]> git.karo-electronics.de Git - linux-beck.git/blob - mm/compaction.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/egtvedt...
[linux-beck.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24         count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29         count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 #ifdef CONFIG_TRACEPOINTS
38 static const char *const compaction_status_string[] = {
39         "deferred",
40         "skipped",
41         "continue",
42         "partial",
43         "complete",
44         "no_suitable_page",
45         "not_suitable_zone",
46 };
47 #endif
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/compaction.h>
51
52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54         struct page *page, *next;
55         unsigned long high_pfn = 0;
56
57         list_for_each_entry_safe(page, next, freelist, lru) {
58                 unsigned long pfn = page_to_pfn(page);
59                 list_del(&page->lru);
60                 __free_page(page);
61                 if (pfn > high_pfn)
62                         high_pfn = pfn;
63         }
64
65         return high_pfn;
66 }
67
68 static void map_pages(struct list_head *list)
69 {
70         struct page *page;
71
72         list_for_each_entry(page, list, lru) {
73                 arch_alloc_page(page, 0);
74                 kernel_map_pages(page, 1, 1);
75         }
76 }
77
78 static inline bool migrate_async_suitable(int migratetype)
79 {
80         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
81 }
82
83 /*
84  * Check that the whole (or subset of) a pageblock given by the interval of
85  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
86  * with the migration of free compaction scanner. The scanners then need to
87  * use only pfn_valid_within() check for arches that allow holes within
88  * pageblocks.
89  *
90  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
91  *
92  * It's possible on some configurations to have a setup like node0 node1 node0
93  * i.e. it's possible that all pages within a zones range of pages do not
94  * belong to a single zone. We assume that a border between node0 and node1
95  * can occur within a single pageblock, but not a node0 node1 node0
96  * interleaving within a single pageblock. It is therefore sufficient to check
97  * the first and last page of a pageblock and avoid checking each individual
98  * page in a pageblock.
99  */
100 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
101                                 unsigned long end_pfn, struct zone *zone)
102 {
103         struct page *start_page;
104         struct page *end_page;
105
106         /* end_pfn is one past the range we are checking */
107         end_pfn--;
108
109         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
110                 return NULL;
111
112         start_page = pfn_to_page(start_pfn);
113
114         if (page_zone(start_page) != zone)
115                 return NULL;
116
117         end_page = pfn_to_page(end_pfn);
118
119         /* This gives a shorter code than deriving page_zone(end_page) */
120         if (page_zone_id(start_page) != page_zone_id(end_page))
121                 return NULL;
122
123         return start_page;
124 }
125
126 #ifdef CONFIG_COMPACTION
127
128 /* Do not skip compaction more than 64 times */
129 #define COMPACT_MAX_DEFER_SHIFT 6
130
131 /*
132  * Compaction is deferred when compaction fails to result in a page
133  * allocation success. 1 << compact_defer_limit compactions are skipped up
134  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
135  */
136 void defer_compaction(struct zone *zone, int order)
137 {
138         zone->compact_considered = 0;
139         zone->compact_defer_shift++;
140
141         if (order < zone->compact_order_failed)
142                 zone->compact_order_failed = order;
143
144         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
145                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
146
147         trace_mm_compaction_defer_compaction(zone, order);
148 }
149
150 /* Returns true if compaction should be skipped this time */
151 bool compaction_deferred(struct zone *zone, int order)
152 {
153         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
154
155         if (order < zone->compact_order_failed)
156                 return false;
157
158         /* Avoid possible overflow */
159         if (++zone->compact_considered > defer_limit)
160                 zone->compact_considered = defer_limit;
161
162         if (zone->compact_considered >= defer_limit)
163                 return false;
164
165         trace_mm_compaction_deferred(zone, order);
166
167         return true;
168 }
169
170 /*
171  * Update defer tracking counters after successful compaction of given order,
172  * which means an allocation either succeeded (alloc_success == true) or is
173  * expected to succeed.
174  */
175 void compaction_defer_reset(struct zone *zone, int order,
176                 bool alloc_success)
177 {
178         if (alloc_success) {
179                 zone->compact_considered = 0;
180                 zone->compact_defer_shift = 0;
181         }
182         if (order >= zone->compact_order_failed)
183                 zone->compact_order_failed = order + 1;
184
185         trace_mm_compaction_defer_reset(zone, order);
186 }
187
188 /* Returns true if restarting compaction after many failures */
189 bool compaction_restarting(struct zone *zone, int order)
190 {
191         if (order < zone->compact_order_failed)
192                 return false;
193
194         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
195                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
196 }
197
198 /* Returns true if the pageblock should be scanned for pages to isolate. */
199 static inline bool isolation_suitable(struct compact_control *cc,
200                                         struct page *page)
201 {
202         if (cc->ignore_skip_hint)
203                 return true;
204
205         return !get_pageblock_skip(page);
206 }
207
208 /*
209  * This function is called to clear all cached information on pageblocks that
210  * should be skipped for page isolation when the migrate and free page scanner
211  * meet.
212  */
213 static void __reset_isolation_suitable(struct zone *zone)
214 {
215         unsigned long start_pfn = zone->zone_start_pfn;
216         unsigned long end_pfn = zone_end_pfn(zone);
217         unsigned long pfn;
218
219         zone->compact_cached_migrate_pfn[0] = start_pfn;
220         zone->compact_cached_migrate_pfn[1] = start_pfn;
221         zone->compact_cached_free_pfn = end_pfn;
222         zone->compact_blockskip_flush = false;
223
224         /* Walk the zone and mark every pageblock as suitable for isolation */
225         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
226                 struct page *page;
227
228                 cond_resched();
229
230                 if (!pfn_valid(pfn))
231                         continue;
232
233                 page = pfn_to_page(pfn);
234                 if (zone != page_zone(page))
235                         continue;
236
237                 clear_pageblock_skip(page);
238         }
239 }
240
241 void reset_isolation_suitable(pg_data_t *pgdat)
242 {
243         int zoneid;
244
245         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
246                 struct zone *zone = &pgdat->node_zones[zoneid];
247                 if (!populated_zone(zone))
248                         continue;
249
250                 /* Only flush if a full compaction finished recently */
251                 if (zone->compact_blockskip_flush)
252                         __reset_isolation_suitable(zone);
253         }
254 }
255
256 /*
257  * If no pages were isolated then mark this pageblock to be skipped in the
258  * future. The information is later cleared by __reset_isolation_suitable().
