2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
28 #include <asm/pgalloc.h>
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74 static struct kmem_cache *mm_slot_cache __read_mostly;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash;
84 struct list_head mm_node;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 static int set_recommended_min_free_kbytes(void)
110 unsigned long recommended_min;
112 if (!khugepaged_enabled())
115 for_each_populated_zone(zone)
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
141 min_free_kbytes = recommended_min;
143 setup_per_zone_wmarks();
146 late_initcall(set_recommended_min_free_kbytes);
148 static int start_khugepaged(void)
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
176 static inline bool is_huge_zero_pmd(pmd_t pmd)
178 return is_huge_zero_page(pmd_page(pmd));
181 static struct page *get_huge_zero_page(void)
183 struct page *zero_page;
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
186 return ACCESS_ONCE(huge_zero_page);
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
198 __free_pages(zero_page, compound_order(zero_page));
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
205 return ACCESS_ONCE(huge_zero_page);
208 static void put_huge_zero_page(void)
211 * Counter should never go to zero here. Only shrinker can put
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
217 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
224 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
230 __free_pages(zero_page, compound_order(zero_page));
237 static struct shrinker huge_zero_page_shrinker = {
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
240 .seeks = DEFAULT_SEEKS,
245 static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
256 return sprintf(buf, "always madvise [never]\n");
258 static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
282 static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
289 static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
312 static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
315 static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
323 static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
331 ret = kstrtoul(buf, 10, &value);
338 set_bit(flag, &transparent_hugepage_flags);
340 clear_bit(flag, &transparent_hugepage_flags);
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
350 static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357 static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
365 static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
368 static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374 static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
380 static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
382 #ifdef CONFIG_DEBUG_VM
383 static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
396 static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398 #endif /* CONFIG_DEBUG_VM */
400 static struct attribute *hugepage_attr[] = {
403 &use_zero_page_attr.attr,
404 #ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
410 static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
414 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
421 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
428 err = kstrtoul(buf, 10, &msecs);
429 if (err || msecs > UINT_MAX)
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
437 static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
441 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
448 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
455 err = kstrtoul(buf, 10, &msecs);
456 if (err || msecs > UINT_MAX)
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
464 static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
468 static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
474 static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
481 err = kstrtoul(buf, 10, &pages);
482 if (err || !pages || pages > UINT_MAX)
485 khugepaged_pages_to_scan = pages;
489 static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
493 static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
499 static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
502 static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
508 static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
511 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
524 static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
536 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
542 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
547 unsigned long max_ptes_none;
549 err = kstrtoul(buf, 10, &max_ptes_none);
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
553 khugepaged_max_ptes_none = max_ptes_none;
557 static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
561 static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
572 static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
577 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
583 pr_err("failed to create transparent hugepage kobject\n");
587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
589 pr_err("failed to register transparent hugepage group\n");
593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
595 pr_err("failed to register transparent hugepage group\n");
596 goto remove_hp_group;
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
604 kobject_put(*hugepage_kobj);
608 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
615 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
623 #endif /* CONFIG_SYSFS */
625 static int __init hugepage_init(void)
628 struct kobject *hugepage_kobj;
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
635 err = hugepage_init_sysfs(&hugepage_kobj);
639 err = khugepaged_slab_init();
643 register_shrinker(&huge_zero_page_shrinker);
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
657 hugepage_exit_sysfs(hugepage_kobj);
660 subsys_initcall(hugepage_init);
662 static int __init setup_transparent_hugepage(char *str)
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
691 __setup("transparent_hugepage=", setup_transparent_hugepage);
693 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
700 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
703 entry = mk_pmd(page, prot);
704 entry = pmd_mkhuge(entry);
708 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
713 struct mem_cgroup *memcg;
717 VM_BUG_ON_PAGE(!PageCompound(page), page);
719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
734 __SetPageUptodate(page);
736 ptl = pmd_lock(mm, pmd);
737 if (unlikely(!pmd_none(*pmd))) {
739 mem_cgroup_cancel_charge(page, memcg);
741 pte_free(mm, pgtable);
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
746 page_add_new_anon_rmap(page, vma, haddr);
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 set_pmd_at(mm, haddr, pmd, entry);
751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
752 atomic_long_inc(&mm->nr_ptes);
759 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
764 /* Caller must hold page table lock. */
765 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
786 unsigned long haddr = address & HPAGE_PMD_MASK;
788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
789 return VM_FAULT_FALLBACK;
790 if (unlikely(anon_vma_prepare(vma)))
792 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
795 transparent_hugepage_use_zero_page()) {
798 struct page *zero_page;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
803 zero_page = get_huge_zero_page();
804 if (unlikely(!zero_page)) {
805 pte_free(mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 return VM_FAULT_FALLBACK;
809 ptl = pmd_lock(mm, pmd);
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
823 return VM_FAULT_FALLBACK;
825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
831 count_vm_event(THP_FAULT_ALLOC);
835 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 struct vm_area_struct *vma)
839 spinlock_t *dst_ptl, *src_ptl;
840 struct page *src_page;
846 pgtable = pte_alloc_one(dst_mm, addr);
847 if (unlikely(!pgtable))
850 dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 src_ptl = pmd_lockptr(src_mm, src_pmd);
852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
861 * When page table lock is held, the huge zero pmd should not be
862 * under splitting since we don't split the page itself, only pmd to
865 if (is_huge_zero_pmd(pmd)) {
866 struct page *zero_page;
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
873 zero_page = get_huge_zero_page();
874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
881 if (unlikely(pmd_trans_splitting(pmd))) {
882 /* split huge page running from under us */
883 spin_unlock(src_ptl);
884 spin_unlock(dst_ptl);
885 pte_free(dst_mm, pgtable);
887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
890 src_page = pmd_page(pmd);
891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
893 page_dup_rmap(src_page);
894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
896 pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 pmd = pmd_mkold(pmd_wrprotect(pmd));
898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
899 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
900 atomic_long_inc(&dst_mm->nr_ptes);
904 spin_unlock(src_ptl);
905 spin_unlock(dst_ptl);
910 void huge_pmd_set_accessed(struct mm_struct *mm,
911 struct vm_area_struct *vma,
912 unsigned long address,
913 pmd_t *pmd, pmd_t orig_pmd,
920 ptl = pmd_lock(mm, pmd);
921 if (unlikely(!pmd_same(*pmd, orig_pmd)))
924 entry = pmd_mkyoung(orig_pmd);
925 haddr = address & HPAGE_PMD_MASK;
926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 update_mmu_cache_pmd(vma, address, pmd);
934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935 * during copy_user_huge_page()'s copy_page_rep(): in the case when
936 * the source page gets split and a tail freed before copy completes.
937 * Called under pmd_lock of checked pmd, so safe from splitting itself.
