]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/filemap.c
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (!PageHuge(page))
243                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244         if (PageSwapBacked(page)) {
245                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246                 if (PageTransHuge(page))
247                         __dec_node_page_state(page, NR_SHMEM_THPS);
248         } else {
249                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250         }
251
252         /*
253          * At this point page must be either written or cleaned by truncate.
254          * Dirty page here signals a bug and loss of unwritten data.
255          *
256          * This fixes dirty accounting after removing the page entirely but
257          * leaves PageDirty set: it has no effect for truncated page and
258          * anyway will be cleared before returning page into buddy allocator.
259          */
260         if (WARN_ON_ONCE(PageDirty(page)))
261                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274         struct address_space *mapping = page_mapping(page);
275         unsigned long flags;
276         void (*freepage)(struct page *);
277
278         BUG_ON(!PageLocked(page));
279
280         freepage = mapping->a_ops->freepage;
281
282         spin_lock_irqsave(&mapping->tree_lock, flags);
283         __delete_from_page_cache(page, NULL);
284         spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286         if (freepage)
287                 freepage(page);
288
289         if (PageTransHuge(page) && !PageHuge(page)) {
290                 page_ref_sub(page, HPAGE_PMD_NR);
291                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292         } else {
293                 put_page(page);
294         }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300         int ret = 0;
301         /* Check for outstanding write errors */
302         if (test_bit(AS_ENOSPC, &mapping->flags) &&
303             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_bit(AS_EIO, &mapping->flags) &&
306             test_and_clear_bit(AS_EIO, &mapping->flags))
307                 ret = -EIO;
308         return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 static int filemap_check_and_keep_errors(struct address_space *mapping)
313 {
314         /* Check for outstanding write errors */
315         if (test_bit(AS_EIO, &mapping->flags))
316                 return -EIO;
317         if (test_bit(AS_ENOSPC, &mapping->flags))
318                 return -ENOSPC;
319         return 0;
320 }
321
322 /**
323  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
324  * @mapping:    address space structure to write
325  * @start:      offset in bytes where the range starts
326  * @end:        offset in bytes where the range ends (inclusive)
327  * @sync_mode:  enable synchronous operation
328  *
329  * Start writeback against all of a mapping's dirty pages that lie
330  * within the byte offsets <start, end> inclusive.
331  *
332  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
333  * opposed to a regular memory cleansing writeback.  The difference between
334  * these two operations is that if a dirty page/buffer is encountered, it must
335  * be waited upon, and not just skipped over.
336  */
337 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338                                 loff_t end, int sync_mode)
339 {
340         int ret;
341         struct writeback_control wbc = {
342                 .sync_mode = sync_mode,
343                 .nr_to_write = LONG_MAX,
344                 .range_start = start,
345                 .range_end = end,
346         };
347
348         if (!mapping_cap_writeback_dirty(mapping))
349                 return 0;
350
351         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
352         ret = do_writepages(mapping, &wbc);
353         wbc_detach_inode(&wbc);
354         return ret;
355 }
356
357 static inline int __filemap_fdatawrite(struct address_space *mapping,
358         int sync_mode)
359 {
360         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
361 }
362
363 int filemap_fdatawrite(struct address_space *mapping)
364 {
365         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite);
368
369 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
370                                 loff_t end)
371 {
372         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373 }
374 EXPORT_SYMBOL(filemap_fdatawrite_range);
375
376 /**
377  * filemap_flush - mostly a non-blocking flush
378  * @mapping:    target address_space
379  *
380  * This is a mostly non-blocking flush.  Not suitable for data-integrity
381  * purposes - I/O may not be started against all dirty pages.
382  */
383 int filemap_flush(struct address_space *mapping)
384 {
385         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386 }
387 EXPORT_SYMBOL(filemap_flush);
388
389 static int __filemap_fdatawait_range(struct address_space *mapping,
390                                      loff_t start_byte, loff_t end_byte)
391 {
392         pgoff_t index = start_byte >> PAGE_SHIFT;
393         pgoff_t end = end_byte >> PAGE_SHIFT;
394         struct pagevec pvec;
395         int nr_pages;
396         int ret = 0;
397
398         if (end_byte < start_byte)
399                 goto out;
400
401         pagevec_init(&pvec, 0);
402         while ((index <= end) &&
403                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
404                         PAGECACHE_TAG_WRITEBACK,
405                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
406                 unsigned i;
407
408                 for (i = 0; i < nr_pages; i++) {
409                         struct page *page = pvec.pages[i];
410
411                         /* until radix tree lookup accepts end_index */
412                         if (page->index > end)
413                                 continue;
414
415                         wait_on_page_writeback(page);
416                         if (TestClearPageError(page))
417                                 ret = -EIO;
418                 }
419                 pagevec_release(&pvec);
420                 cond_resched();
421         }
422 out:
423         return ret;
424 }
425
426 /**
427  * filemap_fdatawait_range - wait for writeback to complete
428  * @mapping:            address space structure to wait for
429  * @start_byte:         offset in bytes where the range starts
430  * @end_byte:           offset in bytes where the range ends (inclusive)
431  *
432  * Walk the list of under-writeback pages of the given address space
433  * in the given range and wait for all of them.  Check error status of
434  * the address space and return it.
435  *
436  * Since the error status of the address space is cleared by this function,
437  * callers are responsible for checking the return value and handling and/or
438  * reporting the error.
439  */
440 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
441                             loff_t end_byte)
442 {
443         int ret, ret2;
444
445         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
446         ret2 = filemap_check_errors(mapping);
447         if (!ret)
448                 ret = ret2;
449
450         return ret;
451 }
452 EXPORT_SYMBOL(filemap_fdatawait_range);
453
454 /**
455  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
456  * @mapping: address space structure to wait for
457  *
458  * Walk the list of under-writeback pages of the given address space
459  * and wait for all of them.  Unlike filemap_fdatawait(), this function
460  * does not clear error status of the address space.
461  *
462  * Use this function if callers don't handle errors themselves.  Expected
463  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
464  * fsfreeze(8)
465  */
466 int filemap_fdatawait_keep_errors(struct address_space *mapping)
467 {
468         loff_t i_size = i_size_read(mapping->host);
469
470         if (i_size == 0)
471                 return 0;
472
473         __filemap_fdatawait_range(mapping, 0, i_size - 1);
474         return filemap_check_and_keep_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
477
478 /**
479  * filemap_fdatawait - wait for all under-writeback pages to complete
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Check error status of the address space
484  * and return it.
485  *
486  * Since the error status of the address space is cleared by this function,
487  * callers are responsible for checking the return value and handling and/or
488  * reporting the error.
489  */
490 int filemap_fdatawait(struct address_space *mapping)
491 {
492         loff_t i_size = i_size_read(mapping->host);
493
494         if (i_size == 0)
495                 return 0;
496
497         return filemap_fdatawait_range(mapping, 0, i_size - 1);
498 }
499 EXPORT_SYMBOL(filemap_fdatawait);
500
501 int filemap_write_and_wait(struct address_space *mapping)
502 {
503         int err = 0;
504
505         if ((!dax_mapping(mapping) && mapping->nrpages) ||
506             (dax_mapping(mapping) && mapping->nrexceptional)) {
507                 err = filemap_fdatawrite(mapping);
508                 /*
509                  * Even if the above returned error, the pages may be
510                  * written partially (e.g. -ENOSPC), so we wait for it.
511                  * But the -EIO is special case, it may indicate the worst
512                  * thing (e.g. bug) happened, so we avoid waiting for it.
513                  */
514                 if (err != -EIO) {
515                         int err2 = filemap_fdatawait(mapping);
516                         if (!err)
517                                 err = err2;
518                 } else {
519                         /* Clear any previously stored errors */
520                         filemap_check_errors(mapping);
521                 }
522         } else {
523                 err = filemap_check_errors(mapping);
524         }
525         return err;
526 }
527 EXPORT_SYMBOL(filemap_write_and_wait);
528
529 /**
530  * filemap_write_and_wait_range - write out & wait on a file range
531  * @mapping:    the address_space for the pages
532  * @lstart:     offset in bytes where the range starts
533  * @lend:       offset in bytes where the range ends (inclusive)
534  *
535  * Write out and wait upon file offsets lstart->lend, inclusive.
536  *
537  * Note that @lend is inclusive (describes the last byte to be written) so
538  * that this function can be used to write to the very end-of-file (end = -1).
539  */
540 int filemap_write_and_wait_range(struct address_space *mapping,
541                                  loff_t lstart, loff_t lend)
542 {
543         int err = 0;
544
545         if ((!dax_mapping(mapping) && mapping->nrpages) ||
546             (dax_mapping(mapping) && mapping->nrexceptional)) {
547                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
548                                                  WB_SYNC_ALL);
549                 /* See comment of filemap_write_and_wait() */
550                 if (err != -EIO) {
551                         int err2 = filemap_fdatawait_range(mapping,
552                                                 lstart, lend);
553                         if (!err)
554                                 err = err2;
555                 } else {
556                         /* Clear any previously stored errors */
557                         filemap_check_errors(mapping);
558                 }
559         } else {
560                 err = filemap_check_errors(mapping);
561         }
562         return err;
563 }
564 EXPORT_SYMBOL(filemap_write_and_wait_range);
565
566 /**
567  * replace_page_cache_page - replace a pagecache page with a new one
568  * @old:        page to be replaced
569  * @new:        page to replace with
570  * @gfp_mask:   allocation mode
571  *
572  * This function replaces a page in the pagecache with a new one.  On
573  * success it acquires the pagecache reference for the new page and
574  * drops it for the old page.  Both the old and new pages must be
575  * locked.  This function does not add the new page to the LRU, the
576  * caller must do that.
577  *
578  * The remove + add is atomic.  The only way this function can fail is
579  * memory allocation failure.
580  */
581 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
582 {
583         int error;
584
585         VM_BUG_ON_PAGE(!PageLocked(old), old);
586         VM_BUG_ON_PAGE(!PageLocked(new), new);
587         VM_BUG_ON_PAGE(new->mapping, new);
588
589         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
590         if (!error) {
591                 struct address_space *mapping = old->mapping;
592                 void (*freepage)(struct page *);
593                 unsigned long flags;
594
595                 pgoff_t offset = old->index;
596                 freepage = mapping->a_ops->freepage;
597
598                 get_page(new);
599                 new->mapping = mapping;
600                 new->index = offset;
601
602                 spin_lock_irqsave(&mapping->tree_lock, flags);
603                 __delete_from_page_cache(old, NULL);
604                 error = page_cache_tree_insert(mapping, new, NULL);
605                 BUG_ON(error);
606
607                 /*
608                  * hugetlb pages do not participate in page cache accounting.