259  */
260 static void update_pageblock_skip(struct compact_control *cc,
261                         struct page *page, unsigned long nr_isolated,
262                         bool migrate_scanner)
263 {
264         struct zone *zone = cc->zone;
265         unsigned long pfn;
266
267         if (cc->ignore_skip_hint)
268                 return;
269
270         if (!page)
271                 return;
272
273         if (nr_isolated)
274                 return;
275
276         set_pageblock_skip(page);
277
278         pfn = page_to_pfn(page);
279
280         /* Update where async and sync compaction should restart */
281         if (migrate_scanner) {
282                 if (pfn > zone->compact_cached_migrate_pfn[0])
283                         zone->compact_cached_migrate_pfn[0] = pfn;
284                 if (cc->mode != MIGRATE_ASYNC &&
285                     pfn > zone->compact_cached_migrate_pfn[1])
286                         zone->compact_cached_migrate_pfn[1] = pfn;
287         } else {
288                 if (pfn < zone->compact_cached_free_pfn)
289                         zone->compact_cached_free_pfn = pfn;
290         }
291 }
292 #else
293 static inline bool isolation_suitable(struct compact_control *cc,
294                                         struct page *page)
295 {
296         return true;
297 }
298
299 static void update_pageblock_skip(struct compact_control *cc,
300                         struct page *page, unsigned long nr_isolated,
301                         bool migrate_scanner)
302 {
303 }
304 #endif /* CONFIG_COMPACTION */
305
306 /*
307  * Compaction requires the taking of some coarse locks that are potentially
308  * very heavily contended. For async compaction, back out if the lock cannot
309  * be taken immediately. For sync compaction, spin on the lock if needed.
310  *
311  * Returns true if the lock is held
312  * Returns false if the lock is not held and compaction should abort
313  */
314 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
315                                                 struct compact_control *cc)
316 {
317         if (cc->mode == MIGRATE_ASYNC) {
318                 if (!spin_trylock_irqsave(lock, *flags)) {
319                         cc->contended = COMPACT_CONTENDED_LOCK;
320                         return false;
321                 }
322         } else {
323                 spin_lock_irqsave(lock, *flags);
324         }
325
326         return true;
327 }
328
329 /*
330  * Compaction requires the taking of some coarse locks that are potentially
331  * very heavily contended. The lock should be periodically unlocked to avoid
332  * having disabled IRQs for a long time, even when there is nobody waiting on
333  * the lock. It might also be that allowing the IRQs will result in
334  * need_resched() becoming true. If scheduling is needed, async compaction
335  * aborts. Sync compaction schedules.
336  * Either compaction type will also abort if a fatal signal is pending.
337  * In either case if the lock was locked, it is dropped and not regained.
338  *
339  * Returns true if compaction should abort due to fatal signal pending, or
340  *              async compaction due to need_resched()
341  * Returns false when compaction can continue (sync compaction might have
342  *              scheduled)
343  */
344 static bool compact_unlock_should_abort(spinlock_t *lock,
345                 unsigned long flags, bool *locked, struct compact_control *cc)
346 {
347         if (*locked) {
348                 spin_unlock_irqrestore(lock, flags);
349                 *locked = false;
350         }
351
352         if (fatal_signal_pending(current)) {
353                 cc->contended = COMPACT_CONTENDED_SCHED;
354                 return true;
355         }
356
357         if (need_resched()) {
358                 if (cc->mode == MIGRATE_ASYNC) {
359                         cc->contended = COMPACT_CONTENDED_SCHED;
360                         return true;
361                 }
362                 cond_resched();
363         }
364
365         return false;
366 }
367
368 /*
369  * Aside from avoiding lock contention, compaction also periodically checks
370  * need_resched() and either schedules in sync compaction or aborts async
371  * compaction. This is similar to what compact_unlock_should_abort() does, but
372  * is used where no lock is concerned.
373  *
374  * Returns false when no scheduling was needed, or sync compaction scheduled.
375  * Returns true when async compaction should abort.
376  */
377 static inline bool compact_should_abort(struct compact_control *cc)
378 {
379         /* async compaction aborts if contended */
380         if (need_resched()) {
381                 if (cc->mode == MIGRATE_ASYNC) {
382                         cc->contended = COMPACT_CONTENDED_SCHED;
383                         return true;
384                 }
385
386                 cond_resched();
387         }
388
389         return false;
390 }
391
392 /* Returns true if the page is within a block suitable for migration to */
393 static bool suitable_migration_target(struct page *page)
394 {
395         /* If the page is a large free page, then disallow migration */
396         if (PageBuddy(page)) {
397                 /*
398                  * We are checking page_order without zone->lock taken. But
399                  * the only small danger is that we skip a potentially suitable
400                  * pageblock, so it's not worth to check order for valid range.
401                  */
402                 if (page_order_unsafe(page) >= pageblock_order)
403                         return false;
404         }
405
406         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
407         if (migrate_async_suitable(get_pageblock_migratetype(page)))
408                 return true;
409
410         /* Otherwise skip the block */
411         return false;
412 }
413
414 /*
415  * Isolate free pages onto a private freelist. If @strict is true, will abort
416  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
417  * (even though it may still end up isolating some pages).
418  */
419 static unsigned long isolate_freepages_block(struct compact_control *cc,
420                                 unsigned long *start_pfn,
421                                 unsigned long end_pfn,
422                                 struct list_head *freelist,
423                                 bool strict)
424 {
425         int nr_scanned = 0, total_isolated = 0;
426         struct page *cursor, *valid_page = NULL;
427         unsigned long flags = 0;
428         bool locked = false;
429         unsigned long blockpfn = *start_pfn;
430
431         cursor = pfn_to_page(blockpfn);
432
433         /* Isolate free pages. */
434         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
435                 int isolated, i;
436                 struct page *page = cursor;
437
438                 /*
439                  * Periodically drop the lock (if held) regardless of its
440                  * contention, to give chance to IRQs. Abort if fatal signal
441                  * pending or async compaction detects need_resched()
442                  */
443                 if (!(blockpfn % SWAP_CLUSTER_MAX)
444                     && compact_unlock_should_abort(&cc->zone->lock, flags,
445                                                                 &locked, cc))
446                         break;
447
448                 nr_scanned++;
449                 if (!pfn_valid_within(blockpfn))
450                         goto isolate_fail;
451
452                 if (!valid_page)
453                         valid_page = page;
454                 if (!PageBuddy(page))
455                         goto isolate_fail;
456
457                 /*
458                  * If we already hold the lock, we can skip some rechecking.
