]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/filemap.c
dax: add struct iomap based DAX PMD support
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                         if (node)
136                                 workingset_node_shadows_dec(node);
137                 } else {
138                         /* DAX can replace empty locked entry with a hole */
139                         WARN_ON_ONCE(p !=
140                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
141                         /* DAX accounts exceptional entries as normal pages */
142                         if (node)
143                                 workingset_node_pages_dec(node);
144                         /* Wakeup waiters for exceptional entry lock */
145                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
146                                                       false);
147                 }
148         }
149         radix_tree_replace_slot(slot, page);
150         mapping->nrpages++;
151         if (node) {
152                 workingset_node_pages_inc(node);
153                 /*
154                  * Don't track node that contains actual pages.
155                  *
156                  * Avoid acquiring the list_lru lock if already
157                  * untracked.  The list_empty() test is safe as
158                  * node->private_list is protected by
159                  * mapping->tree_lock.
160                  */
161                 if (!list_empty(&node->private_list))
162                         list_lru_del(&workingset_shadow_nodes,
163                                      &node->private_list);
164         }
165         return 0;
166 }
167
168 static void page_cache_tree_delete(struct address_space *mapping,
169                                    struct page *page, void *shadow)
170 {
171         int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
172
173         VM_BUG_ON_PAGE(!PageLocked(page), page);
174         VM_BUG_ON_PAGE(PageTail(page), page);
175         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
176
177         for (i = 0; i < nr; i++) {
178                 struct radix_tree_node *node;
179                 void **slot;
180
181                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
182                                     &node, &slot);
183
184                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
185
186                 if (!node) {
187                         VM_BUG_ON_PAGE(nr != 1, page);
188                         /*
189                          * We need a node to properly account shadow
190                          * entries. Don't plant any without. XXX
191                          */
192                         shadow = NULL;
193                 }
194
195                 radix_tree_replace_slot(slot, shadow);
196
197                 if (!node)
198                         break;
199
200                 workingset_node_pages_dec(node);
201                 if (shadow)
202                         workingset_node_shadows_inc(node);
203                 else
204                         if (__radix_tree_delete_node(&mapping->page_tree, node))
205                                 continue;
206
207                 /*
208                  * Track node that only contains shadow entries. DAX mappings
209                  * contain no shadow entries and may contain other exceptional
210                  * entries so skip those.
211                  *
212                  * Avoid acquiring the list_lru lock if already tracked.
213                  * The list_empty() test is safe as node->private_list is
214                  * protected by mapping->tree_lock.
215                  */
216                 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
217                                 list_empty(&node->private_list)) {
218                         node->private_data = mapping;
219                         list_lru_add(&workingset_shadow_nodes,
220                                         &node->private_list);
221                 }
222         }
223
224         if (shadow) {
225                 mapping->nrexceptional += nr;
226                 /*
227                  * Make sure the nrexceptional update is committed before
228                  * the nrpages update so that final truncate racing
229                  * with reclaim does not see both counters 0 at the
230                  * same time and miss a shadow entry.
231                  */
232                 smp_wmb();
233         }
234         mapping->nrpages -= nr;
235 }
236
237 /*
238  * Delete a page from the page cache and free it. Caller has to make
239  * sure the page is locked and that nobody else uses it - or that usage
240  * is safe.  The caller must hold the mapping's tree_lock.
241  */
242 void __delete_from_page_cache(struct page *page, void *shadow)
243 {
244         struct address_space *mapping = page->mapping;
245         int nr = hpage_nr_pages(page);
246
247         trace_mm_filemap_delete_from_page_cache(page);
248         /*
249          * if we're uptodate, flush out into the cleancache, otherwise
250          * invalidate any existing cleancache entries.  We can't leave
251          * stale data around in the cleancache once our page is gone
252          */
253         if (PageUptodate(page) && PageMappedToDisk(page))
254                 cleancache_put_page(page);
255         else
256                 cleancache_invalidate_page(mapping, page);
257
258         VM_BUG_ON_PAGE(PageTail(page), page);
259         VM_BUG_ON_PAGE(page_mapped(page), page);
260         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
261                 int mapcount;
262
263                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
264                          current->comm, page_to_pfn(page));
265                 dump_page(page, "still mapped when deleted");
266                 dump_stack();
267                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
268
269                 mapcount = page_mapcount(page);
270                 if (mapping_exiting(mapping) &&
271                     page_count(page) >= mapcount + 2) {
272                         /*
273                          * All vmas have already been torn down, so it's
274                          * a good bet that actually the page is unmapped,
275                          * and we'd prefer not to leak it: if we're wrong,
276                          * some other bad page check should catch it later.
277                          */
278                         page_mapcount_reset(page);
279                         page_ref_sub(page, mapcount);
280                 }
281         }
282
283         page_cache_tree_delete(mapping, page, shadow);
284
285         page->mapping = NULL;
286         /* Leave page->index set: truncation lookup relies upon it */
287
288         /* hugetlb pages do not participate in page cache accounting. */
289         if (!PageHuge(page))
290                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
291         if (PageSwapBacked(page)) {
292                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
293                 if (PageTransHuge(page))
294                         __dec_node_page_state(page, NR_SHMEM_THPS);
295         } else {
296                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
297         }
298
299         /*
300          * At this point page must be either written or cleaned by truncate.
301          * Dirty page here signals a bug and loss of unwritten data.
302          *
303          * This fixes dirty accounting after removing the page entirely but
304          * leaves PageDirty set: it has no effect for truncated page and
305          * anyway will be cleared before returning page into buddy allocator.
306          */
307         if (WARN_ON_ONCE(PageDirty(page)))
308                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
309 }
310
311 /**
312  * delete_from_page_cache - delete page from page cache
313  * @page: the page which the kernel is trying to remove from page cache
314  *
315  * This must be called only on pages that have been verified to be in the page
316  * cache and locked.  It will never put the page into the free list, the caller
317  * has a reference on the page.
318  */
319 void delete_from_page_cache(struct page *page)
320 {
321         struct address_space *mapping = page_mapping(page);
322         unsigned long flags;
323         void (*freepage)(struct page *);
324
325         BUG_ON(!PageLocked(page));
326
327         freepage = mapping->a_ops->freepage;
328
329         spin_lock_irqsave(&mapping->tree_lock, flags);
330         __delete_from_page_cache(page, NULL);
331         spin_unlock_irqrestore(&mapping->tree_lock, flags);
332
333         if (freepage)
334                 freepage(page);
335
336         if (PageTransHuge(page) && !PageHuge(page)) {
337                 page_ref_sub(page, HPAGE_PMD_NR);
338                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
339         } else {
340                 put_page(page);
341         }
342 }
343 EXPORT_SYMBOL(delete_from_page_cache);
344
345 int filemap_check_errors(struct address_space *mapping)
346 {
347         int ret = 0;
348         /* Check for outstanding write errors */
349         if (test_bit(AS_ENOSPC, &mapping->flags) &&
350             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
351                 ret = -ENOSPC;
352         if (test_bit(AS_EIO, &mapping->flags) &&
353             test_and_clear_bit(AS_EIO, &mapping->flags))
354                 ret = -EIO;
355         return ret;
356 }
357 EXPORT_SYMBOL(filemap_check_errors);
358
359 /**
360  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
361  * @mapping:    address space structure to write
362  * @start:      offset in bytes where the range starts
363  * @end:        offset in bytes where the range ends (inclusive)
364  * @sync_mode:  enable synchronous operation
365  *
366  * Start writeback against all of a mapping's dirty pages that lie
367  * within the byte offsets <start, end> inclusive.
368  *
369  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
370  * opposed to a regular memory cleansing writeback.  The difference between
371  * these two operations is that if a dirty page/buffer is encountered, it must
372  * be waited upon, and not just skipped over.
373  */
374 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
375                                 loff_t end, int sync_mode)
376 {
377         int ret;
378         struct writeback_control wbc = {
379                 .sync_mode = sync_mode,
380                 .nr_to_write = LONG_MAX,
381                 .range_start = start,
382                 .range_end = end,
383         };
384
385         if (!mapping_cap_writeback_dirty(mapping))
386                 return 0;
387
388         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
389         ret = do_writepages(mapping, &wbc);
390         wbc_detach_inode(&wbc);
391         return ret;
392 }
393
394 static inline int __filemap_fdatawrite(struct address_space *mapping,
395         int sync_mode)
396 {
397         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
398 }
399
400 int filemap_fdatawrite(struct address_space *mapping)
401 {
402         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
403 }
404 EXPORT_SYMBOL(filemap_fdatawrite);
405
406 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407                                 loff_t end)
408 {
409         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
410 }
411 EXPORT_SYMBOL(filemap_fdatawrite_range);
412
413 /**
414  * filemap_flush - mostly a non-blocking flush
415  * @mapping:    target address_space
416  *
417  * This is a mostly non-blocking flush.  Not suitable for data-integrity
418  * purposes - I/O may not be started against all dirty pages.
419  */
420 int filemap_flush(struct address_space *mapping)
421 {
422         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
423 }
424 EXPORT_SYMBOL(filemap_flush);
425
426 static int __filemap_fdatawait_range(struct address_space *mapping,
427                                      loff_t start_byte, loff_t end_byte)
428 {
429         pgoff_t index = start_byte >> PAGE_SHIFT;
430         pgoff_t end = end_byte >> PAGE_SHIFT;
431         struct pagevec pvec;
432         int nr_pages;
433         int ret = 0;
434
435         if (end_byte < start_byte)
436                 goto out;
437
438         pagevec_init(&pvec, 0);
439         while ((index <= end) &&
440                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
441                         PAGECACHE_TAG_WRITEBACK,
442                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
443                 unsigned i;
444
445                 for (i = 0; i < nr_pages; i++) {
446                         struct page *page = pvec.pages[i];
447
448                         /* until radix tree lookup accepts end_index */
449                         if (page->index > end)
450                                 continue;
451
452                         wait_on_page_writeback(page);
453                         if (TestClearPageError(page))
454                                 ret = -EIO;
455                 }
456                 pagevec_release(&pvec);
457                 cond_resched();
458         }
459 out:
460         return ret;
461 }
462
463 /**
464  * filemap_fdatawait_range - wait for writeback to complete
465  * @mapping:            address space structure to wait for
466  * @start_byte:         offset in bytes where the range starts
467  * @end_byte:           offset in bytes where the range ends (inclusive)
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * in the given range and wait for all of them.  Check error status of
471  * the address space and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
478                             loff_t end_byte)
479 {
480         int ret, ret2;
481
482         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
483         ret2 = filemap_check_errors(mapping);
484         if (!ret)
485                 ret = ret2;
486
487         return ret;
488 }
489 EXPORT_SYMBOL(filemap_fdatawait_range);
490
491 /**
492  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
493  * @mapping: address space structure to wait for
494  *
495  * Walk the list of under-writeback pages of the given address space
496  * and wait for all of them.  Unlike filemap_fdatawait(), this function
497  * does not clear error status of the address space.
