4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
128 BUG_ON(page_mapped(page));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
143 void remove_from_page_cache(struct page *page)
145 struct address_space *mapping = page->mapping;
146 void (*freepage)(struct page *);
148 BUG_ON(!PageLocked(page));
150 freepage = mapping->a_ops->freepage;
151 spin_lock_irq(&mapping->tree_lock);
152 __remove_from_page_cache(page);
153 spin_unlock_irq(&mapping->tree_lock);
154 mem_cgroup_uncharge_cache_page(page);
159 EXPORT_SYMBOL(remove_from_page_cache);
161 static int sync_page(void *word)
163 struct address_space *mapping;
166 page = container_of((unsigned long *)word, struct page, flags);
169 * page_mapping() is being called without PG_locked held.
170 * Some knowledge of the state and use of the page is used to
171 * reduce the requirements down to a memory barrier.
172 * The danger here is of a stale page_mapping() return value
173 * indicating a struct address_space different from the one it's
174 * associated with when it is associated with one.
175 * After smp_mb(), it's either the correct page_mapping() for
176 * the page, or an old page_mapping() and the page's own
177 * page_mapping() has gone NULL.
178 * The ->sync_page() address_space operation must tolerate
179 * page_mapping() going NULL. By an amazing coincidence,
180 * this comes about because none of the users of the page
181 * in the ->sync_page() methods make essential use of the
182 * page_mapping(), merely passing the page down to the backing
183 * device's unplug functions when it's non-NULL, which in turn
184 * ignore it for all cases but swap, where only page_private(page) is
185 * of interest. When page_mapping() does go NULL, the entire
186 * call stack gracefully ignores the page and returns.
190 mapping = page_mapping(page);
191 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
192 mapping->a_ops->sync_page(page);
197 static int sync_page_killable(void *word)
200 return fatal_signal_pending(current) ? -EINTR : 0;
204 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
205 * @mapping: address space structure to write
206 * @start: offset in bytes where the range starts
207 * @end: offset in bytes where the range ends (inclusive)
208 * @sync_mode: enable synchronous operation
210 * Start writeback against all of a mapping's dirty pages that lie
211 * within the byte offsets <start, end> inclusive.
213 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
214 * opposed to a regular memory cleansing writeback. The difference between
215 * these two operations is that if a dirty page/buffer is encountered, it must
216 * be waited upon, and not just skipped over.
218 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end, int sync_mode)
222 struct writeback_control wbc = {
223 .sync_mode = sync_mode,
224 .nr_to_write = LONG_MAX,
225 .range_start = start,
229 if (!mapping_cap_writeback_dirty(mapping))
232 ret = do_writepages(mapping, &wbc);
236 static inline int __filemap_fdatawrite(struct address_space *mapping,
239 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
242 int filemap_fdatawrite(struct address_space *mapping)
244 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
246 EXPORT_SYMBOL(filemap_fdatawrite);
248 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
251 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
253 EXPORT_SYMBOL(filemap_fdatawrite_range);
256 * filemap_flush - mostly a non-blocking flush
257 * @mapping: target address_space
259 * This is a mostly non-blocking flush. Not suitable for data-integrity
260 * purposes - I/O may not be started against all dirty pages.
262 int filemap_flush(struct address_space *mapping)
264 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
266 EXPORT_SYMBOL(filemap_flush);
269 * filemap_fdatawait_range - wait for writeback to complete
270 * @mapping: address space structure to wait for
271 * @start_byte: offset in bytes where the range starts
272 * @end_byte: offset in bytes where the range ends (inclusive)
274 * Walk the list of under-writeback pages of the given address space
275 * in the given range and wait for all of them.
277 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
280 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
281 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
286 if (end_byte < start_byte)
289 pagevec_init(&pvec, 0);
290 while ((index <= end) &&
291 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
292 PAGECACHE_TAG_WRITEBACK,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
296 for (i = 0; i < nr_pages; i++) {
297 struct page *page = pvec.pages[i];
299 /* until radix tree lookup accepts end_index */
300 if (page->index > end)
303 wait_on_page_writeback(page);
307 pagevec_release(&pvec);
311 /* Check for outstanding write errors */
312 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
314 if (test_and_clear_bit(AS_EIO, &mapping->flags))
319 EXPORT_SYMBOL(filemap_fdatawait_range);
322 * filemap_fdatawait - wait for all under-writeback pages to complete
323 * @mapping: address space structure to wait for
325 * Walk the list of under-writeback pages of the given address space
326 * and wait for all of them.
328 int filemap_fdatawait(struct address_space *mapping)
330 loff_t i_size = i_size_read(mapping->host);
335 return filemap_fdatawait_range(mapping, 0, i_size - 1);
337 EXPORT_SYMBOL(filemap_fdatawait);
339 int filemap_write_and_wait(struct address_space *mapping)
343 if (mapping->nrpages) {
344 err = filemap_fdatawrite(mapping);
346 * Even if the above returned error, the pages may be
347 * written partially (e.g. -ENOSPC), so we wait for it.
348 * But the -EIO is special case, it may indicate the worst
349 * thing (e.g. bug) happened, so we avoid waiting for it.
352 int err2 = filemap_fdatawait(mapping);
359 EXPORT_SYMBOL(filemap_write_and_wait);
362 * filemap_write_and_wait_range - write out & wait on a file range
363 * @mapping: the address_space for the pages
364 * @lstart: offset in bytes where the range starts
365 * @lend: offset in bytes where the range ends (inclusive)
367 * Write out and wait upon file offsets lstart->lend, inclusive.
369 * Note that `lend' is inclusive (describes the last byte to be written) so
370 * that this function can be used to write to the very end-of-file (end = -1).
372 int filemap_write_and_wait_range(struct address_space *mapping,
373 loff_t lstart, loff_t lend)
377 if (mapping->nrpages) {
378 err = __filemap_fdatawrite_range(mapping, lstart, lend,
380 /* See comment of filemap_write_and_wait() */
382 int err2 = filemap_fdatawait_range(mapping,
390 EXPORT_SYMBOL(filemap_write_and_wait_range);
393 * add_to_page_cache_locked - add a locked page to the pagecache
395 * @mapping: the page's address_space
396 * @offset: page index
397 * @gfp_mask: page allocation mode
399 * This function is used to add a page to the pagecache. It must be locked.
400 * This function does not add the page to the LRU. The caller must do that.
