]> git.karo-electronics.de Git - linux-beck.git/blob - mm/filemap.c
Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[linux-beck.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246         io_schedule();
247         return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252         sleep_on_page(word);
253         return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_bit(AS_ENOSPC, &mapping->flags) &&
261             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262                 ret = -ENOSPC;
263         if (test_bit(AS_EIO, &mapping->flags) &&
264             test_and_clear_bit(AS_EIO, &mapping->flags))
265                 ret = -EIO;
266         return ret;
267 }
268
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:    address space structure to write
272  * @start:      offset in bytes where the range starts
273  * @end:        offset in bytes where the range ends (inclusive)
274  * @sync_mode:  enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285                                 loff_t end, int sync_mode)
286 {
287         int ret;
288         struct writeback_control wbc = {
289                 .sync_mode = sync_mode,
290                 .nr_to_write = LONG_MAX,
291                 .range_start = start,
292                 .range_end = end,
293         };
294
295         if (!mapping_cap_writeback_dirty(mapping))
296                 return 0;
297
298         ret = do_writepages(mapping, &wbc);
299         return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303         int sync_mode)
304 {
305         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315                                 loff_t end)
316 {
317         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:    target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:            address space structure to wait for
337  * @start_byte:         offset in bytes where the range starts
338  * @end_byte:           offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344                             loff_t end_byte)
345 {
346         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348         struct pagevec pvec;
349         int nr_pages;
350         int ret2, ret = 0;
351
352         if (end_byte < start_byte)
353                 goto out;
354
355         pagevec_init(&pvec, 0);
356         while ((index <= end) &&
357                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358                         PAGECACHE_TAG_WRITEBACK,
359                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360                 unsigned i;
361
362                 for (i = 0; i < nr_pages; i++) {
363                         struct page *page = pvec.pages[i];
364
365                         /* until radix tree lookup accepts end_index */
366                         if (page->index > end)
367                                 continue;
368
369                         wait_on_page_writeback(page);
370                         if (TestClearPageError(page))
371                                 ret = -EIO;
372                 }
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 out:
377         ret2 = filemap_check_errors(mapping);
378         if (!ret)
379                 ret = ret2;
380
381         return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394         loff_t i_size = i_size_read(mapping->host);
395
396         if (i_size == 0)
397                 return 0;
398
399         return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405         int err = 0;
406
407         if (mapping->nrpages) {
408                 err = filemap_fdatawrite(mapping);
409                 /*
410                  * Even if the above returned error, the pages may be
411                  * written partially (e.g. -ENOSPC), so we wait for it.
412                  * But the -EIO is special case, it may indicate the worst
413                  * thing (e.g. bug) happened, so we avoid waiting for it.
414                  */
415                 if (err != -EIO) {
416                         int err2 = filemap_fdatawait(mapping);
417                         if (!err)
418                                 err = err2;
419                 }
420         } else {
421                 err = filemap_check_errors(mapping);
422         }
423         return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:    the address_space for the pages
430  * @lstart:     offset in bytes where the range starts
431  * @lend:       offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439                                  loff_t lstart, loff_t lend)
440 {
441         int err = 0;
442
443         if (mapping->nrpages) {
444                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445                                                  WB_SYNC_ALL);
446                 /* See comment of filemap_write_and_wait() */
447                 if (err != -EIO) {
448                         int err2 = filemap_fdatawait_range(mapping,
449                                                 lstart, lend);
450                         if (!err)
451                                 err = err2;
452                 }
453         } else {
454                 err = filemap_check_errors(mapping);
455         }
456         return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:        page to be replaced
463  * @new:        page to replace with
464  * @gfp_mask:   allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477         int error;
478
479         VM_BUG_ON_PAGE(!PageLocked(old), old);
480         VM_BUG_ON_PAGE(!PageLocked(new), new);
481         VM_BUG_ON_PAGE(new->mapping, new);
482
483         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484         if (!error) {
485                 struct address_space *mapping = old->mapping;
486                 void (*freepage)(struct page *);
487
488                 pgoff_t offset = old->index;
489                 freepage = mapping->a_ops->freepage;
490
491                 page_cache_get(new);
492                 new->mapping = mapping;
493                 new->index = offset;
494
495                 spin_lock_irq(&mapping->tree_lock);
496                 __delete_from_page_cache(old, NULL);
497                 error = radix_tree_insert(&mapping->page_tree, offset, new);
498                 BUG_ON(error);
499                 mapping->nrpages++;
500                 __inc_zone_page_state(new, NR_FILE_PAGES);
501                 if (PageSwapBacked(new))
502                         __inc_zone_page_state(new, NR_SHMEM);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 /* mem_cgroup codes must not be called under tree_lock */
505                 mem_cgroup_replace_page_cache(old, new);
506                 radix_tree_preload_end();
507                 if (freepage)
508                         freepage(old);
509                 page_cache_release(old);
510         }
511
512         return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517                                   struct page *page, void **shadowp)
518 {
519         struct radix_tree_node *node;
520         void **slot;
521         int error;
522
523         error = __radix_tree_create(&mapping->page_tree, page->index,
524                                     &node, &slot);
525         if (error)
526                 return error;
527         if (*slot) {
528                 void *p;
529
530                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531                 if (!radix_tree_exceptional_entry(p))
532                         return -EEXIST;
533                 if (shadowp)
534                         *shadowp = p;
535                 mapping->nrshadows--;
536                 if (node)
537                         workingset_node_shadows_dec(node);
538         }
539         radix_tree_replace_slot(slot, page);
540         mapping->nrpages++;
541         if (node) {
542                 workingset_node_pages_inc(node);
543                 /*
544                  * Don't track node that contains actual pages.
545                  *
546                  * Avoid acquiring the list_lru lock if already
547                  * untracked.  The list_empty() test is safe as
548                  * node->private_list is protected by
549                  * mapping->tree_lock.
550                  */
551                 if (!list_empty(&node->private_list))
552                         list_lru_del(&workingset_shadow_nodes,
553                                      &node->private_list);
554         }
555         return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559                                       struct address_space *mapping,
560                                       pgoff_t offset, gfp_t gfp_mask,
561                                       void **shadowp)
562 {
563         int error;
564
565         VM_BUG_ON_PAGE(!PageLocked(page), page);
566         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568         error = mem_cgroup_charge_file(page, current->mm,
569                                         gfp_mask & GFP_RECLAIM_MASK);
570         if (error)
571                 return error;
572
573         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574         if (error) {
575                 mem_cgroup_uncharge_cache_page(page);
576                 return error;
577         }
578
579         page_cache_get(page);
580         page->mapping = mapping;
581         page->index = offset;
582
583         spin_lock_irq(&mapping->tree_lock);
584         error = page_cache_tree_insert(mapping, page, shadowp);
585         radix_tree_preload_end();
586         if (unlikely(error))
587                 goto err_insert;
588         __inc_zone_page_state(page, NR_FILE_PAGES);
589         spin_unlock_irq(&mapping->tree_lock);
590         trace_mm_filemap_add_to_page_cache(page);
591         return 0;
592 err_insert:
593         page->mapping = NULL;
594         /* Leave page->index set: truncation relies upon it */
595         spin_unlock_irq(&mapping->tree_lock);
596         mem_cgroup_uncharge_cache_page(page);
597         page_cache_release(page);
598         return error;
599 }
600
601 /**
602  * add_to_page_cache_locked - add a locked page to the pagecache
603  * @page:       page to add
604  * @mapping:    the page's address_space
605  * @offset:     page index
606  * @gfp_mask:   page allocation mode
607  *
608  * This function is used to add a page to the pagecache. It must be locked.
609  * This function does not add the page to the LRU.  The caller must do that.
610  */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612                 pgoff_t offset, gfp_t gfp_mask)
613 {
614         return __add_to_page_cache_locked(page, mapping, offset,
615                                           gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620                                 pgoff_t offset, gfp_t gfp_mask)
621 {
622         void *shadow = NULL;
623         int ret;
624
625         __set_page_locked(page);
626         ret = __add_to_page_cache_locked(page, mapping, offset,
627                                          gfp_mask, &shadow);
628         if (unlikely(ret))
629                 __clear_page_locked(page);
630         else {
631                 /*
632                  * The page might have been evicted from cache only
633                  * recently, in which case it should be activated like
634                  * any other repeatedly accessed page.
635                  */
636                 if (shadow && workingset_refault(shadow)) {
637                         SetPageActive(page);
638                         workingset_activation(page);
639                 } else
640                         ClearPageActive(page);
641                 lru_cache_add(page);
642         }
643         return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650         int n;
651         struct page *page;
652
653         if (cpuset_do_page_mem_spread()) {
654                 unsigned int cpuset_mems_cookie;
655                 do {
656                         cpuset_mems_cookie = read_mems_allowed_begin();
657                         n = cpuset_mem_spread_node();
658                         page = alloc_pages_exact_node(n, gfp, 0);
659                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661                 return page;
662         }
663         return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669  * In order to wait for pages to become available there must be
670  * waitqueues associated with pages. By using a hash table of
671  * waitqueues where the bucket discipline is to maintain all
672  * waiters on the same queue and wake all when any of the pages
673  * become available, and for the woken contexts to check to be
674  * sure the appropriate page became available, this saves space
675  * at a cost of "thundering herd" phenomena during rare hash
676  * collisions.
