]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
kasan-various-fixes-in-documentation-checkpatch-fixes
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned long order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 __ClearPageTail(p);
1005                 set_page_refcounted(p);
1006                 p->first_page = NULL;
1007         }
1008
1009         set_compound_order(page, 0);
1010         __ClearPageHead(page);
1011 }
1012
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015         free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019                                 unsigned long nr_pages)
1020 {
1021         unsigned long end_pfn = start_pfn + nr_pages;
1022         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026                                 unsigned long nr_pages)
1027 {
1028         unsigned long i, end_pfn = start_pfn + nr_pages;
1029         struct page *page;
1030
1031         for (i = start_pfn; i < end_pfn; i++) {
1032                 if (!pfn_valid(i))
1033                         return false;
1034
1035                 page = pfn_to_page(i);
1036
1037                 if (PageReserved(page))
1038                         return false;
1039
1040                 if (page_count(page) > 0)
1041                         return false;
1042
1043                 if (PageHuge(page))
1044                         return false;
1045         }
1046
1047         return true;
1048 }
1049
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051                         unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053         unsigned long last_pfn = start_pfn + nr_pages - 1;
1054         return zone_spans_pfn(zone, last_pfn);
1055 }
1056
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059         unsigned long nr_pages = 1 << order;
1060         unsigned long ret, pfn, flags;
1061         struct zone *z;
1062
1063         z = NODE_DATA(nid)->node_zones;
1064         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065                 spin_lock_irqsave(&z->lock, flags);
1066
1067                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070                                 /*
1071                                  * We release the zone lock here because
1072                                  * alloc_contig_range() will also lock the zone
1073                                  * at some point. If there's an allocation
1074                                  * spinning on this lock, it may win the race
1075                                  * and cause alloc_contig_range() to fail...
1076                                  */
1077                                 spin_unlock_irqrestore(&z->lock, flags);
1078                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1079                                 if (!ret)
1080                                         return pfn_to_page(pfn);
1081                                 spin_lock_irqsave(&z->lock, flags);
1082                         }
1083                         pfn += nr_pages;
1084                 }
1085
1086                 spin_unlock_irqrestore(&z->lock, flags);
1087         }
1088
1089         return NULL;
1090 }
1091
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097         struct page *page;
1098
1099         page = alloc_gigantic_page(nid, huge_page_order(h));
1100         if (page) {
1101                 prep_compound_gigantic_page(page, huge_page_order(h));
1102                 prep_new_huge_page(h, page, nid);
1103         }
1104
1105         return page;
1106 }
1107
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109                                 nodemask_t *nodes_allowed)
1110 {
1111         struct page *page = NULL;
1112         int nr_nodes, node;
1113
1114         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115                 page = alloc_fresh_gigantic_page_node(h, node);
1116                 if (page)
1117                         return 1;
1118         }
1119
1120         return 0;
1121 }
1122
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128                                                 unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130                                         nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135         int i;
1136
1137         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138                 return;
1139
1140         h->nr_huge_pages--;
1141         h->nr_huge_pages_node[page_to_nid(page)]--;
1142         for (i = 0; i < pages_per_huge_page(h); i++) {
1143                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144                                 1 << PG_referenced | 1 << PG_dirty |
1145                                 1 << PG_active | 1 << PG_private |
1146                                 1 << PG_writeback);
1147         }
1148         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149         set_compound_page_dtor(page, NULL);
1150         set_page_refcounted(page);
1151         if (hstate_is_gigantic(h)) {
1152                 destroy_compound_gigantic_page(page, huge_page_order(h));
1153                 free_gigantic_page(page, huge_page_order(h));
1154         } else {
1155                 __free_pages(page, huge_page_order(h));
1156         }
1157 }
1158
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161         struct hstate *h;
1162
1163         for_each_hstate(h) {
1164                 if (huge_page_size(h) == size)
1165                         return h;
1166         }
1167         return NULL;
1168 }
1169
1170 /*
1171  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172  * to hstate->hugepage_activelist.)
