]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/compaction.c
mm, compaction: add migratetype to compact_control
[karo-tx-linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
24 #include "internal.h"
25
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item)
28 {
29         count_vm_event(item);
30 }
31
32 static inline void count_compact_events(enum vm_event_item item, long delta)
33 {
34         count_vm_events(item, delta);
35 }
36 #else
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
39 #endif
40
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
45
46 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
50
51 static unsigned long release_freepages(struct list_head *freelist)
52 {
53         struct page *page, *next;
54         unsigned long high_pfn = 0;
55
56         list_for_each_entry_safe(page, next, freelist, lru) {
57                 unsigned long pfn = page_to_pfn(page);
58                 list_del(&page->lru);
59                 __free_page(page);
60                 if (pfn > high_pfn)
61                         high_pfn = pfn;
62         }
63
64         return high_pfn;
65 }
66
67 static void map_pages(struct list_head *list)
68 {
69         unsigned int i, order, nr_pages;
70         struct page *page, *next;
71         LIST_HEAD(tmp_list);
72
73         list_for_each_entry_safe(page, next, list, lru) {
74                 list_del(&page->lru);
75
76                 order = page_private(page);
77                 nr_pages = 1 << order;
78
79                 post_alloc_hook(page, order, __GFP_MOVABLE);
80                 if (order)
81                         split_page(page, order);
82
83                 for (i = 0; i < nr_pages; i++) {
84                         list_add(&page->lru, &tmp_list);
85                         page++;
86                 }
87         }
88
89         list_splice(&tmp_list, list);
90 }
91
92 #ifdef CONFIG_COMPACTION
93
94 int PageMovable(struct page *page)
95 {
96         struct address_space *mapping;
97
98         VM_BUG_ON_PAGE(!PageLocked(page), page);
99         if (!__PageMovable(page))
100                 return 0;
101
102         mapping = page_mapping(page);
103         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
104                 return 1;
105
106         return 0;
107 }
108 EXPORT_SYMBOL(PageMovable);
109
110 void __SetPageMovable(struct page *page, struct address_space *mapping)
111 {
112         VM_BUG_ON_PAGE(!PageLocked(page), page);
113         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
114         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
115 }
116 EXPORT_SYMBOL(__SetPageMovable);
117
118 void __ClearPageMovable(struct page *page)
119 {
120         VM_BUG_ON_PAGE(!PageLocked(page), page);
121         VM_BUG_ON_PAGE(!PageMovable(page), page);
122         /*
123          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
124          * flag so that VM can catch up released page by driver after isolation.
125          * With it, VM migration doesn't try to put it back.
126          */
127         page->mapping = (void *)((unsigned long)page->mapping &
128                                 PAGE_MAPPING_MOVABLE);
129 }
130 EXPORT_SYMBOL(__ClearPageMovable);
131
132 /* Do not skip compaction more than 64 times */
133 #define COMPACT_MAX_DEFER_SHIFT 6
134
135 /*
136  * Compaction is deferred when compaction fails to result in a page
137  * allocation success. 1 << compact_defer_limit compactions are skipped up
138  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
139  */
140 void defer_compaction(struct zone *zone, int order)
141 {
142         zone->compact_considered = 0;
143         zone->compact_defer_shift++;
144
145         if (order < zone->compact_order_failed)
146                 zone->compact_order_failed = order;
147
148         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
149                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
150
151         trace_mm_compaction_defer_compaction(zone, order);
152 }
153
154 /* Returns true if compaction should be skipped this time */
155 bool compaction_deferred(struct zone *zone, int order)
156 {
157         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
158
159         if (order < zone->compact_order_failed)
160                 return false;
161
162         /* Avoid possible overflow */
163         if (++zone->compact_considered > defer_limit)
164                 zone->compact_considered = defer_limit;
165
166         if (zone->compact_considered >= defer_limit)
167                 return false;
168
169         trace_mm_compaction_deferred(zone, order);
170
171         return true;
172 }
173
174 /*
175  * Update defer tracking counters after successful compaction of given order,
176  * which means an allocation either succeeded (alloc_success == true) or is
177  * expected to succeed.
178  */
179 void compaction_defer_reset(struct zone *zone, int order,
180                 bool alloc_success)
181 {
182         if (alloc_success) {
183                 zone->compact_considered = 0;
184                 zone->compact_defer_shift = 0;
185         }
186         if (order >= zone->compact_order_failed)
187                 zone->compact_order_failed = order + 1;
188
189         trace_mm_compaction_defer_reset(zone, order);
190 }
191
192 /* Returns true if restarting compaction after many failures */
193 bool compaction_restarting(struct zone *zone, int order)
194 {
195         if (order < zone->compact_order_failed)
196                 return false;
197
198         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
199                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 }
201
202 /* Returns true if the pageblock should be scanned for pages to isolate. */
203 static inline bool isolation_suitable(struct compact_control *cc,
204                                         struct page *page)
205 {
206         if (cc->ignore_skip_hint)
207                 return true;
208
209         return !get_pageblock_skip(page);
210 }
211
212 static void reset_cached_positions(struct zone *zone)
213 {
214         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
215         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
216         zone->compact_cached_free_pfn =
217                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
218 }
219
220 /*
221  * This function is called to clear all cached information on pageblocks that
222  * should be skipped for page isolation when the migrate and free page scanner
223  * meet.
224  */
225 static void __reset_isolation_suitable(struct zone *zone)
226 {
227         unsigned long start_pfn = zone->zone_start_pfn;
228         unsigned long end_pfn = zone_end_pfn(zone);
229         unsigned long pfn;
230
231         zone->compact_blockskip_flush = false;
232
233         /* Walk the zone and mark every pageblock as suitable for isolation */
234         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
235                 struct page *page;
236
237                 cond_resched();
238
239                 if (!pfn_valid(pfn))
240                         continue;
241
242                 page = pfn_to_page(pfn);
243                 if (zone != page_zone(page))
244                         continue;
245
246                 clear_pageblock_skip(page);
247         }
248
249         reset_cached_positions(zone);
250 }
251
252 void reset_isolation_suitable(pg_data_t *pgdat)
253 {
254         int zoneid;
255
256         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
257                 struct zone *zone = &pgdat->node_zones[zoneid];
258                 if (!populated_zone(zone))
259                         continue;
260
261                 /* Only flush if a full compaction finished recently */
262                 if (zone->compact_blockskip_flush)
263                         __reset_isolation_suitable(zone);
264         }
265 }
266
267 /*
268  * If no pages were isolated then mark this pageblock to be skipped in the
269  * future. The information is later cleared by __reset_isolation_suitable().
270  */
271 static void update_pageblock_skip(struct compact_control *cc,
272                         struct page *page, unsigned long nr_isolated,
273                         bool migrate_scanner)
274 {
275         struct zone *zone = cc->zone;
276         unsigned long pfn;
277
278         if (cc->ignore_skip_hint)
279                 return;
280
281         if (!page)
282                 return;
283
284         if (nr_isolated)
285                 return;
286
287         set_pageblock_skip(page);
288
289         pfn = page_to_pfn(page);
290
291         /* Update where async and sync compaction should restart */
292         if (migrate_scanner) {
293                 if (pfn > zone->compact_cached_migrate_pfn[0])
294                         zone->compact_cached_migrate_pfn[0] = pfn;
295                 if (cc->mode != MIGRATE_ASYNC &&
296                     pfn > zone->compact_cached_migrate_pfn[1])
297                         zone->compact_cached_migrate_pfn[1] = pfn;
298         } else {
299                 if (pfn < zone->compact_cached_free_pfn)
300                         zone->compact_cached_free_pfn = pfn;
301         }
302 }
303 #else
304 static inline bool isolation_suitable(struct compact_control *cc,
305                                         struct page *page)
306 {
307         return true;
308 }
309
310 static void update_pageblock_skip(struct compact_control *cc,
311                         struct page *page, unsigned long nr_isolated,
312                         bool migrate_scanner)
313 {
314 }
315 #endif /* CONFIG_COMPACTION */
316
317 /*
318  * Compaction requires the taking of some coarse locks that are potentially
319  * very heavily contended. For async compaction, back out if the lock cannot
320  * be taken immediately. For sync compaction, spin on the lock if needed.
