]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
3cda32c5bdb372c29278f1b9be334d65629eeb2f
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/swapops.h>
34
35 #include <asm/tlb.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 enum scan_result {
40         SCAN_FAIL,
41         SCAN_SUCCEED,
42         SCAN_PMD_NULL,
43         SCAN_EXCEED_NONE_PTE,
44         SCAN_PTE_NON_PRESENT,
45         SCAN_PAGE_RO,
46         SCAN_NO_REFERENCED_PAGE,
47         SCAN_PAGE_NULL,
48         SCAN_SCAN_ABORT,
49         SCAN_PAGE_COUNT,
50         SCAN_PAGE_LRU,
51         SCAN_PAGE_LOCK,
52         SCAN_PAGE_ANON,
53         SCAN_PAGE_COMPOUND,
54         SCAN_ANY_PROCESS,
55         SCAN_VMA_NULL,
56         SCAN_VMA_CHECK,
57         SCAN_ADDRESS_RANGE,
58         SCAN_SWAP_CACHE_PAGE,
59         SCAN_DEL_PAGE_LRU,
60         SCAN_ALLOC_HUGE_PAGE_FAIL,
61         SCAN_CGROUP_CHARGE_FAIL,
62         SCAN_EXCEED_SWAP_PTE
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 /*
69  * By default transparent hugepage support is disabled in order that avoid
70  * to risk increase the memory footprint of applications without a guaranteed
71  * benefit. When transparent hugepage support is enabled, is for all mappings,
72  * and khugepaged scans all mappings.
73  * Defrag is invoked by khugepaged hugepage allocations and by page faults
74  * for all hugepage allocations.
75  */
76 unsigned long transparent_hugepage_flags __read_mostly =
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
78         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
79 #endif
80 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
81         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
82 #endif
83         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
84         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
85         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
86
87 /* default scan 8*512 pte (or vmas) every 30 second */
88 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
89 static unsigned int khugepaged_pages_collapsed;
90 static unsigned int khugepaged_full_scans;
91 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
92 /* during fragmentation poll the hugepage allocator once every minute */
93 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99  * default collapse hugepages if there is at least one pte mapped like
100  * it would have happened if the vma was large enough during page
101  * fault.
102  */
103 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly = HPAGE_PMD_NR/8;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116  * struct mm_slot - hash lookup from mm to mm_slot
117  * @hash: hash collision list
118  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node hash;
123         struct list_head mm_node;
124         struct mm_struct *mm;
125 };
126
127 /**
128  * struct khugepaged_scan - cursor for scanning
129  * @mm_head: the head of the mm list to scan
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  *
133  * There is only the one khugepaged_scan instance of this cursor structure.
134  */
135 struct khugepaged_scan {
136         struct list_head mm_head;
137         struct mm_slot *mm_slot;
138         unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148         struct zone *zone;
149         int nr_zones = 0;
150         unsigned long recommended_min;
151
152         for_each_populated_zone(zone)
153                 nr_zones++;
154
155         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156         recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158         /*
159          * Make sure that on average at least two pageblocks are almost free
160          * of another type, one for a migratetype to fall back to and a
161          * second to avoid subsequent fallbacks of other types There are 3
162          * MIGRATE_TYPES we care about.
163          */
164         recommended_min += pageblock_nr_pages * nr_zones *
165                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167         /* don't ever allow to reserve more than 5% of the lowmem */
168         recommended_min = min(recommended_min,
169                               (unsigned long) nr_free_buffer_pages() / 20);
170         recommended_min <<= (PAGE_SHIFT-10);
171
172         if (recommended_min > min_free_kbytes) {
173                 if (user_min_free_kbytes >= 0)
174                         pr_info("raising min_free_kbytes from %d to %lu "
175                                 "to help transparent hugepage allocations\n",
176                                 min_free_kbytes, recommended_min);
177
178                 min_free_kbytes = recommended_min;
179         }
180         setup_per_zone_wmarks();
181 }
182
183 static int start_stop_khugepaged(void)
184 {
185         int err = 0;
186         if (khugepaged_enabled()) {
187                 if (!khugepaged_thread)
188                         khugepaged_thread = kthread_run(khugepaged, NULL,
189                                                         "khugepaged");
190                 if (IS_ERR(khugepaged_thread)) {
191                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
192                         err = PTR_ERR(khugepaged_thread);
193                         khugepaged_thread = NULL;
194                         goto fail;
195                 }
196
197                 if (!list_empty(&khugepaged_scan.mm_head))
198                         wake_up_interruptible(&khugepaged_wait);
199
200                 set_recommended_min_free_kbytes();
201         } else if (khugepaged_thread) {
202                 kthread_stop(khugepaged_thread);
203                 khugepaged_thread = NULL;
204         }
205 fail:
206         return err;
207 }
208
209 static atomic_t huge_zero_refcount;
210 struct page *huge_zero_page __read_mostly;
211
212 struct page *get_huge_zero_page(void)
213 {
214         struct page *zero_page;
215 retry:
216         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
217                 return READ_ONCE(huge_zero_page);
218
219         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
220                         HPAGE_PMD_ORDER);
221         if (!zero_page) {
222                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
223                 return NULL;
224         }
225         count_vm_event(THP_ZERO_PAGE_ALLOC);
226         preempt_disable();
227         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
228                 preempt_enable();
229                 __free_pages(zero_page, compound_order(zero_page));
230                 goto retry;
231         }
232
233         /* We take additional reference here. It will be put back by shrinker */
234         atomic_set(&huge_zero_refcount, 2);
235         preempt_enable();
236         return READ_ONCE(huge_zero_page);
237 }
238
239 static void put_huge_zero_page(void)
240 {
241         /*
242          * Counter should never go to zero here. Only shrinker can put
243          * last reference.
244          */
245         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249                                         struct shrink_control *sc)
250 {
251         /* we can free zero page only if last reference remains */
252         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256                                        struct shrink_control *sc)
257 {
258         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259                 struct page *zero_page = xchg(&huge_zero_page, NULL);
260                 BUG_ON(zero_page == NULL);
261                 __free_pages(zero_page, compound_order(zero_page));
262                 return HPAGE_PMD_NR;
263         }
264
265         return 0;
266 }
267
268 static struct shrinker huge_zero_page_shrinker = {
269         .count_objects = shrink_huge_zero_page_count,
270         .scan_objects = shrink_huge_zero_page_scan,
271         .seeks = DEFAULT_SEEKS,
272 };
273
274 #ifdef CONFIG_SYSFS
275
276 static ssize_t double_flag_show(struct kobject *kobj,
277                                 struct kobj_attribute *attr, char *buf,
278                                 enum transparent_hugepage_flag enabled,
279                                 enum transparent_hugepage_flag req_madv)
280 {
281         if (test_bit(enabled, &transparent_hugepage_flags)) {
282                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
283                 return sprintf(buf, "[always] madvise never\n");
284         } else if (test_bit(req_madv, &transparent_hugepage_flags))
285                 return sprintf(buf, "always [madvise] never\n");
286         else
287                 return sprintf(buf, "always madvise [never]\n");
288 }
289 static ssize_t double_flag_store(struct kobject *kobj,
290                                  struct kobj_attribute *attr,
291                                  const char *buf, size_t count,
292                                  enum transparent_hugepage_flag enabled,
293                                  enum transparent_hugepage_flag req_madv)
294 {
295         if (!memcmp("always", buf,
296                     min(sizeof("always")-1, count))) {
297                 set_bit(enabled, &transparent_hugepage_flags);
298                 clear_bit(req_madv, &transparent_hugepage_flags);
299         } else if (!memcmp("madvise", buf,
300                            min(sizeof("madvise")-1, count))) {
301                 clear_bit(enabled, &transparent_hugepage_flags);
302                 set_bit(req_madv, &transparent_hugepage_flags);
303         } else if (!memcmp("never", buf,
304                            min(sizeof("never")-1, count))) {
305                 clear_bit(enabled, &transparent_hugepage_flags);
306                 clear_bit(req_madv, &transparent_hugepage_flags);
307         } else
308                 return -EINVAL;
309
310         return count;
311 }
312
313 static ssize_t enabled_show(struct kobject *kobj,
314                             struct kobj_attribute *attr, char *buf)
315 {
316         return double_flag_show(kobj, attr, buf,
317                                 TRANSPARENT_HUGEPAGE_FLAG,
318                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
319 }
320 static ssize_t enabled_store(struct kobject *kobj,
321                              struct kobj_attribute *attr,
322                              const char *buf, size_t count)
323 {
324         ssize_t ret;
325
326         ret = double_flag_store(kobj, attr, buf, count,
327                                 TRANSPARENT_HUGEPAGE_FLAG,
328                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329
330         if (ret > 0) {
331                 int err;
332
333                 mutex_lock(&khugepaged_mutex);
334                 err = start_stop_khugepaged();
335                 mutex_unlock(&khugepaged_mutex);
336
337                 if (err)
338                         ret = err;
339         }
340
341         return ret;
342 }
343 static struct kobj_attribute enabled_attr =
344         __ATTR(enabled, 0644, enabled_show, enabled_store);
345
346 static ssize_t single_flag_show(struct kobject *kobj,
347                                 struct kobj_attribute *attr, char *buf,
348                                 enum transparent_hugepage_flag flag)
349 {
350         return sprintf(buf, "%d\n",
351                        !!test_bit(flag, &transparent_hugepage_flags));
352 }
353
354 static ssize_t single_flag_store(struct kobject *kobj,
355                                  struct kobj_attribute *attr,
356                                  const char *buf, size_t count,
357                                  enum transparent_hugepage_flag flag)
358 {
359         unsigned long value;
360         int ret;
361
362         ret = kstrtoul(buf, 10, &value);
363         if (ret < 0)
364                 return ret;
365         if (value > 1)
366                 return -EINVAL;
367
368         if (value)
369                 set_bit(flag, &transparent_hugepage_flags);
370         else
371                 clear_bit(flag, &transparent_hugepage_flags);
372
373         return count;
374 }
375
376 /*
377  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379  * memory just to allocate one more hugepage.
380  */
381 static ssize_t defrag_show(struct kobject *kobj,
382                            struct kobj_attribute *attr, char *buf)
383 {
384         return double_flag_show(kobj, attr, buf,
385                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387 }
388 static ssize_t defrag_store(struct kobject *kobj,
389                             struct kobj_attribute *attr,
390                             const char *buf, size_t count)
391 {
392         return double_flag_store(kobj, attr, buf, count,
393                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
394                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
395 }
396 static struct kobj_attribute defrag_attr =
397         __ATTR(defrag, 0644, defrag_show, defrag_store);
398
399 static ssize_t use_zero_page_show(struct kobject *kobj,
400                 struct kobj_attribute *attr, char *buf)
401 {
402         return single_flag_show(kobj, attr, buf,
403                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
404 }
405 static ssize_t use_zero_page_store(struct kobject *kobj,
406                 struct kobj_attribute *attr, const char *buf, size_t count)
407 {
408         return single_flag_store(kobj, attr, buf, count,
409                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410 }
411 static struct kobj_attribute use_zero_page_attr =
412         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
413 #ifdef CONFIG_DEBUG_VM
414 static ssize_t debug_cow_show(struct kobject *kobj,
415                                 struct kobj_attribute *attr, char *buf)
416 {
417         return single_flag_show(kobj, attr, buf,
418                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
419 }
420 static ssize_t debug_cow_store(struct kobject *kobj,
421                                struct kobj_attribute *attr,
422                                const char *buf, size_t count)
423 {
424         return single_flag_store(kobj, attr, buf, count,
425                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426 }
427 static struct kobj_attribute debug_cow_attr =
428         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
429 #endif /* CONFIG_DEBUG_VM */
430
431 static struct attribute *hugepage_attr[] = {
432         &enabled_attr.attr,
433         &defrag_attr.attr,
434         &use_zero_page_attr.attr,
435 #ifdef CONFIG_DEBUG_VM
436         &debug_cow_attr.attr,
437 #endif
438         NULL,
439 };
440
441 static struct attribute_group hugepage_attr_group = {
442         .attrs = hugepage_attr,
443 };
444
445 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
446                                          struct kobj_attribute *attr,
447                                          char *buf)
448 {
449         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
450 }
451
452 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
453                                           struct kobj_attribute *attr,
454                                           const char *buf, size_t count)
455 {
456         unsigned long msecs;
457         int err;
458
459         err = kstrtoul(buf, 10, &msecs);
460         if (err || msecs > UINT_MAX)
461                 return -EINVAL;
462
463         khugepaged_scan_sleep_millisecs = msecs;
464         wake_up_interruptible(&khugepaged_wait);
465
466         return count;
467 }
468 static struct kobj_attribute scan_sleep_millisecs_attr =
469         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
470                scan_sleep_millisecs_store);
471
472 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
473                                           struct kobj_attribute *attr,
474                                           char *buf)
475 {
476         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
477 }
478
479 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
480                                            struct kobj_attribute *attr,
481                                            const char *buf, size_t count)
482 {
483         unsigned long msecs;
484         int err;
485
486         err = kstrtoul(buf, 10, &msecs);
487         if (err || msecs > UINT_MAX)
488                 return -EINVAL;
489
490         khugepaged_alloc_sleep_millisecs = msecs;
491         wake_up_interruptible(&khugepaged_wait);
492
493         return count;
494 }
495 static struct kobj_attribute alloc_sleep_millisecs_attr =
496         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
497                alloc_sleep_millisecs_store);
498
499 static ssize_t pages_to_scan_show(struct kobject *kobj,
500                                   struct kobj_attribute *attr,
501                                   char *buf)
502 {
503         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
504 }
505 static ssize_t pages_to_scan_store(struct kobject *kobj,
506                                    struct kobj_attribute *attr,
507                                    const char *buf, size_t count)
508 {
509         int err;
510         unsigned long pages;
511
512         err = kstrtoul(buf, 10, &pages);
513         if (err || !pages || pages > UINT_MAX)
514                 return -EINVAL;
515
516         khugepaged_pages_to_scan = pages;
517
518         return count;
519 }
520 static struct kobj_attribute pages_to_scan_attr =
521         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
522                pages_to_scan_store);
523
524 static ssize_t pages_collapsed_show(struct kobject *kobj,
525                                     struct kobj_attribute *attr,
526                                     char *buf)
527 {
528         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
529 }
530 static struct kobj_attribute pages_collapsed_attr =
531         __ATTR_RO(pages_collapsed);
532
533 static ssize_t full_scans_show(struct kobject *kobj,
534                                struct kobj_attribute *attr,
535                                char *buf)
536 {
537         return sprintf(buf, "%u\n", khugepaged_full_scans);
538 }
539 static struct kobj_attribute full_scans_attr =
540         __ATTR_RO(full_scans);
541
542 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
543                                       struct kobj_attribute *attr, char *buf)
544 {
545         return single_flag_show(kobj, attr, buf,
546                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
547 }
548 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
549                                        struct kobj_attribute *attr,
550                                        const char *buf, size_t count)
551 {
552         return single_flag_store(kobj, attr, buf, count,
553                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
554 }
555 static struct kobj_attribute khugepaged_defrag_attr =
556         __ATTR(defrag, 0644, khugepaged_defrag_show,
557                khugepaged_defrag_store);
558
559 /*
560  * max_ptes_none controls if khugepaged should collapse hugepages over
561  * any unmapped ptes in turn potentially increasing the memory
562  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
563  * reduce the available free memory in the system as it
564  * runs. Increasing max_ptes_none will instead potentially reduce the
565  * free memory in the system during the khugepaged scan.
