]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/huge_memory.c
Merge branch 'numa/misc'
[karo-tx-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/migrate.h>
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 /*
27  * By default transparent hugepage support is enabled for all mappings
28  * and khugepaged scans all mappings. Defrag is only invoked by
29  * khugepaged hugepage allocations and by page faults inside
30  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31  * allocations.
32  */
33 unsigned long transparent_hugepage_flags __read_mostly =
34 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
35         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
36 #endif
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
38         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
39 #endif
40         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
41         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
42
43 /* default scan 8*512 pte (or vmas) every 30 second */
44 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
45 static unsigned int khugepaged_pages_collapsed;
46 static unsigned int khugepaged_full_scans;
47 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
48 /* during fragmentation poll the hugepage allocator once every minute */
49 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
50 static struct task_struct *khugepaged_thread __read_mostly;
51 static DEFINE_MUTEX(khugepaged_mutex);
52 static DEFINE_SPINLOCK(khugepaged_mm_lock);
53 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54 /*
55  * default collapse hugepages if there is at least one pte mapped like
56  * it would have happened if the vma was large enough during page
57  * fault.
58  */
59 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61 static int khugepaged(void *none);
62 static int mm_slots_hash_init(void);
63 static int khugepaged_slab_init(void);
64 static void khugepaged_slab_free(void);
65
66 #define MM_SLOTS_HASH_HEADS 1024
67 static struct hlist_head *mm_slots_hash __read_mostly;
68 static struct kmem_cache *mm_slot_cache __read_mostly;
69
70 /**
71  * struct mm_slot - hash lookup from mm to mm_slot
72  * @hash: hash collision list
73  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74  * @mm: the mm that this information is valid for
75  */
76 struct mm_slot {
77         struct hlist_node hash;
78         struct list_head mm_node;
79         struct mm_struct *mm;
80 };
81
82 /**
83  * struct khugepaged_scan - cursor for scanning
84  * @mm_head: the head of the mm list to scan
85  * @mm_slot: the current mm_slot we are scanning
86  * @address: the next address inside that to be scanned
87  *
88  * There is only the one khugepaged_scan instance of this cursor structure.
89  */
90 struct khugepaged_scan {
91         struct list_head mm_head;
92         struct mm_slot *mm_slot;
93         unsigned long address;
94 };
95 static struct khugepaged_scan khugepaged_scan = {
96         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97 };
98
99
100 static int set_recommended_min_free_kbytes(void)
101 {
102         struct zone *zone;
103         int nr_zones = 0;
104         unsigned long recommended_min;
105         extern int min_free_kbytes;
106
107         if (!khugepaged_enabled())
108                 return 0;
109
110         for_each_populated_zone(zone)
111                 nr_zones++;
112
113         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114         recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116         /*
117          * Make sure that on average at least two pageblocks are almost free
118          * of another type, one for a migratetype to fall back to and a
119          * second to avoid subsequent fallbacks of other types There are 3
120          * MIGRATE_TYPES we care about.
121          */
122         recommended_min += pageblock_nr_pages * nr_zones *
123                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125         /* don't ever allow to reserve more than 5% of the lowmem */
126         recommended_min = min(recommended_min,
127                               (unsigned long) nr_free_buffer_pages() / 20);
128         recommended_min <<= (PAGE_SHIFT-10);
129
130         if (recommended_min > min_free_kbytes)
131                 min_free_kbytes = recommended_min;
132         setup_per_zone_wmarks();
133         return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136
137 static int start_khugepaged(void)
138 {
139         int err = 0;
140         if (khugepaged_enabled()) {
141                 if (!khugepaged_thread)
142                         khugepaged_thread = kthread_run(khugepaged, NULL,
143                                                         "khugepaged");
144                 if (unlikely(IS_ERR(khugepaged_thread))) {
145                         printk(KERN_ERR
146                                "khugepaged: kthread_run(khugepaged) failed\n");
147                         err = PTR_ERR(khugepaged_thread);
148                         khugepaged_thread = NULL;
149                 }
150
151                 if (!list_empty(&khugepaged_scan.mm_head))
152                         wake_up_interruptible(&khugepaged_wait);
153
154                 set_recommended_min_free_kbytes();
155         } else if (khugepaged_thread) {
156                 kthread_stop(khugepaged_thread);
157                 khugepaged_thread = NULL;
158         }
159
160         return err;
161 }
162
163 #ifdef CONFIG_SYSFS
164
165 static ssize_t double_flag_show(struct kobject *kobj,
166                                 struct kobj_attribute *attr, char *buf,
167                                 enum transparent_hugepage_flag enabled,
168                                 enum transparent_hugepage_flag req_madv)
169 {
170         if (test_bit(enabled, &transparent_hugepage_flags)) {
171                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
172                 return sprintf(buf, "[always] madvise never\n");
173         } else if (test_bit(req_madv, &transparent_hugepage_flags))
174                 return sprintf(buf, "always [madvise] never\n");
175         else
176                 return sprintf(buf, "always madvise [never]\n");
177 }
178 static ssize_t double_flag_store(struct kobject *kobj,
179                                  struct kobj_attribute *attr,
180                                  const char *buf, size_t count,
181                                  enum transparent_hugepage_flag enabled,
182                                  enum transparent_hugepage_flag req_madv)
183 {
184         if (!memcmp("always", buf,
185                     min(sizeof("always")-1, count))) {
186                 set_bit(enabled, &transparent_hugepage_flags);
187                 clear_bit(req_madv, &transparent_hugepage_flags);
188         } else if (!memcmp("madvise", buf,
189                            min(sizeof("madvise")-1, count))) {
190                 clear_bit(enabled, &transparent_hugepage_flags);
191                 set_bit(req_madv, &transparent_hugepage_flags);
192         } else if (!memcmp("never", buf,
193                            min(sizeof("never")-1, count))) {
194                 clear_bit(enabled, &transparent_hugepage_flags);
195                 clear_bit(req_madv, &transparent_hugepage_flags);
196         } else
197                 return -EINVAL;
198
199         return count;
200 }
201
202 static ssize_t enabled_show(struct kobject *kobj,
203                             struct kobj_attribute *attr, char *buf)
204 {
205         return double_flag_show(kobj, attr, buf,
206                                 TRANSPARENT_HUGEPAGE_FLAG,
207                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
208 }
209 static ssize_t enabled_store(struct kobject *kobj,
210                              struct kobj_attribute *attr,
211                              const char *buf, size_t count)
212 {
213         ssize_t ret;
214
215         ret = double_flag_store(kobj, attr, buf, count,
216                                 TRANSPARENT_HUGEPAGE_FLAG,
217                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
218
219         if (ret > 0) {
220                 int err;
221
222                 mutex_lock(&khugepaged_mutex);
223                 err = start_khugepaged();
224                 mutex_unlock(&khugepaged_mutex);
225
226                 if (err)
227                         ret = err;
228         }
229
230         return ret;
231 }
232 static struct kobj_attribute enabled_attr =
233         __ATTR(enabled, 0644, enabled_show, enabled_store);
234
235 static ssize_t single_flag_show(struct kobject *kobj,
236                                 struct kobj_attribute *attr, char *buf,
237                                 enum transparent_hugepage_flag flag)
238 {
239         return sprintf(buf, "%d\n",
240                        !!test_bit(flag, &transparent_hugepage_flags));
241 }
242
243 static ssize_t single_flag_store(struct kobject *kobj,
244                                  struct kobj_attribute *attr,
245                                  const char *buf, size_t count,
246                                  enum transparent_hugepage_flag flag)
247 {
248         unsigned long value;
249         int ret;
250
251         ret = kstrtoul(buf, 10, &value);
252         if (ret < 0)
253                 return ret;
254         if (value > 1)
255                 return -EINVAL;
256
257         if (value)
258                 set_bit(flag, &transparent_hugepage_flags);
259         else
260                 clear_bit(flag, &transparent_hugepage_flags);
261
262         return count;
263 }
264
265 /*
266  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
267  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
268  * memory just to allocate one more hugepage.