677  */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680         const struct zone *zone = page_zone(page);
681
682         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694         if (test_bit(bit_nr, &page->flags))
695                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696                                                         TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704         if (!test_bit(bit_nr, &page->flags))
705                 return 0;
706
707         return __wait_on_bit(page_waitqueue(page), &wait,
708                              sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713  * @page: Page defining the wait queue of interest
714  * @waiter: Waiter to add to the queue
715  *
716  * Add an arbitrary @waiter to the wait queue for the nominated @page.
717  */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720         wait_queue_head_t *q = page_waitqueue(page);
721         unsigned long flags;
722
723         spin_lock_irqsave(&q->lock, flags);
724         __add_wait_queue(q, waiter);
725         spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730  * unlock_page - unlock a locked page
731  * @page: the page
732  *
733  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735  * mechananism between PageLocked pages and PageWriteback pages is shared.
736  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737  *
738  * The mb is necessary to enforce ordering between the clear_bit and the read
739  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740  */
741 void unlock_page(struct page *page)
742 {
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         clear_bit_unlock(PG_locked, &page->flags);
745         smp_mb__after_atomic();
746         wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751  * end_page_writeback - end writeback against a page
752  * @page: the page
753  */
754 void end_page_writeback(struct page *page)
755 {
756         /*
757          * TestClearPageReclaim could be used here but it is an atomic
758          * operation and overkill in this particular case. Failing to
759          * shuffle a page marked for immediate reclaim is too mild to
760          * justify taking an atomic operation penalty at the end of
761          * ever page writeback.
762          */
763         if (PageReclaim(page)) {
764                 ClearPageReclaim(page);
765                 rotate_reclaimable_page(page);
766         }
767
768         if (!test_clear_page_writeback(page))
769                 BUG();
770
771         smp_mb__after_atomic();
772         wake_up_page(page, PG_writeback);
773 }
774 EXPORT_SYMBOL(end_page_writeback);
775
776 /*
777  * After completing I/O on a page, call this routine to update the page
778  * flags appropriately
779  */
780 void page_endio(struct page *page, int rw, int err)
781 {
782         if (rw == READ) {
783                 if (!err) {
784                         SetPageUptodate(page);
785                 } else {
786                         ClearPageUptodate(page);
787                         SetPageError(page);
788                 }
789                 unlock_page(page);
790         } else { /* rw == WRITE */
791                 if (err) {
792                         SetPageError(page);
793                         if (page->mapping)
794                                 mapping_set_error(page->mapping, err);
795                 }
796                 end_page_writeback(page);
797         }
798 }
799 EXPORT_SYMBOL_GPL(page_endio);
800
801 /**
802  * __lock_page - get a lock on the page, assuming we need to sleep to get it
803  * @page: the page to lock
804  */
805 void __lock_page(struct page *page)
806 {
807         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810                                                         TASK_UNINTERRUPTIBLE);
811 }
812 EXPORT_SYMBOL(__lock_page);
813
814 int __lock_page_killable(struct page *page)
815 {
816         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818         return __wait_on_bit_lock(page_waitqueue(page), &wait,
819                                         sleep_on_page_killable, TASK_KILLABLE);
820 }
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
822
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824                          unsigned int flags)
825 {
826         if (flags & FAULT_FLAG_ALLOW_RETRY) {
827                 /*
828                  * CAUTION! In this case, mmap_sem is not released
829                  * even though return 0.
830                  */
831                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832                         return 0;
833
834                 up_read(&mm->mmap_sem);
835                 if (flags & FAULT_FLAG_KILLABLE)
836                         wait_on_page_locked_killable(page);
837                 else
838                         wait_on_page_locked(page);
839                 return 0;
840         } else {
841                 if (flags & FAULT_FLAG_KILLABLE) {
842                         int ret;
843
844                         ret = __lock_page_killable(page);
845                         if (ret) {
846                                 up_read(&mm->mmap_sem);
847                                 return 0;
848                         }
849                 } else
850                         __lock_page(page);
851                 return 1;
852         }
853 }
854
855 /**
856  * page_cache_next_hole - find the next hole (not-present entry)
857  * @mapping: mapping
858  * @index: index
859  * @max_scan: maximum range to search
860  *
861  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862  * lowest indexed hole.
863  *
864  * Returns: the index of the hole if found, otherwise returns an index
865  * outside of the set specified (in which case 'return - index >=
866  * max_scan' will be true). In rare cases of index wrap-around, 0 will
867  * be returned.
868  *
869  * page_cache_next_hole may be called under rcu_read_lock. However,
870  * like radix_tree_gang_lookup, this will not atomically search a
871  * snapshot of the tree at a single point in time. For example, if a
872  * hole is created at index 5, then subsequently a hole is created at
873  * index 10, page_cache_next_hole covering both indexes may return 10
874  * if called under rcu_read_lock.
875  */
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877                              pgoff_t index, unsigned long max_scan)
878 {
879         unsigned long i;
880
881         for (i = 0; i < max_scan; i++) {
882                 struct page *page;
883
884                 page = radix_tree_lookup(&mapping->page_tree, index);
885                 if (!page || radix_tree_exceptional_entry(page))
886                         break;
887                 index++;
888                 if (index == 0)
889                         break;
890         }
891
892         return index;
893 }
894 EXPORT_SYMBOL(page_cache_next_hole);
895
896 /**
897  * page_cache_prev_hole - find the prev hole (not-present entry)
898  * @mapping: mapping
899  * @index: index
900  * @max_scan: maximum range to search
901  *
902  * Search backwards in the range [max(index-max_scan+1, 0), index] for
903  * the first hole.
904  *
905  * Returns: the index of the hole if found, otherwise returns an index
906  * outside of the set specified (in which case 'index - return >=
907  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908  * will be returned.
909  *
910  * page_cache_prev_hole may be called under rcu_read_lock. However,
911  * like radix_tree_gang_lookup, this will not atomically search a
912  * snapshot of the tree at a single point in time. For example, if a
913  * hole is created at index 10, then subsequently a hole is created at
914  * index 5, page_cache_prev_hole covering both indexes may return 5 if
915  * called under rcu_read_lock.
916  */
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918                              pgoff_t index, unsigned long max_scan)
919 {
920         unsigned long i;
921
922         for (i = 0; i < max_scan; i++) {
923                 struct page *page;
924
925                 page = radix_tree_lookup(&mapping->page_tree, index);
926                 if (!page || radix_tree_exceptional_entry(page))
927                         break;
928                 index--;
929                 if (index == ULONG_MAX)
930                         break;
931         }
932
933         return index;
934 }
935 EXPORT_SYMBOL(page_cache_prev_hole);
936
937 /**
938  * find_get_entry - find and get a page cache entry
939  * @mapping: the address_space to search
940  * @offset: the page cache index
941  *
942  * Looks up the page cache slot at @mapping & @offset.  If there is a
943  * page cache page, it is returned with an increased refcount.
944  *
945  * If the slot holds a shadow entry of a previously evicted page, or a
946  * swap entry from shmem/tmpfs, it is returned.
947  *
948  * Otherwise, %NULL is returned.
949  */
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
951 {
952         void **pagep;
953         struct page *page;
954
955         rcu_read_lock();
956 repeat:
957         page = NULL;
958         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959         if (pagep) {
960                 page = radix_tree_deref_slot(pagep);
961                 if (unlikely(!page))
962                         goto out;
963                 if (radix_tree_exception(page)) {
964                         if (radix_tree_deref_retry(page))
965                                 goto repeat;
966                         /*
967                          * A shadow entry of a recently evicted page,
968                          * or a swap entry from shmem/tmpfs.  Return
969                          * it without attempting to raise page count.
970                          */
971                         goto out;
972                 }
973                 if (!page_cache_get_speculative(page))
974                         goto repeat;
975
976                 /*
977                  * Has the page moved?
978                  * This is part of the lockless pagecache protocol. See
979                  * include/linux/pagemap.h for details.
980                  */
981                 if (unlikely(page != *pagep)) {
982                         page_cache_release(page);
983                         goto repeat;
984                 }
985         }
986 out:
987         rcu_read_unlock();
988
989         return page;
990 }
991 EXPORT_SYMBOL(find_get_entry);
992
993 /**
994  * find_lock_entry - locate, pin and lock a page cache entry
995  * @mapping: the address_space to search
996  * @offset: the page cache index
997  *
998  * Looks up the page cache slot at @mapping & @offset.  If there is a
999  * page cache page, it is returned locked and with an increased
1000  * refcount.