459                  * Note that if we hold the lock now, checked_pageblock was
460                  * already set in some previous iteration (or strict is true),
461                  * so it is correct to skip the suitable migration target
462                  * recheck as well.
463                  */
464                 if (!locked) {
465                         /*
466                          * The zone lock must be held to isolate freepages.
467                          * Unfortunately this is a very coarse lock and can be
468                          * heavily contended if there are parallel allocations
469                          * or parallel compactions. For async compaction do not
470                          * spin on the lock and we acquire the lock as late as
471                          * possible.
472                          */
473                         locked = compact_trylock_irqsave(&cc->zone->lock,
474                                                                 &flags, cc);
475                         if (!locked)
476                                 break;
477
478                         /* Recheck this is a buddy page under lock */
479                         if (!PageBuddy(page))
480                                 goto isolate_fail;
481                 }
482
483                 /* Found a free page, break it into order-0 pages */
484                 isolated = split_free_page(page);
485                 total_isolated += isolated;
486                 for (i = 0; i < isolated; i++) {
487                         list_add(&page->lru, freelist);
488                         page++;
489                 }
490
491                 /* If a page was split, advance to the end of it */
492                 if (isolated) {
493                         blockpfn += isolated - 1;
494                         cursor += isolated - 1;
495                         continue;
496                 }
497
498 isolate_fail:
499                 if (strict)
500                         break;
501                 else
502                         continue;
503
504         }
505
506         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
507                                         nr_scanned, total_isolated);
508
509         /* Record how far we have got within the block */
510         *start_pfn = blockpfn;
511
512         /*
513          * If strict isolation is requested by CMA then check that all the
514          * pages requested were isolated. If there were any failures, 0 is
515          * returned and CMA will fail.
516          */
517         if (strict && blockpfn < end_pfn)
518                 total_isolated = 0;
519
520         if (locked)
521                 spin_unlock_irqrestore(&cc->zone->lock, flags);
522
523         /* Update the pageblock-skip if the whole pageblock was scanned */
524         if (blockpfn == end_pfn)
525                 update_pageblock_skip(cc, valid_page, total_isolated, false);
526
527         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
528         if (total_isolated)
529                 count_compact_events(COMPACTISOLATED, total_isolated);
530         return total_isolated;
531 }
532
533 /**
534  * isolate_freepages_range() - isolate free pages.
535  * @start_pfn: The first PFN to start isolating.
536  * @end_pfn:   The one-past-last PFN.
537  *
538  * Non-free pages, invalid PFNs, or zone boundaries within the
539  * [start_pfn, end_pfn) range are considered errors, cause function to
540  * undo its actions and return zero.
541  *
542  * Otherwise, function returns one-past-the-last PFN of isolated page
543  * (which may be greater then end_pfn if end fell in a middle of
544  * a free page).
545  */
546 unsigned long
547 isolate_freepages_range(struct compact_control *cc,
548                         unsigned long start_pfn, unsigned long end_pfn)
549 {
550         unsigned long isolated, pfn, block_end_pfn;
551         LIST_HEAD(freelist);
552
553         pfn = start_pfn;
554         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
555
556         for (; pfn < end_pfn; pfn += isolated,
557                                 block_end_pfn += pageblock_nr_pages) {
558                 /* Protect pfn from changing by isolate_freepages_block */
559                 unsigned long isolate_start_pfn = pfn;
560
561                 block_end_pfn = min(block_end_pfn, end_pfn);
562
563                 /*
564                  * pfn could pass the block_end_pfn if isolated freepage
565                  * is more than pageblock order. In this case, we adjust
566                  * scanning range to right one.
567                  */
568                 if (pfn >= block_end_pfn) {
569                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
570                         block_end_pfn = min(block_end_pfn, end_pfn);
571                 }
572
573                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
574                         break;
575
576                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
577                                                 block_end_pfn, &freelist, true);
578
579                 /*
580                  * In strict mode, isolate_freepages_block() returns 0 if
581                  * there are any holes in the block (ie. invalid PFNs or
582                  * non-free pages).
583                  */
584                 if (!isolated)
585                         break;
586
587                 /*
588                  * If we managed to isolate pages, it is always (1 << n) *
589                  * pageblock_nr_pages for some non-negative n.  (Max order
590                  * page may span two pageblocks).
591                  */
592         }
593
594         /* split_free_page does not map the pages */
595         map_pages(&freelist);
596
597         if (pfn < end_pfn) {
598                 /* Loop terminated early, cleanup. */
599                 release_freepages(&freelist);
600                 return 0;
601         }
602
603         /* We don't use freelists for anything. */
604         return pfn;
605 }
606
607 /* Update the number of anon and file isolated pages in the zone */
608 static void acct_isolated(struct zone *zone, struct compact_control *cc)
609 {
610         struct page *page;
611         unsigned int count[2] = { 0, };
612
613         if (list_empty(&cc->migratepages))
614                 return;
615
616         list_for_each_entry(page, &cc->migratepages, lru)
617                 count[!!page_is_file_cache(page)]++;
618
619         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
620         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
621 }
622
623 /* Similar to reclaim, but different enough that they don't share logic */
624 static bool too_many_isolated(struct zone *zone)
625 {
626         unsigned long active, inactive, isolated;
627
628         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
629                                         zone_page_state(zone, NR_INACTIVE_ANON);
630         active = zone_page_state(zone, NR_ACTIVE_FILE) +
631                                         zone_page_state(zone, NR_ACTIVE_ANON);
632         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
633                                         zone_page_state(zone, NR_ISOLATED_ANON);
634
635         return isolated > (inactive + active) / 2;
636 }
637
638 /**
639  * isolate_migratepages_block() - isolate all migrate-able pages within
640  *                                a single pageblock
641  * @cc:         Compaction control structure.
642  * @low_pfn:    The first PFN to isolate
643  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
644  * @isolate_mode: Isolation mode to be used.
645  *
646  * Isolate all pages that can be migrated from the range specified by
647  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
648  * Returns zero if there is a fatal signal pending, otherwise PFN of the
649  * first page that was not scanned (which may be both less, equal to or more
650  * than end_pfn).
651  *
652  * The pages are isolated on cc->migratepages list (not required to be empty),
653  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
654  * is neither read nor updated.
