]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
thp: add tlb_remove_pmd_tlb_entry
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75         struct hlist_node hash;
76         struct list_head mm_node;
77         struct mm_struct *mm;
78 };
79
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89         struct list_head mm_head;
90         struct mm_slot *mm_slot;
91         unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96
97
98 static int set_recommended_min_free_kbytes(void)
99 {
100         struct zone *zone;
101         int nr_zones = 0;
102         unsigned long recommended_min;
103         extern int min_free_kbytes;
104
105         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106                       &transparent_hugepage_flags) &&
107             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108                       &transparent_hugepage_flags))
109                 return 0;
110
111         for_each_populated_zone(zone)
112                 nr_zones++;
113
114         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115         recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117         /*
118          * Make sure that on average at least two pageblocks are almost free
119          * of another type, one for a migratetype to fall back to and a
120          * second to avoid subsequent fallbacks of other types There are 3
121          * MIGRATE_TYPES we care about.
122          */
123         recommended_min += pageblock_nr_pages * nr_zones *
124                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126         /* don't ever allow to reserve more than 5% of the lowmem */
127         recommended_min = min(recommended_min,
128                               (unsigned long) nr_free_buffer_pages() / 20);
129         recommended_min <<= (PAGE_SHIFT-10);
130
131         if (recommended_min > min_free_kbytes)
132                 min_free_kbytes = recommended_min;
133         setup_per_zone_wmarks();
134         return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137
138 static int start_khugepaged(void)
139 {
140         int err = 0;
141         if (khugepaged_enabled()) {
142                 int wakeup;
143                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144                         err = -ENOMEM;
145                         goto out;
146                 }
147                 mutex_lock(&khugepaged_mutex);
148                 if (!khugepaged_thread)
149                         khugepaged_thread = kthread_run(khugepaged, NULL,
150                                                         "khugepaged");
151                 if (unlikely(IS_ERR(khugepaged_thread))) {
152                         printk(KERN_ERR
153                                "khugepaged: kthread_run(khugepaged) failed\n");
154                         err = PTR_ERR(khugepaged_thread);
155                         khugepaged_thread = NULL;
156                 }
157                 wakeup = !list_empty(&khugepaged_scan.mm_head);
158                 mutex_unlock(&khugepaged_mutex);
159                 if (wakeup)
160                         wake_up_interruptible(&khugepaged_wait);
161
162                 set_recommended_min_free_kbytes();
163         } else
164                 /* wakeup to exit */
165                 wake_up_interruptible(&khugepaged_wait);
166 out:
167         return err;
168 }
169
170 #ifdef CONFIG_SYSFS
171
172 static ssize_t double_flag_show(struct kobject *kobj,
173                                 struct kobj_attribute *attr, char *buf,
174                                 enum transparent_hugepage_flag enabled,
175                                 enum transparent_hugepage_flag req_madv)
176 {
177         if (test_bit(enabled, &transparent_hugepage_flags)) {
178                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179                 return sprintf(buf, "[always] madvise never\n");
180         } else if (test_bit(req_madv, &transparent_hugepage_flags))
181                 return sprintf(buf, "always [madvise] never\n");
182         else
183                 return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186                                  struct kobj_attribute *attr,
187                                  const char *buf, size_t count,
188                                  enum transparent_hugepage_flag enabled,
189                                  enum transparent_hugepage_flag req_madv)
190 {
191         if (!memcmp("always", buf,
192                     min(sizeof("always")-1, count))) {
193                 set_bit(enabled, &transparent_hugepage_flags);
194                 clear_bit(req_madv, &transparent_hugepage_flags);
195         } else if (!memcmp("madvise", buf,
196                            min(sizeof("madvise")-1, count))) {
197                 clear_bit(enabled, &transparent_hugepage_flags);
198                 set_bit(req_madv, &transparent_hugepage_flags);
199         } else if (!memcmp("never", buf,
200                            min(sizeof("never")-1, count))) {
201                 clear_bit(enabled, &transparent_hugepage_flags);
202                 clear_bit(req_madv, &transparent_hugepage_flags);
203         } else
204                 return -EINVAL;
205
206         return count;
207 }
208
209 static ssize_t enabled_show(struct kobject *kobj,
210                             struct kobj_attribute *attr, char *buf)
211 {
212         return double_flag_show(kobj, attr, buf,
213                                 TRANSPARENT_HUGEPAGE_FLAG,
214                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217                              struct kobj_attribute *attr,
218                              const char *buf, size_t count)
219 {
220         ssize_t ret;
221
222         ret = double_flag_store(kobj, attr, buf, count,
223                                 TRANSPARENT_HUGEPAGE_FLAG,
224                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226         if (ret > 0) {
227                 int err = start_khugepaged();
228                 if (err)
229                         ret = err;
230         }
231
232         if (ret > 0 &&
233             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234                       &transparent_hugepage_flags) ||
235              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236                       &transparent_hugepage_flags)))
237                 set_recommended_min_free_kbytes();
238
239         return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242         __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244 static ssize_t single_flag_show(struct kobject *kobj,
245                                 struct kobj_attribute *attr, char *buf,
246                                 enum transparent_hugepage_flag flag)
247 {
248         return sprintf(buf, "%d\n",
249                        !!test_bit(flag, &transparent_hugepage_flags));
250 }
251
252 static ssize_t single_flag_store(struct kobject *kobj,
253                                  struct kobj_attribute *attr,
254                                  const char *buf, size_t count,
255                                  enum transparent_hugepage_flag flag)
256 {
257         unsigned long value;
258         int ret;
259
260         ret = kstrtoul(buf, 10, &value);
261         if (ret < 0)
262                 return ret;
263         if (value > 1)
264                 return -EINVAL;
265
266         if (value)
267                 set_bit(flag, &transparent_hugepage_flags);
268         else
269                 clear_bit(flag, &transparent_hugepage_flags);
270
271         return count;
272 }
273
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280                            struct kobj_attribute *attr, char *buf)
281 {
282         return double_flag_show(kobj, attr, buf,
283                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287                             struct kobj_attribute *attr,
288                             const char *buf, size_t count)
289 {
290         return double_flag_store(kobj, attr, buf, count,
291                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295         __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299                                 struct kobj_attribute *attr, char *buf)
300 {
301         return single_flag_show(kobj, attr, buf,
302                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305                                struct kobj_attribute *attr,
306                                const char *buf, size_t count)
307 {
308         return single_flag_store(kobj, attr, buf, count,
309                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316         &enabled_attr.attr,
317         &defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319         &debug_cow_attr.attr,
320 #endif
321         NULL,
322 };
323
324 static struct attribute_group hugepage_attr_group = {
325         .attrs = hugepage_attr,
326 };
327
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329                                          struct kobj_attribute *attr,
330                                          char *buf)
331 {
332         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336                                           struct kobj_attribute *attr,
337                                           const char *buf, size_t count)
338 {
339         unsigned long msecs;
340         int err;
341
342         err = strict_strtoul(buf, 10, &msecs);
343         if (err || msecs > UINT_MAX)
344                 return -EINVAL;
345
346         khugepaged_scan_sleep_millisecs = msecs;
347         wake_up_interruptible(&khugepaged_wait);
348
349         return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353                scan_sleep_millisecs_store);
354
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356                                           struct kobj_attribute *attr,
357                                           char *buf)
358 {
359         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363                                            struct kobj_attribute *attr,
364                                            const char *buf, size_t count)
365 {
366         unsigned long msecs;
367         int err;
368
369         err = strict_strtoul(buf, 10, &msecs);
370         if (err || msecs > UINT_MAX)
371                 return -EINVAL;
372
373         khugepaged_alloc_sleep_millisecs = msecs;
374         wake_up_interruptible(&khugepaged_wait);
375
376         return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380                alloc_sleep_millisecs_store);
381
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383                                   struct kobj_attribute *attr,
384                                   char *buf)
385 {
386         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389                                    struct kobj_attribute *attr,
390                                    const char *buf, size_t count)
391 {
392         int err;
393         unsigned long pages;
394
395         err = strict_strtoul(buf, 10, &pages);
396         if (err || !pages || pages > UINT_MAX)
397                 return -EINVAL;
398
399         khugepaged_pages_to_scan = pages;
400
401         return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405                pages_to_scan_store);
406
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408                                     struct kobj_attribute *attr,
409                                     char *buf)
410 {
411         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414         __ATTR_RO(pages_collapsed);
415
416 static ssize_t full_scans_show(struct kobject *kobj,
417                                struct kobj_attribute *attr,
418                                char *buf)
419 {
420         return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423         __ATTR_RO(full_scans);
424
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426                                       struct kobj_attribute *attr, char *buf)
427 {
428         return single_flag_show(kobj, attr, buf,
429                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432                                        struct kobj_attribute *attr,
433                                        const char *buf, size_t count)
434 {
435         return single_flag_store(kobj, attr, buf, count,
436                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439         __ATTR(defrag, 0644, khugepaged_defrag_show,
440                khugepaged_defrag_store);
441
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451                                              struct kobj_attribute *attr,
452                                              char *buf)
453 {
454         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457                                               struct kobj_attribute *attr,
458                                               const char *buf, size_t count)
459 {
460         int err;
461         unsigned long max_ptes_none;
462
463         err = strict_strtoul(buf, 10, &max_ptes_none);
464         if (err || max_ptes_none > HPAGE_PMD_NR-1)
465                 return -EINVAL;
466
467         khugepaged_max_ptes_none = max_ptes_none;
468
469         return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473                khugepaged_max_ptes_none_store);
474
475 static struct attribute *khugepaged_attr[] = {
476         &khugepaged_defrag_attr.attr,
477         &khugepaged_max_ptes_none_attr.attr,
478         &pages_to_scan_attr.attr,
479         &pages_collapsed_attr.attr,
480         &full_scans_attr.attr,
481         &scan_sleep_millisecs_attr.attr,
482         &alloc_sleep_millisecs_attr.attr,
483         NULL,
484 };
485
486 static struct attribute_group khugepaged_attr_group = {
487         .attrs = khugepaged_attr,
488         .name = "khugepaged",
489 };
490
491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493         int err;
494
495         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496         if (unlikely(!*hugepage_kobj)) {
497                 printk(KERN_ERR "hugepage: failed kobject create\n");
498                 return -ENOMEM;
499         }
500
501         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502         if (err) {
503                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
504                 goto delete_obj;
505         }
506
507         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508         if (err) {
509                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
510                 goto remove_hp_group;
511         }
512
513         return 0;
514
515 remove_hp_group:
516         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518         kobject_put(*hugepage_kobj);
519         return err;
520 }
521
522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526         kobject_put(hugepage_kobj);
527 }
528 #else
529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531         return 0;
532 }
533
534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538
539 static int __init hugepage_init(void)
540 {
541         int err;
542         struct kobject *hugepage_kobj;
543
544         if (!has_transparent_hugepage()) {
545                 transparent_hugepage_flags = 0;
546                 return -EINVAL;
547         }
548
549         err = hugepage_init_sysfs(&hugepage_kobj);
550         if (err)
551                 return err;
552
553         err = khugepaged_slab_init();
554         if (err)
555                 goto out;
556
557         err = mm_slots_hash_init();
558         if (err) {
559                 khugepaged_slab_free();
560                 goto out;
561         }
562
563         /*
564          * By default disable transparent hugepages on smaller systems,
565          * where the extra memory used could hurt more than TLB overhead
566          * is likely to save.  The admin can still enable it through /sys.