566  */
567 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
568                                              struct kobj_attribute *attr,
569                                              char *buf)
570 {
571         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
572 }
573 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
574                                               struct kobj_attribute *attr,
575                                               const char *buf, size_t count)
576 {
577         int err;
578         unsigned long max_ptes_none;
579
580         err = kstrtoul(buf, 10, &max_ptes_none);
581         if (err || max_ptes_none > HPAGE_PMD_NR-1)
582                 return -EINVAL;
583
584         khugepaged_max_ptes_none = max_ptes_none;
585
586         return count;
587 }
588 static struct kobj_attribute khugepaged_max_ptes_none_attr =
589         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
590                khugepaged_max_ptes_none_store);
591
592 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
593                                              struct kobj_attribute *attr,
594                                              char *buf)
595 {
596         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
597 }
598
599 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
600                                               struct kobj_attribute *attr,
601                                               const char *buf, size_t count)
602 {
603         int err;
604         unsigned long max_ptes_swap;
605
606         err  = kstrtoul(buf, 10, &max_ptes_swap);
607         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
608                 return -EINVAL;
609
610         khugepaged_max_ptes_swap = max_ptes_swap;
611
612         return count;
613 }
614
615 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
616         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
617                khugepaged_max_ptes_swap_store);
618
619 static struct attribute *khugepaged_attr[] = {
620         &khugepaged_defrag_attr.attr,
621         &khugepaged_max_ptes_none_attr.attr,
622         &pages_to_scan_attr.attr,
623         &pages_collapsed_attr.attr,
624         &full_scans_attr.attr,
625         &scan_sleep_millisecs_attr.attr,
626         &alloc_sleep_millisecs_attr.attr,
627         &khugepaged_max_ptes_swap_attr.attr,
628         NULL,
629 };
630
631 static struct attribute_group khugepaged_attr_group = {
632         .attrs = khugepaged_attr,
633         .name = "khugepaged",
634 };
635
636 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
637 {
638         int err;
639
640         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
641         if (unlikely(!*hugepage_kobj)) {
642                 pr_err("failed to create transparent hugepage kobject\n");
643                 return -ENOMEM;
644         }
645
646         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
647         if (err) {
648                 pr_err("failed to register transparent hugepage group\n");
649                 goto delete_obj;
650         }
651
652         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
653         if (err) {
654                 pr_err("failed to register transparent hugepage group\n");
655                 goto remove_hp_group;
656         }
657
658         return 0;
659
660 remove_hp_group:
661         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
662 delete_obj:
663         kobject_put(*hugepage_kobj);
664         return err;
665 }
666
667 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
668 {
669         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
670         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
671         kobject_put(hugepage_kobj);
672 }
673 #else
674 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
675 {
676         return 0;
677 }
678
679 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
680 {
681 }
682 #endif /* CONFIG_SYSFS */
683
684 static int __init hugepage_init(void)
685 {
686         int err;
687         struct kobject *hugepage_kobj;
688
689         if (!has_transparent_hugepage()) {
690                 transparent_hugepage_flags = 0;
691                 return -EINVAL;
692         }
693
694         err = hugepage_init_sysfs(&hugepage_kobj);
695         if (err)
696                 goto err_sysfs;
697
698         err = khugepaged_slab_init();
699         if (err)
700                 goto err_slab;
701
702         err = register_shrinker(&huge_zero_page_shrinker);
703         if (err)
704                 goto err_hzp_shrinker;
705         err = register_shrinker(&deferred_split_shrinker);
706         if (err)
707                 goto err_split_shrinker;
708
709         /*
710          * By default disable transparent hugepages on smaller systems,
711          * where the extra memory used could hurt more than TLB overhead
712          * is likely to save.  The admin can still enable it through /sys.
713          */
714         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
715                 transparent_hugepage_flags = 0;
716                 return 0;
717         }
718
719         err = start_stop_khugepaged();
720         if (err)
721                 goto err_khugepaged;
722
723         return 0;
724 err_khugepaged:
725         unregister_shrinker(&deferred_split_shrinker);
726 err_split_shrinker:
727         unregister_shrinker(&huge_zero_page_shrinker);
728 err_hzp_shrinker:
729         khugepaged_slab_exit();
730 err_slab:
731         hugepage_exit_sysfs(hugepage_kobj);
732 err_sysfs:
733         return err;
734 }
735 subsys_initcall(hugepage_init);
736
737 static int __init setup_transparent_hugepage(char *str)
738 {
739         int ret = 0;
740         if (!str)
741                 goto out;
742         if (!strcmp(str, "always")) {
743                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
744                         &transparent_hugepage_flags);
745                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
746                           &transparent_hugepage_flags);
747                 ret = 1;
748         } else if (!strcmp(str, "madvise")) {
749                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
750                           &transparent_hugepage_flags);
751                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
752                         &transparent_hugepage_flags);
753                 ret = 1;
754         } else if (!strcmp(str, "never")) {
755                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
756                           &transparent_hugepage_flags);
757                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
758                           &transparent_hugepage_flags);
759                 ret = 1;
760         }
761 out:
762         if (!ret)
763                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
764         return ret;
765 }
766 __setup("transparent_hugepage=", setup_transparent_hugepage);
767
768 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
769 {
770         if (likely(vma->vm_flags & VM_WRITE))
771                 pmd = pmd_mkwrite(pmd);
772         return pmd;
773 }
774
775 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
776 {
777         pmd_t entry;
778         entry = mk_pmd(page, prot);
779         entry = pmd_mkhuge(entry);
780         return entry;
781 }
782
783 static inline struct list_head *page_deferred_list(struct page *page)
784 {
785         /*
786          * ->lru in the tail pages is occupied by compound_head.
787          * Let's use ->mapping + ->index in the second tail page as list_head.
788          */
789         return (struct list_head *)&page[2].mapping;
790 }
791
792 void prep_transhuge_page(struct page *page)
793 {
794         /*
795          * we use page->mapping and page->indexlru in second tail page
796          * as list_head: assuming THP order >= 2
797          */
798         BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
799
800         INIT_LIST_HEAD(page_deferred_list(page));
801         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
802 }
803
804 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
805                                         struct vm_area_struct *vma,
806                                         unsigned long address, pmd_t *pmd,
807                                         struct page *page, gfp_t gfp,
808                                         unsigned int flags)
809 {
810         struct mem_cgroup *memcg;
811         pgtable_t pgtable;
812         spinlock_t *ptl;
813         unsigned long haddr = address & HPAGE_PMD_MASK;
814
815         VM_BUG_ON_PAGE(!PageCompound(page), page);
816
817         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
818                 put_page(page);
819                 count_vm_event(THP_FAULT_FALLBACK);
820                 return VM_FAULT_FALLBACK;
821         }
822
823         pgtable = pte_alloc_one(mm, haddr);
824         if (unlikely(!pgtable)) {
825                 mem_cgroup_cancel_charge(page, memcg, true);
826                 put_page(page);
827                 return VM_FAULT_OOM;
828         }
829
830         clear_huge_page(page, haddr, HPAGE_PMD_NR);
831         /*
832          * The memory barrier inside __SetPageUptodate makes sure that
833          * clear_huge_page writes become visible before the set_pmd_at()
834          * write.
835          */
836         __SetPageUptodate(page);
837
838         ptl = pmd_lock(mm, pmd);
839         if (unlikely(!pmd_none(*pmd))) {
840                 spin_unlock(ptl);
841                 mem_cgroup_cancel_charge(page, memcg, true);
842                 put_page(page);
843                 pte_free(mm, pgtable);
844         } else {
845                 pmd_t entry;
846
847                 /* Deliver the page fault to userland */
848                 if (userfaultfd_missing(vma)) {
849                         int ret;
850
851                         spin_unlock(ptl);
852                         mem_cgroup_cancel_charge(page, memcg, true);
853                         put_page(page);
854                         pte_free(mm, pgtable);
855                         ret = handle_userfault(vma, address, flags,
856                                                VM_UFFD_MISSING);
857                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
858                         return ret;
859                 }
860
861                 entry = mk_huge_pmd(page, vma->vm_page_prot);
862                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
863                 page_add_new_anon_rmap(page, vma, haddr, true);
864                 mem_cgroup_commit_charge(page, memcg, false, true);
865                 lru_cache_add_active_or_unevictable(page, vma);
866                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
867                 set_pmd_at(mm, haddr, pmd, entry);
868                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
869                 atomic_long_inc(&mm->nr_ptes);
870                 spin_unlock(ptl);
871                 count_vm_event(THP_FAULT_ALLOC);
872         }
873
874         return 0;
875 }
876
877 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
878 {
879         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
880 }
881
882 /* Caller must hold page table lock. */
883 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
884                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
885                 struct page *zero_page)
886 {
887         pmd_t entry;
888         if (!pmd_none(*pmd))
889                 return false;
890         entry = mk_pmd(zero_page, vma->vm_page_prot);
891         entry = pmd_mkhuge(entry);
892         if (pgtable)
893                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
894         set_pmd_at(mm, haddr, pmd, entry);
895         atomic_long_inc(&mm->nr_ptes);
896         return true;
897 }
898
899 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
900                                unsigned long address, pmd_t *pmd,
901                                unsigned int flags)
902 {
903         gfp_t gfp;
904         struct page *page;
905         unsigned long haddr = address & HPAGE_PMD_MASK;
906
907         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
908                 return VM_FAULT_FALLBACK;
909         if (unlikely(anon_vma_prepare(vma)))
910                 return VM_FAULT_OOM;
911         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
912                 return VM_FAULT_OOM;
913         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
914                         transparent_hugepage_use_zero_page()) {
915                 spinlock_t *ptl;
916                 pgtable_t pgtable;
917                 struct page *zero_page;
918                 bool set;
919                 int ret;
920                 pgtable = pte_alloc_one(mm, haddr);
921                 if (unlikely(!pgtable))
922                         return VM_FAULT_OOM;
923                 zero_page = get_huge_zero_page();
924                 if (unlikely(!zero_page)) {
925                         pte_free(mm, pgtable);
926                         count_vm_event(THP_FAULT_FALLBACK);
927                         return VM_FAULT_FALLBACK;
928                 }
929                 ptl = pmd_lock(mm, pmd);
930                 ret = 0;
931                 set = false;
932                 if (pmd_none(*pmd)) {
933                         if (userfaultfd_missing(vma)) {
934                                 spin_unlock(ptl);
935                                 ret = handle_userfault(vma, address, flags,
936                                                        VM_UFFD_MISSING);
937                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
938                         } else {
939                                 set_huge_zero_page(pgtable, mm, vma,
940                                                    haddr, pmd,
941                                                    zero_page);
942                                 spin_unlock(ptl);
943                                 set = true;
944                         }
945                 } else
946                         spin_unlock(ptl);
947                 if (!set) {
948                         pte_free(mm, pgtable);
949                         put_huge_zero_page();
950                 }
951                 return ret;
952         }
953         gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
954         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
955         if (unlikely(!page)) {
956                 count_vm_event(THP_FAULT_FALLBACK);
957                 return VM_FAULT_FALLBACK;
958         }
959         prep_transhuge_page(page);
960         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
961                                             flags);
962 }
963
964 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
965                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
966 {
967         struct mm_struct *mm = vma->vm_mm;
968         pmd_t entry;
969         spinlock_t *ptl;
970
971         ptl = pmd_lock(mm, pmd);
972         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
973         if (pfn_t_devmap(pfn))
974                 entry = pmd_mkdevmap(entry);
975         if (write) {
976                 entry = pmd_mkyoung(pmd_mkdirty(entry));
977                 entry = maybe_pmd_mkwrite(entry, vma);
978         }
979         set_pmd_at(mm, addr, pmd, entry);
980         update_mmu_cache_pmd(vma, addr, pmd);
981         spin_unlock(ptl);
982 }
983
984 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
985                         pmd_t *pmd, pfn_t pfn, bool write)
986 {
987         pgprot_t pgprot = vma->vm_page_prot;
988         /*
989          * If we had pmd_special, we could avoid all these restrictions,
990          * but we need to be consistent with PTEs and architectures that
991          * can't support a 'special' bit.
992          */
993         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
994         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
995                                                 (VM_PFNMAP|VM_MIXEDMAP));
996         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
997         BUG_ON(!pfn_t_devmap(pfn));
998
999         if (addr < vma->vm_start || addr >= vma->vm_end)
1000                 return VM_FAULT_SIGBUS;
1001         if (track_pfn_insert(vma, &pgprot, pfn))
1002                 return VM_FAULT_SIGBUS;
1003         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1004         return VM_FAULT_NOPAGE;
1005 }
1006
1007 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1008                 pmd_t *pmd)
1009 {
1010         pmd_t _pmd;
1011
1012         /*
1013          * We should set the dirty bit only for FOLL_WRITE but for now
1014          * the dirty bit in the pmd is meaningless.  And if the dirty
1015          * bit will become meaningful and we'll only set it with
1016          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1017          * set the young bit, instead of the current set_pmd_at.