939 static void get_user_huge_page(struct page *page)
941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 struct page *endpage = page + HPAGE_PMD_NR;
944 atomic_add(HPAGE_PMD_NR, &page->_count);
945 while (++page < endpage)
946 get_huge_page_tail(page);
952 static void put_user_huge_page(struct page *page)
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
957 while (page < endpage)
964 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 struct vm_area_struct *vma,
966 unsigned long address,
967 pmd_t *pmd, pmd_t orig_pmd,
971 struct mem_cgroup *memcg;
977 unsigned long mmun_start; /* For mmu_notifiers */
978 unsigned long mmun_end; /* For mmu_notifiers */
980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
982 if (unlikely(!pages)) {
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
990 vma, address, page_to_nid(page));
991 if (unlikely(!pages[i] ||
992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
997 memcg = (void *)page_private(pages[i]);
998 set_page_private(pages[i], 0);
999 mem_cgroup_cancel_charge(pages[i], memcg);
1003 ret |= VM_FAULT_OOM;
1006 set_page_private(pages[i], (unsigned long)memcg);
1009 for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 copy_user_highpage(pages[i], page + i,
1011 haddr + PAGE_SIZE * i, vma);
1012 __SetPageUptodate(pages[i]);
1017 mmun_end = haddr + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1020 ptl = pmd_lock(mm, pmd);
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto out_free_pages;
1023 VM_BUG_ON_PAGE(!PageHead(page), page);
1025 pmdp_clear_flush_notify(vma, haddr, pmd);
1026 /* leave pmd empty until pte is filled */
1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1029 pmd_populate(mm, &_pmd, pgtable);
1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1033 entry = mk_pte(pages[i], vma->vm_page_prot);
1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1035 memcg = (void *)page_private(pages[i]);
1036 set_page_private(pages[i], 0);
1037 page_add_new_anon_rmap(pages[i], vma, haddr);
1038 mem_cgroup_commit_charge(pages[i], memcg, false);
1039 lru_cache_add_active_or_unevictable(pages[i], vma);
1040 pte = pte_offset_map(&_pmd, haddr);
1041 VM_BUG_ON(!pte_none(*pte));
1042 set_pte_at(mm, haddr, pte, entry);
1047 smp_wmb(); /* make pte visible before pmd */
1048 pmd_populate(mm, pmd, pgtable);
1049 page_remove_rmap(page);
1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1054 ret |= VM_FAULT_WRITE;
1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
1064 memcg = (void *)page_private(pages[i]);
1065 set_page_private(pages[i], 0);
1066 mem_cgroup_cancel_charge(pages[i], memcg);
1073 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1078 struct page *page = NULL, *new_page;
1079 struct mem_cgroup *memcg;
1080 unsigned long haddr;
1081 unsigned long mmun_start; /* For mmu_notifiers */
1082 unsigned long mmun_end; /* For mmu_notifiers */
1084 ptl = pmd_lockptr(mm, pmd);
1085 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1086 haddr = address & HPAGE_PMD_MASK;
1087 if (is_huge_zero_pmd(orig_pmd))
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1093 page = pmd_page(orig_pmd);
1094 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1095 if (page_mapcount(page) == 1) {
1097 entry = pmd_mkyoung(orig_pmd);
1098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1099 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1100 update_mmu_cache_pmd(vma, address, pmd);
1101 ret |= VM_FAULT_WRITE;
1104 get_user_huge_page(page);
1107 if (transparent_hugepage_enabled(vma) &&
1108 !transparent_hugepage_debug_cow()) {
1111 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1112 new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
1116 if (unlikely(!new_page)) {
1118 split_huge_page_pmd(vma, address, pmd);
1119 ret |= VM_FAULT_FALLBACK;
1121 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1122 pmd, orig_pmd, page, haddr);
1123 if (ret & VM_FAULT_OOM) {
1124 split_huge_page(page);
1125 ret |= VM_FAULT_FALLBACK;
1127 put_user_huge_page(page);
1129 count_vm_event(THP_FAULT_FALLBACK);
1133 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1134 GFP_TRANSHUGE, &memcg))) {
1137 split_huge_page(page);
1138 put_user_huge_page(page);
1140 split_huge_page_pmd(vma, address, pmd);
1141 ret |= VM_FAULT_FALLBACK;
1142 count_vm_event(THP_FAULT_FALLBACK);
1146 count_vm_event(THP_FAULT_ALLOC);
1149 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1151 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1152 __SetPageUptodate(new_page);
1155 mmun_end = haddr + HPAGE_PMD_SIZE;
1156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1160 put_user_huge_page(page);
1161 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1163 mem_cgroup_cancel_charge(new_page, memcg);
1168 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1170 pmdp_clear_flush_notify(vma, haddr, pmd);
1171 page_add_new_anon_rmap(new_page, vma, haddr);
1172 mem_cgroup_commit_charge(new_page, memcg, false);
1173 lru_cache_add_active_or_unevictable(new_page, vma);
1174 set_pmd_at(mm, haddr, pmd, entry);
1175 update_mmu_cache_pmd(vma, address, pmd);
1177 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1178 put_huge_zero_page();
1180 VM_BUG_ON_PAGE(!PageHead(page), page);
1181 page_remove_rmap(page);
1184 ret |= VM_FAULT_WRITE;
1188 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1196 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1201 struct mm_struct *mm = vma->vm_mm;
1202 struct page *page = NULL;
1204 assert_spin_locked(pmd_lockptr(mm, pmd));
1206 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1209 /* Avoid dumping huge zero page */
1210 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1211 return ERR_PTR(-EFAULT);
1213 /* Full NUMA hinting faults to serialise migration in fault paths */
1214 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1217 page = pmd_page(*pmd);
1218 VM_BUG_ON_PAGE(!PageHead(page), page);
1219 if (flags & FOLL_TOUCH) {
1222 * We should set the dirty bit only for FOLL_WRITE but
1223 * for now the dirty bit in the pmd is meaningless.
1224 * And if the dirty bit will become meaningful and
1225 * we'll only set it with FOLL_WRITE, an atomic
1226 * set_bit will be required on the pmd to set the
1227 * young bit, instead of the current set_pmd_at.
1229 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1230 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1232 update_mmu_cache_pmd(vma, addr, pmd);
1234 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1235 if (page->mapping && trylock_page(page)) {
1238 mlock_vma_page(page);
1242 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1243 VM_BUG_ON_PAGE(!PageCompound(page), page);
1244 if (flags & FOLL_GET)
1245 get_page_foll(page);
1251 /* NUMA hinting page fault entry point for trans huge pmds */
1252 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1253 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1256 struct anon_vma *anon_vma = NULL;
1258 unsigned long haddr = addr & HPAGE_PMD_MASK;
1259 int page_nid = -1, this_nid = numa_node_id();
1260 int target_nid, last_cpupid = -1;
1262 bool migrated = false;
1266 /* A PROT_NONE fault should not end up here */
1267 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1269 ptl = pmd_lock(mm, pmdp);
1270 if (unlikely(!pmd_same(pmd, *pmdp)))
1274 * If there are potential migrations, wait for completion and retry
1275 * without disrupting NUMA hinting information. Do not relock and
1276 * check_same as the page may no longer be mapped.
