]> git.karo-electronics.de Git - linux-beck.git/blob - mm/huge_memory.c
mm, rmap: account shmem thp pages
[linux-beck.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34
35 #include <asm/tlb.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 enum scan_result {
40         SCAN_FAIL,
41         SCAN_SUCCEED,
42         SCAN_PMD_NULL,
43         SCAN_EXCEED_NONE_PTE,
44         SCAN_PTE_NON_PRESENT,
45         SCAN_PAGE_RO,
46         SCAN_NO_REFERENCED_PAGE,
47         SCAN_PAGE_NULL,
48         SCAN_SCAN_ABORT,
49         SCAN_PAGE_COUNT,
50         SCAN_PAGE_LRU,
51         SCAN_PAGE_LOCK,
52         SCAN_PAGE_ANON,
53         SCAN_PAGE_COMPOUND,
54         SCAN_ANY_PROCESS,
55         SCAN_VMA_NULL,
56         SCAN_VMA_CHECK,
57         SCAN_ADDRESS_RANGE,
58         SCAN_SWAP_CACHE_PAGE,
59         SCAN_DEL_PAGE_LRU,
60         SCAN_ALLOC_HUGE_PAGE_FAIL,
61         SCAN_CGROUP_CHARGE_FAIL,
62         SCAN_EXCEED_SWAP_PTE
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 /*
69  * By default transparent hugepage support is disabled in order that avoid
70  * to risk increase the memory footprint of applications without a guaranteed
71  * benefit. When transparent hugepage support is enabled, is for all mappings,
72  * and khugepaged scans all mappings.
73  * Defrag is invoked by khugepaged hugepage allocations and by page faults
74  * for all hugepage allocations.
75  */
76 unsigned long transparent_hugepage_flags __read_mostly =
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
78         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
79 #endif
80 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
81         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
82 #endif
83         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
84         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
85         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
86
87 /* default scan 8*512 pte (or vmas) every 30 second */
88 static unsigned int khugepaged_pages_to_scan __read_mostly;
89 static unsigned int khugepaged_pages_collapsed;
90 static unsigned int khugepaged_full_scans;
91 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
92 /* during fragmentation poll the hugepage allocator once every minute */
93 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
94 static unsigned long khugepaged_sleep_expire;
95 static struct task_struct *khugepaged_thread __read_mostly;
96 static DEFINE_MUTEX(khugepaged_mutex);
97 static DEFINE_SPINLOCK(khugepaged_mm_lock);
98 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
99 /*
100  * default collapse hugepages if there is at least one pte mapped like
101  * it would have happened if the vma was large enough during page
102  * fault.
103  */
104 static unsigned int khugepaged_max_ptes_none __read_mostly;
105 static unsigned int khugepaged_max_ptes_swap __read_mostly;
106
107 static int khugepaged(void *none);
108 static int khugepaged_slab_init(void);
109 static void khugepaged_slab_exit(void);
110
111 #define MM_SLOTS_HASH_BITS 10
112 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
113
114 static struct kmem_cache *mm_slot_cache __read_mostly;
115
116 /**
117  * struct mm_slot - hash lookup from mm to mm_slot
118  * @hash: hash collision list
119  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
120  * @mm: the mm that this information is valid for
121  */
122 struct mm_slot {
123         struct hlist_node hash;
124         struct list_head mm_node;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct khugepaged_scan - cursor for scanning
130  * @mm_head: the head of the mm list to scan
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  *
134  * There is only the one khugepaged_scan instance of this cursor structure.
135  */
136 struct khugepaged_scan {
137         struct list_head mm_head;
138         struct mm_slot *mm_slot;
139         unsigned long address;
140 };
141 static struct khugepaged_scan khugepaged_scan = {
142         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
143 };
144
145 static struct shrinker deferred_split_shrinker;
146
147 static void set_recommended_min_free_kbytes(void)
148 {
149         struct zone *zone;
150         int nr_zones = 0;
151         unsigned long recommended_min;
152
153         for_each_populated_zone(zone)
154                 nr_zones++;
155
156         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
157         recommended_min = pageblock_nr_pages * nr_zones * 2;
158
159         /*
160          * Make sure that on average at least two pageblocks are almost free
161          * of another type, one for a migratetype to fall back to and a
162          * second to avoid subsequent fallbacks of other types There are 3
163          * MIGRATE_TYPES we care about.
164          */
165         recommended_min += pageblock_nr_pages * nr_zones *
166                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
167
168         /* don't ever allow to reserve more than 5% of the lowmem */
169         recommended_min = min(recommended_min,
170                               (unsigned long) nr_free_buffer_pages() / 20);
171         recommended_min <<= (PAGE_SHIFT-10);
172
173         if (recommended_min > min_free_kbytes) {
174                 if (user_min_free_kbytes >= 0)
175                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
176                                 min_free_kbytes, recommended_min);
177
178                 min_free_kbytes = recommended_min;
179         }
180         setup_per_zone_wmarks();
181 }
182
183 static int start_stop_khugepaged(void)
184 {
185         int err = 0;
186         if (khugepaged_enabled()) {
187                 if (!khugepaged_thread)
188                         khugepaged_thread = kthread_run(khugepaged, NULL,
189                                                         "khugepaged");
190                 if (IS_ERR(khugepaged_thread)) {
191                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
192                         err = PTR_ERR(khugepaged_thread);
193                         khugepaged_thread = NULL;
194                         goto fail;
195                 }
196
197                 if (!list_empty(&khugepaged_scan.mm_head))
198                         wake_up_interruptible(&khugepaged_wait);
199
200                 set_recommended_min_free_kbytes();
201         } else if (khugepaged_thread) {
202                 kthread_stop(khugepaged_thread);
203                 khugepaged_thread = NULL;
204         }
205 fail:
206         return err;
207 }
208
209 static atomic_t huge_zero_refcount;
210 struct page *huge_zero_page __read_mostly;
211
212 struct page *get_huge_zero_page(void)
213 {
214         struct page *zero_page;
215 retry:
216         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
217                 return READ_ONCE(huge_zero_page);
218
219         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
220                         HPAGE_PMD_ORDER);
221         if (!zero_page) {
222                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
223                 return NULL;
224         }
225         count_vm_event(THP_ZERO_PAGE_ALLOC);
226         preempt_disable();
227         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
228                 preempt_enable();
229                 __free_pages(zero_page, compound_order(zero_page));
230                 goto retry;
231         }
232
233         /* We take additional reference here. It will be put back by shrinker */
234         atomic_set(&huge_zero_refcount, 2);
235         preempt_enable();
236         return READ_ONCE(huge_zero_page);
237 }
238
239 void put_huge_zero_page(void)
240 {
241         /*
242          * Counter should never go to zero here. Only shrinker can put
243          * last reference.
244          */
245         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249                                         struct shrink_control *sc)
250 {
251         /* we can free zero page only if last reference remains */
252         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256                                        struct shrink_control *sc)
257 {
258         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259                 struct page *zero_page = xchg(&huge_zero_page, NULL);
260                 BUG_ON(zero_page == NULL);
261                 __free_pages(zero_page, compound_order(zero_page));
262                 return HPAGE_PMD_NR;
263         }
264
265         return 0;
266 }
267
268 static struct shrinker huge_zero_page_shrinker = {
269         .count_objects = shrink_huge_zero_page_count,
270         .scan_objects = shrink_huge_zero_page_scan,
271         .seeks = DEFAULT_SEEKS,
272 };
273
274 #ifdef CONFIG_SYSFS
275
276 static ssize_t triple_flag_store(struct kobject *kobj,
277                                  struct kobj_attribute *attr,
278                                  const char *buf, size_t count,
279                                  enum transparent_hugepage_flag enabled,
280                                  enum transparent_hugepage_flag deferred,
281                                  enum transparent_hugepage_flag req_madv)
282 {
283         if (!memcmp("defer", buf,
284                     min(sizeof("defer")-1, count))) {
285                 if (enabled == deferred)
286                         return -EINVAL;
287                 clear_bit(enabled, &transparent_hugepage_flags);
288                 clear_bit(req_madv, &transparent_hugepage_flags);
289                 set_bit(deferred, &transparent_hugepage_flags);
290         } else if (!memcmp("always", buf,
291                     min(sizeof("always")-1, count))) {
292                 clear_bit(deferred, &transparent_hugepage_flags);
293                 clear_bit(req_madv, &transparent_hugepage_flags);
294                 set_bit(enabled, &transparent_hugepage_flags);
295         } else if (!memcmp("madvise", buf,
296                            min(sizeof("madvise")-1, count))) {
297                 clear_bit(enabled, &transparent_hugepage_flags);
298                 clear_bit(deferred, &transparent_hugepage_flags);
299                 set_bit(req_madv, &transparent_hugepage_flags);
300         } else if (!memcmp("never", buf,
301                            min(sizeof("never")-1, count))) {
302                 clear_bit(enabled, &transparent_hugepage_flags);
303                 clear_bit(req_madv, &transparent_hugepage_flags);
304                 clear_bit(deferred, &transparent_hugepage_flags);
305         } else
306                 return -EINVAL;
307
308         return count;
309 }
310
311 static ssize_t enabled_show(struct kobject *kobj,
312                             struct kobj_attribute *attr, char *buf)
313 {
314         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
315                 return sprintf(buf, "[always] madvise never\n");
316         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
317                 return sprintf(buf, "always [madvise] never\n");
318         else
319                 return sprintf(buf, "always madvise [never]\n");
320 }
321
322 static ssize_t enabled_store(struct kobject *kobj,
323                              struct kobj_attribute *attr,
324                              const char *buf, size_t count)
325 {
326         ssize_t ret;
327
328         ret = triple_flag_store(kobj, attr, buf, count,
329                                 TRANSPARENT_HUGEPAGE_FLAG,
330                                 TRANSPARENT_HUGEPAGE_FLAG,
331                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
332
333         if (ret > 0) {
334                 int err;
335
336                 mutex_lock(&khugepaged_mutex);
337                 err = start_stop_khugepaged();
338                 mutex_unlock(&khugepaged_mutex);
339
340                 if (err)
341                         ret = err;
342         }
343
344         return ret;
345 }
346 static struct kobj_attribute enabled_attr =
347         __ATTR(enabled, 0644, enabled_show, enabled_store);
348
349 static ssize_t single_flag_show(struct kobject *kobj,
350                                 struct kobj_attribute *attr, char *buf,
351                                 enum transparent_hugepage_flag flag)
352 {
353         return sprintf(buf, "%d\n",
354                        !!test_bit(flag, &transparent_hugepage_flags));
355 }
356
357 static ssize_t single_flag_store(struct kobject *kobj,
358                                  struct kobj_attribute *attr,
359                                  const char *buf, size_t count,
360                                  enum transparent_hugepage_flag flag)
361 {
362         unsigned long value;
363         int ret;
364
365         ret = kstrtoul(buf, 10, &value);
366         if (ret < 0)
367                 return ret;
368         if (value > 1)
369                 return -EINVAL;
370
371         if (value)
372                 set_bit(flag, &transparent_hugepage_flags);
373         else
374                 clear_bit(flag, &transparent_hugepage_flags);
375
376         return count;
377 }
378
379 /*
380  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
381  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
382  * memory just to allocate one more hugepage.
383  */
384 static ssize_t defrag_show(struct kobject *kobj,
385                            struct kobj_attribute *attr, char *buf)
386 {
387         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
388                 return sprintf(buf, "[always] defer madvise never\n");
389         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
390                 return sprintf(buf, "always [defer] madvise never\n");
391         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
392                 return sprintf(buf, "always defer [madvise] never\n");
393         else
394                 return sprintf(buf, "always defer madvise [never]\n");
395
396 }
397 static ssize_t defrag_store(struct kobject *kobj,
398                             struct kobj_attribute *attr,
399                             const char *buf, size_t count)
400 {
401         return triple_flag_store(kobj, attr, buf, count,
402                                  TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
403                                  TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
404                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
405 }
406 static struct kobj_attribute defrag_attr =
407         __ATTR(defrag, 0644, defrag_show, defrag_store);
408
409 static ssize_t use_zero_page_show(struct kobject *kobj,
410                 struct kobj_attribute *attr, char *buf)
411 {
412         return single_flag_show(kobj, attr, buf,
413                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
414 }
415 static ssize_t use_zero_page_store(struct kobject *kobj,
416                 struct kobj_attribute *attr, const char *buf, size_t count)
417 {
418         return single_flag_store(kobj, attr, buf, count,
419                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
420 }
421 static struct kobj_attribute use_zero_page_attr =
422         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
423 #ifdef CONFIG_DEBUG_VM
424 static ssize_t debug_cow_show(struct kobject *kobj,
425                                 struct kobj_attribute *attr, char *buf)
426 {
427         return single_flag_show(kobj, attr, buf,
428                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
429 }
430 static ssize_t debug_cow_store(struct kobject *kobj,
431                                struct kobj_attribute *attr,
432                                const char *buf, size_t count)
433 {
434         return single_flag_store(kobj, attr, buf, count,
435                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
436 }
437 static struct kobj_attribute debug_cow_attr =
438         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
439 #endif /* CONFIG_DEBUG_VM */
440
441 static struct attribute *hugepage_attr[] = {
442         &enabled_attr.attr,
443         &defrag_attr.attr,
444         &use_zero_page_attr.attr,
445 #ifdef CONFIG_DEBUG_VM
446         &debug_cow_attr.attr,
447 #endif
448         NULL,
449 };
450
451 static struct attribute_group hugepage_attr_group = {
452         .attrs = hugepage_attr,
453 };
454
455 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
456                                          struct kobj_attribute *attr,
457                                          char *buf)
458 {
459         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
460 }
461
462 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
463                                           struct kobj_attribute *attr,
464                                           const char *buf, size_t count)
465 {
466         unsigned long msecs;
467         int err;
468
469         err = kstrtoul(buf, 10, &msecs);
470         if (err || msecs > UINT_MAX)
471                 return -EINVAL;
472
473         khugepaged_scan_sleep_millisecs = msecs;
474         khugepaged_sleep_expire = 0;
475         wake_up_interruptible(&khugepaged_wait);
476
477         return count;
478 }
479 static struct kobj_attribute scan_sleep_millisecs_attr =
480         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
481                scan_sleep_millisecs_store);
482
483 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
484                                           struct kobj_attribute *attr,
485                                           char *buf)
486 {
487         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
488 }
489
490 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
491                                            struct kobj_attribute *attr,
492                                            const char *buf, size_t count)
493 {
494         unsigned long msecs;
495         int err;
496
497         err = kstrtoul(buf, 10, &msecs);
498         if (err || msecs > UINT_MAX)
499                 return -EINVAL;
500
501         khugepaged_alloc_sleep_millisecs = msecs;
502         khugepaged_sleep_expire = 0;
503         wake_up_interruptible(&khugepaged_wait);
504
505         return count;
506 }
507 static struct kobj_attribute alloc_sleep_millisecs_attr =
508         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
509                alloc_sleep_millisecs_store);
510
511 static ssize_t pages_to_scan_show(struct kobject *kobj,
512                                   struct kobj_attribute *attr,
513                                   char *buf)
514 {
515         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
516 }
517 static ssize_t pages_to_scan_store(struct kobject *kobj,
518                                    struct kobj_attribute *attr,
519                                    const char *buf, size_t count)
520 {
521         int err;
522         unsigned long pages;
523
524         err = kstrtoul(buf, 10, &pages);
525         if (err || !pages || pages > UINT_MAX)
526                 return -EINVAL;
527
528         khugepaged_pages_to_scan = pages;
529
530         return count;
531 }
532 static struct kobj_attribute pages_to_scan_attr =
533         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
534                pages_to_scan_store);
535
536 static ssize_t pages_collapsed_show(struct kobject *kobj,
537                                     struct kobj_attribute *attr,
538                                     char *buf)
539 {
540         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
541 }
542 static struct kobj_attribute pages_collapsed_attr =
543         __ATTR_RO(pages_collapsed);
544
545 static ssize_t full_scans_show(struct kobject *kobj,
546                                struct kobj_attribute *attr,
547                                char *buf)
548 {
549         return sprintf(buf, "%u\n", khugepaged_full_scans);
550 }
551 static struct kobj_attribute full_scans_attr =
552         __ATTR_RO(full_scans);
553
554 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
555                                       struct kobj_attribute *attr, char *buf)
556 {
557         return single_flag_show(kobj, attr, buf,
558                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
559 }
560 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
561                                        struct kobj_attribute *attr,
562                                        const char *buf, size_t count)
563 {
564         return single_flag_store(kobj, attr, buf, count,
565                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
566 }
567 static struct kobj_attribute khugepaged_defrag_attr =
568         __ATTR(defrag, 0644, khugepaged_defrag_show,
569                khugepaged_defrag_store);
570
571 /*
572  * max_ptes_none controls if khugepaged should collapse hugepages over
573  * any unmapped ptes in turn potentially increasing the memory
574  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
575  * reduce the available free memory in the system as it
576  * runs. Increasing max_ptes_none will instead potentially reduce the
577  * free memory in the system during the khugepaged scan.