1018          */
1019         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1020         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1021                                 pmd, _pmd,  1))
1022                 update_mmu_cache_pmd(vma, addr, pmd);
1023 }
1024
1025 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1026                 pmd_t *pmd, int flags)
1027 {
1028         unsigned long pfn = pmd_pfn(*pmd);
1029         struct mm_struct *mm = vma->vm_mm;
1030         struct dev_pagemap *pgmap;
1031         struct page *page;
1032
1033         assert_spin_locked(pmd_lockptr(mm, pmd));
1034
1035         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1036                 return NULL;
1037
1038         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1039                 /* pass */;
1040         else
1041                 return NULL;
1042
1043         if (flags & FOLL_TOUCH)
1044                 touch_pmd(vma, addr, pmd);
1045
1046         /*
1047          * device mapped pages can only be returned if the
1048          * caller will manage the page reference count.
1049          */
1050         if (!(flags & FOLL_GET))
1051                 return ERR_PTR(-EEXIST);
1052
1053         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1054         pgmap = get_dev_pagemap(pfn, NULL);
1055         if (!pgmap)
1056                 return ERR_PTR(-EFAULT);
1057         page = pfn_to_page(pfn);
1058         get_page(page);
1059         put_dev_pagemap(pgmap);
1060
1061         return page;
1062 }
1063
1064 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066                   struct vm_area_struct *vma)
1067 {
1068         spinlock_t *dst_ptl, *src_ptl;
1069         struct page *src_page;
1070         pmd_t pmd;
1071         pgtable_t pgtable = NULL;
1072         int ret;
1073
1074         if (!vma_is_dax(vma)) {
1075                 ret = -ENOMEM;
1076                 pgtable = pte_alloc_one(dst_mm, addr);
1077                 if (unlikely(!pgtable))
1078                         goto out;
1079         }
1080
1081         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1082         src_ptl = pmd_lockptr(src_mm, src_pmd);
1083         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1084
1085         ret = -EAGAIN;
1086         pmd = *src_pmd;
1087         if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1088                 pte_free(dst_mm, pgtable);
1089                 goto out_unlock;
1090         }
1091         /*
1092          * When page table lock is held, the huge zero pmd should not be
1093          * under splitting since we don't split the page itself, only pmd to
1094          * a page table.
1095          */
1096         if (is_huge_zero_pmd(pmd)) {
1097                 struct page *zero_page;
1098                 /*
1099                  * get_huge_zero_page() will never allocate a new page here,
1100                  * since we already have a zero page to copy. It just takes a
1101                  * reference.
1102                  */
1103                 zero_page = get_huge_zero_page();
1104                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1105                                 zero_page);
1106                 ret = 0;
1107                 goto out_unlock;
1108         }
1109
1110         if (!vma_is_dax(vma)) {
1111                 /* thp accounting separate from pmd_devmap accounting */
1112                 src_page = pmd_page(pmd);
1113                 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1114                 get_page(src_page);
1115                 page_dup_rmap(src_page, true);
1116                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1117                 atomic_long_inc(&dst_mm->nr_ptes);
1118                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119         }
1120
1121         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122         pmd = pmd_mkold(pmd_wrprotect(pmd));
1123         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1124
1125         ret = 0;
1126 out_unlock:
1127         spin_unlock(src_ptl);
1128         spin_unlock(dst_ptl);
1129 out:
1130         return ret;
1131 }
1132
1133 void huge_pmd_set_accessed(struct mm_struct *mm,
1134                            struct vm_area_struct *vma,
1135                            unsigned long address,
1136                            pmd_t *pmd, pmd_t orig_pmd,
1137                            int dirty)
1138 {
1139         spinlock_t *ptl;
1140         pmd_t entry;
1141         unsigned long haddr;
1142
1143         ptl = pmd_lock(mm, pmd);
1144         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1145                 goto unlock;
1146
1147         entry = pmd_mkyoung(orig_pmd);
1148         haddr = address & HPAGE_PMD_MASK;
1149         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1150                 update_mmu_cache_pmd(vma, address, pmd);
1151
1152 unlock:
1153         spin_unlock(ptl);
1154 }
1155
1156 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1157                                         struct vm_area_struct *vma,
1158                                         unsigned long address,
1159                                         pmd_t *pmd, pmd_t orig_pmd,
1160                                         struct page *page,
1161                                         unsigned long haddr)
1162 {
1163         struct mem_cgroup *memcg;
1164         spinlock_t *ptl;
1165         pgtable_t pgtable;
1166         pmd_t _pmd;
1167         int ret = 0, i;
1168         struct page **pages;
1169         unsigned long mmun_start;       /* For mmu_notifiers */
1170         unsigned long mmun_end;         /* For mmu_notifiers */
1171
1172         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1173                         GFP_KERNEL);
1174         if (unlikely(!pages)) {
1175                 ret |= VM_FAULT_OOM;
1176                 goto out;
1177         }
1178
1179         for (i = 0; i < HPAGE_PMD_NR; i++) {
1180                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1181                                                __GFP_OTHER_NODE,
1182                                                vma, address, page_to_nid(page));
1183                 if (unlikely(!pages[i] ||
1184                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1185                                                    &memcg, false))) {
1186                         if (pages[i])
1187                                 put_page(pages[i]);
1188                         while (--i >= 0) {
1189                                 memcg = (void *)page_private(pages[i]);
1190                                 set_page_private(pages[i], 0);
1191                                 mem_cgroup_cancel_charge(pages[i], memcg,
1192                                                 false);
1193                                 put_page(pages[i]);
1194                         }
1195                         kfree(pages);
1196                         ret |= VM_FAULT_OOM;
1197                         goto out;
1198                 }
1199                 set_page_private(pages[i], (unsigned long)memcg);
1200         }
1201
1202         for (i = 0; i < HPAGE_PMD_NR; i++) {
1203                 copy_user_highpage(pages[i], page + i,
1204                                    haddr + PAGE_SIZE * i, vma);
1205                 __SetPageUptodate(pages[i]);
1206                 cond_resched();
1207         }
1208
1209         mmun_start = haddr;
1210         mmun_end   = haddr + HPAGE_PMD_SIZE;
1211         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1212
1213         ptl = pmd_lock(mm, pmd);
1214         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1215                 goto out_free_pages;
1216         VM_BUG_ON_PAGE(!PageHead(page), page);
1217
1218         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1219         /* leave pmd empty until pte is filled */
1220
1221         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1222         pmd_populate(mm, &_pmd, pgtable);
1223
1224         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1225                 pte_t *pte, entry;
1226                 entry = mk_pte(pages[i], vma->vm_page_prot);
1227                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1228                 memcg = (void *)page_private(pages[i]);
1229                 set_page_private(pages[i], 0);
1230                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1231                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1232                 lru_cache_add_active_or_unevictable(pages[i], vma);
1233                 pte = pte_offset_map(&_pmd, haddr);
1234                 VM_BUG_ON(!pte_none(*pte));
1235                 set_pte_at(mm, haddr, pte, entry);
1236                 pte_unmap(pte);
1237         }
1238         kfree(pages);
1239
1240         smp_wmb(); /* make pte visible before pmd */
1241         pmd_populate(mm, pmd, pgtable);
1242         page_remove_rmap(page, true);
1243         spin_unlock(ptl);
1244
1245         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1246
1247         ret |= VM_FAULT_WRITE;
1248         put_page(page);
1249
1250 out:
1251         return ret;
1252
1253 out_free_pages:
1254         spin_unlock(ptl);
1255         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256         for (i = 0; i < HPAGE_PMD_NR; i++) {
1257                 memcg = (void *)page_private(pages[i]);
1258                 set_page_private(pages[i], 0);
1259                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1260                 put_page(pages[i]);
1261         }
1262         kfree(pages);
1263         goto out;
1264 }
1265
1266 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1267                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1268 {
1269         spinlock_t *ptl;
1270         int ret = 0;
1271         struct page *page = NULL, *new_page;
1272         struct mem_cgroup *memcg;
1273         unsigned long haddr;
1274         unsigned long mmun_start;       /* For mmu_notifiers */
1275         unsigned long mmun_end;         /* For mmu_notifiers */
1276         gfp_t huge_gfp;                 /* for allocation and charge */
1277
1278         ptl = pmd_lockptr(mm, pmd);
1279         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1280         haddr = address & HPAGE_PMD_MASK;
1281         if (is_huge_zero_pmd(orig_pmd))
1282                 goto alloc;
1283         spin_lock(ptl);
1284         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1285                 goto out_unlock;
1286
1287         page = pmd_page(orig_pmd);
1288         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1289         /*
1290          * We can only reuse the page if nobody else maps the huge page or it's
1291          * part. We can do it by checking page_mapcount() on each sub-page, but
1292          * it's expensive.
1293          * The cheaper way is to check page_count() to be equal 1: every
1294          * mapcount takes page reference reference, so this way we can
1295          * guarantee, that the PMD is the only mapping.
1296          * This can give false negative if somebody pinned the page, but that's
1297          * fine.
1298          */
1299         if (page_mapcount(page) == 1 && page_count(page) == 1) {
1300                 pmd_t entry;
1301                 entry = pmd_mkyoung(orig_pmd);
1302                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1304                         update_mmu_cache_pmd(vma, address, pmd);
1305                 ret |= VM_FAULT_WRITE;
1306                 goto out_unlock;
1307         }
1308         get_page(page);
1309         spin_unlock(ptl);
1310 alloc:
1311         if (transparent_hugepage_enabled(vma) &&
1312             !transparent_hugepage_debug_cow()) {
1313                 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1314                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1315         } else
1316                 new_page = NULL;
1317
1318         if (likely(new_page)) {
1319                 prep_transhuge_page(new_page);
1320         } else {
1321                 if (!page) {
1322                         split_huge_pmd(vma, pmd, address);
1323                         ret |= VM_FAULT_FALLBACK;
1324                 } else {
1325                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1326                                         pmd, orig_pmd, page, haddr);
1327                         if (ret & VM_FAULT_OOM) {
1328                                 split_huge_pmd(vma, pmd, address);
1329                                 ret |= VM_FAULT_FALLBACK;
1330                         }
1331                         put_page(page);
1332                 }
1333                 count_vm_event(THP_FAULT_FALLBACK);
1334                 goto out;
1335         }
1336
1337         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1338                                            true))) {
1339                 put_page(new_page);
1340                 if (page) {
1341                         split_huge_pmd(vma, pmd, address);
1342                         put_page(page);
1343                 } else
1344                         split_huge_pmd(vma, pmd, address);
1345                 ret |= VM_FAULT_FALLBACK;
1346                 count_vm_event(THP_FAULT_FALLBACK);
1347                 goto out;
1348         }
1349
1350         count_vm_event(THP_FAULT_ALLOC);
1351
1352         if (!page)
1353                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1354         else
1355                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1356         __SetPageUptodate(new_page);
1357
1358         mmun_start = haddr;
1359         mmun_end   = haddr + HPAGE_PMD_SIZE;
1360         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1361
1362         spin_lock(ptl);
1363         if (page)
1364                 put_page(page);
1365         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1366                 spin_unlock(ptl);
1367                 mem_cgroup_cancel_charge(new_page, memcg, true);
1368                 put_page(new_page);
1369                 goto out_mn;
1370         } else {
1371                 pmd_t entry;
1372                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1373                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1375                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1376                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1377                 lru_cache_add_active_or_unevictable(new_page, vma);
1378                 set_pmd_at(mm, haddr, pmd, entry);
1379                 update_mmu_cache_pmd(vma, address, pmd);
1380                 if (!page) {
1381                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1382                         put_huge_zero_page();
1383                 } else {
1384                         VM_BUG_ON_PAGE(!PageHead(page), page);
1385                         page_remove_rmap(page, true);
1386                         put_page(page);
1387                 }
1388                 ret |= VM_FAULT_WRITE;
1389         }
1390         spin_unlock(ptl);
1391 out_mn:
1392         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1393 out:
1394         return ret;
1395 out_unlock:
1396         spin_unlock(ptl);
1397         return ret;
1398 }
1399
1400 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1401                                    unsigned long addr,
1402                                    pmd_t *pmd,
1403                                    unsigned int flags)
1404 {
1405         struct mm_struct *mm = vma->vm_mm;
1406         struct page *page = NULL;
1407
1408         assert_spin_locked(pmd_lockptr(mm, pmd));
1409
1410         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1411                 goto out;
1412
1413         /* Avoid dumping huge zero page */
1414         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1415                 return ERR_PTR(-EFAULT);
1416
1417         /* Full NUMA hinting faults to serialise migration in fault paths */
1418         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1419                 goto out;
1420
1421         page = pmd_page(*pmd);
1422         VM_BUG_ON_PAGE(!PageHead(page), page);
1423         if (flags & FOLL_TOUCH)
1424                 touch_pmd(vma, addr, pmd);
1425         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1426                 /*
1427                  * We don't mlock() pte-mapped THPs. This way we can avoid
1428                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1429                  *
1430                  * In most cases the pmd is the only mapping of the page as we
1431                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1432                  * writable private mappings in populate_vma_page_range().
1433                  *
1434                  * The only scenario when we have the page shared here is if we
1435                  * mlocking read-only mapping shared over fork(). We skip
1436                  * mlocking such pages.