498  *
499  * Use this function if callers don't handle errors themselves.  Expected
500  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
501  * fsfreeze(8)
502  */
503 void filemap_fdatawait_keep_errors(struct address_space *mapping)
504 {
505         loff_t i_size = i_size_read(mapping->host);
506
507         if (i_size == 0)
508                 return;
509
510         __filemap_fdatawait_range(mapping, 0, i_size - 1);
511 }
512
513 /**
514  * filemap_fdatawait - wait for all under-writeback pages to complete
515  * @mapping: address space structure to wait for
516  *
517  * Walk the list of under-writeback pages of the given address space
518  * and wait for all of them.  Check error status of the address space
519  * and return it.
520  *
521  * Since the error status of the address space is cleared by this function,
522  * callers are responsible for checking the return value and handling and/or
523  * reporting the error.
524  */
525 int filemap_fdatawait(struct address_space *mapping)
526 {
527         loff_t i_size = i_size_read(mapping->host);
528
529         if (i_size == 0)
530                 return 0;
531
532         return filemap_fdatawait_range(mapping, 0, i_size - 1);
533 }
534 EXPORT_SYMBOL(filemap_fdatawait);
535
536 int filemap_write_and_wait(struct address_space *mapping)
537 {
538         int err = 0;
539
540         if ((!dax_mapping(mapping) && mapping->nrpages) ||
541             (dax_mapping(mapping) && mapping->nrexceptional)) {
542                 err = filemap_fdatawrite(mapping);
543                 /*
544                  * Even if the above returned error, the pages may be
545                  * written partially (e.g. -ENOSPC), so we wait for it.
546                  * But the -EIO is special case, it may indicate the worst
547                  * thing (e.g. bug) happened, so we avoid waiting for it.
548                  */
549                 if (err != -EIO) {
550                         int err2 = filemap_fdatawait(mapping);
551                         if (!err)
552                                 err = err2;
553                 }
554         } else {
555                 err = filemap_check_errors(mapping);
556         }
557         return err;
558 }
559 EXPORT_SYMBOL(filemap_write_and_wait);
560
561 /**
562  * filemap_write_and_wait_range - write out & wait on a file range
563  * @mapping:    the address_space for the pages
564  * @lstart:     offset in bytes where the range starts
565  * @lend:       offset in bytes where the range ends (inclusive)
566  *
567  * Write out and wait upon file offsets lstart->lend, inclusive.
568  *
569  * Note that `lend' is inclusive (describes the last byte to be written) so
570  * that this function can be used to write to the very end-of-file (end = -1).
571  */
572 int filemap_write_and_wait_range(struct address_space *mapping,
573                                  loff_t lstart, loff_t lend)
574 {
575         int err = 0;
576
577         if ((!dax_mapping(mapping) && mapping->nrpages) ||
578             (dax_mapping(mapping) && mapping->nrexceptional)) {
579                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
580                                                  WB_SYNC_ALL);
581                 /* See comment of filemap_write_and_wait() */
582                 if (err != -EIO) {
583                         int err2 = filemap_fdatawait_range(mapping,
584                                                 lstart, lend);
585                         if (!err)
586                                 err = err2;
587                 }
588         } else {
589                 err = filemap_check_errors(mapping);
590         }
591         return err;
592 }
593 EXPORT_SYMBOL(filemap_write_and_wait_range);
594
595 /**
596  * replace_page_cache_page - replace a pagecache page with a new one
597  * @old:        page to be replaced
598  * @new:        page to replace with
599  * @gfp_mask:   allocation mode
600  *
601  * This function replaces a page in the pagecache with a new one.  On
602  * success it acquires the pagecache reference for the new page and
603  * drops it for the old page.  Both the old and new pages must be
604  * locked.  This function does not add the new page to the LRU, the
605  * caller must do that.
606  *
607  * The remove + add is atomic.  The only way this function can fail is
608  * memory allocation failure.
609  */
610 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
611 {
612         int error;
613
614         VM_BUG_ON_PAGE(!PageLocked(old), old);
615         VM_BUG_ON_PAGE(!PageLocked(new), new);
616         VM_BUG_ON_PAGE(new->mapping, new);
617
618         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
619         if (!error) {
620                 struct address_space *mapping = old->mapping;
621                 void (*freepage)(struct page *);
622                 unsigned long flags;
623
624                 pgoff_t offset = old->index;
625                 freepage = mapping->a_ops->freepage;
626
627                 get_page(new);
628                 new->mapping = mapping;
629                 new->index = offset;
630
631                 spin_lock_irqsave(&mapping->tree_lock, flags);
632                 __delete_from_page_cache(old, NULL);
633                 error = page_cache_tree_insert(mapping, new, NULL);
634                 BUG_ON(error);
635
636                 /*
637                  * hugetlb pages do not participate in page cache accounting.
638                  */
639                 if (!PageHuge(new))
640                         __inc_node_page_state(new, NR_FILE_PAGES);
641                 if (PageSwapBacked(new))
642                         __inc_node_page_state(new, NR_SHMEM);
643                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
644                 mem_cgroup_migrate(old, new);
645                 radix_tree_preload_end();
646                 if (freepage)
647                         freepage(old);
648                 put_page(old);
649         }
650
651         return error;
652 }
653 EXPORT_SYMBOL_GPL(replace_page_cache_page);
654
655 static int __add_to_page_cache_locked(struct page *page,
656                                       struct address_space *mapping,
657                                       pgoff_t offset, gfp_t gfp_mask,
658                                       void **shadowp)
659 {
660         int huge = PageHuge(page);
661         struct mem_cgroup *memcg;
662         int error;
663
664         VM_BUG_ON_PAGE(!PageLocked(page), page);
665         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
666
667         if (!huge) {
668                 error = mem_cgroup_try_charge(page, current->mm,
669                                               gfp_mask, &memcg, false);
670                 if (error)
671                         return error;
672         }
673
674         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
675         if (error) {
676                 if (!huge)
677                         mem_cgroup_cancel_charge(page, memcg, false);
678                 return error;
679         }
680
681         get_page(page);
682         page->mapping = mapping;
683         page->index = offset;
684
685         spin_lock_irq(&mapping->tree_lock);
686         error = page_cache_tree_insert(mapping, page, shadowp);
687         radix_tree_preload_end();
688         if (unlikely(error))
689                 goto err_insert;
690
691         /* hugetlb pages do not participate in page cache accounting. */
692         if (!huge)
693                 __inc_node_page_state(page, NR_FILE_PAGES);
694         spin_unlock_irq(&mapping->tree_lock);
695         if (!huge)
696                 mem_cgroup_commit_charge(page, memcg, false, false);
697         trace_mm_filemap_add_to_page_cache(page);
698         return 0;
699 err_insert:
700         page->mapping = NULL;
701         /* Leave page->index set: truncation relies upon it */
702         spin_unlock_irq(&mapping->tree_lock);
703         if (!huge)
704                 mem_cgroup_cancel_charge(page, memcg, false);
705         put_page(page);
706         return error;
707 }
708
709 /**
710  * add_to_page_cache_locked - add a locked page to the pagecache
711  * @page:       page to add
712  * @mapping:    the page's address_space
713  * @offset:     page index
714  * @gfp_mask:   page allocation mode
715  *
716  * This function is used to add a page to the pagecache. It must be locked.
717  * This function does not add the page to the LRU.  The caller must do that.
718  */
719 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
720                 pgoff_t offset, gfp_t gfp_mask)
721 {
722         return __add_to_page_cache_locked(page, mapping, offset,
723                                           gfp_mask, NULL);
724 }
725 EXPORT_SYMBOL(add_to_page_cache_locked);
726
727 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
728                                 pgoff_t offset, gfp_t gfp_mask)
729 {
730         void *shadow = NULL;
731         int ret;
732
733         __SetPageLocked(page);
734         ret = __add_to_page_cache_locked(page, mapping, offset,
735                                          gfp_mask, &shadow);
736         if (unlikely(ret))
737                 __ClearPageLocked(page);
738         else {
739                 /*
740                  * The page might have been evicted from cache only
741                  * recently, in which case it should be activated like
742                  * any other repeatedly accessed page.
743                  * The exception is pages getting rewritten; evicting other
744                  * data from the working set, only to cache data that will
745                  * get overwritten with something else, is a waste of memory.
746                  */
747                 if (!(gfp_mask & __GFP_WRITE) &&
748                     shadow && workingset_refault(shadow)) {
749                         SetPageActive(page);
750                         workingset_activation(page);
751                 } else
752                         ClearPageActive(page);
753                 lru_cache_add(page);
754         }
755         return ret;
756 }
757 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
758
759 #ifdef CONFIG_NUMA
760 struct page *__page_cache_alloc(gfp_t gfp)
761 {
762         int n;
763         struct page *page;
764
765         if (cpuset_do_page_mem_spread()) {
766                 unsigned int cpuset_mems_cookie;
767                 do {
768                         cpuset_mems_cookie = read_mems_allowed_begin();
769                         n = cpuset_mem_spread_node();
770                         page = __alloc_pages_node(n, gfp, 0);
771                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
772
773                 return page;
774         }
775         return alloc_pages(gfp, 0);
776 }
777 EXPORT_SYMBOL(__page_cache_alloc);
778 #endif
779
780 /*
781  * In order to wait for pages to become available there must be
782  * waitqueues associated with pages. By using a hash table of
783  * waitqueues where the bucket discipline is to maintain all
784  * waiters on the same queue and wake all when any of the pages
785  * become available, and for the woken contexts to check to be
786  * sure the appropriate page became available, this saves space
787  * at a cost of "thundering herd" phenomena during rare hash
788  * collisions.
789  */
790 wait_queue_head_t *page_waitqueue(struct page *page)
791 {
792         const struct zone *zone = page_zone(page);
793
794         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
795 }
796 EXPORT_SYMBOL(page_waitqueue);
797
798 void wait_on_page_bit(struct page *page, int bit_nr)
799 {
800         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
801
802         if (test_bit(bit_nr, &page->flags))
803                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
804                                                         TASK_UNINTERRUPTIBLE);
805 }
806 EXPORT_SYMBOL(wait_on_page_bit);
807
808 int wait_on_page_bit_killable(struct page *page, int bit_nr)
809 {
810         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812         if (!test_bit(bit_nr, &page->flags))
813                 return 0;
814
815         return __wait_on_bit(page_waitqueue(page), &wait,
816                              bit_wait_io, TASK_KILLABLE);
817 }
818
819 int wait_on_page_bit_killable_timeout(struct page *page,
820                                        int bit_nr, unsigned long timeout)
821 {
822         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
823
824         wait.key.timeout = jiffies + timeout;
825         if (!test_bit(bit_nr, &page->flags))
826                 return 0;
827         return __wait_on_bit(page_waitqueue(page), &wait,
828                              bit_wait_io_timeout, TASK_KILLABLE);
829 }
830 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
831
832 /**
833  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
834  * @page: Page defining the wait queue of interest
835  * @waiter: Waiter to add to the queue
836  *
837  * Add an arbitrary @waiter to the wait queue for the nominated @page.
