]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/filemap.c
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                 } else {
136                         /* DAX can replace empty locked entry with a hole */
137                         WARN_ON_ONCE(p !=
138                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139                         /* Wakeup waiters for exceptional entry lock */
140                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
141                                                       false);
142                 }
143         }
144         __radix_tree_replace(&mapping->page_tree, node, slot, page,
145                              workingset_update_node, mapping);
146         mapping->nrpages++;
147         return 0;
148 }
149
150 static void page_cache_tree_delete(struct address_space *mapping,
151                                    struct page *page, void *shadow)
152 {
153         int i, nr;
154
155         /* hugetlb pages are represented by one entry in the radix tree */
156         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157
158         VM_BUG_ON_PAGE(!PageLocked(page), page);
159         VM_BUG_ON_PAGE(PageTail(page), page);
160         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161
162         for (i = 0; i < nr; i++) {
163                 struct radix_tree_node *node;
164                 void **slot;
165
166                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
167                                     &node, &slot);
168
169                 VM_BUG_ON_PAGE(!node && nr != 1, page);
170
171                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
172                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173                                      workingset_update_node, mapping);
174         }
175
176         if (shadow) {
177                 mapping->nrexceptional += nr;
178                 /*
179                  * Make sure the nrexceptional update is committed before
180                  * the nrpages update so that final truncate racing
181                  * with reclaim does not see both counters 0 at the
182                  * same time and miss a shadow entry.
183                  */
184                 smp_wmb();
185         }
186         mapping->nrpages -= nr;
187 }
188
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196         struct address_space *mapping = page->mapping;
197         int nr = hpage_nr_pages(page);
198
199         trace_mm_filemap_delete_from_page_cache(page);
200         /*
201          * if we're uptodate, flush out into the cleancache, otherwise
202          * invalidate any existing cleancache entries.  We can't leave
203          * stale data around in the cleancache once our page is gone
204          */
205         if (PageUptodate(page) && PageMappedToDisk(page))
206                 cleancache_put_page(page);
207         else
208                 cleancache_invalidate_page(mapping, page);
209
210         VM_BUG_ON_PAGE(PageTail(page), page);
211         VM_BUG_ON_PAGE(page_mapped(page), page);
212         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213                 int mapcount;
214
215                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216                          current->comm, page_to_pfn(page));
217                 dump_page(page, "still mapped when deleted");
218                 dump_stack();
219                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220
221                 mapcount = page_mapcount(page);
222                 if (mapping_exiting(mapping) &&
223                     page_count(page) >= mapcount + 2) {
224                         /*
225                          * All vmas have already been torn down, so it's
226                          * a good bet that actually the page is unmapped,
227                          * and we'd prefer not to leak it: if we're wrong,
228                          * some other bad page check should catch it later.
229                          */
230                         page_mapcount_reset(page);
231                         page_ref_sub(page, mapcount);
232                 }
233         }
234
235         page_cache_tree_delete(mapping, page, shadow);
236
237         page->mapping = NULL;
238         /* Leave page->index set: truncation lookup relies upon it */
239
240         /* hugetlb pages do not participate in page cache accounting. */
241         if (!PageHuge(page))
242                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243         if (PageSwapBacked(page)) {
244                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245                 if (PageTransHuge(page))
246                         __dec_node_page_state(page, NR_SHMEM_THPS);
247         } else {
248                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249         }
250
251         /*
252          * At this point page must be either written or cleaned by truncate.
253          * Dirty page here signals a bug and loss of unwritten data.
254          *
255          * This fixes dirty accounting after removing the page entirely but
256          * leaves PageDirty set: it has no effect for truncated page and
257          * anyway will be cleared before returning page into buddy allocator.
258          */
259         if (WARN_ON_ONCE(PageDirty(page)))
260                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273         struct address_space *mapping = page_mapping(page);
274         unsigned long flags;
275         void (*freepage)(struct page *);
276
277         BUG_ON(!PageLocked(page));
278
279         freepage = mapping->a_ops->freepage;
280
281         spin_lock_irqsave(&mapping->tree_lock, flags);
282         __delete_from_page_cache(page, NULL);
283         spin_unlock_irqrestore(&mapping->tree_lock, flags);
284
285         if (freepage)
286                 freepage(page);
287
288         if (PageTransHuge(page) && !PageHuge(page)) {
289                 page_ref_sub(page, HPAGE_PMD_NR);
290                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291         } else {
292                 put_page(page);
293         }
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296
297 int filemap_check_errors(struct address_space *mapping)
298 {
299         int ret = 0;
300         /* Check for outstanding write errors */
301         if (test_bit(AS_ENOSPC, &mapping->flags) &&
302             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303                 ret = -ENOSPC;
304         if (test_bit(AS_EIO, &mapping->flags) &&
305             test_and_clear_bit(AS_EIO, &mapping->flags))
306                 ret = -EIO;
307         return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:    address space structure to write
314  * @start:      offset in bytes where the range starts
315  * @end:        offset in bytes where the range ends (inclusive)
316  * @sync_mode:  enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327                                 loff_t end, int sync_mode)
328 {
329         int ret;
330         struct writeback_control wbc = {
331                 .sync_mode = sync_mode,
332                 .nr_to_write = LONG_MAX,
333                 .range_start = start,
334                 .range_end = end,
335         };
336
337         if (!mapping_cap_writeback_dirty(mapping))
338                 return 0;
339
340         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341         ret = do_writepages(mapping, &wbc);
342         wbc_detach_inode(&wbc);
343         return ret;
344 }
345
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347         int sync_mode)
348 {
349         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359                                 loff_t end)
360 {
361         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:    target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379                                      loff_t start_byte, loff_t end_byte)
380 {
381         pgoff_t index = start_byte >> PAGE_SHIFT;
382         pgoff_t end = end_byte >> PAGE_SHIFT;
383         struct pagevec pvec;
384         int nr_pages;
385         int ret = 0;
386
387         if (end_byte < start_byte)
388                 goto out;
389
390         pagevec_init(&pvec, 0);
391         while ((index <= end) &&
392                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393                         PAGECACHE_TAG_WRITEBACK,
394                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395                 unsigned i;
396
397                 for (i = 0; i < nr_pages; i++) {
398                         struct page *page = pvec.pages[i];
399
400                         /* until radix tree lookup accepts end_index */
401                         if (page->index > end)
402                                 continue;
403
404                         wait_on_page_writeback(page);
405                         if (TestClearPageError(page))
406                                 ret = -EIO;
407                 }
408                 pagevec_release(&pvec);
409                 cond_resched();
410         }
411 out:
412         return ret;
413 }
414
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:            address space structure to wait for
418  * @start_byte:         offset in bytes where the range starts
419  * @end_byte:           offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430                             loff_t end_byte)
431 {
432         int ret, ret2;
433
434         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435         ret2 = filemap_check_errors(mapping);
436         if (!ret)
437                 ret = ret2;
438
439         return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457         loff_t i_size = i_size_read(mapping->host);
458
459         if (i_size == 0)
460                 return;
461
462         __filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479         loff_t i_size = i_size_read(mapping->host);
480
481         if (i_size == 0)
482                 return 0;
483
484         return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490         int err = 0;
491
492         if ((!dax_mapping(mapping) && mapping->nrpages) ||
493             (dax_mapping(mapping) && mapping->nrexceptional)) {
494                 err = filemap_fdatawrite(mapping);
495                 /*
496                  * Even if the above returned error, the pages may be
497                  * written partially (e.g. -ENOSPC), so we wait for it.
498                  * But the -EIO is special case, it may indicate the worst
499                  * thing (e.g. bug) happened, so we avoid waiting for it.
500                  */
501                 if (err != -EIO) {
502                         int err2 = filemap_fdatawait(mapping);
503                         if (!err)
504                                 err = err2;
505                 }
506         } else {
507                 err = filemap_check_errors(mapping);
508         }
509         return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:    the address_space for the pages
516  * @lstart:     offset in bytes where the range starts
517  * @lend:       offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525                                  loff_t lstart, loff_t lend)
526 {
527         int err = 0;
528
529         if ((!dax_mapping(mapping) && mapping->nrpages) ||
530             (dax_mapping(mapping) && mapping->nrexceptional)) {
531                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
532                                                  WB_SYNC_ALL);
533                 /* See comment of filemap_write_and_wait() */
534                 if (err != -EIO) {
535                         int err2 = filemap_fdatawait_range(mapping,
536                                                 lstart, lend);
537                         if (!err)
538                                 err = err2;
539                 }
540         } else {
541                 err = filemap_check_errors(mapping);
542         }
543         return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:        page to be replaced
550  * @new:        page to replace with
551  * @gfp_mask:   allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564         int error;
565
566         VM_BUG_ON_PAGE(!PageLocked(old), old);
567         VM_BUG_ON_PAGE(!PageLocked(new), new);
568         VM_BUG_ON_PAGE(new->mapping, new);
569
570         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571         if (!error) {
572                 struct address_space *mapping = old->mapping;
573                 void (*freepage)(struct page *);
574                 unsigned long flags;
575
576                 pgoff_t offset = old->index;
577                 freepage = mapping->a_ops->freepage;
578
579                 get_page(new);
580                 new->mapping = mapping;
581                 new->index = offset;
582
583                 spin_lock_irqsave(&mapping->tree_lock, flags);
584                 __delete_from_page_cache(old, NULL);
585                 error = page_cache_tree_insert(mapping, new, NULL);
586                 BUG_ON(error);
587
588                 /*
589                  * hugetlb pages do not participate in page cache accounting.