269  */
270 static ssize_t defrag_show(struct kobject *kobj,
271                            struct kobj_attribute *attr, char *buf)
272 {
273         return double_flag_show(kobj, attr, buf,
274                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
275                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
276 }
277 static ssize_t defrag_store(struct kobject *kobj,
278                             struct kobj_attribute *attr,
279                             const char *buf, size_t count)
280 {
281         return double_flag_store(kobj, attr, buf, count,
282                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284 }
285 static struct kobj_attribute defrag_attr =
286         __ATTR(defrag, 0644, defrag_show, defrag_store);
287
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290                                 struct kobj_attribute *attr, char *buf)
291 {
292         return single_flag_show(kobj, attr, buf,
293                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296                                struct kobj_attribute *attr,
297                                const char *buf, size_t count)
298 {
299         return single_flag_store(kobj, attr, buf, count,
300                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305
306 static struct attribute *hugepage_attr[] = {
307         &enabled_attr.attr,
308         &defrag_attr.attr,
309 #ifdef CONFIG_DEBUG_VM
310         &debug_cow_attr.attr,
311 #endif
312         NULL,
313 };
314
315 static struct attribute_group hugepage_attr_group = {
316         .attrs = hugepage_attr,
317 };
318
319 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
320                                          struct kobj_attribute *attr,
321                                          char *buf)
322 {
323         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
324 }
325
326 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
327                                           struct kobj_attribute *attr,
328                                           const char *buf, size_t count)
329 {
330         unsigned long msecs;
331         int err;
332
333         err = strict_strtoul(buf, 10, &msecs);
334         if (err || msecs > UINT_MAX)
335                 return -EINVAL;
336
337         khugepaged_scan_sleep_millisecs = msecs;
338         wake_up_interruptible(&khugepaged_wait);
339
340         return count;
341 }
342 static struct kobj_attribute scan_sleep_millisecs_attr =
343         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
344                scan_sleep_millisecs_store);
345
346 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
347                                           struct kobj_attribute *attr,
348                                           char *buf)
349 {
350         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
351 }
352
353 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
354                                            struct kobj_attribute *attr,
355                                            const char *buf, size_t count)
356 {
357         unsigned long msecs;
358         int err;
359
360         err = strict_strtoul(buf, 10, &msecs);
361         if (err || msecs > UINT_MAX)
362                 return -EINVAL;
363
364         khugepaged_alloc_sleep_millisecs = msecs;
365         wake_up_interruptible(&khugepaged_wait);
366
367         return count;
368 }
369 static struct kobj_attribute alloc_sleep_millisecs_attr =
370         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
371                alloc_sleep_millisecs_store);
372
373 static ssize_t pages_to_scan_show(struct kobject *kobj,
374                                   struct kobj_attribute *attr,
375                                   char *buf)
376 {
377         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
378 }
379 static ssize_t pages_to_scan_store(struct kobject *kobj,
380                                    struct kobj_attribute *attr,
381                                    const char *buf, size_t count)
382 {
383         int err;
384         unsigned long pages;
385
386         err = strict_strtoul(buf, 10, &pages);
387         if (err || !pages || pages > UINT_MAX)
388                 return -EINVAL;
389
390         khugepaged_pages_to_scan = pages;
391
392         return count;
393 }
394 static struct kobj_attribute pages_to_scan_attr =
395         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
396                pages_to_scan_store);
397
398 static ssize_t pages_collapsed_show(struct kobject *kobj,
399                                     struct kobj_attribute *attr,
400                                     char *buf)
401 {
402         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
403 }
404 static struct kobj_attribute pages_collapsed_attr =
405         __ATTR_RO(pages_collapsed);
406
407 static ssize_t full_scans_show(struct kobject *kobj,
408                                struct kobj_attribute *attr,
409                                char *buf)
410 {
411         return sprintf(buf, "%u\n", khugepaged_full_scans);
412 }
413 static struct kobj_attribute full_scans_attr =
414         __ATTR_RO(full_scans);
415
416 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
417                                       struct kobj_attribute *attr, char *buf)
418 {
419         return single_flag_show(kobj, attr, buf,
420                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
421 }
422 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
423                                        struct kobj_attribute *attr,
424                                        const char *buf, size_t count)
425 {
426         return single_flag_store(kobj, attr, buf, count,
427                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
428 }
429 static struct kobj_attribute khugepaged_defrag_attr =
430         __ATTR(defrag, 0644, khugepaged_defrag_show,
431                khugepaged_defrag_store);
432
433 /*
434  * max_ptes_none controls if khugepaged should collapse hugepages over
435  * any unmapped ptes in turn potentially increasing the memory
436  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
437  * reduce the available free memory in the system as it
438  * runs. Increasing max_ptes_none will instead potentially reduce the
439  * free memory in the system during the khugepaged scan.
440  */
441 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
442                                              struct kobj_attribute *attr,
443                                              char *buf)
444 {
445         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
446 }
447 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
448                                               struct kobj_attribute *attr,
449                                               const char *buf, size_t count)
450 {
451         int err;
452         unsigned long max_ptes_none;
453
454         err = strict_strtoul(buf, 10, &max_ptes_none);
455         if (err || max_ptes_none > HPAGE_PMD_NR-1)
456                 return -EINVAL;
457
458         khugepaged_max_ptes_none = max_ptes_none;
459
460         return count;
461 }
462 static struct kobj_attribute khugepaged_max_ptes_none_attr =
463         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
464                khugepaged_max_ptes_none_store);
465
466 static struct attribute *khugepaged_attr[] = {
467         &khugepaged_defrag_attr.attr,
468         &khugepaged_max_ptes_none_attr.attr,
469         &pages_to_scan_attr.attr,
470         &pages_collapsed_attr.attr,
471         &full_scans_attr.attr,
472         &scan_sleep_millisecs_attr.attr,
473         &alloc_sleep_millisecs_attr.attr,
474         NULL,
475 };
476
477 static struct attribute_group khugepaged_attr_group = {
478         .attrs = khugepaged_attr,
479         .name = "khugepaged",
480 };
481
482 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
483 {
484         int err;
485
486         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
487         if (unlikely(!*hugepage_kobj)) {
488                 printk(KERN_ERR "hugepage: failed kobject create\n");
489                 return -ENOMEM;
490         }
491
492         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
493         if (err) {
494                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
495                 goto delete_obj;
496         }
497
498         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
499         if (err) {
500                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
501                 goto remove_hp_group;
502         }
503
504         return 0;
505
506 remove_hp_group:
507         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
508 delete_obj:
509         kobject_put(*hugepage_kobj);
510         return err;
511 }
512
513 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
514 {
515         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
516         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
517         kobject_put(hugepage_kobj);
518 }
519 #else
520 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
521 {
522         return 0;
523 }
524
525 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
526 {
527 }
528 #endif /* CONFIG_SYSFS */
529
530 static int __init hugepage_init(void)
531 {
532         int err;
533         struct kobject *hugepage_kobj;
534
535         if (!has_transparent_hugepage()) {
536                 transparent_hugepage_flags = 0;
537                 return -EINVAL;
538         }
539
540         err = hugepage_init_sysfs(&hugepage_kobj);
541         if (err)
542                 return err;
543
544         err = khugepaged_slab_init();
545         if (err)
546                 goto out;
547
548         err = mm_slots_hash_init();
549         if (err) {
550                 khugepaged_slab_free();
551                 goto out;
552         }
553
554         /*
555          * By default disable transparent hugepages on smaller systems,
556          * where the extra memory used could hurt more than TLB overhead
557          * is likely to save.  The admin can still enable it through /sys.
558          */
559         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
560                 transparent_hugepage_flags = 0;
561
562         start_khugepaged();
563
564         return 0;
565 out:
566         hugepage_exit_sysfs(hugepage_kobj);
567         return err;
568 }
569 module_init(hugepage_init)
570
571 static int __init setup_transparent_hugepage(char *str)
572 {
573         int ret = 0;
574         if (!str)
575                 goto out;
576         if (!strcmp(str, "always")) {
577                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
578                         &transparent_hugepage_flags);
579                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
580                           &transparent_hugepage_flags);
581                 ret = 1;
582         } else if (!strcmp(str, "madvise")) {
583                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
584                           &transparent_hugepage_flags);
585                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
586                         &transparent_hugepage_flags);
587                 ret = 1;
588         } else if (!strcmp(str, "never")) {
589                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
590                           &transparent_hugepage_flags);
591                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
592                           &transparent_hugepage_flags);
593                 ret = 1;
594         }
595 out:
596         if (!ret)
597                 printk(KERN_WARNING
598                        "transparent_hugepage= cannot parse, ignored\n");
599         return ret;
600 }
601 __setup("transparent_hugepage=", setup_transparent_hugepage);
602
603 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
604 {
605         if (likely(vma->vm_flags & VM_WRITE))
606                 pmd = pmd_mkwrite(pmd);
607         return pmd;
608 }
609
610 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
611                                         struct vm_area_struct *vma,
612                                         unsigned long haddr, pmd_t *pmd,
613                                         struct page *page)
614 {
615         pgtable_t pgtable;
616
617         VM_BUG_ON(!PageCompound(page));
618         pgtable = pte_alloc_one(mm, haddr);
619         if (unlikely(!pgtable))
620                 return VM_FAULT_OOM;
621
622         clear_huge_page(page, haddr, HPAGE_PMD_NR);
623         __SetPageUptodate(page);
624
625         spin_lock(&mm->page_table_lock);
626         if (unlikely(!pmd_none(*pmd))) {
627                 spin_unlock(&mm->page_table_lock);
628                 mem_cgroup_uncharge_page(page);
629                 put_page(page);
630                 pte_free(mm, pgtable);
631         } else {
632                 pmd_t entry;
633                 entry = mk_pmd(page, vma->vm_page_prot);
634                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635                 entry = pmd_mkhuge(entry);
636                 /*
637                  * The spinlocking to take the lru_lock inside
638                  * page_add_new_anon_rmap() acts as a full memory
639                  * barrier to be sure clear_huge_page writes become
640                  * visible after the set_pmd_at() write.
641                  */
642                 page_add_new_anon_rmap(page, vma, haddr);
643                 set_pmd_at(mm, haddr, pmd, entry);
644                 pgtable_trans_huge_deposit(mm, pgtable);
645                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
646                 mm->nr_ptes++;
647                 spin_unlock(&mm->page_table_lock);
648         }
649
650         return 0;
651 }
652
653 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
654 {
655         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
656 }
657
658 static inline struct page *alloc_hugepage_vma(int defrag,
659                                               struct vm_area_struct *vma,
660                                               unsigned long haddr, int nd,
661                                               gfp_t extra_gfp)
662 {
663         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
664                                HPAGE_PMD_ORDER, vma, haddr, nd);
665 }
666
667 #ifndef CONFIG_NUMA
668 static inline struct page *alloc_hugepage(int defrag)
669 {
670         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
671                            HPAGE_PMD_ORDER);
672 }
673 #endif
674
675 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
676                                unsigned long address, pmd_t *pmd,
677                                unsigned int flags)
678 {
679         struct page *page;
680         unsigned long haddr = address & HPAGE_PMD_MASK;
681         pte_t *pte;
682
683         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
684                 if (unlikely(anon_vma_prepare(vma)))
685                         return VM_FAULT_OOM;
686                 if (unlikely(khugepaged_enter(vma)))
687                         return VM_FAULT_OOM;
688                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
689                                           vma, haddr, numa_node_id(), 0);
690                 if (unlikely(!page)) {
691                         count_vm_event(THP_FAULT_FALLBACK);
692                         goto out;
693                 }
694                 count_vm_event(THP_FAULT_ALLOC);
695                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
696                         put_page(page);
697                         goto out;
698                 }
699                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
700                                                           page))) {
701                         mem_cgroup_uncharge_page(page);
702                         put_page(page);
703                         goto out;
704                 }
705
706                 return 0;
707         }
708 out:
709         /*
710          * Use __pte_alloc instead of pte_alloc_map, because we can't
711          * run pte_offset_map on the pmd, if an huge pmd could
712          * materialize from under us from a different thread.
713          */
714         if (unlikely(pmd_none(*pmd)) &&
715             unlikely(__pte_alloc(mm, vma, pmd, address)))
716                 return VM_FAULT_OOM;
717         /* if an huge pmd materialized from under us just retry later */
718         if (unlikely(pmd_trans_huge(*pmd)))
719                 return 0;
720         /*
721          * A regular pmd is established and it can't morph into a huge pmd
722          * from under us anymore at this point because we hold the mmap_sem
723          * read mode and khugepaged takes it in write mode. So now it's
724          * safe to run pte_offset_map().