578  */
579 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
580                                              struct kobj_attribute *attr,
581                                              char *buf)
582 {
583         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
584 }
585 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
586                                               struct kobj_attribute *attr,
587                                               const char *buf, size_t count)
588 {
589         int err;
590         unsigned long max_ptes_none;
591
592         err = kstrtoul(buf, 10, &max_ptes_none);
593         if (err || max_ptes_none > HPAGE_PMD_NR-1)
594                 return -EINVAL;
595
596         khugepaged_max_ptes_none = max_ptes_none;
597
598         return count;
599 }
600 static struct kobj_attribute khugepaged_max_ptes_none_attr =
601         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
602                khugepaged_max_ptes_none_store);
603
604 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
605                                              struct kobj_attribute *attr,
606                                              char *buf)
607 {
608         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
609 }
610
611 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
612                                               struct kobj_attribute *attr,
613                                               const char *buf, size_t count)
614 {
615         int err;
616         unsigned long max_ptes_swap;
617
618         err  = kstrtoul(buf, 10, &max_ptes_swap);
619         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
620                 return -EINVAL;
621
622         khugepaged_max_ptes_swap = max_ptes_swap;
623
624         return count;
625 }
626
627 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
628         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
629                khugepaged_max_ptes_swap_store);
630
631 static struct attribute *khugepaged_attr[] = {
632         &khugepaged_defrag_attr.attr,
633         &khugepaged_max_ptes_none_attr.attr,
634         &pages_to_scan_attr.attr,
635         &pages_collapsed_attr.attr,
636         &full_scans_attr.attr,
637         &scan_sleep_millisecs_attr.attr,
638         &alloc_sleep_millisecs_attr.attr,
639         &khugepaged_max_ptes_swap_attr.attr,
640         NULL,
641 };
642
643 static struct attribute_group khugepaged_attr_group = {
644         .attrs = khugepaged_attr,
645         .name = "khugepaged",
646 };
647
648 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
649 {
650         int err;
651
652         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
653         if (unlikely(!*hugepage_kobj)) {
654                 pr_err("failed to create transparent hugepage kobject\n");
655                 return -ENOMEM;
656         }
657
658         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
659         if (err) {
660                 pr_err("failed to register transparent hugepage group\n");
661                 goto delete_obj;
662         }
663
664         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
665         if (err) {
666                 pr_err("failed to register transparent hugepage group\n");
667                 goto remove_hp_group;
668         }
669
670         return 0;
671
672 remove_hp_group:
673         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
674 delete_obj:
675         kobject_put(*hugepage_kobj);
676         return err;
677 }
678
679 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
680 {
681         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
682         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
683         kobject_put(hugepage_kobj);
684 }
685 #else
686 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
687 {
688         return 0;
689 }
690
691 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
692 {
693 }
694 #endif /* CONFIG_SYSFS */
695
696 static int __init hugepage_init(void)
697 {
698         int err;
699         struct kobject *hugepage_kobj;
700
701         if (!has_transparent_hugepage()) {
702                 transparent_hugepage_flags = 0;
703                 return -EINVAL;
704         }
705
706         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
707         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
708         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
709         /*
710          * hugepages can't be allocated by the buddy allocator
711          */
712         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
713         /*
714          * we use page->mapping and page->index in second tail page
715          * as list_head: assuming THP order >= 2
716          */
717         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
718
719         err = hugepage_init_sysfs(&hugepage_kobj);
720         if (err)
721                 goto err_sysfs;
722
723         err = khugepaged_slab_init();
724         if (err)
725                 goto err_slab;
726
727         err = register_shrinker(&huge_zero_page_shrinker);
728         if (err)
729                 goto err_hzp_shrinker;
730         err = register_shrinker(&deferred_split_shrinker);
731         if (err)
732                 goto err_split_shrinker;
733
734         /*
735          * By default disable transparent hugepages on smaller systems,
736          * where the extra memory used could hurt more than TLB overhead
737          * is likely to save.  The admin can still enable it through /sys.
738          */
739         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
740                 transparent_hugepage_flags = 0;
741                 return 0;
742         }
743
744         err = start_stop_khugepaged();
745         if (err)
746                 goto err_khugepaged;
747
748         return 0;
749 err_khugepaged:
750         unregister_shrinker(&deferred_split_shrinker);
751 err_split_shrinker:
752         unregister_shrinker(&huge_zero_page_shrinker);
753 err_hzp_shrinker:
754         khugepaged_slab_exit();
755 err_slab:
756         hugepage_exit_sysfs(hugepage_kobj);
757 err_sysfs:
758         return err;
759 }
760 subsys_initcall(hugepage_init);
761
762 static int __init setup_transparent_hugepage(char *str)
763 {
764         int ret = 0;
765         if (!str)
766                 goto out;
767         if (!strcmp(str, "always")) {
768                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
769                         &transparent_hugepage_flags);
770                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
771                           &transparent_hugepage_flags);
772                 ret = 1;
773         } else if (!strcmp(str, "madvise")) {
774                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
775                           &transparent_hugepage_flags);
776                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
777                         &transparent_hugepage_flags);
778                 ret = 1;
779         } else if (!strcmp(str, "never")) {
780                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
781                           &transparent_hugepage_flags);
782                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
783                           &transparent_hugepage_flags);
784                 ret = 1;
785         }
786 out:
787         if (!ret)
788                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
789         return ret;
790 }
791 __setup("transparent_hugepage=", setup_transparent_hugepage);
792
793 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
794 {
795         if (likely(vma->vm_flags & VM_WRITE))
796                 pmd = pmd_mkwrite(pmd);
797         return pmd;
798 }
799
800 static inline struct list_head *page_deferred_list(struct page *page)
801 {
802         /*
803          * ->lru in the tail pages is occupied by compound_head.
804          * Let's use ->mapping + ->index in the second tail page as list_head.
805          */
806         return (struct list_head *)&page[2].mapping;
807 }
808
809 void prep_transhuge_page(struct page *page)
810 {
811         /*
812          * we use page->mapping and page->indexlru in second tail page
813          * as list_head: assuming THP order >= 2
814          */
815
816         INIT_LIST_HEAD(page_deferred_list(page));
817         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
818 }
819
820 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
821                 gfp_t gfp)
822 {
823         struct vm_area_struct *vma = fe->vma;
824         struct mem_cgroup *memcg;
825         pgtable_t pgtable;
826         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
827
828         VM_BUG_ON_PAGE(!PageCompound(page), page);
829
830         if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
831                 put_page(page);
832                 count_vm_event(THP_FAULT_FALLBACK);
833                 return VM_FAULT_FALLBACK;
834         }
835
836         pgtable = pte_alloc_one(vma->vm_mm, haddr);
837         if (unlikely(!pgtable)) {
838                 mem_cgroup_cancel_charge(page, memcg, true);
839                 put_page(page);
840                 return VM_FAULT_OOM;
841         }
842
843         clear_huge_page(page, haddr, HPAGE_PMD_NR);
844         /*
845          * The memory barrier inside __SetPageUptodate makes sure that
846          * clear_huge_page writes become visible before the set_pmd_at()
847          * write.
848          */
849         __SetPageUptodate(page);
850
851         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
852         if (unlikely(!pmd_none(*fe->pmd))) {
853                 spin_unlock(fe->ptl);
854                 mem_cgroup_cancel_charge(page, memcg, true);
855                 put_page(page);
856                 pte_free(vma->vm_mm, pgtable);
857         } else {
858                 pmd_t entry;
859
860                 /* Deliver the page fault to userland */
861                 if (userfaultfd_missing(vma)) {
862                         int ret;
863
864                         spin_unlock(fe->ptl);
865                         mem_cgroup_cancel_charge(page, memcg, true);
866                         put_page(page);
867                         pte_free(vma->vm_mm, pgtable);
868                         ret = handle_userfault(fe, VM_UFFD_MISSING);
869                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
870                         return ret;
871                 }
872
873                 entry = mk_huge_pmd(page, vma->vm_page_prot);
874                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
875                 page_add_new_anon_rmap(page, vma, haddr, true);
876                 mem_cgroup_commit_charge(page, memcg, false, true);
877                 lru_cache_add_active_or_unevictable(page, vma);
878                 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
879                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
880                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
881                 atomic_long_inc(&vma->vm_mm->nr_ptes);
882                 spin_unlock(fe->ptl);
883                 count_vm_event(THP_FAULT_ALLOC);
884         }
885
886         return 0;
887 }
888
889 /*
890  * If THP is set to always then directly reclaim/compact as necessary
891  * If set to defer then do no reclaim and defer to khugepaged
892  * If set to madvise and the VMA is flagged then directly reclaim/compact
893  */
894 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
895 {
896         gfp_t reclaim_flags = 0;
897
898         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
899             (vma->vm_flags & VM_HUGEPAGE))
900                 reclaim_flags = __GFP_DIRECT_RECLAIM;
901         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
902                 reclaim_flags = __GFP_KSWAPD_RECLAIM;
903         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
904                 reclaim_flags = __GFP_DIRECT_RECLAIM;
905
906         return GFP_TRANSHUGE | reclaim_flags;
907 }
908
909 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
910 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
911 {
912         return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
913 }
914
915 /* Caller must hold page table lock. */
916 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
917                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
918                 struct page *zero_page)
919 {
920         pmd_t entry;
921         if (!pmd_none(*pmd))
922                 return false;
923         entry = mk_pmd(zero_page, vma->vm_page_prot);
924         entry = pmd_mkhuge(entry);
925         if (pgtable)
926                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
927         set_pmd_at(mm, haddr, pmd, entry);
928         atomic_long_inc(&mm->nr_ptes);
929         return true;
930 }
931
932 int do_huge_pmd_anonymous_page(struct fault_env *fe)
933 {
934         struct vm_area_struct *vma = fe->vma;
935         gfp_t gfp;
936         struct page *page;
937         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
938
939         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
940                 return VM_FAULT_FALLBACK;
941         if (unlikely(anon_vma_prepare(vma)))
942                 return VM_FAULT_OOM;
943         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
944                 return VM_FAULT_OOM;
945         if (!(fe->flags & FAULT_FLAG_WRITE) &&
946                         !mm_forbids_zeropage(vma->vm_mm) &&
947                         transparent_hugepage_use_zero_page()) {
948                 pgtable_t pgtable;
949                 struct page *zero_page;
950                 bool set;
951                 int ret;
952                 pgtable = pte_alloc_one(vma->vm_mm, haddr);
953                 if (unlikely(!pgtable))
954                         return VM_FAULT_OOM;
955                 zero_page = get_huge_zero_page();
956                 if (unlikely(!zero_page)) {
957                         pte_free(vma->vm_mm, pgtable);
958                         count_vm_event(THP_FAULT_FALLBACK);
959                         return VM_FAULT_FALLBACK;
960                 }
961                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
962                 ret = 0;
963                 set = false;
964                 if (pmd_none(*fe->pmd)) {
965                         if (userfaultfd_missing(vma)) {
966                                 spin_unlock(fe->ptl);
967                                 ret = handle_userfault(fe, VM_UFFD_MISSING);
968                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
969                         } else {
970                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
971                                                    haddr, fe->pmd, zero_page);
972                                 spin_unlock(fe->ptl);
973                                 set = true;
974                         }
975                 } else
976                         spin_unlock(fe->ptl);
977                 if (!set) {
978                         pte_free(vma->vm_mm, pgtable);
979                         put_huge_zero_page();
980                 }
981                 return ret;
982         }
983         gfp = alloc_hugepage_direct_gfpmask(vma);
984         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
985         if (unlikely(!page)) {
986                 count_vm_event(THP_FAULT_FALLBACK);
987                 return VM_FAULT_FALLBACK;
988         }
989         prep_transhuge_page(page);
990         return __do_huge_pmd_anonymous_page(fe, page, gfp);
991 }
992
993 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
994                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
995 {
996         struct mm_struct *mm = vma->vm_mm;
997         pmd_t entry;
998         spinlock_t *ptl;
999
1000         ptl = pmd_lock(mm, pmd);
1001         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1002         if (pfn_t_devmap(pfn))
1003                 entry = pmd_mkdevmap(entry);
1004         if (write) {
1005                 entry = pmd_mkyoung(pmd_mkdirty(entry));
1006                 entry = maybe_pmd_mkwrite(entry, vma);
1007         }
1008         set_pmd_at(mm, addr, pmd, entry);
1009         update_mmu_cache_pmd(vma, addr, pmd);
1010         spin_unlock(ptl);
1011 }
1012
1013 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1014                         pmd_t *pmd, pfn_t pfn, bool write)
1015 {
1016         pgprot_t pgprot = vma->vm_page_prot;
1017         /*
1018          * If we had pmd_special, we could avoid all these restrictions,
1019          * but we need to be consistent with PTEs and architectures that
1020          * can't support a 'special' bit.