1437                  */
1438                 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1439                                 page->mapping && trylock_page(page)) {
1440                         lru_add_drain();
1441                         if (page->mapping)
1442                                 mlock_vma_page(page);
1443                         unlock_page(page);
1444                 }
1445         }
1446         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1447         VM_BUG_ON_PAGE(!PageCompound(page), page);
1448         if (flags & FOLL_GET)
1449                 get_page(page);
1450
1451 out:
1452         return page;
1453 }
1454
1455 /* NUMA hinting page fault entry point for trans huge pmds */
1456 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1457                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1458 {
1459         spinlock_t *ptl;
1460         struct anon_vma *anon_vma = NULL;
1461         struct page *page;
1462         unsigned long haddr = addr & HPAGE_PMD_MASK;
1463         int page_nid = -1, this_nid = numa_node_id();
1464         int target_nid, last_cpupid = -1;
1465         bool page_locked;
1466         bool migrated = false;
1467         bool was_writable;
1468         int flags = 0;
1469
1470         /* A PROT_NONE fault should not end up here */
1471         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1472
1473         ptl = pmd_lock(mm, pmdp);
1474         if (unlikely(!pmd_same(pmd, *pmdp)))
1475                 goto out_unlock;
1476
1477         /*
1478          * If there are potential migrations, wait for completion and retry
1479          * without disrupting NUMA hinting information. Do not relock and
1480          * check_same as the page may no longer be mapped.
1481          */
1482         if (unlikely(pmd_trans_migrating(*pmdp))) {
1483                 page = pmd_page(*pmdp);
1484                 spin_unlock(ptl);
1485                 wait_on_page_locked(page);
1486                 goto out;
1487         }
1488
1489         page = pmd_page(pmd);
1490         BUG_ON(is_huge_zero_page(page));
1491         page_nid = page_to_nid(page);
1492         last_cpupid = page_cpupid_last(page);
1493         count_vm_numa_event(NUMA_HINT_FAULTS);
1494         if (page_nid == this_nid) {
1495                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1496                 flags |= TNF_FAULT_LOCAL;
1497         }
1498
1499         /* See similar comment in do_numa_page for explanation */
1500         if (!(vma->vm_flags & VM_WRITE))
1501                 flags |= TNF_NO_GROUP;
1502
1503         /*
1504          * Acquire the page lock to serialise THP migrations but avoid dropping
1505          * page_table_lock if at all possible
1506          */
1507         page_locked = trylock_page(page);
1508         target_nid = mpol_misplaced(page, vma, haddr);
1509         if (target_nid == -1) {
1510                 /* If the page was locked, there are no parallel migrations */
1511                 if (page_locked)
1512                         goto clear_pmdnuma;
1513         }
1514
1515         /* Migration could have started since the pmd_trans_migrating check */
1516         if (!page_locked) {
1517                 spin_unlock(ptl);
1518                 wait_on_page_locked(page);
1519                 page_nid = -1;
1520                 goto out;
1521         }
1522
1523         /*
1524          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1525          * to serialises splits
1526          */
1527         get_page(page);
1528         spin_unlock(ptl);
1529         anon_vma = page_lock_anon_vma_read(page);
1530
1531         /* Confirm the PMD did not change while page_table_lock was released */
1532         spin_lock(ptl);
1533         if (unlikely(!pmd_same(pmd, *pmdp))) {
1534                 unlock_page(page);
1535                 put_page(page);
1536                 page_nid = -1;
1537                 goto out_unlock;
1538         }
1539
1540         /* Bail if we fail to protect against THP splits for any reason */
1541         if (unlikely(!anon_vma)) {
1542                 put_page(page);
1543                 page_nid = -1;
1544                 goto clear_pmdnuma;
1545         }
1546
1547         /*
1548          * Migrate the THP to the requested node, returns with page unlocked
1549          * and access rights restored.
1550          */
1551         spin_unlock(ptl);
1552         migrated = migrate_misplaced_transhuge_page(mm, vma,
1553                                 pmdp, pmd, addr, page, target_nid);
1554         if (migrated) {
1555                 flags |= TNF_MIGRATED;
1556                 page_nid = target_nid;
1557         } else
1558                 flags |= TNF_MIGRATE_FAIL;
1559
1560         goto out;
1561 clear_pmdnuma:
1562         BUG_ON(!PageLocked(page));
1563         was_writable = pmd_write(pmd);
1564         pmd = pmd_modify(pmd, vma->vm_page_prot);
1565         pmd = pmd_mkyoung(pmd);
1566         if (was_writable)
1567                 pmd = pmd_mkwrite(pmd);
1568         set_pmd_at(mm, haddr, pmdp, pmd);
1569         update_mmu_cache_pmd(vma, addr, pmdp);
1570         unlock_page(page);
1571 out_unlock:
1572         spin_unlock(ptl);
1573
1574 out:
1575         if (anon_vma)
1576                 page_unlock_anon_vma_read(anon_vma);
1577
1578         if (page_nid != -1)
1579                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1580
1581         return 0;
1582 }
1583
1584 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1585                 pmd_t *pmd, unsigned long addr, unsigned long next)
1586
1587 {
1588         spinlock_t *ptl;
1589         pmd_t orig_pmd;
1590         struct page *page;
1591         struct mm_struct *mm = tlb->mm;
1592         int ret = 0;
1593
1594         ptl = pmd_trans_huge_lock(pmd, vma);
1595         if (!ptl)
1596                 goto out_unlocked;
1597
1598         orig_pmd = *pmd;
1599         if (is_huge_zero_pmd(orig_pmd)) {
1600                 ret = 1;
1601                 goto out;
1602         }
1603
1604         page = pmd_page(orig_pmd);
1605         /*
1606          * If other processes are mapping this page, we couldn't discard
1607          * the page unless they all do MADV_FREE so let's skip the page.
1608          */
1609         if (page_mapcount(page) != 1)
1610                 goto out;
1611
1612         if (!trylock_page(page))
1613                 goto out;
1614
1615         /*
1616          * If user want to discard part-pages of THP, split it so MADV_FREE
1617          * will deactivate only them.
1618          */
1619         if (next - addr != HPAGE_PMD_SIZE) {
1620                 get_page(page);
1621                 spin_unlock(ptl);
1622                 if (split_huge_page(page)) {
1623                         put_page(page);
1624                         unlock_page(page);
1625                         goto out_unlocked;
1626                 }
1627                 put_page(page);
1628                 unlock_page(page);
1629                 ret = 1;
1630                 goto out_unlocked;
1631         }
1632
1633         if (PageDirty(page))
1634                 ClearPageDirty(page);
1635         unlock_page(page);
1636
1637         if (PageActive(page))
1638                 deactivate_page(page);
1639
1640         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642                         tlb->fullmm);
1643                 orig_pmd = pmd_mkold(orig_pmd);
1644                 orig_pmd = pmd_mkclean(orig_pmd);
1645
1646                 set_pmd_at(mm, addr, pmd, orig_pmd);
1647                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648         }
1649         ret = 1;
1650 out:
1651         spin_unlock(ptl);
1652 out_unlocked:
1653         return ret;
1654 }
1655
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657                  pmd_t *pmd, unsigned long addr)
1658 {
1659         pmd_t orig_pmd;
1660         spinlock_t *ptl;
1661
1662         ptl = __pmd_trans_huge_lock(pmd, vma);
1663         if (!ptl)
1664                 return 0;
1665         /*
1666          * For architectures like ppc64 we look at deposited pgtable
1667          * when calling pmdp_huge_get_and_clear. So do the
1668          * pgtable_trans_huge_withdraw after finishing pmdp related
1669          * operations.
1670          */
1671         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672                         tlb->fullmm);
1673         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674         if (vma_is_dax(vma)) {
1675                 spin_unlock(ptl);
1676                 if (is_huge_zero_pmd(orig_pmd))
1677                         put_huge_zero_page();
1678         } else if (is_huge_zero_pmd(orig_pmd)) {
1679                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680                 atomic_long_dec(&tlb->mm->nr_ptes);
1681                 spin_unlock(ptl);
1682                 put_huge_zero_page();
1683         } else {
1684                 struct page *page = pmd_page(orig_pmd);
1685                 page_remove_rmap(page, true);
1686                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688                 VM_BUG_ON_PAGE(!PageHead(page), page);
1689                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690                 atomic_long_dec(&tlb->mm->nr_ptes);
1691                 spin_unlock(ptl);
1692                 tlb_remove_page(tlb, page);
1693         }
1694         return 1;
1695 }
1696
1697 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1698                   unsigned long old_addr,
1699                   unsigned long new_addr, unsigned long old_end,
1700                   pmd_t *old_pmd, pmd_t *new_pmd)
1701 {
1702         spinlock_t *old_ptl, *new_ptl;
1703         pmd_t pmd;
1704
1705         struct mm_struct *mm = vma->vm_mm;
1706
1707         if ((old_addr & ~HPAGE_PMD_MASK) ||
1708             (new_addr & ~HPAGE_PMD_MASK) ||
1709             old_end - old_addr < HPAGE_PMD_SIZE ||
1710             (new_vma->vm_flags & VM_NOHUGEPAGE))
1711                 return false;
1712
1713         /*
1714          * The destination pmd shouldn't be established, free_pgtables()
1715          * should have release it.
1716          */
1717         if (WARN_ON(!pmd_none(*new_pmd))) {
1718                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1719                 return false;
1720         }
1721
1722         /*
1723          * We don't have to worry about the ordering of src and dst
1724          * ptlocks because exclusive mmap_sem prevents deadlock.
1725          */
1726         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1727         if (old_ptl) {
1728                 new_ptl = pmd_lockptr(mm, new_pmd);
1729                 if (new_ptl != old_ptl)
1730                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1731                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1732                 VM_BUG_ON(!pmd_none(*new_pmd));
1733
1734                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1735                         pgtable_t pgtable;
1736                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1737                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1738                 }
1739                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1740                 if (new_ptl != old_ptl)
1741                         spin_unlock(new_ptl);
1742                 spin_unlock(old_ptl);
1743                 return true;
1744         }
1745         return false;
1746 }
1747
1748 /*
1749  * Returns
1750  *  - 0 if PMD could not be locked
1751  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1752  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1753  */
1754 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1755                 unsigned long addr, pgprot_t newprot, int prot_numa)
1756 {
1757         struct mm_struct *mm = vma->vm_mm;
1758         spinlock_t *ptl;
1759         int ret = 0;
1760
1761         ptl = __pmd_trans_huge_lock(pmd, vma);
1762         if (ptl) {
1763                 pmd_t entry;
1764                 bool preserve_write = prot_numa && pmd_write(*pmd);
1765                 ret = 1;
1766
1767                 /*
1768                  * Avoid trapping faults against the zero page. The read-only
1769                  * data is likely to be read-cached on the local CPU and
1770                  * local/remote hits to the zero page are not interesting.
1771                  */
1772                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1773                         spin_unlock(ptl);
1774                         return ret;
1775                 }
1776
1777                 if (!prot_numa || !pmd_protnone(*pmd)) {
1778                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1779                         entry = pmd_modify(entry, newprot);
1780                         if (preserve_write)
1781                                 entry = pmd_mkwrite(entry);
1782                         ret = HPAGE_PMD_NR;
1783                         set_pmd_at(mm, addr, pmd, entry);
1784                         BUG_ON(!preserve_write && pmd_write(entry));
1785                 }
1786                 spin_unlock(ptl);
1787         }
1788
1789         return ret;
1790 }
1791
1792 /*
1793  * Returns true if a given pmd maps a thp, false otherwise.
1794  *
1795  * Note that if it returns true, this routine returns without unlocking page
1796  * table lock. So callers must unlock it.
1797  */
1798 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1799 {
1800         spinlock_t *ptl;
1801         ptl = pmd_lock(vma->vm_mm, pmd);
1802         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1803                 return ptl;
1804         spin_unlock(ptl);
1805         return NULL;
1806 }
1807
1808 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1809
1810 int hugepage_madvise(struct vm_area_struct *vma,
1811                      unsigned long *vm_flags, int advice)
1812 {
1813         switch (advice) {
1814         case MADV_HUGEPAGE:
1815 #ifdef CONFIG_S390
1816                 /*
1817                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1818                  * can't handle this properly after s390_enable_sie, so we simply
1819                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1820                  */
1821                 if (mm_has_pgste(vma->vm_mm))
1822                         return 0;
1823 #endif
1824                 /*
1825                  * Be somewhat over-protective like KSM for now!
1826                  */
1827                 if (*vm_flags & VM_NO_THP)
1828                         return -EINVAL;
1829                 *vm_flags &= ~VM_NOHUGEPAGE;
1830                 *vm_flags |= VM_HUGEPAGE;
1831                 /*
1832                  * If the vma become good for khugepaged to scan,
1833                  * register it here without waiting a page fault that
1834                  * may not happen any time soon.
1835                  */
1836                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1837                         return -ENOMEM;
1838                 break;
1839         case MADV_NOHUGEPAGE:
1840                 /*
1841                  * Be somewhat over-protective like KSM for now!
1842                  */
1843                 if (*vm_flags & VM_NO_THP)
1844                         return -EINVAL;
1845                 *vm_flags &= ~VM_HUGEPAGE;
1846                 *vm_flags |= VM_NOHUGEPAGE;
1847                 /*
1848                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1849                  * this vma even if we leave the mm registered in khugepaged if
1850                  * it got registered before VM_NOHUGEPAGE was set.
1851                  */
1852                 break;
1853         }
1854
1855         return 0;
1856 }
1857
1858 static int __init khugepaged_slab_init(void)
1859 {
1860         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1861                                           sizeof(struct mm_slot),
1862                                           __alignof__(struct mm_slot), 0, NULL);
1863         if (!mm_slot_cache)
1864                 return -ENOMEM;
1865
1866         return 0;
1867 }
1868
1869 static void __init khugepaged_slab_exit(void)
1870 {
1871         kmem_cache_destroy(mm_slot_cache);
1872 }
1873
1874 static inline struct mm_slot *alloc_mm_slot(void)
1875 {
1876         if (!mm_slot_cache)     /* initialization failed */
1877                 return NULL;
1878         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1879 }
1880
1881 static inline void free_mm_slot(struct mm_slot *mm_slot)
1882 {
1883         kmem_cache_free(mm_slot_cache, mm_slot);
1884 }
1885
1886 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1887 {
1888         struct mm_slot *mm_slot;
1889
1890         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1891                 if (mm == mm_slot->mm)
1892                         return mm_slot;
1893
1894         return NULL;
1895 }
1896
1897 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1898                                     struct mm_slot *mm_slot)
1899 {
1900         mm_slot->mm = mm;
1901         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1902 }
1903
1904 static inline int khugepaged_test_exit(struct mm_struct *mm)
1905 {
1906         return atomic_read(&mm->mm_users) == 0;
1907 }
1908
1909 int __khugepaged_enter(struct mm_struct *mm)
1910 {
1911         struct mm_slot *mm_slot;
1912         int wakeup;
1913
1914         mm_slot = alloc_mm_slot();
1915         if (!mm_slot)
1916                 return -ENOMEM;
1917
1918         /* __khugepaged_exit() must not run from under us */
1919         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1920         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1921                 free_mm_slot(mm_slot);
1922                 return 0;
1923         }
1924
1925         spin_lock(&khugepaged_mm_lock);
1926         insert_to_mm_slots_hash(mm, mm_slot);
1927         /*
1928          * Insert just behind the scanning cursor, to let the area settle
1929          * down a little.