1278 if (unlikely(pmd_trans_migrating(*pmdp))) {
1279 page = pmd_page(*pmdp);
1281 wait_on_page_locked(page);
1285 page = pmd_page(pmd);
1286 BUG_ON(is_huge_zero_page(page));
1287 page_nid = page_to_nid(page);
1288 last_cpupid = page_cpupid_last(page);
1289 count_vm_numa_event(NUMA_HINT_FAULTS);
1290 if (page_nid == this_nid) {
1291 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1292 flags |= TNF_FAULT_LOCAL;
1295 /* See similar comment in do_numa_page for explanation */
1296 if (!(vma->vm_flags & VM_WRITE))
1297 flags |= TNF_NO_GROUP;
1300 * Acquire the page lock to serialise THP migrations but avoid dropping
1301 * page_table_lock if at all possible
1303 page_locked = trylock_page(page);
1304 target_nid = mpol_misplaced(page, vma, haddr);
1305 if (target_nid == -1) {
1306 /* If the page was locked, there are no parallel migrations */
1311 /* Migration could have started since the pmd_trans_migrating check */
1314 wait_on_page_locked(page);
1320 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1321 * to serialises splits
1325 anon_vma = page_lock_anon_vma_read(page);
1327 /* Confirm the PMD did not change while page_table_lock was released */
1329 if (unlikely(!pmd_same(pmd, *pmdp))) {
1336 /* Bail if we fail to protect against THP splits for any reason */
1337 if (unlikely(!anon_vma)) {
1344 * Migrate the THP to the requested node, returns with page unlocked
1345 * and access rights restored.
1348 migrated = migrate_misplaced_transhuge_page(mm, vma,
1349 pmdp, pmd, addr, page, target_nid);
1351 flags |= TNF_MIGRATED;
1352 page_nid = target_nid;
1354 flags |= TNF_MIGRATE_FAIL;
1358 BUG_ON(!PageLocked(page));
1359 was_writable = pmd_write(pmd);
1360 pmd = pmd_modify(pmd, vma->vm_page_prot);
1362 pmd = pmd_mkwrite(pmd);
1363 set_pmd_at(mm, haddr, pmdp, pmd);
1364 update_mmu_cache_pmd(vma, addr, pmdp);
1371 page_unlock_anon_vma_read(anon_vma);
1374 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1379 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1380 pmd_t *pmd, unsigned long addr)
1385 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390 * For architectures like ppc64 we look at deposited pgtable
1391 * when calling pmdp_get_and_clear. So do the
1392 * pgtable_trans_huge_withdraw after finishing pmdp related
1395 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1397 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1398 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1399 if (is_huge_zero_pmd(orig_pmd)) {
1400 atomic_long_dec(&tlb->mm->nr_ptes);
1402 put_huge_zero_page();
1404 page = pmd_page(orig_pmd);
1405 page_remove_rmap(page);
1406 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1407 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1408 VM_BUG_ON_PAGE(!PageHead(page), page);
1409 atomic_long_dec(&tlb->mm->nr_ptes);
1411 tlb_remove_page(tlb, page);
1413 pte_free(tlb->mm, pgtable);
1419 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1420 unsigned long old_addr,
1421 unsigned long new_addr, unsigned long old_end,
1422 pmd_t *old_pmd, pmd_t *new_pmd)
1424 spinlock_t *old_ptl, *new_ptl;
1428 struct mm_struct *mm = vma->vm_mm;
1430 if ((old_addr & ~HPAGE_PMD_MASK) ||
1431 (new_addr & ~HPAGE_PMD_MASK) ||
1432 old_end - old_addr < HPAGE_PMD_SIZE ||
1433 (new_vma->vm_flags & VM_NOHUGEPAGE))
1437 * The destination pmd shouldn't be established, free_pgtables()
1438 * should have release it.
1440 if (WARN_ON(!pmd_none(*new_pmd))) {
1441 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1446 * We don't have to worry about the ordering of src and dst
1447 * ptlocks because exclusive mmap_sem prevents deadlock.
1449 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1451 new_ptl = pmd_lockptr(mm, new_pmd);
1452 if (new_ptl != old_ptl)
1453 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1454 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1455 VM_BUG_ON(!pmd_none(*new_pmd));
1457 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1459 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1460 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1462 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1463 if (new_ptl != old_ptl)
1464 spin_unlock(new_ptl);
1465 spin_unlock(old_ptl);
1473 * - 0 if PMD could not be locked
1474 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1475 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1477 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1478 unsigned long addr, pgprot_t newprot, int prot_numa)
1480 struct mm_struct *mm = vma->vm_mm;
1484 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1486 bool preserve_write = prot_numa && pmd_write(*pmd);
1490 * Avoid trapping faults against the zero page. The read-only
1491 * data is likely to be read-cached on the local CPU and
1492 * local/remote hits to the zero page are not interesting.
1494 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1499 if (!prot_numa || !pmd_protnone(*pmd)) {
1500 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1501 entry = pmd_modify(entry, newprot);
1503 entry = pmd_mkwrite(entry);
1505 set_pmd_at(mm, addr, pmd, entry);
1506 BUG_ON(!preserve_write && pmd_write(entry));
1515 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1516 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1518 * Note that if it returns 1, this routine returns without unlocking page
1519 * table locks. So callers must unlock them.
1521 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1524 *ptl = pmd_lock(vma->vm_mm, pmd);
1525 if (likely(pmd_trans_huge(*pmd))) {
1526 if (unlikely(pmd_trans_splitting(*pmd))) {
1528 wait_split_huge_page(vma->anon_vma, pmd);
1531 /* Thp mapped by 'pmd' is stable, so we can
1532 * handle it as it is. */
1541 * This function returns whether a given @page is mapped onto the @address
1542 * in the virtual space of @mm.
1544 * When it's true, this function returns *pmd with holding the page table lock
1545 * and passing it back to the caller via @ptl.
1546 * If it's false, returns NULL without holding the page table lock.
1548 pmd_t *page_check_address_pmd(struct page *page,
1549 struct mm_struct *mm,
1550 unsigned long address,
1551 enum page_check_address_pmd_flag flag,
1558 if (address & ~HPAGE_PMD_MASK)
1561 pgd = pgd_offset(mm, address);
1562 if (!pgd_present(*pgd))
1564 pud = pud_offset(pgd, address);
1565 if (!pud_present(*pud))
1567 pmd = pmd_offset(pud, address);
1569 *ptl = pmd_lock(mm, pmd);
1570 if (!pmd_present(*pmd))
1572 if (pmd_page(*pmd) != page)
1575 * split_vma() may create temporary aliased mappings. There is
1576 * no risk as long as all huge pmd are found and have their
1577 * splitting bit set before __split_huge_page_refcount
1578 * runs. Finding the same huge pmd more than once during the
1579 * same rmap walk is not a problem.