1173  *
1174  * This function can be called for tail pages, but never returns true for them.
1175  */
1176 bool page_huge_active(struct page *page)
1177 {
1178         VM_BUG_ON_PAGE(!PageHuge(page), page);
1179         return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186         SetPagePrivate(&page[1]);
1187 }
1188
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192         ClearPagePrivate(&page[1]);
1193 }
1194
1195 void free_huge_page(struct page *page)
1196 {
1197         /*
1198          * Can't pass hstate in here because it is called from the
1199          * compound page destructor.
1200          */
1201         struct hstate *h = page_hstate(page);
1202         int nid = page_to_nid(page);
1203         struct hugepage_subpool *spool =
1204                 (struct hugepage_subpool *)page_private(page);
1205         bool restore_reserve;
1206
1207         set_page_private(page, 0);
1208         page->mapping = NULL;
1209         BUG_ON(page_count(page));
1210         BUG_ON(page_mapcount(page));
1211         restore_reserve = PagePrivate(page);
1212         ClearPagePrivate(page);
1213
1214         /*
1215          * A return code of zero implies that the subpool will be under its
1216          * minimum size if the reservation is not restored after page is free.
1217          * Therefore, force restore_reserve operation.
1218          */
1219         if (hugepage_subpool_put_pages(spool, 1) == 0)
1220                 restore_reserve = true;
1221
1222         spin_lock(&hugetlb_lock);
1223         clear_page_huge_active(page);
1224         hugetlb_cgroup_uncharge_page(hstate_index(h),
1225                                      pages_per_huge_page(h), page);
1226         if (restore_reserve)
1227                 h->resv_huge_pages++;
1228
1229         if (h->surplus_huge_pages_node[nid]) {
1230                 /* remove the page from active list */
1231                 list_del(&page->lru);
1232                 update_and_free_page(h, page);
1233                 h->surplus_huge_pages--;
1234                 h->surplus_huge_pages_node[nid]--;
1235         } else {
1236                 arch_clear_hugepage_flags(page);
1237                 enqueue_huge_page(h, page);
1238         }
1239         spin_unlock(&hugetlb_lock);
1240 }
1241
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244         INIT_LIST_HEAD(&page->lru);
1245         set_compound_page_dtor(page, free_huge_page);
1246         spin_lock(&hugetlb_lock);
1247         set_hugetlb_cgroup(page, NULL);
1248         h->nr_huge_pages++;
1249         h->nr_huge_pages_node[nid]++;
1250         spin_unlock(&hugetlb_lock);
1251         put_page(page); /* free it into the hugepage allocator */
1252 }
1253
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256         int i;
1257         int nr_pages = 1 << order;
1258         struct page *p = page + 1;
1259
1260         /* we rely on prep_new_huge_page to set the destructor */
1261         set_compound_order(page, order);
1262         __SetPageHead(page);
1263         __ClearPageReserved(page);
1264         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265                 /*
1266                  * For gigantic hugepages allocated through bootmem at
1267                  * boot, it's safer to be consistent with the not-gigantic
1268                  * hugepages and clear the PG_reserved bit from all tail pages
1269                  * too.  Otherwse drivers using get_user_pages() to access tail
1270                  * pages may get the reference counting wrong if they see
1271                  * PG_reserved set on a tail page (despite the head page not
1272                  * having PG_reserved set).  Enforcing this consistency between
1273                  * head and tail pages allows drivers to optimize away a check
1274                  * on the head page when they need know if put_page() is needed
1275                  * after get_user_pages().
1276                  */
1277                 __ClearPageReserved(p);
1278                 set_page_count(p, 0);
1279                 p->first_page = page;
1280                 /* Make sure p->first_page is always valid for PageTail() */
1281                 smp_wmb();
1282                 __SetPageTail(p);
1283         }
1284 }
1285
1286 /*
1287  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288  * transparent huge pages.  See the PageTransHuge() documentation for more
1289  * details.