1001  *
1002  * If the slot holds a shadow entry of a previously evicted page, or a
1003  * swap entry from shmem/tmpfs, it is returned.
1004  *
1005  * Otherwise, %NULL is returned.
1006  *
1007  * find_lock_entry() may sleep.
1008  */
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1010 {
1011         struct page *page;
1012
1013 repeat:
1014         page = find_get_entry(mapping, offset);
1015         if (page && !radix_tree_exception(page)) {
1016                 lock_page(page);
1017                 /* Has the page been truncated? */
1018                 if (unlikely(page->mapping != mapping)) {
1019                         unlock_page(page);
1020                         page_cache_release(page);
1021                         goto repeat;
1022                 }
1023                 VM_BUG_ON_PAGE(page->index != offset, page);
1024         }
1025         return page;
1026 }
1027 EXPORT_SYMBOL(find_lock_entry);
1028
1029 /**
1030  * pagecache_get_page - find and get a page reference
1031  * @mapping: the address_space to search
1032  * @offset: the page index
1033  * @fgp_flags: PCG flags
1034  * @gfp_mask: gfp mask to use if a page is to be allocated
1035  *
1036  * Looks up the page cache slot at @mapping & @offset.
1037  *
1038  * PCG flags modify how the page is returned
1039  *
1040  * FGP_ACCESSED: the page will be marked accessed
1041  * FGP_LOCK: Page is return locked
1042  * FGP_CREAT: If page is not present then a new page is allocated using
1043  *              @gfp_mask and added to the page cache and the VM's LRU
1044  *              list. The page is returned locked and with an increased
1045  *              refcount. Otherwise, %NULL is returned.
1046  *
1047  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048  * if the GFP flags specified for FGP_CREAT are atomic.
1049  *
1050  * If there is a page cache page, it is returned with an increased refcount.
1051  */
1052 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1053         int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1054 {
1055         struct page *page;
1056
1057 repeat:
1058         page = find_get_entry(mapping, offset);
1059         if (radix_tree_exceptional_entry(page))
1060                 page = NULL;
1061         if (!page)
1062                 goto no_page;
1063
1064         if (fgp_flags & FGP_LOCK) {
1065                 if (fgp_flags & FGP_NOWAIT) {
1066                         if (!trylock_page(page)) {
1067                                 page_cache_release(page);
1068                                 return NULL;
1069                         }
1070                 } else {
1071                         lock_page(page);
1072                 }
1073
1074                 /* Has the page been truncated? */
1075                 if (unlikely(page->mapping != mapping)) {
1076                         unlock_page(page);
1077                         page_cache_release(page);
1078                         goto repeat;
1079                 }
1080                 VM_BUG_ON_PAGE(page->index != offset, page);
1081         }
1082
1083         if (page && (fgp_flags & FGP_ACCESSED))
1084                 mark_page_accessed(page);
1085
1086 no_page:
1087         if (!page && (fgp_flags & FGP_CREAT)) {
1088                 int err;
1089                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1090                         cache_gfp_mask |= __GFP_WRITE;
1091                 if (fgp_flags & FGP_NOFS) {
1092                         cache_gfp_mask &= ~__GFP_FS;
1093                         radix_gfp_mask &= ~__GFP_FS;
1094                 }
1095
1096                 page = __page_cache_alloc(cache_gfp_mask);
1097                 if (!page)
1098                         return NULL;
1099
1100                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1101                         fgp_flags |= FGP_LOCK;
1102
1103                 /* Init accessed so avoit atomic mark_page_accessed later */
1104                 if (fgp_flags & FGP_ACCESSED)
1105                         init_page_accessed(page);
1106
1107                 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1108                 if (unlikely(err)) {
1109                         page_cache_release(page);
1110                         page = NULL;
1111                         if (err == -EEXIST)
1112                                 goto repeat;
1113                 }
1114         }
1115
1116         return page;
1117 }
1118 EXPORT_SYMBOL(pagecache_get_page);
1119
1120 /**
1121  * find_get_entries - gang pagecache lookup
1122  * @mapping:    The address_space to search
1123  * @start:      The starting page cache index
1124  * @nr_entries: The maximum number of entries
1125  * @entries:    Where the resulting entries are placed
1126  * @indices:    The cache indices corresponding to the entries in @entries
1127  *
1128  * find_get_entries() will search for and return a group of up to
1129  * @nr_entries entries in the mapping.  The entries are placed at
1130  * @entries.  find_get_entries() takes a reference against any actual
1131  * pages it returns.
1132  *
1133  * The search returns a group of mapping-contiguous page cache entries
1134  * with ascending indexes.  There may be holes in the indices due to
1135  * not-present pages.
1136  *
1137  * Any shadow entries of evicted pages, or swap entries from
1138  * shmem/tmpfs, are included in the returned array.
1139  *
1140  * find_get_entries() returns the number of pages and shadow entries
1141  * which were found.
1142  */
1143 unsigned find_get_entries(struct address_space *mapping,
1144                           pgoff_t start, unsigned int nr_entries,
1145                           struct page **entries, pgoff_t *indices)
1146 {
1147         void **slot;
1148         unsigned int ret = 0;
1149         struct radix_tree_iter iter;
1150
1151         if (!nr_entries)
1152                 return 0;
1153
1154         rcu_read_lock();
1155 restart:
1156         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1157                 struct page *page;
1158 repeat:
1159                 page = radix_tree_deref_slot(slot);
1160                 if (unlikely(!page))
1161                         continue;
1162                 if (radix_tree_exception(page)) {
1163                         if (radix_tree_deref_retry(page))
1164                                 goto restart;
1165                         /*
1166                          * A shadow entry of a recently evicted page,
1167                          * or a swap entry from shmem/tmpfs.  Return
1168                          * it without attempting to raise page count.
1169                          */
1170                         goto export;
1171                 }
1172                 if (!page_cache_get_speculative(page))
1173                         goto repeat;
1174
1175                 /* Has the page moved? */
1176                 if (unlikely(page != *slot)) {
1177                         page_cache_release(page);
1178                         goto repeat;
1179                 }
1180 export:
1181                 indices[ret] = iter.index;
1182                 entries[ret] = page;
1183                 if (++ret == nr_entries)
1184                         break;
1185         }
1186         rcu_read_unlock();
1187         return ret;
1188 }
1189
1190 /**
1191  * find_get_pages - gang pagecache lookup
1192  * @mapping:    The address_space to search
1193  * @start:      The starting page index
1194  * @nr_pages:   The maximum number of pages
1195  * @pages:      Where the resulting pages are placed
1196  *
1197  * find_get_pages() will search for and return a group of up to
1198  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1199  * find_get_pages() takes a reference against the returned pages.
1200  *
1201  * The search returns a group of mapping-contiguous pages with ascending
1202  * indexes.  There may be holes in the indices due to not-present pages.
1203  *
1204  * find_get_pages() returns the number of pages which were found.
1205  */
1206 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1207                             unsigned int nr_pages, struct page **pages)
1208 {
1209         struct radix_tree_iter iter;
1210         void **slot;
1211         unsigned ret = 0;
1212
1213         if (unlikely(!nr_pages))
1214                 return 0;
1215
1216         rcu_read_lock();
1217 restart:
1218         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1219                 struct page *page;
1220 repeat:
1221                 page = radix_tree_deref_slot(slot);
1222                 if (unlikely(!page))
1223                         continue;
1224
1225                 if (radix_tree_exception(page)) {
1226                         if (radix_tree_deref_retry(page)) {
1227                                 /*
1228                                  * Transient condition which can only trigger
1229                                  * when entry at index 0 moves out of or back
1230                                  * to root: none yet gotten, safe to restart.
1231                                  */
1232                                 WARN_ON(iter.index);
1233                                 goto restart;
1234                         }
1235                         /*
1236                          * A shadow entry of a recently evicted page,
1237                          * or a swap entry from shmem/tmpfs.  Skip
1238                          * over it.
1239                          */
1240                         continue;
1241                 }
1242
1243                 if (!page_cache_get_speculative(page))
1244                         goto repeat;
1245
1246                 /* Has the page moved? */
1247                 if (unlikely(page != *slot)) {
1248                         page_cache_release(page);
1249                         goto repeat;
1250                 }
1251
1252                 pages[ret] = page;
1253                 if (++ret == nr_pages)
1254                         break;
1255         }
1256
1257         rcu_read_unlock();
1258         return ret;
1259 }
1260
1261 /**
1262  * find_get_pages_contig - gang contiguous pagecache lookup
1263  * @mapping:    The address_space to search
1264  * @index:      The starting page index
1265  * @nr_pages:   The maximum number of pages
1266  * @pages:      Where the resulting pages are placed
1267  *
1268  * find_get_pages_contig() works exactly like find_get_pages(), except
1269  * that the returned number of pages are guaranteed to be contiguous.
1270  *
1271  * find_get_pages_contig() returns the number of pages which were found.