609                  */
610                 if (!PageHuge(new))
611                         __inc_node_page_state(new, NR_FILE_PAGES);
612                 if (PageSwapBacked(new))
613                         __inc_node_page_state(new, NR_SHMEM);
614                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
615                 mem_cgroup_migrate(old, new);
616                 radix_tree_preload_end();
617                 if (freepage)
618                         freepage(old);
619                 put_page(old);
620         }
621
622         return error;
623 }
624 EXPORT_SYMBOL_GPL(replace_page_cache_page);
625
626 static int __add_to_page_cache_locked(struct page *page,
627                                       struct address_space *mapping,
628                                       pgoff_t offset, gfp_t gfp_mask,
629                                       void **shadowp)
630 {
631         int huge = PageHuge(page);
632         struct mem_cgroup *memcg;
633         int error;
634
635         VM_BUG_ON_PAGE(!PageLocked(page), page);
636         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
637
638         if (!huge) {
639                 error = mem_cgroup_try_charge(page, current->mm,
640                                               gfp_mask, &memcg, false);
641                 if (error)
642                         return error;
643         }
644
645         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
646         if (error) {
647                 if (!huge)
648                         mem_cgroup_cancel_charge(page, memcg, false);
649                 return error;
650         }
651
652         get_page(page);
653         page->mapping = mapping;
654         page->index = offset;
655
656         spin_lock_irq(&mapping->tree_lock);
657         error = page_cache_tree_insert(mapping, page, shadowp);
658         radix_tree_preload_end();
659         if (unlikely(error))
660                 goto err_insert;
661
662         /* hugetlb pages do not participate in page cache accounting. */
663         if (!huge)
664                 __inc_node_page_state(page, NR_FILE_PAGES);
665         spin_unlock_irq(&mapping->tree_lock);
666         if (!huge)
667                 mem_cgroup_commit_charge(page, memcg, false, false);
668         trace_mm_filemap_add_to_page_cache(page);
669         return 0;
670 err_insert:
671         page->mapping = NULL;
672         /* Leave page->index set: truncation relies upon it */
673         spin_unlock_irq(&mapping->tree_lock);
674         if (!huge)
675                 mem_cgroup_cancel_charge(page, memcg, false);
676         put_page(page);
677         return error;
678 }
679
680 /**
681  * add_to_page_cache_locked - add a locked page to the pagecache
682  * @page:       page to add
683  * @mapping:    the page's address_space
684  * @offset:     page index
685  * @gfp_mask:   page allocation mode
686  *
687  * This function is used to add a page to the pagecache. It must be locked.
688  * This function does not add the page to the LRU.  The caller must do that.
689  */
690 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
691                 pgoff_t offset, gfp_t gfp_mask)
692 {
693         return __add_to_page_cache_locked(page, mapping, offset,
694                                           gfp_mask, NULL);
695 }
696 EXPORT_SYMBOL(add_to_page_cache_locked);
697
698 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
699                                 pgoff_t offset, gfp_t gfp_mask)
700 {
701         void *shadow = NULL;
702         int ret;
703
704         __SetPageLocked(page);
705         ret = __add_to_page_cache_locked(page, mapping, offset,
706                                          gfp_mask, &shadow);
707         if (unlikely(ret))
708                 __ClearPageLocked(page);
709         else {
710                 /*
711                  * The page might have been evicted from cache only
712                  * recently, in which case it should be activated like
713                  * any other repeatedly accessed page.
714                  * The exception is pages getting rewritten; evicting other
715                  * data from the working set, only to cache data that will
716                  * get overwritten with something else, is a waste of memory.
717                  */
718                 if (!(gfp_mask & __GFP_WRITE) &&
719                     shadow && workingset_refault(shadow)) {
720                         SetPageActive(page);
721                         workingset_activation(page);
722                 } else
723                         ClearPageActive(page);
724                 lru_cache_add(page);
725         }
726         return ret;
727 }
728 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
729
730 #ifdef CONFIG_NUMA
731 struct page *__page_cache_alloc(gfp_t gfp)
732 {
733         int n;
734         struct page *page;
735
736         if (cpuset_do_page_mem_spread()) {
737                 unsigned int cpuset_mems_cookie;
738                 do {
739                         cpuset_mems_cookie = read_mems_allowed_begin();
740                         n = cpuset_mem_spread_node();
741                         page = __alloc_pages_node(n, gfp, 0);
742                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
743
744                 return page;
745         }
746         return alloc_pages(gfp, 0);
747 }
748 EXPORT_SYMBOL(__page_cache_alloc);
749 #endif
750
751 /*
752  * In order to wait for pages to become available there must be
753  * waitqueues associated with pages. By using a hash table of
754  * waitqueues where the bucket discipline is to maintain all
755  * waiters on the same queue and wake all when any of the pages
756  * become available, and for the woken contexts to check to be
757  * sure the appropriate page became available, this saves space
758  * at a cost of "thundering herd" phenomena during rare hash
759  * collisions.
760  */
761 #define PAGE_WAIT_TABLE_BITS 8
762 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
763 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
764
765 static wait_queue_head_t *page_waitqueue(struct page *page)
766 {
767         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
768 }
769
770 void __init pagecache_init(void)
771 {
772         int i;
773
774         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
775                 init_waitqueue_head(&page_wait_table[i]);
776
777         page_writeback_init();
778 }
779
780 struct wait_page_key {
781         struct page *page;
782         int bit_nr;
783         int page_match;
784 };
785
786 struct wait_page_queue {
787         struct page *page;
788         int bit_nr;
789         wait_queue_t wait;
790 };
791
792 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
793 {
794         struct wait_page_key *key = arg;
795         struct wait_page_queue *wait_page
796                 = container_of(wait, struct wait_page_queue, wait);
797
798         if (wait_page->page != key->page)
799                return 0;
800         key->page_match = 1;
801
802         if (wait_page->bit_nr != key->bit_nr)
803                 return 0;
804         if (test_bit(key->bit_nr, &key->page->flags))
805                 return 0;
806
807         return autoremove_wake_function(wait, mode, sync, key);
808 }
809
810 static void wake_up_page_bit(struct page *page, int bit_nr)
811 {
812         wait_queue_head_t *q = page_waitqueue(page);
813         struct wait_page_key key;
814         unsigned long flags;
815
816         key.page = page;
817         key.bit_nr = bit_nr;
818         key.page_match = 0;
819
820         spin_lock_irqsave(&q->lock, flags);
821         __wake_up_locked_key(q, TASK_NORMAL, &key);
822         /*
823          * It is possible for other pages to have collided on the waitqueue
824          * hash, so in that case check for a page match. That prevents a long-
825          * term waiter
826          *
827          * It is still possible to miss a case here, when we woke page waiters
828          * and removed them from the waitqueue, but there are still other
829          * page waiters.
830          */
831         if (!waitqueue_active(q) || !key.page_match) {
832                 ClearPageWaiters(page);
833                 /*
834                  * It's possible to miss clearing Waiters here, when we woke
835                  * our page waiters, but the hashed waitqueue has waiters for
836                  * other pages on it.
837                  *
838                  * That's okay, it's a rare case. The next waker will clear it.
839                  */
840         }
841         spin_unlock_irqrestore(&q->lock, flags);
842 }
843
844 static void wake_up_page(struct page *page, int bit)
845 {
846         if (!PageWaiters(page))
847                 return;
848         wake_up_page_bit(page, bit);
849 }
850
851 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
852                 struct page *page, int bit_nr, int state, bool lock)
853 {
854         struct wait_page_queue wait_page;
855         wait_queue_t *wait = &wait_page.wait;
856         int ret = 0;
857
858         init_wait(wait);
859         wait->func = wake_page_function;
860         wait_page.page = page;
861         wait_page.bit_nr = bit_nr;
862
863         for (;;) {
864                 spin_lock_irq(&q->lock);
865
866                 if (likely(list_empty(&wait->task_list))) {
867                         if (lock)
868                                 __add_wait_queue_tail_exclusive(q, wait);
869                         else
870                                 __add_wait_queue(q, wait);
871                         SetPageWaiters(page);
872                 }
873
874                 set_current_state(state);
875
876                 spin_unlock_irq(&q->lock);
877
878                 if (likely(test_bit(bit_nr, &page->flags))) {
879                         io_schedule();
880                         if (unlikely(signal_pending_state(state, current))) {
881                                 ret = -EINTR;
882                                 break;
883                         }
884                 }
885
886                 if (lock) {
887                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
888                                 break;
889                 } else {
890                         if (!test_bit(bit_nr, &page->flags))
891                                 break;
892                 }
893         }
894
895         finish_wait(q, wait);
896
897         /*
898          * A signal could leave PageWaiters set. Clearing it here if
899          * !waitqueue_active would be possible (by open-coding finish_wait),
900          * but still fail to catch it in the case of wait hash collision. We
901          * already can fail to clear wait hash collision cases, so don't
902          * bother with signals either.
903          */
904
905         return ret;
906 }
907
908 void wait_on_page_bit(struct page *page, int bit_nr)
909 {
910         wait_queue_head_t *q = page_waitqueue(page);
911         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
912 }
913 EXPORT_SYMBOL(wait_on_page_bit);
914
915 int wait_on_page_bit_killable(struct page *page, int bit_nr)
916 {
917         wait_queue_head_t *q = page_waitqueue(page);
918         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
919 }
920
921 /**
922  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
923  * @page: Page defining the wait queue of interest
924  * @waiter: Waiter to add to the queue
925  *
926  * Add an arbitrary @waiter to the wait queue for the nominated @page.
927  */
928 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
929 {
930         wait_queue_head_t *q = page_waitqueue(page);
931         unsigned long flags;
932
933         spin_lock_irqsave(&q->lock, flags);
934         __add_wait_queue(q, waiter);
935         SetPageWaiters(page);
936         spin_unlock_irqrestore(&q->lock, flags);
937 }
938 EXPORT_SYMBOL_GPL(add_page_wait_queue);
939
940 #ifndef clear_bit_unlock_is_negative_byte
941
942 /*
943  * PG_waiters is the high bit in the same byte as PG_lock.
944  *
945  * On x86 (and on many other architectures), we can clear PG_lock and
946  * test the sign bit at the same time. But if the architecture does
947  * not support that special operation, we just do this all by hand
948  * instead.
949  *
950  * The read of PG_waiters has to be after (or concurrently with) PG_locked
951  * being cleared, but a memory barrier should be unneccssary since it is
952  * in the same byte as PG_locked.
953  */
954 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
955 {
956         clear_bit_unlock(nr, mem);
957         /* smp_mb__after_atomic(); */
958         return test_bit(PG_waiters, mem);
959 }
960
961 #endif
962
963 /**
964  * unlock_page - unlock a locked page
965  * @page: the page
966  *
967  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
968  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
969  * mechanism between PageLocked pages and PageWriteback pages is shared.
970  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
971  *
972  * Note that this depends on PG_waiters being the sign bit in the byte
973  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
974  * clear the PG_locked bit and test PG_waiters at the same time fairly
975  * portably (architectures that do LL/SC can test any bit, while x86 can
976  * test the sign bit).