1581 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1582 pmd_trans_splitting(*pmd))
1584 if (pmd_trans_huge(*pmd)) {
1585 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1586 !pmd_trans_splitting(*pmd));
1594 static int __split_huge_page_splitting(struct page *page,
1595 struct vm_area_struct *vma,
1596 unsigned long address)
1598 struct mm_struct *mm = vma->vm_mm;
1602 /* For mmu_notifiers */
1603 const unsigned long mmun_start = address;
1604 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1606 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1607 pmd = page_check_address_pmd(page, mm, address,
1608 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1611 * We can't temporarily set the pmd to null in order
1612 * to split it, the pmd must remain marked huge at all
1613 * times or the VM won't take the pmd_trans_huge paths
1614 * and it won't wait on the anon_vma->root->rwsem to
1615 * serialize against split_huge_page*.
1617 pmdp_splitting_flush(vma, address, pmd);
1622 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1627 static void __split_huge_page_refcount(struct page *page,
1628 struct list_head *list)
1631 struct zone *zone = page_zone(page);
1632 struct lruvec *lruvec;
1635 /* prevent PageLRU to go away from under us, and freeze lru stats */
1636 spin_lock_irq(&zone->lru_lock);
1637 lruvec = mem_cgroup_page_lruvec(page, zone);
1639 compound_lock(page);
1640 /* complete memcg works before add pages to LRU */
1641 mem_cgroup_split_huge_fixup(page);
1643 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1644 struct page *page_tail = page + i;
1646 /* tail_page->_mapcount cannot change */
1647 BUG_ON(page_mapcount(page_tail) < 0);
1648 tail_count += page_mapcount(page_tail);
1649 /* check for overflow */
1650 BUG_ON(tail_count < 0);
1651 BUG_ON(atomic_read(&page_tail->_count) != 0);
1653 * tail_page->_count is zero and not changing from
1654 * under us. But get_page_unless_zero() may be running
1655 * from under us on the tail_page. If we used
1656 * atomic_set() below instead of atomic_add(), we
1657 * would then run atomic_set() concurrently with
1658 * get_page_unless_zero(), and atomic_set() is
1659 * implemented in C not using locked ops. spin_unlock
1660 * on x86 sometime uses locked ops because of PPro
1661 * errata 66, 92, so unless somebody can guarantee
1662 * atomic_set() here would be safe on all archs (and
1663 * not only on x86), it's safer to use atomic_add().
1665 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1666 &page_tail->_count);
1668 /* after clearing PageTail the gup refcount can be released */
1669 smp_mb__after_atomic();
1672 * retain hwpoison flag of the poisoned tail page:
1673 * fix for the unsuitable process killed on Guest Machine(KVM)
1674 * by the memory-failure.
1676 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1677 page_tail->flags |= (page->flags &
1678 ((1L << PG_referenced) |
1679 (1L << PG_swapbacked) |
1680 (1L << PG_mlocked) |
1681 (1L << PG_uptodate) |
1683 (1L << PG_unevictable)));
1684 page_tail->flags |= (1L << PG_dirty);
1686 /* clear PageTail before overwriting first_page */
1690 * __split_huge_page_splitting() already set the
1691 * splitting bit in all pmd that could map this
1692 * hugepage, that will ensure no CPU can alter the
1693 * mapcount on the head page. The mapcount is only
1694 * accounted in the head page and it has to be
1695 * transferred to all tail pages in the below code. So
1696 * for this code to be safe, the split the mapcount
1697 * can't change. But that doesn't mean userland can't
1698 * keep changing and reading the page contents while
1699 * we transfer the mapcount, so the pmd splitting
1700 * status is achieved setting a reserved bit in the
1701 * pmd, not by clearing the present bit.
1703 page_tail->_mapcount = page->_mapcount;
1705 BUG_ON(page_tail->mapping);
1706 page_tail->mapping = page->mapping;
1708 page_tail->index = page->index + i;
1709 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1711 BUG_ON(!PageAnon(page_tail));
1712 BUG_ON(!PageUptodate(page_tail));
1713 BUG_ON(!PageDirty(page_tail));
1714 BUG_ON(!PageSwapBacked(page_tail));
1716 lru_add_page_tail(page, page_tail, lruvec, list);
1718 atomic_sub(tail_count, &page->_count);
1719 BUG_ON(atomic_read(&page->_count) <= 0);
1721 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1723 ClearPageCompound(page);
1724 compound_unlock(page);
1725 spin_unlock_irq(&zone->lru_lock);
1727 for (i = 1; i < HPAGE_PMD_NR; i++) {
1728 struct page *page_tail = page + i;
1729 BUG_ON(page_count(page_tail) <= 0);
1731 * Tail pages may be freed if there wasn't any mapping
1732 * like if add_to_swap() is running on a lru page that
1733 * had its mapping zapped. And freeing these pages
1734 * requires taking the lru_lock so we do the put_page
1735 * of the tail pages after the split is complete.
1737 put_page(page_tail);
1741 * Only the head page (now become a regular page) is required
1742 * to be pinned by the caller.
1744 BUG_ON(page_count(page) <= 0);
1747 static int __split_huge_page_map(struct page *page,
1748 struct vm_area_struct *vma,
1749 unsigned long address)
1751 struct mm_struct *mm = vma->vm_mm;
1756 unsigned long haddr;
1758 pmd = page_check_address_pmd(page, mm, address,
1759 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1761 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1762 pmd_populate(mm, &_pmd, pgtable);
1763 if (pmd_write(*pmd))
1764 BUG_ON(page_mapcount(page) != 1);
1767 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1769 BUG_ON(PageCompound(page+i));
1771 * Note that NUMA hinting access restrictions are not
1772 * transferred to avoid any possibility of altering
1773 * permissions across VMAs.