1272  */
1273 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1274                                unsigned int nr_pages, struct page **pages)
1275 {
1276         struct radix_tree_iter iter;
1277         void **slot;
1278         unsigned int ret = 0;
1279
1280         if (unlikely(!nr_pages))
1281                 return 0;
1282
1283         rcu_read_lock();
1284 restart:
1285         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1286                 struct page *page;
1287 repeat:
1288                 page = radix_tree_deref_slot(slot);
1289                 /* The hole, there no reason to continue */
1290                 if (unlikely(!page))
1291                         break;
1292
1293                 if (radix_tree_exception(page)) {
1294                         if (radix_tree_deref_retry(page)) {
1295                                 /*
1296                                  * Transient condition which can only trigger
1297                                  * when entry at index 0 moves out of or back
1298                                  * to root: none yet gotten, safe to restart.
1299                                  */
1300                                 goto restart;
1301                         }
1302                         /*
1303                          * A shadow entry of a recently evicted page,
1304                          * or a swap entry from shmem/tmpfs.  Stop
1305                          * looking for contiguous pages.
1306                          */
1307                         break;
1308                 }
1309
1310                 if (!page_cache_get_speculative(page))
1311                         goto repeat;
1312
1313                 /* Has the page moved? */
1314                 if (unlikely(page != *slot)) {
1315                         page_cache_release(page);
1316                         goto repeat;
1317                 }
1318
1319                 /*
1320                  * must check mapping and index after taking the ref.
1321                  * otherwise we can get both false positives and false
1322                  * negatives, which is just confusing to the caller.
1323                  */
1324                 if (page->mapping == NULL || page->index != iter.index) {
1325                         page_cache_release(page);
1326                         break;
1327                 }
1328
1329                 pages[ret] = page;
1330                 if (++ret == nr_pages)
1331                         break;
1332         }
1333         rcu_read_unlock();
1334         return ret;
1335 }
1336 EXPORT_SYMBOL(find_get_pages_contig);
1337
1338 /**
1339  * find_get_pages_tag - find and return pages that match @tag
1340  * @mapping:    the address_space to search
1341  * @index:      the starting page index
1342  * @tag:        the tag index
1343  * @nr_pages:   the maximum number of pages
1344  * @pages:      where the resulting pages are placed
1345  *
1346  * Like find_get_pages, except we only return pages which are tagged with
1347  * @tag.   We update @index to index the next page for the traversal.
1348  */
1349 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1350                         int tag, unsigned int nr_pages, struct page **pages)
1351 {
1352         struct radix_tree_iter iter;
1353         void **slot;
1354         unsigned ret = 0;
1355
1356         if (unlikely(!nr_pages))
1357                 return 0;
1358
1359         rcu_read_lock();
1360 restart:
1361         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1362                                    &iter, *index, tag) {
1363                 struct page *page;
1364 repeat:
1365                 page = radix_tree_deref_slot(slot);
1366                 if (unlikely(!page))
1367                         continue;
1368
1369                 if (radix_tree_exception(page)) {
1370                         if (radix_tree_deref_retry(page)) {
1371                                 /*
1372                                  * Transient condition which can only trigger
1373                                  * when entry at index 0 moves out of or back
1374                                  * to root: none yet gotten, safe to restart.
1375                                  */
1376                                 goto restart;
1377                         }
1378                         /*
1379                          * A shadow entry of a recently evicted page.
1380                          *
1381                          * Those entries should never be tagged, but
1382                          * this tree walk is lockless and the tags are
1383                          * looked up in bulk, one radix tree node at a
1384                          * time, so there is a sizable window for page
1385                          * reclaim to evict a page we saw tagged.
1386                          *
1387                          * Skip over it.
1388                          */
1389                         continue;
1390                 }
1391
1392                 if (!page_cache_get_speculative(page))
1393                         goto repeat;
1394
1395                 /* Has the page moved? */
1396                 if (unlikely(page != *slot)) {
1397                         page_cache_release(page);
1398                         goto repeat;
1399                 }
1400
1401                 pages[ret] = page;
1402                 if (++ret == nr_pages)
1403                         break;
1404         }
1405
1406         rcu_read_unlock();
1407
1408         if (ret)
1409                 *index = pages[ret - 1]->index + 1;
1410
1411         return ret;
1412 }
1413 EXPORT_SYMBOL(find_get_pages_tag);
1414
1415 /*
1416  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417  * a _large_ part of the i/o request. Imagine the worst scenario:
1418  *
1419  *      ---R__________________________________________B__________
1420  *         ^ reading here                             ^ bad block(assume 4k)
1421  *
1422  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423  * => failing the whole request => read(R) => read(R+1) =>
1424  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427  *
1428  * It is going insane. Fix it by quickly scaling down the readahead size.
1429  */
1430 static void shrink_readahead_size_eio(struct file *filp,
1431                                         struct file_ra_state *ra)
1432 {
1433         ra->ra_pages /= 4;
1434 }
1435
1436 /**
1437  * do_generic_file_read - generic file read routine
1438  * @filp:       the file to read
1439  * @ppos:       current file position
1440  * @iter:       data destination
1441  * @written:    already copied
1442  *
1443  * This is a generic file read routine, and uses the
1444  * mapping->a_ops->readpage() function for the actual low-level stuff.
1445  *
1446  * This is really ugly. But the goto's actually try to clarify some
1447  * of the logic when it comes to error handling etc.
1448  */
1449 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450                 struct iov_iter *iter, ssize_t written)
1451 {
1452         struct address_space *mapping = filp->f_mapping;
1453         struct inode *inode = mapping->host;
1454         struct file_ra_state *ra = &filp->f_ra;
1455         pgoff_t index;
1456         pgoff_t last_index;
1457         pgoff_t prev_index;
1458         unsigned long offset;      /* offset into pagecache page */
1459         unsigned int prev_offset;
1460         int error = 0;
1461
1462         index = *ppos >> PAGE_CACHE_SHIFT;
1463         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1465         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1466         offset = *ppos & ~PAGE_CACHE_MASK;
1467
1468         for (;;) {
1469                 struct page *page;
1470                 pgoff_t end_index;
1471                 loff_t isize;
1472                 unsigned long nr, ret;
1473
1474                 cond_resched();
1475 find_page:
1476                 page = find_get_page(mapping, index);
1477                 if (!page) {
1478                         page_cache_sync_readahead(mapping,
1479                                         ra, filp,
1480                                         index, last_index - index);
1481                         page = find_get_page(mapping, index);
1482                         if (unlikely(page == NULL))
1483                                 goto no_cached_page;
1484                 }
1485                 if (PageReadahead(page)) {
1486                         page_cache_async_readahead(mapping,
1487                                         ra, filp, page,
1488                                         index, last_index - index);
1489                 }
1490                 if (!PageUptodate(page)) {
1491                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492                                         !mapping->a_ops->is_partially_uptodate)
1493                                 goto page_not_up_to_date;
1494                         if (!trylock_page(page))
1495                                 goto page_not_up_to_date;
1496                         /* Did it get truncated before we got the lock? */
1497                         if (!page->mapping)
1498                                 goto page_not_up_to_date_locked;
1499                         if (!mapping->a_ops->is_partially_uptodate(page,
1500                                                         offset, iter->count))
1501                                 goto page_not_up_to_date_locked;
1502                         unlock_page(page);
1503                 }
1504 page_ok:
1505                 /*
1506                  * i_size must be checked after we know the page is Uptodate.
1507                  *
1508                  * Checking i_size after the check allows us to calculate
1509                  * the correct value for "nr", which means the zero-filled
1510                  * part of the page is not copied back to userspace (unless
1511                  * another truncate extends the file - this is desired though).
1512                  */
1513
1514                 isize = i_size_read(inode);
1515                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516                 if (unlikely(!isize || index > end_index)) {
1517                         page_cache_release(page);
1518                         goto out;
1519                 }
1520
1521                 /* nr is the maximum number of bytes to copy from this page */
1522                 nr = PAGE_CACHE_SIZE;
1523                 if (index == end_index) {
1524                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525                         if (nr <= offset) {
1526                                 page_cache_release(page);
1527                                 goto out;
1528                         }
1529                 }
1530                 nr = nr - offset;
1531
1532                 /* If users can be writing to this page using arbitrary
1533                  * virtual addresses, take care about potential aliasing
1534                  * before reading the page on the kernel side.
1535                  */
1536                 if (mapping_writably_mapped(mapping))
1537                         flush_dcache_page(page);
1538
1539                 /*
1540                  * When a sequential read accesses a page several times,
1541                  * only mark it as accessed the first time.
1542                  */
1543                 if (prev_index != index || offset != prev_offset)
1544                         mark_page_accessed(page);
1545                 prev_index = index;
1546
1547                 /*
1548                  * Ok, we have the page, and it's up-to-date, so
1549                  * now we can copy it to user space...