977  */
978 void unlock_page(struct page *page)
979 {
980         BUILD_BUG_ON(PG_waiters != 7);
981         page = compound_head(page);
982         VM_BUG_ON_PAGE(!PageLocked(page), page);
983         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
984                 wake_up_page_bit(page, PG_locked);
985 }
986 EXPORT_SYMBOL(unlock_page);
987
988 /**
989  * end_page_writeback - end writeback against a page
990  * @page: the page
991  */
992 void end_page_writeback(struct page *page)
993 {
994         /*
995          * TestClearPageReclaim could be used here but it is an atomic
996          * operation and overkill in this particular case. Failing to
997          * shuffle a page marked for immediate reclaim is too mild to
998          * justify taking an atomic operation penalty at the end of
999          * ever page writeback.
1000          */
1001         if (PageReclaim(page)) {
1002                 ClearPageReclaim(page);
1003                 rotate_reclaimable_page(page);
1004         }
1005
1006         if (!test_clear_page_writeback(page))
1007                 BUG();
1008
1009         smp_mb__after_atomic();
1010         wake_up_page(page, PG_writeback);
1011 }
1012 EXPORT_SYMBOL(end_page_writeback);
1013
1014 /*
1015  * After completing I/O on a page, call this routine to update the page
1016  * flags appropriately
1017  */
1018 void page_endio(struct page *page, bool is_write, int err)
1019 {
1020         if (!is_write) {
1021                 if (!err) {
1022                         SetPageUptodate(page);
1023                 } else {
1024                         ClearPageUptodate(page);
1025                         SetPageError(page);
1026                 }
1027                 unlock_page(page);
1028         } else {
1029                 if (err) {
1030                         struct address_space *mapping;
1031
1032                         SetPageError(page);
1033                         mapping = page_mapping(page);
1034                         if (mapping)
1035                                 mapping_set_error(mapping, err);
1036                 }
1037                 end_page_writeback(page);
1038         }
1039 }
1040 EXPORT_SYMBOL_GPL(page_endio);
1041
1042 /**
1043  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1044  * @__page: the page to lock
1045  */
1046 void __lock_page(struct page *__page)
1047 {
1048         struct page *page = compound_head(__page);
1049         wait_queue_head_t *q = page_waitqueue(page);
1050         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1051 }
1052 EXPORT_SYMBOL(__lock_page);
1053
1054 int __lock_page_killable(struct page *__page)
1055 {
1056         struct page *page = compound_head(__page);
1057         wait_queue_head_t *q = page_waitqueue(page);
1058         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1059 }
1060 EXPORT_SYMBOL_GPL(__lock_page_killable);
1061
1062 /*
1063  * Return values:
1064  * 1 - page is locked; mmap_sem is still held.
1065  * 0 - page is not locked.
1066  *     mmap_sem has been released (up_read()), unless flags had both
1067  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1068  *     which case mmap_sem is still held.
1069  *
1070  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1071  * with the page locked and the mmap_sem unperturbed.
1072  */
1073 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1074                          unsigned int flags)
1075 {
1076         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1077                 /*
1078                  * CAUTION! In this case, mmap_sem is not released
1079                  * even though return 0.
1080                  */
1081                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1082                         return 0;
1083
1084                 up_read(&mm->mmap_sem);
1085                 if (flags & FAULT_FLAG_KILLABLE)
1086                         wait_on_page_locked_killable(page);
1087                 else
1088                         wait_on_page_locked(page);
1089                 return 0;
1090         } else {
1091                 if (flags & FAULT_FLAG_KILLABLE) {
1092                         int ret;
1093
1094                         ret = __lock_page_killable(page);
1095                         if (ret) {
1096                                 up_read(&mm->mmap_sem);
1097                                 return 0;
1098                         }
1099                 } else
1100                         __lock_page(page);
1101                 return 1;
1102         }
1103 }
1104
1105 /**
1106  * page_cache_next_hole - find the next hole (not-present entry)
1107  * @mapping: mapping
1108  * @index: index
1109  * @max_scan: maximum range to search
1110  *
1111  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1112  * lowest indexed hole.
1113  *
1114  * Returns: the index of the hole if found, otherwise returns an index
1115  * outside of the set specified (in which case 'return - index >=
1116  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1117  * be returned.
1118  *
1119  * page_cache_next_hole may be called under rcu_read_lock. However,
1120  * like radix_tree_gang_lookup, this will not atomically search a
1121  * snapshot of the tree at a single point in time. For example, if a
1122  * hole is created at index 5, then subsequently a hole is created at
1123  * index 10, page_cache_next_hole covering both indexes may return 10
1124  * if called under rcu_read_lock.
1125  */
1126 pgoff_t page_cache_next_hole(struct address_space *mapping,
1127                              pgoff_t index, unsigned long max_scan)
1128 {
1129         unsigned long i;
1130
1131         for (i = 0; i < max_scan; i++) {
1132                 struct page *page;
1133
1134                 page = radix_tree_lookup(&mapping->page_tree, index);
1135                 if (!page || radix_tree_exceptional_entry(page))
1136                         break;
1137                 index++;
1138                 if (index == 0)
1139                         break;
1140         }
1141
1142         return index;
1143 }
1144 EXPORT_SYMBOL(page_cache_next_hole);
1145
1146 /**
1147  * page_cache_prev_hole - find the prev hole (not-present entry)
1148  * @mapping: mapping
1149  * @index: index
1150  * @max_scan: maximum range to search
1151  *
1152  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1153  * the first hole.
1154  *
1155  * Returns: the index of the hole if found, otherwise returns an index
1156  * outside of the set specified (in which case 'index - return >=
1157  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1158  * will be returned.
1159  *
1160  * page_cache_prev_hole may be called under rcu_read_lock. However,
1161  * like radix_tree_gang_lookup, this will not atomically search a
1162  * snapshot of the tree at a single point in time. For example, if a
1163  * hole is created at index 10, then subsequently a hole is created at
1164  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1165  * called under rcu_read_lock.
1166  */
1167 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1168                              pgoff_t index, unsigned long max_scan)
1169 {
1170         unsigned long i;
1171
1172         for (i = 0; i < max_scan; i++) {
1173                 struct page *page;
1174
1175                 page = radix_tree_lookup(&mapping->page_tree, index);
1176                 if (!page || radix_tree_exceptional_entry(page))
1177                         break;
1178                 index--;
1179                 if (index == ULONG_MAX)
1180                         break;
1181         }
1182
1183         return index;
1184 }
1185 EXPORT_SYMBOL(page_cache_prev_hole);
1186
1187 /**
1188  * find_get_entry - find and get a page cache entry
1189  * @mapping: the address_space to search
1190  * @offset: the page cache index
1191  *
1192  * Looks up the page cache slot at @mapping & @offset.  If there is a
1193  * page cache page, it is returned with an increased refcount.
1194  *
1195  * If the slot holds a shadow entry of a previously evicted page, or a
1196  * swap entry from shmem/tmpfs, it is returned.
1197  *
1198  * Otherwise, %NULL is returned.
1199  */
1200 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1201 {
1202         void **pagep;
1203         struct page *head, *page;
1204
1205         rcu_read_lock();
1206 repeat:
1207         page = NULL;
1208         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1209         if (pagep) {
1210                 page = radix_tree_deref_slot(pagep);
1211                 if (unlikely(!page))
1212                         goto out;
1213                 if (radix_tree_exception(page)) {
1214                         if (radix_tree_deref_retry(page))
1215                                 goto repeat;
1216                         /*
1217                          * A shadow entry of a recently evicted page,
1218                          * or a swap entry from shmem/tmpfs.  Return
1219                          * it without attempting to raise page count.
1220                          */
1221                         goto out;
1222                 }
1223
1224                 head = compound_head(page);
1225                 if (!page_cache_get_speculative(head))
1226                         goto repeat;
1227
1228                 /* The page was split under us? */
1229                 if (compound_head(page) != head) {
1230                         put_page(head);
1231                         goto repeat;
1232                 }
1233
1234                 /*
1235                  * Has the page moved?
1236                  * This is part of the lockless pagecache protocol. See
1237                  * include/linux/pagemap.h for details.
1238                  */
1239                 if (unlikely(page != *pagep)) {
1240                         put_page(head);
1241                         goto repeat;
1242                 }
1243         }
1244 out:
1245         rcu_read_unlock();
1246
1247         return page;
1248 }
1249 EXPORT_SYMBOL(find_get_entry);
1250
1251 /**
1252  * find_lock_entry - locate, pin and lock a page cache entry
1253  * @mapping: the address_space to search
1254  * @offset: the page cache index
1255  *
1256  * Looks up the page cache slot at @mapping & @offset.  If there is a
1257  * page cache page, it is returned locked and with an increased
1258  * refcount.
1259  *
1260  * If the slot holds a shadow entry of a previously evicted page, or a
1261  * swap entry from shmem/tmpfs, it is returned.
1262  *
1263  * Otherwise, %NULL is returned.
1264  *
1265  * find_lock_entry() may sleep.
1266  */
1267 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1268 {
1269         struct page *page;
1270
1271 repeat:
1272         page = find_get_entry(mapping, offset);
1273         if (page && !radix_tree_exception(page)) {
1274                 lock_page(page);
1275                 /* Has the page been truncated? */
1276                 if (unlikely(page_mapping(page) != mapping)) {
1277                         unlock_page(page);
1278                         put_page(page);
1279                         goto repeat;
1280                 }
1281                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1282         }
1283         return page;
1284 }
1285 EXPORT_SYMBOL(find_lock_entry);
1286
1287 /**
1288  * pagecache_get_page - find and get a page reference
1289  * @mapping: the address_space to search
1290  * @offset: the page index
1291  * @fgp_flags: PCG flags
1292  * @gfp_mask: gfp mask to use for the page cache data page allocation
1293  *
1294  * Looks up the page cache slot at @mapping & @offset.
1295  *
1296  * PCG flags modify how the page is returned.
1297  *
1298  * @fgp_flags can be:
1299  *
1300  * - FGP_ACCESSED: the page will be marked accessed
1301  * - FGP_LOCK: Page is return locked
1302  * - FGP_CREAT: If page is not present then a new page is allocated using
1303  *   @gfp_mask and added to the page cache and the VM's LRU
1304  *   list. The page is returned locked and with an increased
1305  *   refcount. Otherwise, NULL is returned.
1306  *
1307  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1308  * if the GFP flags specified for FGP_CREAT are atomic.
1309  *
1310  * If there is a page cache page, it is returned with an increased refcount.