1021          */
1022         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1023         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1024                                                 (VM_PFNMAP|VM_MIXEDMAP));
1025         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1026         BUG_ON(!pfn_t_devmap(pfn));
1027
1028         if (addr < vma->vm_start || addr >= vma->vm_end)
1029                 return VM_FAULT_SIGBUS;
1030         if (track_pfn_insert(vma, &pgprot, pfn))
1031                 return VM_FAULT_SIGBUS;
1032         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1033         return VM_FAULT_NOPAGE;
1034 }
1035 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1036
1037 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1038                 pmd_t *pmd)
1039 {
1040         pmd_t _pmd;
1041
1042         /*
1043          * We should set the dirty bit only for FOLL_WRITE but for now
1044          * the dirty bit in the pmd is meaningless.  And if the dirty
1045          * bit will become meaningful and we'll only set it with
1046          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1047          * set the young bit, instead of the current set_pmd_at.
1048          */
1049         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1050         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1051                                 pmd, _pmd,  1))
1052                 update_mmu_cache_pmd(vma, addr, pmd);
1053 }
1054
1055 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1056                 pmd_t *pmd, int flags)
1057 {
1058         unsigned long pfn = pmd_pfn(*pmd);
1059         struct mm_struct *mm = vma->vm_mm;
1060         struct dev_pagemap *pgmap;
1061         struct page *page;
1062
1063         assert_spin_locked(pmd_lockptr(mm, pmd));
1064
1065         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1066                 return NULL;
1067
1068         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1069                 /* pass */;
1070         else
1071                 return NULL;
1072
1073         if (flags & FOLL_TOUCH)
1074                 touch_pmd(vma, addr, pmd);
1075
1076         /*
1077          * device mapped pages can only be returned if the
1078          * caller will manage the page reference count.
1079          */
1080         if (!(flags & FOLL_GET))
1081                 return ERR_PTR(-EEXIST);
1082
1083         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1084         pgmap = get_dev_pagemap(pfn, NULL);
1085         if (!pgmap)
1086                 return ERR_PTR(-EFAULT);
1087         page = pfn_to_page(pfn);
1088         get_page(page);
1089         put_dev_pagemap(pgmap);
1090
1091         return page;
1092 }
1093
1094 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1095                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1096                   struct vm_area_struct *vma)
1097 {
1098         spinlock_t *dst_ptl, *src_ptl;
1099         struct page *src_page;
1100         pmd_t pmd;
1101         pgtable_t pgtable = NULL;
1102         int ret = -ENOMEM;
1103
1104         /* Skip if can be re-fill on fault */
1105         if (!vma_is_anonymous(vma))
1106                 return 0;
1107
1108         pgtable = pte_alloc_one(dst_mm, addr);
1109         if (unlikely(!pgtable))
1110                 goto out;
1111
1112         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1113         src_ptl = pmd_lockptr(src_mm, src_pmd);
1114         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1115
1116         ret = -EAGAIN;
1117         pmd = *src_pmd;
1118         if (unlikely(!pmd_trans_huge(pmd))) {
1119                 pte_free(dst_mm, pgtable);
1120                 goto out_unlock;
1121         }
1122         /*
1123          * When page table lock is held, the huge zero pmd should not be
1124          * under splitting since we don't split the page itself, only pmd to
1125          * a page table.
1126          */
1127         if (is_huge_zero_pmd(pmd)) {
1128                 struct page *zero_page;
1129                 /*
1130                  * get_huge_zero_page() will never allocate a new page here,
1131                  * since we already have a zero page to copy. It just takes a
1132                  * reference.
1133                  */
1134                 zero_page = get_huge_zero_page();
1135                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1136                                 zero_page);
1137                 ret = 0;
1138                 goto out_unlock;
1139         }
1140
1141         src_page = pmd_page(pmd);
1142         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1143         get_page(src_page);
1144         page_dup_rmap(src_page, true);
1145         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146         atomic_long_inc(&dst_mm->nr_ptes);
1147         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1148
1149         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1150         pmd = pmd_mkold(pmd_wrprotect(pmd));
1151         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1152
1153         ret = 0;
1154 out_unlock:
1155         spin_unlock(src_ptl);
1156         spin_unlock(dst_ptl);
1157 out:
1158         return ret;
1159 }
1160
1161 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1162 {
1163         pmd_t entry;
1164         unsigned long haddr;
1165
1166         fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1167         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1168                 goto unlock;
1169
1170         entry = pmd_mkyoung(orig_pmd);
1171         haddr = fe->address & HPAGE_PMD_MASK;
1172         if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1173                                 fe->flags & FAULT_FLAG_WRITE))
1174                 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1175
1176 unlock:
1177         spin_unlock(fe->ptl);
1178 }
1179
1180 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1181                 struct page *page)
1182 {
1183         struct vm_area_struct *vma = fe->vma;
1184         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1185         struct mem_cgroup *memcg;
1186         pgtable_t pgtable;
1187         pmd_t _pmd;
1188         int ret = 0, i;
1189         struct page **pages;
1190         unsigned long mmun_start;       /* For mmu_notifiers */
1191         unsigned long mmun_end;         /* For mmu_notifiers */
1192
1193         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1194                         GFP_KERNEL);
1195         if (unlikely(!pages)) {
1196                 ret |= VM_FAULT_OOM;
1197                 goto out;
1198         }
1199
1200         for (i = 0; i < HPAGE_PMD_NR; i++) {
1201                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1202                                                __GFP_OTHER_NODE, vma,
1203                                                fe->address, page_to_nid(page));
1204                 if (unlikely(!pages[i] ||
1205                              mem_cgroup_try_charge(pages[i], vma->vm_mm,
1206                                      GFP_KERNEL, &memcg, false))) {
1207                         if (pages[i])
1208                                 put_page(pages[i]);
1209                         while (--i >= 0) {
1210                                 memcg = (void *)page_private(pages[i]);
1211                                 set_page_private(pages[i], 0);
1212                                 mem_cgroup_cancel_charge(pages[i], memcg,
1213                                                 false);
1214                                 put_page(pages[i]);
1215                         }
1216                         kfree(pages);
1217                         ret |= VM_FAULT_OOM;
1218                         goto out;
1219                 }
1220                 set_page_private(pages[i], (unsigned long)memcg);
1221         }
1222
1223         for (i = 0; i < HPAGE_PMD_NR; i++) {
1224                 copy_user_highpage(pages[i], page + i,
1225                                    haddr + PAGE_SIZE * i, vma);
1226                 __SetPageUptodate(pages[i]);
1227                 cond_resched();
1228         }
1229
1230         mmun_start = haddr;
1231         mmun_end   = haddr + HPAGE_PMD_SIZE;
1232         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1233
1234         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1235         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1236                 goto out_free_pages;
1237         VM_BUG_ON_PAGE(!PageHead(page), page);
1238
1239         pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1240         /* leave pmd empty until pte is filled */
1241
1242         pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1243         pmd_populate(vma->vm_mm, &_pmd, pgtable);
1244
1245         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1246                 pte_t entry;
1247                 entry = mk_pte(pages[i], vma->vm_page_prot);
1248                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1249                 memcg = (void *)page_private(pages[i]);
1250                 set_page_private(pages[i], 0);
1251                 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1252                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1253                 lru_cache_add_active_or_unevictable(pages[i], vma);
1254                 fe->pte = pte_offset_map(&_pmd, haddr);
1255                 VM_BUG_ON(!pte_none(*fe->pte));
1256                 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1257                 pte_unmap(fe->pte);
1258         }
1259         kfree(pages);
1260
1261         smp_wmb(); /* make pte visible before pmd */
1262         pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1263         page_remove_rmap(page, true);
1264         spin_unlock(fe->ptl);
1265
1266         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1267
1268         ret |= VM_FAULT_WRITE;
1269         put_page(page);
1270
1271 out:
1272         return ret;
1273
1274 out_free_pages:
1275         spin_unlock(fe->ptl);
1276         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1277         for (i = 0; i < HPAGE_PMD_NR; i++) {
1278                 memcg = (void *)page_private(pages[i]);
1279                 set_page_private(pages[i], 0);
1280                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1281                 put_page(pages[i]);
1282         }
1283         kfree(pages);
1284         goto out;
1285 }
1286
1287 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1288 {
1289         struct vm_area_struct *vma = fe->vma;
1290         struct page *page = NULL, *new_page;
1291         struct mem_cgroup *memcg;
1292         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1293         unsigned long mmun_start;       /* For mmu_notifiers */
1294         unsigned long mmun_end;         /* For mmu_notifiers */
1295         gfp_t huge_gfp;                 /* for allocation and charge */
1296         int ret = 0;
1297
1298         fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1299         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1300         if (is_huge_zero_pmd(orig_pmd))
1301                 goto alloc;
1302         spin_lock(fe->ptl);
1303         if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1304                 goto out_unlock;
1305
1306         page = pmd_page(orig_pmd);
1307         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1308         /*
1309          * We can only reuse the page if nobody else maps the huge page or it's
1310          * part.
1311          */
1312         if (page_trans_huge_mapcount(page, NULL) == 1) {
1313                 pmd_t entry;
1314                 entry = pmd_mkyoung(orig_pmd);
1315                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1316                 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
1317                         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1318                 ret |= VM_FAULT_WRITE;
1319                 goto out_unlock;
1320         }
1321         get_page(page);
1322         spin_unlock(fe->ptl);
1323 alloc:
1324         if (transparent_hugepage_enabled(vma) &&
1325             !transparent_hugepage_debug_cow()) {
1326                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1327                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1328         } else
1329                 new_page = NULL;
1330
1331         if (likely(new_page)) {
1332                 prep_transhuge_page(new_page);
1333         } else {
1334                 if (!page) {
1335                         split_huge_pmd(vma, fe->pmd, fe->address);
1336                         ret |= VM_FAULT_FALLBACK;
1337                 } else {
1338                         ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1339                         if (ret & VM_FAULT_OOM) {
1340                                 split_huge_pmd(vma, fe->pmd, fe->address);
1341                                 ret |= VM_FAULT_FALLBACK;
1342                         }
1343                         put_page(page);
1344                 }
1345                 count_vm_event(THP_FAULT_FALLBACK);
1346                 goto out;
1347         }
1348
1349         if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1350                                         huge_gfp, &memcg, true))) {
1351                 put_page(new_page);
1352                 split_huge_pmd(vma, fe->pmd, fe->address);
1353                 if (page)
1354                         put_page(page);
1355                 ret |= VM_FAULT_FALLBACK;
1356                 count_vm_event(THP_FAULT_FALLBACK);
1357                 goto out;
1358         }
1359
1360         count_vm_event(THP_FAULT_ALLOC);
1361
1362         if (!page)
1363                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1364         else
1365                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1366         __SetPageUptodate(new_page);
1367
1368         mmun_start = haddr;
1369         mmun_end   = haddr + HPAGE_PMD_SIZE;
1370         mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1371
1372         spin_lock(fe->ptl);
1373         if (page)
1374                 put_page(page);
1375         if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1376                 spin_unlock(fe->ptl);
1377                 mem_cgroup_cancel_charge(new_page, memcg, true);
1378                 put_page(new_page);
1379                 goto out_mn;
1380         } else {
1381                 pmd_t entry;
1382                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1383                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1384                 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1385                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1386                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1387                 lru_cache_add_active_or_unevictable(new_page, vma);
1388                 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1389                 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1390                 if (!page) {
1391                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1392                         put_huge_zero_page();
1393                 } else {
1394                         VM_BUG_ON_PAGE(!PageHead(page), page);
1395                         page_remove_rmap(page, true);
1396                         put_page(page);
1397                 }
1398                 ret |= VM_FAULT_WRITE;
1399         }
1400         spin_unlock(fe->ptl);
1401 out_mn:
1402         mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1403 out:
1404         return ret;
1405 out_unlock:
1406         spin_unlock(fe->ptl);
1407         return ret;
1408 }
1409
1410 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1411                                    unsigned long addr,
1412                                    pmd_t *pmd,
1413                                    unsigned int flags)
1414 {
1415         struct mm_struct *mm = vma->vm_mm;
1416         struct page *page = NULL;
1417
1418         assert_spin_locked(pmd_lockptr(mm, pmd));
1419
1420         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1421                 goto out;
1422
1423         /* Avoid dumping huge zero page */
1424         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1425                 return ERR_PTR(-EFAULT);
1426
1427         /* Full NUMA hinting faults to serialise migration in fault paths */
1428         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1429                 goto out;
1430
1431         page = pmd_page(*pmd);
1432         VM_BUG_ON_PAGE(!PageHead(page), page);
1433         if (flags & FOLL_TOUCH)
1434                 touch_pmd(vma, addr, pmd);
1435         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1436                 /*
1437                  * We don't mlock() pte-mapped THPs. This way we can avoid
1438                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1439                  *
1440                  * For anon THP:
1441                  *
1442                  * In most cases the pmd is the only mapping of the page as we
1443                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1444                  * writable private mappings in populate_vma_page_range().
1445                  *
1446                  * The only scenario when we have the page shared here is if we
1447                  * mlocking read-only mapping shared over fork(). We skip
1448                  * mlocking such pages.
1449                  *
1450                  * For file THP:
1451                  *
1452                  * We can expect PageDoubleMap() to be stable under page lock:
1453                  * for file pages we set it in page_add_file_rmap(), which
1454                  * requires page to be locked.