321  *
322  * Returns true if the lock is held
323  * Returns false if the lock is not held and compaction should abort
324  */
325 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
326                                                 struct compact_control *cc)
327 {
328         if (cc->mode == MIGRATE_ASYNC) {
329                 if (!spin_trylock_irqsave(lock, *flags)) {
330                         cc->contended = true;
331                         return false;
332                 }
333         } else {
334                 spin_lock_irqsave(lock, *flags);
335         }
336
337         return true;
338 }
339
340 /*
341  * Compaction requires the taking of some coarse locks that are potentially
342  * very heavily contended. The lock should be periodically unlocked to avoid
343  * having disabled IRQs for a long time, even when there is nobody waiting on
344  * the lock. It might also be that allowing the IRQs will result in
345  * need_resched() becoming true. If scheduling is needed, async compaction
346  * aborts. Sync compaction schedules.
347  * Either compaction type will also abort if a fatal signal is pending.
348  * In either case if the lock was locked, it is dropped and not regained.
349  *
350  * Returns true if compaction should abort due to fatal signal pending, or
351  *              async compaction due to need_resched()
352  * Returns false when compaction can continue (sync compaction might have
353  *              scheduled)
354  */
355 static bool compact_unlock_should_abort(spinlock_t *lock,
356                 unsigned long flags, bool *locked, struct compact_control *cc)
357 {
358         if (*locked) {
359                 spin_unlock_irqrestore(lock, flags);
360                 *locked = false;
361         }
362
363         if (fatal_signal_pending(current)) {
364                 cc->contended = true;
365                 return true;
366         }
367
368         if (need_resched()) {
369                 if (cc->mode == MIGRATE_ASYNC) {
370                         cc->contended = true;
371                         return true;
372                 }
373                 cond_resched();
374         }
375
376         return false;
377 }
378
379 /*
380  * Aside from avoiding lock contention, compaction also periodically checks
381  * need_resched() and either schedules in sync compaction or aborts async
382  * compaction. This is similar to what compact_unlock_should_abort() does, but
383  * is used where no lock is concerned.
384  *
385  * Returns false when no scheduling was needed, or sync compaction scheduled.
386  * Returns true when async compaction should abort.
387  */
388 static inline bool compact_should_abort(struct compact_control *cc)
389 {
390         /* async compaction aborts if contended */
391         if (need_resched()) {
392                 if (cc->mode == MIGRATE_ASYNC) {
393                         cc->contended = true;
394                         return true;
395                 }
396
397                 cond_resched();
398         }
399
400         return false;
401 }
402
403 /*
404  * Isolate free pages onto a private freelist. If @strict is true, will abort
405  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
406  * (even though it may still end up isolating some pages).
407  */
408 static unsigned long isolate_freepages_block(struct compact_control *cc,
409                                 unsigned long *start_pfn,
410                                 unsigned long end_pfn,
411                                 struct list_head *freelist,
412                                 bool strict)
413 {
414         int nr_scanned = 0, total_isolated = 0;
415         struct page *cursor, *valid_page = NULL;
416         unsigned long flags = 0;
417         bool locked = false;
418         unsigned long blockpfn = *start_pfn;
419         unsigned int order;
420
421         cursor = pfn_to_page(blockpfn);
422
423         /* Isolate free pages. */
424         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
425                 int isolated;
426                 struct page *page = cursor;
427
428                 /*
429                  * Periodically drop the lock (if held) regardless of its
430                  * contention, to give chance to IRQs. Abort if fatal signal
431                  * pending or async compaction detects need_resched()
432                  */
433                 if (!(blockpfn % SWAP_CLUSTER_MAX)
434                     && compact_unlock_should_abort(&cc->zone->lock, flags,
435                                                                 &locked, cc))
436                         break;
437
438                 nr_scanned++;
439                 if (!pfn_valid_within(blockpfn))
440                         goto isolate_fail;
441
442                 if (!valid_page)
443                         valid_page = page;
444
445                 /*
446                  * For compound pages such as THP and hugetlbfs, we can save
447                  * potentially a lot of iterations if we skip them at once.
448                  * The check is racy, but we can consider only valid values
449                  * and the only danger is skipping too much.
450                  */
451                 if (PageCompound(page)) {
452                         unsigned int comp_order = compound_order(page);
453
454                         if (likely(comp_order < MAX_ORDER)) {
455                                 blockpfn += (1UL << comp_order) - 1;
456                                 cursor += (1UL << comp_order) - 1;
457                         }
458
459                         goto isolate_fail;
460                 }
461
462                 if (!PageBuddy(page))
463                         goto isolate_fail;
464
465                 /*
466                  * If we already hold the lock, we can skip some rechecking.
467                  * Note that if we hold the lock now, checked_pageblock was
468                  * already set in some previous iteration (or strict is true),
469                  * so it is correct to skip the suitable migration target
470                  * recheck as well.
471                  */
472                 if (!locked) {
473                         /*
474                          * The zone lock must be held to isolate freepages.
475                          * Unfortunately this is a very coarse lock and can be
476                          * heavily contended if there are parallel allocations
477                          * or parallel compactions. For async compaction do not
478                          * spin on the lock and we acquire the lock as late as
479                          * possible.
480                          */
481                         locked = compact_trylock_irqsave(&cc->zone->lock,
482                                                                 &flags, cc);
483                         if (!locked)
484                                 break;
485
486                         /* Recheck this is a buddy page under lock */
487                         if (!PageBuddy(page))
488                                 goto isolate_fail;
489                 }
490
491                 /* Found a free page, will break it into order-0 pages */
492                 order = page_order(page);
493                 isolated = __isolate_free_page(page, order);
494                 if (!isolated)
495                         break;
496                 set_page_private(page, order);
497
498                 total_isolated += isolated;
499                 cc->nr_freepages += isolated;
500                 list_add_tail(&page->lru, freelist);
501
502                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
503                         blockpfn += isolated;
504                         break;
505                 }
506                 /* Advance to the end of split page */
507                 blockpfn += isolated - 1;
508                 cursor += isolated - 1;
509                 continue;
510
511 isolate_fail:
512                 if (strict)
513                         break;
514                 else
515                         continue;
516
517         }
518
519         if (locked)
520                 spin_unlock_irqrestore(&cc->zone->lock, flags);
521
522         /*
523          * There is a tiny chance that we have read bogus compound_order(),
524          * so be careful to not go outside of the pageblock.
525          */
526         if (unlikely(blockpfn > end_pfn))
527                 blockpfn = end_pfn;
528
529         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
530                                         nr_scanned, total_isolated);
531
532         /* Record how far we have got within the block */
533         *start_pfn = blockpfn;
534
535         /*
536          * If strict isolation is requested by CMA then check that all the
537          * pages requested were isolated. If there were any failures, 0 is
538          * returned and CMA will fail.
539          */
540         if (strict && blockpfn < end_pfn)
541                 total_isolated = 0;
542
543         /* Update the pageblock-skip if the whole pageblock was scanned */
544         if (blockpfn == end_pfn)
545                 update_pageblock_skip(cc, valid_page, total_isolated, false);
546
547         cc->total_free_scanned += nr_scanned;
548         if (total_isolated)
549                 count_compact_events(COMPACTISOLATED, total_isolated);
550         return total_isolated;
551 }
552
553 /**
554  * isolate_freepages_range() - isolate free pages.
555  * @start_pfn: The first PFN to start isolating.
556  * @end_pfn:   The one-past-last PFN.
557  *
558  * Non-free pages, invalid PFNs, or zone boundaries within the
559  * [start_pfn, end_pfn) range are considered errors, cause function to
560  * undo its actions and return zero.
561  *
562  * Otherwise, function returns one-past-the-last PFN of isolated page
563  * (which may be greater then end_pfn if end fell in a middle of
564  * a free page).