838  */
839 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
840 {
841         wait_queue_head_t *q = page_waitqueue(page);
842         unsigned long flags;
843
844         spin_lock_irqsave(&q->lock, flags);
845         __add_wait_queue(q, waiter);
846         spin_unlock_irqrestore(&q->lock, flags);
847 }
848 EXPORT_SYMBOL_GPL(add_page_wait_queue);
849
850 /**
851  * unlock_page - unlock a locked page
852  * @page: the page
853  *
854  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
855  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
856  * mechanism between PageLocked pages and PageWriteback pages is shared.
857  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
858  *
859  * The mb is necessary to enforce ordering between the clear_bit and the read
860  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
861  */
862 void unlock_page(struct page *page)
863 {
864         page = compound_head(page);
865         VM_BUG_ON_PAGE(!PageLocked(page), page);
866         clear_bit_unlock(PG_locked, &page->flags);
867         smp_mb__after_atomic();
868         wake_up_page(page, PG_locked);
869 }
870 EXPORT_SYMBOL(unlock_page);
871
872 /**
873  * end_page_writeback - end writeback against a page
874  * @page: the page
875  */
876 void end_page_writeback(struct page *page)
877 {
878         /*
879          * TestClearPageReclaim could be used here but it is an atomic
880          * operation and overkill in this particular case. Failing to
881          * shuffle a page marked for immediate reclaim is too mild to
882          * justify taking an atomic operation penalty at the end of
883          * ever page writeback.
884          */
885         if (PageReclaim(page)) {
886                 ClearPageReclaim(page);
887                 rotate_reclaimable_page(page);
888         }
889
890         if (!test_clear_page_writeback(page))
891                 BUG();
892
893         smp_mb__after_atomic();
894         wake_up_page(page, PG_writeback);
895 }
896 EXPORT_SYMBOL(end_page_writeback);
897
898 /*
899  * After completing I/O on a page, call this routine to update the page
900  * flags appropriately
901  */
902 void page_endio(struct page *page, bool is_write, int err)
903 {
904         if (!is_write) {
905                 if (!err) {
906                         SetPageUptodate(page);
907                 } else {
908                         ClearPageUptodate(page);
909                         SetPageError(page);
910                 }
911                 unlock_page(page);
912         } else {
913                 if (err) {
914                         SetPageError(page);
915                         if (page->mapping)
916                                 mapping_set_error(page->mapping, err);
917                 }
918                 end_page_writeback(page);
919         }
920 }
921 EXPORT_SYMBOL_GPL(page_endio);
922
923 /**
924  * __lock_page - get a lock on the page, assuming we need to sleep to get it
925  * @page: the page to lock
926  */
927 void __lock_page(struct page *page)
928 {
929         struct page *page_head = compound_head(page);
930         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
931
932         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
933                                                         TASK_UNINTERRUPTIBLE);
934 }
935 EXPORT_SYMBOL(__lock_page);
936
937 int __lock_page_killable(struct page *page)
938 {
939         struct page *page_head = compound_head(page);
940         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
941
942         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
943                                         bit_wait_io, TASK_KILLABLE);
944 }
945 EXPORT_SYMBOL_GPL(__lock_page_killable);
946
947 /*
948  * Return values:
949  * 1 - page is locked; mmap_sem is still held.
950  * 0 - page is not locked.
951  *     mmap_sem has been released (up_read()), unless flags had both
952  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
953  *     which case mmap_sem is still held.
954  *
955  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
956  * with the page locked and the mmap_sem unperturbed.
957  */
958 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
959                          unsigned int flags)
960 {
961         if (flags & FAULT_FLAG_ALLOW_RETRY) {
962                 /*
963                  * CAUTION! In this case, mmap_sem is not released
964                  * even though return 0.
965                  */
966                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
967                         return 0;
968
969                 up_read(&mm->mmap_sem);
970                 if (flags & FAULT_FLAG_KILLABLE)
971                         wait_on_page_locked_killable(page);
972                 else
973                         wait_on_page_locked(page);
974                 return 0;
975         } else {
976                 if (flags & FAULT_FLAG_KILLABLE) {
977                         int ret;
978
979                         ret = __lock_page_killable(page);
980                         if (ret) {
981                                 up_read(&mm->mmap_sem);
982                                 return 0;
983                         }
984                 } else
985                         __lock_page(page);
986                 return 1;
987         }
988 }
989
990 /**
991  * page_cache_next_hole - find the next hole (not-present entry)
992  * @mapping: mapping
993  * @index: index
994  * @max_scan: maximum range to search
995  *
996  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
997  * lowest indexed hole.
998  *
999  * Returns: the index of the hole if found, otherwise returns an index
1000  * outside of the set specified (in which case 'return - index >=
1001  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1002  * be returned.
1003  *
1004  * page_cache_next_hole may be called under rcu_read_lock. However,
1005  * like radix_tree_gang_lookup, this will not atomically search a
1006  * snapshot of the tree at a single point in time. For example, if a
1007  * hole is created at index 5, then subsequently a hole is created at
1008  * index 10, page_cache_next_hole covering both indexes may return 10
1009  * if called under rcu_read_lock.
1010  */
1011 pgoff_t page_cache_next_hole(struct address_space *mapping,
1012                              pgoff_t index, unsigned long max_scan)
1013 {
1014         unsigned long i;
1015
1016         for (i = 0; i < max_scan; i++) {
1017                 struct page *page;
1018
1019                 page = radix_tree_lookup(&mapping->page_tree, index);
1020                 if (!page || radix_tree_exceptional_entry(page))
1021                         break;
1022                 index++;
1023                 if (index == 0)
1024                         break;
1025         }
1026
1027         return index;
1028 }
1029 EXPORT_SYMBOL(page_cache_next_hole);
1030
1031 /**
1032  * page_cache_prev_hole - find the prev hole (not-present entry)
1033  * @mapping: mapping
1034  * @index: index
1035  * @max_scan: maximum range to search
1036  *
1037  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1038  * the first hole.
1039  *
1040  * Returns: the index of the hole if found, otherwise returns an index
1041  * outside of the set specified (in which case 'index - return >=
1042  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1043  * will be returned.
1044  *
1045  * page_cache_prev_hole may be called under rcu_read_lock. However,
1046  * like radix_tree_gang_lookup, this will not atomically search a
1047  * snapshot of the tree at a single point in time. For example, if a
1048  * hole is created at index 10, then subsequently a hole is created at
1049  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1050  * called under rcu_read_lock.
1051  */
1052 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1053                              pgoff_t index, unsigned long max_scan)
1054 {
1055         unsigned long i;
1056
1057         for (i = 0; i < max_scan; i++) {
1058                 struct page *page;
1059
1060                 page = radix_tree_lookup(&mapping->page_tree, index);
1061                 if (!page || radix_tree_exceptional_entry(page))
1062                         break;
1063                 index--;
1064                 if (index == ULONG_MAX)
1065                         break;
1066         }
1067
1068         return index;
1069 }
1070 EXPORT_SYMBOL(page_cache_prev_hole);
1071
1072 /**
1073  * find_get_entry - find and get a page cache entry
1074  * @mapping: the address_space to search
1075  * @offset: the page cache index
1076  *
1077  * Looks up the page cache slot at @mapping & @offset.  If there is a
1078  * page cache page, it is returned with an increased refcount.
1079  *
1080  * If the slot holds a shadow entry of a previously evicted page, or a
1081  * swap entry from shmem/tmpfs, it is returned.
1082  *
1083  * Otherwise, %NULL is returned.
1084  */
1085 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1086 {
1087         void **pagep;
1088         struct page *head, *page;
1089
1090         rcu_read_lock();
1091 repeat:
1092         page = NULL;
1093         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1094         if (pagep) {
1095                 page = radix_tree_deref_slot(pagep);
1096                 if (unlikely(!page))
1097                         goto out;
1098                 if (radix_tree_exception(page)) {
1099                         if (radix_tree_deref_retry(page))
1100                                 goto repeat;
1101                         /*
1102                          * A shadow entry of a recently evicted page,
1103                          * or a swap entry from shmem/tmpfs.  Return
1104                          * it without attempting to raise page count.
1105                          */
1106                         goto out;
1107                 }
1108
1109                 head = compound_head(page);
1110                 if (!page_cache_get_speculative(head))
1111                         goto repeat;
1112
1113                 /* The page was split under us? */
1114                 if (compound_head(page) != head) {
1115                         put_page(head);
1116                         goto repeat;
1117                 }
1118
1119                 /*
1120                  * Has the page moved?
1121                  * This is part of the lockless pagecache protocol. See
1122                  * include/linux/pagemap.h for details.
1123                  */
1124                 if (unlikely(page != *pagep)) {
1125                         put_page(head);
1126                         goto repeat;
1127                 }
1128         }
1129 out:
1130         rcu_read_unlock();
1131
1132         return page;
1133 }
1134 EXPORT_SYMBOL(find_get_entry);
1135
1136 /**
1137  * find_lock_entry - locate, pin and lock a page cache entry
1138  * @mapping: the address_space to search
1139  * @offset: the page cache index
1140  *
1141  * Looks up the page cache slot at @mapping & @offset.  If there is a
1142  * page cache page, it is returned locked and with an increased
1143  * refcount.
1144  *
1145  * If the slot holds a shadow entry of a previously evicted page, or a
1146  * swap entry from shmem/tmpfs, it is returned.
1147  *
1148  * Otherwise, %NULL is returned.
1149  *
1150  * find_lock_entry() may sleep.
1151  */
1152 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1153 {
1154         struct page *page;
1155
1156 repeat:
1157         page = find_get_entry(mapping, offset);
1158         if (page && !radix_tree_exception(page)) {
1159                 lock_page(page);
1160                 /* Has the page been truncated? */
1161                 if (unlikely(page_mapping(page) != mapping)) {
1162                         unlock_page(page);
1163                         put_page(page);
1164                         goto repeat;
1165                 }
1166                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1167         }
1168         return page;
1169 }
1170 EXPORT_SYMBOL(find_lock_entry);
1171
1172 /**
1173  * pagecache_get_page - find and get a page reference
1174  * @mapping: the address_space to search
1175  * @offset: the page index
1176  * @fgp_flags: PCG flags
1177  * @gfp_mask: gfp mask to use for the page cache data page allocation
1178  *
1179  * Looks up the page cache slot at @mapping & @offset.
1180  *
1181  * PCG flags modify how the page is returned.
1182  *
1183  * FGP_ACCESSED: the page will be marked accessed
1184  * FGP_LOCK: Page is return locked
1185  * FGP_CREAT: If page is not present then a new page is allocated using
1186  *              @gfp_mask and added to the page cache and the VM's LRU
1187  *              list. The page is returned locked and with an increased
1188  *              refcount. Otherwise, %NULL is returned.
1189  *
1190  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1191  * if the GFP flags specified for FGP_CREAT are atomic.
1192  *
1193  * If there is a page cache page, it is returned with an increased refcount.