655  */
656 static unsigned long
657 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
658                         unsigned long end_pfn, isolate_mode_t isolate_mode)
659 {
660         struct zone *zone = cc->zone;
661         unsigned long nr_scanned = 0, nr_isolated = 0;
662         struct list_head *migratelist = &cc->migratepages;
663         struct lruvec *lruvec;
664         unsigned long flags = 0;
665         bool locked = false;
666         struct page *page = NULL, *valid_page = NULL;
667         unsigned long start_pfn = low_pfn;
668
669         /*
670          * Ensure that there are not too many pages isolated from the LRU
671          * list by either parallel reclaimers or compaction. If there are,
672          * delay for some time until fewer pages are isolated
673          */
674         while (unlikely(too_many_isolated(zone))) {
675                 /* async migration should just abort */
676                 if (cc->mode == MIGRATE_ASYNC)
677                         return 0;
678
679                 congestion_wait(BLK_RW_ASYNC, HZ/10);
680
681                 if (fatal_signal_pending(current))
682                         return 0;
683         }
684
685         if (compact_should_abort(cc))
686                 return 0;
687
688         /* Time to isolate some pages for migration */
689         for (; low_pfn < end_pfn; low_pfn++) {
690                 /*
691                  * Periodically drop the lock (if held) regardless of its
692                  * contention, to give chance to IRQs. Abort async compaction
693                  * if contended.
694                  */
695                 if (!(low_pfn % SWAP_CLUSTER_MAX)
696                     && compact_unlock_should_abort(&zone->lru_lock, flags,
697                                                                 &locked, cc))
698                         break;
699
700                 if (!pfn_valid_within(low_pfn))
701                         continue;
702                 nr_scanned++;
703
704                 page = pfn_to_page(low_pfn);
705
706                 if (!valid_page)
707                         valid_page = page;
708
709                 /*
710                  * Skip if free. We read page order here without zone lock
711                  * which is generally unsafe, but the race window is small and
712                  * the worst thing that can happen is that we skip some
713                  * potential isolation targets.
714                  */
715                 if (PageBuddy(page)) {
716                         unsigned long freepage_order = page_order_unsafe(page);
717
718                         /*
719                          * Without lock, we cannot be sure that what we got is
720                          * a valid page order. Consider only values in the
721                          * valid order range to prevent low_pfn overflow.
722                          */
723                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
724                                 low_pfn += (1UL << freepage_order) - 1;
725                         continue;
726                 }
727
728                 /*
729                  * Check may be lockless but that's ok as we recheck later.
730                  * It's possible to migrate LRU pages and balloon pages
731                  * Skip any other type of page
732                  */
733                 if (!PageLRU(page)) {
734                         if (unlikely(balloon_page_movable(page))) {
735                                 if (balloon_page_isolate(page)) {
736                                         /* Successfully isolated */
737                                         goto isolate_success;
738                                 }
739                         }
740                         continue;
741                 }
742
743                 /*
744                  * PageLRU is set. lru_lock normally excludes isolation
745                  * splitting and collapsing (collapsing has already happened
746                  * if PageLRU is set) but the lock is not necessarily taken
747                  * here and it is wasteful to take it just to check transhuge.
748                  * Check TransHuge without lock and skip the whole pageblock if
749                  * it's either a transhuge or hugetlbfs page, as calling
750                  * compound_order() without preventing THP from splitting the
751                  * page underneath us may return surprising results.
752                  */
753                 if (PageTransHuge(page)) {
754                         if (!locked)
755                                 low_pfn = ALIGN(low_pfn + 1,
756                                                 pageblock_nr_pages) - 1;
757                         else
758                                 low_pfn += (1 << compound_order(page)) - 1;
759
760                         continue;
761                 }
762
763                 /*
764                  * Migration will fail if an anonymous page is pinned in memory,
765                  * so avoid taking lru_lock and isolating it unnecessarily in an
766                  * admittedly racy check.
767                  */
768                 if (!page_mapping(page) &&
769                     page_count(page) > page_mapcount(page))
770                         continue;
771
772                 /* If we already hold the lock, we can skip some rechecking */
773                 if (!locked) {
774                         locked = compact_trylock_irqsave(&zone->lru_lock,
775                                                                 &flags, cc);
776                         if (!locked)
777                                 break;
778
779                         /* Recheck PageLRU and PageTransHuge under lock */
780                         if (!PageLRU(page))
781                                 continue;
782                         if (PageTransHuge(page)) {
783                                 low_pfn += (1 << compound_order(page)) - 1;
784                                 continue;
785                         }
786                 }
787
788                 lruvec = mem_cgroup_page_lruvec(page, zone);
789
790                 /* Try isolate the page */
791                 if (__isolate_lru_page(page, isolate_mode) != 0)
792                         continue;
793
794                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
795
796                 /* Successfully isolated */
797                 del_page_from_lru_list(page, lruvec, page_lru(page));
798
799 isolate_success:
800                 list_add(&page->lru, migratelist);
801                 cc->nr_migratepages++;
802                 nr_isolated++;
803
804                 /* Avoid isolating too much */
805                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
806                         ++low_pfn;
807                         break;
808                 }
809         }
810
811         /*
812          * The PageBuddy() check could have potentially brought us outside
813          * the range to be scanned.
814          */
815         if (unlikely(low_pfn > end_pfn))
816                 low_pfn = end_pfn;
817
818         if (locked)
819                 spin_unlock_irqrestore(&zone->lru_lock, flags);
820
821         /*
822          * Update the pageblock-skip information and cached scanner pfn,
823          * if the whole pageblock was scanned without isolating any page.
824          */
825         if (low_pfn == end_pfn)
826                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
827
828         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
829                                                 nr_scanned, nr_isolated);
830
831         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
832         if (nr_isolated)
833                 count_compact_events(COMPACTISOLATED, nr_isolated);
834
835         return low_pfn;
836 }
837
838 /**
839  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
840  * @cc:        Compaction control structure.
841  * @start_pfn: The first PFN to start isolating.
842  * @end_pfn:   The one-past-last PFN.
843  *
844  * Returns zero if isolation fails fatally due to e.g. pending signal.
845  * Otherwise, function returns one-past-the-last PFN of isolated page
846  * (which may be greater than end_pfn if end fell in a middle of a THP page).
847  */
848 unsigned long
849 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
850                                                         unsigned long end_pfn)
851 {
852         unsigned long pfn, block_end_pfn;
853
854         /* Scan block by block. First and last block may be incomplete */
855         pfn = start_pfn;
856         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
857
858         for (; pfn < end_pfn; pfn = block_end_pfn,
859                                 block_end_pfn += pageblock_nr_pages) {
860
861                 block_end_pfn = min(block_end_pfn, end_pfn);
862
863                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
864                         continue;
865
866                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
867                                                         ISOLATE_UNEVICTABLE);
868
869                 /*
870                  * In case of fatal failure, release everything that might
871                  * have been isolated in the previous iteration, and signal
872                  * the failure back to caller.