590                  */
591                 if (!PageHuge(new))
592                         __inc_node_page_state(new, NR_FILE_PAGES);
593                 if (PageSwapBacked(new))
594                         __inc_node_page_state(new, NR_SHMEM);
595                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
596                 mem_cgroup_migrate(old, new);
597                 radix_tree_preload_end();
598                 if (freepage)
599                         freepage(old);
600                 put_page(old);
601         }
602
603         return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606
607 static int __add_to_page_cache_locked(struct page *page,
608                                       struct address_space *mapping,
609                                       pgoff_t offset, gfp_t gfp_mask,
610                                       void **shadowp)
611 {
612         int huge = PageHuge(page);
613         struct mem_cgroup *memcg;
614         int error;
615
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619         if (!huge) {
620                 error = mem_cgroup_try_charge(page, current->mm,
621                                               gfp_mask, &memcg, false);
622                 if (error)
623                         return error;
624         }
625
626         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627         if (error) {
628                 if (!huge)
629                         mem_cgroup_cancel_charge(page, memcg, false);
630                 return error;
631         }
632
633         get_page(page);
634         page->mapping = mapping;
635         page->index = offset;
636
637         spin_lock_irq(&mapping->tree_lock);
638         error = page_cache_tree_insert(mapping, page, shadowp);
639         radix_tree_preload_end();
640         if (unlikely(error))
641                 goto err_insert;
642
643         /* hugetlb pages do not participate in page cache accounting. */
644         if (!huge)
645                 __inc_node_page_state(page, NR_FILE_PAGES);
646         spin_unlock_irq(&mapping->tree_lock);
647         if (!huge)
648                 mem_cgroup_commit_charge(page, memcg, false, false);
649         trace_mm_filemap_add_to_page_cache(page);
650         return 0;
651 err_insert:
652         page->mapping = NULL;
653         /* Leave page->index set: truncation relies upon it */
654         spin_unlock_irq(&mapping->tree_lock);
655         if (!huge)
656                 mem_cgroup_cancel_charge(page, memcg, false);
657         put_page(page);
658         return error;
659 }
660
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:       page to add
664  * @mapping:    the page's address_space
665  * @offset:     page index
666  * @gfp_mask:   page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672                 pgoff_t offset, gfp_t gfp_mask)
673 {
674         return __add_to_page_cache_locked(page, mapping, offset,
675                                           gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680                                 pgoff_t offset, gfp_t gfp_mask)
681 {
682         void *shadow = NULL;
683         int ret;
684
685         __SetPageLocked(page);
686         ret = __add_to_page_cache_locked(page, mapping, offset,
687                                          gfp_mask, &shadow);
688         if (unlikely(ret))
689                 __ClearPageLocked(page);
690         else {
691                 /*
692                  * The page might have been evicted from cache only
693                  * recently, in which case it should be activated like
694                  * any other repeatedly accessed page.
695                  * The exception is pages getting rewritten; evicting other
696                  * data from the working set, only to cache data that will
697                  * get overwritten with something else, is a waste of memory.
698                  */
699                 if (!(gfp_mask & __GFP_WRITE) &&
700                     shadow && workingset_refault(shadow)) {
701                         SetPageActive(page);
702                         workingset_activation(page);
703                 } else
704                         ClearPageActive(page);
705                 lru_cache_add(page);
706         }
707         return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714         int n;
715         struct page *page;
716
717         if (cpuset_do_page_mem_spread()) {
718                 unsigned int cpuset_mems_cookie;
719                 do {
720                         cpuset_mems_cookie = read_mems_allowed_begin();
721                         n = cpuset_mem_spread_node();
722                         page = __alloc_pages_node(n, gfp, 0);
723                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724
725                 return page;
726         }
727         return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750
751 void __init pagecache_init(void)
752 {
753         int i;
754
755         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756                 init_waitqueue_head(&page_wait_table[i]);
757
758         page_writeback_init();
759 }
760
761 struct wait_page_key {
762         struct page *page;
763         int bit_nr;
764         int page_match;
765 };
766
767 struct wait_page_queue {
768         struct page *page;
769         int bit_nr;
770         wait_queue_t wait;
771 };
772
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775         struct wait_page_key *key = arg;
776         struct wait_page_queue *wait_page
777                 = container_of(wait, struct wait_page_queue, wait);
778
779         if (wait_page->page != key->page)
780                return 0;
781         key->page_match = 1;
782
783         if (wait_page->bit_nr != key->bit_nr)
784                 return 0;
785         if (test_bit(key->bit_nr, &key->page->flags))
786                 return 0;
787
788         return autoremove_wake_function(wait, mode, sync, key);
789 }
790
791 void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793         wait_queue_head_t *q = page_waitqueue(page);
794         struct wait_page_key key;
795         unsigned long flags;
796
797         key.page = page;
798         key.bit_nr = bit_nr;
799         key.page_match = 0;
800
801         spin_lock_irqsave(&q->lock, flags);
802         __wake_up_locked_key(q, TASK_NORMAL, &key);
803         /*
804          * It is possible for other pages to have collided on the waitqueue
805          * hash, so in that case check for a page match. That prevents a long-
806          * term waiter
807          *
808          * It is still possible to miss a case here, when we woke page waiters
809          * and removed them from the waitqueue, but there are still other
810          * page waiters.
811          */
812         if (!waitqueue_active(q) || !key.page_match) {
813                 ClearPageWaiters(page);
814                 /*
815                  * It's possible to miss clearing Waiters here, when we woke
816                  * our page waiters, but the hashed waitqueue has waiters for
817                  * other pages on it.
818                  *
819                  * That's okay, it's a rare case. The next waker will clear it.
820                  */
821         }
822         spin_unlock_irqrestore(&q->lock, flags);
823 }
824 EXPORT_SYMBOL(wake_up_page_bit);
825
826 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
827                 struct page *page, int bit_nr, int state, bool lock)
828 {
829         struct wait_page_queue wait_page;
830         wait_queue_t *wait = &wait_page.wait;
831         int ret = 0;
832
833         init_wait(wait);
834         wait->func = wake_page_function;
835         wait_page.page = page;
836         wait_page.bit_nr = bit_nr;
837
838         for (;;) {
839                 spin_lock_irq(&q->lock);
840
841                 if (likely(list_empty(&wait->task_list))) {
842                         if (lock)
843                                 __add_wait_queue_tail_exclusive(q, wait);
844                         else
845                                 __add_wait_queue(q, wait);
846                         SetPageWaiters(page);
847                 }
848
849                 set_current_state(state);
850
851                 spin_unlock_irq(&q->lock);
852
853                 if (likely(test_bit(bit_nr, &page->flags))) {
854                         io_schedule();
855                         if (unlikely(signal_pending_state(state, current))) {
856                                 ret = -EINTR;
857                                 break;
858                         }
859                 }
860
861                 if (lock) {
862                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
863                                 break;
864                 } else {
865                         if (!test_bit(bit_nr, &page->flags))
866                                 break;
867                 }
868         }
869
870         finish_wait(q, wait);
871
872         /*
873          * A signal could leave PageWaiters set. Clearing it here if
874          * !waitqueue_active would be possible (by open-coding finish_wait),
875          * but still fail to catch it in the case of wait hash collision. We
876          * already can fail to clear wait hash collision cases, so don't
877          * bother with signals either.
878          */
879
880         return ret;
881 }
882
883 void wait_on_page_bit(struct page *page, int bit_nr)
884 {
885         wait_queue_head_t *q = page_waitqueue(page);
886         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
887 }
888 EXPORT_SYMBOL(wait_on_page_bit);
889
890 int wait_on_page_bit_killable(struct page *page, int bit_nr)
891 {
892         wait_queue_head_t *q = page_waitqueue(page);
893         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
894 }
895
896 /**
897  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
898  * @page: Page defining the wait queue of interest
899  * @waiter: Waiter to add to the queue
900  *
901  * Add an arbitrary @waiter to the wait queue for the nominated @page.
902  */
903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
904 {
905         wait_queue_head_t *q = page_waitqueue(page);
906         unsigned long flags;
907
908         spin_lock_irqsave(&q->lock, flags);
909         __add_wait_queue(q, waiter);
910         SetPageWaiters(page);
911         spin_unlock_irqrestore(&q->lock, flags);
912 }
913 EXPORT_SYMBOL_GPL(add_page_wait_queue);
914
915 /**
916  * unlock_page - unlock a locked page
917  * @page: the page
918  *
919  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
920  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
921  * mechanism between PageLocked pages and PageWriteback pages is shared.
922  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
923  *
924  * The mb is necessary to enforce ordering between the clear_bit and the read
925  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
926  */
927 void unlock_page(struct page *page)
928 {
929         page = compound_head(page);
930         VM_BUG_ON_PAGE(!PageLocked(page), page);
931         clear_bit_unlock(PG_locked, &page->flags);
932         smp_mb__after_atomic();
933         wake_up_page(page, PG_locked);
934 }
935 EXPORT_SYMBOL(unlock_page);
936
937 /**
938  * end_page_writeback - end writeback against a page
939  * @page: the page
940  */
941 void end_page_writeback(struct page *page)
942 {
943         /*
944          * TestClearPageReclaim could be used here but it is an atomic
945          * operation and overkill in this particular case. Failing to
946          * shuffle a page marked for immediate reclaim is too mild to
947          * justify taking an atomic operation penalty at the end of
948          * ever page writeback.
949          */
950         if (PageReclaim(page)) {
951                 ClearPageReclaim(page);
952                 rotate_reclaimable_page(page);
953         }
954
955         if (!test_clear_page_writeback(page))
956                 BUG();
957
958         smp_mb__after_atomic();
959         wake_up_page(page, PG_writeback);
960 }
961 EXPORT_SYMBOL(end_page_writeback);
962
963 /*
964  * After completing I/O on a page, call this routine to update the page
965  * flags appropriately
966  */
967 void page_endio(struct page *page, bool is_write, int err)
968 {
969         if (!is_write) {
970                 if (!err) {
971                         SetPageUptodate(page);
972                 } else {
973                         ClearPageUptodate(page);
974                         SetPageError(page);
975                 }
976                 unlock_page(page);
977         } else {
978                 if (err) {
979                         SetPageError(page);
980                         if (page->mapping)
981                                 mapping_set_error(page->mapping, err);
982                 }
983                 end_page_writeback(page);
984         }
985 }
986 EXPORT_SYMBOL_GPL(page_endio);
987
988 /**
989  * __lock_page - get a lock on the page, assuming we need to sleep to get it
990  * @page: the page to lock
991  */
992 void __lock_page(struct page *__page)
993 {
994         struct page *page = compound_head(__page);
995         wait_queue_head_t *q = page_waitqueue(page);
996         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
997 }
998 EXPORT_SYMBOL(__lock_page);
999
1000 int __lock_page_killable(struct page *__page)
1001 {
1002         struct page *page = compound_head(__page);
1003         wait_queue_head_t *q = page_waitqueue(page);
1004         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1005 }
1006 EXPORT_SYMBOL_GPL(__lock_page_killable);
1007
1008 /*
1009  * Return values:
1010  * 1 - page is locked; mmap_sem is still held.
1011  * 0 - page is not locked.
1012  *     mmap_sem has been released (up_read()), unless flags had both
1013  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1014  *     which case mmap_sem is still held.
1015  *
1016  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1017  * with the page locked and the mmap_sem unperturbed.
1018  */
1019 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1020                          unsigned int flags)
1021 {
1022         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1023                 /*
1024                  * CAUTION! In this case, mmap_sem is not released
1025                  * even though return 0.