1930          */
1931         wakeup = list_empty(&khugepaged_scan.mm_head);
1932         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1933         spin_unlock(&khugepaged_mm_lock);
1934
1935         atomic_inc(&mm->mm_count);
1936         if (wakeup)
1937                 wake_up_interruptible(&khugepaged_wait);
1938
1939         return 0;
1940 }
1941
1942 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1943                                unsigned long vm_flags)
1944 {
1945         unsigned long hstart, hend;
1946         if (!vma->anon_vma)
1947                 /*
1948                  * Not yet faulted in so we will register later in the
1949                  * page fault if needed.
1950                  */
1951                 return 0;
1952         if (vma->vm_ops)
1953                 /* khugepaged not yet working on file or special mappings */
1954                 return 0;
1955         VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1956         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1957         hend = vma->vm_end & HPAGE_PMD_MASK;
1958         if (hstart < hend)
1959                 return khugepaged_enter(vma, vm_flags);
1960         return 0;
1961 }
1962
1963 void __khugepaged_exit(struct mm_struct *mm)
1964 {
1965         struct mm_slot *mm_slot;
1966         int free = 0;
1967
1968         spin_lock(&khugepaged_mm_lock);
1969         mm_slot = get_mm_slot(mm);
1970         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1971                 hash_del(&mm_slot->hash);
1972                 list_del(&mm_slot->mm_node);
1973                 free = 1;
1974         }
1975         spin_unlock(&khugepaged_mm_lock);
1976
1977         if (free) {
1978                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1979                 free_mm_slot(mm_slot);
1980                 mmdrop(mm);
1981         } else if (mm_slot) {
1982                 /*
1983                  * This is required to serialize against
1984                  * khugepaged_test_exit() (which is guaranteed to run
1985                  * under mmap sem read mode). Stop here (after we
1986                  * return all pagetables will be destroyed) until
1987                  * khugepaged has finished working on the pagetables
1988                  * under the mmap_sem.
1989                  */
1990                 down_write(&mm->mmap_sem);
1991                 up_write(&mm->mmap_sem);
1992         }
1993 }
1994
1995 static void release_pte_page(struct page *page)
1996 {
1997         /* 0 stands for page_is_file_cache(page) == false */
1998         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1999         unlock_page(page);
2000         putback_lru_page(page);
2001 }
2002
2003 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2004 {
2005         while (--_pte >= pte) {
2006                 pte_t pteval = *_pte;
2007                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2008                         release_pte_page(pte_page(pteval));
2009         }
2010 }
2011
2012 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2013                                         unsigned long address,
2014                                         pte_t *pte)
2015 {
2016         struct page *page = NULL;
2017         pte_t *_pte;
2018         int none_or_zero = 0, result = 0;
2019         bool referenced = false, writable = false;
2020
2021         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2022              _pte++, address += PAGE_SIZE) {
2023                 pte_t pteval = *_pte;
2024                 if (pte_none(pteval) || (pte_present(pteval) &&
2025                                 is_zero_pfn(pte_pfn(pteval)))) {
2026                         if (!userfaultfd_armed(vma) &&
2027                             ++none_or_zero <= khugepaged_max_ptes_none) {
2028                                 continue;
2029                         } else {
2030                                 result = SCAN_EXCEED_NONE_PTE;
2031                                 goto out;
2032                         }
2033                 }
2034                 if (!pte_present(pteval)) {
2035                         result = SCAN_PTE_NON_PRESENT;
2036                         goto out;
2037                 }
2038                 page = vm_normal_page(vma, address, pteval);
2039                 if (unlikely(!page)) {
2040                         result = SCAN_PAGE_NULL;
2041                         goto out;
2042                 }
2043
2044                 VM_BUG_ON_PAGE(PageCompound(page), page);
2045                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2046                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2047
2048                 /*
2049                  * We can do it before isolate_lru_page because the
2050                  * page can't be freed from under us. NOTE: PG_lock
2051                  * is needed to serialize against split_huge_page
2052                  * when invoked from the VM.
2053                  */
2054                 if (!trylock_page(page)) {
2055                         result = SCAN_PAGE_LOCK;
2056                         goto out;
2057                 }
2058
2059                 /*
2060                  * cannot use mapcount: can't collapse if there's a gup pin.
2061                  * The page must only be referenced by the scanned process
2062                  * and page swap cache.
2063                  */
2064                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2065                         unlock_page(page);
2066                         result = SCAN_PAGE_COUNT;
2067                         goto out;
2068                 }
2069                 if (pte_write(pteval)) {
2070                         writable = true;
2071                 } else {
2072                         if (PageSwapCache(page) && !reuse_swap_page(page)) {
2073                                 unlock_page(page);
2074                                 result = SCAN_SWAP_CACHE_PAGE;
2075                                 goto out;
2076                         }
2077                         /*
2078                          * Page is not in the swap cache. It can be collapsed
2079                          * into a THP.
2080                          */
2081                 }
2082
2083                 /*
2084                  * Isolate the page to avoid collapsing an hugepage
2085                  * currently in use by the VM.
2086                  */
2087                 if (isolate_lru_page(page)) {
2088                         unlock_page(page);
2089                         result = SCAN_DEL_PAGE_LRU;
2090                         goto out;
2091                 }
2092                 /* 0 stands for page_is_file_cache(page) == false */
2093                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2094                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2095                 VM_BUG_ON_PAGE(PageLRU(page), page);
2096
2097                 /* If there is no mapped pte young don't collapse the page */
2098                 if (pte_young(pteval) ||
2099                     page_is_young(page) || PageReferenced(page) ||
2100                     mmu_notifier_test_young(vma->vm_mm, address))
2101                         referenced = true;
2102         }
2103         if (likely(writable)) {
2104                 if (likely(referenced)) {
2105                         result = SCAN_SUCCEED;
2106                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2107                                                             referenced, writable, result);
2108                         return 1;
2109                 }
2110         } else {
2111                 result = SCAN_PAGE_RO;
2112         }
2113
2114 out:
2115         release_pte_pages(pte, _pte);
2116         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2117                                             referenced, writable, result);
2118         return 0;
2119 }
2120
2121 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2122                                       struct vm_area_struct *vma,
2123                                       unsigned long address,
2124                                       spinlock_t *ptl)
2125 {
2126         pte_t *_pte;
2127         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2128                 pte_t pteval = *_pte;
2129                 struct page *src_page;
2130
2131                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2132                         clear_user_highpage(page, address);
2133                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2134                         if (is_zero_pfn(pte_pfn(pteval))) {
2135                                 /*
2136                                  * ptl mostly unnecessary.
2137                                  */
2138                                 spin_lock(ptl);
2139                                 /*
2140                                  * paravirt calls inside pte_clear here are
2141                                  * superfluous.
2142                                  */
2143                                 pte_clear(vma->vm_mm, address, _pte);
2144                                 spin_unlock(ptl);
2145                         }
2146                 } else {
2147                         src_page = pte_page(pteval);
2148                         copy_user_highpage(page, src_page, address, vma);
2149                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2150                         release_pte_page(src_page);
2151                         /*
2152                          * ptl mostly unnecessary, but preempt has to
2153                          * be disabled to update the per-cpu stats
2154                          * inside page_remove_rmap().
2155                          */
2156                         spin_lock(ptl);
2157                         /*
2158                          * paravirt calls inside pte_clear here are
2159                          * superfluous.
2160                          */
2161                         pte_clear(vma->vm_mm, address, _pte);
2162                         page_remove_rmap(src_page, false);
2163                         spin_unlock(ptl);
2164                         free_page_and_swap_cache(src_page);
2165                 }
2166
2167                 address += PAGE_SIZE;
2168                 page++;
2169         }
2170 }
2171
2172 static void khugepaged_alloc_sleep(void)
2173 {
2174         DEFINE_WAIT(wait);
2175
2176         add_wait_queue(&khugepaged_wait, &wait);
2177         freezable_schedule_timeout_interruptible(
2178                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2179         remove_wait_queue(&khugepaged_wait, &wait);
2180 }
2181
2182 static int khugepaged_node_load[MAX_NUMNODES];
2183
2184 static bool khugepaged_scan_abort(int nid)
2185 {
2186         int i;
2187
2188         /*
2189          * If zone_reclaim_mode is disabled, then no extra effort is made to
2190          * allocate memory locally.
2191          */
2192         if (!zone_reclaim_mode)
2193                 return false;
2194
2195         /* If there is a count for this node already, it must be acceptable */
2196         if (khugepaged_node_load[nid])
2197                 return false;
2198
2199         for (i = 0; i < MAX_NUMNODES; i++) {
2200                 if (!khugepaged_node_load[i])
2201                         continue;
2202                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2203                         return true;
2204         }
2205         return false;
2206 }
2207
2208 #ifdef CONFIG_NUMA
2209 static int khugepaged_find_target_node(void)
2210 {
2211         static int last_khugepaged_target_node = NUMA_NO_NODE;
2212         int nid, target_node = 0, max_value = 0;
2213
2214         /* find first node with max normal pages hit */
2215         for (nid = 0; nid < MAX_NUMNODES; nid++)
2216                 if (khugepaged_node_load[nid] > max_value) {
2217                         max_value = khugepaged_node_load[nid];
2218                         target_node = nid;
2219                 }
2220
2221         /* do some balance if several nodes have the same hit record */
2222         if (target_node <= last_khugepaged_target_node)
2223                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2224                                 nid++)
2225                         if (max_value == khugepaged_node_load[nid]) {
2226                                 target_node = nid;
2227                                 break;
2228                         }
2229
2230         last_khugepaged_target_node = target_node;
2231         return target_node;
2232 }
2233
2234 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2235 {
2236         if (IS_ERR(*hpage)) {
2237                 if (!*wait)
2238                         return false;
2239
2240                 *wait = false;
2241                 *hpage = NULL;
2242                 khugepaged_alloc_sleep();
2243         } else if (*hpage) {
2244                 put_page(*hpage);
2245                 *hpage = NULL;
2246         }
2247
2248         return true;
2249 }
2250
2251 static struct page *
2252 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2253                        unsigned long address, int node)
2254 {
2255         VM_BUG_ON_PAGE(*hpage, *hpage);
2256
2257         /*
2258          * Before allocating the hugepage, release the mmap_sem read lock.
2259          * The allocation can take potentially a long time if it involves
2260          * sync compaction, and we do not need to hold the mmap_sem during
2261          * that. We will recheck the vma after taking it again in write mode.
2262          */
2263         up_read(&mm->mmap_sem);
2264
2265         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2266         if (unlikely(!*hpage)) {
2267                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2268                 *hpage = ERR_PTR(-ENOMEM);
2269                 return NULL;
2270         }
2271
2272         prep_transhuge_page(*hpage);
2273         count_vm_event(THP_COLLAPSE_ALLOC);
2274         return *hpage;
2275 }
2276 #else
2277 static int khugepaged_find_target_node(void)
2278 {
2279         return 0;
2280 }
2281
2282 static inline struct page *alloc_hugepage(int defrag)
2283 {
2284         struct page *page;
2285
2286         page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2287         if (page)
2288                 prep_transhuge_page(page);
2289         return page;
2290 }
2291
2292 static struct page *khugepaged_alloc_hugepage(bool *wait)
2293 {
2294         struct page *hpage;
2295
2296         do {
2297                 hpage = alloc_hugepage(khugepaged_defrag());
2298                 if (!hpage) {
2299                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300                         if (!*wait)
2301                                 return NULL;
2302
2303                         *wait = false;
2304                         khugepaged_alloc_sleep();
2305                 } else
2306                         count_vm_event(THP_COLLAPSE_ALLOC);
2307         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2308
2309         return hpage;
2310 }
2311
2312 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2313 {
2314         if (!*hpage)
2315                 *hpage = khugepaged_alloc_hugepage(wait);
2316
2317         if (unlikely(!*hpage))
2318                 return false;
2319
2320         return true;
2321 }
2322
2323 static struct page *
2324 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2325                        unsigned long address, int node)
2326 {
2327         up_read(&mm->mmap_sem);
2328         VM_BUG_ON(!*hpage);
2329
2330         return  *hpage;
2331 }
2332 #endif
2333
2334 static bool hugepage_vma_check(struct vm_area_struct *vma)
2335 {
2336         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2337             (vma->vm_flags & VM_NOHUGEPAGE))
2338                 return false;
2339         if (!vma->anon_vma || vma->vm_ops)
2340                 return false;
2341         if (is_vma_temporary_stack(vma))
2342                 return false;
2343         VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2344         return true;
2345 }
2346
2347 /*
2348  * Bring missing pages in from swap, to complete THP collapse.
2349  * Only done if khugepaged_scan_pmd believes it is worthwhile.
2350  *
2351  * Called and returns without pte mapped or spinlocks held,
2352  * but with mmap_sem held to protect against vma changes.