1550                  */
1551
1552                 ret = copy_page_to_iter(page, offset, nr, iter);
1553                 offset += ret;
1554                 index += offset >> PAGE_CACHE_SHIFT;
1555                 offset &= ~PAGE_CACHE_MASK;
1556                 prev_offset = offset;
1557
1558                 page_cache_release(page);
1559                 written += ret;
1560                 if (!iov_iter_count(iter))
1561                         goto out;
1562                 if (ret < nr) {
1563                         error = -EFAULT;
1564                         goto out;
1565                 }
1566                 continue;
1567
1568 page_not_up_to_date:
1569                 /* Get exclusive access to the page ... */
1570                 error = lock_page_killable(page);
1571                 if (unlikely(error))
1572                         goto readpage_error;
1573
1574 page_not_up_to_date_locked:
1575                 /* Did it get truncated before we got the lock? */
1576                 if (!page->mapping) {
1577                         unlock_page(page);
1578                         page_cache_release(page);
1579                         continue;
1580                 }
1581
1582                 /* Did somebody else fill it already? */
1583                 if (PageUptodate(page)) {
1584                         unlock_page(page);
1585                         goto page_ok;
1586                 }
1587
1588 readpage:
1589                 /*
1590                  * A previous I/O error may have been due to temporary
1591                  * failures, eg. multipath errors.
1592                  * PG_error will be set again if readpage fails.
1593                  */
1594                 ClearPageError(page);
1595                 /* Start the actual read. The read will unlock the page. */
1596                 error = mapping->a_ops->readpage(filp, page);
1597
1598                 if (unlikely(error)) {
1599                         if (error == AOP_TRUNCATED_PAGE) {
1600                                 page_cache_release(page);
1601                                 error = 0;
1602                                 goto find_page;
1603                         }
1604                         goto readpage_error;
1605                 }
1606
1607                 if (!PageUptodate(page)) {
1608                         error = lock_page_killable(page);
1609                         if (unlikely(error))
1610                                 goto readpage_error;
1611                         if (!PageUptodate(page)) {
1612                                 if (page->mapping == NULL) {
1613                                         /*
1614                                          * invalidate_mapping_pages got it
1615                                          */
1616                                         unlock_page(page);
1617                                         page_cache_release(page);
1618                                         goto find_page;
1619                                 }
1620                                 unlock_page(page);
1621                                 shrink_readahead_size_eio(filp, ra);
1622                                 error = -EIO;
1623                                 goto readpage_error;
1624                         }
1625                         unlock_page(page);
1626                 }
1627
1628                 goto page_ok;
1629
1630 readpage_error:
1631                 /* UHHUH! A synchronous read error occurred. Report it */
1632                 page_cache_release(page);
1633                 goto out;
1634
1635 no_cached_page:
1636                 /*
1637                  * Ok, it wasn't cached, so we need to create a new
1638                  * page..
1639                  */
1640                 page = page_cache_alloc_cold(mapping);
1641                 if (!page) {
1642                         error = -ENOMEM;
1643                         goto out;
1644                 }
1645                 error = add_to_page_cache_lru(page, mapping,
1646                                                 index, GFP_KERNEL);
1647                 if (error) {
1648                         page_cache_release(page);
1649                         if (error == -EEXIST) {
1650                                 error = 0;
1651                                 goto find_page;
1652                         }
1653                         goto out;
1654                 }
1655                 goto readpage;
1656         }
1657
1658 out:
1659         ra->prev_pos = prev_index;
1660         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661         ra->prev_pos |= prev_offset;
1662
1663         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1664         file_accessed(filp);
1665         return written ? written : error;
1666 }
1667
1668 /**
1669  * generic_file_read_iter - generic filesystem read routine
1670  * @iocb:       kernel I/O control block
1671  * @iter:       destination for the data read
1672  *
1673  * This is the "read_iter()" routine for all filesystems
1674  * that can use the page cache directly.
1675  */
1676 ssize_t
1677 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1678 {
1679         struct file *file = iocb->ki_filp;
1680         ssize_t retval = 0;
1681         loff_t *ppos = &iocb->ki_pos;
1682         loff_t pos = *ppos;
1683
1684         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1685         if (file->f_flags & O_DIRECT) {
1686                 struct address_space *mapping = file->f_mapping;
1687                 struct inode *inode = mapping->host;
1688                 size_t count = iov_iter_count(iter);
1689                 loff_t size;
1690
1691                 if (!count)
1692                         goto out; /* skip atime */
1693                 size = i_size_read(inode);
1694                 retval = filemap_write_and_wait_range(mapping, pos,
1695                                         pos + count - 1);
1696                 if (!retval) {
1697                         struct iov_iter data = *iter;
1698                         retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1699                 }
1700
1701                 if (retval > 0) {
1702                         *ppos = pos + retval;
1703                         iov_iter_advance(iter, retval);
1704                 }
1705
1706                 /*
1707                  * Btrfs can have a short DIO read if we encounter
1708                  * compressed extents, so if there was an error, or if
1709                  * we've already read everything we wanted to, or if
1710                  * there was a short read because we hit EOF, go ahead
1711                  * and return.  Otherwise fallthrough to buffered io for
1712                  * the rest of the read.
1713                  */
1714                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1715                         file_accessed(file);
1716                         goto out;
1717                 }
1718         }
1719
1720         retval = do_generic_file_read(file, ppos, iter, retval);
1721 out:
1722         return retval;
1723 }
1724 EXPORT_SYMBOL(generic_file_read_iter);
1725
1726 #ifdef CONFIG_MMU
1727 /**
1728  * page_cache_read - adds requested page to the page cache if not already there
1729  * @file:       file to read
1730  * @offset:     page index
1731  *
1732  * This adds the requested page to the page cache if it isn't already there,
1733  * and schedules an I/O to read in its contents from disk.
1734  */
1735 static int page_cache_read(struct file *file, pgoff_t offset)
1736 {
1737         struct address_space *mapping = file->f_mapping;
1738         struct page *page; 
1739         int ret;
1740
1741         do {
1742                 page = page_cache_alloc_cold(mapping);
1743                 if (!page)
1744                         return -ENOMEM;
1745
1746                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1747                 if (ret == 0)
1748                         ret = mapping->a_ops->readpage(file, page);
1749                 else if (ret == -EEXIST)
1750                         ret = 0; /* losing race to add is OK */
1751
1752                 page_cache_release(page);
1753
1754         } while (ret == AOP_TRUNCATED_PAGE);
1755                 
1756         return ret;
1757 }
1758
1759 #define MMAP_LOTSAMISS  (100)
1760
1761 /*
1762  * Synchronous readahead happens when we don't even find
1763  * a page in the page cache at all.
1764  */
1765 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1766                                    struct file_ra_state *ra,
1767                                    struct file *file,
1768                                    pgoff_t offset)
1769 {
1770         unsigned long ra_pages;
1771         struct address_space *mapping = file->f_mapping;
1772
1773         /* If we don't want any read-ahead, don't bother */
1774         if (vma->vm_flags & VM_RAND_READ)
1775                 return;
1776         if (!ra->ra_pages)
1777                 return;
1778
1779         if (vma->vm_flags & VM_SEQ_READ) {
1780                 page_cache_sync_readahead(mapping, ra, file, offset,
1781                                           ra->ra_pages);
1782                 return;
1783         }
1784
1785         /* Avoid banging the cache line if not needed */
1786         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1787                 ra->mmap_miss++;
1788
1789         /*
1790          * Do we miss much more than hit in this file? If so,
1791          * stop bothering with read-ahead. It will only hurt.
1792          */
1793         if (ra->mmap_miss > MMAP_LOTSAMISS)
1794                 return;
1795
1796         /*
1797          * mmap read-around
1798          */
1799         ra_pages = max_sane_readahead(ra->ra_pages);
1800         ra->start = max_t(long, 0, offset - ra_pages / 2);
1801         ra->size = ra_pages;
1802         ra->async_size = ra_pages / 4;
1803         ra_submit(ra, mapping, file);
1804 }
1805
1806 /*
1807  * Asynchronous readahead happens when we find the page and PG_readahead,
1808  * so we want to possibly extend the readahead further..
1809  */
1810 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1811                                     struct file_ra_state *ra,
1812                                     struct file *file,
1813                                     struct page *page,
1814                                     pgoff_t offset)
1815 {
1816         struct address_space *mapping = file->f_mapping;
1817
1818         /* If we don't want any read-ahead, don't bother */
1819         if (vma->vm_flags & VM_RAND_READ)
1820                 return;
1821         if (ra->mmap_miss > 0)
1822                 ra->mmap_miss--;
1823         if (PageReadahead(page))
1824                 page_cache_async_readahead(mapping, ra, file,
1825                                            page, offset, ra->ra_pages);
1826 }
1827
1828 /**
1829  * filemap_fault - read in file data for page fault handling
1830  * @vma:        vma in which the fault was taken
1831  * @vmf:        struct vm_fault containing details of the fault
1832  *
1833  * filemap_fault() is invoked via the vma operations vector for a
1834  * mapped memory region to read in file data during a page fault.