1194  */
1195 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1196         int fgp_flags, gfp_t gfp_mask)
1197 {
1198         struct page *page;
1199
1200 repeat:
1201         page = find_get_entry(mapping, offset);
1202         if (radix_tree_exceptional_entry(page))
1203                 page = NULL;
1204         if (!page)
1205                 goto no_page;
1206
1207         if (fgp_flags & FGP_LOCK) {
1208                 if (fgp_flags & FGP_NOWAIT) {
1209                         if (!trylock_page(page)) {
1210                                 put_page(page);
1211                                 return NULL;
1212                         }
1213                 } else {
1214                         lock_page(page);
1215                 }
1216
1217                 /* Has the page been truncated? */
1218                 if (unlikely(page->mapping != mapping)) {
1219                         unlock_page(page);
1220                         put_page(page);
1221                         goto repeat;
1222                 }
1223                 VM_BUG_ON_PAGE(page->index != offset, page);
1224         }
1225
1226         if (page && (fgp_flags & FGP_ACCESSED))
1227                 mark_page_accessed(page);
1228
1229 no_page:
1230         if (!page && (fgp_flags & FGP_CREAT)) {
1231                 int err;
1232                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1233                         gfp_mask |= __GFP_WRITE;
1234                 if (fgp_flags & FGP_NOFS)
1235                         gfp_mask &= ~__GFP_FS;
1236
1237                 page = __page_cache_alloc(gfp_mask);
1238                 if (!page)
1239                         return NULL;
1240
1241                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1242                         fgp_flags |= FGP_LOCK;
1243
1244                 /* Init accessed so avoid atomic mark_page_accessed later */
1245                 if (fgp_flags & FGP_ACCESSED)
1246                         __SetPageReferenced(page);
1247
1248                 err = add_to_page_cache_lru(page, mapping, offset,
1249                                 gfp_mask & GFP_RECLAIM_MASK);
1250                 if (unlikely(err)) {
1251                         put_page(page);
1252                         page = NULL;
1253                         if (err == -EEXIST)
1254                                 goto repeat;
1255                 }
1256         }
1257
1258         return page;
1259 }
1260 EXPORT_SYMBOL(pagecache_get_page);
1261
1262 /**
1263  * find_get_entries - gang pagecache lookup
1264  * @mapping:    The address_space to search
1265  * @start:      The starting page cache index
1266  * @nr_entries: The maximum number of entries
1267  * @entries:    Where the resulting entries are placed
1268  * @indices:    The cache indices corresponding to the entries in @entries
1269  *
1270  * find_get_entries() will search for and return a group of up to
1271  * @nr_entries entries in the mapping.  The entries are placed at
1272  * @entries.  find_get_entries() takes a reference against any actual
1273  * pages it returns.
1274  *
1275  * The search returns a group of mapping-contiguous page cache entries
1276  * with ascending indexes.  There may be holes in the indices due to
1277  * not-present pages.
1278  *
1279  * Any shadow entries of evicted pages, or swap entries from
1280  * shmem/tmpfs, are included in the returned array.
1281  *
1282  * find_get_entries() returns the number of pages and shadow entries
1283  * which were found.
1284  */
1285 unsigned find_get_entries(struct address_space *mapping,
1286                           pgoff_t start, unsigned int nr_entries,
1287                           struct page **entries, pgoff_t *indices)
1288 {
1289         void **slot;
1290         unsigned int ret = 0;
1291         struct radix_tree_iter iter;
1292
1293         if (!nr_entries)
1294                 return 0;
1295
1296         rcu_read_lock();
1297         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1298                 struct page *head, *page;
1299 repeat:
1300                 page = radix_tree_deref_slot(slot);
1301                 if (unlikely(!page))
1302                         continue;
1303                 if (radix_tree_exception(page)) {
1304                         if (radix_tree_deref_retry(page)) {
1305                                 slot = radix_tree_iter_retry(&iter);
1306                                 continue;
1307                         }
1308                         /*
1309                          * A shadow entry of a recently evicted page, a swap
1310                          * entry from shmem/tmpfs or a DAX entry.  Return it
1311                          * without attempting to raise page count.
1312                          */
1313                         goto export;
1314                 }
1315
1316                 head = compound_head(page);
1317                 if (!page_cache_get_speculative(head))
1318                         goto repeat;
1319
1320                 /* The page was split under us? */
1321                 if (compound_head(page) != head) {
1322                         put_page(head);
1323                         goto repeat;
1324                 }
1325
1326                 /* Has the page moved? */
1327                 if (unlikely(page != *slot)) {
1328                         put_page(head);
1329                         goto repeat;
1330                 }
1331 export:
1332                 indices[ret] = iter.index;
1333                 entries[ret] = page;
1334                 if (++ret == nr_entries)
1335                         break;
1336         }
1337         rcu_read_unlock();
1338         return ret;
1339 }
1340
1341 /**
1342  * find_get_pages - gang pagecache lookup
1343  * @mapping:    The address_space to search
1344  * @start:      The starting page index
1345  * @nr_pages:   The maximum number of pages
1346  * @pages:      Where the resulting pages are placed
1347  *
1348  * find_get_pages() will search for and return a group of up to
1349  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1350  * find_get_pages() takes a reference against the returned pages.
1351  *
1352  * The search returns a group of mapping-contiguous pages with ascending
1353  * indexes.  There may be holes in the indices due to not-present pages.
1354  *
1355  * find_get_pages() returns the number of pages which were found.
1356  */
1357 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1358                             unsigned int nr_pages, struct page **pages)
1359 {
1360         struct radix_tree_iter iter;
1361         void **slot;
1362         unsigned ret = 0;
1363
1364         if (unlikely(!nr_pages))
1365                 return 0;
1366
1367         rcu_read_lock();
1368         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1369                 struct page *head, *page;
1370 repeat:
1371                 page = radix_tree_deref_slot(slot);
1372                 if (unlikely(!page))
1373                         continue;
1374
1375                 if (radix_tree_exception(page)) {
1376                         if (radix_tree_deref_retry(page)) {
1377                                 slot = radix_tree_iter_retry(&iter);
1378                                 continue;
1379                         }
1380                         /*
1381                          * A shadow entry of a recently evicted page,
1382                          * or a swap entry from shmem/tmpfs.  Skip
1383                          * over it.
1384                          */
1385                         continue;
1386                 }
1387
1388                 head = compound_head(page);
1389                 if (!page_cache_get_speculative(head))
1390                         goto repeat;
1391
1392                 /* The page was split under us? */
1393                 if (compound_head(page) != head) {
1394                         put_page(head);
1395                         goto repeat;
1396                 }
1397
1398                 /* Has the page moved? */
1399                 if (unlikely(page != *slot)) {
1400                         put_page(head);
1401                         goto repeat;
1402                 }
1403
1404                 pages[ret] = page;
1405                 if (++ret == nr_pages)
1406                         break;
1407         }
1408
1409         rcu_read_unlock();
1410         return ret;
1411 }
1412
1413 /**
1414  * find_get_pages_contig - gang contiguous pagecache lookup
1415  * @mapping:    The address_space to search
1416  * @index:      The starting page index
1417  * @nr_pages:   The maximum number of pages
1418  * @pages:      Where the resulting pages are placed
1419  *
1420  * find_get_pages_contig() works exactly like find_get_pages(), except
1421  * that the returned number of pages are guaranteed to be contiguous.
1422  *
1423  * find_get_pages_contig() returns the number of pages which were found.
1424  */
1425 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1426                                unsigned int nr_pages, struct page **pages)
1427 {
1428         struct radix_tree_iter iter;
1429         void **slot;
1430         unsigned int ret = 0;
1431
1432         if (unlikely(!nr_pages))
1433                 return 0;
1434
1435         rcu_read_lock();
1436         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1437                 struct page *head, *page;
1438 repeat:
1439                 page = radix_tree_deref_slot(slot);
1440                 /* The hole, there no reason to continue */
1441                 if (unlikely(!page))
1442                         break;
1443
1444                 if (radix_tree_exception(page)) {
1445                         if (radix_tree_deref_retry(page)) {
1446                                 slot = radix_tree_iter_retry(&iter);
1447                                 continue;
1448                         }
1449                         /*
1450                          * A shadow entry of a recently evicted page,
1451                          * or a swap entry from shmem/tmpfs.  Stop
1452                          * looking for contiguous pages.
1453                          */
1454                         break;
1455                 }
1456
1457                 head = compound_head(page);
1458                 if (!page_cache_get_speculative(head))
1459                         goto repeat;
1460
1461                 /* The page was split under us? */
1462                 if (compound_head(page) != head) {
1463                         put_page(head);
1464                         goto repeat;
1465                 }
1466
1467                 /* Has the page moved? */
1468                 if (unlikely(page != *slot)) {
1469                         put_page(head);
1470                         goto repeat;
1471                 }
1472
1473                 /*
1474                  * must check mapping and index after taking the ref.
1475                  * otherwise we can get both false positives and false
1476                  * negatives, which is just confusing to the caller.
1477                  */
1478                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1479                         put_page(page);
1480                         break;
1481                 }
1482
1483                 pages[ret] = page;
1484                 if (++ret == nr_pages)
1485                         break;
1486         }
1487         rcu_read_unlock();
1488         return ret;
1489 }
1490 EXPORT_SYMBOL(find_get_pages_contig);
1491
1492 /**
1493  * find_get_pages_tag - find and return pages that match @tag
1494  * @mapping:    the address_space to search
1495  * @index:      the starting page index
1496  * @tag:        the tag index
1497  * @nr_pages:   the maximum number of pages
1498  * @pages:      where the resulting pages are placed
1499  *
1500  * Like find_get_pages, except we only return pages which are tagged with
1501  * @tag.   We update @index to index the next page for the traversal.
1502  */
1503 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1504                         int tag, unsigned int nr_pages, struct page **pages)
1505 {
1506         struct radix_tree_iter iter;
1507         void **slot;
1508         unsigned ret = 0;
1509
1510         if (unlikely(!nr_pages))
1511                 return 0;
1512
1513         rcu_read_lock();
1514         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1515                                    &iter, *index, tag) {
1516                 struct page *head, *page;
1517 repeat:
1518                 page = radix_tree_deref_slot(slot);
1519                 if (unlikely(!page))
1520                         continue;
1521
1522                 if (radix_tree_exception(page)) {
1523                         if (radix_tree_deref_retry(page)) {
1524                                 slot = radix_tree_iter_retry(&iter);
1525                                 continue;
1526                         }
1527                         /*
1528                          * A shadow entry of a recently evicted page.
1529                          *
1530                          * Those entries should never be tagged, but
1531                          * this tree walk is lockless and the tags are
1532                          * looked up in bulk, one radix tree node at a
1533                          * time, so there is a sizable window for page
1534                          * reclaim to evict a page we saw tagged.
1535                          *
1536                          * Skip over it.