1026                  */
1027                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1028                         return 0;
1029
1030                 up_read(&mm->mmap_sem);
1031                 if (flags & FAULT_FLAG_KILLABLE)
1032                         wait_on_page_locked_killable(page);
1033                 else
1034                         wait_on_page_locked(page);
1035                 return 0;
1036         } else {
1037                 if (flags & FAULT_FLAG_KILLABLE) {
1038                         int ret;
1039
1040                         ret = __lock_page_killable(page);
1041                         if (ret) {
1042                                 up_read(&mm->mmap_sem);
1043                                 return 0;
1044                         }
1045                 } else
1046                         __lock_page(page);
1047                 return 1;
1048         }
1049 }
1050
1051 /**
1052  * page_cache_next_hole - find the next hole (not-present entry)
1053  * @mapping: mapping
1054  * @index: index
1055  * @max_scan: maximum range to search
1056  *
1057  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1058  * lowest indexed hole.
1059  *
1060  * Returns: the index of the hole if found, otherwise returns an index
1061  * outside of the set specified (in which case 'return - index >=
1062  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1063  * be returned.
1064  *
1065  * page_cache_next_hole may be called under rcu_read_lock. However,
1066  * like radix_tree_gang_lookup, this will not atomically search a
1067  * snapshot of the tree at a single point in time. For example, if a
1068  * hole is created at index 5, then subsequently a hole is created at
1069  * index 10, page_cache_next_hole covering both indexes may return 10
1070  * if called under rcu_read_lock.
1071  */
1072 pgoff_t page_cache_next_hole(struct address_space *mapping,
1073                              pgoff_t index, unsigned long max_scan)
1074 {
1075         unsigned long i;
1076
1077         for (i = 0; i < max_scan; i++) {
1078                 struct page *page;
1079
1080                 page = radix_tree_lookup(&mapping->page_tree, index);
1081                 if (!page || radix_tree_exceptional_entry(page))
1082                         break;
1083                 index++;
1084                 if (index == 0)
1085                         break;
1086         }
1087
1088         return index;
1089 }
1090 EXPORT_SYMBOL(page_cache_next_hole);
1091
1092 /**
1093  * page_cache_prev_hole - find the prev hole (not-present entry)
1094  * @mapping: mapping
1095  * @index: index
1096  * @max_scan: maximum range to search
1097  *
1098  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1099  * the first hole.
1100  *
1101  * Returns: the index of the hole if found, otherwise returns an index
1102  * outside of the set specified (in which case 'index - return >=
1103  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1104  * will be returned.
1105  *
1106  * page_cache_prev_hole may be called under rcu_read_lock. However,
1107  * like radix_tree_gang_lookup, this will not atomically search a
1108  * snapshot of the tree at a single point in time. For example, if a
1109  * hole is created at index 10, then subsequently a hole is created at
1110  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1111  * called under rcu_read_lock.
1112  */
1113 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1114                              pgoff_t index, unsigned long max_scan)
1115 {
1116         unsigned long i;
1117
1118         for (i = 0; i < max_scan; i++) {
1119                 struct page *page;
1120
1121                 page = radix_tree_lookup(&mapping->page_tree, index);
1122                 if (!page || radix_tree_exceptional_entry(page))
1123                         break;
1124                 index--;
1125                 if (index == ULONG_MAX)
1126                         break;
1127         }
1128
1129         return index;
1130 }
1131 EXPORT_SYMBOL(page_cache_prev_hole);
1132
1133 /**
1134  * find_get_entry - find and get a page cache entry
1135  * @mapping: the address_space to search
1136  * @offset: the page cache index
1137  *
1138  * Looks up the page cache slot at @mapping & @offset.  If there is a
1139  * page cache page, it is returned with an increased refcount.
1140  *
1141  * If the slot holds a shadow entry of a previously evicted page, or a
1142  * swap entry from shmem/tmpfs, it is returned.
1143  *
1144  * Otherwise, %NULL is returned.
1145  */
1146 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1147 {
1148         void **pagep;
1149         struct page *head, *page;
1150
1151         rcu_read_lock();
1152 repeat:
1153         page = NULL;
1154         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1155         if (pagep) {
1156                 page = radix_tree_deref_slot(pagep);
1157                 if (unlikely(!page))
1158                         goto out;
1159                 if (radix_tree_exception(page)) {
1160                         if (radix_tree_deref_retry(page))
1161                                 goto repeat;
1162                         /*
1163                          * A shadow entry of a recently evicted page,
1164                          * or a swap entry from shmem/tmpfs.  Return
1165                          * it without attempting to raise page count.
1166                          */
1167                         goto out;
1168                 }
1169
1170                 head = compound_head(page);
1171                 if (!page_cache_get_speculative(head))
1172                         goto repeat;
1173
1174                 /* The page was split under us? */
1175                 if (compound_head(page) != head) {
1176                         put_page(head);
1177                         goto repeat;
1178                 }
1179
1180                 /*
1181                  * Has the page moved?
1182                  * This is part of the lockless pagecache protocol. See
1183                  * include/linux/pagemap.h for details.
1184                  */
1185                 if (unlikely(page != *pagep)) {
1186                         put_page(head);
1187                         goto repeat;
1188                 }
1189         }
1190 out:
1191         rcu_read_unlock();
1192
1193         return page;
1194 }
1195 EXPORT_SYMBOL(find_get_entry);
1196
1197 /**
1198  * find_lock_entry - locate, pin and lock a page cache entry
1199  * @mapping: the address_space to search
1200  * @offset: the page cache index
1201  *
1202  * Looks up the page cache slot at @mapping & @offset.  If there is a
1203  * page cache page, it is returned locked and with an increased
1204  * refcount.
1205  *
1206  * If the slot holds a shadow entry of a previously evicted page, or a
1207  * swap entry from shmem/tmpfs, it is returned.
1208  *
1209  * Otherwise, %NULL is returned.
1210  *
1211  * find_lock_entry() may sleep.
1212  */
1213 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1214 {
1215         struct page *page;
1216
1217 repeat:
1218         page = find_get_entry(mapping, offset);
1219         if (page && !radix_tree_exception(page)) {
1220                 lock_page(page);
1221                 /* Has the page been truncated? */
1222                 if (unlikely(page_mapping(page) != mapping)) {
1223                         unlock_page(page);
1224                         put_page(page);
1225                         goto repeat;
1226                 }
1227                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1228         }
1229         return page;
1230 }
1231 EXPORT_SYMBOL(find_lock_entry);
1232
1233 /**
1234  * pagecache_get_page - find and get a page reference
1235  * @mapping: the address_space to search
1236  * @offset: the page index
1237  * @fgp_flags: PCG flags
1238  * @gfp_mask: gfp mask to use for the page cache data page allocation
1239  *
1240  * Looks up the page cache slot at @mapping & @offset.
1241  *
1242  * PCG flags modify how the page is returned.
1243  *
1244  * FGP_ACCESSED: the page will be marked accessed
1245  * FGP_LOCK: Page is return locked
1246  * FGP_CREAT: If page is not present then a new page is allocated using
1247  *              @gfp_mask and added to the page cache and the VM's LRU
1248  *              list. The page is returned locked and with an increased
1249  *              refcount. Otherwise, %NULL is returned.
1250  *
1251  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1252  * if the GFP flags specified for FGP_CREAT are atomic.
1253  *
1254  * If there is a page cache page, it is returned with an increased refcount.
1255  */
1256 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1257         int fgp_flags, gfp_t gfp_mask)
1258 {
1259         struct page *page;
1260
1261 repeat:
1262         page = find_get_entry(mapping, offset);
1263         if (radix_tree_exceptional_entry(page))
1264                 page = NULL;
1265         if (!page)
1266                 goto no_page;
1267
1268         if (fgp_flags & FGP_LOCK) {
1269                 if (fgp_flags & FGP_NOWAIT) {
1270                         if (!trylock_page(page)) {
1271                                 put_page(page);
1272                                 return NULL;
1273                         }
1274                 } else {
1275                         lock_page(page);
1276                 }
1277
1278                 /* Has the page been truncated? */
1279                 if (unlikely(page->mapping != mapping)) {
1280                         unlock_page(page);
1281                         put_page(page);
1282                         goto repeat;
1283                 }
1284                 VM_BUG_ON_PAGE(page->index != offset, page);
1285         }
1286
1287         if (page && (fgp_flags & FGP_ACCESSED))
1288                 mark_page_accessed(page);
1289
1290 no_page:
1291         if (!page && (fgp_flags & FGP_CREAT)) {
1292                 int err;
1293                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1294                         gfp_mask |= __GFP_WRITE;
1295                 if (fgp_flags & FGP_NOFS)
1296                         gfp_mask &= ~__GFP_FS;
1297
1298                 page = __page_cache_alloc(gfp_mask);
1299                 if (!page)
1300                         return NULL;
1301
1302                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1303                         fgp_flags |= FGP_LOCK;
1304
1305                 /* Init accessed so avoid atomic mark_page_accessed later */
1306                 if (fgp_flags & FGP_ACCESSED)
1307                         __SetPageReferenced(page);
1308
1309                 err = add_to_page_cache_lru(page, mapping, offset,
1310                                 gfp_mask & GFP_RECLAIM_MASK);
1311                 if (unlikely(err)) {
1312                         put_page(page);
1313                         page = NULL;
1314                         if (err == -EEXIST)
1315                                 goto repeat;
1316                 }
1317         }
1318
1319         return page;
1320 }
1321 EXPORT_SYMBOL(pagecache_get_page);
1322
1323 /**
1324  * find_get_entries - gang pagecache lookup
1325  * @mapping:    The address_space to search
1326  * @start:      The starting page cache index
1327  * @nr_entries: The maximum number of entries
1328  * @entries:    Where the resulting entries are placed
1329  * @indices:    The cache indices corresponding to the entries in @entries
1330  *
1331  * find_get_entries() will search for and return a group of up to
1332  * @nr_entries entries in the mapping.  The entries are placed at
1333  * @entries.  find_get_entries() takes a reference against any actual
1334  * pages it returns.
1335  *
1336  * The search returns a group of mapping-contiguous page cache entries
1337  * with ascending indexes.  There may be holes in the indices due to
1338  * not-present pages.
1339  *
1340  * Any shadow entries of evicted pages, or swap entries from
1341  * shmem/tmpfs, are included in the returned array.
1342  *
1343  * find_get_entries() returns the number of pages and shadow entries
1344  * which were found.