567          */
568         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569                 transparent_hugepage_flags = 0;
570
571         start_khugepaged();
572
573         set_recommended_min_free_kbytes();
574
575         return 0;
576 out:
577         hugepage_exit_sysfs(hugepage_kobj);
578         return err;
579 }
580 module_init(hugepage_init)
581
582 static int __init setup_transparent_hugepage(char *str)
583 {
584         int ret = 0;
585         if (!str)
586                 goto out;
587         if (!strcmp(str, "always")) {
588                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589                         &transparent_hugepage_flags);
590                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591                           &transparent_hugepage_flags);
592                 ret = 1;
593         } else if (!strcmp(str, "madvise")) {
594                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595                           &transparent_hugepage_flags);
596                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597                         &transparent_hugepage_flags);
598                 ret = 1;
599         } else if (!strcmp(str, "never")) {
600                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601                           &transparent_hugepage_flags);
602                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603                           &transparent_hugepage_flags);
604                 ret = 1;
605         }
606 out:
607         if (!ret)
608                 printk(KERN_WARNING
609                        "transparent_hugepage= cannot parse, ignored\n");
610         return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613
614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615                                  struct mm_struct *mm)
616 {
617         assert_spin_locked(&mm->page_table_lock);
618
619         /* FIFO */
620         if (!mm->pmd_huge_pte)
621                 INIT_LIST_HEAD(&pgtable->lru);
622         else
623                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624         mm->pmd_huge_pte = pgtable;
625 }
626
627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629         if (likely(vma->vm_flags & VM_WRITE))
630                 pmd = pmd_mkwrite(pmd);
631         return pmd;
632 }
633
634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635                                         struct vm_area_struct *vma,
636                                         unsigned long haddr, pmd_t *pmd,
637                                         struct page *page)
638 {
639         int ret = 0;
640         pgtable_t pgtable;
641
642         VM_BUG_ON(!PageCompound(page));
643         pgtable = pte_alloc_one(mm, haddr);
644         if (unlikely(!pgtable)) {
645                 mem_cgroup_uncharge_page(page);
646                 put_page(page);
647                 return VM_FAULT_OOM;
648         }
649
650         clear_huge_page(page, haddr, HPAGE_PMD_NR);
651         __SetPageUptodate(page);
652
653         spin_lock(&mm->page_table_lock);
654         if (unlikely(!pmd_none(*pmd))) {
655                 spin_unlock(&mm->page_table_lock);
656                 mem_cgroup_uncharge_page(page);
657                 put_page(page);
658                 pte_free(mm, pgtable);
659         } else {
660                 pmd_t entry;
661                 entry = mk_pmd(page, vma->vm_page_prot);
662                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
663                 entry = pmd_mkhuge(entry);
664                 /*
665                  * The spinlocking to take the lru_lock inside
666                  * page_add_new_anon_rmap() acts as a full memory
667                  * barrier to be sure clear_huge_page writes become
668                  * visible after the set_pmd_at() write.
669                  */
670                 page_add_new_anon_rmap(page, vma, haddr);
671                 set_pmd_at(mm, haddr, pmd, entry);
672                 prepare_pmd_huge_pte(pgtable, mm);
673                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
674                 spin_unlock(&mm->page_table_lock);
675         }
676
677         return ret;
678 }
679
680 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
681 {
682         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
683 }
684
685 static inline struct page *alloc_hugepage_vma(int defrag,
686                                               struct vm_area_struct *vma,
687                                               unsigned long haddr, int nd,
688                                               gfp_t extra_gfp)
689 {
690         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
691                                HPAGE_PMD_ORDER, vma, haddr, nd);
692 }
693
694 #ifndef CONFIG_NUMA
695 static inline struct page *alloc_hugepage(int defrag)
696 {
697         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
698                            HPAGE_PMD_ORDER);
699 }
700 #endif
701
702 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
703                                unsigned long address, pmd_t *pmd,
704                                unsigned int flags)
705 {
706         struct page *page;
707         unsigned long haddr = address & HPAGE_PMD_MASK;
708         pte_t *pte;
709
710         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
711                 if (unlikely(anon_vma_prepare(vma)))
712                         return VM_FAULT_OOM;
713                 if (unlikely(khugepaged_enter(vma)))
714                         return VM_FAULT_OOM;
715                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
716                                           vma, haddr, numa_node_id(), 0);
717                 if (unlikely(!page)) {
718                         count_vm_event(THP_FAULT_FALLBACK);
719                         goto out;
720                 }
721                 count_vm_event(THP_FAULT_ALLOC);
722                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
723                         put_page(page);
724                         goto out;
725                 }
726
727                 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
728         }
729 out:
730         /*
731          * Use __pte_alloc instead of pte_alloc_map, because we can't
732          * run pte_offset_map on the pmd, if an huge pmd could
733          * materialize from under us from a different thread.
734          */
735         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
736                 return VM_FAULT_OOM;
737         /* if an huge pmd materialized from under us just retry later */
738         if (unlikely(pmd_trans_huge(*pmd)))
739                 return 0;
740         /*
741          * A regular pmd is established and it can't morph into a huge pmd
742          * from under us anymore at this point because we hold the mmap_sem
743          * read mode and khugepaged takes it in write mode. So now it's
744          * safe to run pte_offset_map().