1775 entry = mk_pte(page + i, vma->vm_page_prot);
1776 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1777 if (!pmd_write(*pmd))
1778 entry = pte_wrprotect(entry);
1779 if (!pmd_young(*pmd))
1780 entry = pte_mkold(entry);
1781 pte = pte_offset_map(&_pmd, haddr);
1782 BUG_ON(!pte_none(*pte));
1783 set_pte_at(mm, haddr, pte, entry);
1787 smp_wmb(); /* make pte visible before pmd */
1789 * Up to this point the pmd is present and huge and
1790 * userland has the whole access to the hugepage
1791 * during the split (which happens in place). If we
1792 * overwrite the pmd with the not-huge version
1793 * pointing to the pte here (which of course we could
1794 * if all CPUs were bug free), userland could trigger
1795 * a small page size TLB miss on the small sized TLB
1796 * while the hugepage TLB entry is still established
1797 * in the huge TLB. Some CPU doesn't like that. See
1798 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1799 * Erratum 383 on page 93. Intel should be safe but is
1800 * also warns that it's only safe if the permission
1801 * and cache attributes of the two entries loaded in
1802 * the two TLB is identical (which should be the case
1803 * here). But it is generally safer to never allow
1804 * small and huge TLB entries for the same virtual
1805 * address to be loaded simultaneously. So instead of
1806 * doing "pmd_populate(); flush_tlb_range();" we first
1807 * mark the current pmd notpresent (atomically because
1808 * here the pmd_trans_huge and pmd_trans_splitting
1809 * must remain set at all times on the pmd until the
1810 * split is complete for this pmd), then we flush the
1811 * SMP TLB and finally we write the non-huge version
1812 * of the pmd entry with pmd_populate.
1814 pmdp_invalidate(vma, address, pmd);
1815 pmd_populate(mm, pmd, pgtable);
1823 /* must be called with anon_vma->root->rwsem held */
1824 static void __split_huge_page(struct page *page,
1825 struct anon_vma *anon_vma,
1826 struct list_head *list)
1828 int mapcount, mapcount2;
1829 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1830 struct anon_vma_chain *avc;
1832 BUG_ON(!PageHead(page));
1833 BUG_ON(PageTail(page));
1836 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1837 struct vm_area_struct *vma = avc->vma;
1838 unsigned long addr = vma_address(page, vma);
1839 BUG_ON(is_vma_temporary_stack(vma));
1840 mapcount += __split_huge_page_splitting(page, vma, addr);
1843 * It is critical that new vmas are added to the tail of the
1844 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1845 * and establishes a child pmd before
1846 * __split_huge_page_splitting() freezes the parent pmd (so if
1847 * we fail to prevent copy_huge_pmd() from running until the
1848 * whole __split_huge_page() is complete), we will still see
1849 * the newly established pmd of the child later during the
1850 * walk, to be able to set it as pmd_trans_splitting too.
1852 if (mapcount != page_mapcount(page)) {
1853 pr_err("mapcount %d page_mapcount %d\n",
1854 mapcount, page_mapcount(page));
1858 __split_huge_page_refcount(page, list);
1861 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1862 struct vm_area_struct *vma = avc->vma;
1863 unsigned long addr = vma_address(page, vma);
1864 BUG_ON(is_vma_temporary_stack(vma));
1865 mapcount2 += __split_huge_page_map(page, vma, addr);
1867 if (mapcount != mapcount2) {
1868 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1869 mapcount, mapcount2, page_mapcount(page));
1875 * Split a hugepage into normal pages. This doesn't change the position of head
1876 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1877 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1878 * from the hugepage.
1879 * Return 0 if the hugepage is split successfully otherwise return 1.
1881 int split_huge_page_to_list(struct page *page, struct list_head *list)
1883 struct anon_vma *anon_vma;
1886 BUG_ON(is_huge_zero_page(page));
1887 BUG_ON(!PageAnon(page));
1890 * The caller does not necessarily hold an mmap_sem that would prevent
1891 * the anon_vma disappearing so we first we take a reference to it
1892 * and then lock the anon_vma for write. This is similar to
1893 * page_lock_anon_vma_read except the write lock is taken to serialise
1894 * against parallel split or collapse operations.
1896 anon_vma = page_get_anon_vma(page);
1899 anon_vma_lock_write(anon_vma);
1902 if (!PageCompound(page))
1905 BUG_ON(!PageSwapBacked(page));
1906 __split_huge_page(page, anon_vma, list);
1907 count_vm_event(THP_SPLIT);
1909 BUG_ON(PageCompound(page));
1911 anon_vma_unlock_write(anon_vma);
1912 put_anon_vma(anon_vma);
1917 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1919 int hugepage_madvise(struct vm_area_struct *vma,
1920 unsigned long *vm_flags, int advice)
1926 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1927 * can't handle this properly after s390_enable_sie, so we simply
1928 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1930 if (mm_has_pgste(vma->vm_mm))
1934 * Be somewhat over-protective like KSM for now!
1936 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1938 *vm_flags &= ~VM_NOHUGEPAGE;
1939 *vm_flags |= VM_HUGEPAGE;
1941 * If the vma become good for khugepaged to scan,
1942 * register it here without waiting a page fault that
1943 * may not happen any time soon.
1945 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1948 case MADV_NOHUGEPAGE:
1950 * Be somewhat over-protective like KSM for now!
1952 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1954 *vm_flags &= ~VM_HUGEPAGE;
1955 *vm_flags |= VM_NOHUGEPAGE;
1957 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1958 * this vma even if we leave the mm registered in khugepaged if
1959 * it got registered before VM_NOHUGEPAGE was set.
1967 static int __init khugepaged_slab_init(void)
1969 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1970 sizeof(struct mm_slot),
1971 __alignof__(struct mm_slot), 0, NULL);
1978 static inline struct mm_slot *alloc_mm_slot(void)
1980 if (!mm_slot_cache) /* initialization failed */
1982 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1985 static inline void free_mm_slot(struct mm_slot *mm_slot)
1987 kmem_cache_free(mm_slot_cache, mm_slot);
1990 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1992 struct mm_slot *mm_slot;
1994 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1995 if (mm == mm_slot->mm)
2001 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2002 struct mm_slot *mm_slot)
2005 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2008 static inline int khugepaged_test_exit(struct mm_struct *mm)
2010 return atomic_read(&mm->mm_users) == 0;
2013 int __khugepaged_enter(struct mm_struct *mm)
2015 struct mm_slot *mm_slot;
2018 mm_slot = alloc_mm_slot();
2022 /* __khugepaged_exit() must not run from under us */
2023 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2024 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2025 free_mm_slot(mm_slot);
2029 spin_lock(&khugepaged_mm_lock);
2030 insert_to_mm_slots_hash(mm, mm_slot);
2032 * Insert just behind the scanning cursor, to let the area settle
2035 wakeup = list_empty(&khugepaged_scan.mm_head);
2036 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2037 spin_unlock(&khugepaged_mm_lock);
2039 atomic_inc(&mm->mm_count);
2041 wake_up_interruptible(&khugepaged_wait);
2046 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2047 unsigned long vm_flags)
2049 unsigned long hstart, hend;
2052 * Not yet faulted in so we will register later in the
2053 * page fault if needed.