2353  */
2354
2355 static void __collapse_huge_page_swapin(struct mm_struct *mm,
2356                                         struct vm_area_struct *vma,
2357                                         unsigned long address, pmd_t *pmd)
2358 {
2359         unsigned long _address;
2360         pte_t *pte, pteval;
2361         int swapped_in = 0, ret = 0;
2362
2363         pte = pte_offset_map(pmd, address);
2364         for (_address = address; _address < address + HPAGE_PMD_NR*PAGE_SIZE;
2365              pte++, _address += PAGE_SIZE) {
2366                 pteval = *pte;
2367                 if (!is_swap_pte(pteval))
2368                         continue;
2369                 swapped_in++;
2370                 ret = do_swap_page(mm, vma, _address, pte, pmd,
2371                                    FAULT_FLAG_ALLOW_RETRY|FAULT_FLAG_RETRY_NOWAIT,
2372                                    pteval);
2373                 if (ret & VM_FAULT_ERROR) {
2374                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2375                         return;
2376                 }
2377                 /* pte is unmapped now, we need to map it */
2378                 pte = pte_offset_map(pmd, _address);
2379         }
2380         pte--;
2381         pte_unmap(pte);
2382         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2383 }
2384
2385 static void collapse_huge_page(struct mm_struct *mm,
2386                                    unsigned long address,
2387                                    struct page **hpage,
2388                                    struct vm_area_struct *vma,
2389                                    int node)
2390 {
2391         pmd_t *pmd, _pmd;
2392         pte_t *pte;
2393         pgtable_t pgtable;
2394         struct page *new_page;
2395         spinlock_t *pmd_ptl, *pte_ptl;
2396         int isolated = 0, result = 0;
2397         unsigned long hstart, hend;
2398         struct mem_cgroup *memcg;
2399         unsigned long mmun_start;       /* For mmu_notifiers */
2400         unsigned long mmun_end;         /* For mmu_notifiers */
2401         gfp_t gfp;
2402
2403         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2404
2405         /* Only allocate from the target node */
2406         gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2407                 __GFP_THISNODE;
2408
2409         /* release the mmap_sem read lock. */
2410         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2411         if (!new_page) {
2412                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2413                 goto out_nolock;
2414         }
2415
2416         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2417                 result = SCAN_CGROUP_CHARGE_FAIL;
2418                 goto out_nolock;
2419         }
2420
2421         /*
2422          * Prevent all access to pagetables with the exception of
2423          * gup_fast later hanlded by the ptep_clear_flush and the VM
2424          * handled by the anon_vma lock + PG_lock.
2425          */
2426         down_write(&mm->mmap_sem);
2427         if (unlikely(khugepaged_test_exit(mm))) {
2428                 result = SCAN_ANY_PROCESS;
2429                 goto out;
2430         }
2431
2432         vma = find_vma(mm, address);
2433         if (!vma) {
2434                 result = SCAN_VMA_NULL;
2435                 goto out;
2436         }
2437         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2438         hend = vma->vm_end & HPAGE_PMD_MASK;
2439         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2440                 result = SCAN_ADDRESS_RANGE;
2441                 goto out;
2442         }
2443         if (!hugepage_vma_check(vma)) {
2444                 result = SCAN_VMA_CHECK;
2445                 goto out;
2446         }
2447         pmd = mm_find_pmd(mm, address);
2448         if (!pmd) {
2449                 result = SCAN_PMD_NULL;
2450                 goto out;
2451         }
2452
2453         __collapse_huge_page_swapin(mm, vma, address, pmd);
2454
2455         anon_vma_lock_write(vma->anon_vma);
2456
2457         pte = pte_offset_map(pmd, address);
2458         pte_ptl = pte_lockptr(mm, pmd);
2459
2460         mmun_start = address;
2461         mmun_end   = address + HPAGE_PMD_SIZE;
2462         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2463         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2464         /*
2465          * After this gup_fast can't run anymore. This also removes
2466          * any huge TLB entry from the CPU so we won't allow
2467          * huge and small TLB entries for the same virtual address
2468          * to avoid the risk of CPU bugs in that area.
2469          */
2470         _pmd = pmdp_collapse_flush(vma, address, pmd);
2471         spin_unlock(pmd_ptl);
2472         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2473
2474         spin_lock(pte_ptl);
2475         isolated = __collapse_huge_page_isolate(vma, address, pte);
2476         spin_unlock(pte_ptl);
2477
2478         if (unlikely(!isolated)) {
2479                 pte_unmap(pte);
2480                 spin_lock(pmd_ptl);
2481                 BUG_ON(!pmd_none(*pmd));
2482                 /*
2483                  * We can only use set_pmd_at when establishing
2484                  * hugepmds and never for establishing regular pmds that
2485                  * points to regular pagetables. Use pmd_populate for that
2486                  */
2487                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2488                 spin_unlock(pmd_ptl);
2489                 anon_vma_unlock_write(vma->anon_vma);
2490                 result = SCAN_FAIL;
2491                 goto out;
2492         }
2493
2494         /*
2495          * All pages are isolated and locked so anon_vma rmap
2496          * can't run anymore.
2497          */
2498         anon_vma_unlock_write(vma->anon_vma);
2499
2500         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2501         pte_unmap(pte);
2502         __SetPageUptodate(new_page);
2503         pgtable = pmd_pgtable(_pmd);
2504
2505         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2506         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2507
2508         /*
2509          * spin_lock() below is not the equivalent of smp_wmb(), so
2510          * this is needed to avoid the copy_huge_page writes to become
2511          * visible after the set_pmd_at() write.
2512          */
2513         smp_wmb();
2514
2515         spin_lock(pmd_ptl);
2516         BUG_ON(!pmd_none(*pmd));
2517         page_add_new_anon_rmap(new_page, vma, address, true);
2518         mem_cgroup_commit_charge(new_page, memcg, false, true);
2519         lru_cache_add_active_or_unevictable(new_page, vma);
2520         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2521         set_pmd_at(mm, address, pmd, _pmd);
2522         update_mmu_cache_pmd(vma, address, pmd);
2523         spin_unlock(pmd_ptl);
2524
2525         *hpage = NULL;
2526
2527         khugepaged_pages_collapsed++;
2528         result = SCAN_SUCCEED;
2529 out_up_write:
2530         up_write(&mm->mmap_sem);
2531 out_nolock:
2532         trace_mm_collapse_huge_page(mm, isolated, result);
2533         return;
2534 out:
2535         mem_cgroup_cancel_charge(new_page, memcg, true);
2536         goto out_up_write;
2537 }
2538
2539 static int khugepaged_scan_pmd(struct mm_struct *mm,
2540                                struct vm_area_struct *vma,
2541                                unsigned long address,
2542                                struct page **hpage)
2543 {
2544         pmd_t *pmd;
2545         pte_t *pte, *_pte;
2546         int ret = 0, none_or_zero = 0, result = 0;
2547         struct page *page = NULL;
2548         unsigned long _address;
2549         spinlock_t *ptl;
2550         int node = NUMA_NO_NODE, unmapped = 0;
2551         bool writable = false, referenced = false;
2552
2553         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2554
2555         pmd = mm_find_pmd(mm, address);
2556         if (!pmd) {
2557                 result = SCAN_PMD_NULL;
2558                 goto out;
2559         }
2560
2561         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2562         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2563         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2564              _pte++, _address += PAGE_SIZE) {
2565                 pte_t pteval = *_pte;
2566                 if (is_swap_pte(pteval)) {
2567                         if (++unmapped <= khugepaged_max_ptes_swap) {
2568                                 continue;
2569                         } else {
2570                                 result = SCAN_EXCEED_SWAP_PTE;
2571                                 goto out_unmap;
2572                         }
2573                 }
2574                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2575                         if (!userfaultfd_armed(vma) &&
2576                             ++none_or_zero <= khugepaged_max_ptes_none) {
2577                                 continue;
2578                         } else {
2579                                 result = SCAN_EXCEED_NONE_PTE;
2580                                 goto out_unmap;
2581                         }
2582                 }
2583                 if (!pte_present(pteval)) {
2584                         result = SCAN_PTE_NON_PRESENT;
2585                         goto out_unmap;
2586                 }
2587                 if (pte_write(pteval))
2588                         writable = true;
2589
2590                 page = vm_normal_page(vma, _address, pteval);
2591                 if (unlikely(!page)) {
2592                         result = SCAN_PAGE_NULL;
2593                         goto out_unmap;
2594                 }
2595
2596                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2597                 if (PageCompound(page)) {
2598                         result = SCAN_PAGE_COMPOUND;
2599                         goto out_unmap;
2600                 }
2601
2602                 /*
2603                  * Record which node the original page is from and save this
2604                  * information to khugepaged_node_load[].
2605                  * Khupaged will allocate hugepage from the node has the max
2606                  * hit record.
2607                  */
2608                 node = page_to_nid(page);
2609                 if (khugepaged_scan_abort(node)) {
2610                         result = SCAN_SCAN_ABORT;
2611                         goto out_unmap;
2612                 }
2613                 khugepaged_node_load[node]++;
2614                 if (!PageLRU(page)) {
2615                         result = SCAN_SCAN_ABORT;
2616                         goto out_unmap;
2617                 }
2618                 if (PageLocked(page)) {
2619                         result = SCAN_PAGE_LOCK;
2620                         goto out_unmap;
2621                 }
2622                 if (!PageAnon(page)) {
2623                         result = SCAN_PAGE_ANON;
2624                         goto out_unmap;
2625                 }
2626
2627                 /*
2628                  * cannot use mapcount: can't collapse if there's a gup pin.
2629                  * The page must only be referenced by the scanned process
2630                  * and page swap cache.
2631                  */
2632                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2633                         result = SCAN_PAGE_COUNT;
2634                         goto out_unmap;
2635                 }
2636                 if (pte_young(pteval) ||
2637                     page_is_young(page) || PageReferenced(page) ||
2638                     mmu_notifier_test_young(vma->vm_mm, address))
2639                         referenced = true;
2640         }
2641         if (writable) {
2642                 if (referenced) {
2643                         result = SCAN_SUCCEED;
2644                         ret = 1;
2645                 } else {
2646                         result = SCAN_NO_REFERENCED_PAGE;
2647                 }
2648         } else {
2649                 result = SCAN_PAGE_RO;
2650         }
2651 out_unmap:
2652         pte_unmap_unlock(pte, ptl);
2653         if (ret) {
2654                 node = khugepaged_find_target_node();
2655                 /* collapse_huge_page will return with the mmap_sem released */
2656                 collapse_huge_page(mm, address, hpage, vma, node);
2657         }
2658 out:
2659         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2660                                      none_or_zero, result, unmapped);
2661         return ret;
2662 }
2663
2664 static void collect_mm_slot(struct mm_slot *mm_slot)
2665 {
2666         struct mm_struct *mm = mm_slot->mm;
2667
2668         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2669
2670         if (khugepaged_test_exit(mm)) {
2671                 /* free mm_slot */
2672                 hash_del(&mm_slot->hash);
2673                 list_del(&mm_slot->mm_node);
2674
2675                 /*
2676                  * Not strictly needed because the mm exited already.
2677                  *
2678                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2679                  */
2680
2681                 /* khugepaged_mm_lock actually not necessary for the below */
2682                 free_mm_slot(mm_slot);
2683                 mmdrop(mm);
2684         }
2685 }
2686
2687 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2688                                             struct page **hpage)
2689         __releases(&khugepaged_mm_lock)
2690         __acquires(&khugepaged_mm_lock)
2691 {
2692         struct mm_slot *mm_slot;
2693         struct mm_struct *mm;
2694         struct vm_area_struct *vma;
2695         int progress = 0;
2696
2697         VM_BUG_ON(!pages);
2698         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2699
2700         if (khugepaged_scan.mm_slot)
2701                 mm_slot = khugepaged_scan.mm_slot;
2702         else {
2703                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2704                                      struct mm_slot, mm_node);
2705                 khugepaged_scan.address = 0;
2706                 khugepaged_scan.mm_slot = mm_slot;
2707         }
2708         spin_unlock(&khugepaged_mm_lock);
2709
2710         mm = mm_slot->mm;
2711         down_read(&mm->mmap_sem);
2712         if (unlikely(khugepaged_test_exit(mm)))
2713                 vma = NULL;
2714         else
2715                 vma = find_vma(mm, khugepaged_scan.address);
2716
2717         progress++;
2718         for (; vma; vma = vma->vm_next) {
2719                 unsigned long hstart, hend;
2720
2721                 cond_resched();
2722                 if (unlikely(khugepaged_test_exit(mm))) {
2723                         progress++;
2724                         break;
2725                 }
2726                 if (!hugepage_vma_check(vma)) {
2727 skip:
2728                         progress++;
2729                         continue;
2730                 }
2731                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2732                 hend = vma->vm_end & HPAGE_PMD_MASK;
2733                 if (hstart >= hend)
2734                         goto skip;
2735                 if (khugepaged_scan.address > hend)
2736                         goto skip;
2737                 if (khugepaged_scan.address < hstart)
2738                         khugepaged_scan.address = hstart;
2739                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2740
2741                 while (khugepaged_scan.address < hend) {
2742                         int ret;
2743                         cond_resched();
2744                         if (unlikely(khugepaged_test_exit(mm)))
2745                                 goto breakouterloop;
2746
2747                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2748                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2749                                   hend);
2750                         ret = khugepaged_scan_pmd(mm, vma,
2751                                                   khugepaged_scan.address,
2752                                                   hpage);
2753                         /* move to next address */
2754                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2755                         progress += HPAGE_PMD_NR;
2756                         if (ret)
2757                                 /* we released mmap_sem so break loop */
2758                                 goto breakouterloop_mmap_sem;
2759                         if (progress >= pages)
2760                                 goto breakouterloop;
2761                 }
2762         }
2763 breakouterloop:
2764         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2765 breakouterloop_mmap_sem:
2766
2767         spin_lock(&khugepaged_mm_lock);
2768         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2769         /*
2770          * Release the current mm_slot if this mm is about to die, or
2771          * if we scanned all vmas of this mm.
2772          */
2773         if (khugepaged_test_exit(mm) || !vma) {
2774                 /*
2775                  * Make sure that if mm_users is reaching zero while
2776                  * khugepaged runs here, khugepaged_exit will find
2777                  * mm_slot not pointing to the exiting mm.