402 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
403 pgoff_t offset, gfp_t gfp_mask)
407 VM_BUG_ON(!PageLocked(page));
409 error = mem_cgroup_cache_charge(page, current->mm,
410 gfp_mask & GFP_RECLAIM_MASK);
414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
416 page_cache_get(page);
417 page->mapping = mapping;
418 page->index = offset;
420 spin_lock_irq(&mapping->tree_lock);
421 error = radix_tree_insert(&mapping->page_tree, offset, page);
422 if (likely(!error)) {
424 __inc_zone_page_state(page, NR_FILE_PAGES);
425 if (PageSwapBacked(page))
426 __inc_zone_page_state(page, NR_SHMEM);
427 spin_unlock_irq(&mapping->tree_lock);
429 page->mapping = NULL;
430 spin_unlock_irq(&mapping->tree_lock);
431 mem_cgroup_uncharge_cache_page(page);
432 page_cache_release(page);
434 radix_tree_preload_end();
436 mem_cgroup_uncharge_cache_page(page);
440 EXPORT_SYMBOL(add_to_page_cache_locked);
442 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
443 pgoff_t offset, gfp_t gfp_mask)
448 * Splice_read and readahead add shmem/tmpfs pages into the page cache
449 * before shmem_readpage has a chance to mark them as SwapBacked: they
450 * need to go on the anon lru below, and mem_cgroup_cache_charge
451 * (called in add_to_page_cache) needs to know where they're going too.
453 if (mapping_cap_swap_backed(mapping))
454 SetPageSwapBacked(page);
456 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
458 if (page_is_file_cache(page))
459 lru_cache_add_file(page);
461 lru_cache_add_anon(page);
465 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
468 struct page *__page_cache_alloc(gfp_t gfp)
473 if (cpuset_do_page_mem_spread()) {
475 n = cpuset_mem_spread_node();
476 page = alloc_pages_exact_node(n, gfp, 0);
480 return alloc_pages(gfp, 0);
482 EXPORT_SYMBOL(__page_cache_alloc);
485 static int __sleep_on_page_lock(void *word)
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
501 static wait_queue_head_t *page_waitqueue(struct page *page)
503 const struct zone *zone = page_zone(page);
505 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
508 static inline void wake_up_page(struct page *page, int bit)
510 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
513 void wait_on_page_bit(struct page *page, int bit_nr)
515 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
517 if (test_bit(bit_nr, &page->flags))
518 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
519 TASK_UNINTERRUPTIBLE);
521 EXPORT_SYMBOL(wait_on_page_bit);
524 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
525 * @page: Page defining the wait queue of interest
526 * @waiter: Waiter to add to the queue
528 * Add an arbitrary @waiter to the wait queue for the nominated @page.
530 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
532 wait_queue_head_t *q = page_waitqueue(page);
535 spin_lock_irqsave(&q->lock, flags);
536 __add_wait_queue(q, waiter);
537 spin_unlock_irqrestore(&q->lock, flags);
539 EXPORT_SYMBOL_GPL(add_page_wait_queue);
542 * unlock_page - unlock a locked page
545 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
546 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
547 * mechananism between PageLocked pages and PageWriteback pages is shared.
548 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
550 * The mb is necessary to enforce ordering between the clear_bit and the read
551 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
553 void unlock_page(struct page *page)
555 VM_BUG_ON(!PageLocked(page));
556 clear_bit_unlock(PG_locked, &page->flags);
557 smp_mb__after_clear_bit();
558 wake_up_page(page, PG_locked);
560 EXPORT_SYMBOL(unlock_page);
563 * end_page_writeback - end writeback against a page
566 void end_page_writeback(struct page *page)
568 if (TestClearPageReclaim(page))
569 rotate_reclaimable_page(page);
571 if (!test_clear_page_writeback(page))
574 smp_mb__after_clear_bit();
575 wake_up_page(page, PG_writeback);
577 EXPORT_SYMBOL(end_page_writeback);
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588 void __lock_page(struct page *page)
590 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
592 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
593 TASK_UNINTERRUPTIBLE);
595 EXPORT_SYMBOL(__lock_page);
597 int __lock_page_killable(struct page *page)
599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 return __wait_on_bit_lock(page_waitqueue(page), &wait,
602 sync_page_killable, TASK_KILLABLE);
604 EXPORT_SYMBOL_GPL(__lock_page_killable);
607 * __lock_page_nosync - get a lock on the page, without calling sync_page()
608 * @page: the page to lock
610 * Variant of lock_page that does not require the caller to hold a reference
611 * on the page's mapping.
613 void __lock_page_nosync(struct page *page)
615 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
616 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
617 TASK_UNINTERRUPTIBLE);
620 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
623 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
627 up_read(&mm->mmap_sem);
628 wait_on_page_locked(page);
634 * find_get_page - find and get a page reference
635 * @mapping: the address_space to search
636 * @offset: the page index
638 * Is there a pagecache struct page at the given (mapping, offset) tuple?
639 * If yes, increment its refcount and return it; if no, return NULL.
641 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
649 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
651 page = radix_tree_deref_slot(pagep);
654 if (radix_tree_deref_retry(page))
657 if (!page_cache_get_speculative(page))
661 * Has the page moved?
662 * This is part of the lockless pagecache protocol. See
663 * include/linux/pagemap.h for details.
665 if (unlikely(page != *pagep)) {
666 page_cache_release(page);
675 EXPORT_SYMBOL(find_get_page);
678 * find_lock_page - locate, pin and lock a pagecache page
679 * @mapping: the address_space to search
680 * @offset: the page index
682 * Locates the desired pagecache page, locks it, increments its reference
683 * count and returns its address.
685 * Returns zero if the page was not present. find_lock_page() may sleep.
687 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
692 page = find_get_page(mapping, offset);
695 /* Has the page been truncated? */
696 if (unlikely(page->mapping != mapping)) {
698 page_cache_release(page);
701 VM_BUG_ON(page->index != offset);
705 EXPORT_SYMBOL(find_lock_page);
708 * find_or_create_page - locate or add a pagecache page
709 * @mapping: the page's address_space
710 * @index: the page's index into the mapping
711 * @gfp_mask: page allocation mode
713 * Locates a page in the pagecache. If the page is not present, a new page
714 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
715 * LRU list. The returned page is locked and has its reference count
718 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
721 * find_or_create_page() returns the desired page's address, or zero on
724 struct page *find_or_create_page(struct address_space *mapping,
725 pgoff_t index, gfp_t gfp_mask)
730 page = find_lock_page(mapping, index);
732 page = __page_cache_alloc(gfp_mask);
736 * We want a regular kernel memory (not highmem or DMA etc)
737 * allocation for the radix tree nodes, but we need to honour
738 * the context-specific requirements the caller has asked for.
739 * GFP_RECLAIM_MASK collects those requirements.