1455                  */
1456
1457                 if (PageAnon(page) && compound_mapcount(page) != 1)
1458                         goto skip_mlock;
1459                 if (PageDoubleMap(page) || !page->mapping)
1460                         goto skip_mlock;
1461                 if (!trylock_page(page))
1462                         goto skip_mlock;
1463                 lru_add_drain();
1464                 if (page->mapping && !PageDoubleMap(page))
1465                         mlock_vma_page(page);
1466                 unlock_page(page);
1467         }
1468 skip_mlock:
1469         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1470         VM_BUG_ON_PAGE(!PageCompound(page), page);
1471         if (flags & FOLL_GET)
1472                 get_page(page);
1473
1474 out:
1475         return page;
1476 }
1477
1478 /* NUMA hinting page fault entry point for trans huge pmds */
1479 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1480 {
1481         struct vm_area_struct *vma = fe->vma;
1482         struct anon_vma *anon_vma = NULL;
1483         struct page *page;
1484         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1485         int page_nid = -1, this_nid = numa_node_id();
1486         int target_nid, last_cpupid = -1;
1487         bool page_locked;
1488         bool migrated = false;
1489         bool was_writable;
1490         int flags = 0;
1491
1492         /* A PROT_NONE fault should not end up here */
1493         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1494
1495         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1496         if (unlikely(!pmd_same(pmd, *fe->pmd)))
1497                 goto out_unlock;
1498
1499         /*
1500          * If there are potential migrations, wait for completion and retry
1501          * without disrupting NUMA hinting information. Do not relock and
1502          * check_same as the page may no longer be mapped.
1503          */
1504         if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1505                 page = pmd_page(*fe->pmd);
1506                 spin_unlock(fe->ptl);
1507                 wait_on_page_locked(page);
1508                 goto out;
1509         }
1510
1511         page = pmd_page(pmd);
1512         BUG_ON(is_huge_zero_page(page));
1513         page_nid = page_to_nid(page);
1514         last_cpupid = page_cpupid_last(page);
1515         count_vm_numa_event(NUMA_HINT_FAULTS);
1516         if (page_nid == this_nid) {
1517                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1518                 flags |= TNF_FAULT_LOCAL;
1519         }
1520
1521         /* See similar comment in do_numa_page for explanation */
1522         if (!(vma->vm_flags & VM_WRITE))
1523                 flags |= TNF_NO_GROUP;
1524
1525         /*
1526          * Acquire the page lock to serialise THP migrations but avoid dropping
1527          * page_table_lock if at all possible
1528          */
1529         page_locked = trylock_page(page);
1530         target_nid = mpol_misplaced(page, vma, haddr);
1531         if (target_nid == -1) {
1532                 /* If the page was locked, there are no parallel migrations */
1533                 if (page_locked)
1534                         goto clear_pmdnuma;
1535         }
1536
1537         /* Migration could have started since the pmd_trans_migrating check */
1538         if (!page_locked) {
1539                 spin_unlock(fe->ptl);
1540                 wait_on_page_locked(page);
1541                 page_nid = -1;
1542                 goto out;
1543         }
1544
1545         /*
1546          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1547          * to serialises splits
1548          */
1549         get_page(page);
1550         spin_unlock(fe->ptl);
1551         anon_vma = page_lock_anon_vma_read(page);
1552
1553         /* Confirm the PMD did not change while page_table_lock was released */
1554         spin_lock(fe->ptl);
1555         if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1556                 unlock_page(page);
1557                 put_page(page);
1558                 page_nid = -1;
1559                 goto out_unlock;
1560         }
1561
1562         /* Bail if we fail to protect against THP splits for any reason */
1563         if (unlikely(!anon_vma)) {
1564                 put_page(page);
1565                 page_nid = -1;
1566                 goto clear_pmdnuma;
1567         }
1568
1569         /*
1570          * Migrate the THP to the requested node, returns with page unlocked
1571          * and access rights restored.
1572          */
1573         spin_unlock(fe->ptl);
1574         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1575                                 fe->pmd, pmd, fe->address, page, target_nid);
1576         if (migrated) {
1577                 flags |= TNF_MIGRATED;
1578                 page_nid = target_nid;
1579         } else
1580                 flags |= TNF_MIGRATE_FAIL;
1581
1582         goto out;
1583 clear_pmdnuma:
1584         BUG_ON(!PageLocked(page));
1585         was_writable = pmd_write(pmd);
1586         pmd = pmd_modify(pmd, vma->vm_page_prot);
1587         pmd = pmd_mkyoung(pmd);
1588         if (was_writable)
1589                 pmd = pmd_mkwrite(pmd);
1590         set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1591         update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1592         unlock_page(page);
1593 out_unlock:
1594         spin_unlock(fe->ptl);
1595
1596 out:
1597         if (anon_vma)
1598                 page_unlock_anon_vma_read(anon_vma);
1599
1600         if (page_nid != -1)
1601                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1602
1603         return 0;
1604 }
1605
1606 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1607                 pmd_t *pmd, unsigned long addr, unsigned long next)
1608
1609 {
1610         spinlock_t *ptl;
1611         pmd_t orig_pmd;
1612         struct page *page;
1613         struct mm_struct *mm = tlb->mm;
1614         int ret = 0;
1615
1616         ptl = pmd_trans_huge_lock(pmd, vma);
1617         if (!ptl)
1618                 goto out_unlocked;
1619
1620         orig_pmd = *pmd;
1621         if (is_huge_zero_pmd(orig_pmd)) {
1622                 ret = 1;
1623                 goto out;
1624         }
1625
1626         page = pmd_page(orig_pmd);
1627         /*
1628          * If other processes are mapping this page, we couldn't discard
1629          * the page unless they all do MADV_FREE so let's skip the page.
1630          */
1631         if (page_mapcount(page) != 1)
1632                 goto out;
1633
1634         if (!trylock_page(page))
1635                 goto out;
1636
1637         /*
1638          * If user want to discard part-pages of THP, split it so MADV_FREE
1639          * will deactivate only them.
1640          */
1641         if (next - addr != HPAGE_PMD_SIZE) {
1642                 get_page(page);
1643                 spin_unlock(ptl);
1644                 split_huge_page(page);
1645                 put_page(page);
1646                 unlock_page(page);
1647                 goto out_unlocked;
1648         }
1649
1650         if (PageDirty(page))
1651                 ClearPageDirty(page);
1652         unlock_page(page);
1653
1654         if (PageActive(page))
1655                 deactivate_page(page);
1656
1657         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1658                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1659                         tlb->fullmm);
1660                 orig_pmd = pmd_mkold(orig_pmd);
1661                 orig_pmd = pmd_mkclean(orig_pmd);
1662
1663                 set_pmd_at(mm, addr, pmd, orig_pmd);
1664                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1665         }
1666         ret = 1;
1667 out:
1668         spin_unlock(ptl);
1669 out_unlocked:
1670         return ret;
1671 }
1672
1673 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1674                  pmd_t *pmd, unsigned long addr)
1675 {
1676         pmd_t orig_pmd;
1677         spinlock_t *ptl;
1678
1679         ptl = __pmd_trans_huge_lock(pmd, vma);
1680         if (!ptl)
1681                 return 0;
1682         /*
1683          * For architectures like ppc64 we look at deposited pgtable
1684          * when calling pmdp_huge_get_and_clear. So do the
1685          * pgtable_trans_huge_withdraw after finishing pmdp related
1686          * operations.
1687          */
1688         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1689                         tlb->fullmm);
1690         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1691         if (vma_is_dax(vma)) {
1692                 spin_unlock(ptl);
1693                 if (is_huge_zero_pmd(orig_pmd))
1694                         tlb_remove_page(tlb, pmd_page(orig_pmd));
1695         } else if (is_huge_zero_pmd(orig_pmd)) {
1696                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1697                 atomic_long_dec(&tlb->mm->nr_ptes);
1698                 spin_unlock(ptl);
1699                 tlb_remove_page(tlb, pmd_page(orig_pmd));
1700         } else {
1701                 struct page *page = pmd_page(orig_pmd);
1702                 page_remove_rmap(page, true);
1703                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1704                 VM_BUG_ON_PAGE(!PageHead(page), page);
1705                 if (PageAnon(page)) {
1706                         pgtable_t pgtable;
1707                         pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1708                         pte_free(tlb->mm, pgtable);
1709                         atomic_long_dec(&tlb->mm->nr_ptes);
1710                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1711                 } else {
1712                         add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1713                 }
1714                 spin_unlock(ptl);
1715                 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1716         }
1717         return 1;
1718 }
1719
1720 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1721                   unsigned long new_addr, unsigned long old_end,
1722                   pmd_t *old_pmd, pmd_t *new_pmd)
1723 {
1724         spinlock_t *old_ptl, *new_ptl;
1725         pmd_t pmd;
1726         struct mm_struct *mm = vma->vm_mm;
1727
1728         if ((old_addr & ~HPAGE_PMD_MASK) ||
1729             (new_addr & ~HPAGE_PMD_MASK) ||
1730             old_end - old_addr < HPAGE_PMD_SIZE)
1731                 return false;
1732
1733         /*
1734          * The destination pmd shouldn't be established, free_pgtables()
1735          * should have release it.
1736          */
1737         if (WARN_ON(!pmd_none(*new_pmd))) {
1738                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1739                 return false;
1740         }
1741
1742         /*
1743          * We don't have to worry about the ordering of src and dst
1744          * ptlocks because exclusive mmap_sem prevents deadlock.
1745          */
1746         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1747         if (old_ptl) {
1748                 new_ptl = pmd_lockptr(mm, new_pmd);
1749                 if (new_ptl != old_ptl)
1750                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1751                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1752                 VM_BUG_ON(!pmd_none(*new_pmd));
1753
1754                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1755                                 vma_is_anonymous(vma)) {
1756                         pgtable_t pgtable;
1757                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1759                 }
1760                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1761                 if (new_ptl != old_ptl)
1762                         spin_unlock(new_ptl);
1763                 spin_unlock(old_ptl);
1764                 return true;
1765         }
1766         return false;
1767 }
1768
1769 /*
1770  * Returns
1771  *  - 0 if PMD could not be locked
1772  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1773  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1774  */
1775 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1776                 unsigned long addr, pgprot_t newprot, int prot_numa)
1777 {
1778         struct mm_struct *mm = vma->vm_mm;
1779         spinlock_t *ptl;
1780         int ret = 0;
1781
1782         ptl = __pmd_trans_huge_lock(pmd, vma);
1783         if (ptl) {
1784                 pmd_t entry;
1785                 bool preserve_write = prot_numa && pmd_write(*pmd);
1786                 ret = 1;
1787
1788                 /*
1789                  * Avoid trapping faults against the zero page. The read-only
1790                  * data is likely to be read-cached on the local CPU and
1791                  * local/remote hits to the zero page are not interesting.
1792                  */
1793                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1794                         spin_unlock(ptl);
1795                         return ret;
1796                 }
1797
1798                 if (!prot_numa || !pmd_protnone(*pmd)) {
1799                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1800                         entry = pmd_modify(entry, newprot);
1801                         if (preserve_write)
1802                                 entry = pmd_mkwrite(entry);
1803                         ret = HPAGE_PMD_NR;
1804                         set_pmd_at(mm, addr, pmd, entry);
1805                         BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1806                                         pmd_write(entry));
1807                 }
1808                 spin_unlock(ptl);
1809         }
1810
1811         return ret;
1812 }
1813
1814 /*
1815  * Returns true if a given pmd maps a thp, false otherwise.
1816  *
1817  * Note that if it returns true, this routine returns without unlocking page
1818  * table lock. So callers must unlock it.
1819  */
1820 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1821 {
1822         spinlock_t *ptl;
1823         ptl = pmd_lock(vma->vm_mm, pmd);
1824         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1825                 return ptl;
1826         spin_unlock(ptl);
1827         return NULL;
1828 }
1829
1830 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1831
1832 int hugepage_madvise(struct vm_area_struct *vma,
1833                      unsigned long *vm_flags, int advice)
1834 {
1835         switch (advice) {
1836         case MADV_HUGEPAGE:
1837 #ifdef CONFIG_S390
1838                 /*
1839                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1840                  * can't handle this properly after s390_enable_sie, so we simply
1841                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1842                  */
1843                 if (mm_has_pgste(vma->vm_mm))
1844                         return 0;
1845 #endif
1846                 /*
1847                  * Be somewhat over-protective like KSM for now!
1848                  */
1849                 if (*vm_flags & VM_NO_THP)
1850                         return -EINVAL;
1851                 *vm_flags &= ~VM_NOHUGEPAGE;
1852                 *vm_flags |= VM_HUGEPAGE;
1853                 /*
1854                  * If the vma become good for khugepaged to scan,
1855                  * register it here without waiting a page fault that
1856                  * may not happen any time soon.
1857                  */
1858                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1859                         return -ENOMEM;
1860                 break;
1861         case MADV_NOHUGEPAGE:
1862                 /*
1863                  * Be somewhat over-protective like KSM for now!
1864                  */
1865                 if (*vm_flags & VM_NO_THP)
1866                         return -EINVAL;
1867                 *vm_flags &= ~VM_HUGEPAGE;
1868                 *vm_flags |= VM_NOHUGEPAGE;
1869                 /*
1870                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1871                  * this vma even if we leave the mm registered in khugepaged if
1872                  * it got registered before VM_NOHUGEPAGE was set.
1873                  */
1874                 break;
1875         }
1876
1877         return 0;
1878 }
1879
1880 static int __init khugepaged_slab_init(void)
1881 {
1882         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1883                                           sizeof(struct mm_slot),
1884                                           __alignof__(struct mm_slot), 0, NULL);
1885         if (!mm_slot_cache)
1886                 return -ENOMEM;
1887
1888         return 0;
1889 }
1890
1891 static void __init khugepaged_slab_exit(void)
1892 {
1893         kmem_cache_destroy(mm_slot_cache);
1894 }
1895
1896 static inline struct mm_slot *alloc_mm_slot(void)
1897 {
1898         if (!mm_slot_cache)     /* initialization failed */
1899                 return NULL;
1900         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1901 }
1902
1903 static inline void free_mm_slot(struct mm_slot *mm_slot)
1904 {
1905         kmem_cache_free(mm_slot_cache, mm_slot);
1906 }
1907
1908 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1909 {
1910         struct mm_slot *mm_slot;
1911
1912         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1913                 if (mm == mm_slot->mm)
1914                         return mm_slot;
1915
1916         return NULL;
1917 }
1918
1919 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1920                                     struct mm_slot *mm_slot)
1921 {
1922         mm_slot->mm = mm;
1923         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1924 }
1925
1926 static inline int khugepaged_test_exit(struct mm_struct *mm)
1927 {
1928         return atomic_read(&mm->mm_users) == 0;
1929 }
1930
1931 int __khugepaged_enter(struct mm_struct *mm)
1932 {
1933         struct mm_slot *mm_slot;
1934         int wakeup;
1935
1936         mm_slot = alloc_mm_slot();
1937         if (!mm_slot)
1938                 return -ENOMEM;
1939
1940         /* __khugepaged_exit() must not run from under us */
1941         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1942         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1943                 free_mm_slot(mm_slot);
1944                 return 0;
1945         }
1946
1947         spin_lock(&khugepaged_mm_lock);
1948         insert_to_mm_slots_hash(mm, mm_slot);
1949         /*
1950          * Insert just behind the scanning cursor, to let the area settle
1951          * down a little.