745          */
746         pte = pte_offset_map(pmd, address);
747         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
748 }
749
750 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
751                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
752                   struct vm_area_struct *vma)
753 {
754         struct page *src_page;
755         pmd_t pmd;
756         pgtable_t pgtable;
757         int ret;
758
759         ret = -ENOMEM;
760         pgtable = pte_alloc_one(dst_mm, addr);
761         if (unlikely(!pgtable))
762                 goto out;
763
764         spin_lock(&dst_mm->page_table_lock);
765         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
766
767         ret = -EAGAIN;
768         pmd = *src_pmd;
769         if (unlikely(!pmd_trans_huge(pmd))) {
770                 pte_free(dst_mm, pgtable);
771                 goto out_unlock;
772         }
773         if (unlikely(pmd_trans_splitting(pmd))) {
774                 /* split huge page running from under us */
775                 spin_unlock(&src_mm->page_table_lock);
776                 spin_unlock(&dst_mm->page_table_lock);
777                 pte_free(dst_mm, pgtable);
778
779                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
780                 goto out;
781         }
782         src_page = pmd_page(pmd);
783         VM_BUG_ON(!PageHead(src_page));
784         get_page(src_page);
785         page_dup_rmap(src_page);
786         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
787
788         pmdp_set_wrprotect(src_mm, addr, src_pmd);
789         pmd = pmd_mkold(pmd_wrprotect(pmd));
790         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
791         prepare_pmd_huge_pte(pgtable, dst_mm);
792
793         ret = 0;
794 out_unlock:
795         spin_unlock(&src_mm->page_table_lock);
796         spin_unlock(&dst_mm->page_table_lock);
797 out:
798         return ret;
799 }
800
801 /* no "address" argument so destroys page coloring of some arch */
802 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
803 {
804         pgtable_t pgtable;
805
806         assert_spin_locked(&mm->page_table_lock);
807
808         /* FIFO */
809         pgtable = mm->pmd_huge_pte;
810         if (list_empty(&pgtable->lru))
811                 mm->pmd_huge_pte = NULL;
812         else {
813                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
814                                               struct page, lru);
815                 list_del(&pgtable->lru);
816         }
817         return pgtable;
818 }
819
820 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
821                                         struct vm_area_struct *vma,
822                                         unsigned long address,
823                                         pmd_t *pmd, pmd_t orig_pmd,
824                                         struct page *page,
825                                         unsigned long haddr)
826 {
827         pgtable_t pgtable;
828         pmd_t _pmd;
829         int ret = 0, i;
830         struct page **pages;
831
832         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
833                         GFP_KERNEL);
834         if (unlikely(!pages)) {
835                 ret |= VM_FAULT_OOM;
836                 goto out;
837         }
838
839         for (i = 0; i < HPAGE_PMD_NR; i++) {
840                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
841                                                __GFP_OTHER_NODE,
842                                                vma, address, page_to_nid(page));
843                 if (unlikely(!pages[i] ||
844                              mem_cgroup_newpage_charge(pages[i], mm,
845                                                        GFP_KERNEL))) {
846                         if (pages[i])
847                                 put_page(pages[i]);
848                         mem_cgroup_uncharge_start();
849                         while (--i >= 0) {
850                                 mem_cgroup_uncharge_page(pages[i]);
851                                 put_page(pages[i]);
852                         }
853                         mem_cgroup_uncharge_end();
854                         kfree(pages);
855                         ret |= VM_FAULT_OOM;
856                         goto out;
857                 }
858         }
859
860         for (i = 0; i < HPAGE_PMD_NR; i++) {
861                 copy_user_highpage(pages[i], page + i,
862                                    haddr + PAGE_SIZE * i, vma);
863                 __SetPageUptodate(pages[i]);
864                 cond_resched();
865         }
866
867         spin_lock(&mm->page_table_lock);
868         if (unlikely(!pmd_same(*pmd, orig_pmd)))
869                 goto out_free_pages;
870         VM_BUG_ON(!PageHead(page));
871
872         pmdp_clear_flush_notify(vma, haddr, pmd);
873         /* leave pmd empty until pte is filled */
874
875         pgtable = get_pmd_huge_pte(mm);
876         pmd_populate(mm, &_pmd, pgtable);
877
878         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
879                 pte_t *pte, entry;
880                 entry = mk_pte(pages[i], vma->vm_page_prot);
881                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
882                 page_add_new_anon_rmap(pages[i], vma, haddr);
883                 pte = pte_offset_map(&_pmd, haddr);
884                 VM_BUG_ON(!pte_none(*pte));
885                 set_pte_at(mm, haddr, pte, entry);
886                 pte_unmap(pte);
887         }
888         kfree(pages);
889
890         mm->nr_ptes++;
891         smp_wmb(); /* make pte visible before pmd */
892         pmd_populate(mm, pmd, pgtable);
893         page_remove_rmap(page);
894         spin_unlock(&mm->page_table_lock);
895
896         ret |= VM_FAULT_WRITE;
897         put_page(page);
898
899 out:
900         return ret;
901
902 out_free_pages:
903         spin_unlock(&mm->page_table_lock);
904         mem_cgroup_uncharge_start();
905         for (i = 0; i < HPAGE_PMD_NR; i++) {
906                 mem_cgroup_uncharge_page(pages[i]);
907                 put_page(pages[i]);
908         }
909         mem_cgroup_uncharge_end();
910         kfree(pages);
911         goto out;
912 }
913
914 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
915                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
916 {
917         int ret = 0;
918         struct page *page, *new_page;
919         unsigned long haddr;
920
921         VM_BUG_ON(!vma->anon_vma);
922         spin_lock(&mm->page_table_lock);
923         if (unlikely(!pmd_same(*pmd, orig_pmd)))
924                 goto out_unlock;
925
926         page = pmd_page(orig_pmd);
927         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
928         haddr = address & HPAGE_PMD_MASK;
929         if (page_mapcount(page) == 1) {
930                 pmd_t entry;
931                 entry = pmd_mkyoung(orig_pmd);
932                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
933                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
934                         update_mmu_cache(vma, address, entry);
935                 ret |= VM_FAULT_WRITE;
936                 goto out_unlock;
937         }
938         get_page(page);
939         spin_unlock(&mm->page_table_lock);
940
941         if (transparent_hugepage_enabled(vma) &&
942             !transparent_hugepage_debug_cow())
943                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
944                                               vma, haddr, numa_node_id(), 0);
945         else
946                 new_page = NULL;
947
948         if (unlikely(!new_page)) {
949                 count_vm_event(THP_FAULT_FALLBACK);
950                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
951                                                    pmd, orig_pmd, page, haddr);
952                 put_page(page);
953                 goto out;
954         }
955         count_vm_event(THP_FAULT_ALLOC);
956
957         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
958                 put_page(new_page);
959                 put_page(page);
960                 ret |= VM_FAULT_OOM;
961                 goto out;
962         }
963
964         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
965         __SetPageUptodate(new_page);
966
967         spin_lock(&mm->page_table_lock);
968         put_page(page);
969         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
970                 mem_cgroup_uncharge_page(new_page);
971                 put_page(new_page);
972         } else {
973                 pmd_t entry;
974                 VM_BUG_ON(!PageHead(page));
975                 entry = mk_pmd(new_page, vma->vm_page_prot);
976                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
977                 entry = pmd_mkhuge(entry);
978                 pmdp_clear_flush_notify(vma, haddr, pmd);
979                 page_add_new_anon_rmap(new_page, vma, haddr);
980                 set_pmd_at(mm, haddr, pmd, entry);
981                 update_mmu_cache(vma, address, entry);
982                 page_remove_rmap(page);
983                 put_page(page);
984                 ret |= VM_FAULT_WRITE;
985         }
986 out_unlock:
987         spin_unlock(&mm->page_table_lock);
988 out:
989         return ret;
990 }
991
992 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
993                                    unsigned long addr,
994                                    pmd_t *pmd,
995                                    unsigned int flags)
996 {
997         struct page *page = NULL;
998
999         assert_spin_locked(&mm->page_table_lock);
1000
1001         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1002                 goto out;
1003
1004         page = pmd_page(*pmd);
1005         VM_BUG_ON(!PageHead(page));
1006         if (flags & FOLL_TOUCH) {
1007                 pmd_t _pmd;
1008                 /*
1009                  * We should set the dirty bit only for FOLL_WRITE but
1010                  * for now the dirty bit in the pmd is meaningless.
1011                  * And if the dirty bit will become meaningful and
1012                  * we'll only set it with FOLL_WRITE, an atomic
1013                  * set_bit will be required on the pmd to set the
1014                  * young bit, instead of the current set_pmd_at.
1015                  */
1016                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1017                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1018         }
1019         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1020         VM_BUG_ON(!PageCompound(page));
1021         if (flags & FOLL_GET)
1022                 get_page_foll(page);
1023
1024 out:
1025         return page;
1026 }
1027
1028 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1029                  pmd_t *pmd, unsigned long addr)
1030 {
1031         int ret = 0;
1032
1033         spin_lock(&tlb->mm->page_table_lock);
1034         if (likely(pmd_trans_huge(*pmd))) {
1035                 if (unlikely(pmd_trans_splitting(*pmd))) {
1036                         spin_unlock(&tlb->mm->page_table_lock);
1037                         wait_split_huge_page(vma->anon_vma,
1038                                              pmd);
1039                 } else {
1040                         struct page *page;
1041                         pgtable_t pgtable;
1042                         pgtable = get_pmd_huge_pte(tlb->mm);
1043                         page = pmd_page(*pmd);
1044                         pmd_clear(pmd);
1045                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1046                         page_remove_rmap(page);
1047                         VM_BUG_ON(page_mapcount(page) < 0);
1048                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1049                         VM_BUG_ON(!PageHead(page));
1050                         spin_unlock(&tlb->mm->page_table_lock);
1051                         tlb_remove_page(tlb, page);
1052                         pte_free(tlb->mm, pgtable);
1053                         ret = 1;
1054                 }
1055         } else
1056                 spin_unlock(&tlb->mm->page_table_lock);
1057
1058         return ret;
1059 }
1060
1061 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062                 unsigned long addr, unsigned long end,
1063                 unsigned char *vec)
1064 {
1065         int ret = 0;
1066
1067         spin_lock(&vma->vm_mm->page_table_lock);
1068         if (likely(pmd_trans_huge(*pmd))) {
1069                 ret = !pmd_trans_splitting(*pmd);
1070                 spin_unlock(&vma->vm_mm->page_table_lock);
1071                 if (unlikely(!ret))
1072                         wait_split_huge_page(vma->anon_vma, pmd);
1073                 else {
1074                         /*
1075                          * All logical pages in the range are present
1076                          * if backed by a huge page.
1077                          */
1078                         memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1079                 }
1080         } else
1081                 spin_unlock(&vma->vm_mm->page_table_lock);
1082
1083         return ret;
1084 }
1085
1086 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1087                   unsigned long old_addr,
1088                   unsigned long new_addr, unsigned long old_end,
1089                   pmd_t *old_pmd, pmd_t *new_pmd)
1090 {
1091         int ret = 0;
1092         pmd_t pmd;
1093
1094         struct mm_struct *mm = vma->vm_mm;
1095
1096         if ((old_addr & ~HPAGE_PMD_MASK) ||
1097             (new_addr & ~HPAGE_PMD_MASK) ||
1098             old_end - old_addr < HPAGE_PMD_SIZE ||
1099             (new_vma->vm_flags & VM_NOHUGEPAGE))
1100                 goto out;
1101
1102         /*
1103          * The destination pmd shouldn't be established, free_pgtables()
1104          * should have release it.
