpfn;
428
429         trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430
431         /*
432          * If strict isolation is requested by CMA then check that all the
433          * pages requested were isolated. If there were any failures, 0 is
434          * returned and CMA will fail.
435          */
436         if (strict && blockpfn < end_pfn)
437                 total_isolated = 0;
438
439         if (locked)
440                 spin_unlock_irqrestore(&cc->zone->lock, flags);
441
442         /* Update the pageblock-skip if the whole pageblock was scanned */
443         if (blockpfn == end_pfn)
444                 update_pageblock_skip(cc, valid_page, total_isolated, false);
445
446         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447         if (total_isolated)
448                 count_compact_events(COMPACTISOLATED, total_isolated);
449         return total_isolated;
450 }
451
452 /**
453  * isolate_freepages_range() - isolate free pages.
454  * @start_pfn: The first PFN to start isolating.
455  * @end_pfn:   The one-past-last PFN.
456  *
457  * Non-free pages, invalid PFNs, or zone boundaries within the
458  * [start_pfn, end_pfn) range are considered errors, cause function to
459  * undo its actions and return zero.
460  *
461  * Otherwise, function returns one-past-the-last PFN of isolated page
462  * (which may be greater then end_pfn if end fell in a middle of
463  * a free page).
464  */
465 unsigned long
466 isolate_freepages_range(struct compact_control *cc,
467                         unsigned long start_pfn, unsigned long end_pfn)
468 {
469         unsigned long isolated, pfn, block_end_pfn;
470         LIST_HEAD(freelist);
471
472         pfn = start_pfn;
473         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
474
475         for (; pfn < end_pfn; pfn += isolated,
476                                 block_end_pfn += pageblock_nr_pages) {
477                 /* Protect pfn from changing by isolate_freepages_block */
478                 unsigned long isolate_start_pfn = pfn;
479
480                 block_end_pfn = min(block_end_pfn, end_pfn);
481
482                 /*
483                  * pfn could pass the block_end_pfn if isolated freepage
484                  * is more than pageblock order. In this case, we adjust
485                  * scanning range to right one.
486                  */
487                 if (pfn >= block_end_pfn) {
488                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
489                         block_end_pfn = min(block_end_pfn, end_pfn);
490                 }
491
492                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
493                         break;
494
495                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
496                                                 block_end_pfn, &freelist, true);
497
498                 /*
499                  * In strict mode, isolate_freepages_block() returns 0 if
500                  * there are any holes in the block (ie. invalid PFNs or
501                  * non-free pages).
502                  */
503                 if (!isolated)
504                         break;
505
506                 /*
507                  * If we managed to isolate pages, it is always (1 << n) *
508                  * pageblock_nr_pages for some non-negative n.  (Max order
509                  * page may span two pageblocks).
510                  */
511         }
512
513         /* split_free_page does not map the pages */
514         map_pages(&freelist);
515
516         if (pfn < end_pfn) {
517                 /* Loop terminated early, cleanup. */
518                 release_freepages(&freelist);
519                 return 0;
520         }
521
522         /* We don't use freelists for anything. */
523         return pfn;
524 }
525
526 /* Update the number of anon and file isolated pages in the zone */
527 static void acct_isolated(struct zone *zone, struct compact_control *cc)
528 {
529         struct page *page;
530         unsigned int count[2] = { 0, };
531
532         if (list_empty(&cc->migratepages))
533                 return;
534
535         list_for_each_entry(page, &cc->migratepages, lru)
536                 count[!!page_is_file_cache(page)]++;
537
538         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
539         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
540 }
541
542 /* Similar to reclaim, but different enough that they don't share logic */
543 static bool too_many_isolated(struct zone *zone)
544 {
545         unsigned long active, inactive, isolated;
546
547         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
548                                         zone_page_state(zone, NR_INACTIVE_ANON);
549         active = zone_page_state(zone, NR_ACTIVE_FILE) +
550                                         zone_page_state(zone, NR_ACTIVE_ANON);
551         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
552                                         zone_page_state(zone, NR_ISOLATED_ANON);
553
554         return isolated > (inactive + active) / 2;
555 }
556
557 /**
558  * isolate_migratepages_block() - isolate all migrate-able pages within
559  *                                a single pageblock
560  * @cc:         Compaction control structure.
561  * @low_pfn:    The first PFN to isolate
562  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
563  * @isolate_mode: Isolation mode to be used.