873                  */
874                 if (!pfn) {
875                         putback_movable_pages(&cc->migratepages);
876                         cc->nr_migratepages = 0;
877                         break;
878                 }
879
880                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
881                         break;
882         }
883         acct_isolated(cc->zone, cc);
884
885         return pfn;
886 }
887
888 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
889 #ifdef CONFIG_COMPACTION
890 /*
891  * Based on information in the current compact_control, find blocks
892  * suitable for isolating free pages from and then isolate them.
893  */
894 static void isolate_freepages(struct compact_control *cc)
895 {
896         struct zone *zone = cc->zone;
897         struct page *page;
898         unsigned long block_start_pfn;  /* start of current pageblock */
899         unsigned long isolate_start_pfn; /* exact pfn we start at */
900         unsigned long block_end_pfn;    /* end of current pageblock */
901         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
902         int nr_freepages = cc->nr_freepages;
903         struct list_head *freelist = &cc->freepages;
904
905         /*
906          * Initialise the free scanner. The starting point is where we last
907          * successfully isolated from, zone-cached value, or the end of the
908          * zone when isolating for the first time. For looping we also need
909          * this pfn aligned down to the pageblock boundary, because we do
910          * block_start_pfn -= pageblock_nr_pages in the for loop.
911          * For ending point, take care when isolating in last pageblock of a
912          * a zone which ends in the middle of a pageblock.
913          * The low boundary is the end of the pageblock the migration scanner
914          * is using.
915          */
916         isolate_start_pfn = cc->free_pfn;
917         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
918         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
919                                                 zone_end_pfn(zone));
920         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
921
922         /*
923          * Isolate free pages until enough are available to migrate the
924          * pages on cc->migratepages. We stop searching if the migrate
925          * and free page scanners meet or enough free pages are isolated.
926          */
927         for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
928                                 block_end_pfn = block_start_pfn,
929                                 block_start_pfn -= pageblock_nr_pages,
930                                 isolate_start_pfn = block_start_pfn) {
931                 unsigned long isolated;
932
933                 /*
934                  * This can iterate a massively long zone without finding any
935                  * suitable migration targets, so periodically check if we need
936                  * to schedule, or even abort async compaction.
937                  */
938                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
939                                                 && compact_should_abort(cc))
940                         break;
941
942                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
943                                                                         zone);
944                 if (!page)
945                         continue;
946
947                 /* Check the block is suitable for migration */
948                 if (!suitable_migration_target(page))
949                         continue;
950
951                 /* If isolation recently failed, do not retry */
952                 if (!isolation_suitable(cc, page))
953                         continue;
954
955                 /* Found a block suitable for isolating free pages from. */
956                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
957                                         block_end_pfn, freelist, false);
958                 nr_freepages += isolated;
959
960                 /*
961                  * Remember where the free scanner should restart next time,
962                  * which is where isolate_freepages_block() left off.
963                  * But if it scanned the whole pageblock, isolate_start_pfn
964                  * now points at block_end_pfn, which is the start of the next
965                  * pageblock.
966                  * In that case we will however want to restart at the start
967                  * of the previous pageblock.
968                  */
969                 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
970                                 isolate_start_pfn :
971                                 block_start_pfn - pageblock_nr_pages;
972
973                 /*
974                  * isolate_freepages_block() might have aborted due to async
975                  * compaction being contended
976                  */
977                 if (cc->contended)
978                         break;
979         }
980
981         /* split_free_page does not map the pages */
982         map_pages(freelist);
983
984         /*
985          * If we crossed the migrate scanner, we want to keep it that way
986          * so that compact_finished() may detect this
987          */
988         if (block_start_pfn < low_pfn)
989                 cc->free_pfn = cc->migrate_pfn;
990
991         cc->nr_freepages = nr_freepages;
992 }
993
994 /*
995  * This is a migrate-callback that "allocates" freepages by taking pages
996  * from the isolated freelists in the block we are migrating to.
997  */
998 static struct page *compaction_alloc(struct page *migratepage,
999                                         unsigned long data,
1000                                         int **result)
1001 {
1002         struct compact_control *cc = (struct compact_control *)data;
1003         struct page *freepage;
1004
1005         /*
1006          * Isolate free pages if necessary, and if we are not aborting due to
1007          * contention.
1008          */
1009         if (list_empty(&cc->freepages)) {
1010                 if (!cc->contended)
1011                         isolate_freepages(cc);
1012
1013                 if (list_empty(&cc->freepages))
1014                         return NULL;
1015         }
1016
1017         freepage = list_entry(cc->freepages.next, struct page, lru);
1018         list_del(&freepage->lru);
1019         cc->nr_freepages--;
1020
1021         return freepage;
1022 }
1023
1024 /*
1025  * This is a migrate-callback that "frees" freepages back to the isolated
1026  * freelist.  All pages on the freelist are from the same zone, so there is no
1027  * special handling needed for NUMA.
1028  */
1029 static void compaction_free(struct page *page, unsigned long data)
1030 {
1031         struct compact_control *cc = (struct compact_control *)data;
1032
1033         list_add(&page->lru, &cc->freepages);
1034         cc->nr_freepages++;
1035 }
1036
1037 /* possible outcome of isolate_migratepages */
1038 typedef enum {
1039         ISOLATE_ABORT,          /* Abort compaction now */
1040         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1041         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1042 } isolate_migrate_t;
1043
1044 /*
1045  * Isolate all pages that can be migrated from the first suitable block,
1046  * starting at the block pointed to by the migrate scanner pfn within
1047  * compact_control.
1048  */
1049 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1050                                         struct compact_control *cc)
1051 {
1052         unsigned long low_pfn, end_pfn;
1053         struct page *page;
1054         const isolate_mode_t isolate_mode =
1055                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1056
1057         /*
1058          * Start at where we last stopped, or beginning of the zone as
1059          * initialized by compact_zone()
1060          */
1061         low_pfn = cc->migrate_pfn;
1062
1063         /* Only scan within a pageblock boundary */
1064         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1065
1066         /*
1067          * Iterate over whole pageblocks until we find the first suitable.
1068          * Do not cross the free scanner.
1069          */
1070         for (; end_pfn <= cc->free_pfn;
1071                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1072
1073                 /*
1074                  * This can potentially iterate a massively long zone with
1075                  * many pageblocks unsuitable, so periodically check if we
1076                  * need to schedule, or even abort async compaction.