1105          */
1106         if (WARN_ON(!pmd_none(*new_pmd))) {
1107                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1108                 goto out;
1109         }
1110
1111         spin_lock(&mm->page_table_lock);
1112         if (likely(pmd_trans_huge(*old_pmd))) {
1113                 if (pmd_trans_splitting(*old_pmd)) {
1114                         spin_unlock(&mm->page_table_lock);
1115                         wait_split_huge_page(vma->anon_vma, old_pmd);
1116                         ret = -1;
1117                 } else {
1118                         pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1119                         VM_BUG_ON(!pmd_none(*new_pmd));
1120                         set_pmd_at(mm, new_addr, new_pmd, pmd);
1121                         spin_unlock(&mm->page_table_lock);
1122                         ret = 1;
1123                 }
1124         } else {
1125                 spin_unlock(&mm->page_table_lock);
1126         }
1127 out:
1128         return ret;
1129 }
1130
1131 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1132                 unsigned long addr, pgprot_t newprot)
1133 {
1134         struct mm_struct *mm = vma->vm_mm;
1135         int ret = 0;
1136
1137         spin_lock(&mm->page_table_lock);
1138         if (likely(pmd_trans_huge(*pmd))) {
1139                 if (unlikely(pmd_trans_splitting(*pmd))) {
1140                         spin_unlock(&mm->page_table_lock);
1141                         wait_split_huge_page(vma->anon_vma, pmd);
1142                 } else {
1143                         pmd_t entry;
1144
1145                         entry = pmdp_get_and_clear(mm, addr, pmd);
1146                         entry = pmd_modify(entry, newprot);
1147                         set_pmd_at(mm, addr, pmd, entry);
1148                         spin_unlock(&vma->vm_mm->page_table_lock);
1149                         ret = 1;
1150                 }
1151         } else
1152                 spin_unlock(&vma->vm_mm->page_table_lock);
1153
1154         return ret;
1155 }
1156
1157 pmd_t *page_check_address_pmd(struct page *page,
1158                               struct mm_struct *mm,
1159                               unsigned long address,
1160                               enum page_check_address_pmd_flag flag)
1161 {
1162         pgd_t *pgd;
1163         pud_t *pud;
1164         pmd_t *pmd, *ret = NULL;
1165
1166         if (address & ~HPAGE_PMD_MASK)
1167                 goto out;
1168
1169         pgd = pgd_offset(mm, address);
1170         if (!pgd_present(*pgd))
1171                 goto out;
1172
1173         pud = pud_offset(pgd, address);
1174         if (!pud_present(*pud))
1175                 goto out;
1176
1177         pmd = pmd_offset(pud, address);
1178         if (pmd_none(*pmd))
1179                 goto out;
1180         if (pmd_page(*pmd) != page)
1181                 goto out;
1182         /*
1183          * split_vma() may create temporary aliased mappings. There is
1184          * no risk as long as all huge pmd are found and have their
1185          * splitting bit set before __split_huge_page_refcount
1186          * runs. Finding the same huge pmd more than once during the
1187          * same rmap walk is not a problem.
1188          */
1189         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1190             pmd_trans_splitting(*pmd))
1191                 goto out;
1192         if (pmd_trans_huge(*pmd)) {
1193                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1194                           !pmd_trans_splitting(*pmd));
1195                 ret = pmd;
1196         }
1197 out:
1198         return ret;
1199 }
1200
1201 static int __split_huge_page_splitting(struct page *page,
1202                                        struct vm_area_struct *vma,
1203                                        unsigned long address)
1204 {
1205         struct mm_struct *mm = vma->vm_mm;
1206         pmd_t *pmd;
1207         int ret = 0;
1208
1209         spin_lock(&mm->page_table_lock);
1210         pmd = page_check_address_pmd(page, mm, address,
1211                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1212         if (pmd) {
1213                 /*
1214                  * We can't temporarily set the pmd to null in order
1215                  * to split it, the pmd must remain marked huge at all
1216                  * times or the VM won't take the pmd_trans_huge paths
1217                  * and it won't wait on the anon_vma->root->mutex to
1218                  * serialize against split_huge_page*.
1219                  */
1220                 pmdp_splitting_flush_notify(vma, address, pmd);
1221                 ret = 1;
1222         }
1223         spin_unlock(&mm->page_table_lock);
1224
1225         return ret;
1226 }
1227
1228 static void __split_huge_page_refcount(struct page *page)
1229 {
1230         int i;
1231         unsigned long head_index = page->index;
1232         struct zone *zone = page_zone(page);
1233         int zonestat;
1234         int tail_count = 0;
1235
1236         /* prevent PageLRU to go away from under us, and freeze lru stats */
1237         spin_lock_irq(&zone->lru_lock);
1238         compound_lock(page);
1239         /* complete memcg works before add pages to LRU */
1240         mem_cgroup_split_huge_fixup(page);
1241
1242         for (i = 1; i < HPAGE_PMD_NR; i++) {
1243                 struct page *page_tail = page + i;
1244
1245                 /* tail_page->_mapcount cannot change */
1246                 BUG_ON(page_mapcount(page_tail) < 0);
1247                 tail_count += page_mapcount(page_tail);
1248                 /* check for overflow */
1249                 BUG_ON(tail_count < 0);
1250                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1251                 /*
1252                  * tail_page->_count is zero and not changing from
1253                  * under us. But get_page_unless_zero() may be running
1254                  * from under us on the tail_page. If we used
1255                  * atomic_set() below instead of atomic_add(), we
1256                  * would then run atomic_set() concurrently with
1257                  * get_page_unless_zero(), and atomic_set() is
1258                  * implemented in C not using locked ops. spin_unlock
1259                  * on x86 sometime uses locked ops because of PPro
1260                  * errata 66, 92, so unless somebody can guarantee
1261                  * atomic_set() here would be safe on all archs (and
1262                  * not only on x86), it's safer to use atomic_add().
1263                  */
1264                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1265                            &page_tail->_count);
1266
1267                 /* after clearing PageTail the gup refcount can be released */
1268                 smp_mb();
1269
1270                 /*
1271                  * retain hwpoison flag of the poisoned tail page:
1272                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1273                  *   by the memory-failure.
1274                  */
1275                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1276                 page_tail->flags |= (page->flags &
1277                                      ((1L << PG_referenced) |
1278                                       (1L << PG_swapbacked) |
1279                                       (1L << PG_mlocked) |
1280                                       (1L << PG_uptodate)));
1281                 page_tail->flags |= (1L << PG_dirty);
1282
1283                 /* clear PageTail before overwriting first_page */
1284                 smp_wmb();
1285
1286                 /*
1287                  * __split_huge_page_splitting() already set the
1288                  * splitting bit in all pmd that could map this
1289                  * hugepage, that will ensure no CPU can alter the
1290                  * mapcount on the head page. The mapcount is only
1291                  * accounted in the head page and it has to be
1292                  * transferred to all tail pages in the below code. So
1293                  * for this code to be safe, the split the mapcount
1294                  * can't change. But that doesn't mean userland can't
1295                  * keep changing and reading the page contents while
1296                  * we transfer the mapcount, so the pmd splitting
1297                  * status is achieved setting a reserved bit in the
1298                  * pmd, not by clearing the present bit.
1299                 */
1300                 page_tail->_mapcount = page->_mapcount;
1301
1302                 BUG_ON(page_tail->mapping);
1303                 page_tail->mapping = page->mapping;
1304
1305                 page_tail->index = ++head_index;
1306
1307                 BUG_ON(!PageAnon(page_tail));
1308                 BUG_ON(!PageUptodate(page_tail));
1309                 BUG_ON(!PageDirty(page_tail));
1310                 BUG_ON(!PageSwapBacked(page_tail));
1311
1312
1313                 lru_add_page_tail(zone, page, page_tail);
1314         }
1315         atomic_sub(tail_count, &page->_count);
1316         BUG_ON(atomic_read(&page->_count) <= 0);
1317
1318         __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1319         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1320
1321         /*
1322          * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1323          * so adjust those appropriately if this page is on the LRU.
1324          */
1325         if (PageLRU(page)) {
1326                 zonestat = NR_LRU_BASE + page_lru(page);
1327                 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1328         }
1329
1330         ClearPageCompound(page);
1331         compound_unlock(page);
1332         spin_unlock_irq(&zone->lru_lock);
1333
1334         for (i = 1; i < HPAGE_PMD_NR; i++) {
1335                 struct page *page_tail = page + i;
1336                 BUG_ON(page_count(page_tail) <= 0);
1337                 /*
1338                  * Tail pages may be freed if there wasn't any mapping
1339                  * like if add_to_swap() is running on a lru page that
1340                  * had its mapping zapped. And freeing these pages
1341                  * requires taking the lru_lock so we do the put_page
1342                  * of the tail pages after the split is complete.