564  *
565  * Isolate all pages that can be migrated from the range specified by
566  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
567  * Returns zero if there is a fatal signal pending, otherwise PFN of the
568  * first page that was not scanned (which may be both less, equal to or more
569  * than end_pfn).
570  *
571  * The pages are isolated on cc->migratepages list (not required to be empty),
572  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
573  * is neither read nor updated.
574  */
575 static unsigned long
576 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
577                         unsigned long end_pfn, isolate_mode_t isolate_mode)
578 {
579         struct zone *zone = cc->zone;
580         unsigned long nr_scanned = 0, nr_isolated = 0;
581         struct list_head *migratelist = &cc->migratepages;
582         struct lruvec *lruvec;
583         unsigned long flags = 0;
584         bool locked = false;
585         struct page *page = NULL, *valid_page = NULL;
586
587         /*
588          * Ensure that there are not too many pages isolated from the LRU
589          * list by either parallel reclaimers or compaction. If there are,
590          * delay for some time until fewer pages are isolated
591          */
592         while (unlikely(too_many_isolated(zone))) {
593                 /* async migration should just abort */
594                 if (cc->mode == MIGRATE_ASYNC)
595                         return 0;
596
597                 congestion_wait(BLK_RW_ASYNC, HZ/10);
598
599                 if (fatal_signal_pending(current))
600                         return 0;
601         }
602
603         if (compact_should_abort(cc))
604                 return 0;
605
606         /* Time to isolate some pages for migration */
607         for (; low_pfn < end_pfn; low_pfn++) {
608                 /*
609                  * Periodically drop the lock (if held) regardless of its
610                  * contention, to give chance to IRQs. Abort async compaction
611                  * if contended.
612                  */
613                 if (!(low_pfn % SWAP_CLUSTER_MAX)
614                     && compact_unlock_should_abort(&zone->lru_lock, flags,
615                                                                 &locked, cc))
616                         break;
617
618                 if (!pfn_valid_within(low_pfn))
619                         continue;
620                 nr_scanned++;
621
622                 page = pfn_to_page(low_pfn);
623
624                 if (!valid_page)
625                         valid_page = page;
626
627                 /*
628                  * Skip if free. We read page order here without zone lock
629                  * which is generally unsafe, but the race window is small and
630                  * the worst thing that can happen is that we skip some
631                  * potential isolation targets.
632                  */
633                 if (PageBuddy(page)) {
634                         unsigned long freepage_order = page_order_unsafe(page);
635
636                         /*
637                          * Without lock, we cannot be sure that what we got is
638                          * a valid page order. Consider only values in the
639                          * valid order range to prevent low_pfn overflow.
640                          */
641                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
642                                 low_pfn += (1UL << freepage_order) - 1;
643                         continue;
644                 }
645
646                 /*
647                  * Check may be lockless but that's ok as we recheck later.
648                  * It's possible to migrate LRU pages and balloon pages
649                  * Skip any other type of page
650                  */
651                 if (!PageLRU(page)) {
652                         if (unlikely(balloon_page_movable(page))) {
653                                 if (balloon_page_isolate(page)) {
654                                         /* Successfully isolated */
655                                         goto isolate_success;
656                                 }
657                         }
658                         continue;
659                 }
660
661                 /*
662                  * PageLRU is set. lru_lock normally excludes isolation
663                  * splitting and collapsing (collapsing has already happened
664                  * if PageLRU is set) but the lock is not necessarily taken
665                  * here and it is wasteful to take it just to check transhuge.
666                  * Check TransHuge without lock and skip the whole pageblock if
667                  * it's either a transhuge or hugetlbfs page, as calling
668                  * compound_order() without preventing THP from splitting the
669                  * page underneath us may return surprising results.
670                  */
671                 if (PageTransHuge(page)) {
672                         if (!locked)
673                                 low_pfn = ALIGN(low_pfn + 1,
674                                                 pageblock_nr_pages) - 1;
675                         else
676                                 low_pfn += (1 << compound_order(page)) - 1;
677
678                         continue;
679                 }
680
681                 /*
682                  * Migration will fail if an anonymous page is pinned in memory,
683                  * so avoid taking lru_lock and isolating it unnecessarily in an
684                  * admittedly racy check.