1537                          */
1538                         continue;
1539                 }
1540
1541                 head = compound_head(page);
1542                 if (!page_cache_get_speculative(head))
1543                         goto repeat;
1544
1545                 /* The page was split under us? */
1546                 if (compound_head(page) != head) {
1547                         put_page(head);
1548                         goto repeat;
1549                 }
1550
1551                 /* Has the page moved? */
1552                 if (unlikely(page != *slot)) {
1553                         put_page(head);
1554                         goto repeat;
1555                 }
1556
1557                 pages[ret] = page;
1558                 if (++ret == nr_pages)
1559                         break;
1560         }
1561
1562         rcu_read_unlock();
1563
1564         if (ret)
1565                 *index = pages[ret - 1]->index + 1;
1566
1567         return ret;
1568 }
1569 EXPORT_SYMBOL(find_get_pages_tag);
1570
1571 /**
1572  * find_get_entries_tag - find and return entries that match @tag
1573  * @mapping:    the address_space to search
1574  * @start:      the starting page cache index
1575  * @tag:        the tag index
1576  * @nr_entries: the maximum number of entries
1577  * @entries:    where the resulting entries are placed
1578  * @indices:    the cache indices corresponding to the entries in @entries
1579  *
1580  * Like find_get_entries, except we only return entries which are tagged with
1581  * @tag.
1582  */
1583 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1584                         int tag, unsigned int nr_entries,
1585                         struct page **entries, pgoff_t *indices)
1586 {
1587         void **slot;
1588         unsigned int ret = 0;
1589         struct radix_tree_iter iter;
1590
1591         if (!nr_entries)
1592                 return 0;
1593
1594         rcu_read_lock();
1595         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1596                                    &iter, start, tag) {
1597                 struct page *head, *page;
1598 repeat:
1599                 page = radix_tree_deref_slot(slot);
1600                 if (unlikely(!page))
1601                         continue;
1602                 if (radix_tree_exception(page)) {
1603                         if (radix_tree_deref_retry(page)) {
1604                                 slot = radix_tree_iter_retry(&iter);
1605                                 continue;
1606                         }
1607
1608                         /*
1609                          * A shadow entry of a recently evicted page, a swap
1610                          * entry from shmem/tmpfs or a DAX entry.  Return it
1611                          * without attempting to raise page count.
1612                          */
1613                         goto export;
1614                 }
1615
1616                 head = compound_head(page);
1617                 if (!page_cache_get_speculative(head))
1618                         goto repeat;
1619
1620                 /* The page was split under us? */
1621                 if (compound_head(page) != head) {
1622                         put_page(head);
1623                         goto repeat;
1624                 }
1625
1626                 /* Has the page moved? */
1627                 if (unlikely(page != *slot)) {
1628                         put_page(head);
1629                         goto repeat;
1630                 }
1631 export:
1632                 indices[ret] = iter.index;
1633                 entries[ret] = page;
1634                 if (++ret == nr_entries)
1635                         break;
1636         }
1637         rcu_read_unlock();
1638         return ret;
1639 }
1640 EXPORT_SYMBOL(find_get_entries_tag);
1641
1642 /*
1643  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1644  * a _large_ part of the i/o request. Imagine the worst scenario:
1645  *
1646  *      ---R__________________________________________B__________
1647  *         ^ reading here                             ^ bad block(assume 4k)
1648  *
1649  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1650  * => failing the whole request => read(R) => read(R+1) =>
1651  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1652  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1653  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1654  *
1655  * It is going insane. Fix it by quickly scaling down the readahead size.
1656  */
1657 static void shrink_readahead_size_eio(struct file *filp,
1658                                         struct file_ra_state *ra)
1659 {
1660         ra->ra_pages /= 4;
1661 }
1662
1663 /**
1664  * do_generic_file_read - generic file read routine
1665  * @filp:       the file to read
1666  * @ppos:       current file position
1667  * @iter:       data destination
1668  * @written:    already copied
1669  *
1670  * This is a generic file read routine, and uses the
1671  * mapping->a_ops->readpage() function for the actual low-level stuff.
1672  *
1673  * This is really ugly. But the goto's actually try to clarify some
1674  * of the logic when it comes to error handling etc.
1675  */
1676 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1677                 struct iov_iter *iter, ssize_t written)
1678 {
1679         struct address_space *mapping = filp->f_mapping;
1680         struct inode *inode = mapping->host;
1681         struct file_ra_state *ra = &filp->f_ra;
1682         pgoff_t index;
1683         pgoff_t last_index;
1684         pgoff_t prev_index;
1685         unsigned long offset;      /* offset into pagecache page */
1686         unsigned int prev_offset;
1687         int error = 0;
1688
1689         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1690                 return -EINVAL;
1691         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1692
1693         index = *ppos >> PAGE_SHIFT;
1694         prev_index = ra->prev_pos >> PAGE_SHIFT;
1695         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1696         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1697         offset = *ppos & ~PAGE_MASK;
1698
1699         for (;;) {
1700                 struct page *page;
1701                 pgoff_t end_index;
1702                 loff_t isize;
1703                 unsigned long nr, ret;
1704
1705                 cond_resched();
1706 find_page:
1707                 page = find_get_page(mapping, index);
1708                 if (!page) {
1709                         page_cache_sync_readahead(mapping,
1710                                         ra, filp,
1711                                         index, last_index - index);
1712                         page = find_get_page(mapping, index);
1713                         if (unlikely(page == NULL))
1714                                 goto no_cached_page;
1715                 }
1716                 if (PageReadahead(page)) {
1717                         page_cache_async_readahead(mapping,
1718                                         ra, filp, page,
1719                                         index, last_index - index);
1720                 }
1721                 if (!PageUptodate(page)) {
1722                         /*
1723                          * See comment in do_read_cache_page on why
1724                          * wait_on_page_locked is used to avoid unnecessarily
1725                          * serialisations and why it's safe.
1726                          */
1727                         error = wait_on_page_locked_killable(page);
1728                         if (unlikely(error))
1729                                 goto readpage_error;
1730                         if (PageUptodate(page))
1731                                 goto page_ok;
1732
1733                         if (inode->i_blkbits == PAGE_SHIFT ||
1734                                         !mapping->a_ops->is_partially_uptodate)
1735                                 goto page_not_up_to_date;
1736                         if (!trylock_page(page))
1737                                 goto page_not_up_to_date;
1738                         /* Did it get truncated before we got the lock? */
1739                         if (!page->mapping)
1740                                 goto page_not_up_to_date_locked;
1741                         if (!mapping->a_ops->is_partially_uptodate(page,
1742                                                         offset, iter->count))
1743                                 goto page_not_up_to_date_locked;
1744                         unlock_page(page);
1745                 }
1746 page_ok:
1747                 /*
1748                  * i_size must be checked after we know the page is Uptodate.
1749                  *
1750                  * Checking i_size after the check allows us to calculate
1751                  * the correct value for "nr", which means the zero-filled
1752                  * part of the page is not copied back to userspace (unless
1753                  * another truncate extends the file - this is desired though).
1754                  */
1755
1756                 isize = i_size_read(inode);
1757                 end_index = (isize - 1) >> PAGE_SHIFT;
1758                 if (unlikely(!isize || index > end_index)) {
1759                         put_page(page);
1760                         goto out;
1761                 }
1762
1763                 /* nr is the maximum number of bytes to copy from this page */
1764                 nr = PAGE_SIZE;
1765                 if (index == end_index) {
1766                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1767                         if (nr <= offset) {
1768                                 put_page(page);
1769                                 goto out;
1770                         }
1771                 }
1772                 nr = nr - offset;
1773
1774                 /* If users can be writing to this page using arbitrary
1775                  * virtual addresses, take care about potential aliasing
1776                  * before reading the page on the kernel side.
1777                  */
1778                 if (mapping_writably_mapped(mapping))
1779                         flush_dcache_page(page);
1780
1781                 /*
1782                  * When a sequential read accesses a page several times,
1783                  * only mark it as accessed the first time.
1784                  */
1785                 if (prev_index != index || offset != prev_offset)
1786                         mark_page_accessed(page);
1787                 prev_index = index;
1788
1789                 /*
1790                  * Ok, we have the page, and it's up-to-date, so
1791                  * now we can copy it to user space...
1792                  */
1793
1794                 ret = copy_page_to_iter(page, offset, nr, iter);
1795                 offset += ret;
1796                 index += offset >> PAGE_SHIFT;
1797                 offset &= ~PAGE_MASK;
1798                 prev_offset = offset;
1799
1800                 put_page(page);
1801                 written += ret;
1802                 if (!iov_iter_count(iter))
1803                         goto out;
1804                 if (ret < nr) {
1805                         error = -EFAULT;
1806                         goto out;
1807                 }
1808                 continue;
1809
1810 page_not_up_to_date:
1811                 /* Get exclusive access to the page ... */
1812                 error = lock_page_killable(page);
1813                 if (unlikely(error))
1814                         goto readpage_error;
1815
1816 page_not_up_to_date_locked:
1817                 /* Did it get truncated before we got the lock? */
1818                 if (!page->mapping) {
1819                         unlock_page(page);
1820                         put_page(page);
1821                         continue;
1822                 }
1823
1824                 /* Did somebody else fill it already? */
1825                 if (PageUptodate(page)) {
1826                         unlock_page(page);
1827                         goto page_ok;
1828                 }
1829
1830 readpage:
1831                 /*
1832                  * A previous I/O error may have been due to temporary
1833                  * failures, eg. multipath errors.
1834                  * PG_error will be set again if readpage fails.
1835                  */
1836                 ClearPageError(page);
1837                 /* Start the actual read. The read will unlock the page. */
1838                 error = mapping->a_ops->readpage(filp, page);
1839
1840                 if (unlikely(error)) {
1841                         if (error == AOP_TRUNCATED_PAGE) {
1842                                 put_page(page);
1843                                 error = 0;
1844                                 goto find_page;
1845                         }
1846                         goto readpage_error;
1847                 }
1848
1849                 if (!PageUptodate(page)) {
1850                         error = lock_page_killable(page);
1851                         if (unlikely(error))
1852                                 goto readpage_error;
1853                         if (!PageUptodate(page)) {
1854                                 if (page->mapping == NULL) {
1855                                         /*
1856                                          * invalidate_mapping_pages got it
1857                                          */
1858                                         unlock_page(page);
1859                                         put_page(page);
1860                                         goto find_page;
1861                                 }
1862                                 unlock_page(page);
1863                                 shrink_readahead_size_eio(filp, ra);
1864                                 error = -EIO;
1865                                 goto readpage_error;
1866                         }
1867                         unlock_page(page);
1868                 }
1869
1870                 goto page_ok;
1871
1872 readpage_error:
1873                 /* UHHUH! A synchronous read error occurred. Report it */
1874                 put_page(page);
1875                 goto out;
1876
1877 no_cached_page:
1878                 /*
1879                  * Ok, it wasn't cached, so we need to create a new
1880                  * page..
1881                  */
1882                 page = page_cache_alloc_cold(mapping);
1883                 if (!page) {
1884                         error = -ENOMEM;
1885                         goto out;
1886                 }
1887                 error = add_to_page_cache_lru(page, mapping, index,
1888                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1889                 if (error) {
1890                         put_page(page);
1891                         if (error == -EEXIST) {
1892                                 error = 0;
1893                                 goto find_page;
1894                         }
1895                         goto out;
1896                 }
1897                 goto readpage;
1898         }
1899
1900 out:
1901         ra->prev_pos = prev_index;
1902         ra->prev_pos <<= PAGE_SHIFT;
1903         ra->prev_pos |= prev_offset;
1904
1905         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1906         file_accessed(filp);
1907         return written ? written : error;
1908 }
1909
1910 /**
1911  * generic_file_read_iter - generic filesystem read routine
1912  * @iocb:       kernel I/O control block
1913  * @iter:       destination for the data read
1914  *
1915  * This is the "read_iter()" routine for all filesystems
1916  * that can use the page cache directly.