1311  */
1312 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1313         int fgp_flags, gfp_t gfp_mask)
1314 {
1315         struct page *page;
1316
1317 repeat:
1318         page = find_get_entry(mapping, offset);
1319         if (radix_tree_exceptional_entry(page))
1320                 page = NULL;
1321         if (!page)
1322                 goto no_page;
1323
1324         if (fgp_flags & FGP_LOCK) {
1325                 if (fgp_flags & FGP_NOWAIT) {
1326                         if (!trylock_page(page)) {
1327                                 put_page(page);
1328                                 return NULL;
1329                         }
1330                 } else {
1331                         lock_page(page);
1332                 }
1333
1334                 /* Has the page been truncated? */
1335                 if (unlikely(page->mapping != mapping)) {
1336                         unlock_page(page);
1337                         put_page(page);
1338                         goto repeat;
1339                 }
1340                 VM_BUG_ON_PAGE(page->index != offset, page);
1341         }
1342
1343         if (page && (fgp_flags & FGP_ACCESSED))
1344                 mark_page_accessed(page);
1345
1346 no_page:
1347         if (!page && (fgp_flags & FGP_CREAT)) {
1348                 int err;
1349                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1350                         gfp_mask |= __GFP_WRITE;
1351                 if (fgp_flags & FGP_NOFS)
1352                         gfp_mask &= ~__GFP_FS;
1353
1354                 page = __page_cache_alloc(gfp_mask);
1355                 if (!page)
1356                         return NULL;
1357
1358                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1359                         fgp_flags |= FGP_LOCK;
1360
1361                 /* Init accessed so avoid atomic mark_page_accessed later */
1362                 if (fgp_flags & FGP_ACCESSED)
1363                         __SetPageReferenced(page);
1364
1365                 err = add_to_page_cache_lru(page, mapping, offset,
1366                                 gfp_mask & GFP_RECLAIM_MASK);
1367                 if (unlikely(err)) {
1368                         put_page(page);
1369                         page = NULL;
1370                         if (err == -EEXIST)
1371                                 goto repeat;
1372                 }
1373         }
1374
1375         return page;
1376 }
1377 EXPORT_SYMBOL(pagecache_get_page);
1378
1379 /**
1380  * find_get_entries - gang pagecache lookup
1381  * @mapping:    The address_space to search
1382  * @start:      The starting page cache index
1383  * @nr_entries: The maximum number of entries
1384  * @entries:    Where the resulting entries are placed
1385  * @indices:    The cache indices corresponding to the entries in @entries
1386  *
1387  * find_get_entries() will search for and return a group of up to
1388  * @nr_entries entries in the mapping.  The entries are placed at
1389  * @entries.  find_get_entries() takes a reference against any actual
1390  * pages it returns.
1391  *
1392  * The search returns a group of mapping-contiguous page cache entries
1393  * with ascending indexes.  There may be holes in the indices due to
1394  * not-present pages.
1395  *
1396  * Any shadow entries of evicted pages, or swap entries from
1397  * shmem/tmpfs, are included in the returned array.
1398  *
1399  * find_get_entries() returns the number of pages and shadow entries
1400  * which were found.
1401  */
1402 unsigned find_get_entries(struct address_space *mapping,
1403                           pgoff_t start, unsigned int nr_entries,
1404                           struct page **entries, pgoff_t *indices)
1405 {
1406         void **slot;
1407         unsigned int ret = 0;
1408         struct radix_tree_iter iter;
1409
1410         if (!nr_entries)
1411                 return 0;
1412
1413         rcu_read_lock();
1414         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1415                 struct page *head, *page;
1416 repeat:
1417                 page = radix_tree_deref_slot(slot);
1418                 if (unlikely(!page))
1419                         continue;
1420                 if (radix_tree_exception(page)) {
1421                         if (radix_tree_deref_retry(page)) {
1422                                 slot = radix_tree_iter_retry(&iter);
1423                                 continue;
1424                         }
1425                         /*
1426                          * A shadow entry of a recently evicted page, a swap
1427                          * entry from shmem/tmpfs or a DAX entry.  Return it
1428                          * without attempting to raise page count.
1429                          */
1430                         goto export;
1431                 }
1432
1433                 head = compound_head(page);
1434                 if (!page_cache_get_speculative(head))
1435                         goto repeat;
1436
1437                 /* The page was split under us? */
1438                 if (compound_head(page) != head) {
1439                         put_page(head);
1440                         goto repeat;
1441                 }
1442
1443                 /* Has the page moved? */
1444                 if (unlikely(page != *slot)) {
1445                         put_page(head);
1446                         goto repeat;
1447                 }
1448 export:
1449                 indices[ret] = iter.index;
1450                 entries[ret] = page;
1451                 if (++ret == nr_entries)
1452                         break;
1453         }
1454         rcu_read_unlock();
1455         return ret;
1456 }
1457
1458 /**
1459  * find_get_pages - gang pagecache lookup
1460  * @mapping:    The address_space to search
1461  * @start:      The starting page index
1462  * @nr_pages:   The maximum number of pages
1463  * @pages:      Where the resulting pages are placed
1464  *
1465  * find_get_pages() will search for and return a group of up to
1466  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1467  * find_get_pages() takes a reference against the returned pages.
1468  *
1469  * The search returns a group of mapping-contiguous pages with ascending
1470  * indexes.  There may be holes in the indices due to not-present pages.
1471  *
1472  * find_get_pages() returns the number of pages which were found.
1473  */
1474 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1475                             unsigned int nr_pages, struct page **pages)
1476 {
1477         struct radix_tree_iter iter;
1478         void **slot;
1479         unsigned ret = 0;
1480
1481         if (unlikely(!nr_pages))
1482                 return 0;
1483
1484         rcu_read_lock();
1485         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1486                 struct page *head, *page;
1487 repeat:
1488                 page = radix_tree_deref_slot(slot);
1489                 if (unlikely(!page))
1490                         continue;
1491
1492                 if (radix_tree_exception(page)) {
1493                         if (radix_tree_deref_retry(page)) {
1494                                 slot = radix_tree_iter_retry(&iter);
1495                                 continue;
1496                         }
1497                         /*
1498                          * A shadow entry of a recently evicted page,
1499                          * or a swap entry from shmem/tmpfs.  Skip
1500                          * over it.
1501                          */
1502                         continue;
1503                 }
1504
1505                 head = compound_head(page);
1506                 if (!page_cache_get_speculative(head))
1507                         goto repeat;
1508
1509                 /* The page was split under us? */
1510                 if (compound_head(page) != head) {
1511                         put_page(head);
1512                         goto repeat;
1513                 }
1514
1515                 /* Has the page moved? */
1516                 if (unlikely(page != *slot)) {
1517                         put_page(head);
1518                         goto repeat;
1519                 }
1520
1521                 pages[ret] = page;
1522                 if (++ret == nr_pages)
1523                         break;
1524         }
1525
1526         rcu_read_unlock();
1527         return ret;
1528 }
1529
1530 /**
1531  * find_get_pages_contig - gang contiguous pagecache lookup
1532  * @mapping:    The address_space to search
1533  * @index:      The starting page index
1534  * @nr_pages:   The maximum number of pages
1535  * @pages:      Where the resulting pages are placed
1536  *
1537  * find_get_pages_contig() works exactly like find_get_pages(), except
1538  * that the returned number of pages are guaranteed to be contiguous.
1539  *
1540  * find_get_pages_contig() returns the number of pages which were found.
1541  */
1542 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1543                                unsigned int nr_pages, struct page **pages)
1544 {
1545         struct radix_tree_iter iter;
1546         void **slot;
1547         unsigned int ret = 0;
1548
1549         if (unlikely(!nr_pages))
1550                 return 0;
1551
1552         rcu_read_lock();
1553         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1554                 struct page *head, *page;
1555 repeat:
1556                 page = radix_tree_deref_slot(slot);
1557                 /* The hole, there no reason to continue */
1558                 if (unlikely(!page))
1559                         break;
1560
1561                 if (radix_tree_exception(page)) {
1562                         if (radix_tree_deref_retry(page)) {
1563                                 slot = radix_tree_iter_retry(&iter);
1564                                 continue;
1565                         }
1566                         /*
1567                          * A shadow entry of a recently evicted page,
1568                          * or a swap entry from shmem/tmpfs.  Stop
1569                          * looking for contiguous pages.
1570                          */
1571                         break;
1572                 }
1573
1574                 head = compound_head(page);
1575                 if (!page_cache_get_speculative(head))
1576                         goto repeat;
1577
1578                 /* The page was split under us? */
1579                 if (compound_head(page) != head) {
1580                         put_page(head);
1581                         goto repeat;
1582                 }
1583
1584                 /* Has the page moved? */
1585                 if (unlikely(page != *slot)) {
1586                         put_page(head);
1587                         goto repeat;
1588                 }
1589
1590                 /*
1591                  * must check mapping and index after taking the ref.
1592                  * otherwise we can get both false positives and false
1593                  * negatives, which is just confusing to the caller.
1594                  */
1595                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1596                         put_page(page);
1597                         break;
1598                 }
1599
1600                 pages[ret] = page;
1601                 if (++ret == nr_pages)
1602                         break;
1603         }
1604         rcu_read_unlock();
1605         return ret;
1606 }
1607 EXPORT_SYMBOL(find_get_pages_contig);
1608
1609 /**
1610  * find_get_pages_tag - find and return pages that match @tag
1611  * @mapping:    the address_space to search
1612  * @index:      the starting page index
1613  * @tag:        the tag index
1614  * @nr_pages:   the maximum number of pages
1615  * @pages:      where the resulting pages are placed
1616  *
1617  * Like find_get_pages, except we only return pages which are tagged with
1618  * @tag.   We update @index to index the next page for the traversal.
1619  */
1620 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1621                         int tag, unsigned int nr_pages, struct page **pages)
1622 {
1623         struct radix_tree_iter iter;
1624         void **slot;
1625         unsigned ret = 0;
1626
1627         if (unlikely(!nr_pages))
1628                 return 0;
1629
1630         rcu_read_lock();
1631         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1632                                    &iter, *index, tag) {
1633                 struct page *head, *page;
1634 repeat:
1635                 page = radix_tree_deref_slot(slot);
1636                 if (unlikely(!page))
1637                         continue;
1638
1639                 if (radix_tree_exception(page)) {
1640                         if (radix_tree_deref_retry(page)) {
1641                                 slot = radix_tree_iter_retry(&iter);
1642                                 continue;
1643                         }
1644                         /*
1645                          * A shadow entry of a recently evicted page.
1646                          *
1647                          * Those entries should never be tagged, but
1648                          * this tree walk is lockless and the tags are
1649                          * looked up in bulk, one radix tree node at a
1650                          * time, so there is a sizable window for page
1651                          * reclaim to evict a page we saw tagged.
1652                          *
1653                          * Skip over it.
1654                          */
1655                         continue;
1656                 }
1657
1658                 head = compound_head(page);
1659                 if (!page_cache_get_speculative(head))
1660                         goto repeat;
1661
1662                 /* The page was split under us? */
1663                 if (compound_head(page) != head) {
1664                         put_page(head);
1665                         goto repeat;
1666                 }
1667
1668                 /* Has the page moved? */
1669                 if (unlikely(page != *slot)) {
1670                         put_page(head);
1671                         goto repeat;
1672                 }
1673
1674                 pages[ret] = page;
1675                 if (++ret == nr_pages)
1676                         break;
1677         }
1678
1679         rcu_read_unlock();
1680
1681         if (ret)
1682                 *index = pages[ret - 1]->index + 1;
1683
1684         return ret;
1685 }
1686 EXPORT_SYMBOL(find_get_pages_tag);
1687
1688 /**
1689  * find_get_entries_tag - find and return entries that match @tag
1690  * @mapping:    the address_space to search
1691  * @start:      the starting page cache index
1692  * @tag:        the tag index
1693  * @nr_entries: the maximum number of entries
1694  * @entries:    where the resulting entries are placed
1695  * @indices:    the cache indices corresponding to the entries in @entries
1696  *
1697  * Like find_get_entries, except we only return entries which are tagged with
1698  * @tag.