685                  */
686                 if (!page_mapping(page) &&
687                     page_count(page) > page_mapcount(page))
688                         continue;
689
690                 /* If we already hold the lock, we can skip some rechecking */
691                 if (!locked) {
692                         locked = compact_trylock_irqsave(&zone->lru_lock,
693                                                                 &flags, cc);
694                         if (!locked)
695                                 break;
696
697                         /* Recheck PageLRU and PageTransHuge under lock */
698                         if (!PageLRU(page))
699                                 continue;
700                         if (PageTransHuge(page)) {
701                                 low_pfn += (1 << compound_order(page)) - 1;
702                                 continue;
703                         }
704                 }
705
706                 lruvec = mem_cgroup_page_lruvec(page, zone);
707
708                 /* Try isolate the page */
709                 if (__isolate_lru_page(page, isolate_mode) != 0)
710                         continue;
711
712                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
713
714                 /* Successfully isolated */
715                 del_page_from_lru_list(page, lruvec, page_lru(page));
716
717 isolate_success:
718                 cc->finished_update_migrate = true;
719                 list_add(&page->lru, migratelist);
720                 cc->nr_migratepages++;
721                 nr_isolated++;
722
723                 /* Avoid isolating too much */
724                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
725                         ++low_pfn;
726                         break;
727                 }
728         }
729
730         /*
731          * The PageBuddy() check could have potentially brought us outside
732          * the range to be scanned.
733          */
734         if (unlikely(low_pfn > end_pfn))
735                 low_pfn = end_pfn;
736
737         if (locked)
738                 spin_unlock_irqrestore(&zone->lru_lock, flags);
739
740         /*
741          * Update the pageblock-skip information and cached scanner pfn,
742          * if the whole pageblock was scanned without isolating any page.
743          */
744         if (low_pfn == end_pfn)
745                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
746
747         trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
748
749         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
750         if (nr_isolated)
751                 count_compact_events(COMPACTISOLATED, nr_isolated);
752
753         return low_pfn;
754 }
755
756 /**
757  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
758  * @cc:        Compaction control structure.
759  * @start_pfn: The first PFN to start isolating.
760  * @end_pfn:   The one-past-last PFN.
761  *
762  * Returns zero if isolation fails fatally due to e.g. pending signal.
763  * Otherwise, function returns one-past-the-last PFN of isolated page
764  * (which may be greater than end_pfn if end fell in a middle of a THP page).
765  */
766 unsigned long
767 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
768                                                         unsigned long end_pfn)
769 {
770         unsigned long pfn, block_end_pfn;
771
772         /* Scan block by block. First and last block may be incomplete */
773         pfn = start_pfn;
774         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
775
776         for (; pfn < end_pfn; pfn = block_end_pfn,
777                                 block_end_pfn += pageblock_nr_pages) {
778
779                 block_end_pfn = min(block_end_pfn, end_pfn);
780
781                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
782                         continue;
783
784                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
785                                                         ISOLATE_UNEVICTABLE);
786
787                 /*
788                  * In case of fatal failure, release everything that might
789                  * have been isolated in the previous iteration, and signal
790                  * the failure back to caller.
791                  */
792                 if (!pfn) {
793                         putback_movable_pages(&cc->migratepages);
794                         cc->nr_migratepages = 0;
795                         break;
796                 }
797
798                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
799                         break;
800         }
801         acct_isolated(cc->zone, cc);
802
803         return pfn;
804 }
805
806 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
807 #ifdef CONFIG_COMPACTION
808 /*
809  * Based on information in the current compact_control, find blocks
810  * suitable for isolating free pages from and then isolate them.
811  */
812 static void isolate_freepages(struct compact_control *cc)
813 {
814         struct zone *zone = cc->zone;
815         struct page *page;
816         unsigned long block_start_pfn;  /* start of current pageblock */
817         unsigned long isolate_start_pfn; /* exact pfn we start at */
818         unsigned long block_end_pfn;    /* end of current pageblock */
819         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
820         int nr_freepages = cc->nr_freepages;
821         struct list_head *freelist = &cc->freepages;
822
823         /*
824          * Initialise the free scanner. The starting point is where we last
825          * successfully isolated from, zone-cached value, or the end of the
826          * zone when isolating for the first time. For looping we also need
827          * this pfn aligned down to the pageblock boundary, because we do
828          * block_start_pfn -= pageblock_nr_pages in the for loop.
829          * For ending point, take care when isolating in last pageblock of a
830          * a zone which ends in the middle of a pageblock.