2778                  */
2779                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2780                         khugepaged_scan.mm_slot = list_entry(
2781                                 mm_slot->mm_node.next,
2782                                 struct mm_slot, mm_node);
2783                         khugepaged_scan.address = 0;
2784                 } else {
2785                         khugepaged_scan.mm_slot = NULL;
2786                         khugepaged_full_scans++;
2787                 }
2788
2789                 collect_mm_slot(mm_slot);
2790         }
2791
2792         return progress;
2793 }
2794
2795 static int khugepaged_has_work(void)
2796 {
2797         return !list_empty(&khugepaged_scan.mm_head) &&
2798                 khugepaged_enabled();
2799 }
2800
2801 static int khugepaged_wait_event(void)
2802 {
2803         return !list_empty(&khugepaged_scan.mm_head) ||
2804                 kthread_should_stop();
2805 }
2806
2807 static void khugepaged_do_scan(void)
2808 {
2809         struct page *hpage = NULL;
2810         unsigned int progress = 0, pass_through_head = 0;
2811         unsigned int pages = khugepaged_pages_to_scan;
2812         bool wait = true;
2813
2814         barrier(); /* write khugepaged_pages_to_scan to local stack */
2815
2816         while (progress < pages) {
2817                 if (!khugepaged_prealloc_page(&hpage, &wait))
2818                         break;
2819
2820                 cond_resched();
2821
2822                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2823                         break;
2824
2825                 spin_lock(&khugepaged_mm_lock);
2826                 if (!khugepaged_scan.mm_slot)
2827                         pass_through_head++;
2828                 if (khugepaged_has_work() &&
2829                     pass_through_head < 2)
2830                         progress += khugepaged_scan_mm_slot(pages - progress,
2831                                                             &hpage);
2832                 else
2833                         progress = pages;
2834                 spin_unlock(&khugepaged_mm_lock);
2835         }
2836
2837         if (!IS_ERR_OR_NULL(hpage))
2838                 put_page(hpage);
2839 }
2840
2841 static void khugepaged_wait_work(void)
2842 {
2843         if (khugepaged_has_work()) {
2844                 if (!khugepaged_scan_sleep_millisecs)
2845                         return;
2846
2847                 wait_event_freezable_timeout(khugepaged_wait,
2848                                              kthread_should_stop(),
2849                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2850                 return;
2851         }
2852
2853         if (khugepaged_enabled())
2854                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2855 }
2856
2857 static int khugepaged(void *none)
2858 {
2859         struct mm_slot *mm_slot;
2860
2861         set_freezable();
2862         set_user_nice(current, MAX_NICE);
2863
2864         while (!kthread_should_stop()) {
2865                 khugepaged_do_scan();
2866                 khugepaged_wait_work();
2867         }
2868
2869         spin_lock(&khugepaged_mm_lock);
2870         mm_slot = khugepaged_scan.mm_slot;
2871         khugepaged_scan.mm_slot = NULL;
2872         if (mm_slot)
2873                 collect_mm_slot(mm_slot);
2874         spin_unlock(&khugepaged_mm_lock);
2875         return 0;
2876 }
2877
2878 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2879                 unsigned long haddr, pmd_t *pmd)
2880 {
2881         struct mm_struct *mm = vma->vm_mm;
2882         pgtable_t pgtable;
2883         pmd_t _pmd;
2884         int i;
2885
2886         /* leave pmd empty until pte is filled */
2887         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2888
2889         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2890         pmd_populate(mm, &_pmd, pgtable);
2891
2892         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2893                 pte_t *pte, entry;
2894                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2895                 entry = pte_mkspecial(entry);
2896                 pte = pte_offset_map(&_pmd, haddr);
2897                 VM_BUG_ON(!pte_none(*pte));
2898                 set_pte_at(mm, haddr, pte, entry);
2899                 pte_unmap(pte);
2900         }
2901         smp_wmb(); /* make pte visible before pmd */
2902         pmd_populate(mm, pmd, pgtable);
2903         put_huge_zero_page();
2904 }
2905
2906 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2907                 unsigned long haddr, bool freeze)
2908 {
2909         struct mm_struct *mm = vma->vm_mm;
2910         struct page *page;
2911         pgtable_t pgtable;
2912         pmd_t _pmd;
2913         bool young, write, dirty;
2914         int i;
2915
2916         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2917         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2918         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2919         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2920
2921         count_vm_event(THP_SPLIT_PMD);
2922
2923         if (vma_is_dax(vma)) {
2924                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2925                 if (is_huge_zero_pmd(_pmd))
2926                         put_huge_zero_page();
2927                 return;
2928         } else if (is_huge_zero_pmd(*pmd)) {
2929                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2930         }
2931
2932         page = pmd_page(*pmd);
2933         VM_BUG_ON_PAGE(!page_count(page), page);
2934         atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2935         write = pmd_write(*pmd);
2936         young = pmd_young(*pmd);
2937         dirty = pmd_dirty(*pmd);
2938
2939         pmdp_huge_split_prepare(vma, haddr, pmd);
2940         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2941         pmd_populate(mm, &_pmd, pgtable);
2942
2943         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2944                 pte_t entry, *pte;
2945                 /*
2946                  * Note that NUMA hinting access restrictions are not
2947                  * transferred to avoid any possibility of altering
2948                  * permissions across VMAs.
2949                  */
2950                 if (freeze) {
2951                         swp_entry_t swp_entry;
2952                         swp_entry = make_migration_entry(page + i, write);
2953                         entry = swp_entry_to_pte(swp_entry);
2954                 } else {
2955                         entry = mk_pte(page + i, vma->vm_page_prot);
2956                         entry = maybe_mkwrite(entry, vma);
2957                         if (!write)
2958                                 entry = pte_wrprotect(entry);
2959                         if (!young)
2960                                 entry = pte_mkold(entry);
2961                 }
2962                 if (dirty)
2963                         SetPageDirty(page + i);
2964                 pte = pte_offset_map(&_pmd, haddr);
2965                 BUG_ON(!pte_none(*pte));
2966                 set_pte_at(mm, haddr, pte, entry);
2967                 atomic_inc(&page[i]._mapcount);
2968                 pte_unmap(pte);
2969         }
2970
2971         /*
2972          * Set PG_double_map before dropping compound_mapcount to avoid
2973          * false-negative page_mapped().
2974          */
2975         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2976                 for (i = 0; i < HPAGE_PMD_NR; i++)
2977                         atomic_inc(&page[i]._mapcount);
2978         }
2979
2980         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2981                 /* Last compound_mapcount is gone. */
2982                 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2983                 if (TestClearPageDoubleMap(page)) {
2984                         /* No need in mapcount reference anymore */
2985                         for (i = 0; i < HPAGE_PMD_NR; i++)
2986                                 atomic_dec(&page[i]._mapcount);
2987                 }
2988         }
2989
2990         smp_wmb(); /* make pte visible before pmd */
2991         /*
2992          * Up to this point the pmd is present and huge and userland has the
2993          * whole access to the hugepage during the split (which happens in
2994          * place). If we overwrite the pmd with the not-huge version pointing
2995          * to the pte here (which of course we could if all CPUs were bug
2996          * free), userland could trigger a small page size TLB miss on the
2997          * small sized TLB while the hugepage TLB entry is still established in
2998          * the huge TLB. Some CPU doesn't like that.
2999          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3000          * 383 on page 93. Intel should be safe but is also warns that it's
3001          * only safe if the permission and cache attributes of the two entries
3002          * loaded in the two TLB is identical (which should be the case here).
3003          * But it is generally safer to never allow small and huge TLB entries
3004          * for the same virtual address to be loaded simultaneously. So instead
3005          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3006          * current pmd notpresent (atomically because here the pmd_trans_huge
3007          * and pmd_trans_splitting must remain set at all times on the pmd
3008          * until the split is complete for this pmd), then we flush the SMP TLB
3009          * and finally we write the non-huge version of the pmd entry with
3010          * pmd_populate.
3011          */
3012         pmdp_invalidate(vma, haddr, pmd);
3013         pmd_populate(mm, pmd, pgtable);
3014
3015         if (freeze) {
3016                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
3017                         page_remove_rmap(page + i, false);
3018                         put_page(page + i);
3019                 }
3020         }
3021 }
3022
3023 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3024                 unsigned long address)
3025 {
3026         spinlock_t *ptl;
3027         struct mm_struct *mm = vma->vm_mm;
3028         struct page *page = NULL;
3029         unsigned long haddr = address & HPAGE_PMD_MASK;
3030
3031         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3032         ptl = pmd_lock(mm, pmd);
3033         if (pmd_trans_huge(*pmd)) {
3034                 page = pmd_page(*pmd);
3035                 if (PageMlocked(page))
3036                         get_page(page);
3037                 else
3038                         page = NULL;
3039         } else if (!pmd_devmap(*pmd))
3040                 goto out;
3041         __split_huge_pmd_locked(vma, pmd, haddr, false);
3042 out:
3043         spin_unlock(ptl);
3044         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3045         if (page) {
3046                 lock_page(page);
3047                 munlock_vma_page(page);
3048                 unlock_page(page);
3049                 put_page(page);
3050         }
3051 }
3052
3053 static void split_huge_pmd_address(struct vm_area_struct *vma,
3054                                     unsigned long address)
3055 {
3056         pgd_t *pgd;
3057         pud_t *pud;
3058         pmd_t *pmd;
3059
3060         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3061
3062         pgd = pgd_offset(vma->vm_mm, address);
3063         if (!pgd_present(*pgd))
3064                 return;
3065
3066         pud = pud_offset(pgd, address);
3067         if (!pud_present(*pud))
3068                 return;
3069
3070         pmd = pmd_offset(pud, address);
3071         if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3072                 return;
3073         /*
3074          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3075          * materialize from under us.
3076          */
3077         split_huge_pmd(vma, pmd, address);
3078 }
3079
3080 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3081                              unsigned long start,
3082                              unsigned long end,
3083                              long adjust_next)
3084 {
3085         /*
3086          * If the new start address isn't hpage aligned and it could
3087          * previously contain an hugepage: check if we need to split
3088          * an huge pmd.
3089          */
3090         if (start & ~HPAGE_PMD_MASK &&
3091             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3092             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3093                 split_huge_pmd_address(vma, start);
3094
3095         /*
3096          * If the new end address isn't hpage aligned and it could
3097          * previously contain an hugepage: check if we need to split
3098          * an huge pmd.
3099          */
3100         if (end & ~HPAGE_PMD_MASK &&
3101             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3102             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3103                 split_huge_pmd_address(vma, end);
3104
3105         /*
3106          * If we're also updating the vma->vm_next->vm_start, if the new
3107          * vm_next->vm_start isn't page aligned and it could previously
3108          * contain an hugepage: check if we need to split an huge pmd.
3109          */
3110         if (adjust_next > 0) {
3111                 struct vm_area_struct *next = vma->vm_next;
3112                 unsigned long nstart = next->vm_start;
3113                 nstart += adjust_next << PAGE_SHIFT;
3114                 if (nstart & ~HPAGE_PMD_MASK &&
3115                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3116                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3117                         split_huge_pmd_address(next, nstart);
3118         }
3119 }
3120
3121 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3122                 unsigned long address)
3123 {
3124         unsigned long haddr = address & HPAGE_PMD_MASK;
3125         spinlock_t *ptl;
3126         pgd_t *pgd;
3127         pud_t *pud;
3128         pmd_t *pmd;
3129         pte_t *pte;
3130         int i, nr = HPAGE_PMD_NR;
3131
3132         /* Skip pages which doesn't belong to the VMA */
3133         if (address < vma->vm_start) {
3134                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3135                 page += off;
3136                 nr -= off;
3137                 address = vma->vm_start;
3138         }
3139
3140         pgd = pgd_offset(vma->vm_mm, address);
3141         if (!pgd_present(*pgd))
3142                 return;
3143         pud = pud_offset(pgd, address);
3144         if (!pud_present(*pud))
3145                 return;
3146         pmd = pmd_offset(pud, address);
3147         ptl = pmd_lock(vma->vm_mm, pmd);
3148         if (!pmd_present(*pmd)) {
3149                 spin_unlock(ptl);
3150                 return;
3151         }
3152         if (pmd_trans_huge(*pmd)) {
3153                 if (page == pmd_page(*pmd))
3154                         __split_huge_pmd_locked(vma, pmd, haddr, true);
3155                 spin_unlock(ptl);
3156                 return;
3157         }
3158         spin_unlock(ptl);
3159
3160         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3161         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3162                 pte_t entry, swp_pte;
3163                 swp_entry_t swp_entry;
3164
3165                 /*
3166                  * We've just crossed page table boundary: need to map next one.
3167                  * It can happen if THP was mremaped to non PMD-aligned address.
3168                  */
3169                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3170                         pte_unmap_unlock(pte - 1, ptl);
3171                         pmd = mm_find_pmd(vma->vm_mm, address);
3172                         if (!pmd)
3173                                 return;
3174                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3175                                         address, &ptl);
3176                 }
3177
3178                 if (!pte_present(*pte))
3179                         continue;
3180                 if (page_to_pfn(page) != pte_pfn(*pte))
3181                         continue;
3182                 flush_cache_page(vma, address, page_to_pfn(page));
3183                 entry = ptep_clear_flush(vma, address, pte);
3184                 if (pte_dirty(entry))
3185                         SetPageDirty(page);
3186                 swp_entry = make_migration_entry(page, pte_write(entry));
3187                 swp_pte = swp_entry_to_pte(swp_entry);
3188                 if (pte_soft_dirty(entry))
3189                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
3190                 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3191                 page_remove_rmap(page, false);
3192                 put_page(page);
3193         }
3194         pte_unmap_unlock(pte - 1, ptl);
3195 }
3196
3197 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3198 {
3199         struct anon_vma_chain *avc;
3200         pgoff_t pgoff = page_to_pgoff(page);
3201
3202         VM_BUG_ON_PAGE(!PageHead(page), page);
3203
3204         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3205                         pgoff + HPAGE_PMD_NR - 1) {
3206                 unsigned long address = __vma_address(page, avc->vma);
3207
3208                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3209                                 address, address + HPAGE_PMD_SIZE);
3210                 freeze_page_vma(avc->vma, page, address);
3211                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3212                                 address, address + HPAGE_PMD_SIZE);
3213         }
3214 }
3215
3216 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3217                 unsigned long address)
3218 {
3219         spinlock_t *ptl;
3220         pmd_t *pmd;
3221         pte_t *pte, entry;
3222         swp_entry_t swp_entry;
3223         unsigned long haddr = address & HPAGE_PMD_MASK;
3224         int i, nr = HPAGE_PMD_NR;
3225
3226         /* Skip pages which doesn't belong to the VMA */
3227         if (address < vma->vm_start) {
3228                 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3229                 page += off;
3230                 nr -= off;
3231                 address = vma->vm_start;
3232         }
3233
3234         pmd = mm_find_pmd(vma->vm_mm, address);
3235         if (!pmd)
3236                 return;
3237
3238         pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3239         for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3240                 /*
3241                  * We've just crossed page table boundary: need to map next one.