1345  */
1346 unsigned find_get_entries(struct address_space *mapping,
1347                           pgoff_t start, unsigned int nr_entries,
1348                           struct page **entries, pgoff_t *indices)
1349 {
1350         void **slot;
1351         unsigned int ret = 0;
1352         struct radix_tree_iter iter;
1353
1354         if (!nr_entries)
1355                 return 0;
1356
1357         rcu_read_lock();
1358         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1359                 struct page *head, *page;
1360 repeat:
1361                 page = radix_tree_deref_slot(slot);
1362                 if (unlikely(!page))
1363                         continue;
1364                 if (radix_tree_exception(page)) {
1365                         if (radix_tree_deref_retry(page)) {
1366                                 slot = radix_tree_iter_retry(&iter);
1367                                 continue;
1368                         }
1369                         /*
1370                          * A shadow entry of a recently evicted page, a swap
1371                          * entry from shmem/tmpfs or a DAX entry.  Return it
1372                          * without attempting to raise page count.
1373                          */
1374                         goto export;
1375                 }
1376
1377                 head = compound_head(page);
1378                 if (!page_cache_get_speculative(head))
1379                         goto repeat;
1380
1381                 /* The page was split under us? */
1382                 if (compound_head(page) != head) {
1383                         put_page(head);
1384                         goto repeat;
1385                 }
1386
1387                 /* Has the page moved? */
1388                 if (unlikely(page != *slot)) {
1389                         put_page(head);
1390                         goto repeat;
1391                 }
1392 export:
1393                 indices[ret] = iter.index;
1394                 entries[ret] = page;
1395                 if (++ret == nr_entries)
1396                         break;
1397         }
1398         rcu_read_unlock();
1399         return ret;
1400 }
1401
1402 /**
1403  * find_get_pages - gang pagecache lookup
1404  * @mapping:    The address_space to search
1405  * @start:      The starting page index
1406  * @nr_pages:   The maximum number of pages
1407  * @pages:      Where the resulting pages are placed
1408  *
1409  * find_get_pages() will search for and return a group of up to
1410  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1411  * find_get_pages() takes a reference against the returned pages.
1412  *
1413  * The search returns a group of mapping-contiguous pages with ascending
1414  * indexes.  There may be holes in the indices due to not-present pages.
1415  *
1416  * find_get_pages() returns the number of pages which were found.
1417  */
1418 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1419                             unsigned int nr_pages, struct page **pages)
1420 {
1421         struct radix_tree_iter iter;
1422         void **slot;
1423         unsigned ret = 0;
1424
1425         if (unlikely(!nr_pages))
1426                 return 0;
1427
1428         rcu_read_lock();
1429         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1430                 struct page *head, *page;
1431 repeat:
1432                 page = radix_tree_deref_slot(slot);
1433                 if (unlikely(!page))
1434                         continue;
1435
1436                 if (radix_tree_exception(page)) {
1437                         if (radix_tree_deref_retry(page)) {
1438                                 slot = radix_tree_iter_retry(&iter);
1439                                 continue;
1440                         }
1441                         /*
1442                          * A shadow entry of a recently evicted page,
1443                          * or a swap entry from shmem/tmpfs.  Skip
1444                          * over it.
1445                          */
1446                         continue;
1447                 }
1448
1449                 head = compound_head(page);
1450                 if (!page_cache_get_speculative(head))
1451                         goto repeat;
1452
1453                 /* The page was split under us? */
1454                 if (compound_head(page) != head) {
1455                         put_page(head);
1456                         goto repeat;
1457                 }
1458
1459                 /* Has the page moved? */
1460                 if (unlikely(page != *slot)) {
1461                         put_page(head);
1462                         goto repeat;
1463                 }
1464
1465                 pages[ret] = page;
1466                 if (++ret == nr_pages)
1467                         break;
1468         }
1469
1470         rcu_read_unlock();
1471         return ret;
1472 }
1473
1474 /**
1475  * find_get_pages_contig - gang contiguous pagecache lookup
1476  * @mapping:    The address_space to search
1477  * @index:      The starting page index
1478  * @nr_pages:   The maximum number of pages
1479  * @pages:      Where the resulting pages are placed
1480  *
1481  * find_get_pages_contig() works exactly like find_get_pages(), except
1482  * that the returned number of pages are guaranteed to be contiguous.
1483  *
1484  * find_get_pages_contig() returns the number of pages which were found.
1485  */
1486 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1487                                unsigned int nr_pages, struct page **pages)
1488 {
1489         struct radix_tree_iter iter;
1490         void **slot;
1491         unsigned int ret = 0;
1492
1493         if (unlikely(!nr_pages))
1494                 return 0;
1495
1496         rcu_read_lock();
1497         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1498                 struct page *head, *page;
1499 repeat:
1500                 page = radix_tree_deref_slot(slot);
1501                 /* The hole, there no reason to continue */
1502                 if (unlikely(!page))
1503                         break;
1504
1505                 if (radix_tree_exception(page)) {
1506                         if (radix_tree_deref_retry(page)) {
1507                                 slot = radix_tree_iter_retry(&iter);
1508                                 continue;
1509                         }
1510                         /*
1511                          * A shadow entry of a recently evicted page,
1512                          * or a swap entry from shmem/tmpfs.  Stop
1513                          * looking for contiguous pages.
1514                          */
1515                         break;
1516                 }
1517
1518                 head = compound_head(page);
1519                 if (!page_cache_get_speculative(head))
1520                         goto repeat;
1521
1522                 /* The page was split under us? */
1523                 if (compound_head(page) != head) {
1524                         put_page(head);
1525                         goto repeat;
1526                 }
1527
1528                 /* Has the page moved? */
1529                 if (unlikely(page != *slot)) {
1530                         put_page(head);
1531                         goto repeat;
1532                 }
1533
1534                 /*
1535                  * must check mapping and index after taking the ref.
1536                  * otherwise we can get both false positives and false
1537                  * negatives, which is just confusing to the caller.
1538                  */
1539                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1540                         put_page(page);
1541                         break;
1542                 }
1543
1544                 pages[ret] = page;
1545                 if (++ret == nr_pages)
1546                         break;
1547         }
1548         rcu_read_unlock();
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(find_get_pages_contig);
1552
1553 /**
1554  * find_get_pages_tag - find and return pages that match @tag
1555  * @mapping:    the address_space to search
1556  * @index:      the starting page index
1557  * @tag:        the tag index
1558  * @nr_pages:   the maximum number of pages
1559  * @pages:      where the resulting pages are placed
1560  *
1561  * Like find_get_pages, except we only return pages which are tagged with
1562  * @tag.   We update @index to index the next page for the traversal.
1563  */
1564 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1565                         int tag, unsigned int nr_pages, struct page **pages)
1566 {
1567         struct radix_tree_iter iter;
1568         void **slot;
1569         unsigned ret = 0;
1570
1571         if (unlikely(!nr_pages))
1572                 return 0;
1573
1574         rcu_read_lock();
1575         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1576                                    &iter, *index, tag) {
1577                 struct page *head, *page;
1578 repeat:
1579                 page = radix_tree_deref_slot(slot);
1580                 if (unlikely(!page))
1581                         continue;
1582
1583                 if (radix_tree_exception(page)) {
1584                         if (radix_tree_deref_retry(page)) {
1585                                 slot = radix_tree_iter_retry(&iter);
1586                                 continue;
1587                         }
1588                         /*
1589                          * A shadow entry of a recently evicted page.
1590                          *
1591                          * Those entries should never be tagged, but
1592                          * this tree walk is lockless and the tags are
1593                          * looked up in bulk, one radix tree node at a
1594                          * time, so there is a sizable window for page
1595                          * reclaim to evict a page we saw tagged.
1596                          *
1597                          * Skip over it.
1598                          */
1599                         continue;
1600                 }
1601
1602                 head = compound_head(page);
1603                 if (!page_cache_get_speculative(head))
1604                         goto repeat;
1605
1606                 /* The page was split under us? */
1607                 if (compound_head(page) != head) {
1608                         put_page(head);
1609                         goto repeat;
1610                 }
1611
1612                 /* Has the page moved? */
1613                 if (unlikely(page != *slot)) {
1614                         put_page(head);
1615                         goto repeat;
1616                 }
1617
1618                 pages[ret] = page;
1619                 if (++ret == nr_pages)
1620                         break;
1621         }
1622
1623         rcu_read_unlock();
1624
1625         if (ret)
1626                 *index = pages[ret - 1]->index + 1;
1627
1628         return ret;
1629 }
1630 EXPORT_SYMBOL(find_get_pages_tag);
1631
1632 /**
1633  * find_get_entries_tag - find and return entries that match @tag
1634  * @mapping:    the address_space to search
1635  * @start:      the starting page cache index
1636  * @tag:        the tag index
1637  * @nr_entries: the maximum number of entries
1638  * @entries:    where the resulting entries are placed
1639  * @indices:    the cache indices corresponding to the entries in @entries
1640  *
1641  * Like find_get_entries, except we only return entries which are tagged with
1642  * @tag.
1643  */
1644 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1645                         int tag, unsigned int nr_entries,
1646                         struct page **entries, pgoff_t *indices)
1647 {
1648         void **slot;
1649         unsigned int ret = 0;
1650         struct radix_tree_iter iter;
1651
1652         if (!nr_entries)
1653                 return 0;
1654
1655         rcu_read_lock();
1656         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1657                                    &iter, start, tag) {
1658                 struct page *head, *page;
1659 repeat:
1660                 page = radix_tree_deref_slot(slot);
1661                 if (unlikely(!page))
1662                         continue;
1663                 if (radix_tree_exception(page)) {
1664                         if (radix_tree_deref_retry(page)) {
1665                                 slot = radix_tree_iter_retry(&iter);
1666                                 continue;
1667                         }
1668
1669                         /*
1670                          * A shadow entry of a recently evicted page, a swap
1671                          * entry from shmem/tmpfs or a DAX entry.  Return it
1672                          * without attempting to raise page count.
1673                          */
1674                         goto export;
1675                 }
1676
1677                 head = compound_head(page);
1678                 if (!page_cache_get_speculative(head))
1679                         goto repeat;
1680
1681                 /* The page was split under us? */
1682                 if (compound_head(page) != head) {
1683                         put_page(head);
1684                         goto repeat;
1685                 }
1686
1687                 /* Has the page moved? */
1688                 if (unlikely(page != *slot)) {
1689                         put_page(head);
1690                         goto repeat;
1691                 }
1692 export:
1693                 indices[ret] = iter.index;
1694                 entries[ret] = page;
1695                 if (++ret == nr_entries)
1696                         break;
1697         }
1698         rcu_read_unlock();
1699         return ret;
1700 }
1701 EXPORT_SYMBOL(find_get_entries_tag);
1702
1703 /*
1704  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1705  * a _large_ part of the i/o request. Imagine the worst scenario:
1706  *
1707  *      ---R__________________________________________B__________
1708  *         ^ reading here                             ^ bad block(assume 4k)
1709  *
1710  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1711  * => failing the whole request => read(R) => read(R+1) =>
1712  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1713  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1714  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1715  *
1716  * It is going insane. Fix it by quickly scaling down the readahead size.