1077                  */
1078                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1079                                                 && compact_should_abort(cc))
1080                         break;
1081
1082                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1083                 if (!page)
1084                         continue;
1085
1086                 /* If isolation recently failed, do not retry */
1087                 if (!isolation_suitable(cc, page))
1088                         continue;
1089
1090                 /*
1091                  * For async compaction, also only scan in MOVABLE blocks.
1092                  * Async compaction is optimistic to see if the minimum amount
1093                  * of work satisfies the allocation.
1094                  */
1095                 if (cc->mode == MIGRATE_ASYNC &&
1096                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1097                         continue;
1098
1099                 /* Perform the isolation */
1100                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1101                                                                 isolate_mode);
1102
1103                 if (!low_pfn || cc->contended)
1104                         return ISOLATE_ABORT;
1105
1106                 /*
1107                  * Either we isolated something and proceed with migration. Or
1108                  * we failed and compact_zone should decide if we should
1109                  * continue or not.
1110                  */
1111                 break;
1112         }
1113
1114         acct_isolated(zone, cc);
1115         /*
1116          * Record where migration scanner will be restarted. If we end up in
1117          * the same pageblock as the free scanner, make the scanners fully
1118          * meet so that compact_finished() terminates compaction.
1119          */
1120         cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1121
1122         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1123 }
1124
1125 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1126                             const int migratetype)
1127 {
1128         unsigned int order;
1129         unsigned long watermark;
1130
1131         if (cc->contended || fatal_signal_pending(current))
1132                 return COMPACT_PARTIAL;
1133
1134         /* Compaction run completes if the migrate and free scanner meet */
1135         if (cc->free_pfn <= cc->migrate_pfn) {
1136                 /* Let the next compaction start anew. */
1137                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1138                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1139                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1140
1141                 /*
1142                  * Mark that the PG_migrate_skip information should be cleared
1143                  * by kswapd when it goes to sleep. kswapd does not set the
1144                  * flag itself as the decision to be clear should be directly
1145                  * based on an allocation request.
1146                  */
1147                 if (!current_is_kswapd())
1148                         zone->compact_blockskip_flush = true;
1149
1150                 return COMPACT_COMPLETE;
1151         }
1152
1153         /*
1154          * order == -1 is expected when compacting via
1155          * /proc/sys/vm/compact_memory
1156          */
1157         if (cc->order == -1)
1158                 return COMPACT_CONTINUE;
1159
1160         /* Compaction run is not finished if the watermark is not met */
1161         watermark = low_wmark_pages(zone);
1162
1163         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1164                                                         cc->alloc_flags))
1165                 return COMPACT_CONTINUE;
1166
1167         /* Direct compactor: Is a suitable page free? */
1168         for (order = cc->order; order < MAX_ORDER; order++) {
1169                 struct free_area *area = &zone->free_area[order];
1170
1171                 /* Job done if page is free of the right migratetype */
1172                 if (!list_empty(&area->free_list[migratetype]))
1173                         return COMPACT_PARTIAL;
1174
1175                 /* Job done if allocation would set block type */
1176                 if (cc->order >= pageblock_order && area->nr_free)
1177                         return COMPACT_PARTIAL;
1178         }
1179
1180         return COMPACT_NO_SUITABLE_PAGE;
1181 }
1182
1183 static int compact_finished(struct zone *zone, struct compact_control *cc,
1184                             const int migratetype)
1185 {
1186         int ret;
1187
1188         ret = __compact_finished(zone, cc, migratetype);
1189         trace_mm_compaction_finished(zone, cc->order, ret);
1190         if (ret == COMPACT_NO_SUITABLE_PAGE)
1191                 ret = COMPACT_CONTINUE;
1192
1193         return ret;
1194 }
1195
1196 /*
1197  * compaction_suitable: Is this suitable to run compaction on this zone now?
1198  * Returns
1199  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1200  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1201  *   COMPACT_CONTINUE - If compaction should run now
1202  */
1203 static unsigned long __compaction_suitable(struct zone *zone, int order,
1204                                         int alloc_flags, int classzone_idx)
1205 {
1206         int fragindex;
1207         unsigned long watermark;
1208
1209         /*
1210          * order == -1 is expected when compacting via
1211          * /proc/sys/vm/compact_memory
1212          */
1213         if (order == -1)
1214                 return COMPACT_CONTINUE;
1215
1216         watermark = low_wmark_pages(zone);
1217         /*
1218          * If watermarks for high-order allocation are already met, there
1219          * should be no need for compaction at all.
1220          */
1221         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1222                                                                 alloc_flags))
1223                 return COMPACT_PARTIAL;
1224
1225         /*
1226          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1227          * This is because during migration, copies of pages need to be
1228          * allocated and for a short time, the footprint is higher
1229          */
1230         watermark += (2UL << order);
1231         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1232                 return COMPACT_SKIPPED;
1233
1234         /*
1235          * fragmentation index determines if allocation failures are due to
1236          * low memory or external fragmentation
1237          *
1238          * index of -1000 would imply allocations might succeed depending on
1239          * watermarks, but we already failed the high-order watermark check
1240          * index towards 0 implies failure is due to lack of memory
1241          * index towards 1000 implies failure is due to fragmentation
1242          *
1243          * Only compact if a failure would be due to fragmentation.
1244          */
1245         fragindex = fragmentation_index(zone, order);
1246         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1247                 return COMPACT_NOT_SUITABLE_ZONE;
1248
1249         return COMPACT_CONTINUE;
1250 }
1251
1252 unsigned long compaction_suitable(struct zone *zone, int order,
1253                                         int alloc_flags, int classzone_idx)
1254 {
1255         unsigned long ret;
1256
1257         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1258         trace_mm_compaction_suitable(zone, order, ret);
1259         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1260                 ret = COMPACT_SKIPPED;
1261
1262         return ret;
1263 }
1264
1265 static int compact_zone(struct zone *zone, struct compact_control *cc)
1266 {
1267         int ret;
1268         unsigned long start_pfn = zone->zone_start_pfn;
1269         unsigned long end_pfn = zone_end_pfn(zone);
1270         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1271         const bool sync = cc->mode != MIGRATE_ASYNC;
1272         unsigned long last_migrated_pfn = 0;
1273
1274         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1275                                                         cc->classzone_idx);
1276         switch (ret) {
1277         case COMPACT_PARTIAL:
1278         case COMPACT_SKIPPED:
1279                 /* Compaction is likely to fail */
1280                 return ret;
1281         case COMPACT_CONTINUE:
1282                 /* Fall through to compaction */
1283                 ;
1284         }
1285
1286         /*
1287          * Clear pageblock skip if there were failures recently and compaction
1288          * is about to be retried after being deferred. kswapd does not do
1289          * this reset as it'll reset the cached information when going to sleep.