565  */
566 unsigned long
567 isolate_freepages_range(struct compact_control *cc,
568                         unsigned long start_pfn, unsigned long end_pfn)
569 {
570         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
571         LIST_HEAD(freelist);
572
573         pfn = start_pfn;
574         block_start_pfn = pageblock_start_pfn(pfn);
575         if (block_start_pfn < cc->zone->zone_start_pfn)
576                 block_start_pfn = cc->zone->zone_start_pfn;
577         block_end_pfn = pageblock_end_pfn(pfn);
578
579         for (; pfn < end_pfn; pfn += isolated,
580                                 block_start_pfn = block_end_pfn,
581                                 block_end_pfn += pageblock_nr_pages) {
582                 /* Protect pfn from changing by isolate_freepages_block */
583                 unsigned long isolate_start_pfn = pfn;
584
585                 block_end_pfn = min(block_end_pfn, end_pfn);
586
587                 /*
588                  * pfn could pass the block_end_pfn if isolated freepage
589                  * is more than pageblock order. In this case, we adjust
590                  * scanning range to right one.
591                  */
592                 if (pfn >= block_end_pfn) {
593                         block_start_pfn = pageblock_start_pfn(pfn);
594                         block_end_pfn = pageblock_end_pfn(pfn);
595                         block_end_pfn = min(block_end_pfn, end_pfn);
596                 }
597
598                 if (!pageblock_pfn_to_page(block_start_pfn,
599                                         block_end_pfn, cc->zone))
600                         break;
601
602                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
603                                                 block_end_pfn, &freelist, true);
604
605                 /*
606                  * In strict mode, isolate_freepages_block() returns 0 if
607                  * there are any holes in the block (ie. invalid PFNs or
608                  * non-free pages).
609                  */
610                 if (!isolated)
611                         break;
612
613                 /*
614                  * If we managed to isolate pages, it is always (1 << n) *
615                  * pageblock_nr_pages for some non-negative n.  (Max order
616                  * page may span two pageblocks).
617                  */
618         }
619
620         /* __isolate_free_page() does not map the pages */
621         map_pages(&freelist);
622
623         if (pfn < end_pfn) {
624                 /* Loop terminated early, cleanup. */
625                 release_freepages(&freelist);
626                 return 0;
627         }
628
629         /* We don't use freelists for anything. */
630         return pfn;
631 }
632
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone *zone)
635 {
636         unsigned long active, inactive, isolated;
637
638         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
639                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
640         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
641                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
642         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
643                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
644
645         return isolated > (inactive + active) / 2;
646 }
647
648 /**
649  * isolate_migratepages_block() - isolate all migrate-able pages within
650  *                                a single pageblock
651  * @cc:         Compaction control structure.
652  * @low_pfn:    The first PFN to isolate
653  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
654  * @isolate_mode: Isolation mode to be used.
655  *
656  * Isolate all pages that can be migrated from the range specified by
657  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658  * Returns zero if there is a fatal signal pending, otherwise PFN of the
659  * first page that was not scanned (which may be both less, equal to or more
660  * than end_pfn).
661  *
662  * The pages are isolated on cc->migratepages list (not required to be empty),
663  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664  * is neither read nor updated.
665  */
666 static unsigned long
667 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
668                         unsigned long end_pfn, isolate_mode_t isolate_mode)
669 {
670         struct zone *zone = cc->zone;
671         unsigned long nr_scanned = 0, nr_isolated = 0;
672         struct lruvec *lruvec;
673         unsigned long flags = 0;
674         bool locked = false;
675         struct page *page = NULL, *valid_page = NULL;
676         unsigned long start_pfn = low_pfn;
677         bool skip_on_failure = false;
678         unsigned long next_skip_pfn = 0;
679
680         /*
681          * Ensure that there are not too many pages isolated from the LRU
682          * list by either parallel reclaimers or compaction. If there are,
683          * delay for some time until fewer pages are isolated
684          */
685         while (unlikely(too_many_isolated(zone))) {
686                 /* async migration should just abort */
687                 if (cc->mode == MIGRATE_ASYNC)
688                         return 0;
689
690                 congestion_wait(BLK_RW_ASYNC, HZ/10);
691
692                 if (fatal_signal_pending(current))
693                         return 0;
694         }
695
696         if (compact_should_abort(cc))
697                 return 0;
698
699         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
700                 skip_on_failure = true;
701                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
702         }
703
704         /* Time to isolate some pages for migration */
705         for (; low_pfn < end_pfn; low_pfn++) {
706
707                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
708                         /*
709                          * We have isolated all migration candidates in the
710                          * previous order-aligned block, and did not skip it due
711                          * to failure. We should migrate the pages now and
712                          * hopefully succeed compaction.
713                          */
714                         if (nr_isolated)
715                                 break;
716
717                         /*
718                          * We failed to isolate in the previous order-aligned
719                          * block. Set the new boundary to the end of the
720                          * current block. Note we can't simply increase
721                          * next_skip_pfn by 1 << order, as low_pfn might have
722                          * been incremented by a higher number due to skipping
723                          * a compound or a high-order buddy page in the
724                          * previous loop iteration.
725                          */
726                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
727                 }
728
729                 /*
730                  * Periodically drop the lock (if held) regardless of its
731                  * contention, to give chance to IRQs. Abort async compaction
732                  * if contended.
733                  */
734                 if (!(low_pfn % SWAP_CLUSTER_MAX)
735                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
736                                                                 &locked, cc))
737                         break;
738
739                 if (!pfn_valid_within(low_pfn))
740                         goto isolate_fail;
741                 nr_scanned++;
742
743                 page = pfn_to_page(low_pfn);
744
745                 if (!valid_page)
746                         valid_page = page;
747
748                 /*
749                  * Skip if free. We read page order here without zone lock
750                  * which is generally unsafe, but the race window is small and
751                  * the worst thing that can happen is that we skip some
752                  * potential isolation targets.
753                  */
754                 if (PageBuddy(page)) {
755                         unsigned long freepage_order = page_order_unsafe(page);
756
757                         /*
758                          * Without lock, we cannot be sure that what we got is
759                          * a valid page order. Consider only values in the
760                          * valid order range to prevent low_pfn overflow.
761                          */
762                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
763                                 low_pfn += (1UL << freepage_order) - 1;
764                         continue;
765                 }
766
767                 /*
768                  * Regardless of being on LRU, compound pages such as THP and
769                  * hugetlbfs are not to be compacted. We can potentially save
770                  * a lot of iterations if we skip them at once. The check is
771                  * racy, but we can consider only valid values and the only
772                  * danger is skipping too much.
773                  */
774                 if (PageCompound(page)) {
775                         unsigned int comp_order = compound_order(page);
776
777                         if (likely(comp_order < MAX_ORDER))
778                                 low_pfn += (1UL << comp_order) - 1;
779
780                         goto isolate_fail;
781                 }
782
783                 /*
784                  * Check may be lockless but that's ok as we recheck later.
785                  * It's possible to migrate LRU and non-lru movable pages.
786                  * Skip any other type of page
787                  */
788                 if (!PageLRU(page)) {
789                         /*
790                          * __PageMovable can return false positive so we need
791                          * to verify it under page_lock.
792                          */
793                         if (unlikely(__PageMovable(page)) &&
794                                         !PageIsolated(page)) {
795                                 if (locked) {
796                                         spin_unlock_irqrestore(zone_lru_lock(zone),
797                                                                         flags);
798                                         locked = false;
799                                 }
800
801                                 if (!isolate_movable_page(page, isolate_mode))
802                                         goto isolate_success;
803                         }
804
805                         goto isolate_fail;
806                 }
807
808                 /*
809                  * Migration will fail if an anonymous page is pinned in memory,
810                  * so avoid taking lru_lock and isolating it unnecessarily in an
811                  * admittedly racy check.
812                  */
813                 if (!page_mapping(page) &&
814                     page_count(page) > page_mapcount(page))
815                         goto isolate_fail;
816
817                 /*
818                  * Only allow to migrate anonymous pages in GFP_NOFS context
819                  * because those do not depend on fs locks.