1717  */
1718 static void shrink_readahead_size_eio(struct file *filp,
1719                                         struct file_ra_state *ra)
1720 {
1721         ra->ra_pages /= 4;
1722 }
1723
1724 /**
1725  * do_generic_file_read - generic file read routine
1726  * @filp:       the file to read
1727  * @ppos:       current file position
1728  * @iter:       data destination
1729  * @written:    already copied
1730  *
1731  * This is a generic file read routine, and uses the
1732  * mapping->a_ops->readpage() function for the actual low-level stuff.
1733  *
1734  * This is really ugly. But the goto's actually try to clarify some
1735  * of the logic when it comes to error handling etc.
1736  */
1737 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1738                 struct iov_iter *iter, ssize_t written)
1739 {
1740         struct address_space *mapping = filp->f_mapping;
1741         struct inode *inode = mapping->host;
1742         struct file_ra_state *ra = &filp->f_ra;
1743         pgoff_t index;
1744         pgoff_t last_index;
1745         pgoff_t prev_index;
1746         unsigned long offset;      /* offset into pagecache page */
1747         unsigned int prev_offset;
1748         int error = 0;
1749
1750         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1751                 return 0;
1752         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1753
1754         index = *ppos >> PAGE_SHIFT;
1755         prev_index = ra->prev_pos >> PAGE_SHIFT;
1756         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1757         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1758         offset = *ppos & ~PAGE_MASK;
1759
1760         for (;;) {
1761                 struct page *page;
1762                 pgoff_t end_index;
1763                 loff_t isize;
1764                 unsigned long nr, ret;
1765
1766                 cond_resched();
1767 find_page:
1768                 page = find_get_page(mapping, index);
1769                 if (!page) {
1770                         page_cache_sync_readahead(mapping,
1771                                         ra, filp,
1772                                         index, last_index - index);
1773                         page = find_get_page(mapping, index);
1774                         if (unlikely(page == NULL))
1775                                 goto no_cached_page;
1776                 }
1777                 if (PageReadahead(page)) {
1778                         page_cache_async_readahead(mapping,
1779                                         ra, filp, page,
1780                                         index, last_index - index);
1781                 }
1782                 if (!PageUptodate(page)) {
1783                         /*
1784                          * See comment in do_read_cache_page on why
1785                          * wait_on_page_locked is used to avoid unnecessarily
1786                          * serialisations and why it's safe.
1787                          */
1788                         error = wait_on_page_locked_killable(page);
1789                         if (unlikely(error))
1790                                 goto readpage_error;
1791                         if (PageUptodate(page))
1792                                 goto page_ok;
1793
1794                         if (inode->i_blkbits == PAGE_SHIFT ||
1795                                         !mapping->a_ops->is_partially_uptodate)
1796                                 goto page_not_up_to_date;
1797                         /* pipes can't handle partially uptodate pages */
1798                         if (unlikely(iter->type & ITER_PIPE))
1799                                 goto page_not_up_to_date;
1800                         if (!trylock_page(page))
1801                                 goto page_not_up_to_date;
1802                         /* Did it get truncated before we got the lock? */
1803                         if (!page->mapping)
1804                                 goto page_not_up_to_date_locked;
1805                         if (!mapping->a_ops->is_partially_uptodate(page,
1806                                                         offset, iter->count))
1807                                 goto page_not_up_to_date_locked;
1808                         unlock_page(page);
1809                 }
1810 page_ok:
1811                 /*
1812                  * i_size must be checked after we know the page is Uptodate.
1813                  *
1814                  * Checking i_size after the check allows us to calculate
1815                  * the correct value for "nr", which means the zero-filled
1816                  * part of the page is not copied back to userspace (unless
1817                  * another truncate extends the file - this is desired though).
1818                  */
1819
1820                 isize = i_size_read(inode);
1821                 end_index = (isize - 1) >> PAGE_SHIFT;
1822                 if (unlikely(!isize || index > end_index)) {
1823                         put_page(page);
1824                         goto out;
1825                 }
1826
1827                 /* nr is the maximum number of bytes to copy from this page */
1828                 nr = PAGE_SIZE;
1829                 if (index == end_index) {
1830                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1831                         if (nr <= offset) {
1832                                 put_page(page);
1833                                 goto out;
1834                         }
1835                 }
1836                 nr = nr - offset;
1837
1838                 /* If users can be writing to this page using arbitrary
1839                  * virtual addresses, take care about potential aliasing
1840                  * before reading the page on the kernel side.
1841                  */
1842                 if (mapping_writably_mapped(mapping))
1843                         flush_dcache_page(page);
1844
1845                 /*
1846                  * When a sequential read accesses a page several times,
1847                  * only mark it as accessed the first time.
1848                  */
1849                 if (prev_index != index || offset != prev_offset)
1850                         mark_page_accessed(page);
1851                 prev_index = index;
1852
1853                 /*
1854                  * Ok, we have the page, and it's up-to-date, so
1855                  * now we can copy it to user space...
1856                  */
1857
1858                 ret = copy_page_to_iter(page, offset, nr, iter);
1859                 offset += ret;
1860                 index += offset >> PAGE_SHIFT;
1861                 offset &= ~PAGE_MASK;
1862                 prev_offset = offset;
1863
1864                 put_page(page);
1865                 written += ret;
1866                 if (!iov_iter_count(iter))
1867                         goto out;
1868                 if (ret < nr) {
1869                         error = -EFAULT;
1870                         goto out;
1871                 }
1872                 continue;
1873
1874 page_not_up_to_date:
1875                 /* Get exclusive access to the page ... */
1876                 error = lock_page_killable(page);
1877                 if (unlikely(error))
1878                         goto readpage_error;
1879
1880 page_not_up_to_date_locked:
1881                 /* Did it get truncated before we got the lock? */
1882                 if (!page->mapping) {
1883                         unlock_page(page);
1884                         put_page(page);
1885                         continue;
1886                 }
1887
1888                 /* Did somebody else fill it already? */
1889                 if (PageUptodate(page)) {
1890                         unlock_page(page);
1891                         goto page_ok;
1892                 }
1893
1894 readpage:
1895                 /*
1896                  * A previous I/O error may have been due to temporary
1897                  * failures, eg. multipath errors.
1898                  * PG_error will be set again if readpage fails.
1899                  */
1900                 ClearPageError(page);
1901                 /* Start the actual read. The read will unlock the page. */
1902                 error = mapping->a_ops->readpage(filp, page);
1903
1904                 if (unlikely(error)) {
1905                         if (error == AOP_TRUNCATED_PAGE) {
1906                                 put_page(page);
1907                                 error = 0;
1908                                 goto find_page;
1909                         }
1910                         goto readpage_error;
1911                 }
1912
1913                 if (!PageUptodate(page)) {
1914                         error = lock_page_killable(page);
1915                         if (unlikely(error))
1916                                 goto readpage_error;
1917                         if (!PageUptodate(page)) {
1918                                 if (page->mapping == NULL) {
1919                                         /*
1920                                          * invalidate_mapping_pages got it
1921                                          */
1922                                         unlock_page(page);
1923                                         put_page(page);
1924                                         goto find_page;
1925                                 }
1926                                 unlock_page(page);
1927                                 shrink_readahead_size_eio(filp, ra);
1928                                 error = -EIO;
1929                                 goto readpage_error;
1930                         }
1931                         unlock_page(page);
1932                 }
1933
1934                 goto page_ok;
1935
1936 readpage_error:
1937                 /* UHHUH! A synchronous read error occurred. Report it */
1938                 put_page(page);
1939                 goto out;
1940
1941 no_cached_page:
1942                 /*
1943                  * Ok, it wasn't cached, so we need to create a new
1944                  * page..
1945                  */
1946                 page = page_cache_alloc_cold(mapping);
1947                 if (!page) {
1948                         error = -ENOMEM;
1949                         goto out;
1950                 }
1951                 error = add_to_page_cache_lru(page, mapping, index,
1952                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1953                 if (error) {
1954                         put_page(page);
1955                         if (error == -EEXIST) {
1956                                 error = 0;
1957                                 goto find_page;
1958                         }
1959                         goto out;
1960                 }
1961                 goto readpage;
1962         }
1963
1964 out:
1965         ra->prev_pos = prev_index;
1966         ra->prev_pos <<= PAGE_SHIFT;
1967         ra->prev_pos |= prev_offset;
1968
1969         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1970         file_accessed(filp);
1971         return written ? written : error;
1972 }
1973
1974 /**
1975  * generic_file_read_iter - generic filesystem read routine
1976  * @iocb:       kernel I/O control block
1977  * @iter:       destination for the data read
1978  *
1979  * This is the "read_iter()" routine for all filesystems
1980  * that can use the page cache directly.
1981  */
1982 ssize_t
1983 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1984 {
1985         struct file *file = iocb->ki_filp;
1986         ssize_t retval = 0;
1987         size_t count = iov_iter_count(iter);
1988
1989         if (!count)
1990                 goto out; /* skip atime */
1991
1992         if (iocb->ki_flags & IOCB_DIRECT) {
1993                 struct address_space *mapping = file->f_mapping;
1994                 struct inode *inode = mapping->host;
1995                 struct iov_iter data = *iter;
1996                 loff_t size;
1997
1998                 size = i_size_read(inode);
1999                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2000                                         iocb->ki_pos + count - 1);
2001                 if (retval < 0)
2002                         goto out;
2003
2004                 file_accessed(file);
2005
2006                 retval = mapping->a_ops->direct_IO(iocb, &data);
2007                 if (retval >= 0) {
2008                         iocb->ki_pos += retval;
2009                         iov_iter_advance(iter, retval);
2010                 }
2011
2012                 /*
2013                  * Btrfs can have a short DIO read if we encounter
2014                  * compressed extents, so if there was an error, or if
2015                  * we've already read everything we wanted to, or if
2016                  * there was a short read because we hit EOF, go ahead
2017                  * and return.  Otherwise fallthrough to buffered io for
2018                  * the rest of the read.  Buffered reads will not work for
2019                  * DAX files, so don't bother trying.