831          * The low boundary is the end of the pageblock the migration scanner
832          * is using.
833          */
834         isolate_start_pfn = cc->free_pfn;
835         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
836         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
837                                                 zone_end_pfn(zone));
838         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
839
840         /*
841          * Isolate free pages until enough are available to migrate the
842          * pages on cc->migratepages. We stop searching if the migrate
843          * and free page scanners meet or enough free pages are isolated.
844          */
845         for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
846                                 block_end_pfn = block_start_pfn,
847                                 block_start_pfn -= pageblock_nr_pages,
848                                 isolate_start_pfn = block_start_pfn) {
849                 unsigned long isolated;
850
851                 /*
852                  * This can iterate a massively long zone without finding any
853                  * suitable migration targets, so periodically check if we need
854                  * to schedule, or even abort async compaction.
855                  */
856                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
857                                                 && compact_should_abort(cc))
858                         break;
859
860                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
861                                                                         zone);
862                 if (!page)
863                         continue;
864
865                 /* Check the block is suitable for migration */
866                 if (!suitable_migration_target(page))
867                         continue;
868
869                 /* If isolation recently failed, do not retry */
870                 if (!isolation_suitable(cc, page))
871                         continue;
872
873                 /* Found a block suitable for isolating free pages from. */
874                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
875                                         block_end_pfn, freelist, false);
876                 nr_freepages += isolated;
877
878                 /*
879                  * Remember where the free scanner should restart next time,
880                  * which is where isolate_freepages_block() left off.
881                  * But if it scanned the whole pageblock, isolate_start_pfn
882                  * now points at block_end_pfn, which is the start of the next
883                  * pageblock.
884                  * In that case we will however want to restart at the start
885                  * of the previous pageblock.
886                  */
887                 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
888                                 isolate_start_pfn :
889                                 block_start_pfn - pageblock_nr_pages;
890
891                 /*
892                  * Set a flag that we successfully isolated in this pageblock.
893                  * In the next loop iteration, zone->compact_cached_free_pfn
894                  * will not be updated and thus it will effectively contain the
895                  * highest pageblock we isolated pages from.
896                  */
897                 if (isolated)
898                         cc->finished_update_free = true;
899
900                 /*
901                  * isolate_freepages_block() might have aborted due to async
902                  * compaction being contended
903                  */
904                 if (cc->contended)
905                         break;
906         }
907
908         /* split_free_page does not map the pages */
909         map_pages(freelist);
910
911         /*
912          * If we crossed the migrate scanner, we want to keep it that way
913          * so that compact_finished() may detect this
914          */
915         if (block_start_pfn < low_pfn)
916                 cc->free_pfn = cc->migrate_pfn;
917
918         cc->nr_freepages = nr_freepages;
919 }
920
921 /*
922  * This is a migrate-callback that "allocates" freepages by taking pages
923  * from the isolated freelists in the block we are migrating to.
924  */
925 static struct page *compaction_alloc(struct page *migratepage,
926                                         unsigned long data,
927                                         int **result)
928 {
929         struct compact_control *cc = (struct compact_control *)data;
930         struct page *freepage;
931
932         /*
933          * Isolate free pages if necessary, and if we are not aborting due to
934          * contention.
935          */
936         if (list_empty(&cc->freepages)) {
937                 if (!cc->contended)
938                         isolate_freepages(cc);
939
940                 if (list_empty(&cc->freepages))
941                         return NULL;
942         }
943
944         freepage = list_entry(cc->freepages.next, struct page, lru);
945         list_del(&freepage->lru);
946         cc->nr_freepages--;
947
948         return freepage;
949 }
950
951 /*
952  * This is a migrate-callback that "frees" freepages back to the isolated
953  * freelist.  All pages on the freelist are from the same zone, so there is no
954  * special handling needed for NUMA.
955  */
956 static void compaction_free(struct page *page, unsigned long data)
957 {
958         struct compact_control *cc = (struct compact_control *)data;
959
960         list_add(&page->lru, &cc->freepages);
961         cc->nr_freepages++;
962 }
963
964 /* possible outcome of isolate_migratepages */
965 typedef enum {
966         ISOLATE_ABORT,          /* Abort compaction now */
967         ISOLATE_NONE,           /* No pages isolated, continue scanning */
968         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
969 } isolate_migrate_t;
970
971 /*
972  * Isolate all pages that can be migrated from the first suitable block,
973  * starting at the block pointed to by the migrate scanner pfn within
974  * compact_control.