820                  */
821                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
822                         goto isolate_fail;
823
824                 /* If we already hold the lock, we can skip some rechecking */
825                 if (!locked) {
826                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
827                                                                 &flags, cc);
828                         if (!locked)
829                                 break;
830
831                         /* Recheck PageLRU and PageCompound under lock */
832                         if (!PageLRU(page))
833                                 goto isolate_fail;
834
835                         /*
836                          * Page become compound since the non-locked check,
837                          * and it's on LRU. It can only be a THP so the order
838                          * is safe to read and it's 0 for tail pages.
839                          */
840                         if (unlikely(PageCompound(page))) {
841                                 low_pfn += (1UL << compound_order(page)) - 1;
842                                 goto isolate_fail;
843                         }
844                 }
845
846                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
847
848                 /* Try isolate the page */
849                 if (__isolate_lru_page(page, isolate_mode) != 0)
850                         goto isolate_fail;
851
852                 VM_BUG_ON_PAGE(PageCompound(page), page);
853
854                 /* Successfully isolated */
855                 del_page_from_lru_list(page, lruvec, page_lru(page));
856                 inc_node_page_state(page,
857                                 NR_ISOLATED_ANON + page_is_file_cache(page));
858
859 isolate_success:
860                 list_add(&page->lru, &cc->migratepages);
861                 cc->nr_migratepages++;
862                 nr_isolated++;
863
864                 /*
865                  * Record where we could have freed pages by migration and not
866                  * yet flushed them to buddy allocator.
867                  * - this is the lowest page that was isolated and likely be
868                  * then freed by migration.
869                  */
870                 if (!cc->last_migrated_pfn)
871                         cc->last_migrated_pfn = low_pfn;
872
873                 /* Avoid isolating too much */
874                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
875                         ++low_pfn;
876                         break;
877                 }
878
879                 continue;
880 isolate_fail:
881                 if (!skip_on_failure)
882                         continue;
883
884                 /*
885                  * We have isolated some pages, but then failed. Release them
886                  * instead of migrating, as we cannot form the cc->order buddy
887                  * page anyway.
888                  */
889                 if (nr_isolated) {
890                         if (locked) {
891                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
892                                 locked = false;
893                         }
894                         putback_movable_pages(&cc->migratepages);
895                         cc->nr_migratepages = 0;
896                         cc->last_migrated_pfn = 0;
897                         nr_isolated = 0;
898                 }
899
900                 if (low_pfn < next_skip_pfn) {
901                         low_pfn = next_skip_pfn - 1;
902                         /*
903                          * The check near the loop beginning would have updated
904                          * next_skip_pfn too, but this is a bit simpler.
905                          */
906                         next_skip_pfn += 1UL << cc->order;
907                 }
908         }
909
910         /*
911          * The PageBuddy() check could have potentially brought us outside
912          * the range to be scanned.
913          */
914         if (unlikely(low_pfn > end_pfn))
915                 low_pfn = end_pfn;
916
917         if (locked)
918                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
919
920         /*
921          * Update the pageblock-skip information and cached scanner pfn,
922          * if the whole pageblock was scanned without isolating any page.
923          */
924         if (low_pfn == end_pfn)
925                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
926
927         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
928                                                 nr_scanned, nr_isolated);
929
930         cc->total_migrate_scanned += nr_scanned;
931         if (nr_isolated)
932                 count_compact_events(COMPACTISOLATED, nr_isolated);
933
934         return low_pfn;
935 }
936
937 /**
938  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
939  * @cc:        Compaction control structure.
940  * @start_pfn: The first PFN to start isolating.
941  * @end_pfn:   The one-past-last PFN.
942  *
943  * Returns zero if isolation fails fatally due to e.g. pending signal.
944  * Otherwise, function returns one-past-the-last PFN of isolated page
945  * (which may be greater than end_pfn if end fell in a middle of a THP page).
946  */
947 unsigned long
948 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
949                                                         unsigned long end_pfn)
950 {
951         unsigned long pfn, block_start_pfn, block_end_pfn;
952
953         /* Scan block by block. First and last block may be incomplete */
954         pfn = start_pfn;
955         block_start_pfn = pageblock_start_pfn(pfn);
956         if (block_start_pfn < cc->zone->zone_start_pfn)
957                 block_start_pfn = cc->zone->zone_start_pfn;
958         block_end_pfn = pageblock_end_pfn(pfn);
959
960         for (; pfn < end_pfn; pfn = block_end_pfn,
961                                 block_start_pfn = block_end_pfn,
962                                 block_end_pfn += pageblock_nr_pages) {
963
964                 block_end_pfn = min(block_end_pfn, end_pfn);
965
966                 if (!pageblock_pfn_to_page(block_start_pfn,
967                                         block_end_pfn, cc->zone))
968                         continue;
969
970                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
971                                                         ISOLATE_UNEVICTABLE);
972
973                 if (!pfn)
974                         break;
975
976                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
977                         break;
978         }
979
980         return pfn;
981 }
982
983 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
984 #ifdef CONFIG_COMPACTION
985
986 static bool suitable_migration_source(struct compact_control *cc,
987                                                         struct page *page)
988 {
989         if (cc->mode != MIGRATE_ASYNC)
990                 return true;
991
992         return is_migrate_movable(get_pageblock_migratetype(page));
993 }
994
995 /* Returns true if the page is within a block suitable for migration to */
996 static bool suitable_migration_target(struct compact_control *cc,
997                                                         struct page *page)
998 {
999         /* If the page is a large free page, then disallow migration */
1000         if (PageBuddy(page)) {
1001                 /*
1002                  * We are checking page_order without zone->lock taken. But
1003                  * the only small danger is that we skip a potentially suitable
1004                  * pageblock, so it's not worth to check order for valid range.
1005                  */
1006                 if (page_order_unsafe(page) >= pageblock_order)
1007                         return false;
1008         }
1009
1010         if (cc->ignore_block_suitable)
1011                 return true;
1012
1013         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1014         if (is_migrate_movable(get_pageblock_migratetype(page)))
1015                 return true;
1016
1017         /* Otherwise skip the block */
1018         return false;
1019 }
1020
1021 /*
1022  * Test whether the free scanner has reached the same or lower pageblock than
1023  * the migration scanner, and compaction should thus terminate.
1024  */
1025 static inline bool compact_scanners_met(struct compact_control *cc)
1026 {
1027         return (cc->free_pfn >> pageblock_order)
1028                 <= (cc->migrate_pfn >> pageblock_order);
1029 }
1030
1031 /*
1032  * Based on information in the current compact_control, find blocks
1033  * suitable for isolating free pages from and then isolate them.
1034  */
1035 static void isolate_freepages(struct compact_control *cc)
1036 {
1037         struct zone *zone = cc->zone;
1038         struct page *page;
1039         unsigned long block_start_pfn;  /* start of current pageblock */
1040         unsigned long isolate_start_pfn; /* exact pfn we start at */
1041         unsigned long block_end_pfn;    /* end of current pageblock */
1042         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1043         struct list_head *freelist = &cc->freepages;
1044
1045         /*
1046          * Initialise the free scanner. The starting point is where we last
1047          * successfully isolated from, zone-cached value, or the end of the
1048          * zone when isolating for the first time. For looping we also need
1049          * this pfn aligned down to the pageblock boundary, because we do
1050          * block_start_pfn -= pageblock_nr_pages in the for loop.
1051          * For ending point, take care when isolating in last pageblock of a
1052          * a zone which ends in the middle of a pageblock.
1053          * The low boundary is the end of the pageblock the migration scanner
1054          * is using.
1055          */
1056         isolate_start_pfn = cc->free_pfn;
1057         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1058         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1059                                                 zone_end_pfn(zone));
1060         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1061
1062         /*
1063          * Isolate free pages until enough are available to migrate the
1064          * pages on cc->migratepages. We stop searching if the migrate
1065          * and free page scanners meet or enough free pages are isolated.
1066          */
1067         for (; block_start_pfn >= low_pfn;
1068                                 block_end_pfn = block_start_pfn,
1069                                 block_start_pfn -= pageblock_nr_pages,
1070                                 isolate_start_pfn = block_start_pfn) {
1071                 /*
1072                  * This can iterate a massively long zone without finding any
1073                  * suitable migration targets, so periodically check if we need
1074                  * to schedule, or even abort async compaction.