2020                  */
2021                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2022                     IS_DAX(inode))
2023                         goto out;
2024         }
2025
2026         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2027 out:
2028         return retval;
2029 }
2030 EXPORT_SYMBOL(generic_file_read_iter);
2031
2032 #ifdef CONFIG_MMU
2033 /**
2034  * page_cache_read - adds requested page to the page cache if not already there
2035  * @file:       file to read
2036  * @offset:     page index
2037  * @gfp_mask:   memory allocation flags
2038  *
2039  * This adds the requested page to the page cache if it isn't already there,
2040  * and schedules an I/O to read in its contents from disk.
2041  */
2042 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2043 {
2044         struct address_space *mapping = file->f_mapping;
2045         struct page *page;
2046         int ret;
2047
2048         do {
2049                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2050                 if (!page)
2051                         return -ENOMEM;
2052
2053                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2054                 if (ret == 0)
2055                         ret = mapping->a_ops->readpage(file, page);
2056                 else if (ret == -EEXIST)
2057                         ret = 0; /* losing race to add is OK */
2058
2059                 put_page(page);
2060
2061         } while (ret == AOP_TRUNCATED_PAGE);
2062
2063         return ret;
2064 }
2065
2066 #define MMAP_LOTSAMISS  (100)
2067
2068 /*
2069  * Synchronous readahead happens when we don't even find
2070  * a page in the page cache at all.
2071  */
2072 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2073                                    struct file_ra_state *ra,
2074                                    struct file *file,
2075                                    pgoff_t offset)
2076 {
2077         struct address_space *mapping = file->f_mapping;
2078
2079         /* If we don't want any read-ahead, don't bother */
2080         if (vma->vm_flags & VM_RAND_READ)
2081                 return;
2082         if (!ra->ra_pages)
2083                 return;
2084
2085         if (vma->vm_flags & VM_SEQ_READ) {
2086                 page_cache_sync_readahead(mapping, ra, file, offset,
2087                                           ra->ra_pages);
2088                 return;
2089         }
2090
2091         /* Avoid banging the cache line if not needed */
2092         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2093                 ra->mmap_miss++;
2094
2095         /*
2096          * Do we miss much more than hit in this file? If so,
2097          * stop bothering with read-ahead. It will only hurt.
2098          */
2099         if (ra->mmap_miss > MMAP_LOTSAMISS)
2100                 return;
2101
2102         /*
2103          * mmap read-around
2104          */
2105         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2106         ra->size = ra->ra_pages;
2107         ra->async_size = ra->ra_pages / 4;
2108         ra_submit(ra, mapping, file);
2109 }
2110
2111 /*
2112  * Asynchronous readahead happens when we find the page and PG_readahead,
2113  * so we want to possibly extend the readahead further..
2114  */
2115 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2116                                     struct file_ra_state *ra,
2117                                     struct file *file,
2118                                     struct page *page,
2119                                     pgoff_t offset)
2120 {
2121         struct address_space *mapping = file->f_mapping;
2122
2123         /* If we don't want any read-ahead, don't bother */
2124         if (vma->vm_flags & VM_RAND_READ)
2125                 return;
2126         if (ra->mmap_miss > 0)
2127                 ra->mmap_miss--;
2128         if (PageReadahead(page))
2129                 page_cache_async_readahead(mapping, ra, file,
2130                                            page, offset, ra->ra_pages);
2131 }
2132
2133 /**
2134  * filemap_fault - read in file data for page fault handling
2135  * @vma:        vma in which the fault was taken
2136  * @vmf:        struct vm_fault containing details of the fault
2137  *
2138  * filemap_fault() is invoked via the vma operations vector for a
2139  * mapped memory region to read in file data during a page fault.
2140  *
2141  * The goto's are kind of ugly, but this streamlines the normal case of having
2142  * it in the page cache, and handles the special cases reasonably without
2143  * having a lot of duplicated code.
2144  *
2145  * vma->vm_mm->mmap_sem must be held on entry.
2146  *
2147  * If our return value has VM_FAULT_RETRY set, it's because
2148  * lock_page_or_retry() returned 0.
2149  * The mmap_sem has usually been released in this case.
2150  * See __lock_page_or_retry() for the exception.
2151  *
2152  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2153  * has not been released.
2154  *
2155  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2156  */
2157 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2158 {
2159         int error;
2160         struct file *file = vma->vm_file;
2161         struct address_space *mapping = file->f_mapping;
2162         struct file_ra_state *ra = &file->f_ra;
2163         struct inode *inode = mapping->host;
2164         pgoff_t offset = vmf->pgoff;
2165         struct page *page;
2166         loff_t size;
2167         int ret = 0;
2168
2169         size = round_up(i_size_read(inode), PAGE_SIZE);
2170         if (offset >= size >> PAGE_SHIFT)
2171                 return VM_FAULT_SIGBUS;
2172
2173         /*
2174          * Do we have something in the page cache already?
2175          */
2176         page = find_get_page(mapping, offset);
2177         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2178                 /*
2179                  * We found the page, so try async readahead before
2180                  * waiting for the lock.
2181                  */
2182                 do_async_mmap_readahead(vma, ra, file, page, offset);
2183         } else if (!page) {
2184                 /* No page in the page cache at all */
2185                 do_sync_mmap_readahead(vma, ra, file, offset);
2186                 count_vm_event(PGMAJFAULT);
2187                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2188                 ret = VM_FAULT_MAJOR;
2189 retry_find:
2190                 page = find_get_page(mapping, offset);
2191                 if (!page)
2192                         goto no_cached_page;
2193         }
2194
2195         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2196                 put_page(page);
2197                 return ret | VM_FAULT_RETRY;
2198         }
2199
2200         /* Did it get truncated? */
2201         if (unlikely(page->mapping != mapping)) {
2202                 unlock_page(page);
2203                 put_page(page);
2204                 goto retry_find;
2205         }
2206         VM_BUG_ON_PAGE(page->index != offset, page);
2207
2208         /*
2209          * We have a locked page in the page cache, now we need to check
2210          * that it's up-to-date. If not, it is going to be due to an error.
2211          */
2212         if (unlikely(!PageUptodate(page)))
2213                 goto page_not_uptodate;
2214
2215         /*
2216          * Found the page and have a reference on it.
2217          * We must recheck i_size under page lock.
2218          */
2219         size = round_up(i_size_read(inode), PAGE_SIZE);
2220         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2221                 unlock_page(page);
2222                 put_page(page);
2223                 return VM_FAULT_SIGBUS;
2224         }
2225
2226         vmf->page = page;
2227         return ret | VM_FAULT_LOCKED;
2228
2229 no_cached_page:
2230         /*
2231          * We're only likely to ever get here if MADV_RANDOM is in
2232          * effect.
2233          */
2234         error = page_cache_read(file, offset, vmf->gfp_mask);
2235
2236         /*
2237          * The page we want has now been added to the page cache.
2238          * In the unlikely event that someone removed it in the
2239          * meantime, we'll just come back here and read it again.
2240          */
2241         if (error >= 0)
2242                 goto retry_find;
2243
2244         /*
2245          * An error return from page_cache_read can result if the
2246          * system is low on memory, or a problem occurs while trying
2247          * to schedule I/O.
2248          */
2249         if (error == -ENOMEM)
2250                 return VM_FAULT_OOM;
2251         return VM_FAULT_SIGBUS;
2252
2253 page_not_uptodate:
2254         /*
2255          * Umm, take care of errors if the page isn't up-to-date.
2256          * Try to re-read it _once_. We do this synchronously,
2257          * because there really aren't any performance issues here
2258          * and we need to check for errors.
2259          */
2260         ClearPageError(page);
2261         error = mapping->a_ops->readpage(file, page);
2262         if (!error) {
2263                 wait_on_page_locked(page);
2264                 if (!PageUptodate(page))
2265                         error = -EIO;
2266         }
2267         put_page(page);
2268
2269         if (!error || error == AOP_TRUNCATED_PAGE)
2270                 goto retry_find;
2271
2272         /* Things didn't work out. Return zero to tell the mm layer so. */
2273         shrink_readahead_size_eio(file, ra);
2274         return VM_FAULT_SIGBUS;
2275 }
2276 EXPORT_SYMBOL(filemap_fault);
2277
2278 void filemap_map_pages(struct vm_fault *vmf,
2279                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2280 {
2281         struct radix_tree_iter iter;
2282         void **slot;
2283         struct file *file = vmf->vma->vm_file;
2284         struct address_space *mapping = file->f_mapping;
2285         pgoff_t last_pgoff = start_pgoff;
2286         loff_t size;
2287         struct page *head, *page;
2288
2289         rcu_read_lock();
2290         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2291                         start_pgoff) {
2292                 if (iter.index > end_pgoff)
2293                         break;
2294 repeat:
2295                 page = radix_tree_deref_slot(slot);
2296                 if (unlikely(!page))
2297                         goto next;
2298                 if (radix_tree_exception(page)) {
2299                         if (radix_tree_deref_retry(page)) {
2300                                 slot = radix_tree_iter_retry(&iter);
2301                                 continue;
2302                         }
2303                         goto next;
2304                 }
2305
2306                 head = compound_head(page);
2307                 if (!page_cache_get_speculative(head))
2308                         goto repeat;
2309
2310                 /* The page was split under us? */
2311                 if (compound_head(page) != head) {
2312                         put_page(head);
2313                         goto repeat;
2314                 }
2315
2316                 /* Has the page moved? */
2317                 if (unlikely(page != *slot)) {
2318                         put_page(head);
2319                         goto repeat;
2320                 }
2321
2322                 if (!PageUptodate(page) ||
2323                                 PageReadahead(page) ||
2324                                 PageHWPoison(page))
2325                         goto skip;
2326                 if (!trylock_page(page))
2327                         goto skip;
2328
2329                 if (page->mapping != mapping || !PageUptodate(page))
2330                         goto unlock;
2331
2332                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2333                 if (page->index >= size >> PAGE_SHIFT)
2334                         goto unlock;
2335
2336                 if (file->f_ra.mmap_miss > 0)
2337                         file->f_ra.mmap_miss--;
2338
2339                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2340                 if (vmf->pte)
2341                         vmf->pte += iter.index - last_pgoff;
2342                 last_pgoff = iter.index;
2343                 if (alloc_set_pte(vmf, NULL, page))
2344                         goto unlock;
2345                 unlock_page(page);
2346                 goto next;
2347 unlock:
2348                 unlock_page(page);
2349 skip:
2350                 put_page(page);
2351 next:
2352                 /* Huge page is mapped? No need to proceed. */
2353                 if (pmd_trans_huge(*vmf->pmd))
2354                         break;
2355                 if (iter.index == end_pgoff)
2356                         break;
2357         }
2358         rcu_read_unlock();
2359 }
2360 EXPORT_SYMBOL(filemap_map_pages);
2361
2362 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2363 {
2364         struct page *page = vmf->page;
2365         struct inode *inode = file_inode(vma->vm_file);
2366         int ret = VM_FAULT_LOCKED;
2367
2368         sb_start_pagefault(inode->i_sb);
2369         file_update_time(vma->vm_file);
2370         lock_page(page);
2371         if (page->mapping != inode->i_mapping) {
2372                 unlock_page(page);
2373                 ret = VM_FAULT_NOPAGE;
2374                 goto out;
2375         }
2376         /*
2377          * We mark the page dirty already here so that when freeze is in
2378          * progress, we are guaranteed that writeback during freezing will
2379          * see the dirty page and writeprotect it again.