975  */
976 static isolate_migrate_t isolate_migratepages(struct zone *zone,
977                                         struct compact_control *cc)
978 {
979         unsigned long low_pfn, end_pfn;
980         struct page *page;
981         const isolate_mode_t isolate_mode =
982                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
983
984         /*
985          * Start at where we last stopped, or beginning of the zone as
986          * initialized by compact_zone()
987          */
988         low_pfn = cc->migrate_pfn;
989
990         /* Only scan within a pageblock boundary */
991         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
992
993         /*
994          * Iterate over whole pageblocks until we find the first suitable.
995          * Do not cross the free scanner.
996          */
997         for (; end_pfn <= cc->free_pfn;
998                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
999
1000                 /*
1001                  * This can potentially iterate a massively long zone with
1002                  * many pageblocks unsuitable, so periodically check if we
1003                  * need to schedule, or even abort async compaction.
1004                  */
1005                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1006                                                 && compact_should_abort(cc))
1007                         break;
1008
1009                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1010                 if (!page)
1011                         continue;
1012
1013                 /* If isolation recently failed, do not retry */
1014                 if (!isolation_suitable(cc, page))
1015                         continue;
1016
1017                 /*
1018                  * For async compaction, also only scan in MOVABLE blocks.
1019                  * Async compaction is optimistic to see if the minimum amount
1020                  * of work satisfies the allocation.
1021                  */
1022                 if (cc->mode == MIGRATE_ASYNC &&
1023                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1024                         continue;
1025
1026                 /* Perform the isolation */
1027                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1028                                                                 isolate_mode);
1029
1030                 if (!low_pfn || cc->contended)
1031                         return ISOLATE_ABORT;
1032
1033                 /*
1034                  * Either we isolated something and proceed with migration. Or
1035                  * we failed and compact_zone should decide if we should
1036                  * continue or not.
1037                  */
1038                 break;
1039         }
1040
1041         acct_isolated(zone, cc);
1042         /*
1043          * Record where migration scanner will be restarted. If we end up in
1044          * the same pageblock as the free scanner, make the scanners fully
1045          * meet so that compact_finished() terminates compaction.
1046          */
1047         cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1048
1049         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1050 }
1051
1052 static int compact_finished(struct zone *zone, struct compact_control *cc,
1053                             const int migratetype)
1054 {
1055         unsigned int order;
1056         unsigned long watermark;
1057
1058         if (cc->contended || fatal_signal_pending(current))
1059                 return COMPACT_PARTIAL;
1060
1061         /* Compaction run completes if the migrate and free scanner meet */
1062         if (cc->free_pfn <= cc->migrate_pfn) {
1063                 /* Let the next compaction start anew. */
1064                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1065                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1066                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1067
1068                 /*
1069                  * Mark that the PG_migrate_skip information should be cleared
1070                  * by kswapd when it goes to sleep. kswapd does not set the
1071                  * flag itself as the decision to be clear should be directly
1072                  * based on an allocation request.
1073                  */
1074                 if (!current_is_kswapd())
1075                         zone->compact_blockskip_flush = true;
1076
1077                 return COMPACT_COMPLETE;
1078         }
1079
1080         /*
1081          * order == -1 is expected when compacting via
1082          * /proc/sys/vm/compact_memory
1083          */
1084         if (cc->order == -1)
1085                 return COMPACT_CONTINUE;
1086
1087         /* Compaction run is not finished if the watermark is not met */
1088         watermark = low_wmark_pages(zone);
1089
1090         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1091                                                         cc->alloc_flags))
1092                 return COMPACT_CONTINUE;
1093
1094         /* Direct compactor: Is a suitable page free? */
1095         for (order = cc->order; order < MAX_ORDER; order++) {
1096                 struct free_area *area = &zone->free_area[order];
1097
1098                 /* Job done if page is free of the right migratetype */
1099                 if (!list_empty(&area->free_list[migratetype]))
1100                         return COMPACT_PARTIAL;
1101
1102                 /* Job done if allocation would set block type */
1103                 if (cc->order >= pageblock_order && area->nr_free)
1104                         return COMPACT_PARTIAL;
1105         }
1106
1107         return COMPACT_CONTINUE;
1108 }
1109
1110 /*
1111  * compaction_suitable: Is this suitable to run compaction on this zone now?