2057 /* khugepaged not yet working on file or special mappings */
2059 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2060 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2061 hend = vma->vm_end & HPAGE_PMD_MASK;
2063 return khugepaged_enter(vma, vm_flags);
2067 void __khugepaged_exit(struct mm_struct *mm)
2069 struct mm_slot *mm_slot;
2072 spin_lock(&khugepaged_mm_lock);
2073 mm_slot = get_mm_slot(mm);
2074 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2075 hash_del(&mm_slot->hash);
2076 list_del(&mm_slot->mm_node);
2079 spin_unlock(&khugepaged_mm_lock);
2082 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2083 free_mm_slot(mm_slot);
2085 } else if (mm_slot) {
2087 * This is required to serialize against
2088 * khugepaged_test_exit() (which is guaranteed to run
2089 * under mmap sem read mode). Stop here (after we
2090 * return all pagetables will be destroyed) until
2091 * khugepaged has finished working on the pagetables
2092 * under the mmap_sem.
2094 down_write(&mm->mmap_sem);
2095 up_write(&mm->mmap_sem);
2099 static void release_pte_page(struct page *page)
2101 /* 0 stands for page_is_file_cache(page) == false */
2102 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2104 putback_lru_page(page);
2107 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2109 while (--_pte >= pte) {
2110 pte_t pteval = *_pte;
2111 if (!pte_none(pteval))
2112 release_pte_page(pte_page(pteval));
2116 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2117 unsigned long address,
2123 bool referenced = false, writable = false;
2124 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2125 _pte++, address += PAGE_SIZE) {
2126 pte_t pteval = *_pte;
2127 if (pte_none(pteval)) {
2128 if (++none <= khugepaged_max_ptes_none)
2133 if (!pte_present(pteval))
2135 page = vm_normal_page(vma, address, pteval);
2136 if (unlikely(!page))
2139 VM_BUG_ON_PAGE(PageCompound(page), page);
2140 VM_BUG_ON_PAGE(!PageAnon(page), page);
2141 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2144 * We can do it before isolate_lru_page because the
2145 * page can't be freed from under us. NOTE: PG_lock
2146 * is needed to serialize against split_huge_page
2147 * when invoked from the VM.
2149 if (!trylock_page(page))
2153 * cannot use mapcount: can't collapse if there's a gup pin.
2154 * The page must only be referenced by the scanned process
2155 * and page swap cache.
2157 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2161 if (pte_write(pteval)) {
2164 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2169 * Page is not in the swap cache. It can be collapsed
2175 * Isolate the page to avoid collapsing an hugepage
2176 * currently in use by the VM.
2178 if (isolate_lru_page(page)) {
2182 /* 0 stands for page_is_file_cache(page) == false */
2183 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2184 VM_BUG_ON_PAGE(!PageLocked(page), page);
2185 VM_BUG_ON_PAGE(PageLRU(page), page);
2187 /* If there is no mapped pte young don't collapse the page */
2188 if (pte_young(pteval) || PageReferenced(page) ||
2189 mmu_notifier_test_young(vma->vm_mm, address))
2192 if (likely(referenced && writable))
2195 release_pte_pages(pte, _pte);
2199 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2200 struct vm_area_struct *vma,
2201 unsigned long address,
2205 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2206 pte_t pteval = *_pte;
2207 struct page *src_page;
2209 if (pte_none(pteval)) {
2210 clear_user_highpage(page, address);
2211 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2213 src_page = pte_page(pteval);
2214 copy_user_highpage(page, src_page, address, vma);
2215 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2216 release_pte_page(src_page);
2218 * ptl mostly unnecessary, but preempt has to
2219 * be disabled to update the per-cpu stats
2220 * inside page_remove_rmap().
2224 * paravirt calls inside pte_clear here are
2227 pte_clear(vma->vm_mm, address, _pte);
2228 page_remove_rmap(src_page);
2230 free_page_and_swap_cache(src_page);
2233 address += PAGE_SIZE;
2238 static void khugepaged_alloc_sleep(void)
2240 wait_event_freezable_timeout(khugepaged_wait, false,
2241 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2244 static int khugepaged_node_load[MAX_NUMNODES];
2246 static bool khugepaged_scan_abort(int nid)
2251 * If zone_reclaim_mode is disabled, then no extra effort is made to
2252 * allocate memory locally.
2254 if (!zone_reclaim_mode)
2257 /* If there is a count for this node already, it must be acceptable */
2258 if (khugepaged_node_load[nid])
2261 for (i = 0; i < MAX_NUMNODES; i++) {
2262 if (!khugepaged_node_load[i])
2264 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2271 static int khugepaged_find_target_node(void)
2273 static int last_khugepaged_target_node = NUMA_NO_NODE;
2274 int nid, target_node = 0, max_value = 0;
2276 /* find first node with max normal pages hit */
2277 for (nid = 0; nid < MAX_NUMNODES; nid++)
2278 if (khugepaged_node_load[nid] > max_value) {
2279 max_value = khugepaged_node_load[nid];
2283 /* do some balance if several nodes have the same hit record */
2284 if (target_node <= last_khugepaged_target_node)
2285 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2287 if (max_value == khugepaged_node_load[nid]) {
2292 last_khugepaged_target_node = target_node;
2296 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2298 if (IS_ERR(*hpage)) {
2304 khugepaged_alloc_sleep();
2305 } else if (*hpage) {
2314 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2315 struct vm_area_struct *vma, unsigned long address,
2318 VM_BUG_ON_PAGE(*hpage, *hpage);
2321 * Before allocating the hugepage, release the mmap_sem read lock.
2322 * The allocation can take potentially a long time if it involves
2323 * sync compaction, and we do not need to hold the mmap_sem during
2324 * that. We will recheck the vma after taking it again in write mode.
2326 up_read(&mm->mmap_sem);
2328 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2329 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2330 if (unlikely(!*hpage)) {
2331 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2332 *hpage = ERR_PTR(-ENOMEM);
2336 count_vm_event(THP_COLLAPSE_ALLOC);
2340 static int khugepaged_find_target_node(void)
2345 static inline struct page *alloc_hugepage(int defrag)
2347 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2351 static struct page *khugepaged_alloc_hugepage(bool *wait)
2356 hpage = alloc_hugepage(khugepaged_defrag());
2358 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2363 khugepaged_alloc_sleep();
2365 count_vm_event(THP_COLLAPSE_ALLOC);
2366 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2371 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2374 *hpage = khugepaged_alloc_hugepage(wait);
2376 if (unlikely(!*hpage))
2383 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2384 struct vm_area_struct *vma, unsigned long address,
2387 up_read(&mm->mmap_sem);
2393 static bool hugepage_vma_check(struct vm_area_struct *vma)
2395 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2396 (vma->vm_flags & VM_NOHUGEPAGE))
2399 if (!vma->anon_vma || vma->vm_ops)
2401 if (is_vma_temporary_stack(vma))
2403 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2407 static void collapse_huge_page(struct mm_struct *mm,
2408 unsigned long address,
2409 struct page **hpage,
2410 struct vm_area_struct *vma,
2416 struct page *new_page;
2417 spinlock_t *pmd_ptl, *pte_ptl;
2419 unsigned long hstart, hend;
2420 struct mem_cgroup *memcg;
2421 unsigned long mmun_start; /* For mmu_notifiers */
2422 unsigned long mmun_end; /* For mmu_notifiers */
2424 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2426 /* release the mmap_sem read lock. */
2427 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2431 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2432 GFP_TRANSHUGE, &memcg)))
2436 * Prevent all access to pagetables with the exception of
2437 * gup_fast later hanlded by the ptep_clear_flush and the VM
2438 * handled by the anon_vma lock + PG_lock.