3242                  * It can happen if THP was mremaped to non-PMD aligned address.
3243                  */
3244                 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3245                         pte_unmap_unlock(pte - 1, ptl);
3246                         pmd = mm_find_pmd(vma->vm_mm, address);
3247                         if (!pmd)
3248                                 return;
3249                         pte = pte_offset_map_lock(vma->vm_mm, pmd,
3250                                         address, &ptl);
3251                 }
3252
3253                 if (!is_swap_pte(*pte))
3254                         continue;
3255
3256                 swp_entry = pte_to_swp_entry(*pte);
3257                 if (!is_migration_entry(swp_entry))
3258                         continue;
3259                 if (migration_entry_to_page(swp_entry) != page)
3260                         continue;
3261
3262                 get_page(page);
3263                 page_add_anon_rmap(page, vma, address, false);
3264
3265                 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3266                 if (PageDirty(page))
3267                         entry = pte_mkdirty(entry);
3268                 if (is_write_migration_entry(swp_entry))
3269                         entry = maybe_mkwrite(entry, vma);
3270
3271                 flush_dcache_page(page);
3272                 set_pte_at(vma->vm_mm, address, pte, entry);
3273
3274                 /* No need to invalidate - it was non-present before */
3275                 update_mmu_cache(vma, address, pte);
3276         }
3277         pte_unmap_unlock(pte - 1, ptl);
3278 }
3279
3280 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3281 {
3282         struct anon_vma_chain *avc;
3283         pgoff_t pgoff = page_to_pgoff(page);
3284
3285         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3286                         pgoff, pgoff + HPAGE_PMD_NR - 1) {
3287                 unsigned long address = __vma_address(page, avc->vma);
3288
3289                 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3290                                 address, address + HPAGE_PMD_SIZE);
3291                 unfreeze_page_vma(avc->vma, page, address);
3292                 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3293                                 address, address + HPAGE_PMD_SIZE);
3294         }
3295 }
3296
3297 static void __split_huge_page_tail(struct page *head, int tail,
3298                 struct lruvec *lruvec, struct list_head *list)
3299 {
3300         struct page *page_tail = head + tail;
3301
3302         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3303         VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3304
3305         /*
3306          * tail_page->_count is zero and not changing from under us. But
3307          * get_page_unless_zero() may be running from under us on the
3308          * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3309          * would then run atomic_set() concurrently with
3310          * get_page_unless_zero(), and atomic_set() is implemented in C not
3311          * using locked ops. spin_unlock on x86 sometime uses locked ops
3312          * because of PPro errata 66, 92, so unless somebody can guarantee
3313          * atomic_set() here would be safe on all archs (and not only on x86),
3314          * it's safer to use atomic_inc().
3315          */
3316         atomic_inc(&page_tail->_count);
3317
3318         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3319         page_tail->flags |= (head->flags &
3320                         ((1L << PG_referenced) |
3321                          (1L << PG_swapbacked) |
3322                          (1L << PG_mlocked) |
3323                          (1L << PG_uptodate) |
3324                          (1L << PG_active) |
3325                          (1L << PG_locked) |
3326                          (1L << PG_unevictable) |
3327                          (1L << PG_dirty)));
3328
3329         /*
3330          * After clearing PageTail the gup refcount can be released.
3331          * Page flags also must be visible before we make the page non-compound.
3332          */
3333         smp_wmb();
3334
3335         clear_compound_head(page_tail);
3336
3337         if (page_is_young(head))
3338                 set_page_young(page_tail);
3339         if (page_is_idle(head))
3340                 set_page_idle(page_tail);
3341
3342         /* ->mapping in first tail page is compound_mapcount */
3343         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3344                         page_tail);
3345         page_tail->mapping = head->mapping;
3346
3347         page_tail->index = head->index + tail;
3348         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3349         lru_add_page_tail(head, page_tail, lruvec, list);
3350 }
3351
3352 static void __split_huge_page(struct page *page, struct list_head *list)
3353 {
3354         struct page *head = compound_head(page);
3355         struct zone *zone = page_zone(head);
3356         struct lruvec *lruvec;
3357         int i;
3358
3359         /* prevent PageLRU to go away from under us, and freeze lru stats */
3360         spin_lock_irq(&zone->lru_lock);
3361         lruvec = mem_cgroup_page_lruvec(head, zone);
3362
3363         /* complete memcg works before add pages to LRU */
3364         mem_cgroup_split_huge_fixup(head);
3365
3366         for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3367                 __split_huge_page_tail(head, i, lruvec, list);
3368
3369         ClearPageCompound(head);
3370         spin_unlock_irq(&zone->lru_lock);
3371
3372         unfreeze_page(page_anon_vma(head), head);
3373
3374         for (i = 0; i < HPAGE_PMD_NR; i++) {
3375                 struct page *subpage = head + i;
3376                 if (subpage == page)
3377                         continue;
3378                 unlock_page(subpage);
3379
3380                 /*
3381                  * Subpages may be freed if there wasn't any mapping
3382                  * like if add_to_swap() is running on a lru page that
3383                  * had its mapping zapped. And freeing these pages
3384                  * requires taking the lru_lock so we do the put_page
3385                  * of the tail pages after the split is complete.
3386                  */
3387                 put_page(subpage);
3388         }
3389 }
3390
3391 int total_mapcount(struct page *page)
3392 {
3393         int i, ret;
3394
3395         VM_BUG_ON_PAGE(PageTail(page), page);
3396
3397         if (likely(!PageCompound(page)))
3398                 return atomic_read(&page->_mapcount) + 1;
3399
3400         ret = compound_mapcount(page);
3401         if (PageHuge(page))
3402                 return ret;
3403         for (i = 0; i < HPAGE_PMD_NR; i++)
3404                 ret += atomic_read(&page[i]._mapcount) + 1;
3405         if (PageDoubleMap(page))
3406                 ret -= HPAGE_PMD_NR;
3407         return ret;
3408 }
3409
3410 /*
3411  * This function splits huge page into normal pages. @page can point to any
3412  * subpage of huge page to split. Split doesn't change the position of @page.
3413  *
3414  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3415  * The huge page must be locked.
3416  *
3417  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3418  *
3419  * Both head page and tail pages will inherit mapping, flags, and so on from
3420  * the hugepage.
3421  *
3422  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3423  * they are not mapped.
3424  *
3425  * Returns 0 if the hugepage is split successfully.
3426  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3427  * us.
3428  */
3429 int split_huge_page_to_list(struct page *page, struct list_head *list)
3430 {
3431         struct page *head = compound_head(page);
3432         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3433         struct anon_vma *anon_vma;
3434         int count, mapcount, ret;
3435         bool mlocked;
3436         unsigned long flags;
3437
3438         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3439         VM_BUG_ON_PAGE(!PageAnon(page), page);
3440         VM_BUG_ON_PAGE(!PageLocked(page), page);
3441         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3442         VM_BUG_ON_PAGE(!PageCompound(page), page);
3443
3444         /*
3445          * The caller does not necessarily hold an mmap_sem that would prevent
3446          * the anon_vma disappearing so we first we take a reference to it
3447          * and then lock the anon_vma for write. This is similar to
3448          * page_lock_anon_vma_read except the write lock is taken to serialise
3449          * against parallel split or collapse operations.
3450          */
3451         anon_vma = page_get_anon_vma(head);
3452         if (!anon_vma) {
3453                 ret = -EBUSY;
3454                 goto out;
3455         }
3456         anon_vma_lock_write(anon_vma);
3457
3458         /*
3459          * Racy check if we can split the page, before freeze_page() will
3460          * split PMDs
3461          */
3462         if (total_mapcount(head) != page_count(head) - 1) {
3463                 ret = -EBUSY;
3464                 goto out_unlock;
3465         }
3466
3467         mlocked = PageMlocked(page);
3468         freeze_page(anon_vma, head);
3469         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3470
3471         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3472         if (mlocked)
3473                 lru_add_drain();
3474
3475         /* Prevent deferred_split_scan() touching ->_count */
3476         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3477         count = page_count(head);
3478         mapcount = total_mapcount(head);
3479         if (!mapcount && count == 1) {
3480                 if (!list_empty(page_deferred_list(head))) {
3481                         pgdata->split_queue_len--;
3482                         list_del(page_deferred_list(head));
3483                 }
3484                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3485                 __split_huge_page(page, list);
3486                 ret = 0;
3487         } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3488                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3489                 pr_alert("total_mapcount: %u, page_count(): %u\n",
3490                                 mapcount, count);
3491                 if (PageTail(page))
3492                         dump_page(head, NULL);
3493                 dump_page(page, "total_mapcount(head) > 0");
3494                 BUG();
3495         } else {
3496                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3497                 unfreeze_page(anon_vma, head);
3498                 ret = -EBUSY;
3499         }
3500
3501 out_unlock:
3502         anon_vma_unlock_write(anon_vma);
3503         put_anon_vma(anon_vma);
3504 out:
3505         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3506         return ret;
3507 }
3508
3509 void free_transhuge_page(struct page *page)
3510 {
3511         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3512         unsigned long flags;
3513
3514         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3515         if (!list_empty(page_deferred_list(page))) {
3516                 pgdata->split_queue_len--;
3517                 list_del(page_deferred_list(page));
3518         }
3519         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3520         free_compound_page(page);
3521 }
3522
3523 void deferred_split_huge_page(struct page *page)
3524 {
3525         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3526         unsigned long flags;
3527
3528         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3529
3530         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3531         if (list_empty(page_deferred_list(page))) {
3532                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3533                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3534                 pgdata->split_queue_len++;
3535         }
3536         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3537 }
3538
3539 static unsigned long deferred_split_count(struct shrinker *shrink,
3540                 struct shrink_control *sc)
3541 {
3542         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3543         return ACCESS_ONCE(pgdata->split_queue_len);
3544 }
3545
3546 static unsigned long deferred_split_scan(struct shrinker *shrink,
3547                 struct shrink_control *sc)
3548 {
3549         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3550         unsigned long flags;
3551         LIST_HEAD(list), *pos, *next;
3552         struct page *page;
3553         int split = 0;
3554
3555         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3556         /* Take pin on all head pages to avoid freeing them under us */
3557         list_for_each_safe(pos, next, &pgdata->split_queue) {
3558                 page = list_entry((void *)pos, struct page, mapping);
3559                 page = compound_head(page);
3560                 if (get_page_unless_zero(page)) {
3561                         list_move(page_deferred_list(page), &list);
3562                 } else {
3563                         /* We lost race with put_compound_page() */
3564                         list_del_init(page_deferred_list(page));
3565                         pgdata->split_queue_len--;
3566                 }
3567                 if (!--sc->nr_to_scan)
3568                         break;
3569         }
3570         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3571
3572         list_for_each_safe(pos, next, &list) {
3573                 page = list_entry((void *)pos, struct page, mapping);
3574                 lock_page(page);
3575                 /* split_huge_page() removes page from list on success */
3576                 if (!split_huge_page(page))
3577                         split++;
3578                 unlock_page(page);
3579                 put_page(page);
3580         }
3581
3582         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3583         list_splice_tail(&list, &pgdata->split_queue);
3584         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3585
3586         /*
3587          * Stop shrinker if we didn't split any page, but the queue is empty.
3588          * This can happen if pages were freed under us.
3589          */
3590         if (!split && list_empty(&pgdata->split_queue))
3591                 return SHRINK_STOP;
3592         return split;
3593 }
3594
3595 static struct shrinker deferred_split_shrinker = {
3596         .count_objects = deferred_split_count,
3597         .scan_objects = deferred_split_scan,
3598         .seeks = DEFAULT_SEEKS,
3599         .flags = SHRINKER_NUMA_AWARE,
3600 };
3601
3602 #ifdef CONFIG_DEBUG_FS
3603 static int split_huge_pages_set(void *data, u64 val)
3604 {
3605         struct zone *zone;
3606         struct page *page;
3607         unsigned long pfn, max_zone_pfn;
3608         unsigned long total = 0, split = 0;
3609
3610         if (val != 1)
3611                 return -EINVAL;
3612
3613         for_each_populated_zone(zone) {
3614                 max_zone_pfn = zone_end_pfn(zone);
3615                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3616                         if (!pfn_valid(pfn))
3617                                 continue;
3618
3619                         page = pfn_to_page(pfn);
3620                         if (!get_page_unless_zero(page))
3621                                 continue;
3622
3623                         if (zone != page_zone(page))
3624                                 goto next;
3625
3626                         if (!PageHead(page) || !PageAnon(page) ||
3627                                         PageHuge(page))
3628                                 goto next;
3629
3630                         total++;
3631                         lock_page(page);
3632                         if (!split_huge_page(page))
3633                                 split++;
3634                         unlock_page(page);
3635 next:
3636                         put_page(page);
3637                 }
3638         }
3639
3640         pr_info("%lu of %lu THP split", split, total);
3641
3642         return 0;
3643 }
3644 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3645                 "%llu\n");
3646
3647 static int __init split_huge_pages_debugfs(void)
3648 {
3649         void *ret;
3650
3651         ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3652                         &split_huge_pages_fops);
3653         if (!ret)
3654                 pr_warn("Failed to create split_huge_pages in debugfs");
3655         return 0;
3656 }
3657 late_initcall(split_huge_pages_debugfs);
3658 #endif