1917  */
1918 ssize_t
1919 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1920 {
1921         struct file *file = iocb->ki_filp;
1922         ssize_t retval = 0;
1923         size_t count = iov_iter_count(iter);
1924
1925         if (!count)
1926                 goto out; /* skip atime */
1927
1928         if (iocb->ki_flags & IOCB_DIRECT) {
1929                 struct address_space *mapping = file->f_mapping;
1930                 struct inode *inode = mapping->host;
1931                 struct iov_iter data = *iter;
1932                 loff_t size;
1933
1934                 size = i_size_read(inode);
1935                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1936                                         iocb->ki_pos + count - 1);
1937                 if (retval < 0)
1938                         goto out;
1939
1940                 file_accessed(file);
1941
1942                 retval = mapping->a_ops->direct_IO(iocb, &data);
1943                 if (retval >= 0) {
1944                         iocb->ki_pos += retval;
1945                         iov_iter_advance(iter, retval);
1946                 }
1947
1948                 /*
1949                  * Btrfs can have a short DIO read if we encounter
1950                  * compressed extents, so if there was an error, or if
1951                  * we've already read everything we wanted to, or if
1952                  * there was a short read because we hit EOF, go ahead
1953                  * and return.  Otherwise fallthrough to buffered io for
1954                  * the rest of the read.  Buffered reads will not work for
1955                  * DAX files, so don't bother trying.
1956                  */
1957                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1958                     IS_DAX(inode))
1959                         goto out;
1960         }
1961
1962         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1963 out:
1964         return retval;
1965 }
1966 EXPORT_SYMBOL(generic_file_read_iter);
1967
1968 #ifdef CONFIG_MMU
1969 /**
1970  * page_cache_read - adds requested page to the page cache if not already there
1971  * @file:       file to read
1972  * @offset:     page index
1973  * @gfp_mask:   memory allocation flags
1974  *
1975  * This adds the requested page to the page cache if it isn't already there,
1976  * and schedules an I/O to read in its contents from disk.
1977  */
1978 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1979 {
1980         struct address_space *mapping = file->f_mapping;
1981         struct page *page;
1982         int ret;
1983
1984         do {
1985                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1986                 if (!page)
1987                         return -ENOMEM;
1988
1989                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1990                 if (ret == 0)
1991                         ret = mapping->a_ops->readpage(file, page);
1992                 else if (ret == -EEXIST)
1993                         ret = 0; /* losing race to add is OK */
1994
1995                 put_page(page);
1996
1997         } while (ret == AOP_TRUNCATED_PAGE);
1998
1999         return ret;
2000 }
2001
2002 #define MMAP_LOTSAMISS  (100)
2003
2004 /*
2005  * Synchronous readahead happens when we don't even find
2006  * a page in the page cache at all.
2007  */
2008 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2009                                    struct file_ra_state *ra,
2010                                    struct file *file,
2011                                    pgoff_t offset)
2012 {
2013         struct address_space *mapping = file->f_mapping;
2014
2015         /* If we don't want any read-ahead, don't bother */
2016         if (vma->vm_flags & VM_RAND_READ)
2017                 return;
2018         if (!ra->ra_pages)
2019                 return;
2020
2021         if (vma->vm_flags & VM_SEQ_READ) {
2022                 page_cache_sync_readahead(mapping, ra, file, offset,
2023                                           ra->ra_pages);
2024                 return;
2025         }
2026
2027         /* Avoid banging the cache line if not needed */
2028         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2029                 ra->mmap_miss++;
2030
2031         /*
2032          * Do we miss much more than hit in this file? If so,
2033          * stop bothering with read-ahead. It will only hurt.
2034          */
2035         if (ra->mmap_miss > MMAP_LOTSAMISS)
2036                 return;
2037
2038         /*
2039          * mmap read-around
2040          */
2041         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2042         ra->size = ra->ra_pages;
2043         ra->async_size = ra->ra_pages / 4;
2044         ra_submit(ra, mapping, file);
2045 }
2046
2047 /*
2048  * Asynchronous readahead happens when we find the page and PG_readahead,
2049  * so we want to possibly extend the readahead further..
2050  */
2051 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2052                                     struct file_ra_state *ra,
2053                                     struct file *file,
2054                                     struct page *page,
2055                                     pgoff_t offset)
2056 {
2057         struct address_space *mapping = file->f_mapping;
2058
2059         /* If we don't want any read-ahead, don't bother */
2060         if (vma->vm_flags & VM_RAND_READ)
2061                 return;
2062         if (ra->mmap_miss > 0)
2063                 ra->mmap_miss--;
2064         if (PageReadahead(page))
2065                 page_cache_async_readahead(mapping, ra, file,
2066                                            page, offset, ra->ra_pages);
2067 }
2068
2069 /**
2070  * filemap_fault - read in file data for page fault handling
2071  * @vma:        vma in which the fault was taken
2072  * @vmf:        struct vm_fault containing details of the fault
2073  *
2074  * filemap_fault() is invoked via the vma operations vector for a
2075  * mapped memory region to read in file data during a page fault.
2076  *
2077  * The goto's are kind of ugly, but this streamlines the normal case of having
2078  * it in the page cache, and handles the special cases reasonably without
2079  * having a lot of duplicated code.
2080  *
2081  * vma->vm_mm->mmap_sem must be held on entry.
2082  *
2083  * If our return value has VM_FAULT_RETRY set, it's because
2084  * lock_page_or_retry() returned 0.
2085  * The mmap_sem has usually been released in this case.
2086  * See __lock_page_or_retry() for the exception.
2087  *
2088  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2089  * has not been released.
2090  *
2091  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2092  */
2093 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2094 {
2095         int error;
2096         struct file *file = vma->vm_file;
2097         struct address_space *mapping = file->f_mapping;
2098         struct file_ra_state *ra = &file->f_ra;
2099         struct inode *inode = mapping->host;
2100         pgoff_t offset = vmf->pgoff;
2101         struct page *page;
2102         loff_t size;
2103         int ret = 0;
2104
2105         size = round_up(i_size_read(inode), PAGE_SIZE);
2106         if (offset >= size >> PAGE_SHIFT)
2107                 return VM_FAULT_SIGBUS;
2108
2109         /*
2110          * Do we have something in the page cache already?
2111          */
2112         page = find_get_page(mapping, offset);
2113         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2114                 /*
2115                  * We found the page, so try async readahead before
2116                  * waiting for the lock.
2117                  */
2118                 do_async_mmap_readahead(vma, ra, file, page, offset);
2119         } else if (!page) {
2120                 /* No page in the page cache at all */
2121                 do_sync_mmap_readahead(vma, ra, file, offset);
2122                 count_vm_event(PGMAJFAULT);
2123                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2124                 ret = VM_FAULT_MAJOR;
2125 retry_find:
2126                 page = find_get_page(mapping, offset);
2127                 if (!page)
2128                         goto no_cached_page;
2129         }
2130
2131         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2132                 put_page(page);
2133                 return ret | VM_FAULT_RETRY;
2134         }
2135
2136         /* Did it get truncated? */
2137         if (unlikely(page->mapping != mapping)) {
2138                 unlock_page(page);
2139                 put_page(page);
2140                 goto retry_find;
2141         }
2142         VM_BUG_ON_PAGE(page->index != offset, page);
2143
2144         /*
2145          * We have a locked page in the page cache, now we need to check
2146          * that it's up-to-date. If not, it is going to be due to an error.
2147          */
2148         if (unlikely(!PageUptodate(page)))
2149                 goto page_not_uptodate;
2150
2151         /*
2152          * Found the page and have a reference on it.
2153          * We must recheck i_size under page lock.
2154          */
2155         size = round_up(i_size_read(inode), PAGE_SIZE);
2156         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2157                 unlock_page(page);
2158                 put_page(page);
2159                 return VM_FAULT_SIGBUS;
2160         }
2161
2162         vmf->page = page;
2163         return ret | VM_FAULT_LOCKED;
2164
2165 no_cached_page:
2166         /*
2167          * We're only likely to ever get here if MADV_RANDOM is in
2168          * effect.
2169          */
2170         error = page_cache_read(file, offset, vmf->gfp_mask);
2171
2172         /*
2173          * The page we want has now been added to the page cache.
2174          * In the unlikely event that someone removed it in the
2175          * meantime, we'll just come back here and read it again.
2176          */
2177         if (error >= 0)
2178                 goto retry_find;
2179
2180         /*
2181          * An error return from page_cache_read can result if the
2182          * system is low on memory, or a problem occurs while trying
2183          * to schedule I/O.
2184          */
2185         if (error == -ENOMEM)
2186                 return VM_FAULT_OOM;
2187         return VM_FAULT_SIGBUS;
2188
2189 page_not_uptodate:
2190         /*
2191          * Umm, take care of errors if the page isn't up-to-date.
2192          * Try to re-read it _once_. We do this synchronously,
2193          * because there really aren't any performance issues here
2194          * and we need to check for errors.