2440 down_write(&mm->mmap_sem);
2441 if (unlikely(khugepaged_test_exit(mm)))
2444 vma = find_vma(mm, address);
2447 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2448 hend = vma->vm_end & HPAGE_PMD_MASK;
2449 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2451 if (!hugepage_vma_check(vma))
2453 pmd = mm_find_pmd(mm, address);
2457 anon_vma_lock_write(vma->anon_vma);
2459 pte = pte_offset_map(pmd, address);
2460 pte_ptl = pte_lockptr(mm, pmd);
2462 mmun_start = address;
2463 mmun_end = address + HPAGE_PMD_SIZE;
2464 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2465 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2467 * After this gup_fast can't run anymore. This also removes
2468 * any huge TLB entry from the CPU so we won't allow
2469 * huge and small TLB entries for the same virtual address
2470 * to avoid the risk of CPU bugs in that area.
2472 _pmd = pmdp_clear_flush(vma, address, pmd);
2473 spin_unlock(pmd_ptl);
2474 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2477 isolated = __collapse_huge_page_isolate(vma, address, pte);
2478 spin_unlock(pte_ptl);
2480 if (unlikely(!isolated)) {
2483 BUG_ON(!pmd_none(*pmd));
2485 * We can only use set_pmd_at when establishing
2486 * hugepmds and never for establishing regular pmds that
2487 * points to regular pagetables. Use pmd_populate for that
2489 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2490 spin_unlock(pmd_ptl);
2491 anon_vma_unlock_write(vma->anon_vma);
2496 * All pages are isolated and locked so anon_vma rmap
2497 * can't run anymore.
2499 anon_vma_unlock_write(vma->anon_vma);
2501 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2503 __SetPageUptodate(new_page);
2504 pgtable = pmd_pgtable(_pmd);
2506 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2507 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2510 * spin_lock() below is not the equivalent of smp_wmb(), so
2511 * this is needed to avoid the copy_huge_page writes to become
2512 * visible after the set_pmd_at() write.
2517 BUG_ON(!pmd_none(*pmd));
2518 page_add_new_anon_rmap(new_page, vma, address);
2519 mem_cgroup_commit_charge(new_page, memcg, false);
2520 lru_cache_add_active_or_unevictable(new_page, vma);
2521 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2522 set_pmd_at(mm, address, pmd, _pmd);
2523 update_mmu_cache_pmd(vma, address, pmd);
2524 spin_unlock(pmd_ptl);
2528 khugepaged_pages_collapsed++;
2530 up_write(&mm->mmap_sem);
2534 mem_cgroup_cancel_charge(new_page, memcg);
2538 static int khugepaged_scan_pmd(struct mm_struct *mm,
2539 struct vm_area_struct *vma,
2540 unsigned long address,
2541 struct page **hpage)
2545 int ret = 0, none = 0;
2547 unsigned long _address;
2549 int node = NUMA_NO_NODE;
2550 bool writable = false, referenced = false;
2552 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2554 pmd = mm_find_pmd(mm, address);
2558 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2559 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2560 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2561 _pte++, _address += PAGE_SIZE) {
2562 pte_t pteval = *_pte;
2563 if (pte_none(pteval)) {
2564 if (++none <= khugepaged_max_ptes_none)
2569 if (!pte_present(pteval))
2571 if (pte_write(pteval))
2574 page = vm_normal_page(vma, _address, pteval);
2575 if (unlikely(!page))
2578 * Record which node the original page is from and save this
2579 * information to khugepaged_node_load[].
2580 * Khupaged will allocate hugepage from the node has the max
2583 node = page_to_nid(page);
2584 if (khugepaged_scan_abort(node))
2586 khugepaged_node_load[node]++;
2587 VM_BUG_ON_PAGE(PageCompound(page), page);
2588 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2591 * cannot use mapcount: can't collapse if there's a gup pin.
2592 * The page must only be referenced by the scanned process
2593 * and page swap cache.
2595 if (page_count(page) != 1 + !!PageSwapCache(page))
2597 if (pte_young(pteval) || PageReferenced(page) ||
2598 mmu_notifier_test_young(vma->vm_mm, address))
2601 if (referenced && writable)
2604 pte_unmap_unlock(pte, ptl);
2606 node = khugepaged_find_target_node();
2607 /* collapse_huge_page will return with the mmap_sem released */
2608 collapse_huge_page(mm, address, hpage, vma, node);
2614 static void collect_mm_slot(struct mm_slot *mm_slot)
2616 struct mm_struct *mm = mm_slot->mm;
2618 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2620 if (khugepaged_test_exit(mm)) {
2622 hash_del(&mm_slot->hash);
2623 list_del(&mm_slot->mm_node);
2626 * Not strictly needed because the mm exited already.
2628 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631 /* khugepaged_mm_lock actually not necessary for the below */
2632 free_mm_slot(mm_slot);
2637 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2638 struct page **hpage)
2639 __releases(&khugepaged_mm_lock)
2640 __acquires(&khugepaged_mm_lock)
2642 struct mm_slot *mm_slot;
2643 struct mm_struct *mm;
2644 struct vm_area_struct *vma;
2648 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2650 if (khugepaged_scan.mm_slot)
2651 mm_slot = khugepaged_scan.mm_slot;
2653 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2654 struct mm_slot, mm_node);
2655 khugepaged_scan.address = 0;
2656 khugepaged_scan.mm_slot = mm_slot;
2658 spin_unlock(&khugepaged_mm_lock);
2661 down_read(&mm->mmap_sem);
2662 if (unlikely(khugepaged_test_exit(mm)))
2665 vma = find_vma(mm, khugepaged_scan.address);
2668 for (; vma; vma = vma->vm_next) {
2669 unsigned long hstart, hend;
2672 if (unlikely(khugepaged_test_exit(mm))) {
2676 if (!hugepage_vma_check(vma)) {
2681 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2682 hend = vma->vm_end & HPAGE_PMD_MASK;
2685 if (khugepaged_scan.address > hend)
2687 if (khugepaged_scan.address < hstart)
2688 khugepaged_scan.address = hstart;
2689 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2691 while (khugepaged_scan.address < hend) {
2694 if (unlikely(khugepaged_test_exit(mm)))
2695 goto breakouterloop;
2697 VM_BUG_ON(khugepaged_scan.address < hstart ||
2698 khugepaged_scan.address + HPAGE_PMD_SIZE >
2700 ret = khugepaged_scan_pmd(mm, vma,
2701 khugepaged_scan.address,
2703 /* move to next address */
2704 khugepaged_scan.address += HPAGE_PMD_SIZE;
2705 progress += HPAGE_PMD_NR;
2707 /* we released mmap_sem so break loop */
2708 goto breakouterloop_mmap_sem;
2709 if (progress >= pages)
2710 goto breakouterloop;
2714 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2715 breakouterloop_mmap_sem:
2717 spin_lock(&khugepaged_mm_lock);
2718 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2720 * Release the current mm_slot if this mm is about to die, or
2721 * if we scanned all vmas of this mm.