741 err = add_to_page_cache_lru(page, mapping, index,
742 (gfp_mask & GFP_RECLAIM_MASK));
744 page_cache_release(page);
752 EXPORT_SYMBOL(find_or_create_page);
755 * find_get_pages - gang pagecache lookup
756 * @mapping: The address_space to search
757 * @start: The starting page index
758 * @nr_pages: The maximum number of pages
759 * @pages: Where the resulting pages are placed
761 * find_get_pages() will search for and return a group of up to
762 * @nr_pages pages in the mapping. The pages are placed at @pages.
763 * find_get_pages() takes a reference against the returned pages.
765 * The search returns a group of mapping-contiguous pages with ascending
766 * indexes. There may be holes in the indices due to not-present pages.
768 * find_get_pages() returns the number of pages which were found.
770 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
771 unsigned int nr_pages, struct page **pages)
775 unsigned int nr_found;
779 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
780 (void ***)pages, start, nr_pages);
782 for (i = 0; i < nr_found; i++) {
785 page = radix_tree_deref_slot((void **)pages[i]);
788 if (radix_tree_deref_retry(page)) {
790 start = pages[ret-1]->index;
794 if (!page_cache_get_speculative(page))
797 /* Has the page moved? */
798 if (unlikely(page != *((void **)pages[i]))) {
799 page_cache_release(page);
811 * find_get_pages_contig - gang contiguous pagecache lookup
812 * @mapping: The address_space to search
813 * @index: The starting page index
814 * @nr_pages: The maximum number of pages
815 * @pages: Where the resulting pages are placed
817 * find_get_pages_contig() works exactly like find_get_pages(), except
818 * that the returned number of pages are guaranteed to be contiguous.
820 * find_get_pages_contig() returns the number of pages which were found.
822 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
823 unsigned int nr_pages, struct page **pages)
827 unsigned int nr_found;
831 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
832 (void ***)pages, index, nr_pages);
834 for (i = 0; i < nr_found; i++) {
837 page = radix_tree_deref_slot((void **)pages[i]);
840 if (radix_tree_deref_retry(page))
843 if (page->mapping == NULL || page->index != index)
846 if (!page_cache_get_speculative(page))
849 /* Has the page moved? */
850 if (unlikely(page != *((void **)pages[i]))) {
851 page_cache_release(page);
862 EXPORT_SYMBOL(find_get_pages_contig);
865 * find_get_pages_tag - find and return pages that match @tag
866 * @mapping: the address_space to search
867 * @index: the starting page index
868 * @tag: the tag index
869 * @nr_pages: the maximum number of pages
870 * @pages: where the resulting pages are placed
872 * Like find_get_pages, except we only return pages which are tagged with
873 * @tag. We update @index to index the next page for the traversal.
875 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
876 int tag, unsigned int nr_pages, struct page **pages)
880 unsigned int nr_found;
884 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
885 (void ***)pages, *index, nr_pages, tag);
887 for (i = 0; i < nr_found; i++) {
890 page = radix_tree_deref_slot((void **)pages[i]);
893 if (radix_tree_deref_retry(page))
896 if (!page_cache_get_speculative(page))
899 /* Has the page moved? */
900 if (unlikely(page != *((void **)pages[i]))) {
901 page_cache_release(page);
911 *index = pages[ret - 1]->index + 1;
915 EXPORT_SYMBOL(find_get_pages_tag);
918 * grab_cache_page_nowait - returns locked page at given index in given cache
919 * @mapping: target address_space
920 * @index: the page index
922 * Same as grab_cache_page(), but do not wait if the page is unavailable.
923 * This is intended for speculative data generators, where the data can
924 * be regenerated if the page couldn't be grabbed. This routine should
925 * be safe to call while holding the lock for another page.
927 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
928 * and deadlock against the caller's locked page.
931 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
933 struct page *page = find_get_page(mapping, index);
936 if (trylock_page(page))
938 page_cache_release(page);
941 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
942 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
943 page_cache_release(page);
948 EXPORT_SYMBOL(grab_cache_page_nowait);
951 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
952 * a _large_ part of the i/o request. Imagine the worst scenario:
954 * ---R__________________________________________B__________
955 * ^ reading here ^ bad block(assume 4k)
957 * read(R) => miss => readahead(R...B) => media error => frustrating retries
958 * => failing the whole request => read(R) => read(R+1) =>
959 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
960 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
961 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
963 * It is going insane. Fix it by quickly scaling down the readahead size.
965 static void shrink_readahead_size_eio(struct file *filp,
966 struct file_ra_state *ra)
972 * do_generic_file_read - generic file read routine
973 * @filp: the file to read
974 * @ppos: current file position
975 * @desc: read_descriptor
976 * @actor: read method
978 * This is a generic file read routine, and uses the
979 * mapping->a_ops->readpage() function for the actual low-level stuff.
981 * This is really ugly. But the goto's actually try to clarify some
982 * of the logic when it comes to error handling etc.
984 static void do_generic_file_read(struct file *filp, loff_t *ppos,
985 read_descriptor_t *desc, read_actor_t actor)
987 struct address_space *mapping = filp->f_mapping;
988 struct inode *inode = mapping->host;
989 struct file_ra_state *ra = &filp->f_ra;
993 unsigned long offset; /* offset into pagecache page */
994 unsigned int prev_offset;
997 index = *ppos >> PAGE_CACHE_SHIFT;
998 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
999 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1000 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1001 offset = *ppos & ~PAGE_CACHE_MASK;
1007 unsigned long nr, ret;
1011 page = find_get_page(mapping, index);
1013 page_cache_sync_readahead(mapping,
1015 index, last_index - index);
1016 page = find_get_page(mapping, index);
1017 if (unlikely(page == NULL))
1018 goto no_cached_page;
1020 if (PageReadahead(page)) {
1021 page_cache_async_readahead(mapping,
1023 index, last_index - index);
1025 if (!PageUptodate(page)) {
1026 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1027 !mapping->a_ops->is_partially_uptodate)
1028 goto page_not_up_to_date;
1029 if (!trylock_page(page))
1030 goto page_not_up_to_date;
1031 /* Did it get truncated before we got the lock? */
1033 goto page_not_up_to_date_locked;
1034 if (!mapping->a_ops->is_partially_uptodate(page,
1036 goto page_not_up_to_date_locked;
1041 * i_size must be checked after we know the page is Uptodate.
1043 * Checking i_size after the check allows us to calculate
1044 * the correct value for "nr", which means the zero-filled
1045 * part of the page is not copied back to userspace (unless
1046 * another truncate extends the file - this is desired though).