1343                  */
1344                 put_page(page_tail);
1345         }
1346
1347         /*
1348          * Only the head page (now become a regular page) is required
1349          * to be pinned by the caller.
1350          */
1351         BUG_ON(page_count(page) <= 0);
1352 }
1353
1354 static int __split_huge_page_map(struct page *page,
1355                                  struct vm_area_struct *vma,
1356                                  unsigned long address)
1357 {
1358         struct mm_struct *mm = vma->vm_mm;
1359         pmd_t *pmd, _pmd;
1360         int ret = 0, i;
1361         pgtable_t pgtable;
1362         unsigned long haddr;
1363
1364         spin_lock(&mm->page_table_lock);
1365         pmd = page_check_address_pmd(page, mm, address,
1366                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1367         if (pmd) {
1368                 pgtable = get_pmd_huge_pte(mm);
1369                 pmd_populate(mm, &_pmd, pgtable);
1370
1371                 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1372                      i++, haddr += PAGE_SIZE) {
1373                         pte_t *pte, entry;
1374                         BUG_ON(PageCompound(page+i));
1375                         entry = mk_pte(page + i, vma->vm_page_prot);
1376                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1377                         if (!pmd_write(*pmd))
1378                                 entry = pte_wrprotect(entry);
1379                         else
1380                                 BUG_ON(page_mapcount(page) != 1);
1381                         if (!pmd_young(*pmd))
1382                                 entry = pte_mkold(entry);
1383                         pte = pte_offset_map(&_pmd, haddr);
1384                         BUG_ON(!pte_none(*pte));
1385                         set_pte_at(mm, haddr, pte, entry);
1386                         pte_unmap(pte);
1387                 }
1388
1389                 mm->nr_ptes++;
1390                 smp_wmb(); /* make pte visible before pmd */
1391                 /*
1392                  * Up to this point the pmd is present and huge and
1393                  * userland has the whole access to the hugepage
1394                  * during the split (which happens in place). If we
1395                  * overwrite the pmd with the not-huge version
1396                  * pointing to the pte here (which of course we could
1397                  * if all CPUs were bug free), userland could trigger
1398                  * a small page size TLB miss on the small sized TLB
1399                  * while the hugepage TLB entry is still established
1400                  * in the huge TLB. Some CPU doesn't like that. See
1401                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1402                  * Erratum 383 on page 93. Intel should be safe but is
1403                  * also warns that it's only safe if the permission
1404                  * and cache attributes of the two entries loaded in
1405                  * the two TLB is identical (which should be the case
1406                  * here). But it is generally safer to never allow
1407                  * small and huge TLB entries for the same virtual
1408                  * address to be loaded simultaneously. So instead of
1409                  * doing "pmd_populate(); flush_tlb_range();" we first
1410                  * mark the current pmd notpresent (atomically because
1411                  * here the pmd_trans_huge and pmd_trans_splitting
1412                  * must remain set at all times on the pmd until the
1413                  * split is complete for this pmd), then we flush the
1414                  * SMP TLB and finally we write the non-huge version
1415                  * of the pmd entry with pmd_populate.
1416                  */
1417                 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1418                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1419                 pmd_populate(mm, pmd, pgtable);
1420                 ret = 1;
1421         }
1422         spin_unlock(&mm->page_table_lock);
1423
1424         return ret;
1425 }
1426
1427 /* must be called with anon_vma->root->mutex hold */
1428 static void __split_huge_page(struct page *page,
1429                               struct anon_vma *anon_vma)
1430 {
1431         int mapcount, mapcount2;
1432         struct anon_vma_chain *avc;
1433
1434         BUG_ON(!PageHead(page));
1435         BUG_ON(PageTail(page));
1436
1437         mapcount = 0;
1438         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1439                 struct vm_area_struct *vma = avc->vma;
1440                 unsigned long addr = vma_address(page, vma);
1441                 BUG_ON(is_vma_temporary_stack(vma));
1442                 if (addr == -EFAULT)
1443                         continue;
1444                 mapcount += __split_huge_page_splitting(page, vma, addr);
1445         }
1446         /*
1447          * It is critical that new vmas are added to the tail of the
1448          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1449          * and establishes a child pmd before
1450          * __split_huge_page_splitting() freezes the parent pmd (so if
1451          * we fail to prevent copy_huge_pmd() from running until the
1452          * whole __split_huge_page() is complete), we will still see
1453          * the newly established pmd of the child later during the
1454          * walk, to be able to set it as pmd_trans_splitting too.
1455          */
1456         if (mapcount != page_mapcount(page))
1457                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1458                        mapcount, page_mapcount(page));
1459         BUG_ON(mapcount != page_mapcount(page));
1460
1461         __split_huge_page_refcount(page);
1462
1463         mapcount2 = 0;
1464         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1465                 struct vm_area_struct *vma = avc->vma;
1466                 unsigned long addr = vma_address(page, vma);
1467                 BUG_ON(is_vma_temporary_stack(vma));
1468                 if (addr == -EFAULT)
1469                         continue;
1470                 mapcount2 += __split_huge_page_map(page, vma, addr);
1471         }
1472         if (mapcount != mapcount2)
1473                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1474                        mapcount, mapcount2, page_mapcount(page));
1475         BUG_ON(mapcount != mapcount2);
1476 }
1477
1478 int split_huge_page(struct page *page)
1479 {
1480         struct anon_vma *anon_vma;
1481         int ret = 1;
1482
1483         BUG_ON(!PageAnon(page));
1484         anon_vma = page_lock_anon_vma(page);
1485         if (!anon_vma)
1486                 goto out;
1487         ret = 0;
1488         if (!PageCompound(page))
1489                 goto out_unlock;
1490
1491         BUG_ON(!PageSwapBacked(page));
1492         __split_huge_page(page, anon_vma);
1493         count_vm_event(THP_SPLIT);
1494
1495         BUG_ON(PageCompound(page));
1496 out_unlock:
1497         page_unlock_anon_vma(anon_vma);
1498 out:
1499         return ret;
1500 }
1501
1502 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1503                    VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1504
1505 int hugepage_madvise(struct vm_area_struct *vma,
1506                      unsigned long *vm_flags, int advice)
1507 {
1508         switch (advice) {
1509         case MADV_HUGEPAGE:
1510                 /*
1511                  * Be somewhat over-protective like KSM for now!
1512                  */
1513                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1514                         return -EINVAL;
1515                 *vm_flags &= ~VM_NOHUGEPAGE;
1516                 *vm_flags |= VM_HUGEPAGE;
1517                 /*
1518                  * If the vma become good for khugepaged to scan,
1519                  * register it here without waiting a page fault that
1520                  * may not happen any time soon.
1521                  */
1522                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1523                         return -ENOMEM;
1524                 break;
1525         case MADV_NOHUGEPAGE:
1526                 /*
1527                  * Be somewhat over-protective like KSM for now!
1528                  */
1529                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1530                         return -EINVAL;
1531                 *vm_flags &= ~VM_HUGEPAGE;
1532                 *vm_flags |= VM_NOHUGEPAGE;
1533                 /*
1534                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1535                  * this vma even if we leave the mm registered in khugepaged if
1536                  * it got registered before VM_NOHUGEPAGE was set.
1537                  */
1538                 break;
1539         }
1540
1541         return 0;
1542 }
1543
1544 static int __init khugepaged_slab_init(void)
1545 {
1546         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1547                                           sizeof(struct mm_slot),
1548                                           __alignof__(struct mm_slot), 0, NULL);
1549         if (!mm_slot_cache)
1550                 return -ENOMEM;
1551
1552         return 0;
1553 }
1554
1555 static void __init khugepaged_slab_free(void)
1556 {
1557         kmem_cache_destroy(mm_slot_cache);
1558         mm_slot_cache = NULL;
1559 }
1560
1561 static inline struct mm_slot *alloc_mm_slot(void)
1562 {
1563         if (!mm_slot_cache)     /* initialization failed */
1564                 return NULL;
1565         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1566 }
1567
1568 static inline void free_mm_slot(struct mm_slot *mm_slot)
1569 {
1570         kmem_cache_free(mm_slot_cache, mm_slot);
1571 }
1572
1573 static int __init mm_slots_hash_init(void)
1574 {
1575         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1576                                 GFP_KERNEL);
1577         if (!mm_slots_hash)
1578                 return -ENOMEM;
1579         return 0;
1580 }
1581
1582 #if 0
1583 static void __init mm_slots_hash_free(void)
1584 {
1585         kfree(mm_slots_hash);
1586         mm_slots_hash = NULL;
1587 }
1588 #endif
1589
1590 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1591 {
1592         struct mm_slot *mm_slot;
1593         struct hlist_head *bucket;
1594         struct hlist_node *node;
1595
1596         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1597                                 % MM_SLOTS_HASH_HEADS];
1598         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1599                 if (mm == mm_slot->mm)
1600                         return mm_slot;
1601         }
1602         return NULL;
1603 }
1604
1605 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1606                                     struct mm_slot *mm_slot)
1607 {
1608         struct hlist_head *bucket;
1609
1610         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1611                                 % MM_SLOTS_HASH_HEADS];
1612         mm_slot->mm = mm;
1613         hlist_add_head(&mm_slot->hash, bucket);
1614 }
1615
1616 static inline int khugepaged_test_exit(struct mm_struct *mm)
1617 {
1618         return atomic_read(&mm->mm_users) == 0;
1619 }
1620
1621 int __khugepaged_enter(struct mm_struct *mm)
1622 {
1623         struct mm_slot *mm_slot;
1624         int wakeup;
1625
1626         mm_slot = alloc_mm_slot();
1627         if (!mm_slot)
1628                 return -ENOMEM;
1629
1630         /* __khugepaged_exit() must not run from under us */
1631         VM_BUG_ON(khugepaged_test_exit(mm));
1632         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1633                 free_mm_slot(mm_slot);
1634                 return 0;
1635         }
1636
1637         spin_lock(&khugepaged_mm_lock);
1638         insert_to_mm_slots_hash(mm, mm_slot);
1639         /*
1640          * Insert just behind the scanning cursor, to let the area settle
1641          * down a little.