1075                  */
1076                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1077                                                 && compact_should_abort(cc))
1078                         break;
1079
1080                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1081                                                                         zone);
1082                 if (!page)
1083                         continue;
1084
1085                 /* Check the block is suitable for migration */
1086                 if (!suitable_migration_target(cc, page))
1087                         continue;
1088
1089                 /* If isolation recently failed, do not retry */
1090                 if (!isolation_suitable(cc, page))
1091                         continue;
1092
1093                 /* Found a block suitable for isolating free pages from. */
1094                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1095                                         freelist, false);
1096
1097                 /*
1098                  * If we isolated enough freepages, or aborted due to lock
1099                  * contention, terminate.
1100                  */
1101                 if ((cc->nr_freepages >= cc->nr_migratepages)
1102                                                         || cc->contended) {
1103                         if (isolate_start_pfn >= block_end_pfn) {
1104                                 /*
1105                                  * Restart at previous pageblock if more
1106                                  * freepages can be isolated next time.
1107                                  */
1108                                 isolate_start_pfn =
1109                                         block_start_pfn - pageblock_nr_pages;
1110                         }
1111                         break;
1112                 } else if (isolate_start_pfn < block_end_pfn) {
1113                         /*
1114                          * If isolation failed early, do not continue
1115                          * needlessly.
1116                          */
1117                         break;
1118                 }
1119         }
1120
1121         /* __isolate_free_page() does not map the pages */
1122         map_pages(freelist);
1123
1124         /*
1125          * Record where the free scanner will restart next time. Either we
1126          * broke from the loop and set isolate_start_pfn based on the last
1127          * call to isolate_freepages_block(), or we met the migration scanner
1128          * and the loop terminated due to isolate_start_pfn < low_pfn
1129          */
1130         cc->free_pfn = isolate_start_pfn;
1131 }
1132
1133 /*
1134  * This is a migrate-callback that "allocates" freepages by taking pages
1135  * from the isolated freelists in the block we are migrating to.
1136  */
1137 static struct page *compaction_alloc(struct page *migratepage,
1138                                         unsigned long data,
1139                                         int **result)
1140 {
1141         struct compact_control *cc = (struct compact_control *)data;
1142         struct page *freepage;
1143
1144         /*
1145          * Isolate free pages if necessary, and if we are not aborting due to
1146          * contention.
1147          */
1148         if (list_empty(&cc->freepages)) {
1149                 if (!cc->contended)
1150                         isolate_freepages(cc);
1151
1152                 if (list_empty(&cc->freepages))
1153                         return NULL;
1154         }
1155
1156         freepage = list_entry(cc->freepages.next, struct page, lru);
1157         list_del(&freepage->lru);
1158         cc->nr_freepages--;
1159
1160         return freepage;
1161 }
1162
1163 /*
1164  * This is a migrate-callback that "frees" freepages back to the isolated
1165  * freelist.  All pages on the freelist are from the same zone, so there is no
1166  * special handling needed for NUMA.
1167  */
1168 static void compaction_free(struct page *page, unsigned long data)
1169 {
1170         struct compact_control *cc = (struct compact_control *)data;
1171
1172         list_add(&page->lru, &cc->freepages);
1173         cc->nr_freepages++;
1174 }
1175
1176 /* possible outcome of isolate_migratepages */
1177 typedef enum {
1178         ISOLATE_ABORT,          /* Abort compaction now */
1179         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1180         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1181 } isolate_migrate_t;
1182
1183 /*
1184  * Allow userspace to control policy on scanning the unevictable LRU for
1185  * compactable pages.
1186  */
1187 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1188
1189 /*
1190  * Isolate all pages that can be migrated from the first suitable block,
1191  * starting at the block pointed to by the migrate scanner pfn within
1192  * compact_control.
1193  */
1194 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1195                                         struct compact_control *cc)
1196 {
1197         unsigned long block_start_pfn;
1198         unsigned long block_end_pfn;
1199         unsigned long low_pfn;
1200         struct page *page;
1201         const isolate_mode_t isolate_mode =
1202                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1203                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1204
1205         /*
1206          * Start at where we last stopped, or beginning of the zone as
1207          * initialized by compact_zone()
1208          */
1209         low_pfn = cc->migrate_pfn;
1210         block_start_pfn = pageblock_start_pfn(low_pfn);
1211         if (block_start_pfn < zone->zone_start_pfn)
1212                 block_start_pfn = zone->zone_start_pfn;
1213
1214         /* Only scan within a pageblock boundary */
1215         block_end_pfn = pageblock_end_pfn(low_pfn);
1216
1217         /*
1218          * Iterate over whole pageblocks until we find the first suitable.
1219          * Do not cross the free scanner.
1220          */
1221         for (; block_end_pfn <= cc->free_pfn;
1222                         low_pfn = block_end_pfn,
1223                         block_start_pfn = block_end_pfn,
1224                         block_end_pfn += pageblock_nr_pages) {
1225
1226                 /*
1227                  * This can potentially iterate a massively long zone with
1228                  * many pageblocks unsuitable, so periodically check if we
1229                  * need to schedule, or even abort async compaction.
1230                  */
1231                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1232                                                 && compact_should_abort(cc))
1233                         break;
1234
1235                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1236                                                                         zone);
1237                 if (!page)
1238                         continue;
1239
1240                 /* If isolation recently failed, do not retry */
1241                 if (!isolation_suitable(cc, page))
1242                         continue;
1243
1244                 /*
1245                  * For async compaction, also only scan in MOVABLE blocks.
1246                  * Async compaction is optimistic to see if the minimum amount
1247                  * of work satisfies the allocation.
1248                  */
1249                 if (!suitable_migration_source(cc, page))
1250                         continue;
1251
1252                 /* Perform the isolation */
1253                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1254                                                 block_end_pfn, isolate_mode);
1255
1256                 if (!low_pfn || cc->contended)
1257                         return ISOLATE_ABORT;
1258
1259                 /*
1260                  * Either we isolated something and proceed with migration. Or
1261                  * we failed and compact_zone should decide if we should
1262                  * continue or not.
1263                  */
1264                 break;
1265         }
1266
1267         /* Record where migration scanner will be restarted. */
1268         cc->migrate_pfn = low_pfn;
1269
1270         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1271 }
1272
1273 /*
1274  * order == -1 is expected when compacting via
1275  * /proc/sys/vm/compact_memory
1276  */
1277 static inline bool is_via_compact_memory(int order)
1278 {
1279         return order == -1;
1280 }
1281
1282 static enum compact_result __compact_finished(struct zone *zone,
1283                                                 struct compact_control *cc)
1284 {
1285         unsigned int order;
1286         const int migratetype = cc->migratetype;
1287
1288         if (cc->contended || fatal_signal_pending(current))
1289                 return COMPACT_CONTENDED;
1290
1291         /* Compaction run completes if the migrate and free scanner meet */
1292         if (compact_scanners_met(cc)) {
1293                 /* Let the next compaction start anew. */
1294                 reset_cached_positions(zone);
1295
1296                 /*
1297                  * Mark that the PG_migrate_skip information should be cleared
1298                  * by kswapd when it goes to sleep. kcompactd does not set the
1299                  * flag itself as the decision to be clear should be directly
1300                  * based on an allocation request.
1301                  */
1302                 if (cc->direct_compaction)
1303                         zone->compact_blockskip_flush = true;
1304
1305                 if (cc->whole_zone)
1306                         return COMPACT_COMPLETE;
1307                 else
1308                         return COMPACT_PARTIAL_SKIPPED;
1309         }
1310
1311         if (is_via_compact_memory(cc->order))
1312                 return COMPACT_CONTINUE;
1313
1314         /* Direct compactor: Is a suitable page free? */
1315         for (order = cc->order; order < MAX_ORDER; order++) {
1316                 struct free_area *area = &zone->free_area[order];
1317                 bool can_steal;
1318
1319                 /* Job done if page is free of the right migratetype */
1320                 if (!list_empty(&area->free_list[migratetype]))
1321                         return COMPACT_SUCCESS;
1322
1323 #ifdef CONFIG_CMA
1324                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1325                 if (migratetype == MIGRATE_MOVABLE &&
1326                         !list_empty(&area->free_list[MIGRATE_CMA]))
1327                         return COMPACT_SUCCESS;
1328 #endif
1329                 /*
1330                  * Job done if allocation would steal freepages from
1331                  * other migratetype buddy lists.