1835  *
1836  * The goto's are kind of ugly, but this streamlines the normal case of having
1837  * it in the page cache, and handles the special cases reasonably without
1838  * having a lot of duplicated code.
1839  */
1840 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1841 {
1842         int error;
1843         struct file *file = vma->vm_file;
1844         struct address_space *mapping = file->f_mapping;
1845         struct file_ra_state *ra = &file->f_ra;
1846         struct inode *inode = mapping->host;
1847         pgoff_t offset = vmf->pgoff;
1848         struct page *page;
1849         loff_t size;
1850         int ret = 0;
1851
1852         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1853         if (offset >= size >> PAGE_CACHE_SHIFT)
1854                 return VM_FAULT_SIGBUS;
1855
1856         /*
1857          * Do we have something in the page cache already?
1858          */
1859         page = find_get_page(mapping, offset);
1860         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1861                 /*
1862                  * We found the page, so try async readahead before
1863                  * waiting for the lock.
1864                  */
1865                 do_async_mmap_readahead(vma, ra, file, page, offset);
1866         } else if (!page) {
1867                 /* No page in the page cache at all */
1868                 do_sync_mmap_readahead(vma, ra, file, offset);
1869                 count_vm_event(PGMAJFAULT);
1870                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1871                 ret = VM_FAULT_MAJOR;
1872 retry_find:
1873                 page = find_get_page(mapping, offset);
1874                 if (!page)
1875                         goto no_cached_page;
1876         }
1877
1878         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1879                 page_cache_release(page);
1880                 return ret | VM_FAULT_RETRY;
1881         }
1882
1883         /* Did it get truncated? */
1884         if (unlikely(page->mapping != mapping)) {
1885                 unlock_page(page);
1886                 put_page(page);
1887                 goto retry_find;
1888         }
1889         VM_BUG_ON_PAGE(page->index != offset, page);
1890
1891         /*
1892          * We have a locked page in the page cache, now we need to check
1893          * that it's up-to-date. If not, it is going to be due to an error.
1894          */
1895         if (unlikely(!PageUptodate(page)))
1896                 goto page_not_uptodate;
1897
1898         /*
1899          * Found the page and have a reference on it.
1900          * We must recheck i_size under page lock.
1901          */
1902         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1903         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1904                 unlock_page(page);
1905                 page_cache_release(page);
1906                 return VM_FAULT_SIGBUS;
1907         }
1908
1909         vmf->page = page;
1910         return ret | VM_FAULT_LOCKED;
1911
1912 no_cached_page:
1913         /*
1914          * We're only likely to ever get here if MADV_RANDOM is in
1915          * effect.
1916          */
1917         error = page_cache_read(file, offset);
1918
1919         /*
1920          * The page we want has now been added to the page cache.
1921          * In the unlikely event that someone removed it in the
1922          * meantime, we'll just come back here and read it again.
1923          */
1924         if (error >= 0)
1925                 goto retry_find;
1926
1927         /*
1928          * An error return from page_cache_read can result if the
1929          * system is low on memory, or a problem occurs while trying
1930          * to schedule I/O.
1931          */
1932         if (error == -ENOMEM)
1933                 return VM_FAULT_OOM;
1934         return VM_FAULT_SIGBUS;
1935
1936 page_not_uptodate:
1937         /*
1938          * Umm, take care of errors if the page isn't up-to-date.
1939          * Try to re-read it _once_. We do this synchronously,
1940          * because there really aren't any performance issues here
1941          * and we need to check for errors.
1942          */
1943         ClearPageError(page);
1944         error = mapping->a_ops->readpage(file, page);
1945         if (!error) {
1946                 wait_on_page_locked(page);
1947                 if (!PageUptodate(page))
1948                         error = -EIO;
1949         }
1950         page_cache_release(page);
1951
1952         if (!error || error == AOP_TRUNCATED_PAGE)
1953                 goto retry_find;
1954
1955         /* Things didn't work out. Return zero to tell the mm layer so. */
1956         shrink_readahead_size_eio(file, ra);
1957         return VM_FAULT_SIGBUS;
1958 }
1959 EXPORT_SYMBOL(filemap_fault);
1960
1961 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1962 {
1963         struct radix_tree_iter iter;
1964         void **slot;
1965         struct file *file = vma->vm_file;
1966         struct address_space *mapping = file->f_mapping;
1967         loff_t size;
1968         struct page *page;
1969         unsigned long address = (unsigned long) vmf->virtual_address;
1970         unsigned long addr;
1971         pte_t *pte;
1972
1973         rcu_read_lock();
1974         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1975                 if (iter.index > vmf->max_pgoff)
1976                         break;
1977 repeat:
1978                 page = radix_tree_deref_slot(slot);
1979                 if (unlikely(!page))
1980                         goto next;
1981                 if (radix_tree_exception(page)) {
1982                         if (radix_tree_deref_retry(page))
1983                                 break;
1984                         else
1985                                 goto next;
1986                 }
1987
1988                 if (!page_cache_get_speculative(page))
1989                         goto repeat;
1990
1991                 /* Has the page moved? */
1992                 if (unlikely(page != *slot)) {
1993                         page_cache_release(page);
1994                         goto repeat;
1995                 }
1996
1997                 if (!PageUptodate(page) ||
1998                                 PageReadahead(page) ||
1999                                 PageHWPoison(page))
2000                         goto skip;
2001                 if (!trylock_page(page))
2002                         goto skip;
2003
2004                 if (page->mapping != mapping || !PageUptodate(page))
2005                         goto unlock;
2006
2007                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2008                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2009                         goto unlock;
2010
2011                 pte = vmf->pte + page->index - vmf->pgoff;
2012                 if (!pte_none(*pte))
2013                         goto unlock;
2014
2015                 if (file->f_ra.mmap_miss > 0)
2016                         file->f_ra.mmap_miss--;
2017                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2018                 do_set_pte(vma, addr, page, pte, false, false);
2019                 unlock_page(page);
2020                 goto next;
2021 unlock:
2022                 unlock_page(page);
2023 skip:
2024                 page_cache_release(page);
2025 next:
2026                 if (iter.index == vmf->max_pgoff)
2027                         break;
2028         }
2029         rcu_read_unlock();
2030 }
2031 EXPORT_SYMBOL(filemap_map_pages);
2032
2033 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2034 {
2035         struct page *page = vmf->page;
2036         struct inode *inode = file_inode(vma->vm_file);
2037         int ret = VM_FAULT_LOCKED;
2038
2039         sb_start_pagefault(inode->i_sb);
2040         file_update_time(vma->vm_file);
2041         lock_page(page);
2042         if (page->mapping != inode->i_mapping) {
2043                 unlock_page(page);
2044                 ret = VM_FAULT_NOPAGE;
2045                 goto out;
2046         }
2047         /*
2048          * We mark the page dirty already here so that when freeze is in
2049          * progress, we are guaranteed that writeback during freezing will
2050          * see the dirty page and writeprotect it again.
2051          */
2052         set_page_dirty(page);
2053         wait_for_stable_page(page);
2054 out:
2055         sb_end_pagefault(inode->i_sb);
2056         return ret;
2057 }
2058 EXPORT_SYMBOL(filemap_page_mkwrite);
2059
2060 const struct vm_operations_struct generic_file_vm_ops = {
2061         .fault          = filemap_fault,
2062         .map_pages      = filemap_map_pages,
2063         .page_mkwrite   = filemap_page_mkwrite,
2064         .remap_pages    = generic_file_remap_pages,
2065 };
2066
2067 /* This is used for a general mmap of a disk file */
2068
2069 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2070 {
2071         struct address_space *mapping = file->f_mapping;
2072
2073         if (!mapping->a_ops->readpage)
2074                 return -ENOEXEC;
2075         file_accessed(file);
2076         vma->vm_ops = &generic_file_vm_ops;
2077         return 0;
2078 }
2079
2080 /*
2081  * This is for filesystems which do not implement ->writepage.