1290  */
1291 int PageHuge(struct page *page)
1292 {
1293         if (!PageCompound(page))
1294                 return 0;
1295
1296         page = compound_head(page);
1297         return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300
1301 /*
1302  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303  * normal or transparent huge pages.
1304  */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307         if (!PageHead(page_head))
1308                 return 0;
1309
1310         return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315         struct page *page_head = compound_head(page);
1316         pgoff_t index = page_index(page_head);
1317         unsigned long compound_idx;
1318
1319         if (!PageHuge(page_head))
1320                 return page_index(page);
1321
1322         if (compound_order(page_head) >= MAX_ORDER)
1323                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324         else
1325                 compound_idx = page - page_head;
1326
1327         return (index << compound_order(page_head)) + compound_idx;
1328 }
1329
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332         struct page *page;
1333
1334         page = __alloc_pages_node(nid,
1335                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336                                                 __GFP_REPEAT|__GFP_NOWARN,
1337                 huge_page_order(h));
1338         if (page) {
1339                 prep_new_huge_page(h, page, nid);
1340         }
1341
1342         return page;
1343 }
1344
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347         struct page *page;
1348         int nr_nodes, node;
1349         int ret = 0;
1350
1351         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352                 page = alloc_fresh_huge_page_node(h, node);
1353                 if (page) {
1354                         ret = 1;
1355                         break;
1356                 }
1357         }
1358
1359         if (ret)
1360                 count_vm_event(HTLB_BUDDY_PGALLOC);
1361         else
1362                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364         return ret;
1365 }
1366
1367 /*
1368  * Free huge page from pool from next node to free.
1369  * Attempt to keep persistent huge pages more or less
1370  * balanced over allowed nodes.
1371  * Called with hugetlb_lock locked.
1372  */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374                                                          bool acct_surplus)
1375 {
1376         int nr_nodes, node;
1377         int ret = 0;
1378
1379         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380                 /*
1381                  * If we're returning unused surplus pages, only examine
1382                  * nodes with surplus pages.
1383                  */
1384                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385                     !list_empty(&h->hugepage_freelists[node])) {
1386                         struct page *page =
1387                                 list_entry(h->hugepage_freelists[node].next,
1388                                           struct page, lru);
1389                         list_del(&page->lru);
1390                         h->free_huge_pages--;
1391                         h->free_huge_pages_node[node]--;
1392                         if (acct_surplus) {
1393                                 h->surplus_huge_pages--;
1394                                 h->surplus_huge_pages_node[node]--;
1395                         }
1396                         update_and_free_page(h, page);
1397                         ret = 1;
1398                         break;
1399                 }
1400         }
1401
1402         return ret;
1403 }
1404
1405 /*
1406  * Dissolve a given free hugepage into free buddy pages. This function does
1407  * nothing for in-use (including surplus) hugepages.
1408  */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411         spin_lock(&hugetlb_lock);
1412         if (PageHuge(page) && !page_count(page)) {
1413                 struct hstate *h = page_hstate(page);
1414                 int nid = page_to_nid(page);
1415                 list_del(&page->lru);
1416                 h->free_huge_pages--;
1417                 h->free_huge_pages_node[nid]--;
1418                 update_and_free_page(h, page);
1419         }
1420         spin_unlock(&hugetlb_lock);
1421 }
1422
1423 /*
1424  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425  * make specified memory blocks removable from the system.
1426  * Note that start_pfn should aligned with (minimum) hugepage size.
1427  */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430         unsigned long pfn;
1431
1432         if (!hugepages_supported())
1433                 return;
1434
1435         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437                 dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439
1440 /*
1441  * There are 3 ways this can get called:
1442  * 1. With vma+addr: we use the VMA's memory policy
1443  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1444  *    page from any node, and let the buddy allocator itself figure
1445  *    it out.