725          */
726         pte = pte_offset_map(pmd, address);
727         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
728 }
729
730 bool pmd_prot_none(struct vm_area_struct *vma, pmd_t pmd)
731 {
732         /*
733          * See pte_prot_none().
734          */
735         if (pmd_same(pmd, pmd_modify(pmd, vma->vm_page_prot)))
736                 return false;
737
738         return pmd_same(pmd, pmd_modify(pmd, vma_prot_none(vma)));
739 }
740
741 void do_huge_pmd_prot_none(struct mm_struct *mm, struct vm_area_struct *vma,
742                            unsigned long address, pmd_t *pmd,
743                            unsigned int flags, pmd_t entry)
744 {
745         unsigned long haddr = address & HPAGE_PMD_MASK;
746         struct page *new_page = NULL;
747         struct page *page = NULL;
748         int node, lru;
749
750         spin_lock(&mm->page_table_lock);
751         if (unlikely(!pmd_same(*pmd, entry)))
752                 goto unlock;
753
754         if (unlikely(pmd_trans_splitting(entry))) {
755                 spin_unlock(&mm->page_table_lock);
756                 wait_split_huge_page(vma->anon_vma, pmd);
757                 return;
758         }
759
760         page = pmd_page(entry);
761         if (page) {
762                 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
763
764                 get_page(page);
765                 node = mpol_misplaced(page, vma, haddr);
766                 if (node != -1)
767                         goto migrate;
768         }
769
770 fixup:
771         /* change back to regular protection */
772         entry = pmd_modify(entry, vma->vm_page_prot);
773         set_pmd_at(mm, haddr, pmd, entry);
774         update_mmu_cache_pmd(vma, address, entry);
775
776 unlock:
777         spin_unlock(&mm->page_table_lock);
778         if (page) {
779                 task_numa_fault(page_to_nid(page), HPAGE_PMD_NR);
780                 put_page(page);
781         }
782         return;
783
784 migrate:
785         WARN_ON(!(((unsigned long)page->mapping & PAGE_MAPPING_ANON)));
786         WARN_ON((((unsigned long)page->mapping & PAGE_MAPPING_KSM)));
787         BUG_ON(PageSwapCache(page));
788
789         spin_unlock(&mm->page_table_lock);
790
791         lock_page(page);
792         spin_lock(&mm->page_table_lock);
793         if (unlikely(!pmd_same(*pmd, entry))) {
794                 spin_unlock(&mm->page_table_lock);
795                 unlock_page(page);
796                 put_page(page);
797                 return;
798         }
799         spin_unlock(&mm->page_table_lock);
800
801         new_page = alloc_pages_node(node,
802             (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT,
803             HPAGE_PMD_ORDER);
804
805         WARN_ON(PageLRU(new_page));
806
807         if (!new_page)
808                 goto alloc_fail;
809
810         lru = PageLRU(page);
811
812         if (lru && isolate_lru_page(page)) /* does an implicit get_page() */
813                 goto alloc_fail;
814
815         if (!trylock_page(new_page))
816                 BUG();
817
818         /* anon mapping, we can simply copy page->mapping to the new page: */
819         new_page->mapping = page->mapping;
820         new_page->index = page->index;
821
822         migrate_page_copy(new_page, page);
823
824         WARN_ON(PageLRU(new_page));
825
826         spin_lock(&mm->page_table_lock);
827         if (unlikely(!pmd_same(*pmd, entry))) {
828                 spin_unlock(&mm->page_table_lock);
829                 if (lru)
830                         putback_lru_page(page);
831
832                 unlock_page(new_page);
833                 ClearPageActive(new_page);      /* Set by migrate_page_copy() */
834                 new_page->mapping = NULL;
835                 put_page(new_page);             /* Free it */
836
837                 unlock_page(page);
838                 put_page(page);                 /* Drop the local reference */
839
840                 return;
841         }
842
843         entry = mk_pmd(new_page, vma->vm_page_prot);
844         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
845         entry = pmd_mkhuge(entry);
846
847         page_add_new_anon_rmap(new_page, vma, haddr);
848
849         set_pmd_at(mm, haddr, pmd, entry);
850         update_mmu_cache_pmd(vma, address, entry);
851         page_remove_rmap(page);
852         spin_unlock(&mm->page_table_lock);
853
854         put_page(page);                 /* Drop the rmap reference */
855
856         task_numa_fault(node, HPAGE_PMD_NR);
857
858         if (lru)
859                 put_page(page);         /* drop the LRU isolation reference */
860
861         unlock_page(new_page);
862         unlock_page(page);
863         put_page(page);                 /* Drop the local reference */
864
865         return;
866
867 alloc_fail:
868         if (new_page)
869                 put_page(new_page);
870
871         unlock_page(page);
872
873         spin_lock(&mm->page_table_lock);
874         if (unlikely(!pmd_same(*pmd, entry))) {
875                 put_page(page);
876                 page = NULL;
877                 goto unlock;
878         }
879         goto fixup;
880 }
881
882 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
884                   struct vm_area_struct *vma)
885 {
886         struct page *src_page;
887         pmd_t pmd;
888         pgtable_t pgtable;
889         int ret;
890
891         ret = -ENOMEM;
892         pgtable = pte_alloc_one(dst_mm, addr);
893         if (unlikely(!pgtable))
894                 goto out;
895
896         spin_lock(&dst_mm->page_table_lock);
897         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
898
899         ret = -EAGAIN;
900         pmd = *src_pmd;
901         if (unlikely(!pmd_trans_huge(pmd))) {
902                 pte_free(dst_mm, pgtable);
903                 goto out_unlock;
904         }
905         if (unlikely(pmd_trans_splitting(pmd))) {
906                 /* split huge page running from under us */
907                 spin_unlock(&src_mm->page_table_lock);
908                 spin_unlock(&dst_mm->page_table_lock);
909                 pte_free(dst_mm, pgtable);
910
911                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
912                 goto out;
913         }
914         src_page = pmd_page(pmd);
915         VM_BUG_ON(!PageHead(src_page));
916         get_page(src_page);
917         page_dup_rmap(src_page);
918         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
919
920         pmdp_set_wrprotect(src_mm, addr, src_pmd);
921         pmd = pmd_mkold(pmd_wrprotect(pmd));
922         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
923         pgtable_trans_huge_deposit(dst_mm, pgtable);
924         dst_mm->nr_ptes++;
925
926         ret = 0;
927 out_unlock:
928         spin_unlock(&src_mm->page_table_lock);
929         spin_unlock(&dst_mm->page_table_lock);
930 out:
931         return ret;
932 }
933
934 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
935                                         struct vm_area_struct *vma,
936                                         unsigned long address,
937                                         pmd_t *pmd, pmd_t orig_pmd,
938                                         struct page *page,
939                                         unsigned long haddr)
940 {
941         pgtable_t pgtable;
942         pmd_t _pmd;
943         int ret = 0, i;
944         struct page **pages;
945         unsigned long mmun_start;       /* For mmu_notifiers */
946         unsigned long mmun_end;         /* For mmu_notifiers */
947
948         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
949                         GFP_KERNEL);
950         if (unlikely(!pages)) {
951                 ret |= VM_FAULT_OOM;
952                 goto out;
953         }
954
955         for (i = 0; i < HPAGE_PMD_NR; i++) {
956                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
957                                                __GFP_OTHER_NODE,
958                                                vma, address, page_to_nid(page));
959                 if (unlikely(!pages[i] ||
960                              mem_cgroup_newpage_charge(pages[i], mm,
961                                                        GFP_KERNEL))) {
962                         if (pages[i])
963                                 put_page(pages[i]);
964                         mem_cgroup_uncharge_start();
965                         while (--i >= 0) {
966                                 mem_cgroup_uncharge_page(pages[i]);
967                                 put_page(pages[i]);
968                         }
969                         mem_cgroup_uncharge_end();
970                         kfree(pages);
971                         ret |= VM_FAULT_OOM;
972                         goto out;
973                 }
974         }
975
976         for (i = 0; i < HPAGE_PMD_NR; i++) {
977                 copy_user_highpage(pages[i], page + i,
978                                    haddr + PAGE_SIZE * i, vma);
979                 __SetPageUptodate(pages[i]);
980                 cond_resched();
981         }
982
983         mmun_start = haddr;
984         mmun_end   = haddr + HPAGE_PMD_SIZE;
985         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
986
987         spin_lock(&mm->page_table_lock);
988         if (unlikely(!pmd_same(*pmd, orig_pmd)))
989                 goto out_free_pages;
990         VM_BUG_ON(!PageHead(page));
991
992         pmdp_clear_flush(vma, haddr, pmd);
993         /* leave pmd empty until pte is filled */
994
995         pgtable = pgtable_trans_huge_withdraw(mm);
996         pmd_populate(mm, &_pmd, pgtable);
997
998         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
999                 pte_t *pte, entry;
1000                 entry = mk_pte(pages[i], vma->vm_page_prot);
1001                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1002                 page_add_new_anon_rmap(pages[i], vma, haddr);
1003                 pte = pte_offset_map(&_pmd, haddr);
1004                 VM_BUG_ON(!pte_none(*pte));
1005                 set_pte_at(mm, haddr, pte, entry);
1006                 pte_unmap(pte);
1007         }
1008         kfree(pages);
1009
1010         smp_wmb(); /* make pte visible before pmd */
1011         pmd_populate(mm, pmd, pgtable);
1012         page_remove_rmap(page);
1013         spin_unlock(&mm->page_table_lock);
1014
1015         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1016
1017         ret |= VM_FAULT_WRITE;
1018         put_page(page);
1019
1020 out:
1021         return ret;
1022
1023 out_free_pages:
1024         spin_unlock(&mm->page_table_lock);
1025         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1026         mem_cgroup_uncharge_start();
1027         for (i = 0; i < HPAGE_PMD_NR; i++) {
1028                 mem_cgroup_uncharge_page(pages[i]);
1029                 put_page(pages[i]);
1030         }
1031         mem_cgroup_uncharge_end();
1032         kfree(pages);
1033         goto out;
1034 }
1035
1036 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1037                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1038 {
1039         int ret = 0;
1040         struct page *page, *new_page;
1041         unsigned long haddr;
1042         unsigned long mmun_start;       /* For mmu_notifiers */
1043         unsigned long mmun_end;         /* For mmu_notifiers */
1044
1045         VM_BUG_ON(!vma->anon_vma);
1046         spin_lock(&mm->page_table_lock);
1047         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1048                 goto out_unlock;
1049
1050         page = pmd_page(orig_pmd);
1051         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1052         haddr = address & HPAGE_PMD_MASK;
1053         if (page_mapcount(page) == 1) {
1054                 pmd_t entry;
1055                 entry = pmd_mkyoung(orig_pmd);
1056                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1057                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1058                         update_mmu_cache_pmd(vma, address, pmd);