1290          */
1291         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1292                 __reset_isolation_suitable(zone);
1293
1294         /*
1295          * Setup to move all movable pages to the end of the zone. Used cached
1296          * information on where the scanners should start but check that it
1297          * is initialised by ensuring the values are within zone boundaries.
1298          */
1299         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1300         cc->free_pfn = zone->compact_cached_free_pfn;
1301         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1302                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1303                 zone->compact_cached_free_pfn = cc->free_pfn;
1304         }
1305         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1306                 cc->migrate_pfn = start_pfn;
1307                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1308                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1309         }
1310
1311         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1312                                 cc->free_pfn, end_pfn, sync);
1313
1314         migrate_prep_local();
1315
1316         while ((ret = compact_finished(zone, cc, migratetype)) ==
1317                                                 COMPACT_CONTINUE) {
1318                 int err;
1319                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1320
1321                 switch (isolate_migratepages(zone, cc)) {
1322                 case ISOLATE_ABORT:
1323                         ret = COMPACT_PARTIAL;
1324                         putback_movable_pages(&cc->migratepages);
1325                         cc->nr_migratepages = 0;
1326                         goto out;
1327                 case ISOLATE_NONE:
1328                         /*
1329                          * We haven't isolated and migrated anything, but
1330                          * there might still be unflushed migrations from
1331                          * previous cc->order aligned block.
1332                          */
1333                         goto check_drain;
1334                 case ISOLATE_SUCCESS:
1335                         ;
1336                 }
1337
1338                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1339                                 compaction_free, (unsigned long)cc, cc->mode,
1340                                 MR_COMPACTION);
1341
1342                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1343                                                         &cc->migratepages);
1344
1345                 /* All pages were either migrated or will be released */
1346                 cc->nr_migratepages = 0;
1347                 if (err) {
1348                         putback_movable_pages(&cc->migratepages);
1349                         /*
1350                          * migrate_pages() may return -ENOMEM when scanners meet
1351                          * and we want compact_finished() to detect it
1352                          */
1353                         if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1354                                 ret = COMPACT_PARTIAL;
1355                                 goto out;
1356                         }
1357                 }
1358
1359                 /*
1360                  * Record where we could have freed pages by migration and not
1361                  * yet flushed them to buddy allocator. We use the pfn that
1362                  * isolate_migratepages() started from in this loop iteration
1363                  * - this is the lowest page that could have been isolated and
1364                  * then freed by migration.
1365                  */
1366                 if (!last_migrated_pfn)
1367                         last_migrated_pfn = isolate_start_pfn;
1368
1369 check_drain:
1370                 /*
1371                  * Has the migration scanner moved away from the previous
1372                  * cc->order aligned block where we migrated from? If yes,
1373                  * flush the pages that were freed, so that they can merge and
1374                  * compact_finished() can detect immediately if allocation
1375                  * would succeed.
1376                  */
1377                 if (cc->order > 0 && last_migrated_pfn) {
1378                         int cpu;
1379                         unsigned long current_block_start =
1380                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1381
1382                         if (last_migrated_pfn < current_block_start) {
1383                                 cpu = get_cpu();
1384                                 lru_add_drain_cpu(cpu);
1385                                 drain_local_pages(zone);
1386                                 put_cpu();
1387                                 /* No more flushing until we migrate again */
1388                                 last_migrated_pfn = 0;
1389                         }
1390                 }
1391
1392         }
1393
1394 out:
1395         /*
1396          * Release free pages and update where the free scanner should restart,
1397          * so we don't leave any returned pages behind in the next attempt.
1398          */
1399         if (cc->nr_freepages > 0) {
1400                 unsigned long free_pfn = release_freepages(&cc->freepages);
1401
1402                 cc->nr_freepages = 0;
1403                 VM_BUG_ON(free_pfn == 0);
1404                 /* The cached pfn is always the first in a pageblock */
1405                 free_pfn &= ~(pageblock_nr_pages-1);
1406                 /*
1407                  * Only go back, not forward. The cached pfn might have been
1408                  * already reset to zone end in compact_finished()
1409                  */
1410                 if (free_pfn > zone->compact_cached_free_pfn)
1411                         zone->compact_cached_free_pfn = free_pfn;
1412         }
1413
1414         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1415                                 cc->free_pfn, end_pfn, sync, ret);
1416
1417         return ret;
1418 }
1419
1420 static unsigned long compact_zone_order(struct zone *zone, int order,
1421                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1422                 int alloc_flags, int classzone_idx)
1423 {
1424         unsigned long ret;
1425         struct compact_control cc = {
1426                 .nr_freepages = 0,
1427                 .nr_migratepages = 0,
1428                 .order = order,
1429                 .gfp_mask = gfp_mask,
1430                 .zone = zone,
1431                 .mode = mode,
1432                 .alloc_flags = alloc_flags,
1433                 .classzone_idx = classzone_idx,
1434         };
1435         INIT_LIST_HEAD(&cc.freepages);
1436         INIT_LIST_HEAD(&cc.migratepages);
1437
1438         ret = compact_zone(zone, &cc);
1439
1440         VM_BUG_ON(!list_empty(&cc.freepages));
1441         VM_BUG_ON(!list_empty(&cc.migratepages));
1442
1443         *contended = cc.contended;
1444         return ret;
1445 }
1446
1447 int sysctl_extfrag_threshold = 500;
1448
1449 /**
1450  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1451  * @gfp_mask: The GFP mask of the current allocation
1452  * @order: The order of the current allocation
1453  * @alloc_flags: The allocation flags of the current allocation
1454  * @ac: The context of current allocation
1455  * @mode: The migration mode for async, sync light, or sync migration
1456  * @contended: Return value that determines if compaction was aborted due to
1457  *             need_resched() or lock contention
1458  *
1459  * This is the main entry point for direct page compaction.