2380          */
2381         set_page_dirty(page);
2382         wait_for_stable_page(page);
2383 out:
2384         sb_end_pagefault(inode->i_sb);
2385         return ret;
2386 }
2387 EXPORT_SYMBOL(filemap_page_mkwrite);
2388
2389 const struct vm_operations_struct generic_file_vm_ops = {
2390         .fault          = filemap_fault,
2391         .map_pages      = filemap_map_pages,
2392         .page_mkwrite   = filemap_page_mkwrite,
2393 };
2394
2395 /* This is used for a general mmap of a disk file */
2396
2397 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2398 {
2399         struct address_space *mapping = file->f_mapping;
2400
2401         if (!mapping->a_ops->readpage)
2402                 return -ENOEXEC;
2403         file_accessed(file);
2404         vma->vm_ops = &generic_file_vm_ops;
2405         return 0;
2406 }
2407
2408 /*
2409  * This is for filesystems which do not implement ->writepage.
2410  */
2411 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2412 {
2413         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2414                 return -EINVAL;
2415         return generic_file_mmap(file, vma);
2416 }
2417 #else
2418 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2419 {
2420         return -ENOSYS;
2421 }
2422 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2423 {
2424         return -ENOSYS;
2425 }
2426 #endif /* CONFIG_MMU */
2427
2428 EXPORT_SYMBOL(generic_file_mmap);
2429 EXPORT_SYMBOL(generic_file_readonly_mmap);
2430
2431 static struct page *wait_on_page_read(struct page *page)
2432 {
2433         if (!IS_ERR(page)) {
2434                 wait_on_page_locked(page);
2435                 if (!PageUptodate(page)) {
2436                         put_page(page);
2437                         page = ERR_PTR(-EIO);
2438                 }
2439         }
2440         return page;
2441 }
2442
2443 static struct page *do_read_cache_page(struct address_space *mapping,
2444                                 pgoff_t index,
2445                                 int (*filler)(void *, struct page *),
2446                                 void *data,
2447                                 gfp_t gfp)
2448 {
2449         struct page *page;
2450         int err;
2451 repeat:
2452         page = find_get_page(mapping, index);
2453         if (!page) {
2454                 page = __page_cache_alloc(gfp | __GFP_COLD);
2455                 if (!page)
2456                         return ERR_PTR(-ENOMEM);
2457                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2458                 if (unlikely(err)) {
2459                         put_page(page);
2460                         if (err == -EEXIST)
2461                                 goto repeat;
2462                         /* Presumably ENOMEM for radix tree node */
2463                         return ERR_PTR(err);
2464                 }
2465
2466 filler:
2467                 err = filler(data, page);
2468                 if (err < 0) {
2469                         put_page(page);
2470                         return ERR_PTR(err);
2471                 }
2472
2473                 page = wait_on_page_read(page);
2474                 if (IS_ERR(page))
2475                         return page;
2476                 goto out;
2477         }
2478         if (PageUptodate(page))
2479                 goto out;
2480
2481         /*
2482          * Page is not up to date and may be locked due one of the following
2483          * case a: Page is being filled and the page lock is held
2484          * case b: Read/write error clearing the page uptodate status
2485          * case c: Truncation in progress (page locked)
2486          * case d: Reclaim in progress
2487          *
2488          * Case a, the page will be up to date when the page is unlocked.
2489          *    There is no need to serialise on the page lock here as the page
2490          *    is pinned so the lock gives no additional protection. Even if the
2491          *    the page is truncated, the data is still valid if PageUptodate as
2492          *    it's a race vs truncate race.
2493          * Case b, the page will not be up to date
2494          * Case c, the page may be truncated but in itself, the data may still
2495          *    be valid after IO completes as it's a read vs truncate race. The
2496          *    operation must restart if the page is not uptodate on unlock but
2497          *    otherwise serialising on page lock to stabilise the mapping gives
2498          *    no additional guarantees to the caller as the page lock is
2499          *    released before return.
2500          * Case d, similar to truncation. If reclaim holds the page lock, it
2501          *    will be a race with remove_mapping that determines if the mapping
2502          *    is valid on unlock but otherwise the data is valid and there is
2503          *    no need to serialise with page lock.
2504          *
2505          * As the page lock gives no additional guarantee, we optimistically
2506          * wait on the page to be unlocked and check if it's up to date and
2507          * use the page if it is. Otherwise, the page lock is required to
2508          * distinguish between the different cases. The motivation is that we
2509          * avoid spurious serialisations and wakeups when multiple processes
2510          * wait on the same page for IO to complete.
2511          */
2512         wait_on_page_locked(page);
2513         if (PageUptodate(page))
2514                 goto out;
2515
2516         /* Distinguish between all the cases under the safety of the lock */
2517         lock_page(page);
2518
2519         /* Case c or d, restart the operation */
2520         if (!page->mapping) {
2521                 unlock_page(page);
2522                 put_page(page);
2523                 goto repeat;
2524         }
2525
2526         /* Someone else locked and filled the page in a very small window */
2527         if (PageUptodate(page)) {
2528                 unlock_page(page);
2529                 goto out;
2530         }
2531         goto filler;
2532
2533 out:
2534         mark_page_accessed(page);
2535         return page;
2536 }
2537
2538 /**
2539  * read_cache_page - read into page cache, fill it if needed
2540  * @mapping:    the page's address_space
2541  * @index:      the page index
2542  * @filler:     function to perform the read
2543  * @data:       first arg to filler(data, page) function, often left as NULL
2544  *
2545  * Read into the page cache. If a page already exists, and PageUptodate() is
2546  * not set, try to fill the page and wait for it to become unlocked.
2547  *
2548  * If the page does not get brought uptodate, return -EIO.
2549  */
2550 struct page *read_cache_page(struct address_space *mapping,
2551                                 pgoff_t index,
2552                                 int (*filler)(void *, struct page *),
2553                                 void *data)
2554 {
2555         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2556 }
2557 EXPORT_SYMBOL(read_cache_page);
2558
2559 /**
2560  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2561  * @mapping:    the page's address_space
2562  * @index:      the page index
2563  * @gfp:        the page allocator flags to use if allocating
2564  *
2565  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2566  * any new page allocations done using the specified allocation flags.
2567  *
2568  * If the page does not get brought uptodate, return -EIO.
2569  */
2570 struct page *read_cache_page_gfp(struct address_space *mapping,
2571                                 pgoff_t index,
2572                                 gfp_t gfp)
2573 {
2574         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2575
2576         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2577 }
2578 EXPORT_SYMBOL(read_cache_page_gfp);
2579
2580 /*
2581  * Performs necessary checks before doing a write
2582  *
2583  * Can adjust writing position or amount of bytes to write.
2584  * Returns appropriate error code that caller should return or
2585  * zero in case that write should be allowed.
2586  */
2587 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2588 {
2589         struct file *file = iocb->ki_filp;
2590         struct inode *inode = file->f_mapping->host;
2591         unsigned long limit = rlimit(RLIMIT_FSIZE);
2592         loff_t pos;
2593
2594         if (!iov_iter_count(from))
2595                 return 0;
2596
2597         /* FIXME: this is for backwards compatibility with 2.4 */
2598         if (iocb->ki_flags & IOCB_APPEND)
2599                 iocb->ki_pos = i_size_read(inode);
2600
2601         pos = iocb->ki_pos;
2602
2603         if (limit != RLIM_INFINITY) {
2604                 if (iocb->ki_pos >= limit) {
2605                         send_sig(SIGXFSZ, current, 0);
2606                         return -EFBIG;
2607                 }
2608                 iov_iter_truncate(from, limit - (unsigned long)pos);
2609         }
2610
2611         /*
2612          * LFS rule
2613          */
2614         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2615                                 !(file->f_flags & O_LARGEFILE))) {
2616                 if (pos >= MAX_NON_LFS)
2617                         return -EFBIG;
2618                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2619         }
2620
2621         /*
2622          * Are we about to exceed the fs block limit ?
2623          *
2624          * If we have written data it becomes a short write.  If we have
2625          * exceeded without writing data we send a signal and return EFBIG.
2626          * Linus frestrict idea will clean these up nicely..
2627          */
2628         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2629                 return -EFBIG;
2630
2631         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2632         return iov_iter_count(from);
2633 }
2634 EXPORT_SYMBOL(generic_write_checks);
2635
2636 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2637                                 loff_t pos, unsigned len, unsigned flags,
2638                                 struct page **pagep, void **fsdata)
2639 {
2640         const struct address_space_operations *aops = mapping->a_ops;
2641
2642         return aops->write_begin(file, mapping, pos, len, flags,
2643                                                         pagep, fsdata);
2644 }
2645 EXPORT_SYMBOL(pagecache_write_begin);
2646
2647 int pagecache_write_end(struct file *file, struct address_space *mapping,
2648                                 loff_t pos, unsigned len, unsigned copied,
2649                                 struct page *page, void *fsdata)
2650 {
2651         const struct address_space_operations *aops = mapping->a_ops;
2652
2653         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2654 }
2655 EXPORT_SYMBOL(pagecache_write_end);
2656
2657 ssize_t
2658 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2659 {
2660         struct file     *file = iocb->ki_filp;
2661         struct address_space *mapping = file->f_mapping;
2662         struct inode    *inode = mapping->host;
2663         loff_t          pos = iocb->ki_pos;
2664         ssize_t         written;
2665         size_t          write_len;
2666         pgoff_t         end;
2667         struct iov_iter data;
2668
2669         write_len = iov_iter_count(from);
2670         end = (pos + write_len - 1) >> PAGE_SHIFT;
2671
2672         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2673         if (written)
2674                 goto out;
2675
2676         /*
2677          * After a write we want buffered reads to be sure to go to disk to get
2678          * the new data.  We invalidate clean cached page from the region we're
2679          * about to write.  We do this *before* the write so that we can return
2680          * without clobbering -EIOCBQUEUED from ->direct_IO().