1059                 ret |= VM_FAULT_WRITE;
1060                 goto out_unlock;
1061         }
1062         get_page(page);
1063         spin_unlock(&mm->page_table_lock);
1064
1065         if (transparent_hugepage_enabled(vma) &&
1066             !transparent_hugepage_debug_cow())
1067                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1068                                               vma, haddr, numa_node_id(), 0);
1069         else
1070                 new_page = NULL;
1071
1072         if (unlikely(!new_page)) {
1073                 count_vm_event(THP_FAULT_FALLBACK);
1074                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1075                                                    pmd, orig_pmd, page, haddr);
1076                 if (ret & VM_FAULT_OOM)
1077                         split_huge_page(page);
1078                 put_page(page);
1079                 goto out;
1080         }
1081         count_vm_event(THP_FAULT_ALLOC);
1082
1083         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1084                 put_page(new_page);
1085                 split_huge_page(page);
1086                 put_page(page);
1087                 ret |= VM_FAULT_OOM;
1088                 goto out;
1089         }
1090
1091         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1092         __SetPageUptodate(new_page);
1093
1094         mmun_start = haddr;
1095         mmun_end   = haddr + HPAGE_PMD_SIZE;
1096         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1097
1098         spin_lock(&mm->page_table_lock);
1099         put_page(page);
1100         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1101                 spin_unlock(&mm->page_table_lock);
1102                 mem_cgroup_uncharge_page(new_page);
1103                 put_page(new_page);
1104                 goto out_mn;
1105         } else {
1106                 pmd_t entry;
1107                 VM_BUG_ON(!PageHead(page));
1108                 entry = mk_pmd(new_page, vma->vm_page_prot);
1109                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1110                 entry = pmd_mkhuge(entry);
1111                 pmdp_clear_flush(vma, haddr, pmd);
1112                 page_add_new_anon_rmap(new_page, vma, haddr);
1113                 set_pmd_at(mm, haddr, pmd, entry);
1114                 update_mmu_cache_pmd(vma, address, pmd);
1115                 page_remove_rmap(page);
1116                 put_page(page);
1117                 ret |= VM_FAULT_WRITE;
1118         }
1119         spin_unlock(&mm->page_table_lock);
1120 out_mn:
1121         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1122 out:
1123         return ret;
1124 out_unlock:
1125         spin_unlock(&mm->page_table_lock);
1126         return ret;
1127 }
1128
1129 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1130                                    unsigned long addr,
1131                                    pmd_t *pmd,
1132                                    unsigned int flags)
1133 {
1134         struct mm_struct *mm = vma->vm_mm;
1135         struct page *page = NULL;
1136
1137         assert_spin_locked(&mm->page_table_lock);
1138
1139         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1140                 goto out;
1141
1142         page = pmd_page(*pmd);
1143         VM_BUG_ON(!PageHead(page));
1144         if (flags & FOLL_TOUCH) {
1145                 pmd_t _pmd;
1146                 /*
1147                  * We should set the dirty bit only for FOLL_WRITE but
1148                  * for now the dirty bit in the pmd is meaningless.
1149                  * And if the dirty bit will become meaningful and
1150                  * we'll only set it with FOLL_WRITE, an atomic
1151                  * set_bit will be required on the pmd to set the
1152                  * young bit, instead of the current set_pmd_at.
1153                  */
1154                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1155                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1156         }
1157         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1158                 if (page->mapping && trylock_page(page)) {
1159                         lru_add_drain();
1160                         if (page->mapping)
1161                                 mlock_vma_page(page);
1162                         unlock_page(page);
1163                 }
1164         }
1165         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1166         VM_BUG_ON(!PageCompound(page));
1167         if (flags & FOLL_GET)
1168                 get_page_foll(page);
1169
1170 out:
1171         return page;
1172 }
1173
1174 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1175                  pmd_t *pmd, unsigned long addr)
1176 {
1177         int ret = 0;
1178
1179         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1180                 struct page *page;
1181                 pgtable_t pgtable;
1182                 pmd_t orig_pmd;
1183                 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1184                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1185                 page = pmd_page(orig_pmd);
1186                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1187                 page_remove_rmap(page);
1188                 VM_BUG_ON(page_mapcount(page) < 0);
1189                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1190                 VM_BUG_ON(!PageHead(page));
1191                 tlb->mm->nr_ptes--;
1192                 spin_unlock(&tlb->mm->page_table_lock);
1193                 tlb_remove_page(tlb, page);
1194                 pte_free(tlb->mm, pgtable);
1195                 ret = 1;
1196         }
1197         return ret;
1198 }
1199
1200 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1201                 unsigned long addr, unsigned long end,
1202                 unsigned char *vec)
1203 {
1204         int ret = 0;
1205
1206         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1207                 /*
1208                  * All logical pages in the range are present
1209                  * if backed by a huge page.
1210                  */
1211                 spin_unlock(&vma->vm_mm->page_table_lock);
1212                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1213                 ret = 1;
1214         }
1215
1216         return ret;
1217 }
1218
1219 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1220                   unsigned long old_addr,
1221                   unsigned long new_addr, unsigned long old_end,
1222                   pmd_t *old_pmd, pmd_t *new_pmd)
1223 {
1224         int ret = 0;
1225         pmd_t pmd;
1226
1227         struct mm_struct *mm = vma->vm_mm;
1228
1229         if ((old_addr & ~HPAGE_PMD_MASK) ||
1230             (new_addr & ~HPAGE_PMD_MASK) ||
1231             old_end - old_addr < HPAGE_PMD_SIZE ||
1232             (new_vma->vm_flags & VM_NOHUGEPAGE))
1233                 goto out;
1234
1235         /*
1236          * The destination pmd shouldn't be established, free_pgtables()
1237          * should have release it.
1238          */
1239         if (WARN_ON(!pmd_none(*new_pmd))) {
1240                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1241                 goto out;
1242         }
1243
1244         ret = __pmd_trans_huge_lock(old_pmd, vma);
1245         if (ret == 1) {
1246                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1247                 VM_BUG_ON(!pmd_none(*new_pmd));
1248                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1249                 spin_unlock(&mm->page_table_lock);
1250         }
1251 out:
1252         return ret;
1253 }
1254
1255 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1256                 unsigned long addr, pgprot_t newprot)
1257 {
1258         struct mm_struct *mm = vma->vm_mm;
1259         int ret = 0;
1260
1261         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1262                 pmd_t entry;
1263                 entry = pmdp_get_and_clear(mm, addr, pmd);
1264                 entry = pmd_modify(entry, newprot);
1265                 set_pmd_at(mm, addr, pmd, entry);
1266                 spin_unlock(&vma->vm_mm->page_table_lock);
1267                 ret = 1;
1268         }
1269
1270         return ret;
1271 }
1272
1273 /*
1274  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1275  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1276  *
1277  * Note that if it returns 1, this routine returns without unlocking page
1278  * table locks. So callers must unlock them.
1279  */
1280 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1281 {
1282         spin_lock(&vma->vm_mm->page_table_lock);
1283         if (likely(pmd_trans_huge(*pmd))) {
1284                 if (unlikely(pmd_trans_splitting(*pmd))) {
1285                         spin_unlock(&vma->vm_mm->page_table_lock);
1286                         wait_split_huge_page(vma->anon_vma, pmd);
1287                         return -1;
1288                 } else {
1289                         /* Thp mapped by 'pmd' is stable, so we can
1290                          * handle it as it is. */
1291                         return 1;
1292                 }
1293         }
1294         spin_unlock(&vma->vm_mm->page_table_lock);
1295         return 0;
1296 }
1297
1298 pmd_t *page_check_address_pmd(struct page *page,
1299                               struct mm_struct *mm,
1300                               unsigned long address,
1301                               enum page_check_address_pmd_flag flag)
1302 {
1303         pgd_t *pgd;
1304         pud_t *pud;
1305         pmd_t *pmd, *ret = NULL;
1306
1307         if (address & ~HPAGE_PMD_MASK)
1308                 goto out;
1309
1310         pgd = pgd_offset(mm, address);
1311         if (!pgd_present(*pgd))
1312                 goto out;
1313
1314         pud = pud_offset(pgd, address);
1315         if (!pud_present(*pud))
1316                 goto out;
1317
1318         pmd = pmd_offset(pud, address);
1319         if (pmd_none(*pmd))
1320                 goto out;
1321         if (pmd_page(*pmd) != page)
1322                 goto out;
1323         /*
1324          * split_vma() may create temporary aliased mappings. There is
1325          * no risk as long as all huge pmd are found and have their
1326          * splitting bit set before __split_huge_page_refcount
1327          * runs. Finding the same huge pmd more than once during the
1328          * same rmap walk is not a problem.
1329          */
1330         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1331             pmd_trans_splitting(*pmd))
1332                 goto out;
1333         if (pmd_trans_huge(*pmd)) {
1334                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1335                           !pmd_trans_splitting(*pmd));
1336                 ret = pmd;
1337         }
1338 out:
1339         return ret;
1340 }
1341
1342 static int __split_huge_page_splitting(struct page *page,
1343                                        struct vm_area_struct *vma,
1344                                        unsigned long address)
1345 {
1346         struct mm_struct *mm = vma->vm_mm;
1347         pmd_t *pmd;
1348         int ret = 0;
1349         /* For mmu_notifiers */
1350         const unsigned long mmun_start = address;
1351         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1352
1353         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1354         spin_lock(&mm->page_table_lock);
1355         pmd = page_check_address_pmd(page, mm, address,
1356                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1357         if (pmd) {
1358                 /*
1359                  * We can't temporarily set the pmd to null in order
1360                  * to split it, the pmd must remain marked huge at all
1361                  * times or the VM won't take the pmd_trans_huge paths
1362                  * and it won't wait on the anon_vma->root->mutex to
1363                  * serialize against split_huge_page*.