1332                  */
1333                 if (find_suitable_fallback(area, order, migratetype,
1334                                                 true, &can_steal) != -1)
1335                         return COMPACT_SUCCESS;
1336         }
1337
1338         return COMPACT_NO_SUITABLE_PAGE;
1339 }
1340
1341 static enum compact_result compact_finished(struct zone *zone,
1342                         struct compact_control *cc)
1343 {
1344         int ret;
1345
1346         ret = __compact_finished(zone, cc);
1347         trace_mm_compaction_finished(zone, cc->order, ret);
1348         if (ret == COMPACT_NO_SUITABLE_PAGE)
1349                 ret = COMPACT_CONTINUE;
1350
1351         return ret;
1352 }
1353
1354 /*
1355  * compaction_suitable: Is this suitable to run compaction on this zone now?
1356  * Returns
1357  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1358  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1359  *   COMPACT_CONTINUE - If compaction should run now
1360  */
1361 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1362                                         unsigned int alloc_flags,
1363                                         int classzone_idx,
1364                                         unsigned long wmark_target)
1365 {
1366         unsigned long watermark;
1367
1368         if (is_via_compact_memory(order))
1369                 return COMPACT_CONTINUE;
1370
1371         watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1372         /*
1373          * If watermarks for high-order allocation are already met, there
1374          * should be no need for compaction at all.
1375          */
1376         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1377                                                                 alloc_flags))
1378                 return COMPACT_SUCCESS;
1379
1380         /*
1381          * Watermarks for order-0 must be met for compaction to be able to
1382          * isolate free pages for migration targets. This means that the
1383          * watermark and alloc_flags have to match, or be more pessimistic than
1384          * the check in __isolate_free_page(). We don't use the direct
1385          * compactor's alloc_flags, as they are not relevant for freepage
1386          * isolation. We however do use the direct compactor's classzone_idx to
1387          * skip over zones where lowmem reserves would prevent allocation even
1388          * if compaction succeeds.
1389          * For costly orders, we require low watermark instead of min for
1390          * compaction to proceed to increase its chances.
1391          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1392          * suitable migration targets
1393          */
1394         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1395                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1396         watermark += compact_gap(order);
1397         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1398                                                 ALLOC_CMA, wmark_target))
1399                 return COMPACT_SKIPPED;
1400
1401         return COMPACT_CONTINUE;
1402 }
1403
1404 enum compact_result compaction_suitable(struct zone *zone, int order,
1405                                         unsigned int alloc_flags,
1406                                         int classzone_idx)
1407 {
1408         enum compact_result ret;
1409         int fragindex;
1410
1411         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1412                                     zone_page_state(zone, NR_FREE_PAGES));
1413         /*
1414          * fragmentation index determines if allocation failures are due to
1415          * low memory or external fragmentation
1416          *
1417          * index of -1000 would imply allocations might succeed depending on
1418          * watermarks, but we already failed the high-order watermark check
1419          * index towards 0 implies failure is due to lack of memory
1420          * index towards 1000 implies failure is due to fragmentation
1421          *
1422          * Only compact if a failure would be due to fragmentation. Also
1423          * ignore fragindex for non-costly orders where the alternative to
1424          * a successful reclaim/compaction is OOM. Fragindex and the
1425          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1426          * excessive compaction for costly orders, but it should not be at the
1427          * expense of system stability.
1428          */
1429         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1430                 fragindex = fragmentation_index(zone, order);
1431                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1432                         ret = COMPACT_NOT_SUITABLE_ZONE;
1433         }
1434
1435         trace_mm_compaction_suitable(zone, order, ret);
1436         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1437                 ret = COMPACT_SKIPPED;
1438
1439         return ret;
1440 }
1441
1442 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1443                 int alloc_flags)
1444 {
1445         struct zone *zone;
1446         struct zoneref *z;
1447
1448         /*
1449          * Make sure at least one zone would pass __compaction_suitable if we continue
1450          * retrying the reclaim.
1451          */
1452         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1453                                         ac->nodemask) {
1454                 unsigned long available;
1455                 enum compact_result compact_result;
1456
1457                 /*
1458                  * Do not consider all the reclaimable memory because we do not
1459                  * want to trash just for a single high order allocation which
1460                  * is even not guaranteed to appear even if __compaction_suitable
1461                  * is happy about the watermark check.
1462                  */
1463                 available = zone_reclaimable_pages(zone) / order;
1464                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1465                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1466                                 ac_classzone_idx(ac), available);
1467                 if (compact_result != COMPACT_SKIPPED)
1468                         return true;
1469         }
1470
1471         return false;
1472 }
1473
1474 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1475 {
1476         enum compact_result ret;
1477         unsigned long start_pfn = zone->zone_start_pfn;
1478         unsigned long end_pfn = zone_end_pfn(zone);
1479         const bool sync = cc->mode != MIGRATE_ASYNC;
1480
1481         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1482         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1483                                                         cc->classzone_idx);
1484         /* Compaction is likely to fail */
1485         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1486                 return ret;
1487
1488         /* huh, compaction_suitable is returning something unexpected */
1489         VM_BUG_ON(ret != COMPACT_CONTINUE);
1490
1491         /*
1492          * Clear pageblock skip if there were failures recently and compaction
1493          * is about to be retried after being deferred.
1494          */
1495         if (compaction_restarting(zone, cc->order))
1496                 __reset_isolation_suitable(zone);
1497
1498         /*
1499          * Setup to move all movable pages to the end of the zone. Used cached
1500          * information on where the scanners should start (unless we explicitly
1501          * want to compact the whole zone), but check that it is initialised
1502          * by ensuring the values are within zone boundaries.
1503          */
1504         if (cc->whole_zone) {
1505                 cc->migrate_pfn = start_pfn;
1506                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1507         } else {
1508                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1509                 cc->free_pfn = zone->compact_cached_free_pfn;
1510                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1511                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1512                         zone->compact_cached_free_pfn = cc->free_pfn;
1513                 }
1514                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1515                         cc->migrate_pfn = start_pfn;
1516                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1517                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1518                 }
1519
1520                 if (cc->migrate_pfn == start_pfn)
1521                         cc->whole_zone = true;
1522         }
1523
1524         cc->last_migrated_pfn = 0;
1525
1526         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1527                                 cc->free_pfn, end_pfn, sync);
1528
1529         migrate_prep_local();
1530
1531         while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1532                 int err;
1533
1534                 switch (isolate_migratepages(zone, cc)) {
1535                 case ISOLATE_ABORT:
1536                         ret = COMPACT_CONTENDED;
1537                         putback_movable_pages(&cc->migratepages);
1538                         cc->nr_migratepages = 0;
1539                         goto out;
1540                 case ISOLATE_NONE:
1541                         /*
1542                          * We haven't isolated and migrated anything, but
1543                          * there might still be unflushed migrations from
1544                          * previous cc->order aligned block.
1545                          */
1546                         goto check_drain;
1547                 case ISOLATE_SUCCESS:
1548                         ;
1549                 }
1550
1551                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1552                                 compaction_free, (unsigned long)cc, cc->mode,
1553                                 MR_COMPACTION);
1554
1555                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1556                                                         &cc->migratepages);
1557
1558                 /* All pages were either migrated or will be released */
1559                 cc->nr_migratepages = 0;
1560                 if (err) {
1561                         putback_movable_pages(&cc->migratepages);
1562                         /*
1563                          * migrate_pages() may return -ENOMEM when scanners meet
1564                          * and we want compact_finished() to detect it
1565                          */
1566                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1567                                 ret = COMPACT_CONTENDED;
1568                                 goto out;
1569                         }
1570                         /*
1571                          * We failed to migrate at least one page in the current
1572                          * order-aligned block, so skip the rest of it.