1049 isize = i_size_read(inode);
1050 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1051 if (unlikely(!isize || index > end_index)) {
1052 page_cache_release(page);
1056 /* nr is the maximum number of bytes to copy from this page */
1057 nr = PAGE_CACHE_SIZE;
1058 if (index == end_index) {
1059 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1061 page_cache_release(page);
1067 /* If users can be writing to this page using arbitrary
1068 * virtual addresses, take care about potential aliasing
1069 * before reading the page on the kernel side.
1071 if (mapping_writably_mapped(mapping))
1072 flush_dcache_page(page);
1075 * When a sequential read accesses a page several times,
1076 * only mark it as accessed the first time.
1078 if (prev_index != index || offset != prev_offset)
1079 mark_page_accessed(page);
1083 * Ok, we have the page, and it's up-to-date, so
1084 * now we can copy it to user space...
1086 * The actor routine returns how many bytes were actually used..
1087 * NOTE! This may not be the same as how much of a user buffer
1088 * we filled up (we may be padding etc), so we can only update
1089 * "pos" here (the actor routine has to update the user buffer
1090 * pointers and the remaining count).
1092 ret = actor(desc, page, offset, nr);
1094 index += offset >> PAGE_CACHE_SHIFT;
1095 offset &= ~PAGE_CACHE_MASK;
1096 prev_offset = offset;
1098 page_cache_release(page);
1099 if (ret == nr && desc->count)
1103 page_not_up_to_date:
1104 /* Get exclusive access to the page ... */
1105 error = lock_page_killable(page);
1106 if (unlikely(error))
1107 goto readpage_error;
1109 page_not_up_to_date_locked:
1110 /* Did it get truncated before we got the lock? */
1111 if (!page->mapping) {
1113 page_cache_release(page);
1117 /* Did somebody else fill it already? */
1118 if (PageUptodate(page)) {
1125 * A previous I/O error may have been due to temporary
1126 * failures, eg. multipath errors.
1127 * PG_error will be set again if readpage fails.
1129 ClearPageError(page);
1130 /* Start the actual read. The read will unlock the page. */
1131 error = mapping->a_ops->readpage(filp, page);
1133 if (unlikely(error)) {
1134 if (error == AOP_TRUNCATED_PAGE) {
1135 page_cache_release(page);
1138 goto readpage_error;
1141 if (!PageUptodate(page)) {
1142 error = lock_page_killable(page);
1143 if (unlikely(error))
1144 goto readpage_error;
1145 if (!PageUptodate(page)) {
1146 if (page->mapping == NULL) {
1148 * invalidate_mapping_pages got it
1151 page_cache_release(page);
1155 shrink_readahead_size_eio(filp, ra);
1157 goto readpage_error;
1165 /* UHHUH! A synchronous read error occurred. Report it */
1166 desc->error = error;
1167 page_cache_release(page);
1172 * Ok, it wasn't cached, so we need to create a new
1175 page = page_cache_alloc_cold(mapping);
1177 desc->error = -ENOMEM;
1180 error = add_to_page_cache_lru(page, mapping,
1183 page_cache_release(page);
1184 if (error == -EEXIST)
1186 desc->error = error;
1193 ra->prev_pos = prev_index;
1194 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1195 ra->prev_pos |= prev_offset;
1197 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1198 file_accessed(filp);
1201 int file_read_actor(read_descriptor_t *desc, struct page *page,
1202 unsigned long offset, unsigned long size)
1205 unsigned long left, count = desc->count;
1211 * Faults on the destination of a read are common, so do it before
1214 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1215 kaddr = kmap_atomic(page, KM_USER0);
1216 left = __copy_to_user_inatomic(desc->arg.buf,
1217 kaddr + offset, size);
1218 kunmap_atomic(kaddr, KM_USER0);
1223 /* Do it the slow way */
1225 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1230 desc->error = -EFAULT;
1233 desc->count = count - size;
1234 desc->written += size;
1235 desc->arg.buf += size;
1240 * Performs necessary checks before doing a write
1241 * @iov: io vector request
1242 * @nr_segs: number of segments in the iovec
1243 * @count: number of bytes to write
1244 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1246 * Adjust number of segments and amount of bytes to write (nr_segs should be
1247 * properly initialized first). Returns appropriate error code that caller
1248 * should return or zero in case that write should be allowed.
1250 int generic_segment_checks(const struct iovec *iov,
1251 unsigned long *nr_segs, size_t *count, int access_flags)
1255 for (seg = 0; seg < *nr_segs; seg++) {
1256 const struct iovec *iv = &iov[seg];
1259 * If any segment has a negative length, or the cumulative
1260 * length ever wraps negative then return -EINVAL.
1263 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1265 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1270 cnt -= iv->iov_len; /* This segment is no good */
1276 EXPORT_SYMBOL(generic_segment_checks);
1279 * generic_file_aio_read - generic filesystem read routine
1280 * @iocb: kernel I/O control block
1281 * @iov: io vector request
1282 * @nr_segs: number of segments in the iovec
1283 * @pos: current file position
1285 * This is the "read()" routine for all filesystems
1286 * that can use the page cache directly.
1289 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1290 unsigned long nr_segs, loff_t pos)
1292 struct file *filp = iocb->ki_filp;
1294 unsigned long seg = 0;
1296 loff_t *ppos = &iocb->ki_pos;
1299 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1303 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1304 if (filp->f_flags & O_DIRECT) {
1306 struct address_space *mapping;
1307 struct inode *inode;
1309 mapping = filp->f_mapping;
1310 inode = mapping->host;
1312 goto out; /* skip atime */
1313 size = i_size_read(inode);
1315 retval = filemap_write_and_wait_range(mapping, pos,
1316 pos + iov_length(iov, nr_segs) - 1);
1318 retval = mapping->a_ops->direct_IO(READ, iocb,
1322 *ppos = pos + retval;
1327 * Btrfs can have a short DIO read if we encounter
1328 * compressed extents, so if there was an error, or if
1329 * we've already read everything we wanted to, or if
1330 * there was a short read because we hit EOF, go ahead
1331 * and return. Otherwise fallthrough to buffered io for
1332 * the rest of the read.
1334 if (retval < 0 || !count || *ppos >= size) {
1335 file_accessed(filp);
1342 for (seg = 0; seg < nr_segs; seg++) {
1343 read_descriptor_t desc;
1347 * If we did a short DIO read we need to skip the section of the
1348 * iov that we've already read data into.