1952          */
1953         wakeup = list_empty(&khugepaged_scan.mm_head);
1954         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1955         spin_unlock(&khugepaged_mm_lock);
1956
1957         atomic_inc(&mm->mm_count);
1958         if (wakeup)
1959                 wake_up_interruptible(&khugepaged_wait);
1960
1961         return 0;
1962 }
1963
1964 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1965                                unsigned long vm_flags)
1966 {
1967         unsigned long hstart, hend;
1968         if (!vma->anon_vma)
1969                 /*
1970                  * Not yet faulted in so we will register later in the
1971                  * page fault if needed.
1972                  */
1973                 return 0;
1974         if (vma->vm_ops || (vm_flags & VM_NO_THP))
1975                 /* khugepaged not yet working on file or special mappings */
1976                 return 0;
1977         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1978         hend = vma->vm_end & HPAGE_PMD_MASK;
1979         if (hstart < hend)
1980                 return khugepaged_enter(vma, vm_flags);
1981         return 0;
1982 }
1983
1984 void __khugepaged_exit(struct mm_struct *mm)
1985 {
1986         struct mm_slot *mm_slot;
1987         int free = 0;
1988
1989         spin_lock(&khugepaged_mm_lock);
1990         mm_slot = get_mm_slot(mm);
1991         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1992                 hash_del(&mm_slot->hash);
1993                 list_del(&mm_slot->mm_node);
1994                 free = 1;
1995         }
1996         spin_unlock(&khugepaged_mm_lock);
1997
1998         if (free) {
1999                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2000                 free_mm_slot(mm_slot);
2001                 mmdrop(mm);
2002         } else if (mm_slot) {
2003                 /*
2004                  * This is required to serialize against
2005                  * khugepaged_test_exit() (which is guaranteed to run
2006                  * under mmap sem read mode). Stop here (after we
2007                  * return all pagetables will be destroyed) until
2008                  * khugepaged has finished working on the pagetables
2009                  * under the mmap_sem.
2010                  */
2011                 down_write(&mm->mmap_sem);
2012                 up_write(&mm->mmap_sem);
2013         }
2014 }
2015
2016 static void release_pte_page(struct page *page)
2017 {
2018         /* 0 stands for page_is_file_cache(page) == false */
2019         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2020         unlock_page(page);
2021         putback_lru_page(page);
2022 }
2023
2024 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2025 {
2026         while (--_pte >= pte) {
2027                 pte_t pteval = *_pte;
2028                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2029                         release_pte_page(pte_page(pteval));
2030         }
2031 }
2032
2033 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2034                                         unsigned long address,
2035                                         pte_t *pte)
2036 {
2037         struct page *page = NULL;
2038         pte_t *_pte;
2039         int none_or_zero = 0, result = 0;
2040         bool referenced = false, writable = false;
2041
2042         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2043              _pte++, address += PAGE_SIZE) {
2044                 pte_t pteval = *_pte;
2045                 if (pte_none(pteval) || (pte_present(pteval) &&
2046                                 is_zero_pfn(pte_pfn(pteval)))) {
2047                         if (!userfaultfd_armed(vma) &&
2048                             ++none_or_zero <= khugepaged_max_ptes_none) {
2049                                 continue;
2050                         } else {
2051                                 result = SCAN_EXCEED_NONE_PTE;
2052                                 goto out;
2053                         }
2054                 }
2055                 if (!pte_present(pteval)) {
2056                         result = SCAN_PTE_NON_PRESENT;
2057                         goto out;
2058                 }
2059                 page = vm_normal_page(vma, address, pteval);
2060                 if (unlikely(!page)) {
2061                         result = SCAN_PAGE_NULL;
2062                         goto out;
2063                 }
2064
2065                 VM_BUG_ON_PAGE(PageCompound(page), page);
2066                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2067                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2068
2069                 /*
2070                  * We can do it before isolate_lru_page because the
2071                  * page can't be freed from under us. NOTE: PG_lock
2072                  * is needed to serialize against split_huge_page
2073                  * when invoked from the VM.
2074                  */
2075                 if (!trylock_page(page)) {
2076                         result = SCAN_PAGE_LOCK;
2077                         goto out;
2078                 }
2079
2080                 /*
2081                  * cannot use mapcount: can't collapse if there's a gup pin.
2082                  * The page must only be referenced by the scanned process
2083                  * and page swap cache.
2084                  */
2085                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2086                         unlock_page(page);
2087                         result = SCAN_PAGE_COUNT;
2088                         goto out;
2089                 }
2090                 if (pte_write(pteval)) {
2091                         writable = true;
2092                 } else {
2093                         if (PageSwapCache(page) &&
2094                             !reuse_swap_page(page, NULL)) {
2095                                 unlock_page(page);
2096                                 result = SCAN_SWAP_CACHE_PAGE;
2097                                 goto out;
2098                         }
2099                         /*
2100                          * Page is not in the swap cache. It can be collapsed
2101                          * into a THP.
2102                          */
2103                 }
2104
2105                 /*
2106                  * Isolate the page to avoid collapsing an hugepage
2107                  * currently in use by the VM.
2108                  */
2109                 if (isolate_lru_page(page)) {
2110                         unlock_page(page);
2111                         result = SCAN_DEL_PAGE_LRU;
2112                         goto out;
2113                 }
2114                 /* 0 stands for page_is_file_cache(page) == false */
2115                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2116                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2117                 VM_BUG_ON_PAGE(PageLRU(page), page);
2118
2119                 /* If there is no mapped pte young don't collapse the page */
2120                 if (pte_young(pteval) ||
2121                     page_is_young(page) || PageReferenced(page) ||
2122                     mmu_notifier_test_young(vma->vm_mm, address))
2123                         referenced = true;
2124         }
2125         if (likely(writable)) {
2126                 if (likely(referenced)) {
2127                         result = SCAN_SUCCEED;
2128                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2129                                                             referenced, writable, result);
2130                         return 1;
2131                 }
2132         } else {
2133                 result = SCAN_PAGE_RO;
2134         }
2135
2136 out:
2137         release_pte_pages(pte, _pte);
2138         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2139                                             referenced, writable, result);
2140         return 0;
2141 }
2142
2143 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2144                                       struct vm_area_struct *vma,
2145                                       unsigned long address,
2146                                       spinlock_t *ptl)
2147 {
2148         pte_t *_pte;
2149         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2150                 pte_t pteval = *_pte;
2151                 struct page *src_page;
2152
2153                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2154                         clear_user_highpage(page, address);
2155                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2156                         if (is_zero_pfn(pte_pfn(pteval))) {
2157                                 /*
2158                                  * ptl mostly unnecessary.
2159                                  */
2160                                 spin_lock(ptl);
2161                                 /*
2162                                  * paravirt calls inside pte_clear here are
2163                                  * superfluous.
2164                                  */
2165                                 pte_clear(vma->vm_mm, address, _pte);
2166                                 spin_unlock(ptl);
2167                         }
2168                 } else {
2169                         src_page = pte_page(pteval);
2170                         copy_user_highpage(page, src_page, address, vma);
2171                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2172                         release_pte_page(src_page);
2173                         /*
2174                          * ptl mostly unnecessary, but preempt has to
2175                          * be disabled to update the per-cpu stats
2176                          * inside page_remove_rmap().
2177                          */
2178                         spin_lock(ptl);
2179                         /*
2180                          * paravirt calls inside pte_clear here are
2181                          * superfluous.
2182                          */
2183                         pte_clear(vma->vm_mm, address, _pte);
2184                         page_remove_rmap(src_page, false);
2185                         spin_unlock(ptl);
2186                         free_page_and_swap_cache(src_page);
2187                 }
2188
2189                 address += PAGE_SIZE;
2190                 page++;
2191         }
2192 }
2193
2194 static void khugepaged_alloc_sleep(void)
2195 {
2196         DEFINE_WAIT(wait);
2197
2198         add_wait_queue(&khugepaged_wait, &wait);
2199         freezable_schedule_timeout_interruptible(
2200                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2201         remove_wait_queue(&khugepaged_wait, &wait);
2202 }
2203
2204 static int khugepaged_node_load[MAX_NUMNODES];
2205
2206 static bool khugepaged_scan_abort(int nid)
2207 {
2208         int i;
2209
2210         /*
2211          * If zone_reclaim_mode is disabled, then no extra effort is made to
2212          * allocate memory locally.
2213          */
2214         if (!zone_reclaim_mode)
2215                 return false;
2216
2217         /* If there is a count for this node already, it must be acceptable */
2218         if (khugepaged_node_load[nid])
2219                 return false;
2220
2221         for (i = 0; i < MAX_NUMNODES; i++) {
2222                 if (!khugepaged_node_load[i])
2223                         continue;
2224                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2225                         return true;
2226         }
2227         return false;
2228 }
2229
2230 #ifdef CONFIG_NUMA
2231 static int khugepaged_find_target_node(void)
2232 {
2233         static int last_khugepaged_target_node = NUMA_NO_NODE;
2234         int nid, target_node = 0, max_value = 0;
2235
2236         /* find first node with max normal pages hit */
2237         for (nid = 0; nid < MAX_NUMNODES; nid++)
2238                 if (khugepaged_node_load[nid] > max_value) {
2239                         max_value = khugepaged_node_load[nid];
2240                         target_node = nid;
2241                 }
2242
2243         /* do some balance if several nodes have the same hit record */
2244         if (target_node <= last_khugepaged_target_node)
2245                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2246                                 nid++)
2247                         if (max_value == khugepaged_node_load[nid]) {
2248                                 target_node = nid;
2249                                 break;
2250                         }
2251
2252         last_khugepaged_target_node = target_node;
2253         return target_node;
2254 }
2255
2256 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2257 {
2258         if (IS_ERR(*hpage)) {
2259                 if (!*wait)
2260                         return false;
2261
2262                 *wait = false;
2263                 *hpage = NULL;
2264                 khugepaged_alloc_sleep();
2265         } else if (*hpage) {
2266                 put_page(*hpage);
2267                 *hpage = NULL;
2268         }
2269
2270         return true;
2271 }
2272
2273 static struct page *
2274 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2275                        unsigned long address, int node)
2276 {
2277         VM_BUG_ON_PAGE(*hpage, *hpage);
2278
2279         /*
2280          * Before allocating the hugepage, release the mmap_sem read lock.
2281          * The allocation can take potentially a long time if it involves
2282          * sync compaction, and we do not need to hold the mmap_sem during
2283          * that. We will recheck the vma after taking it again in write mode.
2284          */
2285         up_read(&mm->mmap_sem);
2286
2287         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2288         if (unlikely(!*hpage)) {
2289                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2290                 *hpage = ERR_PTR(-ENOMEM);
2291                 return NULL;
2292         }
2293
2294         prep_transhuge_page(*hpage);
2295         count_vm_event(THP_COLLAPSE_ALLOC);
2296         return *hpage;
2297 }
2298 #else
2299 static int khugepaged_find_target_node(void)
2300 {
2301         return 0;
2302 }
2303
2304 static inline struct page *alloc_khugepaged_hugepage(void)
2305 {
2306         struct page *page;
2307
2308         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2309                            HPAGE_PMD_ORDER);
2310         if (page)
2311                 prep_transhuge_page(page);
2312         return page;
2313 }
2314
2315 static struct page *khugepaged_alloc_hugepage(bool *wait)
2316 {
2317         struct page *hpage;
2318
2319         do {
2320                 hpage = alloc_khugepaged_hugepage();
2321                 if (!hpage) {
2322                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2323                         if (!*wait)
2324                                 return NULL;
2325
2326                         *wait = false;
2327                         khugepaged_alloc_sleep();
2328                 } else
2329                         count_vm_event(THP_COLLAPSE_ALLOC);
2330         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2331
2332         return hpage;
2333 }
2334
2335 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2336 {
2337         if (!*hpage)
2338                 *hpage = khugepaged_alloc_hugepage(wait);
2339
2340         if (unlikely(!*hpage))
2341                 return false;
2342
2343         return true;
2344 }
2345
2346 static struct page *
2347 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2348                        unsigned long address, int node)
2349 {
2350         up_read(&mm->mmap_sem);
2351         VM_BUG_ON(!*hpage);
2352
2353         return  *hpage;
2354 }
2355 #endif
2356
2357 static bool hugepage_vma_check(struct vm_area_struct *vma)
2358 {
2359         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2360             (vma->vm_flags & VM_NOHUGEPAGE))
2361                 return false;
2362         if (!vma->anon_vma || vma->vm_ops)
2363                 return false;
2364         if (is_vma_temporary_stack(vma))
2365                 return false;
2366         return !(vma->vm_flags & VM_NO_THP);
2367 }
2368
2369 /*
2370  * If mmap_sem temporarily dropped, revalidate vma
2371  * before taking mmap_sem.
2372  * Return 0 if succeeds, otherwise return none-zero
2373  * value (scan code).
2374  */
2375
2376 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2377 {
2378         struct vm_area_struct *vma;
2379         unsigned long hstart, hend;
2380
2381         if (unlikely(khugepaged_test_exit(mm)))
2382                 return SCAN_ANY_PROCESS;
2383
2384         vma = find_vma(mm, address);
2385         if (!vma)
2386                 return SCAN_VMA_NULL;
2387
2388         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2389         hend = vma->vm_end & HPAGE_PMD_MASK;
2390         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2391                 return SCAN_ADDRESS_RANGE;
2392         if (!hugepage_vma_check(vma))
2393                 return SCAN_VMA_CHECK;
2394         return 0;
2395 }
2396
2397 /*
2398  * Bring missing pages in from swap, to complete THP collapse.
2399  * Only done if khugepaged_scan_pmd believes it is worthwhile.
2400  *
2401  * Called and returns without pte mapped or spinlocks held,
2402  * but with mmap_sem held to protect against vma changes.