1642          */
1643         wakeup = list_empty(&khugepaged_scan.mm_head);
1644         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1645         spin_unlock(&khugepaged_mm_lock);
1646
1647         atomic_inc(&mm->mm_count);
1648         if (wakeup)
1649                 wake_up_interruptible(&khugepaged_wait);
1650
1651         return 0;
1652 }
1653
1654 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1655 {
1656         unsigned long hstart, hend;
1657         if (!vma->anon_vma)
1658                 /*
1659                  * Not yet faulted in so we will register later in the
1660                  * page fault if needed.
1661                  */
1662                 return 0;
1663         if (vma->vm_ops)
1664                 /* khugepaged not yet working on file or special mappings */
1665                 return 0;
1666         /*
1667          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1668          * true too, verify it here.
1669          */
1670         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1671         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1672         hend = vma->vm_end & HPAGE_PMD_MASK;
1673         if (hstart < hend)
1674                 return khugepaged_enter(vma);
1675         return 0;
1676 }
1677
1678 void __khugepaged_exit(struct mm_struct *mm)
1679 {
1680         struct mm_slot *mm_slot;
1681         int free = 0;
1682
1683         spin_lock(&khugepaged_mm_lock);
1684         mm_slot = get_mm_slot(mm);
1685         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1686                 hlist_del(&mm_slot->hash);
1687                 list_del(&mm_slot->mm_node);
1688                 free = 1;
1689         }
1690         spin_unlock(&khugepaged_mm_lock);
1691
1692         if (free) {
1693                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1694                 free_mm_slot(mm_slot);
1695                 mmdrop(mm);
1696         } else if (mm_slot) {
1697                 /*
1698                  * This is required to serialize against
1699                  * khugepaged_test_exit() (which is guaranteed to run
1700                  * under mmap sem read mode). Stop here (after we
1701                  * return all pagetables will be destroyed) until
1702                  * khugepaged has finished working on the pagetables
1703                  * under the mmap_sem.
1704                  */
1705                 down_write(&mm->mmap_sem);
1706                 up_write(&mm->mmap_sem);
1707         }
1708 }
1709
1710 static void release_pte_page(struct page *page)
1711 {
1712         /* 0 stands for page_is_file_cache(page) == false */
1713         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1714         unlock_page(page);
1715         putback_lru_page(page);
1716 }
1717
1718 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1719 {
1720         while (--_pte >= pte) {
1721                 pte_t pteval = *_pte;
1722                 if (!pte_none(pteval))
1723                         release_pte_page(pte_page(pteval));
1724         }
1725 }
1726
1727 static void release_all_pte_pages(pte_t *pte)
1728 {
1729         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1730 }
1731
1732 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1733                                         unsigned long address,
1734                                         pte_t *pte)
1735 {
1736         struct page *page;
1737         pte_t *_pte;
1738         int referenced = 0, isolated = 0, none = 0;
1739         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1740              _pte++, address += PAGE_SIZE) {
1741                 pte_t pteval = *_pte;
1742                 if (pte_none(pteval)) {
1743                         if (++none <= khugepaged_max_ptes_none)
1744                                 continue;
1745                         else {
1746                                 release_pte_pages(pte, _pte);
1747                                 goto out;
1748                         }
1749                 }
1750                 if (!pte_present(pteval) || !pte_write(pteval)) {
1751                         release_pte_pages(pte, _pte);
1752                         goto out;
1753                 }
1754                 page = vm_normal_page(vma, address, pteval);
1755                 if (unlikely(!page)) {
1756                         release_pte_pages(pte, _pte);
1757                         goto out;
1758                 }
1759                 VM_BUG_ON(PageCompound(page));
1760                 BUG_ON(!PageAnon(page));
1761                 VM_BUG_ON(!PageSwapBacked(page));
1762
1763                 /* cannot use mapcount: can't collapse if there's a gup pin */
1764                 if (page_count(page) != 1) {
1765                         release_pte_pages(pte, _pte);
1766                         goto out;
1767                 }
1768                 /*
1769                  * We can do it before isolate_lru_page because the
1770                  * page can't be freed from under us. NOTE: PG_lock
1771                  * is needed to serialize against split_huge_page
1772                  * when invoked from the VM.
1773                  */
1774                 if (!trylock_page(page)) {
1775                         release_pte_pages(pte, _pte);
1776                         goto out;
1777                 }
1778                 /*
1779                  * Isolate the page to avoid collapsing an hugepage
1780                  * currently in use by the VM.
1781                  */
1782                 if (isolate_lru_page(page)) {
1783                         unlock_page(page);
1784                         release_pte_pages(pte, _pte);
1785                         goto out;
1786                 }
1787                 /* 0 stands for page_is_file_cache(page) == false */
1788                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1789                 VM_BUG_ON(!PageLocked(page));
1790                 VM_BUG_ON(PageLRU(page));
1791
1792                 /* If there is no mapped pte young don't collapse the page */
1793                 if (pte_young(pteval) || PageReferenced(page) ||
1794                     mmu_notifier_test_young(vma->vm_mm, address))
1795                         referenced = 1;
1796         }
1797         if (unlikely(!referenced))
1798                 release_all_pte_pages(pte);
1799         else
1800                 isolated = 1;
1801 out:
1802         return isolated;
1803 }
1804
1805 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1806                                       struct vm_area_struct *vma,
1807                                       unsigned long address,
1808                                       spinlock_t *ptl)
1809 {
1810         pte_t *_pte;
1811         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1812                 pte_t pteval = *_pte;
1813                 struct page *src_page;
1814
1815                 if (pte_none(pteval)) {
1816                         clear_user_highpage(page, address);
1817                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1818                 } else {
1819                         src_page = pte_page(pteval);
1820                         copy_user_highpage(page, src_page, address, vma);
1821                         VM_BUG_ON(page_mapcount(src_page) != 1);
1822                         VM_BUG_ON(page_count(src_page) != 2);
1823                         release_pte_page(src_page);
1824                         /*
1825                          * ptl mostly unnecessary, but preempt has to
1826                          * be disabled to update the per-cpu stats
1827                          * inside page_remove_rmap().
1828                          */
1829                         spin_lock(ptl);
1830                         /*
1831                          * paravirt calls inside pte_clear here are
1832                          * superfluous.
1833                          */
1834                         pte_clear(vma->vm_mm, address, _pte);
1835                         page_remove_rmap(src_page);
1836                         spin_unlock(ptl);
1837                         free_page_and_swap_cache(src_page);
1838                 }
1839
1840                 address += PAGE_SIZE;
1841                 page++;
1842         }
1843 }
1844
1845 static void collapse_huge_page(struct mm_struct *mm,
1846                                unsigned long address,
1847                                struct page **hpage,
1848                                struct vm_area_struct *vma,
1849                                int node)
1850 {
1851         pgd_t *pgd;
1852         pud_t *pud;
1853         pmd_t *pmd, _pmd;
1854         pte_t *pte;
1855         pgtable_t pgtable;
1856         struct page *new_page;
1857         spinlock_t *ptl;
1858         int isolated;
1859         unsigned long hstart, hend;
1860
1861         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1862 #ifndef CONFIG_NUMA
1863         up_read(&mm->mmap_sem);
1864         VM_BUG_ON(!*hpage);
1865         new_page = *hpage;
1866 #else
1867         VM_BUG_ON(*hpage);
1868         /*
1869          * Allocate the page while the vma is still valid and under
1870          * the mmap_sem read mode so there is no memory allocation
1871          * later when we take the mmap_sem in write mode. This is more
1872          * friendly behavior (OTOH it may actually hide bugs) to
1873          * filesystems in userland with daemons allocating memory in
1874          * the userland I/O paths.  Allocating memory with the
1875          * mmap_sem in read mode is good idea also to allow greater
1876          * scalability.
1877          */
1878         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1879                                       node, __GFP_OTHER_NODE);
1880
1881         /*
1882          * After allocating the hugepage, release the mmap_sem read lock in
1883          * preparation for taking it in write mode.
1884          */
1885         up_read(&mm->mmap_sem);
1886         if (unlikely(!new_page)) {
1887                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1888                 *hpage = ERR_PTR(-ENOMEM);
1889                 return;
1890         }
1891 #endif
1892
1893         count_vm_event(THP_COLLAPSE_ALLOC);
1894         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1895 #ifdef CONFIG_NUMA
1896                 put_page(new_page);
1897 #endif
1898                 return;
1899         }
1900
1901         /*
1902          * Prevent all access to pagetables with the exception of
1903          * gup_fast later hanlded by the ptep_clear_flush and the VM
1904          * handled by the anon_vma lock + PG_lock.