1112  * Returns
1113  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1114  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1115  *   COMPACT_CONTINUE - If compaction should run now
1116  */
1117 unsigned long compaction_suitable(struct zone *zone, int order,
1118                                         int alloc_flags, int classzone_idx)
1119 {
1120         int fragindex;
1121         unsigned long watermark;
1122
1123         /*
1124          * order == -1 is expected when compacting via
1125          * /proc/sys/vm/compact_memory
1126          */
1127         if (order == -1)
1128                 return COMPACT_CONTINUE;
1129
1130         watermark = low_wmark_pages(zone);
1131         /*
1132          * If watermarks for high-order allocation are already met, there
1133          * should be no need for compaction at all.
1134          */
1135         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1136                                                                 alloc_flags))
1137                 return COMPACT_PARTIAL;
1138
1139         /*
1140          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1141          * This is because during migration, copies of pages need to be
1142          * allocated and for a short time, the footprint is higher
1143          */
1144         watermark += (2UL << order);
1145         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1146                 return COMPACT_SKIPPED;
1147
1148         /*
1149          * fragmentation index determines if allocation failures are due to
1150          * low memory or external fragmentation
1151          *
1152          * index of -1000 would imply allocations might succeed depending on
1153          * watermarks, but we already failed the high-order watermark check
1154          * index towards 0 implies failure is due to lack of memory
1155          * index towards 1000 implies failure is due to fragmentation
1156          *
1157          * Only compact if a failure would be due to fragmentation.
1158          */
1159         fragindex = fragmentation_index(zone, order);
1160         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1161                 return COMPACT_SKIPPED;
1162
1163         return COMPACT_CONTINUE;
1164 }
1165
1166 static int compact_zone(struct zone *zone, struct compact_control *cc)
1167 {
1168         int ret;
1169         unsigned long start_pfn = zone->zone_start_pfn;
1170         unsigned long end_pfn = zone_end_pfn(zone);
1171         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1172         const bool sync = cc->mode != MIGRATE_ASYNC;
1173
1174         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1175                                                         cc->classzone_idx);
1176         switch (ret) {
1177         case COMPACT_PARTIAL:
1178         case COMPACT_SKIPPED:
1179                 /* Compaction is likely to fail */
1180                 return ret;
1181         case COMPACT_CONTINUE:
1182                 /* Fall through to compaction */
1183                 ;
1184         }
1185
1186         /*
1187          * Clear pageblock skip if there were failures recently and compaction
1188          * is about to be retried after being deferred. kswapd does not do
1189          * this reset as it'll reset the cached information when going to sleep.
1190          */
1191         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1192                 __reset_isolation_suitable(zone);
1193
1194         /*
1195          * Setup to move all movable pages to the end of the zone. Used cached
1196          * information on where the scanners should start but check that it
1197          * is initialised by ensuring the values are within zone boundaries.
1198          */
1199         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1200         cc->free_pfn = zone->compact_cached_free_pfn;
1201         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1202                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1203                 zone->compact_cached_free_pfn = cc->free_pfn;
1204         }
1205         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1206                 cc->migrate_pfn = start_pfn;
1207                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1208                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1209         }
1210
1211         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1212
1213         migrate_prep_local();
1214
1215         while ((ret = compact_finished(zone, cc, migratetype)) ==
1216                                                 COMPACT_CONTINUE) {
1217                 int err;
1218
1219                 switch (isolate_migratepages(zone, cc)) {
1220                 case ISOLATE_ABORT:
1221                         ret = COMPACT_PARTIAL;
1222                         putback_movable_pages(&cc->migratepages);
1223                         cc->nr_migratepages = 0;
1224                         goto out;
1225                 case ISOLATE_NONE:
1226                         continue;
1227                 case ISOLATE_SUCCESS:
1228                         ;
1229                 }
1230
1231                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1232                                 compaction_free, (unsigned long)cc, cc->mode,
1233                                 MR_COMPACTION);
1234
1235                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1236                                                         &cc->migratepages);
1237
1238                 /* All pages were either migrated or will be released */
1239                 cc->nr_migratepages = 0;
1240                 if (err) {
1241                         putback_movable_pages(&cc->migratepages);