1446  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1447  *    strictly from 'nid'
1448  */
1449 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1450                 struct vm_area_struct *vma, unsigned long addr, int nid)
1451 {
1452         int order = huge_page_order(h);
1453         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1454         unsigned int cpuset_mems_cookie;
1455
1456         /*
1457          * We need a VMA to get a memory policy.  If we do not
1458          * have one, we use the 'nid' argument.
1459          *
1460          * The mempolicy stuff below has some non-inlined bits
1461          * and calls ->vm_ops.  That makes it hard to optimize at
1462          * compile-time, even when NUMA is off and it does
1463          * nothing.  This helps the compiler optimize it out.
1464          */
1465         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1466                 /*
1467                  * If a specific node is requested, make sure to
1468                  * get memory from there, but only when a node
1469                  * is explicitly specified.
1470                  */
1471                 if (nid != NUMA_NO_NODE)
1472                         gfp |= __GFP_THISNODE;
1473                 /*
1474                  * Make sure to call something that can handle
1475                  * nid=NUMA_NO_NODE
1476                  */
1477                 return alloc_pages_node(nid, gfp, order);
1478         }
1479
1480         /*
1481          * OK, so we have a VMA.  Fetch the mempolicy and try to
1482          * allocate a huge page with it.  We will only reach this
1483          * when CONFIG_NUMA=y.
1484          */
1485         do {
1486                 struct page *page;
1487                 struct mempolicy *mpol;
1488                 struct zonelist *zl;
1489                 nodemask_t *nodemask;
1490
1491                 cpuset_mems_cookie = read_mems_allowed_begin();
1492                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1493                 mpol_cond_put(mpol);
1494                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1495                 if (page)
1496                         return page;
1497         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1498
1499         return NULL;
1500 }
1501
1502 /*
1503  * There are two ways to allocate a huge page:
1504  * 1. When you have a VMA and an address (like a fault)
1505  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1506  *
1507  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1508  * this case which signifies that the allocation should be done with
1509  * respect for the VMA's memory policy.
1510  *
1511  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1512  * implies that memory policies will not be taken in to account.
1513  */
1514 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1515                 struct vm_area_struct *vma, unsigned long addr, int nid)
1516 {
1517         struct page *page;
1518         unsigned int r_nid;
1519
1520         if (hstate_is_gigantic(h))
1521                 return NULL;
1522
1523         if (vma || addr) {
1524                 VM_WARN_ON_ONCE(!addr || addr == -1);
1525                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1526         }
1527         /*
1528          * Assume we will successfully allocate the surplus page to
1529          * prevent racing processes from causing the surplus to exceed
1530          * overcommit
1531          *
1532          * This however introduces a different race, where a process B
1533          * tries to grow the static hugepage pool while alloc_pages() is
1534          * called by process A. B will only examine the per-node
1535          * counters in determining if surplus huge pages can be
1536          * converted to normal huge pages in adjust_pool_surplus(). A
1537          * won't be able to increment the per-node counter, until the
1538          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1539          * no more huge pages can be converted from surplus to normal
1540          * state (and doesn't try to convert again). Thus, we have a
1541          * case where a surplus huge page exists, the pool is grown, and
1542          * the surplus huge page still exists after, even though it
1543          * should just have been converted to a normal huge page. This
1544          * does not leak memory, though, as the hugepage will be freed
1545          * once it is out of use. It also does not allow the counters to
1546          * go out of whack in adjust_pool_surplus() as we don't modify
1547          * the node values until we've gotten the hugepage and only the
1548          * per-node value is checked there.