1699  */
1700 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1701                         int tag, unsigned int nr_entries,
1702                         struct page **entries, pgoff_t *indices)
1703 {
1704         void **slot;
1705         unsigned int ret = 0;
1706         struct radix_tree_iter iter;
1707
1708         if (!nr_entries)
1709                 return 0;
1710
1711         rcu_read_lock();
1712         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1713                                    &iter, start, tag) {
1714                 struct page *head, *page;
1715 repeat:
1716                 page = radix_tree_deref_slot(slot);
1717                 if (unlikely(!page))
1718                         continue;
1719                 if (radix_tree_exception(page)) {
1720                         if (radix_tree_deref_retry(page)) {
1721                                 slot = radix_tree_iter_retry(&iter);
1722                                 continue;
1723                         }
1724
1725                         /*
1726                          * A shadow entry of a recently evicted page, a swap
1727                          * entry from shmem/tmpfs or a DAX entry.  Return it
1728                          * without attempting to raise page count.
1729                          */
1730                         goto export;
1731                 }
1732
1733                 head = compound_head(page);
1734                 if (!page_cache_get_speculative(head))
1735                         goto repeat;
1736
1737                 /* The page was split under us? */
1738                 if (compound_head(page) != head) {
1739                         put_page(head);
1740                         goto repeat;
1741                 }
1742
1743                 /* Has the page moved? */
1744                 if (unlikely(page != *slot)) {
1745                         put_page(head);
1746                         goto repeat;
1747                 }
1748 export:
1749                 indices[ret] = iter.index;
1750                 entries[ret] = page;
1751                 if (++ret == nr_entries)
1752                         break;
1753         }
1754         rcu_read_unlock();
1755         return ret;
1756 }
1757 EXPORT_SYMBOL(find_get_entries_tag);
1758
1759 /*
1760  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1761  * a _large_ part of the i/o request. Imagine the worst scenario:
1762  *
1763  *      ---R__________________________________________B__________
1764  *         ^ reading here                             ^ bad block(assume 4k)
1765  *
1766  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1767  * => failing the whole request => read(R) => read(R+1) =>
1768  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1769  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1770  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1771  *
1772  * It is going insane. Fix it by quickly scaling down the readahead size.
1773  */
1774 static void shrink_readahead_size_eio(struct file *filp,
1775                                         struct file_ra_state *ra)
1776 {
1777         ra->ra_pages /= 4;
1778 }
1779
1780 /**
1781  * do_generic_file_read - generic file read routine
1782  * @filp:       the file to read
1783  * @ppos:       current file position
1784  * @iter:       data destination
1785  * @written:    already copied
1786  *
1787  * This is a generic file read routine, and uses the
1788  * mapping->a_ops->readpage() function for the actual low-level stuff.
1789  *
1790  * This is really ugly. But the goto's actually try to clarify some
1791  * of the logic when it comes to error handling etc.
1792  */
1793 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1794                 struct iov_iter *iter, ssize_t written)
1795 {
1796         struct address_space *mapping = filp->f_mapping;
1797         struct inode *inode = mapping->host;
1798         struct file_ra_state *ra = &filp->f_ra;
1799         pgoff_t index;
1800         pgoff_t last_index;
1801         pgoff_t prev_index;
1802         unsigned long offset;      /* offset into pagecache page */
1803         unsigned int prev_offset;
1804         int error = 0;
1805
1806         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1807                 return 0;
1808         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1809
1810         index = *ppos >> PAGE_SHIFT;
1811         prev_index = ra->prev_pos >> PAGE_SHIFT;
1812         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1813         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1814         offset = *ppos & ~PAGE_MASK;
1815
1816         for (;;) {
1817                 struct page *page;
1818                 pgoff_t end_index;
1819                 loff_t isize;
1820                 unsigned long nr, ret;
1821
1822                 cond_resched();
1823 find_page:
1824                 if (fatal_signal_pending(current)) {
1825                         error = -EINTR;
1826                         goto out;
1827                 }
1828
1829                 page = find_get_page(mapping, index);
1830                 if (!page) {
1831                         page_cache_sync_readahead(mapping,
1832                                         ra, filp,
1833                                         index, last_index - index);
1834                         page = find_get_page(mapping, index);
1835                         if (unlikely(page == NULL))
1836                                 goto no_cached_page;
1837                 }
1838                 if (PageReadahead(page)) {
1839                         page_cache_async_readahead(mapping,
1840                                         ra, filp, page,
1841                                         index, last_index - index);
1842                 }
1843                 if (!PageUptodate(page)) {
1844                         /*
1845                          * See comment in do_read_cache_page on why
1846                          * wait_on_page_locked is used to avoid unnecessarily
1847                          * serialisations and why it's safe.
1848                          */
1849                         error = wait_on_page_locked_killable(page);
1850                         if (unlikely(error))
1851                                 goto readpage_error;
1852                         if (PageUptodate(page))
1853                                 goto page_ok;
1854
1855                         if (inode->i_blkbits == PAGE_SHIFT ||
1856                                         !mapping->a_ops->is_partially_uptodate)
1857                                 goto page_not_up_to_date;
1858                         /* pipes can't handle partially uptodate pages */
1859                         if (unlikely(iter->type & ITER_PIPE))
1860                                 goto page_not_up_to_date;
1861                         if (!trylock_page(page))
1862                                 goto page_not_up_to_date;
1863                         /* Did it get truncated before we got the lock? */
1864                         if (!page->mapping)
1865                                 goto page_not_up_to_date_locked;
1866                         if (!mapping->a_ops->is_partially_uptodate(page,
1867                                                         offset, iter->count))
1868                                 goto page_not_up_to_date_locked;
1869                         unlock_page(page);
1870                 }
1871 page_ok:
1872                 /*
1873                  * i_size must be checked after we know the page is Uptodate.
1874                  *
1875                  * Checking i_size after the check allows us to calculate
1876                  * the correct value for "nr", which means the zero-filled
1877                  * part of the page is not copied back to userspace (unless
1878                  * another truncate extends the file - this is desired though).
1879                  */
1880
1881                 isize = i_size_read(inode);
1882                 end_index = (isize - 1) >> PAGE_SHIFT;
1883                 if (unlikely(!isize || index > end_index)) {
1884                         put_page(page);
1885                         goto out;
1886                 }
1887
1888                 /* nr is the maximum number of bytes to copy from this page */
1889                 nr = PAGE_SIZE;
1890                 if (index == end_index) {
1891                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1892                         if (nr <= offset) {
1893                                 put_page(page);
1894                                 goto out;
1895                         }
1896                 }
1897                 nr = nr - offset;
1898
1899                 /* If users can be writing to this page using arbitrary
1900                  * virtual addresses, take care about potential aliasing
1901                  * before reading the page on the kernel side.
1902                  */
1903                 if (mapping_writably_mapped(mapping))
1904                         flush_dcache_page(page);
1905
1906                 /*
1907                  * When a sequential read accesses a page several times,
1908                  * only mark it as accessed the first time.
1909                  */
1910                 if (prev_index != index || offset != prev_offset)
1911                         mark_page_accessed(page);
1912                 prev_index = index;
1913
1914                 /*
1915                  * Ok, we have the page, and it's up-to-date, so
1916                  * now we can copy it to user space...
1917                  */
1918
1919                 ret = copy_page_to_iter(page, offset, nr, iter);
1920                 offset += ret;
1921                 index += offset >> PAGE_SHIFT;
1922                 offset &= ~PAGE_MASK;
1923                 prev_offset = offset;
1924
1925                 put_page(page);
1926                 written += ret;
1927                 if (!iov_iter_count(iter))
1928                         goto out;
1929                 if (ret < nr) {
1930                         error = -EFAULT;
1931                         goto out;
1932                 }
1933                 continue;
1934
1935 page_not_up_to_date:
1936                 /* Get exclusive access to the page ... */
1937                 error = lock_page_killable(page);
1938                 if (unlikely(error))
1939                         goto readpage_error;
1940
1941 page_not_up_to_date_locked:
1942                 /* Did it get truncated before we got the lock? */
1943                 if (!page->mapping) {
1944                         unlock_page(page);
1945                         put_page(page);
1946                         continue;
1947                 }
1948
1949                 /* Did somebody else fill it already? */
1950                 if (PageUptodate(page)) {
1951                         unlock_page(page);
1952                         goto page_ok;
1953                 }
1954
1955 readpage:
1956                 /*
1957                  * A previous I/O error may have been due to temporary
1958                  * failures, eg. multipath errors.
1959                  * PG_error will be set again if readpage fails.
1960                  */
1961                 ClearPageError(page);
1962                 /* Start the actual read. The read will unlock the page. */
1963                 error = mapping->a_ops->readpage(filp, page);
1964
1965                 if (unlikely(error)) {
1966                         if (error == AOP_TRUNCATED_PAGE) {
1967                                 put_page(page);
1968                                 error = 0;
1969                                 goto find_page;
1970                         }
1971                         goto readpage_error;
1972                 }
1973
1974                 if (!PageUptodate(page)) {
1975                         error = lock_page_killable(page);
1976                         if (unlikely(error))
1977                                 goto readpage_error;
1978                         if (!PageUptodate(page)) {
1979                                 if (page->mapping == NULL) {
1980                                         /*
1981                                          * invalidate_mapping_pages got it
1982                                          */
1983                                         unlock_page(page);
1984                                         put_page(page);
1985                                         goto find_page;
1986                                 }
1987                                 unlock_page(page);
1988                                 shrink_readahead_size_eio(filp, ra);
1989                                 error = -EIO;
1990                                 goto readpage_error;
1991                         }
1992                         unlock_page(page);
1993                 }
1994
1995                 goto page_ok;
1996
1997 readpage_error:
1998                 /* UHHUH! A synchronous read error occurred. Report it */
1999                 put_page(page);
2000                 goto out;
2001
2002 no_cached_page:
2003                 /*
2004                  * Ok, it wasn't cached, so we need to create a new
2005                  * page..
2006                  */
2007                 page = page_cache_alloc_cold(mapping);
2008                 if (!page) {
2009                         error = -ENOMEM;
2010                         goto out;
2011                 }
2012                 error = add_to_page_cache_lru(page, mapping, index,
2013                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2014                 if (error) {
2015                         put_page(page);
2016                         if (error == -EEXIST) {
2017                                 error = 0;
2018                                 goto find_page;
2019                         }
2020                         goto out;
2021                 }
2022                 goto readpage;
2023         }
2024
2025 out:
2026         ra->prev_pos = prev_index;
2027         ra->prev_pos <<= PAGE_SHIFT;
2028         ra->prev_pos |= prev_offset;
2029
2030         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2031         file_accessed(filp);
2032         return written ? written : error;
2033 }
2034
2035 /**
2036  * generic_file_read_iter - generic filesystem read routine
2037  * @iocb:       kernel I/O control block
2038  * @iter:       destination for the data read
2039  *
2040  * This is the "read_iter()" routine for all filesystems
2041  * that can use the page cache directly.