1351 if (count > iov[seg].iov_len) {
1352 count -= iov[seg].iov_len;
1360 desc.arg.buf = iov[seg].iov_base + offset;
1361 desc.count = iov[seg].iov_len - offset;
1362 if (desc.count == 0)
1365 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1366 retval += desc.written;
1368 retval = retval ?: desc.error;
1377 EXPORT_SYMBOL(generic_file_aio_read);
1380 do_readahead(struct address_space *mapping, struct file *filp,
1381 pgoff_t index, unsigned long nr)
1383 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1386 force_page_cache_readahead(mapping, filp, index, nr);
1390 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398 if (file->f_mode & FMODE_READ) {
1399 struct address_space *mapping = file->f_mapping;
1400 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1401 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1402 unsigned long len = end - start + 1;
1403 ret = do_readahead(mapping, file, start, len);
1409 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1410 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1412 return SYSC_readahead((int) fd, offset, (size_t) count);
1414 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1419 * page_cache_read - adds requested page to the page cache if not already there
1420 * @file: file to read
1421 * @offset: page index
1423 * This adds the requested page to the page cache if it isn't already there,
1424 * and schedules an I/O to read in its contents from disk.
1426 static int page_cache_read(struct file *file, pgoff_t offset)
1428 struct address_space *mapping = file->f_mapping;
1433 page = page_cache_alloc_cold(mapping);
1437 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1439 ret = mapping->a_ops->readpage(file, page);
1440 else if (ret == -EEXIST)
1441 ret = 0; /* losing race to add is OK */
1443 page_cache_release(page);
1445 } while (ret == AOP_TRUNCATED_PAGE);
1450 #define MMAP_LOTSAMISS (100)
1453 * Synchronous readahead happens when we don't even find
1454 * a page in the page cache at all.
1456 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1457 struct file_ra_state *ra,
1461 unsigned long ra_pages;
1462 struct address_space *mapping = file->f_mapping;
1464 /* If we don't want any read-ahead, don't bother */
1465 if (VM_RandomReadHint(vma))
1468 if (VM_SequentialReadHint(vma) ||
1469 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1470 page_cache_sync_readahead(mapping, ra, file, offset,
1475 if (ra->mmap_miss < INT_MAX)
1479 * Do we miss much more than hit in this file? If so,
1480 * stop bothering with read-ahead. It will only hurt.
1482 if (ra->mmap_miss > MMAP_LOTSAMISS)
1488 ra_pages = max_sane_readahead(ra->ra_pages);
1490 ra->start = max_t(long, 0, offset - ra_pages/2);
1491 ra->size = ra_pages;
1493 ra_submit(ra, mapping, file);
1498 * Asynchronous readahead happens when we find the page and PG_readahead,
1499 * so we want to possibly extend the readahead further..
1501 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1502 struct file_ra_state *ra,
1507 struct address_space *mapping = file->f_mapping;
1509 /* If we don't want any read-ahead, don't bother */
1510 if (VM_RandomReadHint(vma))
1512 if (ra->mmap_miss > 0)
1514 if (PageReadahead(page))
1515 page_cache_async_readahead(mapping, ra, file,
1516 page, offset, ra->ra_pages);
1520 * filemap_fault - read in file data for page fault handling
1521 * @vma: vma in which the fault was taken
1522 * @vmf: struct vm_fault containing details of the fault
1524 * filemap_fault() is invoked via the vma operations vector for a
1525 * mapped memory region to read in file data during a page fault.
1527 * The goto's are kind of ugly, but this streamlines the normal case of having
1528 * it in the page cache, and handles the special cases reasonably without
1529 * having a lot of duplicated code.
1531 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1534 struct file *file = vma->vm_file;
1535 struct address_space *mapping = file->f_mapping;
1536 struct file_ra_state *ra = &file->f_ra;
1537 struct inode *inode = mapping->host;
1538 pgoff_t offset = vmf->pgoff;
1543 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1545 return VM_FAULT_SIGBUS;
1548 * Do we have something in the page cache already?
1550 page = find_get_page(mapping, offset);
1553 * We found the page, so try async readahead before
1554 * waiting for the lock.
1556 do_async_mmap_readahead(vma, ra, file, page, offset);
1558 /* No page in the page cache at all */
1559 do_sync_mmap_readahead(vma, ra, file, offset);
1560 count_vm_event(PGMAJFAULT);
1561 ret = VM_FAULT_MAJOR;
1563 page = find_get_page(mapping, offset);
1565 goto no_cached_page;
1568 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1569 page_cache_release(page);
1570 return ret | VM_FAULT_RETRY;
1573 /* Did it get truncated? */
1574 if (unlikely(page->mapping != mapping)) {
1579 VM_BUG_ON(page->index != offset);
1582 * We have a locked page in the page cache, now we need to check
1583 * that it's up-to-date. If not, it is going to be due to an error.
1585 if (unlikely(!PageUptodate(page)))
1586 goto page_not_uptodate;
1589 * Found the page and have a reference on it.
1590 * We must recheck i_size under page lock.
1592 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1593 if (unlikely(offset >= size)) {
1595 page_cache_release(page);
1596 return VM_FAULT_SIGBUS;
1599 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1601 return ret | VM_FAULT_LOCKED;
1605 * We're only likely to ever get here if MADV_RANDOM is in
1608 error = page_cache_read(file, offset);
1611 * The page we want has now been added to the page cache.
1612 * In the unlikely event that someone removed it in the
1613 * meantime, we'll just come back here and read it again.
1619 * An error return from page_cache_read can result if the
1620 * system is low on memory, or a problem occurs while trying
1623 if (error == -ENOMEM)
1624 return VM_FAULT_OOM;
1625 return VM_FAULT_SIGBUS;
1629 * Umm, take care of errors if the page isn't up-to-date.
1630 * Try to re-read it _once_. We do this synchronously,
1631 * because there really aren't any performance issues here
1632 * and we need to check for errors.
1634 ClearPageError(page);
1635 error = mapping->a_ops->readpage(file, page);
1637 wait_on_page_locked(page);
1638 if (!PageUptodate(page))
1641 page_cache_release(page);
1643 if (!error || error == AOP_TRUNCATED_PAGE)
1646 /* Things didn't work out. Return zero to tell the mm layer so. */
1647 shrink_readahead_size_eio(file, ra);
1648 return VM_FAULT_SIGBUS;
1650 EXPORT_SYMBOL(filemap_fault);
1652 const struct vm_operations_struct generic_file_vm_ops = {
1653 .fault = filemap_fault,
1656 /* This is used for a general mmap of a disk file */
1658 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1660 struct address_space *mapping = file->f_mapping;
1662 if (!mapping->a_ops->readpage)
1664 file_accessed(file);
1665 vma->vm_ops = &generic_file_vm_ops;
1666 vma->vm_flags |= VM_CAN_NONLINEAR;
1671 * This is for filesystems which do not implement ->writepage.