2082  */
2083 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2084 {
2085         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2086                 return -EINVAL;
2087         return generic_file_mmap(file, vma);
2088 }
2089 #else
2090 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2091 {
2092         return -ENOSYS;
2093 }
2094 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2095 {
2096         return -ENOSYS;
2097 }
2098 #endif /* CONFIG_MMU */
2099
2100 EXPORT_SYMBOL(generic_file_mmap);
2101 EXPORT_SYMBOL(generic_file_readonly_mmap);
2102
2103 static struct page *wait_on_page_read(struct page *page)
2104 {
2105         if (!IS_ERR(page)) {
2106                 wait_on_page_locked(page);
2107                 if (!PageUptodate(page)) {
2108                         page_cache_release(page);
2109                         page = ERR_PTR(-EIO);
2110                 }
2111         }
2112         return page;
2113 }
2114
2115 static struct page *__read_cache_page(struct address_space *mapping,
2116                                 pgoff_t index,
2117                                 int (*filler)(void *, struct page *),
2118                                 void *data,
2119                                 gfp_t gfp)
2120 {
2121         struct page *page;
2122         int err;
2123 repeat:
2124         page = find_get_page(mapping, index);
2125         if (!page) {
2126                 page = __page_cache_alloc(gfp | __GFP_COLD);
2127                 if (!page)
2128                         return ERR_PTR(-ENOMEM);
2129                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2130                 if (unlikely(err)) {
2131                         page_cache_release(page);
2132                         if (err == -EEXIST)
2133                                 goto repeat;
2134                         /* Presumably ENOMEM for radix tree node */
2135                         return ERR_PTR(err);
2136                 }
2137                 err = filler(data, page);
2138                 if (err < 0) {
2139                         page_cache_release(page);
2140                         page = ERR_PTR(err);
2141                 } else {
2142                         page = wait_on_page_read(page);
2143                 }
2144         }
2145         return page;
2146 }
2147
2148 static struct page *do_read_cache_page(struct address_space *mapping,
2149                                 pgoff_t index,
2150                                 int (*filler)(void *, struct page *),
2151                                 void *data,
2152                                 gfp_t gfp)
2153
2154 {
2155         struct page *page;
2156         int err;
2157
2158 retry:
2159         page = __read_cache_page(mapping, index, filler, data, gfp);
2160         if (IS_ERR(page))
2161                 return page;
2162         if (PageUptodate(page))
2163                 goto out;
2164
2165         lock_page(page);
2166         if (!page->mapping) {
2167                 unlock_page(page);
2168                 page_cache_release(page);
2169                 goto retry;
2170         }
2171         if (PageUptodate(page)) {
2172                 unlock_page(page);
2173                 goto out;
2174         }
2175         err = filler(data, page);
2176         if (err < 0) {
2177                 page_cache_release(page);
2178                 return ERR_PTR(err);
2179         } else {
2180                 page = wait_on_page_read(page);
2181                 if (IS_ERR(page))
2182                         return page;
2183         }
2184 out:
2185         mark_page_accessed(page);
2186         return page;
2187 }
2188
2189 /**
2190  * read_cache_page - read into page cache, fill it if needed
2191  * @mapping:    the page's address_space
2192  * @index:      the page index
2193  * @filler:     function to perform the read
2194  * @data:       first arg to filler(data, page) function, often left as NULL
2195  *
2196  * Read into the page cache. If a page already exists, and PageUptodate() is
2197  * not set, try to fill the page and wait for it to become unlocked.
2198  *
2199  * If the page does not get brought uptodate, return -EIO.
2200  */
2201 struct page *read_cache_page(struct address_space *mapping,
2202                                 pgoff_t index,
2203                                 int (*filler)(void *, struct page *),
2204                                 void *data)
2205 {
2206         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2207 }
2208 EXPORT_SYMBOL(read_cache_page);
2209
2210 /**
2211  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2212  * @mapping:    the page's address_space
2213  * @index:      the page index
2214  * @gfp:        the page allocator flags to use if allocating
2215  *
2216  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2217  * any new page allocations done using the specified allocation flags.
2218  *
2219  * If the page does not get brought uptodate, return -EIO.
2220  */
2221 struct page *read_cache_page_gfp(struct address_space *mapping,
2222                                 pgoff_t index,
2223                                 gfp_t gfp)
2224 {
2225         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2226
2227         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2228 }
2229 EXPORT_SYMBOL(read_cache_page_gfp);
2230
2231 /*
2232  * Performs necessary checks before doing a write
2233  *
2234  * Can adjust writing position or amount of bytes to write.
2235  * Returns appropriate error code that caller should return or
2236  * zero in case that write should be allowed.
2237  */
2238 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2239 {
2240         struct inode *inode = file->f_mapping->host;
2241         unsigned long limit = rlimit(RLIMIT_FSIZE);
2242
2243         if (unlikely(*pos < 0))
2244                 return -EINVAL;
2245
2246         if (!isblk) {
2247                 /* FIXME: this is for backwards compatibility with 2.4 */
2248                 if (file->f_flags & O_APPEND)
2249                         *pos = i_size_read(inode);
2250
2251                 if (limit != RLIM_INFINITY) {
2252                         if (*pos >= limit) {
2253                                 send_sig(SIGXFSZ, current, 0);
2254                                 return -EFBIG;
2255                         }
2256                         if (*count > limit - (typeof(limit))*pos) {
2257                                 *count = limit - (typeof(limit))*pos;
2258                         }
2259                 }
2260         }
2261
2262         /*
2263          * LFS rule
2264          */
2265         if (unlikely(*pos + *count > MAX_NON_LFS &&
2266                                 !(file->f_flags & O_LARGEFILE))) {
2267                 if (*pos >= MAX_NON_LFS) {
2268                         return -EFBIG;
2269                 }
2270                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2271                         *count = MAX_NON_LFS - (unsigned long)*pos;
2272                 }
2273         }
2274
2275         /*
2276          * Are we about to exceed the fs block limit ?
2277          *
2278          * If we have written data it becomes a short write.  If we have
2279          * exceeded without writing data we send a signal and return EFBIG.
2280          * Linus frestrict idea will clean these up nicely..
2281          */
2282         if (likely(!isblk)) {
2283                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2284                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2285                                 return -EFBIG;
2286                         }
2287                         /* zero-length writes at ->s_maxbytes are OK */
2288                 }
2289
2290                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2291                         *count = inode->i_sb->s_maxbytes - *pos;
2292         } else {
2293 #ifdef CONFIG_BLOCK
2294                 loff_t isize;
2295                 if (bdev_read_only(I_BDEV(inode)))
2296                         return -EPERM;
2297                 isize = i_size_read(inode);
2298                 if (*pos >= isize) {
2299                         if (*count || *pos > isize)
2300                                 return -ENOSPC;
2301                 }
2302
2303                 if (*pos + *count > isize)
2304                         *count = isize - *pos;
2305 #else
2306                 return -EPERM;
2307 #endif
2308         }
2309         return 0;
2310 }
2311 EXPORT_SYMBOL(generic_write_checks);
2312
2313 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2314                                 loff_t pos, unsigned len, unsigned flags,
2315                                 struct page **pagep, void **fsdata)
2316 {
2317         const struct address_space_operations *aops = mapping->a_ops;
2318
2319         return aops->write_begin(file, mapping, pos, len, flags,
2320                                                         pagep, fsdata);
2321 }
2322 EXPORT_SYMBOL(pagecache_write_begin);
2323
2324 int pagecache_write_end(struct file *file, struct address_space *mapping,
2325                                 loff_t pos, unsigned len, unsigned copied,
2326                                 struct page *page, void *fsdata)
2327 {
2328         const struct address_space_operations *aops = mapping->a_ops;
2329
2330         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2331 }
2332 EXPORT_SYMBOL(pagecache_write_end);
2333
2334 ssize_t
2335 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2336 {
2337         struct file     *file = iocb->ki_filp;
2338         struct address_space *mapping = file->f_mapping;
2339         struct inode    *inode = mapping->host;
2340         ssize_t         written;
2341         size_t          write_len;
2342         pgoff_t         end;
2343         struct iov_iter data;
2344
2345         write_len = iov_iter_count(from);
2346         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2347
2348         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2349         if (written)
2350                 goto out;
2351
2352         /*
2353          * After a write we want buffered reads to be sure to go to disk to get
2354          * the new data.  We invalidate clean cached page from the region we're
2355          * about to write.  We do this *before* the write so that we can return
2356          * without clobbering -EIOCBQUEUED from ->direct_IO().
2357          */
2358         if (mapping->nrpages) {
2359                 written = invalidate_inode_pages2_range(mapping,
2360                                         pos >> PAGE_CACHE_SHIFT, end);
2361                 /*
2362                  * If a page can not be invalidated, return 0 to fall back
2363                  * to buffered write.
2364                  */
2365                 if (written) {
2366                         if (written == -EBUSY)
2367                                 return 0;
2368                         goto out;
2369                 }
2370         }
2371
2372         data = *from;
2373         written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2374
2375         /*
2376          * Finally, try again to invalidate clean pages which might have been
2377          * cached by non-direct readahead, or faulted in by get_user_pages()
2378          * if the source of the write was an mmap'ed region of the file
2379          * we're writing.  Either one is a pretty crazy thing to do,
2380          * so we don't support it 100%.  If this invalidation
2381          * fails, tough, the write still worked...
2382          */
2383         if (mapping->nrpages) {
2384                 invalidate_inode_pages2_range(mapping,
2385                                               pos >> PAGE_CACHE_SHIFT, end);
2386         }
2387
2388         if (written > 0) {
2389                 pos += written;
2390                 iov_iter_advance(from, written);
2391                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2392                         i_size_write(inode, pos);
2393                         mark_inode_dirty(inode);
2394                 }
2395                 iocb->ki_pos = pos;
2396         }
2397 out:
2398         return written;
2399 }
2400 EXPORT_SYMBOL(generic_file_direct_write);
2401
2402 /*
2403  * Find or create a page at the given pagecache position. Return the locked
2404  * page. This function is specifically for buffered writes.