1573                          */
1574                         if (cc->direct_compaction &&
1575                                                 (cc->mode == MIGRATE_ASYNC)) {
1576                                 cc->migrate_pfn = block_end_pfn(
1577                                                 cc->migrate_pfn - 1, cc->order);
1578                                 /* Draining pcplists is useless in this case */
1579                                 cc->last_migrated_pfn = 0;
1580
1581                         }
1582                 }
1583
1584 check_drain:
1585                 /*
1586                  * Has the migration scanner moved away from the previous
1587                  * cc->order aligned block where we migrated from? If yes,
1588                  * flush the pages that were freed, so that they can merge and
1589                  * compact_finished() can detect immediately if allocation
1590                  * would succeed.
1591                  */
1592                 if (cc->order > 0 && cc->last_migrated_pfn) {
1593                         int cpu;
1594                         unsigned long current_block_start =
1595                                 block_start_pfn(cc->migrate_pfn, cc->order);
1596
1597                         if (cc->last_migrated_pfn < current_block_start) {
1598                                 cpu = get_cpu();
1599                                 lru_add_drain_cpu(cpu);
1600                                 drain_local_pages(zone);
1601                                 put_cpu();
1602                                 /* No more flushing until we migrate again */
1603                                 cc->last_migrated_pfn = 0;
1604                         }
1605                 }
1606
1607         }
1608
1609 out:
1610         /*
1611          * Release free pages and update where the free scanner should restart,
1612          * so we don't leave any returned pages behind in the next attempt.
1613          */
1614         if (cc->nr_freepages > 0) {
1615                 unsigned long free_pfn = release_freepages(&cc->freepages);
1616
1617                 cc->nr_freepages = 0;
1618                 VM_BUG_ON(free_pfn == 0);
1619                 /* The cached pfn is always the first in a pageblock */
1620                 free_pfn = pageblock_start_pfn(free_pfn);
1621                 /*
1622                  * Only go back, not forward. The cached pfn might have been
1623                  * already reset to zone end in compact_finished()
1624                  */
1625                 if (free_pfn > zone->compact_cached_free_pfn)
1626                         zone->compact_cached_free_pfn = free_pfn;
1627         }
1628
1629         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1630         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1631
1632         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1633                                 cc->free_pfn, end_pfn, sync, ret);
1634
1635         return ret;
1636 }
1637
1638 static enum compact_result compact_zone_order(struct zone *zone, int order,
1639                 gfp_t gfp_mask, enum compact_priority prio,
1640                 unsigned int alloc_flags, int classzone_idx)
1641 {
1642         enum compact_result ret;
1643         struct compact_control cc = {
1644                 .nr_freepages = 0,
1645                 .nr_migratepages = 0,
1646                 .total_migrate_scanned = 0,
1647                 .total_free_scanned = 0,
1648                 .order = order,
1649                 .gfp_mask = gfp_mask,
1650                 .zone = zone,
1651                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1652                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1653                 .alloc_flags = alloc_flags,
1654                 .classzone_idx = classzone_idx,
1655                 .direct_compaction = true,
1656                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1657                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1658                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1659         };
1660         INIT_LIST_HEAD(&cc.freepages);
1661         INIT_LIST_HEAD(&cc.migratepages);
1662
1663         ret = compact_zone(zone, &cc);
1664
1665         VM_BUG_ON(!list_empty(&cc.freepages));
1666         VM_BUG_ON(!list_empty(&cc.migratepages));
1667
1668         return ret;
1669 }
1670
1671 int sysctl_extfrag_threshold = 500;
1672
1673 /**
1674  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1675  * @gfp_mask: The GFP mask of the current allocation
1676  * @order: The order of the current allocation
1677  * @alloc_flags: The allocation flags of the current allocation
1678  * @ac: The context of current allocation
1679  * @mode: The migration mode for async, sync light, or sync migration
1680  *
1681  * This is the main entry point for direct page compaction.
1682  */
1683 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1684                 unsigned int alloc_flags, const struct alloc_context *ac,
1685                 enum compact_priority prio)
1686 {
1687         int may_perform_io = gfp_mask & __GFP_IO;
1688         struct zoneref *z;
1689         struct zone *zone;
1690         enum compact_result rc = COMPACT_SKIPPED;
1691
1692         /*
1693          * Check if the GFP flags allow compaction - GFP_NOIO is really
1694          * tricky context because the migration might require IO
1695          */
1696         if (!may_perform_io)
1697                 return COMPACT_SKIPPED;
1698
1699         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1700
1701         /* Compact each zone in the list */
1702         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1703                                                                 ac->nodemask) {
1704                 enum compact_result status;
1705
1706                 if (prio > MIN_COMPACT_PRIORITY
1707                                         && compaction_deferred(zone, order)) {
1708                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1709                         continue;
1710                 }
1711
1712                 status = compact_zone_order(zone, order, gfp_mask, prio,
1713                                         alloc_flags, ac_classzone_idx(ac));
1714                 rc = max(status, rc);
1715
1716                 /* The allocation should succeed, stop compacting */
1717                 if (status == COMPACT_SUCCESS) {
1718                         /*
1719                          * We think the allocation will succeed in this zone,
1720                          * but it is not certain, hence the false. The caller
1721                          * will repeat this with true if allocation indeed
1722                          * succeeds in this zone.
1723                          */
1724                         compaction_defer_reset(zone, order, false);
1725
1726                         break;
1727                 }
1728
1729                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1730                                         status == COMPACT_PARTIAL_SKIPPED))
1731                         /*
1732                          * We think that allocation won't succeed in this zone
1733                          * so we defer compaction there. If it ends up
1734                          * succeeding after all, it will be reset.
1735                          */
1736                         defer_compaction(zone, order);
1737
1738                 /*
1739                  * We might have stopped compacting due to need_resched() in
1740                  * async compaction, or due to a fatal signal detected. In that
1741                  * case do not try further zones
1742                  */
1743                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1744                                         || fatal_signal_pending(current))
1745                         break;
1746         }
1747
1748         return rc;
1749 }
1750
1751
1752 /* Compact all zones within a node */
1753 static void compact_node(int nid)
1754 {
1755         pg_data_t *pgdat = NODE_DATA(nid);
1756         int zoneid;
1757         struct zone *zone;
1758         struct compact_control cc = {
1759                 .order = -1,
1760                 .total_migrate_scanned = 0,
1761                 .total_free_scanned = 0,
1762                 .mode = MIGRATE_SYNC,
1763                 .ignore_skip_hint = true,
1764                 .whole_zone = true,
1765                 .gfp_mask = GFP_KERNEL,
1766         };
1767
1768
1769         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1770
1771                 zone = &pgdat->node_zones[zoneid];
1772                 if (!populated_zone(zone))
1773                         continue;
1774
1775                 cc.nr_freepages = 0;
1776                 cc.nr_migratepages = 0;
1777                 cc.zone = zone;
1778                 INIT_LIST_HEAD(&cc.freepages);
1779                 INIT_LIST_HEAD(&cc.migratepages);
1780
1781                 compact_zone(zone, &cc);
1782
1783                 VM_BUG_ON(!list_empty(&cc.freepages));
1784                 VM_BUG_ON(!list_empty(&cc.migratepages));
1785         }
1786 }
1787
1788 /* Compact all nodes in the system */
1789 static void compact_nodes(void)
1790 {
1791         int nid;
1792
1793         /* Flush pending updates to the LRU lists */
1794         lru_add_drain_all();
1795
1796         for_each_online_node(nid)
1797                 compact_node(nid);
1798 }
1799
1800 /* The written value is actually unused, all memory is compacted */
1801 int sysctl_compact_memory;
1802
1803 /*
1804  * This is the entry point for compacting all nodes via
1805  * /proc/sys/vm/compact_memory
1806  */
1807 int sysctl_compaction_handler(struct ctl_table *table, int write,
1808                         void __user *buffer, size_t *length, loff_t *ppos)
1809 {
1810         if (write)
1811                 compact_nodes();
1812
1813         return 0;
1814 }
1815
1816 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1817                         void __user *buffer, size_t *length, loff_t *ppos)
1818 {
1819         proc_dointvec_minmax(table, write, buffer, length, ppos);
1820
1821         return 0;
1822 }
1823
1824 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1825 static ssize_t sysfs_compact_node(struct device *dev,
1826                         struct device_attribute *attr,
1827                         const char *buf, size_t count)
1828 {
1829         int nid = dev->id;
1830
1831         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1832                 /* Flush pending updates to the LRU lists */
1833                 lru_add_drain_all();
1834
1835                 compact_node(nid);
1836         }
1837
1838         return count;
1839 }
1840 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1841
1842 int compaction_register_node(struct node *node)
1843 {
1844         return device_create_file(&node->dev, &dev_attr_compact);
1845 }
1846
1847 void compaction_unregister_node(struct node *node)
1848 {
1849         return device_remove_file(&node->dev, &dev_attr_compact);
1850 }
1851 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1852
1853 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1854 {
1855         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1856 }
1857
1858 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1859 {
1860         int zoneid;
1861         struct zone *zone;
1862         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1863
1864         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1865                 zone = &pgdat->node_zones[zoneid];
1866
1867                 if (!populated_zone(zone))
1868                         continue;
1869
1870                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1871                                         classzone_idx) == COMPACT_CONTINUE)
1872                         return true;
1873         }
1874
1875         return false;
1876 }
1877
1878 static void kcompactd_do_work(pg_data_t *pgdat)
1879 {
1880         /*
1881          * With no special task, compact all zones so that a page of requested
1882          * order is allocatable.