1673 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1675 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1677 return generic_file_mmap(file, vma);
1680 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1684 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1688 #endif /* CONFIG_MMU */
1690 EXPORT_SYMBOL(generic_file_mmap);
1691 EXPORT_SYMBOL(generic_file_readonly_mmap);
1693 static struct page *__read_cache_page(struct address_space *mapping,
1695 int (*filler)(void *,struct page*),
1702 page = find_get_page(mapping, index);
1704 page = __page_cache_alloc(gfp | __GFP_COLD);
1706 return ERR_PTR(-ENOMEM);
1707 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1708 if (unlikely(err)) {
1709 page_cache_release(page);
1712 /* Presumably ENOMEM for radix tree node */
1713 return ERR_PTR(err);
1715 err = filler(data, page);
1717 page_cache_release(page);
1718 page = ERR_PTR(err);
1724 static struct page *do_read_cache_page(struct address_space *mapping,
1726 int (*filler)(void *,struct page*),
1735 page = __read_cache_page(mapping, index, filler, data, gfp);
1738 if (PageUptodate(page))
1742 if (!page->mapping) {
1744 page_cache_release(page);
1747 if (PageUptodate(page)) {
1751 err = filler(data, page);
1753 page_cache_release(page);
1754 return ERR_PTR(err);
1757 mark_page_accessed(page);
1762 * read_cache_page_async - read into page cache, fill it if needed
1763 * @mapping: the page's address_space
1764 * @index: the page index
1765 * @filler: function to perform the read
1766 * @data: destination for read data
1768 * Same as read_cache_page, but don't wait for page to become unlocked
1769 * after submitting it to the filler.
1771 * Read into the page cache. If a page already exists, and PageUptodate() is
1772 * not set, try to fill the page but don't wait for it to become unlocked.
1774 * If the page does not get brought uptodate, return -EIO.
1776 struct page *read_cache_page_async(struct address_space *mapping,
1778 int (*filler)(void *,struct page*),
1781 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1783 EXPORT_SYMBOL(read_cache_page_async);
1785 static struct page *wait_on_page_read(struct page *page)
1787 if (!IS_ERR(page)) {
1788 wait_on_page_locked(page);
1789 if (!PageUptodate(page)) {
1790 page_cache_release(page);
1791 page = ERR_PTR(-EIO);
1798 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1799 * @mapping: the page's address_space
1800 * @index: the page index
1801 * @gfp: the page allocator flags to use if allocating
1803 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1804 * any new page allocations done using the specified allocation flags. Note
1805 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1806 * expect to do this atomically or anything like that - but you can pass in
1807 * other page requirements.
1809 * If the page does not get brought uptodate, return -EIO.
1811 struct page *read_cache_page_gfp(struct address_space *mapping,
1815 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1817 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1819 EXPORT_SYMBOL(read_cache_page_gfp);
1822 * read_cache_page - read into page cache, fill it if needed
1823 * @mapping: the page's address_space
1824 * @index: the page index
1825 * @filler: function to perform the read
1826 * @data: destination for read data
1828 * Read into the page cache. If a page already exists, and PageUptodate() is
1829 * not set, try to fill the page then wait for it to become unlocked.
1831 * If the page does not get brought uptodate, return -EIO.
1833 struct page *read_cache_page(struct address_space *mapping,
1835 int (*filler)(void *,struct page*),
1838 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1840 EXPORT_SYMBOL(read_cache_page);
1843 * The logic we want is
1845 * if suid or (sgid and xgrp)
1848 int should_remove_suid(struct dentry *dentry)
1850 mode_t mode = dentry->d_inode->i_mode;
1853 /* suid always must be killed */
1854 if (unlikely(mode & S_ISUID))
1855 kill = ATTR_KILL_SUID;
1858 * sgid without any exec bits is just a mandatory locking mark; leave
1859 * it alone. If some exec bits are set, it's a real sgid; kill it.
1861 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1862 kill |= ATTR_KILL_SGID;
1864 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1869 EXPORT_SYMBOL(should_remove_suid);
1871 static int __remove_suid(struct dentry *dentry, int kill)
1873 struct iattr newattrs;
1875 newattrs.ia_valid = ATTR_FORCE | kill;
1876 return notify_change(dentry, &newattrs);
1879 int file_remove_suid(struct file *file)
1881 struct dentry *dentry = file->f_path.dentry;
1882 int killsuid = should_remove_suid(dentry);
1883 int killpriv = security_inode_need_killpriv(dentry);
1889 error = security_inode_killpriv(dentry);
1890 if (!error && killsuid)
1891 error = __remove_suid(dentry, killsuid);
1895 EXPORT_SYMBOL(file_remove_suid);
1897 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1898 const struct iovec *iov, size_t base, size_t bytes)
1900 size_t copied = 0, left = 0;
1903 char __user *buf = iov->iov_base + base;
1904 int copy = min(bytes, iov->iov_len - base);
1907 left = __copy_from_user_inatomic(vaddr, buf, copy);
1916 return copied - left;
1920 * Copy as much as we can into the page and return the number of bytes which
1921 * were successfully copied. If a fault is encountered then return the number of
1922 * bytes which were copied.
1924 size_t iov_iter_copy_from_user_atomic(struct page *page,
1925 struct iov_iter *i, unsigned long offset, size_t bytes)
1930 BUG_ON(!in_atomic());
1931 kaddr = kmap_atomic(page, KM_USER0);
1932 if (likely(i->nr_segs == 1)) {
1934 char __user *buf = i->iov->iov_base + i->iov_offset;
1935 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1936 copied = bytes - left;
1938 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1939 i->iov, i->iov_offset, bytes);
1941 kunmap_atomic(kaddr, KM_USER0);
1945 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1948 * This has the same sideeffects and return value as
1949 * iov_iter_copy_from_user_atomic().
1950 * The difference is that it attempts to resolve faults.
1951 * Page must not be locked.
1953 size_t iov_iter_copy_from_user(struct page *page,
1954 struct iov_iter *i, unsigned long offset, size_t bytes)
1960 if (likely(i->nr_segs == 1)) {
1962 char __user *buf = i->iov->iov_base + i->iov_offset;
1963 left = __copy_from_user(kaddr + offset, buf, bytes);
1964 copied = bytes - left;
1966 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1967 i->iov, i->iov_offset, bytes);
1972 EXPORT_SYMBOL(iov_iter_copy_from_user);
1974 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1976 BUG_ON(i->count < bytes);
1978 if (likely(i->nr_segs == 1)) {
1979 i->iov_offset += bytes;
1982 const struct iovec *iov = i->iov;
1983 size_t base = i->iov_offset;
1986 * The !iov->iov_len check ensures we skip over unlikely
1987 * zero-length segments (without overruning the iovec).