2681          */
2682         if (mapping->nrpages) {
2683                 written = invalidate_inode_pages2_range(mapping,
2684                                         pos >> PAGE_SHIFT, end);
2685                 /*
2686                  * If a page can not be invalidated, return 0 to fall back
2687                  * to buffered write.
2688                  */
2689                 if (written) {
2690                         if (written == -EBUSY)
2691                                 return 0;
2692                         goto out;
2693                 }
2694         }
2695
2696         data = *from;
2697         written = mapping->a_ops->direct_IO(iocb, &data);
2698
2699         /*
2700          * Finally, try again to invalidate clean pages which might have been
2701          * cached by non-direct readahead, or faulted in by get_user_pages()
2702          * if the source of the write was an mmap'ed region of the file
2703          * we're writing.  Either one is a pretty crazy thing to do,
2704          * so we don't support it 100%.  If this invalidation
2705          * fails, tough, the write still worked...
2706          */
2707         if (mapping->nrpages) {
2708                 invalidate_inode_pages2_range(mapping,
2709                                               pos >> PAGE_SHIFT, end);
2710         }
2711
2712         if (written > 0) {
2713                 pos += written;
2714                 iov_iter_advance(from, written);
2715                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2716                         i_size_write(inode, pos);
2717                         mark_inode_dirty(inode);
2718                 }
2719                 iocb->ki_pos = pos;
2720         }
2721 out:
2722         return written;
2723 }
2724 EXPORT_SYMBOL(generic_file_direct_write);
2725
2726 /*
2727  * Find or create a page at the given pagecache position. Return the locked
2728  * page. This function is specifically for buffered writes.
2729  */
2730 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2731                                         pgoff_t index, unsigned flags)
2732 {
2733         struct page *page;
2734         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2735
2736         if (flags & AOP_FLAG_NOFS)
2737                 fgp_flags |= FGP_NOFS;
2738
2739         page = pagecache_get_page(mapping, index, fgp_flags,
2740                         mapping_gfp_mask(mapping));
2741         if (page)
2742                 wait_for_stable_page(page);
2743
2744         return page;
2745 }
2746 EXPORT_SYMBOL(grab_cache_page_write_begin);
2747
2748 ssize_t generic_perform_write(struct file *file,
2749                                 struct iov_iter *i, loff_t pos)
2750 {
2751         struct address_space *mapping = file->f_mapping;
2752         const struct address_space_operations *a_ops = mapping->a_ops;
2753         long status = 0;
2754         ssize_t written = 0;
2755         unsigned int flags = 0;
2756
2757         /*
2758          * Copies from kernel address space cannot fail (NFSD is a big user).
2759          */
2760         if (!iter_is_iovec(i))
2761                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2762
2763         do {
2764                 struct page *page;
2765                 unsigned long offset;   /* Offset into pagecache page */
2766                 unsigned long bytes;    /* Bytes to write to page */
2767                 size_t copied;          /* Bytes copied from user */
2768                 void *fsdata;
2769
2770                 offset = (pos & (PAGE_SIZE - 1));
2771                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2772                                                 iov_iter_count(i));
2773
2774 again:
2775                 /*
2776                  * Bring in the user page that we will copy from _first_.
2777                  * Otherwise there's a nasty deadlock on copying from the
2778                  * same page as we're writing to, without it being marked
2779                  * up-to-date.
2780                  *
2781                  * Not only is this an optimisation, but it is also required
2782                  * to check that the address is actually valid, when atomic
2783                  * usercopies are used, below.
2784                  */
2785                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2786                         status = -EFAULT;
2787                         break;
2788                 }
2789
2790                 if (fatal_signal_pending(current)) {
2791                         status = -EINTR;
2792                         break;
2793                 }
2794
2795                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2796                                                 &page, &fsdata);
2797                 if (unlikely(status < 0))
2798                         break;
2799
2800                 if (mapping_writably_mapped(mapping))
2801                         flush_dcache_page(page);
2802
2803                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2804                 flush_dcache_page(page);
2805
2806                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2807                                                 page, fsdata);
2808                 if (unlikely(status < 0))
2809                         break;
2810                 copied = status;
2811
2812                 cond_resched();
2813
2814                 iov_iter_advance(i, copied);
2815                 if (unlikely(copied == 0)) {
2816                         /*
2817                          * If we were unable to copy any data at all, we must
2818                          * fall back to a single segment length write.
2819                          *
2820                          * If we didn't fallback here, we could livelock
2821                          * because not all segments in the iov can be copied at
2822                          * once without a pagefault.
2823                          */
2824                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2825                                                 iov_iter_single_seg_count(i));
2826                         goto again;
2827                 }
2828                 pos += copied;
2829                 written += copied;
2830
2831                 balance_dirty_pages_ratelimited(mapping);
2832         } while (iov_iter_count(i));
2833
2834         return written ? written : status;
2835 }
2836 EXPORT_SYMBOL(generic_perform_write);
2837
2838 /**
2839  * __generic_file_write_iter - write data to a file
2840  * @iocb:       IO state structure (file, offset, etc.)
2841  * @from:       iov_iter with data to write
2842  *
2843  * This function does all the work needed for actually writing data to a
2844  * file. It does all basic checks, removes SUID from the file, updates
2845  * modification times and calls proper subroutines depending on whether we
2846  * do direct IO or a standard buffered write.
2847  *
2848  * It expects i_mutex to be grabbed unless we work on a block device or similar
2849  * object which does not need locking at all.
2850  *
2851  * This function does *not* take care of syncing data in case of O_SYNC write.
2852  * A caller has to handle it. This is mainly due to the fact that we want to
2853  * avoid syncing under i_mutex.
2854  */
2855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2856 {
2857         struct file *file = iocb->ki_filp;
2858         struct address_space * mapping = file->f_mapping;
2859         struct inode    *inode = mapping->host;
2860         ssize_t         written = 0;
2861         ssize_t         err;
2862         ssize_t         status;
2863
2864         /* We can write back this queue in page reclaim */
2865         current->backing_dev_info = inode_to_bdi(inode);
2866         err = file_remove_privs(file);
2867         if (err)
2868                 goto out;
2869
2870         err = file_update_time(file);
2871         if (err)
2872                 goto out;
2873
2874         if (iocb->ki_flags & IOCB_DIRECT) {
2875                 loff_t pos, endbyte;
2876
2877                 written = generic_file_direct_write(iocb, from);
2878                 /*
2879                  * If the write stopped short of completing, fall back to
2880                  * buffered writes.  Some filesystems do this for writes to
2881                  * holes, for example.  For DAX files, a buffered write will
2882                  * not succeed (even if it did, DAX does not handle dirty
2883                  * page-cache pages correctly).
2884                  */
2885                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2886                         goto out;
2887
2888                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2889                 /*
2890                  * If generic_perform_write() returned a synchronous error
2891                  * then we want to return the number of bytes which were
2892                  * direct-written, or the error code if that was zero.  Note
2893                  * that this differs from normal direct-io semantics, which
2894                  * will return -EFOO even if some bytes were written.
2895                  */
2896                 if (unlikely(status < 0)) {
2897                         err = status;
2898                         goto out;
2899                 }
2900                 /*
2901                  * We need to ensure that the page cache pages are written to
2902                  * disk and invalidated to preserve the expected O_DIRECT
2903                  * semantics.
2904                  */
2905                 endbyte = pos + status - 1;
2906                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2907                 if (err == 0) {
2908                         iocb->ki_pos = endbyte + 1;
2909                         written += status;
2910                         invalidate_mapping_pages(mapping,
2911                                                  pos >> PAGE_SHIFT,
2912                                                  endbyte >> PAGE_SHIFT);
2913                 } else {
2914                         /*
2915                          * We don't know how much we wrote, so just return
2916                          * the number of bytes which were direct-written
2917                          */
2918                 }
2919         } else {
2920                 written = generic_perform_write(file, from, iocb->ki_pos);
2921                 if (likely(written > 0))
2922                         iocb->ki_pos += written;
2923         }
2924 out:
2925         current->backing_dev_info = NULL;
2926         return written ? written : err;
2927 }
2928 EXPORT_SYMBOL(__generic_file_write_iter);
2929
2930 /**
2931  * generic_file_write_iter - write data to a file
2932  * @iocb:       IO state structure
2933  * @from:       iov_iter with data to write
2934  *
2935  * This is a wrapper around __generic_file_write_iter() to be used by most
2936  * filesystems. It takes care of syncing the file in case of O_SYNC file
2937  * and acquires i_mutex as needed.
2938  */
2939 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2940 {
2941         struct file *file = iocb->ki_filp;
2942         struct inode *inode = file->f_mapping->host;
2943         ssize_t ret;
2944
2945         inode_lock(inode);
2946         ret = generic_write_checks(iocb, from);
2947         if (ret > 0)
2948                 ret = __generic_file_write_iter(iocb, from);
2949         inode_unlock(inode);
2950
2951         if (ret > 0)
2952                 ret = generic_write_sync(iocb, ret);
2953         return ret;
2954 }
2955 EXPORT_SYMBOL(generic_file_write_iter);
2956
2957 /**
2958  * try_to_release_page() - release old fs-specific metadata on a page
2959  *
2960  * @page: the page which the kernel is trying to free
2961  * @gfp_mask: memory allocation flags (and I/O mode)
2962  *
2963  * The address_space is to try to release any data against the page
2964  * (presumably at page->private).  If the release was successful, return `1'.
2965  * Otherwise return zero.
2966  *
2967  * This may also be called if PG_fscache is set on a page, indicating that the
2968  * page is known to the local caching routines.
2969  *
2970  * The @gfp_mask argument specifies whether I/O may be performed to release
2971  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2972  *
2973  */
2974 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2975 {
2976         struct address_space * const mapping = page->mapping;
2977
2978         BUG_ON(!PageLocked(page));
2979         if (PageWriteback(page))
2980                 return 0;
2981
2982         if (mapping && mapping->a_ops->releasepage)
2983                 return mapping->a_ops->releasepage(page, gfp_mask);
2984         return try_to_free_buffers(page);
2985 }
2986
2987 EXPORT_SYMBOL(try_to_release_page);