1883          */
1884         int zoneid;
1885         struct zone *zone;
1886         struct compact_control cc = {
1887                 .order = pgdat->kcompactd_max_order,
1888                 .total_migrate_scanned = 0,
1889                 .total_free_scanned = 0,
1890                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1891                 .mode = MIGRATE_SYNC_LIGHT,
1892                 .ignore_skip_hint = true,
1893                 .gfp_mask = GFP_KERNEL,
1894
1895         };
1896         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1897                                                         cc.classzone_idx);
1898         count_compact_event(KCOMPACTD_WAKE);
1899
1900         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1901                 int status;
1902
1903                 zone = &pgdat->node_zones[zoneid];
1904                 if (!populated_zone(zone))
1905                         continue;
1906
1907                 if (compaction_deferred(zone, cc.order))
1908                         continue;
1909
1910                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1911                                                         COMPACT_CONTINUE)
1912                         continue;
1913
1914                 cc.nr_freepages = 0;
1915                 cc.nr_migratepages = 0;
1916                 cc.total_migrate_scanned = 0;
1917                 cc.total_free_scanned = 0;
1918                 cc.zone = zone;
1919                 INIT_LIST_HEAD(&cc.freepages);
1920                 INIT_LIST_HEAD(&cc.migratepages);
1921
1922                 if (kthread_should_stop())
1923                         return;
1924                 status = compact_zone(zone, &cc);
1925
1926                 if (status == COMPACT_SUCCESS) {
1927                         compaction_defer_reset(zone, cc.order, false);
1928                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1929                         /*
1930                          * We use sync migration mode here, so we defer like
1931                          * sync direct compaction does.
1932                          */
1933                         defer_compaction(zone, cc.order);
1934                 }
1935
1936                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1937                                      cc.total_migrate_scanned);
1938                 count_compact_events(KCOMPACTD_FREE_SCANNED,
1939                                      cc.total_free_scanned);
1940
1941                 VM_BUG_ON(!list_empty(&cc.freepages));
1942                 VM_BUG_ON(!list_empty(&cc.migratepages));
1943         }
1944
1945         /*
1946          * Regardless of success, we are done until woken up next. But remember
1947          * the requested order/classzone_idx in case it was higher/tighter than
1948          * our current ones
1949          */
1950         if (pgdat->kcompactd_max_order <= cc.order)
1951                 pgdat->kcompactd_max_order = 0;
1952         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1953                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1954 }
1955
1956 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1957 {
1958         if (!order)
1959                 return;
1960
1961         if (pgdat->kcompactd_max_order < order)
1962                 pgdat->kcompactd_max_order = order;
1963
1964         /*
1965          * Pairs with implicit barrier in wait_event_freezable()
1966          * such that wakeups are not missed in the lockless
1967          * waitqueue_active() call.
1968          */
1969         smp_acquire__after_ctrl_dep();
1970
1971         if (pgdat->kcompactd_classzone_idx > classzone_idx)
1972                 pgdat->kcompactd_classzone_idx = classzone_idx;
1973
1974         if (!waitqueue_active(&pgdat->kcompactd_wait))
1975                 return;
1976
1977         if (!kcompactd_node_suitable(pgdat))
1978                 return;
1979
1980         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1981                                                         classzone_idx);
1982         wake_up_interruptible(&pgdat->kcompactd_wait);
1983 }
1984
1985 /*
1986  * The background compaction daemon, started as a kernel thread
1987  * from the init process.
1988  */
1989 static int kcompactd(void *p)
1990 {
1991         pg_data_t *pgdat = (pg_data_t*)p;
1992         struct task_struct *tsk = current;
1993
1994         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1995
1996         if (!cpumask_empty(cpumask))
1997                 set_cpus_allowed_ptr(tsk, cpumask);
1998
1999         set_freezable();
2000
2001         pgdat->kcompactd_max_order = 0;
2002         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2003
2004         while (!kthread_should_stop()) {
2005                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2006                 wait_event_freezable(pgdat->kcompactd_wait,
2007                                 kcompactd_work_requested(pgdat));
2008
2009                 kcompactd_do_work(pgdat);
2010         }
2011
2012         return 0;
2013 }
2014
2015 /*
2016  * This kcompactd start function will be called by init and node-hot-add.
2017  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2018  */
2019 int kcompactd_run(int nid)
2020 {
2021         pg_data_t *pgdat = NODE_DATA(nid);
2022         int ret = 0;
2023
2024         if (pgdat->kcompactd)
2025                 return 0;
2026
2027         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2028         if (IS_ERR(pgdat->kcompactd)) {
2029                 pr_err("Failed to start kcompactd on node %d\n", nid);
2030                 ret = PTR_ERR(pgdat->kcompactd);
2031                 pgdat->kcompactd = NULL;
2032         }
2033         return ret;
2034 }
2035
2036 /*
2037  * Called by memory hotplug when all memory in a node is offlined. Caller must
2038  * hold mem_hotplug_begin/end().
2039  */
2040 void kcompactd_stop(int nid)
2041 {
2042         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2043
2044         if (kcompactd) {
2045                 kthread_stop(kcompactd);
2046                 NODE_DATA(nid)->kcompactd = NULL;
2047         }
2048 }
2049
2050 /*
2051  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2052  * not required for correctness. So if the last cpu in a node goes
2053  * away, we get changed to run anywhere: as the first one comes back,
2054  * restore their cpu bindings.
2055  */
2056 static int kcompactd_cpu_online(unsigned int cpu)
2057 {
2058         int nid;
2059
2060         for_each_node_state(nid, N_MEMORY) {
2061                 pg_data_t *pgdat = NODE_DATA(nid);
2062                 const struct cpumask *mask;
2063
2064                 mask = cpumask_of_node(pgdat->node_id);
2065
2066                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2067                         /* One of our CPUs online: restore mask */
2068                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2069         }
2070         return 0;
2071 }
2072
2073 static int __init kcompactd_init(void)
2074 {
2075         int nid;
2076         int ret;
2077
2078         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2079                                         "mm/compaction:online",
2080                                         kcompactd_cpu_online, NULL);
2081         if (ret < 0) {
2082                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2083                 return ret;
2084         }
2085
2086         for_each_node_state(nid, N_MEMORY)
2087                 kcompactd_run(nid);
2088         return 0;
2089 }
2090 subsys_initcall(kcompactd_init)
2091
2092 #endif /* CONFIG_COMPACTION */