1989 while (bytes || unlikely(i->count && !iov->iov_len)) {
1992 copy = min(bytes, iov->iov_len - base);
1993 BUG_ON(!i->count || i->count < copy);
1997 if (iov->iov_len == base) {
2003 i->iov_offset = base;
2006 EXPORT_SYMBOL(iov_iter_advance);
2009 * Fault in the first iovec of the given iov_iter, to a maximum length
2010 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2011 * accessed (ie. because it is an invalid address).
2013 * writev-intensive code may want this to prefault several iovecs -- that
2014 * would be possible (callers must not rely on the fact that _only_ the
2015 * first iovec will be faulted with the current implementation).
2017 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2019 char __user *buf = i->iov->iov_base + i->iov_offset;
2020 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2021 return fault_in_pages_readable(buf, bytes);
2023 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2026 * Return the count of just the current iov_iter segment.
2028 size_t iov_iter_single_seg_count(struct iov_iter *i)
2030 const struct iovec *iov = i->iov;
2031 if (i->nr_segs == 1)
2034 return min(i->count, iov->iov_len - i->iov_offset);
2036 EXPORT_SYMBOL(iov_iter_single_seg_count);
2039 * Performs necessary checks before doing a write
2041 * Can adjust writing position or amount of bytes to write.
2042 * Returns appropriate error code that caller should return or
2043 * zero in case that write should be allowed.
2045 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2047 struct inode *inode = file->f_mapping->host;
2048 unsigned long limit = rlimit(RLIMIT_FSIZE);
2050 if (unlikely(*pos < 0))
2054 /* FIXME: this is for backwards compatibility with 2.4 */
2055 if (file->f_flags & O_APPEND)
2056 *pos = i_size_read(inode);
2058 if (limit != RLIM_INFINITY) {
2059 if (*pos >= limit) {
2060 send_sig(SIGXFSZ, current, 0);
2063 if (*count > limit - (typeof(limit))*pos) {
2064 *count = limit - (typeof(limit))*pos;
2072 if (unlikely(*pos + *count > MAX_NON_LFS &&
2073 !(file->f_flags & O_LARGEFILE))) {
2074 if (*pos >= MAX_NON_LFS) {
2077 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2078 *count = MAX_NON_LFS - (unsigned long)*pos;
2083 * Are we about to exceed the fs block limit ?
2085 * If we have written data it becomes a short write. If we have
2086 * exceeded without writing data we send a signal and return EFBIG.
2087 * Linus frestrict idea will clean these up nicely..
2089 if (likely(!isblk)) {
2090 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2091 if (*count || *pos > inode->i_sb->s_maxbytes) {
2094 /* zero-length writes at ->s_maxbytes are OK */
2097 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2098 *count = inode->i_sb->s_maxbytes - *pos;
2102 if (bdev_read_only(I_BDEV(inode)))
2104 isize = i_size_read(inode);
2105 if (*pos >= isize) {
2106 if (*count || *pos > isize)
2110 if (*pos + *count > isize)
2111 *count = isize - *pos;
2118 EXPORT_SYMBOL(generic_write_checks);
2120 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2121 loff_t pos, unsigned len, unsigned flags,
2122 struct page **pagep, void **fsdata)
2124 const struct address_space_operations *aops = mapping->a_ops;
2126 return aops->write_begin(file, mapping, pos, len, flags,
2129 EXPORT_SYMBOL(pagecache_write_begin);
2131 int pagecache_write_end(struct file *file, struct address_space *mapping,
2132 loff_t pos, unsigned len, unsigned copied,
2133 struct page *page, void *fsdata)
2135 const struct address_space_operations *aops = mapping->a_ops;
2137 mark_page_accessed(page);
2138 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2140 EXPORT_SYMBOL(pagecache_write_end);
2143 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2144 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2145 size_t count, size_t ocount)
2147 struct file *file = iocb->ki_filp;
2148 struct address_space *mapping = file->f_mapping;
2149 struct inode *inode = mapping->host;
2154 if (count != ocount)
2155 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2157 write_len = iov_length(iov, *nr_segs);
2158 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2160 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2165 * After a write we want buffered reads to be sure to go to disk to get
2166 * the new data. We invalidate clean cached page from the region we're
2167 * about to write. We do this *before* the write so that we can return
2168 * without clobbering -EIOCBQUEUED from ->direct_IO().
2170 if (mapping->nrpages) {
2171 written = invalidate_inode_pages2_range(mapping,
2172 pos >> PAGE_CACHE_SHIFT, end);
2174 * If a page can not be invalidated, return 0 to fall back
2175 * to buffered write.
2178 if (written == -EBUSY)
2184 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2187 * Finally, try again to invalidate clean pages which might have been
2188 * cached by non-direct readahead, or faulted in by get_user_pages()
2189 * if the source of the write was an mmap'ed region of the file
2190 * we're writing. Either one is a pretty crazy thing to do,
2191 * so we don't support it 100%. If this invalidation
2192 * fails, tough, the write still worked...
2194 if (mapping->nrpages) {
2195 invalidate_inode_pages2_range(mapping,
2196 pos >> PAGE_CACHE_SHIFT, end);
2201 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2202 i_size_write(inode, pos);
2203 mark_inode_dirty(inode);
2210 EXPORT_SYMBOL(generic_file_direct_write);
2213 * Find or create a page at the given pagecache position. Return the locked
2214 * page. This function is specifically for buffered writes.
2216 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2217 pgoff_t index, unsigned flags)
2221 gfp_t gfp_notmask = 0;
2222 if (flags & AOP_FLAG_NOFS)
2223 gfp_notmask = __GFP_FS;
2225 page = find_lock_page(mapping, index);
2229 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2232 status = add_to_page_cache_lru(page, mapping, index,
2233 GFP_KERNEL & ~gfp_notmask);
2234 if (unlikely(status)) {
2235 page_cache_release(page);
2236 if (status == -EEXIST)
2242 EXPORT_SYMBOL(grab_cache_page_write_begin);
2244 static ssize_t generic_perform_write(struct file *file,
2245 struct iov_iter *i, loff_t pos)
2247 struct address_space *mapping = file->f_mapping;
2248 const struct address_space_operations *a_ops = mapping->a_ops;
2250 ssize_t written = 0;
2251 unsigned int flags = 0;
2254 * Copies from kernel address space cannot fail (NFSD is a big user).