2042  */
2043 ssize_t
2044 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2045 {
2046         struct file *file = iocb->ki_filp;
2047         ssize_t retval = 0;
2048         size_t count = iov_iter_count(iter);
2049
2050         if (!count)
2051                 goto out; /* skip atime */
2052
2053         if (iocb->ki_flags & IOCB_DIRECT) {
2054                 struct address_space *mapping = file->f_mapping;
2055                 struct inode *inode = mapping->host;
2056                 loff_t size;
2057
2058                 size = i_size_read(inode);
2059                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2060                                         iocb->ki_pos + count - 1);
2061                 if (retval < 0)
2062                         goto out;
2063
2064                 file_accessed(file);
2065
2066                 retval = mapping->a_ops->direct_IO(iocb, iter);
2067                 if (retval >= 0) {
2068                         iocb->ki_pos += retval;
2069                         count -= retval;
2070                 }
2071                 iov_iter_revert(iter, count - iov_iter_count(iter));
2072
2073                 /*
2074                  * Btrfs can have a short DIO read if we encounter
2075                  * compressed extents, so if there was an error, or if
2076                  * we've already read everything we wanted to, or if
2077                  * there was a short read because we hit EOF, go ahead
2078                  * and return.  Otherwise fallthrough to buffered io for
2079                  * the rest of the read.  Buffered reads will not work for
2080                  * DAX files, so don't bother trying.
2081                  */
2082                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2083                     IS_DAX(inode))
2084                         goto out;
2085         }
2086
2087         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2088 out:
2089         return retval;
2090 }
2091 EXPORT_SYMBOL(generic_file_read_iter);
2092
2093 #ifdef CONFIG_MMU
2094 /**
2095  * page_cache_read - adds requested page to the page cache if not already there
2096  * @file:       file to read
2097  * @offset:     page index
2098  * @gfp_mask:   memory allocation flags
2099  *
2100  * This adds the requested page to the page cache if it isn't already there,
2101  * and schedules an I/O to read in its contents from disk.
2102  */
2103 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2104 {
2105         struct address_space *mapping = file->f_mapping;
2106         struct page *page;
2107         int ret;
2108
2109         do {
2110                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2111                 if (!page)
2112                         return -ENOMEM;
2113
2114                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2115                 if (ret == 0)
2116                         ret = mapping->a_ops->readpage(file, page);
2117                 else if (ret == -EEXIST)
2118                         ret = 0; /* losing race to add is OK */
2119
2120                 put_page(page);
2121
2122         } while (ret == AOP_TRUNCATED_PAGE);
2123
2124         return ret;
2125 }
2126
2127 #define MMAP_LOTSAMISS  (100)
2128
2129 /*
2130  * Synchronous readahead happens when we don't even find
2131  * a page in the page cache at all.
2132  */
2133 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2134                                    struct file_ra_state *ra,
2135                                    struct file *file,
2136                                    pgoff_t offset)
2137 {
2138         struct address_space *mapping = file->f_mapping;
2139
2140         /* If we don't want any read-ahead, don't bother */
2141         if (vma->vm_flags & VM_RAND_READ)
2142                 return;
2143         if (!ra->ra_pages)
2144                 return;
2145
2146         if (vma->vm_flags & VM_SEQ_READ) {
2147                 page_cache_sync_readahead(mapping, ra, file, offset,
2148                                           ra->ra_pages);
2149                 return;
2150         }
2151
2152         /* Avoid banging the cache line if not needed */
2153         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2154                 ra->mmap_miss++;
2155
2156         /*
2157          * Do we miss much more than hit in this file? If so,
2158          * stop bothering with read-ahead. It will only hurt.
2159          */
2160         if (ra->mmap_miss > MMAP_LOTSAMISS)
2161                 return;
2162
2163         /*
2164          * mmap read-around
2165          */
2166         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2167         ra->size = ra->ra_pages;
2168         ra->async_size = ra->ra_pages / 4;
2169         ra_submit(ra, mapping, file);
2170 }
2171
2172 /*
2173  * Asynchronous readahead happens when we find the page and PG_readahead,
2174  * so we want to possibly extend the readahead further..
2175  */
2176 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2177                                     struct file_ra_state *ra,
2178                                     struct file *file,
2179                                     struct page *page,
2180                                     pgoff_t offset)
2181 {
2182         struct address_space *mapping = file->f_mapping;
2183
2184         /* If we don't want any read-ahead, don't bother */
2185         if (vma->vm_flags & VM_RAND_READ)
2186                 return;
2187         if (ra->mmap_miss > 0)
2188                 ra->mmap_miss--;
2189         if (PageReadahead(page))
2190                 page_cache_async_readahead(mapping, ra, file,
2191                                            page, offset, ra->ra_pages);
2192 }
2193
2194 /**
2195  * filemap_fault - read in file data for page fault handling
2196  * @vmf:        struct vm_fault containing details of the fault
2197  *
2198  * filemap_fault() is invoked via the vma operations vector for a
2199  * mapped memory region to read in file data during a page fault.
2200  *
2201  * The goto's are kind of ugly, but this streamlines the normal case of having
2202  * it in the page cache, and handles the special cases reasonably without
2203  * having a lot of duplicated code.
2204  *
2205  * vma->vm_mm->mmap_sem must be held on entry.
2206  *
2207  * If our return value has VM_FAULT_RETRY set, it's because
2208  * lock_page_or_retry() returned 0.
2209  * The mmap_sem has usually been released in this case.
2210  * See __lock_page_or_retry() for the exception.
2211  *
2212  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2213  * has not been released.
2214  *
2215  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2216  */
2217 int filemap_fault(struct vm_fault *vmf)
2218 {
2219         int error;
2220         struct file *file = vmf->vma->vm_file;
2221         struct address_space *mapping = file->f_mapping;
2222         struct file_ra_state *ra = &file->f_ra;
2223         struct inode *inode = mapping->host;
2224         pgoff_t offset = vmf->pgoff;
2225         pgoff_t max_off;
2226         struct page *page;
2227         int ret = 0;
2228
2229         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2230         if (unlikely(offset >= max_off))
2231                 return VM_FAULT_SIGBUS;
2232
2233         /*
2234          * Do we have something in the page cache already?
2235          */
2236         page = find_get_page(mapping, offset);
2237         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2238                 /*
2239                  * We found the page, so try async readahead before
2240                  * waiting for the lock.
2241                  */
2242                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2243         } else if (!page) {
2244                 /* No page in the page cache at all */
2245                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2246                 count_vm_event(PGMAJFAULT);
2247                 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2248                 ret = VM_FAULT_MAJOR;
2249 retry_find:
2250                 page = find_get_page(mapping, offset);
2251                 if (!page)
2252                         goto no_cached_page;
2253         }
2254
2255         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2256                 put_page(page);
2257                 return ret | VM_FAULT_RETRY;
2258         }
2259
2260         /* Did it get truncated? */
2261         if (unlikely(page->mapping != mapping)) {
2262                 unlock_page(page);
2263                 put_page(page);
2264                 goto retry_find;
2265         }
2266         VM_BUG_ON_PAGE(page->index != offset, page);
2267
2268         /*
2269          * We have a locked page in the page cache, now we need to check
2270          * that it's up-to-date. If not, it is going to be due to an error.
2271          */
2272         if (unlikely(!PageUptodate(page)))
2273                 goto page_not_uptodate;
2274
2275         /*
2276          * Found the page and have a reference on it.
2277          * We must recheck i_size under page lock.
2278          */
2279         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2280         if (unlikely(offset >= max_off)) {
2281                 unlock_page(page);
2282                 put_page(page);
2283                 return VM_FAULT_SIGBUS;
2284         }
2285
2286         vmf->page = page;
2287         return ret | VM_FAULT_LOCKED;
2288
2289 no_cached_page:
2290         /*
2291          * We're only likely to ever get here if MADV_RANDOM is in
2292          * effect.
2293          */
2294         error = page_cache_read(file, offset, vmf->gfp_mask);
2295
2296         /*
2297          * The page we want has now been added to the page cache.
2298          * In the unlikely event that someone removed it in the
2299          * meantime, we'll just come back here and read it again.
2300          */
2301         if (error >= 0)
2302                 goto retry_find;
2303
2304         /*
2305          * An error return from page_cache_read can result if the
2306          * system is low on memory, or a problem occurs while trying
2307          * to schedule I/O.
2308          */
2309         if (error == -ENOMEM)
2310                 return VM_FAULT_OOM;
2311         return VM_FAULT_SIGBUS;
2312
2313 page_not_uptodate:
2314         /*
2315          * Umm, take care of errors if the page isn't up-to-date.
2316          * Try to re-read it _once_. We do this synchronously,
2317          * because there really aren't any performance issues here
2318          * and we need to check for errors.