1364                  */
1365                 pmdp_splitting_flush(vma, address, pmd);
1366                 ret = 1;
1367         }
1368         spin_unlock(&mm->page_table_lock);
1369         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1370
1371         return ret;
1372 }
1373
1374 static void __split_huge_page_refcount(struct page *page)
1375 {
1376         int i;
1377         struct zone *zone = page_zone(page);
1378         struct lruvec *lruvec;
1379         int tail_count = 0;
1380
1381         /* prevent PageLRU to go away from under us, and freeze lru stats */
1382         spin_lock_irq(&zone->lru_lock);
1383         lruvec = mem_cgroup_page_lruvec(page, zone);
1384
1385         compound_lock(page);
1386         /* complete memcg works before add pages to LRU */
1387         mem_cgroup_split_huge_fixup(page);
1388
1389         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1390                 struct page *page_tail = page + i;
1391
1392                 /* tail_page->_mapcount cannot change */
1393                 BUG_ON(page_mapcount(page_tail) < 0);
1394                 tail_count += page_mapcount(page_tail);
1395                 /* check for overflow */
1396                 BUG_ON(tail_count < 0);
1397                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1398                 /*
1399                  * tail_page->_count is zero and not changing from
1400                  * under us. But get_page_unless_zero() may be running
1401                  * from under us on the tail_page. If we used
1402                  * atomic_set() below instead of atomic_add(), we
1403                  * would then run atomic_set() concurrently with
1404                  * get_page_unless_zero(), and atomic_set() is
1405                  * implemented in C not using locked ops. spin_unlock
1406                  * on x86 sometime uses locked ops because of PPro
1407                  * errata 66, 92, so unless somebody can guarantee
1408                  * atomic_set() here would be safe on all archs (and
1409                  * not only on x86), it's safer to use atomic_add().
1410                  */
1411                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1412                            &page_tail->_count);
1413
1414                 /* after clearing PageTail the gup refcount can be released */
1415                 smp_mb();
1416
1417                 /*
1418                  * retain hwpoison flag of the poisoned tail page:
1419                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1420                  *   by the memory-failure.
1421                  */
1422                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1423                 page_tail->flags |= (page->flags &
1424                                      ((1L << PG_referenced) |
1425                                       (1L << PG_swapbacked) |
1426                                       (1L << PG_mlocked) |
1427                                       (1L << PG_uptodate)));
1428                 page_tail->flags |= (1L << PG_dirty);
1429
1430                 /* clear PageTail before overwriting first_page */
1431                 smp_wmb();
1432
1433                 /*
1434                  * __split_huge_page_splitting() already set the
1435                  * splitting bit in all pmd that could map this
1436                  * hugepage, that will ensure no CPU can alter the
1437                  * mapcount on the head page. The mapcount is only
1438                  * accounted in the head page and it has to be
1439                  * transferred to all tail pages in the below code. So
1440                  * for this code to be safe, the split the mapcount
1441                  * can't change. But that doesn't mean userland can't
1442                  * keep changing and reading the page contents while
1443                  * we transfer the mapcount, so the pmd splitting
1444                  * status is achieved setting a reserved bit in the
1445                  * pmd, not by clearing the present bit.
1446                 */
1447                 page_tail->_mapcount = page->_mapcount;
1448
1449                 BUG_ON(page_tail->mapping);
1450                 page_tail->mapping = page->mapping;
1451
1452                 page_tail->index = page->index + i;
1453                 page_xchg_last_nid(page, page_last_nid(page_tail));
1454
1455                 BUG_ON(!PageAnon(page_tail));
1456                 BUG_ON(!PageUptodate(page_tail));
1457                 BUG_ON(!PageDirty(page_tail));
1458                 BUG_ON(!PageSwapBacked(page_tail));
1459
1460                 lru_add_page_tail(page, page_tail, lruvec);
1461         }
1462         atomic_sub(tail_count, &page->_count);
1463         BUG_ON(atomic_read(&page->_count) <= 0);
1464
1465         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1466         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1467
1468         ClearPageCompound(page);
1469         compound_unlock(page);
1470         spin_unlock_irq(&zone->lru_lock);
1471
1472         for (i = 1; i < HPAGE_PMD_NR; i++) {
1473                 struct page *page_tail = page + i;
1474                 BUG_ON(page_count(page_tail) <= 0);
1475                 /*
1476                  * Tail pages may be freed if there wasn't any mapping
1477                  * like if add_to_swap() is running on a lru page that
1478                  * had its mapping zapped. And freeing these pages
1479                  * requires taking the lru_lock so we do the put_page
1480                  * of the tail pages after the split is complete.
1481                  */
1482                 put_page(page_tail);
1483         }
1484
1485         /*
1486          * Only the head page (now become a regular page) is required
1487          * to be pinned by the caller.
1488          */
1489         BUG_ON(page_count(page) <= 0);
1490 }
1491
1492 static int __split_huge_page_map(struct page *page,
1493                                  struct vm_area_struct *vma,
1494                                  unsigned long address)
1495 {
1496         struct mm_struct *mm = vma->vm_mm;
1497         pmd_t *pmd, _pmd;
1498         int ret = 0, i;
1499         pgtable_t pgtable;
1500         unsigned long haddr;
1501         pgprot_t prot;
1502
1503         spin_lock(&mm->page_table_lock);
1504         pmd = page_check_address_pmd(page, mm, address,
1505                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1506         if (!pmd)
1507                 goto unlock;
1508
1509         prot = pmd_pgprot(*pmd);
1510         pgtable = pgtable_trans_huge_withdraw(mm);
1511         pmd_populate(mm, &_pmd, pgtable);
1512
1513         for (i = 0, haddr = address; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1514                 pte_t *pte, entry;
1515
1516                 BUG_ON(PageCompound(page+i));
1517                 entry = mk_pte(page + i, prot);
1518                 entry = pte_mkdirty(entry);
1519                 if (!pmd_young(*pmd))
1520                         entry = pte_mkold(entry);
1521                 pte = pte_offset_map(&_pmd, haddr);
1522                 BUG_ON(!pte_none(*pte));
1523                 set_pte_at(mm, haddr, pte, entry);
1524                 pte_unmap(pte);
1525         }
1526
1527         smp_wmb(); /* make ptes visible before pmd, see __pte_alloc */
1528         /*
1529          * Up to this point the pmd is present and huge.
1530          *
1531          * If we overwrite the pmd with the not-huge version, we could trigger
1532          * a small page size TLB miss on the small sized TLB while the hugepage
1533          * TLB entry is still established in the huge TLB.
1534          *
1535          * Some CPUs don't like that. See
1536          * http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 383
1537          * on page 93.
1538          *
1539          * Thus it is generally safer to never allow small and huge TLB entries
1540          * for overlapping virtual addresses to be loaded. So we first mark the
1541          * current pmd not present, then we flush the TLB and finally we write
1542          * the non-huge version of the pmd entry with pmd_populate.
1543          *
1544          * The above needs to be done under the ptl because pmd_trans_huge and
1545          * pmd_trans_splitting must remain set on the pmd until the split is
1546          * complete. The ptl also protects against concurrent faults due to
1547          * making the pmd not-present.
1548          */
1549         set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1550         flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1551         pmd_populate(mm, pmd, pgtable);
1552         ret = 1;
1553
1554 unlock:
1555         spin_unlock(&mm->page_table_lock);
1556
1557         return ret;
1558 }
1559
1560 /* must be called with anon_vma->root->mutex hold */
1561 static void __split_huge_page(struct page *page,
1562                               struct anon_vma *anon_vma)
1563 {
1564         int mapcount, mapcount2;
1565         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1566         struct anon_vma_chain *avc;
1567
1568         BUG_ON(!PageHead(page));
1569         BUG_ON(PageTail(page));
1570
1571         mapcount = 0;
1572         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1573                 struct vm_area_struct *vma = avc->vma;
1574                 unsigned long addr = vma_address(page, vma);
1575                 BUG_ON(is_vma_temporary_stack(vma));
1576                 mapcount += __split_huge_page_splitting(page, vma, addr);
1577         }
1578         /*
1579          * It is critical that new vmas are added to the tail of the
1580          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1581          * and establishes a child pmd before
1582          * __split_huge_page_splitting() freezes the parent pmd (so if
1583          * we fail to prevent copy_huge_pmd() from running until the
1584          * whole __split_huge_page() is complete), we will still see
1585          * the newly established pmd of the child later during the
1586          * walk, to be able to set it as pmd_trans_splitting too.
1587          */
1588         if (mapcount != page_mapcount(page))
1589                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1590                        mapcount, page_mapcount(page));
1591         BUG_ON(mapcount != page_mapcount(page));
1592
1593         __split_huge_page_refcount(page);
1594
1595         mapcount2 = 0;
1596         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1597                 struct vm_area_struct *vma = avc->vma;
1598                 unsigned long addr = vma_address(page, vma);
1599                 BUG_ON(is_vma_temporary_stack(vma));
1600                 mapcount2 += __split_huge_page_map(page, vma, addr);
1601         }
1602         if (mapcount != mapcount2)
1603                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1604                        mapcount, mapcount2, page_mapcount(page));
1605         BUG_ON(mapcount != mapcount2);
1606 }
1607
1608 int split_huge_page(struct page *page)
1609 {
1610         struct anon_vma *anon_vma;
1611         int ret = 1;
1612
1613         BUG_ON(!PageAnon(page));
1614         anon_vma = page_lock_anon_vma(page);
1615         if (!anon_vma)
1616                 goto out;
1617         ret = 0;
1618         if (!PageCompound(page))
1619                 goto out_unlock;
1620
1621         BUG_ON(!PageSwapBacked(page));
1622         __split_huge_page(page, anon_vma);
1623         count_vm_event(THP_SPLIT);
1624
1625         BUG_ON(PageCompound(page));
1626 out_unlock:
1627         page_unlock_anon_vma(anon_vma);
1628 out:
1629         return ret;
1630 }
1631
1632 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1633
1634 int hugepage_madvise(struct vm_area_struct *vma,
1635                      unsigned long *vm_flags, int advice)
1636 {
1637         struct mm_struct *mm = vma->vm_mm;
1638
1639         switch (advice) {
1640         case MADV_HUGEPAGE:
1641                 /*
1642                  * Be somewhat over-protective like KSM for now!