2256 if (segment_eq(get_fs(), KERNEL_DS))
2257 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2261 unsigned long offset; /* Offset into pagecache page */
2262 unsigned long bytes; /* Bytes to write to page */
2263 size_t copied; /* Bytes copied from user */
2266 offset = (pos & (PAGE_CACHE_SIZE - 1));
2267 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2273 * Bring in the user page that we will copy from _first_.
2274 * Otherwise there's a nasty deadlock on copying from the
2275 * same page as we're writing to, without it being marked
2278 * Not only is this an optimisation, but it is also required
2279 * to check that the address is actually valid, when atomic
2280 * usercopies are used, below.
2282 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2287 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2289 if (unlikely(status))
2292 if (mapping_writably_mapped(mapping))
2293 flush_dcache_page(page);
2295 pagefault_disable();
2296 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2298 flush_dcache_page(page);
2300 mark_page_accessed(page);
2301 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2303 if (unlikely(status < 0))
2309 iov_iter_advance(i, copied);
2310 if (unlikely(copied == 0)) {
2312 * If we were unable to copy any data at all, we must
2313 * fall back to a single segment length write.
2315 * If we didn't fallback here, we could livelock
2316 * because not all segments in the iov can be copied at
2317 * once without a pagefault.
2319 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2320 iov_iter_single_seg_count(i));
2326 balance_dirty_pages_ratelimited(mapping);
2328 } while (iov_iter_count(i));
2330 return written ? written : status;
2334 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2335 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2336 size_t count, ssize_t written)
2338 struct file *file = iocb->ki_filp;
2342 iov_iter_init(&i, iov, nr_segs, count, written);
2343 status = generic_perform_write(file, &i, pos);
2345 if (likely(status >= 0)) {
2347 *ppos = pos + status;
2350 return written ? written : status;
2352 EXPORT_SYMBOL(generic_file_buffered_write);
2355 * __generic_file_aio_write - write data to a file
2356 * @iocb: IO state structure (file, offset, etc.)
2357 * @iov: vector with data to write
2358 * @nr_segs: number of segments in the vector
2359 * @ppos: position where to write
2361 * This function does all the work needed for actually writing data to a
2362 * file. It does all basic checks, removes SUID from the file, updates
2363 * modification times and calls proper subroutines depending on whether we
2364 * do direct IO or a standard buffered write.
2366 * It expects i_mutex to be grabbed unless we work on a block device or similar
2367 * object which does not need locking at all.
2369 * This function does *not* take care of syncing data in case of O_SYNC write.
2370 * A caller has to handle it. This is mainly due to the fact that we want to
2371 * avoid syncing under i_mutex.
2373 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2374 unsigned long nr_segs, loff_t *ppos)
2376 struct file *file = iocb->ki_filp;
2377 struct address_space * mapping = file->f_mapping;
2378 size_t ocount; /* original count */
2379 size_t count; /* after file limit checks */
2380 struct inode *inode = mapping->host;
2386 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2393 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2395 /* We can write back this queue in page reclaim */
2396 current->backing_dev_info = mapping->backing_dev_info;
2399 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2406 err = file_remove_suid(file);
2410 file_update_time(file);
2412 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2413 if (unlikely(file->f_flags & O_DIRECT)) {
2415 ssize_t written_buffered;
2417 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2418 ppos, count, ocount);
2419 if (written < 0 || written == count)
2422 * direct-io write to a hole: fall through to buffered I/O
2423 * for completing the rest of the request.
2427 written_buffered = generic_file_buffered_write(iocb, iov,
2428 nr_segs, pos, ppos, count,
2431 * If generic_file_buffered_write() retuned a synchronous error
2432 * then we want to return the number of bytes which were
2433 * direct-written, or the error code if that was zero. Note
2434 * that this differs from normal direct-io semantics, which
2435 * will return -EFOO even if some bytes were written.
2437 if (written_buffered < 0) {
2438 err = written_buffered;
2443 * We need to ensure that the page cache pages are written to
2444 * disk and invalidated to preserve the expected O_DIRECT
2447 endbyte = pos + written_buffered - written - 1;
2448 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2450 written = written_buffered;
2451 invalidate_mapping_pages(mapping,
2452 pos >> PAGE_CACHE_SHIFT,
2453 endbyte >> PAGE_CACHE_SHIFT);
2456 * We don't know how much we wrote, so just return
2457 * the number of bytes which were direct-written
2461 written = generic_file_buffered_write(iocb, iov, nr_segs,
2462 pos, ppos, count, written);
2465 current->backing_dev_info = NULL;
2466 return written ? written : err;
2468 EXPORT_SYMBOL(__generic_file_aio_write);
2471 * generic_file_aio_write - write data to a file
2472 * @iocb: IO state structure
2473 * @iov: vector with data to write
2474 * @nr_segs: number of segments in the vector
2475 * @pos: position in file where to write
2477 * This is a wrapper around __generic_file_aio_write() to be used by most
2478 * filesystems. It takes care of syncing the file in case of O_SYNC file
2479 * and acquires i_mutex as needed.
2481 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2482 unsigned long nr_segs, loff_t pos)
2484 struct file *file = iocb->ki_filp;
2485 struct inode *inode = file->f_mapping->host;
2488 BUG_ON(iocb->ki_pos != pos);
2490 mutex_lock(&inode->i_mutex);
2491 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2492 mutex_unlock(&inode->i_mutex);
2494 if (ret > 0 || ret == -EIOCBQUEUED) {
2497 err = generic_write_sync(file, pos, ret);
2498 if (err < 0 && ret > 0)
2503 EXPORT_SYMBOL(generic_file_aio_write);
2506 * try_to_release_page() - release old fs-specific metadata on a page
2508 * @page: the page which the kernel is trying to free
2509 * @gfp_mask: memory allocation flags (and I/O mode)
2511 * The address_space is to try to release any data against the page
2512 * (presumably at page->private). If the release was successful, return `1'.
2513 * Otherwise return zero.
2515 * This may also be called if PG_fscache is set on a page, indicating that the
2516 * page is known to the local caching routines.
2518 * The @gfp_mask argument specifies whether I/O may be performed to release
2519 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2522 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2524 struct address_space * const mapping = page->mapping;
2526 BUG_ON(!PageLocked(page));
2527 if (PageWriteback(page))
2530 if (mapping && mapping->a_ops->releasepage)
2531 return mapping->a_ops->releasepage(page, gfp_mask);
2532 return try_to_free_buffers(page);
2535 EXPORT_SYMBOL(try_to_release_page);