2403  */
2404
2405 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2406                                         struct vm_area_struct *vma,
2407                                         unsigned long address, pmd_t *pmd)
2408 {
2409         pte_t pteval;
2410         int swapped_in = 0, ret = 0;
2411         struct fault_env fe = {
2412                 .vma = vma,
2413                 .address = address,
2414                 .flags = FAULT_FLAG_ALLOW_RETRY,
2415                 .pmd = pmd,
2416         };
2417
2418         fe.pte = pte_offset_map(pmd, address);
2419         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2420                         fe.pte++, fe.address += PAGE_SIZE) {
2421                 pteval = *fe.pte;
2422                 if (!is_swap_pte(pteval))
2423                         continue;
2424                 swapped_in++;
2425                 ret = do_swap_page(&fe, pteval);
2426                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2427                 if (ret & VM_FAULT_RETRY) {
2428                         down_read(&mm->mmap_sem);
2429                         /* vma is no longer available, don't continue to swapin */
2430                         if (hugepage_vma_revalidate(mm, address))
2431                                 return false;
2432                         /* check if the pmd is still valid */
2433                         if (mm_find_pmd(mm, address) != pmd)
2434                                 return false;
2435                 }
2436                 if (ret & VM_FAULT_ERROR) {
2437                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2438                         return false;
2439                 }
2440                 /* pte is unmapped now, we need to map it */
2441                 fe.pte = pte_offset_map(pmd, fe.address);
2442         }
2443         fe.pte--;
2444         pte_unmap(fe.pte);
2445         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2446         return true;
2447 }
2448
2449 static void collapse_huge_page(struct mm_struct *mm,
2450                                    unsigned long address,
2451                                    struct page **hpage,
2452                                    struct vm_area_struct *vma,
2453                                    int node)
2454 {
2455         pmd_t *pmd, _pmd;
2456         pte_t *pte;
2457         pgtable_t pgtable;
2458         struct page *new_page;
2459         spinlock_t *pmd_ptl, *pte_ptl;
2460         int isolated = 0, result = 0;
2461         struct mem_cgroup *memcg;
2462         unsigned long mmun_start;       /* For mmu_notifiers */
2463         unsigned long mmun_end;         /* For mmu_notifiers */
2464         gfp_t gfp;
2465
2466         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2467
2468         /* Only allocate from the target node */
2469         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2470
2471         /* release the mmap_sem read lock. */
2472         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2473         if (!new_page) {
2474                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2475                 goto out_nolock;
2476         }
2477
2478         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2479                 result = SCAN_CGROUP_CHARGE_FAIL;
2480                 goto out_nolock;
2481         }
2482
2483         down_read(&mm->mmap_sem);
2484         result = hugepage_vma_revalidate(mm, address);
2485         if (result) {
2486                 mem_cgroup_cancel_charge(new_page, memcg, true);
2487                 up_read(&mm->mmap_sem);
2488                 goto out_nolock;
2489         }
2490
2491         pmd = mm_find_pmd(mm, address);
2492         if (!pmd) {
2493                 result = SCAN_PMD_NULL;
2494                 mem_cgroup_cancel_charge(new_page, memcg, true);
2495                 up_read(&mm->mmap_sem);
2496                 goto out_nolock;
2497         }
2498
2499         /*
2500          * __collapse_huge_page_swapin always returns with mmap_sem locked.
2501          * If it fails, release mmap_sem and jump directly out.
2502          * Continuing to collapse causes inconsistency.
2503          */
2504         if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2505                 mem_cgroup_cancel_charge(new_page, memcg, true);
2506                 up_read(&mm->mmap_sem);
2507                 goto out_nolock;
2508         }
2509
2510         up_read(&mm->mmap_sem);
2511         /*
2512          * Prevent all access to pagetables with the exception of
2513          * gup_fast later handled by the ptep_clear_flush and the VM
2514          * handled by the anon_vma lock + PG_lock.
2515          */
2516         down_write(&mm->mmap_sem);
2517         result = hugepage_vma_revalidate(mm, address);
2518         if (result)
2519                 goto out;
2520         /* check if the pmd is still valid */
2521         if (mm_find_pmd(mm, address) != pmd)
2522                 goto out;
2523
2524         anon_vma_lock_write(vma->anon_vma);
2525
2526         pte = pte_offset_map(pmd, address);
2527         pte_ptl = pte_lockptr(mm, pmd);
2528
2529         mmun_start = address;
2530         mmun_end   = address + HPAGE_PMD_SIZE;
2531         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2532         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2533         /*
2534          * After this gup_fast can't run anymore. This also removes
2535          * any huge TLB entry from the CPU so we won't allow
2536          * huge and small TLB entries for the same virtual address
2537          * to avoid the risk of CPU bugs in that area.
2538          */
2539         _pmd = pmdp_collapse_flush(vma, address, pmd);
2540         spin_unlock(pmd_ptl);
2541         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2542
2543         spin_lock(pte_ptl);
2544         isolated = __collapse_huge_page_isolate(vma, address, pte);
2545         spin_unlock(pte_ptl);
2546
2547         if (unlikely(!isolated)) {
2548                 pte_unmap(pte);
2549                 spin_lock(pmd_ptl);
2550                 BUG_ON(!pmd_none(*pmd));
2551                 /*
2552                  * We can only use set_pmd_at when establishing
2553                  * hugepmds and never for establishing regular pmds that
2554                  * points to regular pagetables. Use pmd_populate for that
2555                  */
2556                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2557                 spin_unlock(pmd_ptl);
2558                 anon_vma_unlock_write(vma->anon_vma);
2559                 result = SCAN_FAIL;
2560                 goto out;
2561         }
2562
2563         /*
2564          * All pages are isolated and locked so anon_vma rmap
2565          * can't run anymore.
2566          */
2567         anon_vma_unlock_write(vma->anon_vma);
2568
2569         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2570         pte_unmap(pte);
2571         __SetPageUptodate(new_page);
2572         pgtable = pmd_pgtable(_pmd);
2573
2574         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2575         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2576
2577         /*
2578          * spin_lock() below is not the equivalent of smp_wmb(), so
2579          * this is needed to avoid the copy_huge_page writes to become
2580          * visible after the set_pmd_at() write.
2581          */
2582         smp_wmb();
2583
2584         spin_lock(pmd_ptl);
2585         BUG_ON(!pmd_none(*pmd));
2586         page_add_new_anon_rmap(new_page, vma, address, true);
2587         mem_cgroup_commit_charge(new_page, memcg, false, true);
2588         lru_cache_add_active_or_unevictable(new_page, vma);
2589         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2590         set_pmd_at(mm, address, pmd, _pmd);
2591         update_mmu_cache_pmd(vma, address, pmd);
2592         spin_unlock(pmd_ptl);
2593
2594         *hpage = NULL;
2595
2596         khugepaged_pages_collapsed++;
2597         result = SCAN_SUCCEED;
2598 out_up_write:
2599         up_write(&mm->mmap_sem);
2600 out_nolock:
2601         trace_mm_collapse_huge_page(mm, isolated, result);
2602         return;
2603 out:
2604         mem_cgroup_cancel_charge(new_page, memcg, true);
2605         goto out_up_write;
2606 }
2607
2608 static int khugepaged_scan_pmd(struct mm_struct *mm,
2609                                struct vm_area_struct *vma,
2610                                unsigned long address,
2611                                struct page **hpage)
2612 {
2613         pmd_t *pmd;
2614         pte_t *pte, *_pte;
2615         int ret = 0, none_or_zero = 0, result = 0;
2616         struct page *page = NULL;
2617         unsigned long _address;
2618         spinlock_t *ptl;
2619         int node = NUMA_NO_NODE, unmapped = 0;
2620         bool writable = false, referenced = false;
2621
2622         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2623
2624         pmd = mm_find_pmd(mm, address);
2625         if (!pmd) {
2626                 result = SCAN_PMD_NULL;
2627                 goto out;
2628         }
2629
2630         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2631         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2632         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2633              _pte++, _address += PAGE_SIZE) {
2634                 pte_t pteval = *_pte;
2635                 if (is_swap_pte(pteval)) {
2636                         if (++unmapped <= khugepaged_max_ptes_swap) {
2637                                 continue;
2638                         } else {
2639                                 result = SCAN_EXCEED_SWAP_PTE;
2640                                 goto out_unmap;
2641                         }
2642                 }
2643                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2644                         if (!userfaultfd_armed(vma) &&
2645                             ++none_or_zero <= khugepaged_max_ptes_none) {
2646                                 continue;
2647                         } else {
2648                                 result = SCAN_EXCEED_NONE_PTE;
2649                                 goto out_unmap;
2650                         }
2651                 }
2652                 if (!pte_present(pteval)) {
2653                         result = SCAN_PTE_NON_PRESENT;
2654                         goto out_unmap;
2655                 }
2656                 if (pte_write(pteval))
2657                         writable = true;
2658
2659                 page = vm_normal_page(vma, _address, pteval);
2660                 if (unlikely(!page)) {
2661                         result = SCAN_PAGE_NULL;
2662                         goto out_unmap;
2663                 }
2664
2665                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2666                 if (PageCompound(page)) {
2667                         result = SCAN_PAGE_COMPOUND;
2668                         goto out_unmap;
2669                 }
2670
2671                 /*
2672                  * Record which node the original page is from and save this
2673                  * information to khugepaged_node_load[].
2674                  * Khupaged will allocate hugepage from the node has the max
2675                  * hit record.
2676                  */
2677                 node = page_to_nid(page);
2678                 if (khugepaged_scan_abort(node)) {
2679                         result = SCAN_SCAN_ABORT;
2680                         goto out_unmap;
2681                 }
2682                 khugepaged_node_load[node]++;
2683                 if (!PageLRU(page)) {
2684                         result = SCAN_PAGE_LRU;
2685                         goto out_unmap;
2686                 }
2687                 if (PageLocked(page)) {
2688                         result = SCAN_PAGE_LOCK;
2689                         goto out_unmap;
2690                 }
2691                 if (!PageAnon(page)) {
2692                         result = SCAN_PAGE_ANON;
2693                         goto out_unmap;
2694                 }
2695
2696                 /*
2697                  * cannot use mapcount: can't collapse if there's a gup pin.
2698                  * The page must only be referenced by the scanned process
2699                  * and page swap cache.
2700                  */
2701                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2702                         result = SCAN_PAGE_COUNT;
2703                         goto out_unmap;
2704                 }
2705                 if (pte_young(pteval) ||
2706                     page_is_young(page) || PageReferenced(page) ||
2707                     mmu_notifier_test_young(vma->vm_mm, address))
2708                         referenced = true;
2709         }
2710         if (writable) {
2711                 if (referenced) {
2712                         result = SCAN_SUCCEED;
2713                         ret = 1;
2714                 } else {
2715                         result = SCAN_NO_REFERENCED_PAGE;
2716                 }
2717         } else {
2718                 result = SCAN_PAGE_RO;
2719         }
2720 out_unmap:
2721         pte_unmap_unlock(pte, ptl);
2722         if (ret) {
2723                 node = khugepaged_find_target_node();
2724                 /* collapse_huge_page will return with the mmap_sem released */
2725                 collapse_huge_page(mm, address, hpage, vma, node);
2726         }
2727 out:
2728         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2729                                      none_or_zero, result, unmapped);
2730         return ret;
2731 }
2732
2733 static void collect_mm_slot(struct mm_slot *mm_slot)
2734 {
2735         struct mm_struct *mm = mm_slot->mm;
2736
2737         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2738
2739         if (khugepaged_test_exit(mm)) {
2740                 /* free mm_slot */
2741                 hash_del(&mm_slot->hash);
2742                 list_del(&mm_slot->mm_node);
2743
2744                 /*
2745                  * Not strictly needed because the mm exited already.
2746                  *
2747                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2748                  */
2749
2750                 /* khugepaged_mm_lock actually not necessary for the below */
2751                 free_mm_slot(mm_slot);
2752                 mmdrop(mm);
2753         }
2754 }
2755
2756 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2757                                             struct page **hpage)
2758         __releases(&khugepaged_mm_lock)
2759         __acquires(&khugepaged_mm_lock)
2760 {
2761         struct mm_slot *mm_slot;
2762         struct mm_struct *mm;
2763         struct vm_area_struct *vma;
2764         int progress = 0;
2765
2766         VM_BUG_ON(!pages);
2767         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2768
2769         if (khugepaged_scan.mm_slot)
2770                 mm_slot = khugepaged_scan.mm_slot;
2771         else {
2772                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2773                                      struct mm_slot, mm_node);
2774                 khugepaged_scan.address = 0;
2775                 khugepaged_scan.mm_slot = mm_slot;
2776         }
2777         spin_unlock(&khugepaged_mm_lock);
2778
2779         mm = mm_slot->mm;
2780         down_read(&mm->mmap_sem);
2781         if (unlikely(khugepaged_test_exit(mm)))
2782                 vma = NULL;
2783         else
2784                 vma = find_vma(mm, khugepaged_scan.address);
2785
2786         progress++;
2787         for (; vma; vma = vma->vm_next) {
2788                 unsigned long hstart, hend;
2789
2790                 cond_resched();
2791                 if (unlikely(khugepaged_test_exit(mm))) {
2792                         progress++;
2793                         break;
2794                 }
2795                 if (!hugepage_vma_check(vma)) {
2796 skip:
2797                         progress++;
2798                         continue;
2799                 }
2800                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2801                 hend = vma->vm_end & HPAGE_PMD_MASK;
2802                 if (hstart >= hend)
2803                         goto skip;
2804                 if (khugepaged_scan.address > hend)
2805                         goto skip;
2806                 if (khugepaged_scan.address < hstart)
2807                         khugepaged_scan.address = hstart;
2808                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2809
2810                 while (khugepaged_scan.address < hend) {
2811                         int ret;
2812                         cond_resched();
2813                         if (unlikely(khugepaged_test_exit(mm)))
2814                                 goto breakouterloop;
2815
2816                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2817                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2818                                   hend);
2819                         ret = khugepaged_scan_pmd(mm, vma,
2820                                                   khugepaged_scan.address,
2821                                                   hpage);
2822                         /* move to next address */
2823                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2824                         progress += HPAGE_PMD_NR;
2825                         if (ret)
2826                                 /* we released mmap_sem so break loop */
2827                                 goto breakouterloop_mmap_sem;
2828                         if (progress >= pages)
2829                                 goto breakouterloop;
2830                 }
2831         }
2832 breakouterloop:
2833         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2834 breakouterloop_mmap_sem:
2835
2836         spin_lock(&khugepaged_mm_lock);
2837         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2838         /*
2839          * Release the current mm_slot if this mm is about to die, or
2840          * if we scanned all vmas of this mm.
2841          */
2842         if (khugepaged_test_exit(mm) || !vma) {
2843                 /*
2844                  * Make sure that if mm_users is reaching zero while
2845                  * khugepaged runs here, khugepaged_exit will find
2846                  * mm_slot not pointing to the exiting mm.