2405  */
2406 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2407                                         pgoff_t index, unsigned flags)
2408 {
2409         struct page *page;
2410         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2411
2412         if (flags & AOP_FLAG_NOFS)
2413                 fgp_flags |= FGP_NOFS;
2414
2415         page = pagecache_get_page(mapping, index, fgp_flags,
2416                         mapping_gfp_mask(mapping),
2417                         GFP_KERNEL);
2418         if (page)
2419                 wait_for_stable_page(page);
2420
2421         return page;
2422 }
2423 EXPORT_SYMBOL(grab_cache_page_write_begin);
2424
2425 ssize_t generic_perform_write(struct file *file,
2426                                 struct iov_iter *i, loff_t pos)
2427 {
2428         struct address_space *mapping = file->f_mapping;
2429         const struct address_space_operations *a_ops = mapping->a_ops;
2430         long status = 0;
2431         ssize_t written = 0;
2432         unsigned int flags = 0;
2433
2434         /*
2435          * Copies from kernel address space cannot fail (NFSD is a big user).
2436          */
2437         if (segment_eq(get_fs(), KERNEL_DS))
2438                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2439
2440         do {
2441                 struct page *page;
2442                 unsigned long offset;   /* Offset into pagecache page */
2443                 unsigned long bytes;    /* Bytes to write to page */
2444                 size_t copied;          /* Bytes copied from user */
2445                 void *fsdata;
2446
2447                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2448                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2449                                                 iov_iter_count(i));
2450
2451 again:
2452                 /*
2453                  * Bring in the user page that we will copy from _first_.
2454                  * Otherwise there's a nasty deadlock on copying from the
2455                  * same page as we're writing to, without it being marked
2456                  * up-to-date.
2457                  *
2458                  * Not only is this an optimisation, but it is also required
2459                  * to check that the address is actually valid, when atomic
2460                  * usercopies are used, below.
2461                  */
2462                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2463                         status = -EFAULT;
2464                         break;
2465                 }
2466
2467                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2468                                                 &page, &fsdata);
2469                 if (unlikely(status < 0))
2470                         break;
2471
2472                 if (mapping_writably_mapped(mapping))
2473                         flush_dcache_page(page);
2474
2475                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2476                 flush_dcache_page(page);
2477
2478                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2479                                                 page, fsdata);
2480                 if (unlikely(status < 0))
2481                         break;
2482                 copied = status;
2483
2484                 cond_resched();
2485
2486                 iov_iter_advance(i, copied);
2487                 if (unlikely(copied == 0)) {
2488                         /*
2489                          * If we were unable to copy any data at all, we must
2490                          * fall back to a single segment length write.
2491                          *
2492                          * If we didn't fallback here, we could livelock
2493                          * because not all segments in the iov can be copied at
2494                          * once without a pagefault.
2495                          */
2496                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2497                                                 iov_iter_single_seg_count(i));
2498                         goto again;
2499                 }
2500                 pos += copied;
2501                 written += copied;
2502
2503                 balance_dirty_pages_ratelimited(mapping);
2504                 if (fatal_signal_pending(current)) {
2505                         status = -EINTR;
2506                         break;
2507                 }
2508         } while (iov_iter_count(i));
2509
2510         return written ? written : status;
2511 }
2512 EXPORT_SYMBOL(generic_perform_write);
2513
2514 /**
2515  * __generic_file_write_iter - write data to a file
2516  * @iocb:       IO state structure (file, offset, etc.)
2517  * @from:       iov_iter with data to write
2518  *
2519  * This function does all the work needed for actually writing data to a
2520  * file. It does all basic checks, removes SUID from the file, updates
2521  * modification times and calls proper subroutines depending on whether we
2522  * do direct IO or a standard buffered write.
2523  *
2524  * It expects i_mutex to be grabbed unless we work on a block device or similar
2525  * object which does not need locking at all.
2526  *
2527  * This function does *not* take care of syncing data in case of O_SYNC write.
2528  * A caller has to handle it. This is mainly due to the fact that we want to
2529  * avoid syncing under i_mutex.
2530  */
2531 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2532 {
2533         struct file *file = iocb->ki_filp;
2534         struct address_space * mapping = file->f_mapping;
2535         struct inode    *inode = mapping->host;
2536         loff_t          pos = iocb->ki_pos;
2537         ssize_t         written = 0;
2538         ssize_t         err;
2539         ssize_t         status;
2540         size_t          count = iov_iter_count(from);
2541
2542         /* We can write back this queue in page reclaim */
2543         current->backing_dev_info = mapping->backing_dev_info;
2544         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2545         if (err)
2546                 goto out;
2547
2548         if (count == 0)
2549                 goto out;
2550
2551         iov_iter_truncate(from, count);
2552
2553         err = file_remove_suid(file);
2554         if (err)
2555                 goto out;
2556
2557         err = file_update_time(file);
2558         if (err)
2559                 goto out;
2560
2561         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2562         if (unlikely(file->f_flags & O_DIRECT)) {
2563                 loff_t endbyte;
2564
2565                 written = generic_file_direct_write(iocb, from, pos);
2566                 if (written < 0 || written == count)
2567                         goto out;
2568
2569                 /*
2570                  * direct-io write to a hole: fall through to buffered I/O
2571                  * for completing the rest of the request.
2572                  */
2573                 pos += written;
2574                 count -= written;
2575
2576                 status = generic_perform_write(file, from, pos);
2577                 /*
2578                  * If generic_perform_write() returned a synchronous error
2579                  * then we want to return the number of bytes which were
2580                  * direct-written, or the error code if that was zero.  Note
2581                  * that this differs from normal direct-io semantics, which
2582                  * will return -EFOO even if some bytes were written.
2583                  */
2584                 if (unlikely(status < 0) && !written) {
2585                         err = status;
2586                         goto out;
2587                 }
2588                 iocb->ki_pos = pos + status;
2589                 /*
2590                  * We need to ensure that the page cache pages are written to
2591                  * disk and invalidated to preserve the expected O_DIRECT
2592                  * semantics.
2593                  */
2594                 endbyte = pos + status - 1;
2595                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2596                 if (err == 0) {
2597                         written += status;
2598                         invalidate_mapping_pages(mapping,
2599                                                  pos >> PAGE_CACHE_SHIFT,
2600                                                  endbyte >> PAGE_CACHE_SHIFT);
2601                 } else {
2602                         /*
2603                          * We don't know how much we wrote, so just return
2604                          * the number of bytes which were direct-written
2605                          */
2606                 }
2607         } else {
2608                 written = generic_perform_write(file, from, pos);
2609                 if (likely(written >= 0))
2610                         iocb->ki_pos = pos + written;
2611         }
2612 out:
2613         current->backing_dev_info = NULL;
2614         return written ? written : err;
2615 }
2616 EXPORT_SYMBOL(__generic_file_write_iter);
2617
2618 /**
2619  * generic_file_write_iter - write data to a file
2620  * @iocb:       IO state structure
2621  * @from:       iov_iter with data to write
2622  *
2623  * This is a wrapper around __generic_file_write_iter() to be used by most
2624  * filesystems. It takes care of syncing the file in case of O_SYNC file
2625  * and acquires i_mutex as needed.
2626  */
2627 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2628 {
2629         struct file *file = iocb->ki_filp;
2630         struct inode *inode = file->f_mapping->host;
2631         ssize_t ret;
2632
2633         mutex_lock(&inode->i_mutex);
2634         ret = __generic_file_write_iter(iocb, from);
2635         mutex_unlock(&inode->i_mutex);
2636
2637         if (ret > 0) {
2638                 ssize_t err;
2639
2640                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2641                 if (err < 0)
2642                         ret = err;
2643         }
2644         return ret;
2645 }
2646 EXPORT_SYMBOL(generic_file_write_iter);
2647
2648 /**
2649  * try_to_release_page() - release old fs-specific metadata on a page
2650  *
2651  * @page: the page which the kernel is trying to free
2652  * @gfp_mask: memory allocation flags (and I/O mode)
2653  *
2654  * The address_space is to try to release any data against the page
2655  * (presumably at page->private).  If the release was successful, return `1'.
2656  * Otherwise return zero.
2657  *
2658  * This may also be called if PG_fscache is set on a page, indicating that the
2659  * page is known to the local caching routines.
2660  *
2661  * The @gfp_mask argument specifies whether I/O may be performed to release
2662  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2663  *
2664  */
2665 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2666 {
2667         struct address_space * const mapping = page->mapping;
2668
2669         BUG_ON(!PageLocked(page));
2670         if (PageWriteback(page))
2671                 return 0;
2672
2673         if (mapping && mapping->a_ops->releasepage)
2674                 return mapping->a_ops->releasepage(page, gfp_mask);
2675         return try_to_free_buffers(page);
2676 }
2677
2678 EXPORT_SYMBOL(try_to_release_page);