2319          */
2320         ClearPageError(page);
2321         error = mapping->a_ops->readpage(file, page);
2322         if (!error) {
2323                 wait_on_page_locked(page);
2324                 if (!PageUptodate(page))
2325                         error = -EIO;
2326         }
2327         put_page(page);
2328
2329         if (!error || error == AOP_TRUNCATED_PAGE)
2330                 goto retry_find;
2331
2332         /* Things didn't work out. Return zero to tell the mm layer so. */
2333         shrink_readahead_size_eio(file, ra);
2334         return VM_FAULT_SIGBUS;
2335 }
2336 EXPORT_SYMBOL(filemap_fault);
2337
2338 void filemap_map_pages(struct vm_fault *vmf,
2339                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2340 {
2341         struct radix_tree_iter iter;
2342         void **slot;
2343         struct file *file = vmf->vma->vm_file;
2344         struct address_space *mapping = file->f_mapping;
2345         pgoff_t last_pgoff = start_pgoff;
2346         unsigned long max_idx;
2347         struct page *head, *page;
2348
2349         rcu_read_lock();
2350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2351                         start_pgoff) {
2352                 if (iter.index > end_pgoff)
2353                         break;
2354 repeat:
2355                 page = radix_tree_deref_slot(slot);
2356                 if (unlikely(!page))
2357                         goto next;
2358                 if (radix_tree_exception(page)) {
2359                         if (radix_tree_deref_retry(page)) {
2360                                 slot = radix_tree_iter_retry(&iter);
2361                                 continue;
2362                         }
2363                         goto next;
2364                 }
2365
2366                 head = compound_head(page);
2367                 if (!page_cache_get_speculative(head))
2368                         goto repeat;
2369
2370                 /* The page was split under us? */
2371                 if (compound_head(page) != head) {
2372                         put_page(head);
2373                         goto repeat;
2374                 }
2375
2376                 /* Has the page moved? */
2377                 if (unlikely(page != *slot)) {
2378                         put_page(head);
2379                         goto repeat;
2380                 }
2381
2382                 if (!PageUptodate(page) ||
2383                                 PageReadahead(page) ||
2384                                 PageHWPoison(page))
2385                         goto skip;
2386                 if (!trylock_page(page))
2387                         goto skip;
2388
2389                 if (page->mapping != mapping || !PageUptodate(page))
2390                         goto unlock;
2391
2392                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2393                 if (page->index >= max_idx)
2394                         goto unlock;
2395
2396                 if (file->f_ra.mmap_miss > 0)
2397                         file->f_ra.mmap_miss--;
2398
2399                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2400                 if (vmf->pte)
2401                         vmf->pte += iter.index - last_pgoff;
2402                 last_pgoff = iter.index;
2403                 if (alloc_set_pte(vmf, NULL, page))
2404                         goto unlock;
2405                 unlock_page(page);
2406                 goto next;
2407 unlock:
2408                 unlock_page(page);
2409 skip:
2410                 put_page(page);
2411 next:
2412                 /* Huge page is mapped? No need to proceed. */
2413                 if (pmd_trans_huge(*vmf->pmd))
2414                         break;
2415                 if (iter.index == end_pgoff)
2416                         break;
2417         }
2418         rcu_read_unlock();
2419 }
2420 EXPORT_SYMBOL(filemap_map_pages);
2421
2422 int filemap_page_mkwrite(struct vm_fault *vmf)
2423 {
2424         struct page *page = vmf->page;
2425         struct inode *inode = file_inode(vmf->vma->vm_file);
2426         int ret = VM_FAULT_LOCKED;
2427
2428         sb_start_pagefault(inode->i_sb);
2429         file_update_time(vmf->vma->vm_file);
2430         lock_page(page);
2431         if (page->mapping != inode->i_mapping) {
2432                 unlock_page(page);
2433                 ret = VM_FAULT_NOPAGE;
2434                 goto out;
2435         }
2436         /*
2437          * We mark the page dirty already here so that when freeze is in
2438          * progress, we are guaranteed that writeback during freezing will
2439          * see the dirty page and writeprotect it again.
2440          */
2441         set_page_dirty(page);
2442         wait_for_stable_page(page);
2443 out:
2444         sb_end_pagefault(inode->i_sb);
2445         return ret;
2446 }
2447 EXPORT_SYMBOL(filemap_page_mkwrite);
2448
2449 const struct vm_operations_struct generic_file_vm_ops = {
2450         .fault          = filemap_fault,
2451         .map_pages      = filemap_map_pages,
2452         .page_mkwrite   = filemap_page_mkwrite,
2453 };
2454
2455 /* This is used for a general mmap of a disk file */
2456
2457 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2458 {
2459         struct address_space *mapping = file->f_mapping;
2460
2461         if (!mapping->a_ops->readpage)
2462                 return -ENOEXEC;
2463         file_accessed(file);
2464         vma->vm_ops = &generic_file_vm_ops;
2465         return 0;
2466 }
2467
2468 /*
2469  * This is for filesystems which do not implement ->writepage.
2470  */
2471 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2472 {
2473         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2474                 return -EINVAL;
2475         return generic_file_mmap(file, vma);
2476 }
2477 #else
2478 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2479 {
2480         return -ENOSYS;
2481 }
2482 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2483 {
2484         return -ENOSYS;
2485 }
2486 #endif /* CONFIG_MMU */
2487
2488 EXPORT_SYMBOL(generic_file_mmap);
2489 EXPORT_SYMBOL(generic_file_readonly_mmap);
2490
2491 static struct page *wait_on_page_read(struct page *page)
2492 {
2493         if (!IS_ERR(page)) {
2494                 wait_on_page_locked(page);
2495                 if (!PageUptodate(page)) {
2496                         put_page(page);
2497                         page = ERR_PTR(-EIO);
2498                 }
2499         }
2500         return page;
2501 }
2502
2503 static struct page *do_read_cache_page(struct address_space *mapping,
2504                                 pgoff_t index,
2505                                 int (*filler)(void *, struct page *),
2506                                 void *data,
2507                                 gfp_t gfp)
2508 {
2509         struct page *page;
2510         int err;
2511 repeat:
2512         page = find_get_page(mapping, index);
2513         if (!page) {
2514                 page = __page_cache_alloc(gfp | __GFP_COLD);
2515                 if (!page)
2516                         return ERR_PTR(-ENOMEM);
2517                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2518                 if (unlikely(err)) {
2519                         put_page(page);
2520                         if (err == -EEXIST)
2521                                 goto repeat;
2522                         /* Presumably ENOMEM for radix tree node */
2523                         return ERR_PTR(err);
2524                 }
2525
2526 filler:
2527                 err = filler(data, page);
2528                 if (err < 0) {
2529                         put_page(page);
2530                         return ERR_PTR(err);
2531                 }
2532
2533                 page = wait_on_page_read(page);
2534                 if (IS_ERR(page))
2535                         return page;
2536                 goto out;
2537         }
2538         if (PageUptodate(page))
2539                 goto out;
2540
2541         /*
2542          * Page is not up to date and may be locked due one of the following
2543          * case a: Page is being filled and the page lock is held
2544          * case b: Read/write error clearing the page uptodate status
2545          * case c: Truncation in progress (page locked)
2546          * case d: Reclaim in progress
2547          *
2548          * Case a, the page will be up to date when the page is unlocked.
2549          *    There is no need to serialise on the page lock here as the page
2550          *    is pinned so the lock gives no additional protection. Even if the
2551          *    the page is truncated, the data is still valid if PageUptodate as
2552          *    it's a race vs truncate race.
2553          * Case b, the page will not be up to date
2554          * Case c, the page may be truncated but in itself, the data may still
2555          *    be valid after IO completes as it's a read vs truncate race. The
2556          *    operation must restart if the page is not uptodate on unlock but
2557          *    otherwise serialising on page lock to stabilise the mapping gives
2558          *    no additional guarantees to the caller as the page lock is
2559          *    released before return.
2560          * Case d, similar to truncation. If reclaim holds the page lock, it
2561          *    will be a race with remove_mapping that determines if the mapping
2562          *    is valid on unlock but otherwise the data is valid and there is
2563          *    no need to serialise with page lock.
2564          *
2565          * As the page lock gives no additional guarantee, we optimistically
2566          * wait on the page to be unlocked and check if it's up to date and
2567          * use the page if it is. Otherwise, the page lock is required to
2568          * distinguish between the different cases. The motivation is that we
2569          * avoid spurious serialisations and wakeups when multiple processes
2570          * wait on the same page for IO to complete.
2571          */
2572         wait_on_page_locked(page);
2573         if (PageUptodate(page))
2574                 goto out;
2575
2576         /* Distinguish between all the cases under the safety of the lock */
2577         lock_page(page);
2578
2579         /* Case c or d, restart the operation */
2580         if (!page->mapping) {
2581                 unlock_page(page);
2582                 put_page(page);
2583                 goto repeat;
2584         }
2585
2586         /* Someone else locked and filled the page in a very small window */
2587         if (PageUptodate(page)) {
2588                 unlock_page(page);
2589                 goto out;
2590         }
2591         goto filler;
2592
2593 out:
2594         mark_page_accessed(page);
2595         return page;
2596 }
2597
2598 /**
2599  * read_cache_page - read into page cache, fill it if needed
2600  * @mapping:    the page's address_space
2601  * @index:      the page index
2602  * @filler:     function to perform the read
2603  * @data:       first arg to filler(data, page) function, often left as NULL
2604  *
2605  * Read into the page cache. If a page already exists, and PageUptodate() is
2606  * not set, try to fill the page and wait for it to become unlocked.
2607  *
2608  * If the page does not get brought uptodate, return -EIO.
2609  */
2610 struct page *read_cache_page(struct address_space *mapping,
2611                                 pgoff_t index,
2612                                 int (*filler)(void *, struct page *),
2613                                 void *data)
2614 {
2615         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2616 }
2617 EXPORT_SYMBOL(read_cache_page);
2618
2619 /**
2620  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2621  * @mapping:    the page's address_space
2622  * @index:      the page index
2623  * @gfp:        the page allocator flags to use if allocating
2624  *
2625  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2626  * any new page allocations done using the specified allocation flags.
2627  *
2628  * If the page does not get brought uptodate, return -EIO.
2629  */
2630 struct page *read_cache_page_gfp(struct address_space *mapping,
2631                                 pgoff_t index,
2632                                 gfp_t gfp)
2633 {
2634         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2635
2636         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2637 }
2638 EXPORT_SYMBOL(read_cache_page_gfp);
2639
2640 /*
2641  * Performs necessary checks before doing a write
2642  *
2643  * Can adjust writing position or amount of bytes to write.
2644  * Returns appropriate error code that caller should return or
2645  * zero in case that write should be allowed.
2646  */
2647 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2648 {
2649         struct file *file = iocb->ki_filp;
2650         struct inode *inode = file->f_mapping->host;
2651         unsigned long limit = rlimit(RLIMIT_FSIZE);
2652         loff_t pos;
2653
2654         if (!iov_iter_count(from))
2655                 return 0;
2656
2657         /* FIXME: this is for backwards compatibility with 2.4 */
2658         if (iocb->ki_flags & IOCB_APPEND)
2659                 iocb->ki_pos = i_size_read(inode);
2660
2661         pos = iocb->ki_pos;
2662
2663         if (limit != RLIM_INFINITY) {
2664                 if (iocb->ki_pos >= limit) {
2665                         send_sig(SIGXFSZ, current, 0);
2666                         return -EFBIG;
2667                 }
2668                 iov_iter_truncate(from, limit - (unsigned long)pos);
2669         }
2670
2671         /*
2672          * LFS rule
2673          */
2674         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2675                                 !(file->f_flags & O_LARGEFILE))) {
2676                 if (pos >= MAX_NON_LFS)
2677                         return -EFBIG;
2678                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2679         }
2680
2681         /*
2682          * Are we about to exceed the fs block limit ?
2683          *
2684          * If we have written data it becomes a short write.  If we have
2685          * exceeded without writing data we send a signal and return EFBIG.
2686          * Linus frestrict idea will clean these up nicely..