1643                  */
1644                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1645                         return -EINVAL;
1646                 if (mm->def_flags & VM_NOHUGEPAGE)
1647                         return -EINVAL;
1648                 *vm_flags &= ~VM_NOHUGEPAGE;
1649                 *vm_flags |= VM_HUGEPAGE;
1650                 /*
1651                  * If the vma become good for khugepaged to scan,
1652                  * register it here without waiting a page fault that
1653                  * may not happen any time soon.
1654                  */
1655                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1656                         return -ENOMEM;
1657                 break;
1658         case MADV_NOHUGEPAGE:
1659                 /*
1660                  * Be somewhat over-protective like KSM for now!
1661                  */
1662                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1663                         return -EINVAL;
1664                 *vm_flags &= ~VM_HUGEPAGE;
1665                 *vm_flags |= VM_NOHUGEPAGE;
1666                 /*
1667                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1668                  * this vma even if we leave the mm registered in khugepaged if
1669                  * it got registered before VM_NOHUGEPAGE was set.
1670                  */
1671                 break;
1672         }
1673
1674         return 0;
1675 }
1676
1677 static int __init khugepaged_slab_init(void)
1678 {
1679         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1680                                           sizeof(struct mm_slot),
1681                                           __alignof__(struct mm_slot), 0, NULL);
1682         if (!mm_slot_cache)
1683                 return -ENOMEM;
1684
1685         return 0;
1686 }
1687
1688 static void __init khugepaged_slab_free(void)
1689 {
1690         kmem_cache_destroy(mm_slot_cache);
1691         mm_slot_cache = NULL;
1692 }
1693
1694 static inline struct mm_slot *alloc_mm_slot(void)
1695 {
1696         if (!mm_slot_cache)     /* initialization failed */
1697                 return NULL;
1698         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1699 }
1700
1701 static inline void free_mm_slot(struct mm_slot *mm_slot)
1702 {
1703         kmem_cache_free(mm_slot_cache, mm_slot);
1704 }
1705
1706 static int __init mm_slots_hash_init(void)
1707 {
1708         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1709                                 GFP_KERNEL);
1710         if (!mm_slots_hash)
1711                 return -ENOMEM;
1712         return 0;
1713 }
1714
1715 #if 0
1716 static void __init mm_slots_hash_free(void)
1717 {
1718         kfree(mm_slots_hash);
1719         mm_slots_hash = NULL;
1720 }
1721 #endif
1722
1723 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1724 {
1725         struct mm_slot *mm_slot;
1726         struct hlist_head *bucket;
1727         struct hlist_node *node;
1728
1729         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1730                                 % MM_SLOTS_HASH_HEADS];
1731         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1732                 if (mm == mm_slot->mm)
1733                         return mm_slot;
1734         }
1735         return NULL;
1736 }
1737
1738 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1739                                     struct mm_slot *mm_slot)
1740 {
1741         struct hlist_head *bucket;
1742
1743         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1744                                 % MM_SLOTS_HASH_HEADS];
1745         mm_slot->mm = mm;
1746         hlist_add_head(&mm_slot->hash, bucket);
1747 }
1748
1749 static inline int khugepaged_test_exit(struct mm_struct *mm)
1750 {
1751         return atomic_read(&mm->mm_users) == 0;
1752 }
1753
1754 int __khugepaged_enter(struct mm_struct *mm)
1755 {
1756         struct mm_slot *mm_slot;
1757         int wakeup;
1758
1759         mm_slot = alloc_mm_slot();
1760         if (!mm_slot)
1761                 return -ENOMEM;
1762
1763         /* __khugepaged_exit() must not run from under us */
1764         VM_BUG_ON(khugepaged_test_exit(mm));
1765         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1766                 free_mm_slot(mm_slot);
1767                 return 0;
1768         }
1769
1770         spin_lock(&khugepaged_mm_lock);
1771         insert_to_mm_slots_hash(mm, mm_slot);
1772         /*
1773          * Insert just behind the scanning cursor, to let the area settle
1774          * down a little.
1775          */
1776         wakeup = list_empty(&khugepaged_scan.mm_head);
1777         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1778         spin_unlock(&khugepaged_mm_lock);
1779
1780         atomic_inc(&mm->mm_count);
1781         if (wakeup)
1782                 wake_up_interruptible(&khugepaged_wait);
1783
1784         return 0;
1785 }
1786
1787 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1788 {
1789         unsigned long hstart, hend;
1790         if (!vma->anon_vma)
1791                 /*
1792                  * Not yet faulted in so we will register later in the
1793                  * page fault if needed.
1794                  */
1795                 return 0;
1796         if (vma->vm_ops)
1797                 /* khugepaged not yet working on file or special mappings */
1798                 return 0;
1799         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1800         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1801         hend = vma->vm_end & HPAGE_PMD_MASK;
1802         if (hstart < hend)
1803                 return khugepaged_enter(vma);
1804         return 0;
1805 }
1806
1807 void __khugepaged_exit(struct mm_struct *mm)
1808 {
1809         struct mm_slot *mm_slot;
1810         int free = 0;
1811
1812         spin_lock(&khugepaged_mm_lock);
1813         mm_slot = get_mm_slot(mm);
1814         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1815                 hlist_del(&mm_slot->hash);
1816                 list_del(&mm_slot->mm_node);
1817                 free = 1;
1818         }
1819         spin_unlock(&khugepaged_mm_lock);
1820
1821         if (free) {
1822                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1823                 free_mm_slot(mm_slot);
1824                 mmdrop(mm);
1825         } else if (mm_slot) {
1826                 /*
1827                  * This is required to serialize against
1828                  * khugepaged_test_exit() (which is guaranteed to run
1829                  * under mmap sem read mode). Stop here (after we
1830                  * return all pagetables will be destroyed) until
1831                  * khugepaged has finished working on the pagetables
1832                  * under the mmap_sem.
1833                  */
1834                 down_write(&mm->mmap_sem);
1835                 up_write(&mm->mmap_sem);
1836         }
1837 }
1838
1839 static void release_pte_page(struct page *page)
1840 {
1841         /* 0 stands for page_is_file_cache(page) == false */
1842         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1843         unlock_page(page);
1844         putback_lru_page(page);
1845 }
1846
1847 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1848 {
1849         while (--_pte >= pte) {
1850                 pte_t pteval = *_pte;
1851                 if (!pte_none(pteval))
1852                         release_pte_page(pte_page(pteval));
1853         }
1854 }
1855
1856 static void release_all_pte_pages(pte_t *pte)
1857 {
1858         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1859 }
1860
1861 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1862                                         unsigned long address,
1863                                         pte_t *pte)
1864 {
1865         struct page *page;
1866         pte_t *_pte;
1867         int referenced = 0, isolated = 0, none = 0;
1868         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1869              _pte++, address += PAGE_SIZE) {
1870                 pte_t pteval = *_pte;
1871                 if (pte_none(pteval)) {
1872                         if (++none <= khugepaged_max_ptes_none)
1873                                 continue;
1874                         else {
1875                                 release_pte_pages(pte, _pte);
1876                                 goto out;
1877                         }
1878                 }
1879                 if (!pte_present(pteval) || !pte_write(pteval)) {
1880                         release_pte_pages(pte, _pte);
1881                         goto out;
1882                 }
1883                 page = vm_normal_page(vma, address, pteval);
1884                 if (unlikely(!page)) {
1885                         release_pte_pages(pte, _pte);
1886                         goto out;
1887                 }
1888                 VM_BUG_ON(PageCompound(page));
1889                 BUG_ON(!PageAnon(page));
1890                 VM_BUG_ON(!PageSwapBacked(page));
1891
1892                 /* cannot use mapcount: can't collapse if there's a gup pin */
1893                 if (page_count(page) != 1) {
1894                         release_pte_pages(pte, _pte);
1895                         goto out;
1896                 }
1897                 /*
1898                  * We can do it before isolate_lru_page because the
1899                  * page can't be freed from under us. NOTE: PG_lock
1900                  * is needed to serialize against split_huge_page
1901                  * when invoked from the VM.
1902                  */
1903                 if (!trylock_page(page)) {
1904                         release_pte_pages(pte, _pte);
1905                         goto out;
1906                 }
1907                 /*
1908                  * Isolate the page to avoid collapsing an hugepage
1909                  * currently in use by the VM.
1910                  */
1911                 if (isolate_lru_page(page)) {
1912                         unlock_page(page);
1913                         release_pte_pages(pte, _pte);
1914                         goto out;
1915                 }
1916                 /* 0 stands for page_is_file_cache(page) == false */
1917                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1918                 VM_BUG_ON(!PageLocked(page));
1919                 VM_BUG_ON(PageLRU(page));
1920
1921                 /* If there is no mapped pte young don't collapse the page */
1922                 if (pte_young(pteval) || PageReferenced(page) ||
1923                     mmu_notifier_test_young(vma->vm_mm, address))
1924                         referenced = 1;
1925         }
1926         if (unlikely(!referenced))
1927                 release_all_pte_pages(pte);
1928         else
1929                 isolated = 1;
1930 out:
1931         return isolated;
1932 }
1933
1934 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1935                                       struct vm_area_struct *vma,
1936                                       unsigned long address,
1937                                       spinlock_t *ptl)
1938 {
1939         pte_t *_pte;
1940         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1941                 pte_t pteval = *_pte;
1942                 struct page *src_page;
1943
1944                 if (pte_none(pteval)) {
1945                         clear_user_highpage(page, address);
1946                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1947                 } else {
1948                         src_page = pte_page(pteval);
1949                         copy_user_highpage(page, src_page, address, vma);
1950                         VM_BUG_ON(page_mapcount(src_page) != 1);
1951                         release_pte_page(src_page);
1952                         /*
1953                          * ptl mostly unnecessary, but preempt has to
1954                          * be disabled to update the per-cpu stats
1955                          * inside page_remove_rmap().