2195          */
2196         ClearPageError(page);
2197         error = mapping->a_ops->readpage(file, page);
2198         if (!error) {
2199                 wait_on_page_locked(page);
2200                 if (!PageUptodate(page))
2201                         error = -EIO;
2202         }
2203         put_page(page);
2204
2205         if (!error || error == AOP_TRUNCATED_PAGE)
2206                 goto retry_find;
2207
2208         /* Things didn't work out. Return zero to tell the mm layer so. */
2209         shrink_readahead_size_eio(file, ra);
2210         return VM_FAULT_SIGBUS;
2211 }
2212 EXPORT_SYMBOL(filemap_fault);
2213
2214 void filemap_map_pages(struct fault_env *fe,
2215                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2216 {
2217         struct radix_tree_iter iter;
2218         void **slot;
2219         struct file *file = fe->vma->vm_file;
2220         struct address_space *mapping = file->f_mapping;
2221         pgoff_t last_pgoff = start_pgoff;
2222         loff_t size;
2223         struct page *head, *page;
2224
2225         rcu_read_lock();
2226         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2227                         start_pgoff) {
2228                 if (iter.index > end_pgoff)
2229                         break;
2230 repeat:
2231                 page = radix_tree_deref_slot(slot);
2232                 if (unlikely(!page))
2233                         goto next;
2234                 if (radix_tree_exception(page)) {
2235                         if (radix_tree_deref_retry(page)) {
2236                                 slot = radix_tree_iter_retry(&iter);
2237                                 continue;
2238                         }
2239                         goto next;
2240                 }
2241
2242                 head = compound_head(page);
2243                 if (!page_cache_get_speculative(head))
2244                         goto repeat;
2245
2246                 /* The page was split under us? */
2247                 if (compound_head(page) != head) {
2248                         put_page(head);
2249                         goto repeat;
2250                 }
2251
2252                 /* Has the page moved? */
2253                 if (unlikely(page != *slot)) {
2254                         put_page(head);
2255                         goto repeat;
2256                 }
2257
2258                 if (!PageUptodate(page) ||
2259                                 PageReadahead(page) ||
2260                                 PageHWPoison(page))
2261                         goto skip;
2262                 if (!trylock_page(page))
2263                         goto skip;
2264
2265                 if (page->mapping != mapping || !PageUptodate(page))
2266                         goto unlock;
2267
2268                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2269                 if (page->index >= size >> PAGE_SHIFT)
2270                         goto unlock;
2271
2272                 if (file->f_ra.mmap_miss > 0)
2273                         file->f_ra.mmap_miss--;
2274
2275                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2276                 if (fe->pte)
2277                         fe->pte += iter.index - last_pgoff;
2278                 last_pgoff = iter.index;
2279                 if (alloc_set_pte(fe, NULL, page))
2280                         goto unlock;
2281                 unlock_page(page);
2282                 goto next;
2283 unlock:
2284                 unlock_page(page);
2285 skip:
2286                 put_page(page);
2287 next:
2288                 /* Huge page is mapped? No need to proceed. */
2289                 if (pmd_trans_huge(*fe->pmd))
2290                         break;
2291                 if (iter.index == end_pgoff)
2292                         break;
2293         }
2294         rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL(filemap_map_pages);
2297
2298 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300         struct page *page = vmf->page;
2301         struct inode *inode = file_inode(vma->vm_file);
2302         int ret = VM_FAULT_LOCKED;
2303
2304         sb_start_pagefault(inode->i_sb);
2305         file_update_time(vma->vm_file);
2306         lock_page(page);
2307         if (page->mapping != inode->i_mapping) {
2308                 unlock_page(page);
2309                 ret = VM_FAULT_NOPAGE;
2310                 goto out;
2311         }
2312         /*
2313          * We mark the page dirty already here so that when freeze is in
2314          * progress, we are guaranteed that writeback during freezing will
2315          * see the dirty page and writeprotect it again.
2316          */
2317         set_page_dirty(page);
2318         wait_for_stable_page(page);
2319 out:
2320         sb_end_pagefault(inode->i_sb);
2321         return ret;
2322 }
2323 EXPORT_SYMBOL(filemap_page_mkwrite);
2324
2325 const struct vm_operations_struct generic_file_vm_ops = {
2326         .fault          = filemap_fault,
2327         .map_pages      = filemap_map_pages,
2328         .page_mkwrite   = filemap_page_mkwrite,
2329 };
2330
2331 /* This is used for a general mmap of a disk file */
2332
2333 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2334 {
2335         struct address_space *mapping = file->f_mapping;
2336
2337         if (!mapping->a_ops->readpage)
2338                 return -ENOEXEC;
2339         file_accessed(file);
2340         vma->vm_ops = &generic_file_vm_ops;
2341         return 0;
2342 }
2343
2344 /*
2345  * This is for filesystems which do not implement ->writepage.
2346  */
2347 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2348 {
2349         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2350                 return -EINVAL;
2351         return generic_file_mmap(file, vma);
2352 }
2353 #else
2354 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2355 {
2356         return -ENOSYS;
2357 }
2358 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2359 {
2360         return -ENOSYS;
2361 }
2362 #endif /* CONFIG_MMU */
2363
2364 EXPORT_SYMBOL(generic_file_mmap);
2365 EXPORT_SYMBOL(generic_file_readonly_mmap);
2366
2367 static struct page *wait_on_page_read(struct page *page)
2368 {
2369         if (!IS_ERR(page)) {
2370                 wait_on_page_locked(page);
2371                 if (!PageUptodate(page)) {
2372                         put_page(page);
2373                         page = ERR_PTR(-EIO);
2374                 }
2375         }
2376         return page;
2377 }
2378
2379 static struct page *do_read_cache_page(struct address_space *mapping,
2380                                 pgoff_t index,
2381                                 int (*filler)(void *, struct page *),
2382                                 void *data,
2383                                 gfp_t gfp)
2384 {
2385         struct page *page;
2386         int err;
2387 repeat:
2388         page = find_get_page(mapping, index);
2389         if (!page) {
2390                 page = __page_cache_alloc(gfp | __GFP_COLD);
2391                 if (!page)
2392                         return ERR_PTR(-ENOMEM);
2393                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2394                 if (unlikely(err)) {
2395                         put_page(page);
2396                         if (err == -EEXIST)
2397                                 goto repeat;
2398                         /* Presumably ENOMEM for radix tree node */
2399                         return ERR_PTR(err);
2400                 }
2401
2402 filler:
2403                 err = filler(data, page);
2404                 if (err < 0) {
2405                         put_page(page);
2406                         return ERR_PTR(err);
2407                 }
2408
2409                 page = wait_on_page_read(page);
2410                 if (IS_ERR(page))
2411                         return page;
2412                 goto out;
2413         }
2414         if (PageUptodate(page))
2415                 goto out;
2416
2417         /*
2418          * Page is not up to date and may be locked due one of the following
2419          * case a: Page is being filled and the page lock is held
2420          * case b: Read/write error clearing the page uptodate status
2421          * case c: Truncation in progress (page locked)
2422          * case d: Reclaim in progress
2423          *
2424          * Case a, the page will be up to date when the page is unlocked.
2425          *    There is no need to serialise on the page lock here as the page
2426          *    is pinned so the lock gives no additional protection. Even if the
2427          *    the page is truncated, the data is still valid if PageUptodate as
2428          *    it's a race vs truncate race.
2429          * Case b, the page will not be up to date
2430          * Case c, the page may be truncated but in itself, the data may still
2431          *    be valid after IO completes as it's a read vs truncate race. The
2432          *    operation must restart if the page is not uptodate on unlock but
2433          *    otherwise serialising on page lock to stabilise the mapping gives
2434          *    no additional guarantees to the caller as the page lock is
2435          *    released before return.
2436          * Case d, similar to truncation. If reclaim holds the page lock, it
2437          *    will be a race with remove_mapping that determines if the mapping
2438          *    is valid on unlock but otherwise the data is valid and there is
2439          *    no need to serialise with page lock.
2440          *
2441          * As the page lock gives no additional guarantee, we optimistically
2442          * wait on the page to be unlocked and check if it's up to date and
2443          * use the page if it is. Otherwise, the page lock is required to
2444          * distinguish between the different cases. The motivation is that we
2445          * avoid spurious serialisations and wakeups when multiple processes
2446          * wait on the same page for IO to complete.
2447          */
2448         wait_on_page_locked(page);
2449         if (PageUptodate(page))
2450                 goto out;
2451
2452         /* Distinguish between all the cases under the safety of the lock */
2453         lock_page(page);
2454
2455         /* Case c or d, restart the operation */
2456         if (!page->mapping) {
2457                 unlock_page(page);
2458                 put_page(page);
2459                 goto repeat;
2460         }
2461
2462         /* Someone else locked and filled the page in a very small window */
2463         if (PageUptodate(page)) {
2464                 unlock_page(page);
2465                 goto out;
2466         }
2467         goto filler;
2468
2469 out:
2470         mark_page_accessed(page);
2471         return page;
2472 }
2473
2474 /**
2475  * read_cache_page - read into page cache, fill it if needed
2476  * @mapping:    the page's address_space
2477  * @index:      the page index
2478  * @filler:     function to perform the read
2479  * @data:       first arg to filler(data, page) function, often left as NULL
2480  *
2481  * Read into the page cache. If a page already exists, and PageUptodate() is
2482  * not set, try to fill the page and wait for it to become unlocked.
2483  *
2484  * If the page does not get brought uptodate, return -EIO.
2485  */
2486 struct page *read_cache_page(struct address_space *mapping,
2487                                 pgoff_t index,
2488                                 int (*filler)(void *, struct page *),
2489                                 void *data)
2490 {
2491         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2492 }
2493 EXPORT_SYMBOL(read_cache_page);
2494
2495 /**
2496  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2497  * @mapping:    the page's address_space
2498  * @index:      the page index
2499  * @gfp:        the page allocator flags to use if allocating
2500  *
2501  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2502  * any new page allocations done using the specified allocation flags.
2503  *
2504  * If the page does not get brought uptodate, return -EIO.
2505  */
2506 struct page *read_cache_page_gfp(struct address_space *mapping,
2507                                 pgoff_t index,
2508                                 gfp_t gfp)
2509 {
2510         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2511
2512         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2513 }
2514 EXPORT_SYMBOL(read_cache_page_gfp);
2515
2516 /*
2517  * Performs necessary checks before doing a write
2518  *
2519  * Can adjust writing position or amount of bytes to write.
2520  * Returns appropriate error code that caller should return or
2521  * zero in case that write should be allowed.
2522  */
2523 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2524 {
2525         struct file *file = iocb->ki_filp;
2526         struct inode *inode = file->f_mapping->host;
2527         unsigned long limit = rlimit(RLIMIT_FSIZE);
2528         loff_t pos;
2529
2530         if (!iov_iter_count(from))
2531                 return 0;
2532
2533         /* FIXME: this is for backwards compatibility with 2.4 */
2534         if (iocb->ki_flags & IOCB_APPEND)
2535                 iocb->ki_pos = i_size_read(inode);
2536
2537         pos = iocb->ki_pos;
2538
2539         if (limit != RLIM_INFINITY) {
2540                 if (iocb->ki_pos >= limit) {
2541                         send_sig(SIGXFSZ, current, 0);
2542                         return -EFBIG;
2543                 }
2544                 iov_iter_truncate(from, limit - (unsigned long)pos);
2545         }
2546
2547         /*
2548          * LFS rule
2549          */
2550         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2551                                 !(file->f_flags & O_LARGEFILE))) {
2552                 if (pos >= MAX_NON_LFS)
2553                         return -EFBIG;
2554                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2555         }
2556
2557         /*
2558          * Are we about to exceed the fs block limit ?
2559          *
2560          * If we have written data it becomes a short write.  If we have
2561          * exceeded without writing data we send a signal and return EFBIG.
2562          * Linus frestrict idea will clean these up nicely..