1549          */
1550         spin_lock(&hugetlb_lock);
1551         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1552                 spin_unlock(&hugetlb_lock);
1553                 return NULL;
1554         } else {
1555                 h->nr_huge_pages++;
1556                 h->surplus_huge_pages++;
1557         }
1558         spin_unlock(&hugetlb_lock);
1559
1560         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1561
1562         spin_lock(&hugetlb_lock);
1563         if (page) {
1564                 INIT_LIST_HEAD(&page->lru);
1565                 r_nid = page_to_nid(page);
1566                 set_compound_page_dtor(page, free_huge_page);
1567                 set_hugetlb_cgroup(page, NULL);
1568                 /*
1569                  * We incremented the global counters already
1570                  */
1571                 h->nr_huge_pages_node[r_nid]++;
1572                 h->surplus_huge_pages_node[r_nid]++;
1573                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1574         } else {
1575                 h->nr_huge_pages--;
1576                 h->surplus_huge_pages--;
1577                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1578         }
1579         spin_unlock(&hugetlb_lock);
1580
1581         return page;
1582 }
1583
1584 /*
1585  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1586  * NUMA_NO_NODE, which means that it may be allocated
1587  * anywhere.
1588  */
1589 static
1590 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1591 {
1592         unsigned long addr = -1;
1593
1594         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1595 }
1596
1597 /*
1598  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1599  */
1600 static
1601 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1602                 struct vm_area_struct *vma, unsigned long addr)
1603 {
1604         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1605 }
1606
1607 /*
1608  * This allocation function is useful in the context where vma is irrelevant.
1609  * E.g. soft-offlining uses this function because it only cares physical
1610  * address of error page.
1611  */
1612 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1613 {
1614         struct page *page = NULL;
1615
1616         spin_lock(&hugetlb_lock);
1617         if (h->free_huge_pages - h->resv_huge_pages > 0)
1618                 page = dequeue_huge_page_node(h, nid);
1619         spin_unlock(&hugetlb_lock);
1620
1621         if (!page)
1622                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1623
1624         return page;
1625 }
1626
1627 /*
1628  * Increase the hugetlb pool such that it can accommodate a reservation
1629  * of size 'delta'.
1630  */
1631 static int gather_surplus_pages(struct hstate *h, int delta)
1632 {
1633         struct list_head surplus_list;
1634         struct page *page, *tmp;
1635         int ret, i;
1636         int needed, allocated;
1637         bool alloc_ok = true;
1638
1639         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1640         if (needed <= 0) {
1641                 h->resv_huge_pages += delta;
1642                 return 0;
1643         }
1644
1645         allocated = 0;
1646         INIT_LIST_HEAD(&surplus_list);
1647
1648         ret = -ENOMEM;
1649 retry:
1650         spin_unlock(&hugetlb_lock);
1651         for (i = 0; i < needed; i++) {
1652                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1653                 if (!page) {
1654                         alloc_ok = false;
1655                         break;
1656                 }
1657                 list_add(&page->lru, &surplus_list);
1658         }
1659         allocated += i;
1660
1661         /*
1662          * After retaking hugetlb_lock, we need to recalculate 'needed'
1663          * because either resv_huge_pages or free_huge_pages may have changed.
1664          */
1665         spin_lock(&hugetlb_lock);
1666         needed = (h->resv_huge_pages + delta) -
1667                         (h->free_huge_pages + allocated);
1668         if (needed > 0) {
1669                 if (alloc_ok)
1670                         goto retry;
1671                 /*
1672                  * We were not able to allocate enough pages to
1673                  * satisfy the entire reservation so we free what
1674                  * we've allocated so far.
1675                  */
1676                 goto free;
1677         }
1678         /*
1679          * The surplus_list now contains _at_least_ the number of extra pages
1680          * needed to accommodate the reservation.  Add the appropriate number
1681          * of pages to the hugetlb pool and free the extras back to the buddy
1682          * allocator.  Commit the entire reservation here to prevent another
1683          * process from stealing the pages as they are added to the pool but
1684          * before they are reserved.