1460  */
1461 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1462                         int alloc_flags, const struct alloc_context *ac,
1463                         enum migrate_mode mode, int *contended)
1464 {
1465         int may_enter_fs = gfp_mask & __GFP_FS;
1466         int may_perform_io = gfp_mask & __GFP_IO;
1467         struct zoneref *z;
1468         struct zone *zone;
1469         int rc = COMPACT_DEFERRED;
1470         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1471
1472         *contended = COMPACT_CONTENDED_NONE;
1473
1474         /* Check if the GFP flags allow compaction */
1475         if (!order || !may_enter_fs || !may_perform_io)
1476                 return COMPACT_SKIPPED;
1477
1478         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1479
1480         /* Compact each zone in the list */
1481         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1482                                                                 ac->nodemask) {
1483                 int status;
1484                 int zone_contended;
1485
1486                 if (compaction_deferred(zone, order))
1487                         continue;
1488
1489                 status = compact_zone_order(zone, order, gfp_mask, mode,
1490                                 &zone_contended, alloc_flags,
1491                                 ac->classzone_idx);
1492                 rc = max(status, rc);
1493                 /*
1494                  * It takes at least one zone that wasn't lock contended
1495                  * to clear all_zones_contended.
1496                  */
1497                 all_zones_contended &= zone_contended;
1498
1499                 /* If a normal allocation would succeed, stop compacting */
1500                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1501                                         ac->classzone_idx, alloc_flags)) {
1502                         /*
1503                          * We think the allocation will succeed in this zone,
1504                          * but it is not certain, hence the false. The caller
1505                          * will repeat this with true if allocation indeed
1506                          * succeeds in this zone.
1507                          */
1508                         compaction_defer_reset(zone, order, false);
1509                         /*
1510                          * It is possible that async compaction aborted due to
1511                          * need_resched() and the watermarks were ok thanks to
1512                          * somebody else freeing memory. The allocation can
1513                          * however still fail so we better signal the
1514                          * need_resched() contention anyway (this will not
1515                          * prevent the allocation attempt).
1516                          */
1517                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1518                                 *contended = COMPACT_CONTENDED_SCHED;
1519
1520                         goto break_loop;
1521                 }
1522
1523                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1524                         /*
1525                          * We think that allocation won't succeed in this zone
1526                          * so we defer compaction there. If it ends up
1527                          * succeeding after all, it will be reset.
1528                          */
1529                         defer_compaction(zone, order);
1530                 }
1531
1532                 /*
1533                  * We might have stopped compacting due to need_resched() in
1534                  * async compaction, or due to a fatal signal detected. In that
1535                  * case do not try further zones and signal need_resched()
1536                  * contention.
1537                  */
1538                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1539                                         || fatal_signal_pending(current)) {
1540                         *contended = COMPACT_CONTENDED_SCHED;
1541                         goto break_loop;
1542                 }
1543
1544                 continue;
1545 break_loop:
1546                 /*
1547                  * We might not have tried all the zones, so  be conservative
1548                  * and assume they are not all lock contended.
1549                  */
1550                 all_zones_contended = 0;
1551                 break;
1552         }
1553
1554         /*
1555          * If at least one zone wasn't deferred or skipped, we report if all
1556          * zones that were tried were lock contended.
1557          */
1558         if (rc > COMPACT_SKIPPED && all_zones_contended)
1559                 *contended = COMPACT_CONTENDED_LOCK;
1560
1561         return rc;
1562 }
1563
1564
1565 /* Compact all zones within a node */
1566 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1567 {
1568         int zoneid;
1569         struct zone *zone;
1570
1571         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1572
1573                 zone = &pgdat->node_zones[zoneid];
1574                 if (!populated_zone(zone))
1575                         continue;
1576
1577                 cc->nr_freepages = 0;
1578                 cc->nr_migratepages = 0;
1579                 cc->zone = zone;
1580                 INIT_LIST_HEAD(&cc->freepages);
1581                 INIT_LIST_HEAD(&cc->migratepages);
1582
1583                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1584                         compact_zone(zone, cc);
1585
1586                 if (cc->order > 0) {
1587                         if (zone_watermark_ok(zone, cc->order,
1588                                                 low_wmark_pages(zone), 0, 0))
1589                                 compaction_defer_reset(zone, cc->order, false);
1590                 }
1591
1592                 VM_BUG_ON(!list_empty(&cc->freepages));
1593                 VM_BUG_ON(!list_empty(&cc->migratepages));
1594         }
1595 }
1596
1597 void compact_pgdat(pg_data_t *pgdat, int order)
1598 {
1599         struct compact_control cc = {
1600                 .order = order,
1601                 .mode = MIGRATE_ASYNC,
1602         };
1603
1604         if (!order)
1605                 return;
1606
1607         __compact_pgdat(pgdat, &cc);
1608 }
1609
1610 static void compact_node(int nid)
1611 {
1612         struct compact_control cc = {
1613                 .order = -1,
1614                 .mode = MIGRATE_SYNC,
1615                 .ignore_skip_hint = true,
1616         };
1617
1618         __compact_pgdat(NODE_DATA(nid), &cc);
1619 }
1620
1621 /* Compact all nodes in the system */
1622 static void compact_nodes(void)
1623 {
1624         int nid;
1625
1626         /* Flush pending updates to the LRU lists */
1627         lru_add_drain_all();
1628
1629         for_each_online_node(nid)
1630                 compact_node(nid);
1631 }
1632
1633 /* The written value is actually unused, all memory is compacted */
1634 int sysctl_compact_memory;
1635
1636 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1637 int sysctl_compaction_handler(struct ctl_table *table, int write,
1638                         void __user *buffer, size_t *length, loff_t *ppos)
1639 {
1640         if (write)
1641                 compact_nodes();
1642
1643         return 0;
1644 }
1645
1646 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1647                         void __user *buffer, size_t *length, loff_t *ppos)
1648 {
1649         proc_dointvec_minmax(table, write, buffer, length, ppos);
1650
1651         return 0;
1652 }
1653
1654 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1655 static ssize_t sysfs_compact_node(struct device *dev,
1656                         struct device_attribute *attr,
1657                         const char *buf, size_t count)
1658 {
1659         int nid = dev->id;
1660
1661         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1662                 /* Flush pending updates to the LRU lists */
1663                 lru_add_drain_all();
1664
1665                 compact_node(nid);
1666         }
1667
1668         return count;
1669 }
1670 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1671
1672 int compaction_register_node(struct node *node)
1673 {
1674         return device_create_file(&node->dev, &dev_attr_compact);
1675 }
1676
1677 void compaction_unregister_node(struct node *node)
1678 {
1679         return device_remove_file(&node->dev, &dev_attr_compact);
1680 }
1681 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1682
1683 #endif /* CONFIG_COMPACTION */