1956                          */
1957                         spin_lock(ptl);
1958                         /*
1959                          * paravirt calls inside pte_clear here are
1960                          * superfluous.
1961                          */
1962                         pte_clear(vma->vm_mm, address, _pte);
1963                         page_remove_rmap(src_page);
1964                         spin_unlock(ptl);
1965                         free_page_and_swap_cache(src_page);
1966                 }
1967
1968                 address += PAGE_SIZE;
1969                 page++;
1970         }
1971 }
1972
1973 static void khugepaged_alloc_sleep(void)
1974 {
1975         wait_event_freezable_timeout(khugepaged_wait, false,
1976                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1977 }
1978
1979 #ifdef CONFIG_NUMA
1980 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1981 {
1982         if (IS_ERR(*hpage)) {
1983                 if (!*wait)
1984                         return false;
1985
1986                 *wait = false;
1987                 *hpage = NULL;
1988                 khugepaged_alloc_sleep();
1989         } else if (*hpage) {
1990                 put_page(*hpage);
1991                 *hpage = NULL;
1992         }
1993
1994         return true;
1995 }
1996
1997 static struct page
1998 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1999                        struct vm_area_struct *vma, unsigned long address,
2000                        int node)
2001 {
2002         VM_BUG_ON(*hpage);
2003         /*
2004          * Allocate the page while the vma is still valid and under
2005          * the mmap_sem read mode so there is no memory allocation
2006          * later when we take the mmap_sem in write mode. This is more
2007          * friendly behavior (OTOH it may actually hide bugs) to
2008          * filesystems in userland with daemons allocating memory in
2009          * the userland I/O paths.  Allocating memory with the
2010          * mmap_sem in read mode is good idea also to allow greater
2011          * scalability.
2012          */
2013         *hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2014                                       node, __GFP_OTHER_NODE);
2015
2016         /*
2017          * After allocating the hugepage, release the mmap_sem read lock in
2018          * preparation for taking it in write mode.
2019          */
2020         up_read(&mm->mmap_sem);
2021         if (unlikely(!*hpage)) {
2022                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2023                 *hpage = ERR_PTR(-ENOMEM);
2024                 return NULL;
2025         }
2026
2027         count_vm_event(THP_COLLAPSE_ALLOC);
2028         return *hpage;
2029 }
2030 #else
2031 static struct page *khugepaged_alloc_hugepage(bool *wait)
2032 {
2033         struct page *hpage;
2034
2035         do {
2036                 hpage = alloc_hugepage(khugepaged_defrag());
2037                 if (!hpage) {
2038                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2039                         if (!*wait)
2040                                 return NULL;
2041
2042                         *wait = false;
2043                         khugepaged_alloc_sleep();
2044                 } else
2045                         count_vm_event(THP_COLLAPSE_ALLOC);
2046         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2047
2048         return hpage;
2049 }
2050
2051 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2052 {
2053         if (!*hpage)
2054                 *hpage = khugepaged_alloc_hugepage(wait);
2055
2056         if (unlikely(!*hpage))
2057                 return false;
2058
2059         return true;
2060 }
2061
2062 static struct page
2063 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2064                        struct vm_area_struct *vma, unsigned long address,
2065                        int node)
2066 {
2067         up_read(&mm->mmap_sem);
2068         VM_BUG_ON(!*hpage);
2069         return  *hpage;
2070 }
2071 #endif
2072
2073 static void collapse_huge_page(struct mm_struct *mm,
2074                                    unsigned long address,
2075                                    struct page **hpage,
2076                                    struct vm_area_struct *vma,
2077                                    int node)
2078 {
2079         pgd_t *pgd;
2080         pud_t *pud;
2081         pmd_t *pmd, _pmd;
2082         pte_t *pte;
2083         pgtable_t pgtable;
2084         struct page *new_page;
2085         spinlock_t *ptl;
2086         int isolated;
2087         unsigned long hstart, hend;
2088         unsigned long mmun_start;       /* For mmu_notifiers */
2089         unsigned long mmun_end;         /* For mmu_notifiers */
2090
2091         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2092
2093         /* release the mmap_sem read lock. */
2094         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2095         if (!new_page)
2096                 return;
2097
2098         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2099                 return;
2100
2101         /*
2102          * Prevent all access to pagetables with the exception of
2103          * gup_fast later hanlded by the ptep_clear_flush and the VM
2104          * handled by the anon_vma lock + PG_lock.
2105          */
2106         down_write(&mm->mmap_sem);
2107         if (unlikely(khugepaged_test_exit(mm)))
2108                 goto out;
2109
2110         vma = find_vma(mm, address);
2111         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2112         hend = vma->vm_end & HPAGE_PMD_MASK;
2113         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2114                 goto out;
2115
2116         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2117             (vma->vm_flags & VM_NOHUGEPAGE))
2118                 goto out;
2119
2120         if (!vma->anon_vma || vma->vm_ops)
2121                 goto out;
2122         if (is_vma_temporary_stack(vma))
2123                 goto out;
2124         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2125
2126         pgd = pgd_offset(mm, address);
2127         if (!pgd_present(*pgd))
2128                 goto out;
2129
2130         pud = pud_offset(pgd, address);
2131         if (!pud_present(*pud))
2132                 goto out;
2133
2134         pmd = pmd_offset(pud, address);
2135         /* pmd can't go away or become huge under us */
2136         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2137                 goto out;
2138
2139         anon_vma_lock(vma->anon_vma);
2140
2141         pte = pte_offset_map(pmd, address);
2142         ptl = pte_lockptr(mm, pmd);
2143
2144         mmun_start = address;
2145         mmun_end   = address + HPAGE_PMD_SIZE;
2146         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2147         spin_lock(&mm->page_table_lock); /* probably unnecessary */
2148         /*
2149          * After this gup_fast can't run anymore. This also removes
2150          * any huge TLB entry from the CPU so we won't allow
2151          * huge and small TLB entries for the same virtual address
2152          * to avoid the risk of CPU bugs in that area.
2153          */
2154         _pmd = pmdp_clear_flush(vma, address, pmd);
2155         spin_unlock(&mm->page_table_lock);
2156         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2157
2158         spin_lock(ptl);
2159         isolated = __collapse_huge_page_isolate(vma, address, pte);
2160         spin_unlock(ptl);
2161
2162         if (unlikely(!isolated)) {
2163                 pte_unmap(pte);
2164                 spin_lock(&mm->page_table_lock);
2165                 BUG_ON(!pmd_none(*pmd));
2166                 set_pmd_at(mm, address, pmd, _pmd);
2167                 spin_unlock(&mm->page_table_lock);
2168                 anon_vma_unlock(vma->anon_vma);
2169                 goto out;
2170         }
2171
2172         /*
2173          * All pages are isolated and locked so anon_vma rmap
2174          * can't run anymore.
2175          */
2176         anon_vma_unlock(vma->anon_vma);
2177
2178         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2179         pte_unmap(pte);
2180         __SetPageUptodate(new_page);
2181         pgtable = pmd_pgtable(_pmd);
2182
2183         _pmd = mk_pmd(new_page, vma->vm_page_prot);
2184         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2185         _pmd = pmd_mkhuge(_pmd);
2186
2187         /*
2188          * spin_lock() below is not the equivalent of smp_wmb(), so
2189          * this is needed to avoid the copy_huge_page writes to become
2190          * visible after the set_pmd_at() write.
2191          */
2192         smp_wmb();
2193
2194         spin_lock(&mm->page_table_lock);
2195         BUG_ON(!pmd_none(*pmd));
2196         page_add_new_anon_rmap(new_page, vma, address);
2197         set_pmd_at(mm, address, pmd, _pmd);
2198         update_mmu_cache_pmd(vma, address, pmd);
2199         pgtable_trans_huge_deposit(mm, pgtable);
2200         spin_unlock(&mm->page_table_lock);
2201
2202         *hpage = NULL;
2203
2204         khugepaged_pages_collapsed++;
2205 out_up_write:
2206         up_write(&mm->mmap_sem);
2207         return;
2208
2209 out:
2210         mem_cgroup_uncharge_page(new_page);
2211         goto out_up_write;
2212 }
2213
2214 static int khugepaged_scan_pmd(struct mm_struct *mm,
2215                                struct vm_area_struct *vma,
2216                                unsigned long address,
2217                                struct page **hpage)
2218 {
2219         pgd_t *pgd;
2220         pud_t *pud;
2221         pmd_t *pmd;
2222         pte_t *pte, *_pte;
2223         int ret = 0, referenced = 0, none = 0;
2224         struct page *page;
2225         unsigned long _address;
2226         spinlock_t *ptl;
2227         int node = -1;
2228
2229         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2230
2231         pgd = pgd_offset(mm, address);
2232         if (!pgd_present(*pgd))
2233                 goto out;
2234
2235         pud = pud_offset(pgd, address);
2236         if (!pud_present(*pud))
2237                 goto out;
2238
2239         pmd = pmd_offset(pud, address);
2240         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2241                 goto out;
2242
2243         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2244         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2245              _pte++, _address += PAGE_SIZE) {
2246                 pte_t pteval = *_pte;
2247                 if (pte_none(pteval)) {
2248                         if (++none <= khugepaged_max_ptes_none)
2249                                 continue;
2250                         else
2251                                 goto out_unmap;
2252                 }
2253                 if (!pte_present(pteval) || !pte_write(pteval))
2254                         goto out_unmap;
2255                 page = vm_normal_page(vma, _address, pteval);
2256                 if (unlikely(!page))
2257                         goto out_unmap;
2258                 /*
2259                  * Chose the node of the first page. This could
2260                  * be more sophisticated and look at more pages,
2261                  * but isn't for now.