2847                  */
2848                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2849                         khugepaged_scan.mm_slot = list_entry(
2850                                 mm_slot->mm_node.next,
2851                                 struct mm_slot, mm_node);
2852                         khugepaged_scan.address = 0;
2853                 } else {
2854                         khugepaged_scan.mm_slot = NULL;
2855                         khugepaged_full_scans++;
2856                 }
2857
2858                 collect_mm_slot(mm_slot);
2859         }
2860
2861         return progress;
2862 }
2863
2864 static int khugepaged_has_work(void)
2865 {
2866         return !list_empty(&khugepaged_scan.mm_head) &&
2867                 khugepaged_enabled();
2868 }
2869
2870 static int khugepaged_wait_event(void)
2871 {
2872         return !list_empty(&khugepaged_scan.mm_head) ||
2873                 kthread_should_stop();
2874 }
2875
2876 static void khugepaged_do_scan(void)
2877 {
2878         struct page *hpage = NULL;
2879         unsigned int progress = 0, pass_through_head = 0;
2880         unsigned int pages = khugepaged_pages_to_scan;
2881         bool wait = true;
2882
2883         barrier(); /* write khugepaged_pages_to_scan to local stack */
2884
2885         while (progress < pages) {
2886                 if (!khugepaged_prealloc_page(&hpage, &wait))
2887                         break;
2888
2889                 cond_resched();
2890
2891                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2892                         break;
2893
2894                 spin_lock(&khugepaged_mm_lock);
2895                 if (!khugepaged_scan.mm_slot)
2896                         pass_through_head++;
2897                 if (khugepaged_has_work() &&
2898                     pass_through_head < 2)
2899                         progress += khugepaged_scan_mm_slot(pages - progress,
2900                                                             &hpage);
2901                 else
2902                         progress = pages;
2903                 spin_unlock(&khugepaged_mm_lock);
2904         }
2905
2906         if (!IS_ERR_OR_NULL(hpage))
2907                 put_page(hpage);
2908 }
2909
2910 static bool khugepaged_should_wakeup(void)
2911 {
2912         return kthread_should_stop() ||
2913                time_after_eq(jiffies, khugepaged_sleep_expire);
2914 }
2915
2916 static void khugepaged_wait_work(void)
2917 {
2918         if (khugepaged_has_work()) {
2919                 const unsigned long scan_sleep_jiffies =
2920                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2921
2922                 if (!scan_sleep_jiffies)
2923                         return;
2924
2925                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2926                 wait_event_freezable_timeout(khugepaged_wait,
2927                                              khugepaged_should_wakeup(),
2928                                              scan_sleep_jiffies);
2929                 return;
2930         }
2931
2932         if (khugepaged_enabled())
2933                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2934 }
2935
2936 static int khugepaged(void *none)
2937 {
2938         struct mm_slot *mm_slot;
2939
2940         set_freezable();
2941         set_user_nice(current, MAX_NICE);
2942
2943         while (!kthread_should_stop()) {
2944                 khugepaged_do_scan();
2945                 khugepaged_wait_work();
2946         }
2947
2948         spin_lock(&khugepaged_mm_lock);
2949         mm_slot = khugepaged_scan.mm_slot;
2950         khugepaged_scan.mm_slot = NULL;
2951         if (mm_slot)
2952                 collect_mm_slot(mm_slot);
2953         spin_unlock(&khugepaged_mm_lock);
2954         return 0;
2955 }
2956
2957 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2958                 unsigned long haddr, pmd_t *pmd)
2959 {
2960         struct mm_struct *mm = vma->vm_mm;
2961         pgtable_t pgtable;
2962         pmd_t _pmd;
2963         int i;
2964
2965         /* leave pmd empty until pte is filled */
2966         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2967
2968         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2969         pmd_populate(mm, &_pmd, pgtable);
2970
2971         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2972                 pte_t *pte, entry;
2973                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2974                 entry = pte_mkspecial(entry);
2975                 pte = pte_offset_map(&_pmd, haddr);
2976                 VM_BUG_ON(!pte_none(*pte));
2977                 set_pte_at(mm, haddr, pte, entry);
2978                 pte_unmap(pte);
2979         }
2980         smp_wmb(); /* make pte visible before pmd */
2981         pmd_populate(mm, pmd, pgtable);
2982         put_huge_zero_page();
2983 }
2984
2985 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2986                 unsigned long haddr, bool freeze)
2987 {
2988         struct mm_struct *mm = vma->vm_mm;
2989         struct page *page;
2990         pgtable_t pgtable;
2991         pmd_t _pmd;
2992         bool young, write, dirty;
2993         unsigned long addr;
2994         int i;
2995
2996         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2997         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2998         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2999         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
3000
3001         count_vm_event(THP_SPLIT_PMD);
3002
3003         if (!vma_is_anonymous(vma)) {
3004                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3005                 if (is_huge_zero_pmd(_pmd))
3006                         put_huge_zero_page();
3007                 if (vma_is_dax(vma))
3008                         return;
3009                 page = pmd_page(_pmd);
3010                 if (!PageReferenced(page) && pmd_young(_pmd))
3011                         SetPageReferenced(page);
3012                 page_remove_rmap(page, true);
3013                 put_page(page);
3014                 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
3015                 return;
3016         } else if (is_huge_zero_pmd(*pmd)) {
3017                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3018         }
3019
3020         page = pmd_page(*pmd);
3021         VM_BUG_ON_PAGE(!page_count(page), page);
3022         page_ref_add(page, HPAGE_PMD_NR - 1);
3023         write = pmd_write(*pmd);
3024         young = pmd_young(*pmd);
3025         dirty = pmd_dirty(*pmd);
3026
3027         pmdp_huge_split_prepare(vma, haddr, pmd);
3028         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3029         pmd_populate(mm, &_pmd, pgtable);
3030
3031         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3032                 pte_t entry, *pte;
3033                 /*
3034                  * Note that NUMA hinting access restrictions are not
3035                  * transferred to avoid any possibility of altering
3036                  * permissions across VMAs.
3037                  */
3038                 if (freeze) {
3039                         swp_entry_t swp_entry;
3040                         swp_entry = make_migration_entry(page + i, write);
3041                         entry = swp_entry_to_pte(swp_entry);
3042                 } else {
3043                         entry = mk_pte(page + i, vma->vm_page_prot);
3044                         entry = maybe_mkwrite(entry, vma);
3045                         if (!write)
3046                                 entry = pte_wrprotect(entry);
3047                         if (!young)
3048                                 entry = pte_mkold(entry);
3049                 }
3050                 if (dirty)
3051                         SetPageDirty(page + i);
3052                 pte = pte_offset_map(&_pmd, addr);
3053                 BUG_ON(!pte_none(*pte));
3054                 set_pte_at(mm, addr, pte, entry);
3055                 atomic_inc(&page[i]._mapcount);
3056                 pte_unmap(pte);
3057         }
3058
3059         /*
3060          * Set PG_double_map before dropping compound_mapcount to avoid
3061          * false-negative page_mapped().
3062          */
3063         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3064                 for (i = 0; i < HPAGE_PMD_NR; i++)
3065                         atomic_inc(&page[i]._mapcount);
3066         }
3067
3068         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3069                 /* Last compound_mapcount is gone. */
3070                 __dec_zone_page_state(page, NR_ANON_THPS);
3071                 if (TestClearPageDoubleMap(page)) {
3072                         /* No need in mapcount reference anymore */
3073                         for (i = 0; i < HPAGE_PMD_NR; i++)
3074                                 atomic_dec(&page[i]._mapcount);
3075                 }
3076         }
3077
3078         smp_wmb(); /* make pte visible before pmd */
3079         /*
3080          * Up to this point the pmd is present and huge and userland has the
3081          * whole access to the hugepage during the split (which happens in
3082          * place). If we overwrite the pmd with the not-huge version pointing
3083          * to the pte here (which of course we could if all CPUs were bug
3084          * free), userland could trigger a small page size TLB miss on the
3085          * small sized TLB while the hugepage TLB entry is still established in
3086          * the huge TLB. Some CPU doesn't like that.
3087          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3088          * 383 on page 93. Intel should be safe but is also warns that it's
3089          * only safe if the permission and cache attributes of the two entries
3090          * loaded in the two TLB is identical (which should be the case here).
3091          * But it is generally safer to never allow small and huge TLB entries
3092          * for the same virtual address to be loaded simultaneously. So instead
3093          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3094          * current pmd notpresent (atomically because here the pmd_trans_huge
3095          * and pmd_trans_splitting must remain set at all times on the pmd
3096          * until the split is complete for this pmd), then we flush the SMP TLB
3097          * and finally we write the non-huge version of the pmd entry with
3098          * pmd_populate.
3099          */
3100         pmdp_invalidate(vma, haddr, pmd);
3101         pmd_populate(mm, pmd, pgtable);
3102
3103         if (freeze) {
3104                 for (i = 0; i < HPAGE_PMD_NR; i++) {
3105                         page_remove_rmap(page + i, false);
3106                         put_page(page + i);
3107                 }
3108         }
3109 }
3110
3111 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3112                 unsigned long address, bool freeze, struct page *page)
3113 {
3114         spinlock_t *ptl;
3115         struct mm_struct *mm = vma->vm_mm;
3116         unsigned long haddr = address & HPAGE_PMD_MASK;
3117
3118         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3119         ptl = pmd_lock(mm, pmd);
3120
3121         /*
3122          * If caller asks to setup a migration entries, we need a page to check
3123          * pmd against. Otherwise we can end up replacing wrong page.
3124          */
3125         VM_BUG_ON(freeze && !page);
3126         if (page && page != pmd_page(*pmd))
3127                 goto out;
3128
3129         if (pmd_trans_huge(*pmd)) {
3130                 page = pmd_page(*pmd);
3131                 if (PageMlocked(page))
3132                         clear_page_mlock(page);
3133         } else if (!pmd_devmap(*pmd))
3134                 goto out;
3135         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3136 out:
3137         spin_unlock(ptl);
3138         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3139 }
3140
3141 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3142                 bool freeze, struct page *page)
3143 {
3144         pgd_t *pgd;
3145         pud_t *pud;
3146         pmd_t *pmd;
3147
3148         pgd = pgd_offset(vma->vm_mm, address);
3149         if (!pgd_present(*pgd))
3150                 return;
3151
3152         pud = pud_offset(pgd, address);
3153         if (!pud_present(*pud))
3154                 return;
3155
3156         pmd = pmd_offset(pud, address);
3157
3158         __split_huge_pmd(vma, pmd, address, freeze, page);
3159 }
3160
3161 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3162                              unsigned long start,
3163                              unsigned long end,
3164                              long adjust_next)
3165 {
3166         /*
3167          * If the new start address isn't hpage aligned and it could
3168          * previously contain an hugepage: check if we need to split
3169          * an huge pmd.
3170          */
3171         if (start & ~HPAGE_PMD_MASK &&
3172             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3173             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3174                 split_huge_pmd_address(vma, start, false, NULL);
3175
3176         /*
3177          * If the new end address isn't hpage aligned and it could
3178          * previously contain an hugepage: check if we need to split
3179          * an huge pmd.
3180          */
3181         if (end & ~HPAGE_PMD_MASK &&
3182             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3183             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3184                 split_huge_pmd_address(vma, end, false, NULL);
3185
3186         /*
3187          * If we're also updating the vma->vm_next->vm_start, if the new
3188          * vm_next->vm_start isn't page aligned and it could previously
3189          * contain an hugepage: check if we need to split an huge pmd.
3190          */
3191         if (adjust_next > 0) {
3192                 struct vm_area_struct *next = vma->vm_next;
3193                 unsigned long nstart = next->vm_start;
3194                 nstart += adjust_next << PAGE_SHIFT;
3195                 if (nstart & ~HPAGE_PMD_MASK &&
3196                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3197                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3198                         split_huge_pmd_address(next, nstart, false, NULL);
3199         }
3200 }
3201
3202 static void freeze_page(struct page *page)
3203 {
3204         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
3205                 TTU_RMAP_LOCKED;
3206         int i, ret;
3207
3208         VM_BUG_ON_PAGE(!PageHead(page), page);
3209
3210         if (PageAnon(page))
3211                 ttu_flags |= TTU_MIGRATION;
3212
3213         /* We only need TTU_SPLIT_HUGE_PMD once */
3214         ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3215         for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3216                 /* Cut short if the page is unmapped */
3217                 if (page_count(page) == 1)
3218                         return;
3219
3220                 ret = try_to_unmap(page + i, ttu_flags);
3221         }
3222         VM_BUG_ON_PAGE(ret, page + i - 1);
3223 }
3224
3225 static void unfreeze_page(struct page *page)
3226 {
3227         int i;
3228
3229         for (i = 0; i < HPAGE_PMD_NR; i++)
3230                 remove_migration_ptes(page + i, page + i, true);
3231 }
3232
3233 static void __split_huge_page_tail(struct page *head, int tail,
3234                 struct lruvec *lruvec, struct list_head *list)
3235 {
3236         struct page *page_tail = head + tail;
3237
3238         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3239         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3240
3241         /*
3242          * tail_page->_refcount is zero and not changing from under us. But
3243          * get_page_unless_zero() may be running from under us on the
3244          * tail_page. If we used atomic_set() below instead of atomic_inc() or
3245          * atomic_add(), we would then run atomic_set() concurrently with
3246          * get_page_unless_zero(), and atomic_set() is implemented in C not
3247          * using locked ops. spin_unlock on x86 sometime uses locked ops
3248          * because of PPro errata 66, 92, so unless somebody can guarantee
3249          * atomic_set() here would be safe on all archs (and not only on x86),
3250          * it's safer to use atomic_inc()/atomic_add().
3251          */
3252         if (PageAnon(head)) {
3253                 page_ref_inc(page_tail);
3254         } else {
3255                 /* Additional pin to radix tree */
3256                 page_ref_add(page_tail, 2);
3257         }
3258
3259         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3260         page_tail->flags |= (head->flags &
3261                         ((1L << PG_referenced) |
3262                          (1L << PG_swapbacked) |
3263                          (1L << PG_mlocked) |
3264                          (1L << PG_uptodate) |
3265                          (1L << PG_active) |
3266                          (1L << PG_locked) |
3267                          (1L << PG_unevictable) |
3268                          (1L << PG_dirty)));
3269
3270         /*
3271          * After clearing PageTail the gup refcount can be released.
3272          * Page flags also must be visible before we make the page non-compound.