1242                         /*
1243                          * migrate_pages() may return -ENOMEM when scanners meet
1244                          * and we want compact_finished() to detect it
1245                          */
1246                         if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1247                                 ret = COMPACT_PARTIAL;
1248                                 goto out;
1249                         }
1250                 }
1251         }
1252
1253 out:
1254         /* Release free pages and check accounting */
1255         cc->nr_freepages -= release_freepages(&cc->freepages);
1256         VM_BUG_ON(cc->nr_freepages != 0);
1257
1258         trace_mm_compaction_end(ret);
1259
1260         return ret;
1261 }
1262
1263 static unsigned long compact_zone_order(struct zone *zone, int order,
1264                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1265                 int alloc_flags, int classzone_idx)
1266 {
1267         unsigned long ret;
1268         struct compact_control cc = {
1269                 .nr_freepages = 0,
1270                 .nr_migratepages = 0,
1271                 .order = order,
1272                 .gfp_mask = gfp_mask,
1273                 .zone = zone,
1274                 .mode = mode,
1275                 .alloc_flags = alloc_flags,
1276                 .classzone_idx = classzone_idx,
1277         };
1278         INIT_LIST_HEAD(&cc.freepages);
1279         INIT_LIST_HEAD(&cc.migratepages);
1280
1281         ret = compact_zone(zone, &cc);
1282
1283         VM_BUG_ON(!list_empty(&cc.freepages));
1284         VM_BUG_ON(!list_empty(&cc.migratepages));
1285
1286         *contended = cc.contended;
1287         return ret;
1288 }
1289
1290 int sysctl_extfrag_threshold = 500;
1291
1292 /**
1293  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1294  * @zonelist: The zonelist used for the current allocation
1295  * @order: The order of the current allocation
1296  * @gfp_mask: The GFP mask of the current allocation
1297  * @nodemask: The allowed nodes to allocate from
1298  * @mode: The migration mode for async, sync light, or sync migration
1299  * @contended: Return value that determines if compaction was aborted due to
1300  *             need_resched() or lock contention
1301  *
1302  * This is the main entry point for direct page compaction.
1303  */
1304 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1305                         int order, gfp_t gfp_mask, nodemask_t *nodemask,
1306                         enum migrate_mode mode, int *contended,
1307                         int alloc_flags, int classzone_idx)
1308 {
1309         enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1310         int may_enter_fs = gfp_mask & __GFP_FS;
1311         int may_perform_io = gfp_mask & __GFP_IO;
1312         struct zoneref *z;
1313         struct zone *zone;
1314         int rc = COMPACT_DEFERRED;
1315         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1316
1317         *contended = COMPACT_CONTENDED_NONE;
1318
1319         /* Check if the GFP flags allow compaction */
1320         if (!order || !may_enter_fs || !may_perform_io)
1321                 return COMPACT_SKIPPED;
1322
1323         /* Compact each zone in the list */
1324         for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1325                                                                 nodemask) {
1326                 int status;
1327                 int zone_contended;
1328
1329                 if (compaction_deferred(zone, order))
1330                         continue;
1331
1332                 status = compact_zone_order(zone, order, gfp_mask, mode,
1333                                 &zone_contended, alloc_flags, classzone_idx);
1334                 rc = max(status, rc);
1335                 /*
1336                  * It takes at least one zone that wasn't lock contended
1337                  * to clear all_zones_contended.
1338                  */
1339                 all_zones_contended &= zone_contended;
1340
1341                 /* If a normal allocation would succeed, stop compacting */
1342                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1343                                         classzone_idx, alloc_flags)) {
1344                         /*
1345                          * We think the allocation will succeed in this zone,
1346                          * but it is not certain, hence the false. The caller
1347                          * will repeat this with true if allocation indeed
1348                          * succeeds in this zone.
1349                          */
1350                         compaction_defer_reset(zone, order, false);
1351                         /*
1352                          * It is possible that async compaction aborted due to
1353                          * need_resched() and the watermarks were ok thanks to
1354                          * somebody else freeing memory. The allocation can
1355                          * however still fail so we better signal the
1356                          * need_resched() contention anyway (this will not
1357                          * prevent the allocation attempt).
1358                          */
1359                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1360                                 *contended = COMPACT_CONTENDED_SCHED;
1361
1362                         goto break_loop;
1363                 }
1364
1365                 if (mode != MIGRATE_ASYNC) {
1366                         /*
1367                          * We think that allocation won't succeed in this zone
1368                          * so we defer compaction there. If it ends up
1369                          * succeeding after all, it will be reset.