2262                  */
2263                 if (node == -1)
2264                         node = page_to_nid(page);
2265                 VM_BUG_ON(PageCompound(page));
2266                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2267                         goto out_unmap;
2268                 /* cannot use mapcount: can't collapse if there's a gup pin */
2269                 if (page_count(page) != 1)
2270                         goto out_unmap;
2271                 if (pte_young(pteval) || PageReferenced(page) ||
2272                     mmu_notifier_test_young(vma->vm_mm, address))
2273                         referenced = 1;
2274         }
2275         if (referenced)
2276                 ret = 1;
2277 out_unmap:
2278         pte_unmap_unlock(pte, ptl);
2279         if (ret)
2280                 /* collapse_huge_page will return with the mmap_sem released */
2281                 collapse_huge_page(mm, address, hpage, vma, node);
2282 out:
2283         return ret;
2284 }
2285
2286 static void collect_mm_slot(struct mm_slot *mm_slot)
2287 {
2288         struct mm_struct *mm = mm_slot->mm;
2289
2290         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2291
2292         if (khugepaged_test_exit(mm)) {
2293                 /* free mm_slot */
2294                 hlist_del(&mm_slot->hash);
2295                 list_del(&mm_slot->mm_node);
2296
2297                 /*
2298                  * Not strictly needed because the mm exited already.
2299                  *
2300                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2301                  */
2302
2303                 /* khugepaged_mm_lock actually not necessary for the below */
2304                 free_mm_slot(mm_slot);
2305                 mmdrop(mm);
2306         }
2307 }
2308
2309 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2310                                             struct page **hpage)
2311         __releases(&khugepaged_mm_lock)
2312         __acquires(&khugepaged_mm_lock)
2313 {
2314         struct mm_slot *mm_slot;
2315         struct mm_struct *mm;
2316         struct vm_area_struct *vma;
2317         int progress = 0;
2318
2319         VM_BUG_ON(!pages);
2320         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2321
2322         if (khugepaged_scan.mm_slot)
2323                 mm_slot = khugepaged_scan.mm_slot;
2324         else {
2325                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2326                                      struct mm_slot, mm_node);
2327                 khugepaged_scan.address = 0;
2328                 khugepaged_scan.mm_slot = mm_slot;
2329         }
2330         spin_unlock(&khugepaged_mm_lock);
2331
2332         mm = mm_slot->mm;
2333         down_read(&mm->mmap_sem);
2334         if (unlikely(khugepaged_test_exit(mm)))
2335                 vma = NULL;
2336         else
2337                 vma = find_vma(mm, khugepaged_scan.address);
2338
2339         progress++;
2340         for (; vma; vma = vma->vm_next) {
2341                 unsigned long hstart, hend;
2342
2343                 cond_resched();
2344                 if (unlikely(khugepaged_test_exit(mm))) {
2345                         progress++;
2346                         break;
2347                 }
2348
2349                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2350                      !khugepaged_always()) ||
2351                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2352                 skip:
2353                         progress++;
2354                         continue;
2355                 }
2356                 if (!vma->anon_vma || vma->vm_ops)
2357                         goto skip;
2358                 if (is_vma_temporary_stack(vma))
2359                         goto skip;
2360                 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2361
2362                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2363                 hend = vma->vm_end & HPAGE_PMD_MASK;
2364                 if (hstart >= hend)
2365                         goto skip;
2366                 if (khugepaged_scan.address > hend)
2367                         goto skip;
2368                 if (khugepaged_scan.address < hstart)
2369                         khugepaged_scan.address = hstart;
2370                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2371
2372                 while (khugepaged_scan.address < hend) {
2373                         int ret;
2374                         cond_resched();
2375                         if (unlikely(khugepaged_test_exit(mm)))
2376                                 goto breakouterloop;
2377
2378                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2379                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2380                                   hend);
2381                         ret = khugepaged_scan_pmd(mm, vma,
2382                                                   khugepaged_scan.address,
2383                                                   hpage);
2384                         /* move to next address */
2385                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2386                         progress += HPAGE_PMD_NR;
2387                         if (ret)
2388                                 /* we released mmap_sem so break loop */
2389                                 goto breakouterloop_mmap_sem;
2390                         if (progress >= pages)
2391                                 goto breakouterloop;
2392                 }
2393         }
2394 breakouterloop:
2395         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2396 breakouterloop_mmap_sem:
2397
2398         spin_lock(&khugepaged_mm_lock);
2399         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2400         /*
2401          * Release the current mm_slot if this mm is about to die, or
2402          * if we scanned all vmas of this mm.
2403          */
2404         if (khugepaged_test_exit(mm) || !vma) {
2405                 /*
2406                  * Make sure that if mm_users is reaching zero while
2407                  * khugepaged runs here, khugepaged_exit will find
2408                  * mm_slot not pointing to the exiting mm.
2409                  */
2410                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2411                         khugepaged_scan.mm_slot = list_entry(
2412                                 mm_slot->mm_node.next,
2413                                 struct mm_slot, mm_node);
2414                         khugepaged_scan.address = 0;
2415                 } else {
2416                         khugepaged_scan.mm_slot = NULL;
2417                         khugepaged_full_scans++;
2418                 }
2419
2420                 collect_mm_slot(mm_slot);
2421         }
2422
2423         return progress;
2424 }
2425
2426 static int khugepaged_has_work(void)
2427 {
2428         return !list_empty(&khugepaged_scan.mm_head) &&
2429                 khugepaged_enabled();
2430 }
2431
2432 static int khugepaged_wait_event(void)
2433 {
2434         return !list_empty(&khugepaged_scan.mm_head) ||
2435                 kthread_should_stop();
2436 }
2437
2438 static void khugepaged_do_scan(void)
2439 {
2440         struct page *hpage = NULL;
2441         unsigned int progress = 0, pass_through_head = 0;
2442         bool wait = true;
2443         unsigned int pages = ACCESS_ONCE(khugepaged_pages_to_scan);
2444
2445         while (progress < pages) {
2446                 if (!khugepaged_prealloc_page(&hpage, &wait))
2447                         break;
2448
2449                 cond_resched();
2450
2451                 if (unlikely(kthread_should_stop() || freezing(current)))
2452                         break;
2453
2454                 spin_lock(&khugepaged_mm_lock);
2455                 if (!khugepaged_scan.mm_slot)
2456                         pass_through_head++;
2457                 if (khugepaged_has_work() &&
2458                     pass_through_head < 2)
2459                         progress += khugepaged_scan_mm_slot(pages - progress,
2460                                                             &hpage);
2461                 else
2462                         progress = pages;
2463                 spin_unlock(&khugepaged_mm_lock);
2464         }
2465
2466         if (!IS_ERR_OR_NULL(hpage))
2467                 put_page(hpage);
2468 }
2469
2470 static void khugepaged_wait_work(void)
2471 {
2472         try_to_freeze();
2473
2474         if (khugepaged_has_work()) {
2475                 if (!khugepaged_scan_sleep_millisecs)
2476                         return;
2477
2478                 wait_event_freezable_timeout(khugepaged_wait,
2479                                              kthread_should_stop(),
2480                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2481                 return;
2482         }
2483
2484         if (khugepaged_enabled())
2485                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2486 }
2487
2488 static int khugepaged(void *none)
2489 {
2490         struct mm_slot *mm_slot;
2491
2492         set_freezable();
2493         set_user_nice(current, 19);
2494
2495         while (!kthread_should_stop()) {
2496                 khugepaged_do_scan();
2497                 khugepaged_wait_work();
2498         }
2499
2500         spin_lock(&khugepaged_mm_lock);
2501         mm_slot = khugepaged_scan.mm_slot;
2502         khugepaged_scan.mm_slot = NULL;
2503         if (mm_slot)
2504                 collect_mm_slot(mm_slot);
2505         spin_unlock(&khugepaged_mm_lock);
2506         return 0;
2507 }
2508
2509 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2510 {
2511         struct page *page;
2512
2513         spin_lock(&mm->page_table_lock);
2514         if (unlikely(!pmd_trans_huge(*pmd))) {
2515                 spin_unlock(&mm->page_table_lock);
2516                 return;
2517         }
2518         page = pmd_page(*pmd);
2519         VM_BUG_ON(!page_count(page));
2520         get_page(page);
2521         spin_unlock(&mm->page_table_lock);
2522
2523         split_huge_page(page);
2524
2525         put_page(page);
2526         BUG_ON(pmd_trans_huge(*pmd));
2527 }
2528
2529 static void split_huge_page_address(struct mm_struct *mm,
2530                                     unsigned long address)
2531 {
2532         pgd_t *pgd;
2533         pud_t *pud;
2534         pmd_t *pmd;
2535
2536         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2537
2538         pgd = pgd_offset(mm, address);
2539         if (!pgd_present(*pgd))
2540                 return;
2541
2542         pud = pud_offset(pgd, address);
2543         if (!pud_present(*pud))
2544                 return;
2545
2546         pmd = pmd_offset(pud, address);
2547         if (!pmd_present(*pmd))
2548                 return;
2549         /*
2550          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2551          * materialize from under us.
2552          */
2553         split_huge_page_pmd(mm, pmd);
2554 }
2555
2556 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2557                              unsigned long start,
2558                              unsigned long end,
2559                              long adjust_next)
2560 {
2561         /*
2562          * If the new start address isn't hpage aligned and it could
2563          * previously contain an hugepage: check if we need to split
2564          * an huge pmd.
2565          */
2566         if (start & ~HPAGE_PMD_MASK &&
2567             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2568             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2569                 split_huge_page_address(vma->vm_mm, start);
2570
2571         /*
2572          * If the new end address isn't hpage aligned and it could
2573          * previously contain an hugepage: check if we need to split
2574          * an huge pmd.
2575          */
2576         if (end & ~HPAGE_PMD_MASK &&
2577             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2578             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2579                 split_huge_page_address(vma->vm_mm, end);
2580
2581         /*
2582          * If we're also updating the vma->vm_next->vm_start, if the new
2583          * vm_next->vm_start isn't page aligned and it could previously
2584          * contain an hugepage: check if we need to split an huge pmd.
2585          */
2586         if (adjust_next > 0) {
2587                 struct vm_area_struct *next = vma->vm_next;
2588                 unsigned long nstart = next->vm_start;
2589                 nstart += adjust_next << PAGE_SHIFT;
2590                 if (nstart & ~HPAGE_PMD_MASK &&
2591                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2592                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2593                         split_huge_page_address(next->vm_mm, nstart);
2594         }
2595 }