3273          */
3274         smp_wmb();
3275
3276         clear_compound_head(page_tail);
3277
3278         if (page_is_young(head))
3279                 set_page_young(page_tail);
3280         if (page_is_idle(head))
3281                 set_page_idle(page_tail);
3282
3283         /* ->mapping in first tail page is compound_mapcount */
3284         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3285                         page_tail);
3286         page_tail->mapping = head->mapping;
3287
3288         page_tail->index = head->index + tail;
3289         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3290         lru_add_page_tail(head, page_tail, lruvec, list);
3291 }
3292
3293 static void __split_huge_page(struct page *page, struct list_head *list,
3294                 unsigned long flags)
3295 {
3296         struct page *head = compound_head(page);
3297         struct zone *zone = page_zone(head);
3298         struct lruvec *lruvec;
3299         pgoff_t end = -1;
3300         int i;
3301
3302         lruvec = mem_cgroup_page_lruvec(head, zone);
3303
3304         /* complete memcg works before add pages to LRU */
3305         mem_cgroup_split_huge_fixup(head);
3306
3307         if (!PageAnon(page))
3308                 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
3309
3310         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
3311                 __split_huge_page_tail(head, i, lruvec, list);
3312                 /* Some pages can be beyond i_size: drop them from page cache */
3313                 if (head[i].index >= end) {
3314                         __ClearPageDirty(head + i);
3315                         __delete_from_page_cache(head + i, NULL);
3316                         put_page(head + i);
3317                 }
3318         }
3319
3320         ClearPageCompound(head);
3321         /* See comment in __split_huge_page_tail() */
3322         if (PageAnon(head)) {
3323                 page_ref_inc(head);
3324         } else {
3325                 /* Additional pin to radix tree */
3326                 page_ref_add(head, 2);
3327                 spin_unlock(&head->mapping->tree_lock);
3328         }
3329
3330         spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3331
3332         unfreeze_page(head);
3333
3334         for (i = 0; i < HPAGE_PMD_NR; i++) {
3335                 struct page *subpage = head + i;
3336                 if (subpage == page)
3337                         continue;
3338                 unlock_page(subpage);
3339
3340                 /*
3341                  * Subpages may be freed if there wasn't any mapping
3342                  * like if add_to_swap() is running on a lru page that
3343                  * had its mapping zapped. And freeing these pages
3344                  * requires taking the lru_lock so we do the put_page
3345                  * of the tail pages after the split is complete.
3346                  */
3347                 put_page(subpage);
3348         }
3349 }
3350
3351 int total_mapcount(struct page *page)
3352 {
3353         int i, compound, ret;
3354
3355         VM_BUG_ON_PAGE(PageTail(page), page);
3356
3357         if (likely(!PageCompound(page)))
3358                 return atomic_read(&page->_mapcount) + 1;
3359
3360         compound = compound_mapcount(page);
3361         if (PageHuge(page))
3362                 return compound;
3363         ret = compound;
3364         for (i = 0; i < HPAGE_PMD_NR; i++)
3365                 ret += atomic_read(&page[i]._mapcount) + 1;
3366         /* File pages has compound_mapcount included in _mapcount */
3367         if (!PageAnon(page))
3368                 return ret - compound * HPAGE_PMD_NR;
3369         if (PageDoubleMap(page))
3370                 ret -= HPAGE_PMD_NR;
3371         return ret;
3372 }
3373
3374 /*
3375  * This calculates accurately how many mappings a transparent hugepage
3376  * has (unlike page_mapcount() which isn't fully accurate). This full
3377  * accuracy is primarily needed to know if copy-on-write faults can
3378  * reuse the page and change the mapping to read-write instead of
3379  * copying them. At the same time this returns the total_mapcount too.
3380  *
3381  * The function returns the highest mapcount any one of the subpages
3382  * has. If the return value is one, even if different processes are
3383  * mapping different subpages of the transparent hugepage, they can
3384  * all reuse it, because each process is reusing a different subpage.
3385  *
3386  * The total_mapcount is instead counting all virtual mappings of the
3387  * subpages. If the total_mapcount is equal to "one", it tells the
3388  * caller all mappings belong to the same "mm" and in turn the
3389  * anon_vma of the transparent hugepage can become the vma->anon_vma
3390  * local one as no other process may be mapping any of the subpages.
3391  *
3392  * It would be more accurate to replace page_mapcount() with
3393  * page_trans_huge_mapcount(), however we only use
3394  * page_trans_huge_mapcount() in the copy-on-write faults where we
3395  * need full accuracy to avoid breaking page pinning, because
3396  * page_trans_huge_mapcount() is slower than page_mapcount().
3397  */
3398 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3399 {
3400         int i, ret, _total_mapcount, mapcount;
3401
3402         /* hugetlbfs shouldn't call it */
3403         VM_BUG_ON_PAGE(PageHuge(page), page);
3404
3405         if (likely(!PageTransCompound(page))) {
3406                 mapcount = atomic_read(&page->_mapcount) + 1;
3407                 if (total_mapcount)
3408                         *total_mapcount = mapcount;
3409                 return mapcount;
3410         }
3411
3412         page = compound_head(page);
3413
3414         _total_mapcount = ret = 0;
3415         for (i = 0; i < HPAGE_PMD_NR; i++) {
3416                 mapcount = atomic_read(&page[i]._mapcount) + 1;
3417                 ret = max(ret, mapcount);
3418                 _total_mapcount += mapcount;
3419         }
3420         if (PageDoubleMap(page)) {
3421                 ret -= 1;
3422                 _total_mapcount -= HPAGE_PMD_NR;
3423         }
3424         mapcount = compound_mapcount(page);
3425         ret += mapcount;
3426         _total_mapcount += mapcount;
3427         if (total_mapcount)
3428                 *total_mapcount = _total_mapcount;
3429         return ret;
3430 }
3431
3432 /*
3433  * This function splits huge page into normal pages. @page can point to any
3434  * subpage of huge page to split. Split doesn't change the position of @page.
3435  *
3436  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3437  * The huge page must be locked.
3438  *
3439  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3440  *
3441  * Both head page and tail pages will inherit mapping, flags, and so on from
3442  * the hugepage.
3443  *
3444  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3445  * they are not mapped.
3446  *
3447  * Returns 0 if the hugepage is split successfully.
3448  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3449  * us.
3450  */
3451 int split_huge_page_to_list(struct page *page, struct list_head *list)
3452 {
3453         struct page *head = compound_head(page);
3454         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3455         struct anon_vma *anon_vma = NULL;
3456         struct address_space *mapping = NULL;
3457         int count, mapcount, extra_pins, ret;
3458         bool mlocked;
3459         unsigned long flags;
3460
3461         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3462         VM_BUG_ON_PAGE(!PageLocked(page), page);
3463         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3464         VM_BUG_ON_PAGE(!PageCompound(page), page);
3465
3466         if (PageAnon(head)) {
3467                 /*
3468                  * The caller does not necessarily hold an mmap_sem that would
3469                  * prevent the anon_vma disappearing so we first we take a
3470                  * reference to it and then lock the anon_vma for write. This
3471                  * is similar to page_lock_anon_vma_read except the write lock
3472                  * is taken to serialise against parallel split or collapse
3473                  * operations.
3474                  */
3475                 anon_vma = page_get_anon_vma(head);
3476                 if (!anon_vma) {
3477                         ret = -EBUSY;
3478                         goto out;
3479                 }
3480                 extra_pins = 0;
3481                 mapping = NULL;
3482                 anon_vma_lock_write(anon_vma);
3483         } else {
3484                 mapping = head->mapping;
3485
3486                 /* Truncated ? */
3487                 if (!mapping) {
3488                         ret = -EBUSY;
3489                         goto out;
3490                 }
3491
3492                 /* Addidional pins from radix tree */
3493                 extra_pins = HPAGE_PMD_NR;
3494                 anon_vma = NULL;
3495                 i_mmap_lock_read(mapping);
3496         }
3497
3498         /*
3499          * Racy check if we can split the page, before freeze_page() will
3500          * split PMDs
3501          */
3502         if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
3503                 ret = -EBUSY;
3504                 goto out_unlock;
3505         }
3506
3507         mlocked = PageMlocked(page);
3508         freeze_page(head);
3509         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3510
3511         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3512         if (mlocked)
3513                 lru_add_drain();
3514
3515         /* prevent PageLRU to go away from under us, and freeze lru stats */
3516         spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
3517
3518         if (mapping) {
3519                 void **pslot;
3520
3521                 spin_lock(&mapping->tree_lock);
3522                 pslot = radix_tree_lookup_slot(&mapping->page_tree,
3523                                 page_index(head));
3524                 /*
3525                  * Check if the head page is present in radix tree.
3526                  * We assume all tail are present too, if head is there.
3527                  */
3528                 if (radix_tree_deref_slot_protected(pslot,
3529                                         &mapping->tree_lock) != head)
3530                         goto fail;
3531         }
3532
3533         /* Prevent deferred_split_scan() touching ->_refcount */
3534         spin_lock(&pgdata->split_queue_lock);
3535         count = page_count(head);
3536         mapcount = total_mapcount(head);
3537         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
3538                 if (!list_empty(page_deferred_list(head))) {
3539                         pgdata->split_queue_len--;
3540                         list_del(page_deferred_list(head));
3541                 }
3542                 if (mapping)
3543                         __dec_zone_page_state(page, NR_SHMEM_THPS);
3544                 spin_unlock(&pgdata->split_queue_lock);
3545                 __split_huge_page(page, list, flags);
3546                 ret = 0;
3547         } else {
3548                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3549                         pr_alert("total_mapcount: %u, page_count(): %u\n",
3550                                         mapcount, count);
3551                         if (PageTail(page))
3552                                 dump_page(head, NULL);
3553                         dump_page(page, "total_mapcount(head) > 0");
3554                         BUG();
3555                 }
3556                 spin_unlock(&pgdata->split_queue_lock);
3557 fail:           if (mapping)
3558                         spin_unlock(&mapping->tree_lock);
3559                 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3560                 unfreeze_page(head);
3561                 ret = -EBUSY;
3562         }
3563
3564 out_unlock:
3565         if (anon_vma) {
3566                 anon_vma_unlock_write(anon_vma);
3567                 put_anon_vma(anon_vma);
3568         }
3569         if (mapping)
3570                 i_mmap_unlock_read(mapping);
3571 out:
3572         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3573         return ret;
3574 }
3575
3576 void free_transhuge_page(struct page *page)
3577 {
3578         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3579         unsigned long flags;
3580
3581         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3582         if (!list_empty(page_deferred_list(page))) {
3583                 pgdata->split_queue_len--;
3584                 list_del(page_deferred_list(page));
3585         }
3586         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3587         free_compound_page(page);
3588 }
3589
3590 void deferred_split_huge_page(struct page *page)
3591 {
3592         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3593         unsigned long flags;
3594
3595         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3596
3597         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3598         if (list_empty(page_deferred_list(page))) {
3599                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3600                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3601                 pgdata->split_queue_len++;
3602         }
3603         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3604 }
3605
3606 static unsigned long deferred_split_count(struct shrinker *shrink,
3607                 struct shrink_control *sc)
3608 {
3609         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3610         return ACCESS_ONCE(pgdata->split_queue_len);
3611 }
3612
3613 static unsigned long deferred_split_scan(struct shrinker *shrink,
3614                 struct shrink_control *sc)
3615 {
3616         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3617         unsigned long flags;
3618         LIST_HEAD(list), *pos, *next;
3619         struct page *page;
3620         int split = 0;
3621
3622         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3623         /* Take pin on all head pages to avoid freeing them under us */
3624         list_for_each_safe(pos, next, &pgdata->split_queue) {
3625                 page = list_entry((void *)pos, struct page, mapping);
3626                 page = compound_head(page);
3627                 if (get_page_unless_zero(page)) {
3628                         list_move(page_deferred_list(page), &list);
3629                 } else {
3630                         /* We lost race with put_compound_page() */
3631                         list_del_init(page_deferred_list(page));
3632                         pgdata->split_queue_len--;
3633                 }
3634                 if (!--sc->nr_to_scan)
3635                         break;
3636         }
3637         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3638
3639         list_for_each_safe(pos, next, &list) {
3640                 page = list_entry((void *)pos, struct page, mapping);
3641                 lock_page(page);
3642                 /* split_huge_page() removes page from list on success */
3643                 if (!split_huge_page(page))
3644                         split++;
3645                 unlock_page(page);
3646                 put_page(page);
3647         }
3648
3649         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3650         list_splice_tail(&list, &pgdata->split_queue);
3651         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3652
3653         /*
3654          * Stop shrinker if we didn't split any page, but the queue is empty.
3655          * This can happen if pages were freed under us.
3656          */
3657         if (!split && list_empty(&pgdata->split_queue))
3658                 return SHRINK_STOP;
3659         return split;
3660 }
3661
3662 static struct shrinker deferred_split_shrinker = {
3663         .count_objects = deferred_split_count,
3664         .scan_objects = deferred_split_scan,
3665         .seeks = DEFAULT_SEEKS,
3666         .flags = SHRINKER_NUMA_AWARE,
3667 };
3668
3669 #ifdef CONFIG_DEBUG_FS
3670 static int split_huge_pages_set(void *data, u64 val)
3671 {
3672         struct zone *zone;
3673         struct page *page;
3674         unsigned long pfn, max_zone_pfn;
3675         unsigned long total = 0, split = 0;
3676
3677         if (val != 1)
3678                 return -EINVAL;
3679
3680         for_each_populated_zone(zone) {
3681                 max_zone_pfn = zone_end_pfn(zone);
3682                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3683                         if (!pfn_valid(pfn))
3684                                 continue;
3685
3686                         page = pfn_to_page(pfn);
3687                         if (!get_page_unless_zero(page))
3688                                 continue;
3689
3690                         if (zone != page_zone(page))
3691                                 goto next;
3692
3693                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3694                                 goto next;
3695
3696                         total++;
3697                         lock_page(page);
3698                         if (!split_huge_page(page))
3699                                 split++;
3700                         unlock_page(page);
3701 next:
3702                         put_page(page);
3703                 }
3704         }
3705
3706         pr_info("%lu of %lu THP split\n", split, total);
3707
3708         return 0;
3709 }
3710 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3711                 "%llu\n");
3712
3713 static int __init split_huge_pages_debugfs(void)
3714 {
3715         void *ret;
3716
3717         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3718                         &split_huge_pages_fops);
3719         if (!ret)
3720                 pr_warn("Failed to create split_huge_pages in debugfs");
3721         return 0;
3722 }
3723 late_initcall(split_huge_pages_debugfs);
3724 #endif