1905          */
1906         down_write(&mm->mmap_sem);
1907         if (unlikely(khugepaged_test_exit(mm)))
1908                 goto out;
1909
1910         vma = find_vma(mm, address);
1911         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1912         hend = vma->vm_end & HPAGE_PMD_MASK;
1913         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1914                 goto out;
1915
1916         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1917             (vma->vm_flags & VM_NOHUGEPAGE))
1918                 goto out;
1919
1920         if (!vma->anon_vma || vma->vm_ops)
1921                 goto out;
1922         if (is_vma_temporary_stack(vma))
1923                 goto out;
1924         /*
1925          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1926          * true too, verify it here.
1927          */
1928         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1929
1930         pgd = pgd_offset(mm, address);
1931         if (!pgd_present(*pgd))
1932                 goto out;
1933
1934         pud = pud_offset(pgd, address);
1935         if (!pud_present(*pud))
1936                 goto out;
1937
1938         pmd = pmd_offset(pud, address);
1939         /* pmd can't go away or become huge under us */
1940         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1941                 goto out;
1942
1943         anon_vma_lock(vma->anon_vma);
1944
1945         pte = pte_offset_map(pmd, address);
1946         ptl = pte_lockptr(mm, pmd);
1947
1948         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1949         /*
1950          * After this gup_fast can't run anymore. This also removes
1951          * any huge TLB entry from the CPU so we won't allow
1952          * huge and small TLB entries for the same virtual address
1953          * to avoid the risk of CPU bugs in that area.
1954          */
1955         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1956         spin_unlock(&mm->page_table_lock);
1957
1958         spin_lock(ptl);
1959         isolated = __collapse_huge_page_isolate(vma, address, pte);
1960         spin_unlock(ptl);
1961
1962         if (unlikely(!isolated)) {
1963                 pte_unmap(pte);
1964                 spin_lock(&mm->page_table_lock);
1965                 BUG_ON(!pmd_none(*pmd));
1966                 set_pmd_at(mm, address, pmd, _pmd);
1967                 spin_unlock(&mm->page_table_lock);
1968                 anon_vma_unlock(vma->anon_vma);
1969                 goto out;
1970         }
1971
1972         /*
1973          * All pages are isolated and locked so anon_vma rmap
1974          * can't run anymore.
1975          */
1976         anon_vma_unlock(vma->anon_vma);
1977
1978         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1979         pte_unmap(pte);
1980         __SetPageUptodate(new_page);
1981         pgtable = pmd_pgtable(_pmd);
1982         VM_BUG_ON(page_count(pgtable) != 1);
1983         VM_BUG_ON(page_mapcount(pgtable) != 0);
1984
1985         _pmd = mk_pmd(new_page, vma->vm_page_prot);
1986         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1987         _pmd = pmd_mkhuge(_pmd);
1988
1989         /*
1990          * spin_lock() below is not the equivalent of smp_wmb(), so
1991          * this is needed to avoid the copy_huge_page writes to become
1992          * visible after the set_pmd_at() write.
1993          */
1994         smp_wmb();
1995
1996         spin_lock(&mm->page_table_lock);
1997         BUG_ON(!pmd_none(*pmd));
1998         page_add_new_anon_rmap(new_page, vma, address);
1999         set_pmd_at(mm, address, pmd, _pmd);
2000         update_mmu_cache(vma, address, _pmd);
2001         prepare_pmd_huge_pte(pgtable, mm);
2002         mm->nr_ptes--;
2003         spin_unlock(&mm->page_table_lock);
2004
2005 #ifndef CONFIG_NUMA
2006         *hpage = NULL;
2007 #endif
2008         khugepaged_pages_collapsed++;
2009 out_up_write:
2010         up_write(&mm->mmap_sem);
2011         return;
2012
2013 out:
2014         mem_cgroup_uncharge_page(new_page);
2015 #ifdef CONFIG_NUMA
2016         put_page(new_page);
2017 #endif
2018         goto out_up_write;
2019 }
2020
2021 static int khugepaged_scan_pmd(struct mm_struct *mm,
2022                                struct vm_area_struct *vma,
2023                                unsigned long address,
2024                                struct page **hpage)
2025 {
2026         pgd_t *pgd;
2027         pud_t *pud;
2028         pmd_t *pmd;
2029         pte_t *pte, *_pte;
2030         int ret = 0, referenced = 0, none = 0;
2031         struct page *page;
2032         unsigned long _address;
2033         spinlock_t *ptl;
2034         int node = -1;
2035
2036         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2037
2038         pgd = pgd_offset(mm, address);
2039         if (!pgd_present(*pgd))
2040                 goto out;
2041
2042         pud = pud_offset(pgd, address);
2043         if (!pud_present(*pud))
2044                 goto out;
2045
2046         pmd = pmd_offset(pud, address);
2047         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2048                 goto out;
2049
2050         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2051         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2052              _pte++, _address += PAGE_SIZE) {
2053                 pte_t pteval = *_pte;
2054                 if (pte_none(pteval)) {
2055                         if (++none <= khugepaged_max_ptes_none)
2056                                 continue;
2057                         else
2058                                 goto out_unmap;
2059                 }
2060                 if (!pte_present(pteval) || !pte_write(pteval))
2061                         goto out_unmap;
2062                 page = vm_normal_page(vma, _address, pteval);
2063                 if (unlikely(!page))
2064                         goto out_unmap;
2065                 /*
2066                  * Chose the node of the first page. This could
2067                  * be more sophisticated and look at more pages,
2068                  * but isn't for now.
2069                  */
2070                 if (node == -1)
2071                         node = page_to_nid(page);
2072                 VM_BUG_ON(PageCompound(page));
2073                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2074                         goto out_unmap;
2075                 /* cannot use mapcount: can't collapse if there's a gup pin */
2076                 if (page_count(page) != 1)
2077                         goto out_unmap;
2078                 if (pte_young(pteval) || PageReferenced(page) ||
2079                     mmu_notifier_test_young(vma->vm_mm, address))
2080                         referenced = 1;
2081         }
2082         if (referenced)
2083                 ret = 1;
2084 out_unmap:
2085         pte_unmap_unlock(pte, ptl);
2086         if (ret)
2087                 /* collapse_huge_page will return with the mmap_sem released */
2088                 collapse_huge_page(mm, address, hpage, vma, node);
2089 out:
2090         return ret;
2091 }
2092
2093 static void collect_mm_slot(struct mm_slot *mm_slot)
2094 {
2095         struct mm_struct *mm = mm_slot->mm;
2096
2097         VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2098
2099         if (khugepaged_test_exit(mm)) {
2100                 /* free mm_slot */
2101                 hlist_del(&mm_slot->hash);
2102                 list_del(&mm_slot->mm_node);
2103
2104                 /*
2105                  * Not strictly needed because the mm exited already.
2106                  *
2107                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2108                  */
2109
2110                 /* khugepaged_mm_lock actually not necessary for the below */
2111                 free_mm_slot(mm_slot);
2112                 mmdrop(mm);
2113         }
2114 }
2115
2116 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2117                                             struct page **hpage)
2118         __releases(&khugepaged_mm_lock)
2119         __acquires(&khugepaged_mm_lock)
2120 {
2121         struct mm_slot *mm_slot;
2122         struct mm_struct *mm;
2123         struct vm_area_struct *vma;
2124         int progress = 0;
2125
2126         VM_BUG_ON(!pages);
2127         VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2128
2129         if (khugepaged_scan.mm_slot)
2130                 mm_slot = khugepaged_scan.mm_slot;
2131         else {
2132                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2133                                      struct mm_slot, mm_node);
2134                 khugepaged_scan.address = 0;
2135                 khugepaged_scan.mm_slot = mm_slot;
2136         }
2137         spin_unlock(&khugepaged_mm_lock);
2138
2139         mm = mm_slot->mm;
2140         down_read(&mm->mmap_sem);
2141         if (unlikely(khugepaged_test_exit(mm)))
2142                 vma = NULL;
2143         else
2144                 vma = find_vma(mm, khugepaged_scan.address);
2145
2146         progress++;
2147         for (; vma; vma = vma->vm_next) {
2148                 unsigned long hstart, hend;
2149
2150                 cond_resched();
2151                 if (unlikely(khugepaged_test_exit(mm))) {
2152                         progress++;
2153                         break;
2154                 }
2155
2156                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2157                      !khugepaged_always()) ||
2158                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2159                 skip:
2160                         progress++;
2161                         continue;
2162                 }
2163                 if (!vma->anon_vma || vma->vm_ops)
2164                         goto skip;
2165                 if (is_vma_temporary_stack(vma))
2166                         goto skip;
2167                 /*
2168                  * If is_pfn_mapping() is true is_learn_pfn_mapping()
2169                  * must be true too, verify it here.