2687          */
2688         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2689                 return -EFBIG;
2690
2691         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2692         return iov_iter_count(from);
2693 }
2694 EXPORT_SYMBOL(generic_write_checks);
2695
2696 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2697                                 loff_t pos, unsigned len, unsigned flags,
2698                                 struct page **pagep, void **fsdata)
2699 {
2700         const struct address_space_operations *aops = mapping->a_ops;
2701
2702         return aops->write_begin(file, mapping, pos, len, flags,
2703                                                         pagep, fsdata);
2704 }
2705 EXPORT_SYMBOL(pagecache_write_begin);
2706
2707 int pagecache_write_end(struct file *file, struct address_space *mapping,
2708                                 loff_t pos, unsigned len, unsigned copied,
2709                                 struct page *page, void *fsdata)
2710 {
2711         const struct address_space_operations *aops = mapping->a_ops;
2712
2713         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2714 }
2715 EXPORT_SYMBOL(pagecache_write_end);
2716
2717 ssize_t
2718 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2719 {
2720         struct file     *file = iocb->ki_filp;
2721         struct address_space *mapping = file->f_mapping;
2722         struct inode    *inode = mapping->host;
2723         loff_t          pos = iocb->ki_pos;
2724         ssize_t         written;
2725         size_t          write_len;
2726         pgoff_t         end;
2727
2728         write_len = iov_iter_count(from);
2729         end = (pos + write_len - 1) >> PAGE_SHIFT;
2730
2731         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2732         if (written)
2733                 goto out;
2734
2735         /*
2736          * After a write we want buffered reads to be sure to go to disk to get
2737          * the new data.  We invalidate clean cached page from the region we're
2738          * about to write.  We do this *before* the write so that we can return
2739          * without clobbering -EIOCBQUEUED from ->direct_IO().
2740          */
2741         written = invalidate_inode_pages2_range(mapping,
2742                                         pos >> PAGE_SHIFT, end);
2743         /*
2744          * If a page can not be invalidated, return 0 to fall back
2745          * to buffered write.
2746          */
2747         if (written) {
2748                 if (written == -EBUSY)
2749                         return 0;
2750                 goto out;
2751         }
2752
2753         written = mapping->a_ops->direct_IO(iocb, from);
2754
2755         /*
2756          * Finally, try again to invalidate clean pages which might have been
2757          * cached by non-direct readahead, or faulted in by get_user_pages()
2758          * if the source of the write was an mmap'ed region of the file
2759          * we're writing.  Either one is a pretty crazy thing to do,
2760          * so we don't support it 100%.  If this invalidation
2761          * fails, tough, the write still worked...
2762          */
2763         invalidate_inode_pages2_range(mapping,
2764                                 pos >> PAGE_SHIFT, end);
2765
2766         if (written > 0) {
2767                 pos += written;
2768                 write_len -= written;
2769                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2770                         i_size_write(inode, pos);
2771                         mark_inode_dirty(inode);
2772                 }
2773                 iocb->ki_pos = pos;
2774         }
2775         iov_iter_revert(from, write_len - iov_iter_count(from));
2776 out:
2777         return written;
2778 }
2779 EXPORT_SYMBOL(generic_file_direct_write);
2780
2781 /*
2782  * Find or create a page at the given pagecache position. Return the locked
2783  * page. This function is specifically for buffered writes.
2784  */
2785 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2786                                         pgoff_t index, unsigned flags)
2787 {
2788         struct page *page;
2789         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2790
2791         if (flags & AOP_FLAG_NOFS)
2792                 fgp_flags |= FGP_NOFS;
2793
2794         page = pagecache_get_page(mapping, index, fgp_flags,
2795                         mapping_gfp_mask(mapping));
2796         if (page)
2797                 wait_for_stable_page(page);
2798
2799         return page;
2800 }
2801 EXPORT_SYMBOL(grab_cache_page_write_begin);
2802
2803 ssize_t generic_perform_write(struct file *file,
2804                                 struct iov_iter *i, loff_t pos)
2805 {
2806         struct address_space *mapping = file->f_mapping;
2807         const struct address_space_operations *a_ops = mapping->a_ops;
2808         long status = 0;
2809         ssize_t written = 0;
2810         unsigned int flags = 0;
2811
2812         do {
2813                 struct page *page;
2814                 unsigned long offset;   /* Offset into pagecache page */
2815                 unsigned long bytes;    /* Bytes to write to page */
2816                 size_t copied;          /* Bytes copied from user */
2817                 void *fsdata;
2818
2819                 offset = (pos & (PAGE_SIZE - 1));
2820                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2821                                                 iov_iter_count(i));
2822
2823 again:
2824                 /*
2825                  * Bring in the user page that we will copy from _first_.
2826                  * Otherwise there's a nasty deadlock on copying from the
2827                  * same page as we're writing to, without it being marked
2828                  * up-to-date.
2829                  *
2830                  * Not only is this an optimisation, but it is also required
2831                  * to check that the address is actually valid, when atomic
2832                  * usercopies are used, below.
2833                  */
2834                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2835                         status = -EFAULT;
2836                         break;
2837                 }
2838
2839                 if (fatal_signal_pending(current)) {
2840                         status = -EINTR;
2841                         break;
2842                 }
2843
2844                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2845                                                 &page, &fsdata);
2846                 if (unlikely(status < 0))
2847                         break;
2848
2849                 if (mapping_writably_mapped(mapping))
2850                         flush_dcache_page(page);
2851
2852                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2853                 flush_dcache_page(page);
2854
2855                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2856                                                 page, fsdata);
2857                 if (unlikely(status < 0))
2858                         break;
2859                 copied = status;
2860
2861                 cond_resched();
2862
2863                 iov_iter_advance(i, copied);
2864                 if (unlikely(copied == 0)) {
2865                         /*
2866                          * If we were unable to copy any data at all, we must
2867                          * fall back to a single segment length write.
2868                          *
2869                          * If we didn't fallback here, we could livelock
2870                          * because not all segments in the iov can be copied at
2871                          * once without a pagefault.
2872                          */
2873                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2874                                                 iov_iter_single_seg_count(i));
2875                         goto again;
2876                 }
2877                 pos += copied;
2878                 written += copied;
2879
2880                 balance_dirty_pages_ratelimited(mapping);
2881         } while (iov_iter_count(i));
2882
2883         return written ? written : status;
2884 }
2885 EXPORT_SYMBOL(generic_perform_write);
2886
2887 /**
2888  * __generic_file_write_iter - write data to a file
2889  * @iocb:       IO state structure (file, offset, etc.)
2890  * @from:       iov_iter with data to write
2891  *
2892  * This function does all the work needed for actually writing data to a
2893  * file. It does all basic checks, removes SUID from the file, updates
2894  * modification times and calls proper subroutines depending on whether we
2895  * do direct IO or a standard buffered write.
2896  *
2897  * It expects i_mutex to be grabbed unless we work on a block device or similar
2898  * object which does not need locking at all.
2899  *
2900  * This function does *not* take care of syncing data in case of O_SYNC write.
2901  * A caller has to handle it. This is mainly due to the fact that we want to
2902  * avoid syncing under i_mutex.
2903  */
2904 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2905 {
2906         struct file *file = iocb->ki_filp;
2907         struct address_space * mapping = file->f_mapping;
2908         struct inode    *inode = mapping->host;
2909         ssize_t         written = 0;
2910         ssize_t         err;
2911         ssize_t         status;
2912
2913         /* We can write back this queue in page reclaim */
2914         current->backing_dev_info = inode_to_bdi(inode);
2915         err = file_remove_privs(file);
2916         if (err)
2917                 goto out;
2918
2919         err = file_update_time(file);
2920         if (err)
2921                 goto out;
2922
2923         if (iocb->ki_flags & IOCB_DIRECT) {
2924                 loff_t pos, endbyte;
2925
2926                 written = generic_file_direct_write(iocb, from);
2927                 /*
2928                  * If the write stopped short of completing, fall back to
2929                  * buffered writes.  Some filesystems do this for writes to
2930                  * holes, for example.  For DAX files, a buffered write will
2931                  * not succeed (even if it did, DAX does not handle dirty
2932                  * page-cache pages correctly).
2933                  */
2934                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2935                         goto out;
2936
2937                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2938                 /*
2939                  * If generic_perform_write() returned a synchronous error
2940                  * then we want to return the number of bytes which were
2941                  * direct-written, or the error code if that was zero.  Note
2942                  * that this differs from normal direct-io semantics, which
2943                  * will return -EFOO even if some bytes were written.
2944                  */
2945                 if (unlikely(status < 0)) {
2946                         err = status;
2947                         goto out;
2948                 }
2949                 /*
2950                  * We need to ensure that the page cache pages are written to
2951                  * disk and invalidated to preserve the expected O_DIRECT
2952                  * semantics.
2953                  */
2954                 endbyte = pos + status - 1;
2955                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2956                 if (err == 0) {
2957                         iocb->ki_pos = endbyte + 1;
2958                         written += status;
2959                         invalidate_mapping_pages(mapping,
2960                                                  pos >> PAGE_SHIFT,
2961                                                  endbyte >> PAGE_SHIFT);
2962                 } else {
2963                         /*
2964                          * We don't know how much we wrote, so just return
2965                          * the number of bytes which were direct-written
2966                          */
2967                 }
2968         } else {
2969                 written = generic_perform_write(file, from, iocb->ki_pos);
2970                 if (likely(written > 0))
2971                         iocb->ki_pos += written;
2972         }
2973 out:
2974         current->backing_dev_info = NULL;
2975         return written ? written : err;
2976 }
2977 EXPORT_SYMBOL(__generic_file_write_iter);
2978
2979 /**
2980  * generic_file_write_iter - write data to a file
2981  * @iocb:       IO state structure
2982  * @from:       iov_iter with data to write
2983  *
2984  * This is a wrapper around __generic_file_write_iter() to be used by most
2985  * filesystems. It takes care of syncing the file in case of O_SYNC file
2986  * and acquires i_mutex as needed.
2987  */
2988 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2989 {
2990         struct file *file = iocb->ki_filp;
2991         struct inode *inode = file->f_mapping->host;
2992         ssize_t ret;
2993
2994         inode_lock(inode);
2995         ret = generic_write_checks(iocb, from);
2996         if (ret > 0)
2997                 ret = __generic_file_write_iter(iocb, from);
2998         inode_unlock(inode);
2999
3000         if (ret > 0)
3001                 ret = generic_write_sync(iocb, ret);
3002         return ret;
3003 }
3004 EXPORT_SYMBOL(generic_file_write_iter);
3005
3006 /**
3007  * try_to_release_page() - release old fs-specific metadata on a page
3008  *
3009  * @page: the page which the kernel is trying to free
3010  * @gfp_mask: memory allocation flags (and I/O mode)
3011  *
3012  * The address_space is to try to release any data against the page
3013  * (presumably at page->private).  If the release was successful, return '1'.
3014  * Otherwise return zero.
3015  *
3016  * This may also be called if PG_fscache is set on a page, indicating that the
3017  * page is known to the local caching routines.
3018  *
3019  * The @gfp_mask argument specifies whether I/O may be performed to release
3020  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3021  *
3022  */
3023 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3024 {
3025         struct address_space * const mapping = page->mapping;
3026
3027         BUG_ON(!PageLocked(page));
3028         if (PageWriteback(page))
3029                 return 0;
3030
3031         if (mapping && mapping->a_ops->releasepage)
3032                 return mapping->a_ops->releasepage(page, gfp_mask);
3033         return try_to_free_buffers(page);
3034 }
3035
3036 EXPORT_SYMBOL(try_to_release_page);