2723 if (khugepaged_test_exit(mm) || !vma) {
2725 * Make sure that if mm_users is reaching zero while
2726 * khugepaged runs here, khugepaged_exit will find
2727 * mm_slot not pointing to the exiting mm.
2729 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2730 khugepaged_scan.mm_slot = list_entry(
2731 mm_slot->mm_node.next,
2732 struct mm_slot, mm_node);
2733 khugepaged_scan.address = 0;
2735 khugepaged_scan.mm_slot = NULL;
2736 khugepaged_full_scans++;
2739 collect_mm_slot(mm_slot);
2745 static int khugepaged_has_work(void)
2747 return !list_empty(&khugepaged_scan.mm_head) &&
2748 khugepaged_enabled();
2751 static int khugepaged_wait_event(void)
2753 return !list_empty(&khugepaged_scan.mm_head) ||
2754 kthread_should_stop();
2757 static void khugepaged_do_scan(void)
2759 struct page *hpage = NULL;
2760 unsigned int progress = 0, pass_through_head = 0;
2761 unsigned int pages = khugepaged_pages_to_scan;
2764 barrier(); /* write khugepaged_pages_to_scan to local stack */
2766 while (progress < pages) {
2767 if (!khugepaged_prealloc_page(&hpage, &wait))
2772 if (unlikely(kthread_should_stop() || freezing(current)))
2775 spin_lock(&khugepaged_mm_lock);
2776 if (!khugepaged_scan.mm_slot)
2777 pass_through_head++;
2778 if (khugepaged_has_work() &&
2779 pass_through_head < 2)
2780 progress += khugepaged_scan_mm_slot(pages - progress,
2784 spin_unlock(&khugepaged_mm_lock);
2787 if (!IS_ERR_OR_NULL(hpage))
2791 static void khugepaged_wait_work(void)
2795 if (khugepaged_has_work()) {
2796 if (!khugepaged_scan_sleep_millisecs)
2799 wait_event_freezable_timeout(khugepaged_wait,
2800 kthread_should_stop(),
2801 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2805 if (khugepaged_enabled())
2806 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2809 static int khugepaged(void *none)
2811 struct mm_slot *mm_slot;
2814 set_user_nice(current, MAX_NICE);
2816 while (!kthread_should_stop()) {
2817 khugepaged_do_scan();
2818 khugepaged_wait_work();
2821 spin_lock(&khugepaged_mm_lock);
2822 mm_slot = khugepaged_scan.mm_slot;
2823 khugepaged_scan.mm_slot = NULL;
2825 collect_mm_slot(mm_slot);
2826 spin_unlock(&khugepaged_mm_lock);
2830 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2831 unsigned long haddr, pmd_t *pmd)
2833 struct mm_struct *mm = vma->vm_mm;
2838 pmdp_clear_flush_notify(vma, haddr, pmd);
2839 /* leave pmd empty until pte is filled */
2841 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2842 pmd_populate(mm, &_pmd, pgtable);
2844 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2846 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2847 entry = pte_mkspecial(entry);
2848 pte = pte_offset_map(&_pmd, haddr);
2849 VM_BUG_ON(!pte_none(*pte));
2850 set_pte_at(mm, haddr, pte, entry);
2853 smp_wmb(); /* make pte visible before pmd */
2854 pmd_populate(mm, pmd, pgtable);
2855 put_huge_zero_page();
2858 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2863 struct mm_struct *mm = vma->vm_mm;
2864 unsigned long haddr = address & HPAGE_PMD_MASK;
2865 unsigned long mmun_start; /* For mmu_notifiers */
2866 unsigned long mmun_end; /* For mmu_notifiers */
2868 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2871 mmun_end = haddr + HPAGE_PMD_SIZE;
2873 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2874 ptl = pmd_lock(mm, pmd);
2875 if (unlikely(!pmd_trans_huge(*pmd))) {
2877 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2880 if (is_huge_zero_pmd(*pmd)) {
2881 __split_huge_zero_page_pmd(vma, haddr, pmd);
2883 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2886 page = pmd_page(*pmd);
2887 VM_BUG_ON_PAGE(!page_count(page), page);
2890 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2892 split_huge_page(page);
2897 * We don't always have down_write of mmap_sem here: a racing
2898 * do_huge_pmd_wp_page() might have copied-on-write to another
2899 * huge page before our split_huge_page() got the anon_vma lock.
2901 if (unlikely(pmd_trans_huge(*pmd)))
2905 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2908 struct vm_area_struct *vma;
2910 vma = find_vma(mm, address);
2911 BUG_ON(vma == NULL);
2912 split_huge_page_pmd(vma, address, pmd);
2915 static void split_huge_page_address(struct mm_struct *mm,
2916 unsigned long address)
2922 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2924 pgd = pgd_offset(mm, address);
2925 if (!pgd_present(*pgd))
2928 pud = pud_offset(pgd, address);
2929 if (!pud_present(*pud))
2932 pmd = pmd_offset(pud, address);
2933 if (!pmd_present(*pmd))
2936 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2937 * materialize from under us.
2939 split_huge_page_pmd_mm(mm, address, pmd);
2942 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2943 unsigned long start,
2948 * If the new start address isn't hpage aligned and it could
2949 * previously contain an hugepage: check if we need to split
2952 if (start & ~HPAGE_PMD_MASK &&
2953 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2954 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2955 split_huge_page_address(vma->vm_mm, start);
2958 * If the new end address isn't hpage aligned and it could
2959 * previously contain an hugepage: check if we need to split
2962 if (end & ~HPAGE_PMD_MASK &&
2963 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2964 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2965 split_huge_page_address(vma->vm_mm, end);
2968 * If we're also updating the vma->vm_next->vm_start, if the new
2969 * vm_next->vm_start isn't page aligned and it could previously
2970 * contain an hugepage: check if we need to split an huge pmd.
2972 if (adjust_next > 0) {
2973 struct vm_area_struct *next = vma->vm_next;
2974 unsigned long nstart = next->vm_start;
2975 nstart += adjust_next << PAGE_SHIFT;
2976 if (nstart & ~HPAGE_PMD_MASK &&
2977 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2978 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2979 split_huge_page_address(next->vm_mm, nstart);