2170                  */
2171                 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2172                           vma->vm_flags & VM_NO_THP);
2173
2174                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2175                 hend = vma->vm_end & HPAGE_PMD_MASK;
2176                 if (hstart >= hend)
2177                         goto skip;
2178                 if (khugepaged_scan.address > hend)
2179                         goto skip;
2180                 if (khugepaged_scan.address < hstart)
2181                         khugepaged_scan.address = hstart;
2182                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2183
2184                 while (khugepaged_scan.address < hend) {
2185                         int ret;
2186                         cond_resched();
2187                         if (unlikely(khugepaged_test_exit(mm)))
2188                                 goto breakouterloop;
2189
2190                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2191                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2192                                   hend);
2193                         ret = khugepaged_scan_pmd(mm, vma,
2194                                                   khugepaged_scan.address,
2195                                                   hpage);
2196                         /* move to next address */
2197                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2198                         progress += HPAGE_PMD_NR;
2199                         if (ret)
2200                                 /* we released mmap_sem so break loop */
2201                                 goto breakouterloop_mmap_sem;
2202                         if (progress >= pages)
2203                                 goto breakouterloop;
2204                 }
2205         }
2206 breakouterloop:
2207         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2208 breakouterloop_mmap_sem:
2209
2210         spin_lock(&khugepaged_mm_lock);
2211         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2212         /*
2213          * Release the current mm_slot if this mm is about to die, or
2214          * if we scanned all vmas of this mm.
2215          */
2216         if (khugepaged_test_exit(mm) || !vma) {
2217                 /*
2218                  * Make sure that if mm_users is reaching zero while
2219                  * khugepaged runs here, khugepaged_exit will find
2220                  * mm_slot not pointing to the exiting mm.
2221                  */
2222                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2223                         khugepaged_scan.mm_slot = list_entry(
2224                                 mm_slot->mm_node.next,
2225                                 struct mm_slot, mm_node);
2226                         khugepaged_scan.address = 0;
2227                 } else {
2228                         khugepaged_scan.mm_slot = NULL;
2229                         khugepaged_full_scans++;
2230                 }
2231
2232                 collect_mm_slot(mm_slot);
2233         }
2234
2235         return progress;
2236 }
2237
2238 static int khugepaged_has_work(void)
2239 {
2240         return !list_empty(&khugepaged_scan.mm_head) &&
2241                 khugepaged_enabled();
2242 }
2243
2244 static int khugepaged_wait_event(void)
2245 {
2246         return !list_empty(&khugepaged_scan.mm_head) ||
2247                 !khugepaged_enabled();
2248 }
2249
2250 static void khugepaged_do_scan(struct page **hpage)
2251 {
2252         unsigned int progress = 0, pass_through_head = 0;
2253         unsigned int pages = khugepaged_pages_to_scan;
2254
2255         barrier(); /* write khugepaged_pages_to_scan to local stack */
2256
2257         while (progress < pages) {
2258                 cond_resched();
2259
2260 #ifndef CONFIG_NUMA
2261                 if (!*hpage) {
2262                         *hpage = alloc_hugepage(khugepaged_defrag());
2263                         if (unlikely(!*hpage)) {
2264                                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2265                                 break;
2266                         }
2267                         count_vm_event(THP_COLLAPSE_ALLOC);
2268                 }
2269 #else
2270                 if (IS_ERR(*hpage))
2271                         break;
2272 #endif
2273
2274                 if (unlikely(kthread_should_stop() || freezing(current)))
2275                         break;
2276
2277                 spin_lock(&khugepaged_mm_lock);
2278                 if (!khugepaged_scan.mm_slot)
2279                         pass_through_head++;
2280                 if (khugepaged_has_work() &&
2281                     pass_through_head < 2)
2282                         progress += khugepaged_scan_mm_slot(pages - progress,
2283                                                             hpage);
2284                 else
2285                         progress = pages;
2286                 spin_unlock(&khugepaged_mm_lock);
2287         }
2288 }
2289
2290 static void khugepaged_alloc_sleep(void)
2291 {
2292         wait_event_freezable_timeout(khugepaged_wait, false,
2293                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2294 }
2295
2296 #ifndef CONFIG_NUMA
2297 static struct page *khugepaged_alloc_hugepage(void)
2298 {
2299         struct page *hpage;
2300
2301         do {
2302                 hpage = alloc_hugepage(khugepaged_defrag());
2303                 if (!hpage) {
2304                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2305                         khugepaged_alloc_sleep();
2306                 } else
2307                         count_vm_event(THP_COLLAPSE_ALLOC);
2308         } while (unlikely(!hpage) &&
2309                  likely(khugepaged_enabled()));
2310         return hpage;
2311 }
2312 #endif
2313
2314 static void khugepaged_loop(void)
2315 {
2316         struct page *hpage;
2317
2318 #ifdef CONFIG_NUMA
2319         hpage = NULL;
2320 #endif
2321         while (likely(khugepaged_enabled())) {
2322 #ifndef CONFIG_NUMA
2323                 hpage = khugepaged_alloc_hugepage();
2324                 if (unlikely(!hpage))
2325                         break;
2326 #else
2327                 if (IS_ERR(hpage)) {
2328                         khugepaged_alloc_sleep();
2329                         hpage = NULL;
2330                 }
2331 #endif
2332
2333                 khugepaged_do_scan(&hpage);
2334 #ifndef CONFIG_NUMA
2335                 if (hpage)
2336                         put_page(hpage);
2337 #endif
2338                 try_to_freeze();
2339                 if (unlikely(kthread_should_stop()))
2340                         break;
2341                 if (khugepaged_has_work()) {
2342                         if (!khugepaged_scan_sleep_millisecs)
2343                                 continue;
2344                         wait_event_freezable_timeout(khugepaged_wait, false,
2345                             msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2346                 } else if (khugepaged_enabled())
2347                         wait_event_freezable(khugepaged_wait,
2348                                              khugepaged_wait_event());
2349         }
2350 }
2351
2352 static int khugepaged(void *none)
2353 {
2354         struct mm_slot *mm_slot;
2355
2356         set_freezable();
2357         set_user_nice(current, 19);
2358
2359         /* serialize with start_khugepaged() */
2360         mutex_lock(&khugepaged_mutex);
2361
2362         for (;;) {
2363                 mutex_unlock(&khugepaged_mutex);
2364                 VM_BUG_ON(khugepaged_thread != current);
2365                 khugepaged_loop();
2366                 VM_BUG_ON(khugepaged_thread != current);
2367
2368                 mutex_lock(&khugepaged_mutex);
2369                 if (!khugepaged_enabled())
2370                         break;
2371                 if (unlikely(kthread_should_stop()))
2372                         break;
2373         }
2374
2375         spin_lock(&khugepaged_mm_lock);
2376         mm_slot = khugepaged_scan.mm_slot;
2377         khugepaged_scan.mm_slot = NULL;
2378         if (mm_slot)
2379                 collect_mm_slot(mm_slot);
2380         spin_unlock(&khugepaged_mm_lock);
2381
2382         khugepaged_thread = NULL;
2383         mutex_unlock(&khugepaged_mutex);
2384
2385         return 0;
2386 }
2387
2388 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2389 {
2390         struct page *page;
2391
2392         spin_lock(&mm->page_table_lock);
2393         if (unlikely(!pmd_trans_huge(*pmd))) {
2394                 spin_unlock(&mm->page_table_lock);
2395                 return;
2396         }
2397         page = pmd_page(*pmd);
2398         VM_BUG_ON(!page_count(page));
2399         get_page(page);
2400         spin_unlock(&mm->page_table_lock);
2401
2402         split_huge_page(page);
2403
2404         put_page(page);
2405         BUG_ON(pmd_trans_huge(*pmd));
2406 }
2407
2408 static void split_huge_page_address(struct mm_struct *mm,
2409                                     unsigned long address)
2410 {
2411         pgd_t *pgd;
2412         pud_t *pud;
2413         pmd_t *pmd;
2414
2415         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2416
2417         pgd = pgd_offset(mm, address);
2418         if (!pgd_present(*pgd))
2419                 return;
2420
2421         pud = pud_offset(pgd, address);
2422         if (!pud_present(*pud))
2423                 return;
2424
2425         pmd = pmd_offset(pud, address);
2426         if (!pmd_present(*pmd))
2427                 return;
2428         /*
2429          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2430          * materialize from under us.
2431          */
2432         split_huge_page_pmd(mm, pmd);
2433 }
2434
2435 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2436                              unsigned long start,
2437                              unsigned long end,
2438                              long adjust_next)
2439 {
2440         /*
2441          * If the new start address isn't hpage aligned and it could
2442          * previously contain an hugepage: check if we need to split
2443          * an huge pmd.
2444          */
2445         if (start & ~HPAGE_PMD_MASK &&
2446             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2447             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2448                 split_huge_page_address(vma->vm_mm, start);
2449
2450         /*
2451          * If the new end address isn't hpage aligned and it could
2452          * previously contain an hugepage: check if we need to split
2453          * an huge pmd.
2454          */
2455         if (end & ~HPAGE_PMD_MASK &&
2456             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2457             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2458                 split_huge_page_address(vma->vm_mm, end);
2459
2460         /*
2461          * If we're also updating the vma->vm_next->vm_start, if the new
2462          * vm_next->vm_start isn't page aligned and it could previously
2463          * contain an hugepage: check if we need to split an huge pmd.
2464          */
2465         if (adjust_next > 0) {
2466                 struct vm_area_struct *next = vma->vm_next;
2467                 unsigned long nstart = next->vm_start;
2468                 nstart += adjust_next << PAGE_SHIFT;
2469                 if (nstart & ~HPAGE_PMD_MASK &&
2470                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2471                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2472                         split_huge_page_address(next->vm_mm, nstart);
2473         }
2474 }