2563          */
2564         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2565                 return -EFBIG;
2566
2567         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2568         return iov_iter_count(from);
2569 }
2570 EXPORT_SYMBOL(generic_write_checks);
2571
2572 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2573                                 loff_t pos, unsigned len, unsigned flags,
2574                                 struct page **pagep, void **fsdata)
2575 {
2576         const struct address_space_operations *aops = mapping->a_ops;
2577
2578         return aops->write_begin(file, mapping, pos, len, flags,
2579                                                         pagep, fsdata);
2580 }
2581 EXPORT_SYMBOL(pagecache_write_begin);
2582
2583 int pagecache_write_end(struct file *file, struct address_space *mapping,
2584                                 loff_t pos, unsigned len, unsigned copied,
2585                                 struct page *page, void *fsdata)
2586 {
2587         const struct address_space_operations *aops = mapping->a_ops;
2588
2589         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2590 }
2591 EXPORT_SYMBOL(pagecache_write_end);
2592
2593 ssize_t
2594 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2595 {
2596         struct file     *file = iocb->ki_filp;
2597         struct address_space *mapping = file->f_mapping;
2598         struct inode    *inode = mapping->host;
2599         loff_t          pos = iocb->ki_pos;
2600         ssize_t         written;
2601         size_t          write_len;
2602         pgoff_t         end;
2603         struct iov_iter data;
2604
2605         write_len = iov_iter_count(from);
2606         end = (pos + write_len - 1) >> PAGE_SHIFT;
2607
2608         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2609         if (written)
2610                 goto out;
2611
2612         /*
2613          * After a write we want buffered reads to be sure to go to disk to get
2614          * the new data.  We invalidate clean cached page from the region we're
2615          * about to write.  We do this *before* the write so that we can return
2616          * without clobbering -EIOCBQUEUED from ->direct_IO().
2617          */
2618         if (mapping->nrpages) {
2619                 written = invalidate_inode_pages2_range(mapping,
2620                                         pos >> PAGE_SHIFT, end);
2621                 /*
2622                  * If a page can not be invalidated, return 0 to fall back
2623                  * to buffered write.
2624                  */
2625                 if (written) {
2626                         if (written == -EBUSY)
2627                                 return 0;
2628                         goto out;
2629                 }
2630         }
2631
2632         data = *from;
2633         written = mapping->a_ops->direct_IO(iocb, &data);
2634
2635         /*
2636          * Finally, try again to invalidate clean pages which might have been
2637          * cached by non-direct readahead, or faulted in by get_user_pages()
2638          * if the source of the write was an mmap'ed region of the file
2639          * we're writing.  Either one is a pretty crazy thing to do,
2640          * so we don't support it 100%.  If this invalidation
2641          * fails, tough, the write still worked...
2642          */
2643         if (mapping->nrpages) {
2644                 invalidate_inode_pages2_range(mapping,
2645                                               pos >> PAGE_SHIFT, end);
2646         }
2647
2648         if (written > 0) {
2649                 pos += written;
2650                 iov_iter_advance(from, written);
2651                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2652                         i_size_write(inode, pos);
2653                         mark_inode_dirty(inode);
2654                 }
2655                 iocb->ki_pos = pos;
2656         }
2657 out:
2658         return written;
2659 }
2660 EXPORT_SYMBOL(generic_file_direct_write);
2661
2662 /*
2663  * Find or create a page at the given pagecache position. Return the locked
2664  * page. This function is specifically for buffered writes.
2665  */
2666 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2667                                         pgoff_t index, unsigned flags)
2668 {
2669         struct page *page;
2670         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2671
2672         if (flags & AOP_FLAG_NOFS)
2673                 fgp_flags |= FGP_NOFS;
2674
2675         page = pagecache_get_page(mapping, index, fgp_flags,
2676                         mapping_gfp_mask(mapping));
2677         if (page)
2678                 wait_for_stable_page(page);
2679
2680         return page;
2681 }
2682 EXPORT_SYMBOL(grab_cache_page_write_begin);
2683
2684 ssize_t generic_perform_write(struct file *file,
2685                                 struct iov_iter *i, loff_t pos)
2686 {
2687         struct address_space *mapping = file->f_mapping;
2688         const struct address_space_operations *a_ops = mapping->a_ops;
2689         long status = 0;
2690         ssize_t written = 0;
2691         unsigned int flags = 0;
2692
2693         /*
2694          * Copies from kernel address space cannot fail (NFSD is a big user).
2695          */
2696         if (!iter_is_iovec(i))
2697                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2698
2699         do {
2700                 struct page *page;
2701                 unsigned long offset;   /* Offset into pagecache page */
2702                 unsigned long bytes;    /* Bytes to write to page */
2703                 size_t copied;          /* Bytes copied from user */
2704                 void *fsdata;
2705
2706                 offset = (pos & (PAGE_SIZE - 1));
2707                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2708                                                 iov_iter_count(i));
2709
2710 again:
2711                 /*
2712                  * Bring in the user page that we will copy from _first_.
2713                  * Otherwise there's a nasty deadlock on copying from the
2714                  * same page as we're writing to, without it being marked
2715                  * up-to-date.
2716                  *
2717                  * Not only is this an optimisation, but it is also required
2718                  * to check that the address is actually valid, when atomic
2719                  * usercopies are used, below.
2720                  */
2721                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2722                         status = -EFAULT;
2723                         break;
2724                 }
2725
2726                 if (fatal_signal_pending(current)) {
2727                         status = -EINTR;
2728                         break;
2729                 }
2730
2731                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2732                                                 &page, &fsdata);
2733                 if (unlikely(status < 0))
2734                         break;
2735
2736                 if (mapping_writably_mapped(mapping))
2737                         flush_dcache_page(page);
2738
2739                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2740                 flush_dcache_page(page);
2741
2742                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2743                                                 page, fsdata);
2744                 if (unlikely(status < 0))
2745                         break;
2746                 copied = status;
2747
2748                 cond_resched();
2749
2750                 iov_iter_advance(i, copied);
2751                 if (unlikely(copied == 0)) {
2752                         /*
2753                          * If we were unable to copy any data at all, we must
2754                          * fall back to a single segment length write.
2755                          *
2756                          * If we didn't fallback here, we could livelock
2757                          * because not all segments in the iov can be copied at
2758                          * once without a pagefault.
2759                          */
2760                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2761                                                 iov_iter_single_seg_count(i));
2762                         goto again;
2763                 }
2764                 pos += copied;
2765                 written += copied;
2766
2767                 balance_dirty_pages_ratelimited(mapping);
2768         } while (iov_iter_count(i));
2769
2770         return written ? written : status;
2771 }
2772 EXPORT_SYMBOL(generic_perform_write);
2773
2774 /**
2775  * __generic_file_write_iter - write data to a file
2776  * @iocb:       IO state structure (file, offset, etc.)
2777  * @from:       iov_iter with data to write
2778  *
2779  * This function does all the work needed for actually writing data to a
2780  * file. It does all basic checks, removes SUID from the file, updates
2781  * modification times and calls proper subroutines depending on whether we
2782  * do direct IO or a standard buffered write.
2783  *
2784  * It expects i_mutex to be grabbed unless we work on a block device or similar
2785  * object which does not need locking at all.
2786  *
2787  * This function does *not* take care of syncing data in case of O_SYNC write.
2788  * A caller has to handle it. This is mainly due to the fact that we want to
2789  * avoid syncing under i_mutex.
2790  */
2791 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2792 {
2793         struct file *file = iocb->ki_filp;
2794         struct address_space * mapping = file->f_mapping;
2795         struct inode    *inode = mapping->host;
2796         ssize_t         written = 0;
2797         ssize_t         err;
2798         ssize_t         status;
2799
2800         /* We can write back this queue in page reclaim */
2801         current->backing_dev_info = inode_to_bdi(inode);
2802         err = file_remove_privs(file);
2803         if (err)
2804                 goto out;
2805
2806         err = file_update_time(file);
2807         if (err)
2808                 goto out;
2809
2810         if (iocb->ki_flags & IOCB_DIRECT) {
2811                 loff_t pos, endbyte;
2812
2813                 written = generic_file_direct_write(iocb, from);
2814                 /*
2815                  * If the write stopped short of completing, fall back to
2816                  * buffered writes.  Some filesystems do this for writes to
2817                  * holes, for example.  For DAX files, a buffered write will
2818                  * not succeed (even if it did, DAX does not handle dirty
2819                  * page-cache pages correctly).
2820                  */
2821                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2822                         goto out;
2823
2824                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2825                 /*
2826                  * If generic_perform_write() returned a synchronous error
2827                  * then we want to return the number of bytes which were
2828                  * direct-written, or the error code if that was zero.  Note
2829                  * that this differs from normal direct-io semantics, which
2830                  * will return -EFOO even if some bytes were written.
2831                  */
2832                 if (unlikely(status < 0)) {
2833                         err = status;
2834                         goto out;
2835                 }
2836                 /*
2837                  * We need to ensure that the page cache pages are written to
2838                  * disk and invalidated to preserve the expected O_DIRECT
2839                  * semantics.
2840                  */
2841                 endbyte = pos + status - 1;
2842                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2843                 if (err == 0) {
2844                         iocb->ki_pos = endbyte + 1;
2845                         written += status;
2846                         invalidate_mapping_pages(mapping,
2847                                                  pos >> PAGE_SHIFT,
2848                                                  endbyte >> PAGE_SHIFT);
2849                 } else {
2850                         /*
2851                          * We don't know how much we wrote, so just return
2852                          * the number of bytes which were direct-written
2853                          */
2854                 }
2855         } else {
2856                 written = generic_perform_write(file, from, iocb->ki_pos);
2857                 if (likely(written > 0))
2858                         iocb->ki_pos += written;
2859         }
2860 out:
2861         current->backing_dev_info = NULL;
2862         return written ? written : err;
2863 }
2864 EXPORT_SYMBOL(__generic_file_write_iter);
2865
2866 /**
2867  * generic_file_write_iter - write data to a file
2868  * @iocb:       IO state structure
2869  * @from:       iov_iter with data to write
2870  *
2871  * This is a wrapper around __generic_file_write_iter() to be used by most
2872  * filesystems. It takes care of syncing the file in case of O_SYNC file
2873  * and acquires i_mutex as needed.
2874  */
2875 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2876 {
2877         struct file *file = iocb->ki_filp;
2878         struct inode *inode = file->f_mapping->host;
2879         ssize_t ret;
2880
2881         inode_lock(inode);
2882         ret = generic_write_checks(iocb, from);
2883         if (ret > 0)
2884                 ret = __generic_file_write_iter(iocb, from);
2885         inode_unlock(inode);
2886
2887         if (ret > 0)
2888                 ret = generic_write_sync(iocb, ret);
2889         return ret;
2890 }
2891 EXPORT_SYMBOL(generic_file_write_iter);
2892
2893 /**
2894  * try_to_release_page() - release old fs-specific metadata on a page
2895  *
2896  * @page: the page which the kernel is trying to free
2897  * @gfp_mask: memory allocation flags (and I/O mode)
2898  *
2899  * The address_space is to try to release any data against the page
2900  * (presumably at page->private).  If the release was successful, return `1'.
2901  * Otherwise return zero.
2902  *
2903  * This may also be called if PG_fscache is set on a page, indicating that the
2904  * page is known to the local caching routines.
2905  *
2906  * The @gfp_mask argument specifies whether I/O may be performed to release
2907  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2908  *
2909  */
2910 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2911 {
2912         struct address_space * const mapping = page->mapping;
2913
2914         BUG_ON(!PageLocked(page));
2915         if (PageWriteback(page))
2916                 return 0;
2917
2918         if (mapping && mapping->a_ops->releasepage)
2919                 return mapping->a_ops->releasepage(page, gfp_mask);
2920         return try_to_free_buffers(page);
2921 }
2922
2923 EXPORT_SYMBOL(try_to_release_page);