1370                          */
1371                         defer_compaction(zone, order);
1372                 }
1373
1374                 /*
1375                  * We might have stopped compacting due to need_resched() in
1376                  * async compaction, or due to a fatal signal detected. In that
1377                  * case do not try further zones and signal need_resched()
1378                  * contention.
1379                  */
1380                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1381                                         || fatal_signal_pending(current)) {
1382                         *contended = COMPACT_CONTENDED_SCHED;
1383                         goto break_loop;
1384                 }
1385
1386                 continue;
1387 break_loop:
1388                 /*
1389                  * We might not have tried all the zones, so  be conservative
1390                  * and assume they are not all lock contended.
1391                  */
1392                 all_zones_contended = 0;
1393                 break;
1394         }
1395
1396         /*
1397          * If at least one zone wasn't deferred or skipped, we report if all
1398          * zones that were tried were lock contended.
1399          */
1400         if (rc > COMPACT_SKIPPED && all_zones_contended)
1401                 *contended = COMPACT_CONTENDED_LOCK;
1402
1403         return rc;
1404 }
1405
1406
1407 /* Compact all zones within a node */
1408 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1409 {
1410         int zoneid;
1411         struct zone *zone;
1412
1413         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1414
1415                 zone = &pgdat->node_zones[zoneid];
1416                 if (!populated_zone(zone))
1417                         continue;
1418
1419                 cc->nr_freepages = 0;
1420                 cc->nr_migratepages = 0;
1421                 cc->zone = zone;
1422                 INIT_LIST_HEAD(&cc->freepages);
1423                 INIT_LIST_HEAD(&cc->migratepages);
1424
1425                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1426                         compact_zone(zone, cc);
1427
1428                 if (cc->order > 0) {
1429                         if (zone_watermark_ok(zone, cc->order,
1430                                                 low_wmark_pages(zone), 0, 0))
1431                                 compaction_defer_reset(zone, cc->order, false);
1432                 }
1433
1434                 VM_BUG_ON(!list_empty(&cc->freepages));
1435                 VM_BUG_ON(!list_empty(&cc->migratepages));
1436         }
1437 }
1438
1439 void compact_pgdat(pg_data_t *pgdat, int order)
1440 {
1441         struct compact_control cc = {
1442                 .order = order,
1443                 .mode = MIGRATE_ASYNC,
1444         };
1445
1446         if (!order)
1447                 return;
1448
1449         __compact_pgdat(pgdat, &cc);
1450 }
1451
1452 static void compact_node(int nid)
1453 {
1454         struct compact_control cc = {
1455                 .order = -1,
1456                 .mode = MIGRATE_SYNC,
1457                 .ignore_skip_hint = true,
1458         };
1459
1460         __compact_pgdat(NODE_DATA(nid), &cc);
1461 }
1462
1463 /* Compact all nodes in the system */
1464 static void compact_nodes(void)
1465 {
1466         int nid;
1467
1468         /* Flush pending updates to the LRU lists */
1469         lru_add_drain_all();
1470
1471         for_each_online_node(nid)
1472                 compact_node(nid);
1473 }
1474
1475 /* The written value is actually unused, all memory is compacted */
1476 int sysctl_compact_memory;
1477
1478 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1479 int sysctl_compaction_handler(struct ctl_table *table, int write,
1480                         void __user *buffer, size_t *length, loff_t *ppos)
1481 {
1482         if (write)
1483                 compact_nodes();
1484
1485         return 0;
1486 }
1487
1488 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1489                         void __user *buffer, size_t *length, loff_t *ppos)
1490 {
1491         proc_dointvec_minmax(table, write, buffer, length, ppos);
1492
1493         return 0;
1494 }
1495
1496 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1497 static ssize_t sysfs_compact_node(struct device *dev,
1498                         struct device_attribute *attr,
1499                         const char *buf, size_t count)
1500 {
1501         int nid = dev->id;
1502
1503         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1504                 /* Flush pending updates to the LRU lists */
1505                 lru_add_drain_all();
1506
1507                 compact_node(nid);
1508         }
1509
1510         return count;
1511 }
1512 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1513
1514 int compaction_register_node(struct node *node)
1515 {
1516         return device_create_file(&node->dev, &dev_attr_compact);
1517 }
1518
1519 void compaction_unregister_node(struct node *node)
1520 {
1521         return device_remove_file(&node->dev, &dev_attr_compact);
1522 }
1523 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1524
1525 #endif /* CONFIG_COMPACTION */