1685          */
1686         needed += allocated;
1687         h->resv_huge_pages += delta;
1688         ret = 0;
1689
1690         /* Free the needed pages to the hugetlb pool */
1691         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1692                 if ((--needed) < 0)
1693                         break;
1694                 /*
1695                  * This page is now managed by the hugetlb allocator and has
1696                  * no users -- drop the buddy allocator's reference.
1697                  */
1698                 put_page_testzero(page);
1699                 VM_BUG_ON_PAGE(page_count(page), page);
1700                 enqueue_huge_page(h, page);
1701         }
1702 free:
1703         spin_unlock(&hugetlb_lock);
1704
1705         /* Free unnecessary surplus pages to the buddy allocator */
1706         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1707                 put_page(page);
1708         spin_lock(&hugetlb_lock);
1709
1710         return ret;
1711 }
1712
1713 /*
1714  * When releasing a hugetlb pool reservation, any surplus pages that were
1715  * allocated to satisfy the reservation must be explicitly freed if they were
1716  * never used.
1717  * Called with hugetlb_lock held.
1718  */
1719 static void return_unused_surplus_pages(struct hstate *h,
1720                                         unsigned long unused_resv_pages)
1721 {
1722         unsigned long nr_pages;
1723
1724         /* Uncommit the reservation */
1725         h->resv_huge_pages -= unused_resv_pages;
1726
1727         /* Cannot return gigantic pages currently */
1728         if (hstate_is_gigantic(h))
1729                 return;
1730
1731         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1732
1733         /*
1734          * We want to release as many surplus pages as possible, spread
1735          * evenly across all nodes with memory. Iterate across these nodes
1736          * until we can no longer free unreserved surplus pages. This occurs
1737          * when the nodes with surplus pages have no free pages.
1738          * free_pool_huge_page() will balance the the freed pages across the
1739          * on-line nodes with memory and will handle the hstate accounting.
1740          */
1741         while (nr_pages--) {
1742                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1743                         break;
1744                 cond_resched_lock(&hugetlb_lock);
1745         }
1746 }
1747
1748
1749 /*
1750  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1751  * are used by the huge page allocation routines to manage reservations.
1752  *
1753  * vma_needs_reservation is called to determine if the huge page at addr
1754  * within the vma has an associated reservation.  If a reservation is
1755  * needed, the value 1 is returned.  The caller is then responsible for
1756  * managing the global reservation and subpool usage counts.  After
1757  * the huge page has been allocated, vma_commit_reservation is called
1758  * to add the page to the reservation map.  If the page allocation fails,
1759  * the reservation must be ended instead of committed.  vma_end_reservation
1760  * is called in such cases.
1761  *
1762  * In the normal case, vma_commit_reservation returns the same value
1763  * as the preceding vma_needs_reservation call.  The only time this
1764  * is not the case is if a reserve map was changed between calls.  It
1765  * is the responsibility of the caller to notice the difference and
1766  * take appropriate action.
1767  */
1768 enum vma_resv_mode {
1769         VMA_NEEDS_RESV,
1770         VMA_COMMIT_RESV,
1771         VMA_END_RESV,
1772 };
1773 static long __vma_reservation_common(struct hstate *h,
1774                                 struct vm_area_struct *vma, unsigned long addr,
1775                                 enum vma_resv_mode mode)
1776 {
1777         struct resv_map *resv;
1778         pgoff_t idx;
1779         long ret;
1780
1781         resv = vma_resv_map(vma);
1782         if (!resv)
1783                 return 1;
1784
1785         idx = vma_hugecache_offset(h, vma, addr);
1786         switch (mode) {
1787         case VMA_NEEDS_RESV:
1788                 ret = region_chg(resv, idx, idx + 1);
1789                 break;
1790         case VMA_COMMIT_RESV:
1791                 ret = region_add(resv, idx, idx + 1);
1792                 break;
1793         case VMA_END_RESV:
1794                 region_abort(resv, idx, idx + 1);
1795                 ret = 0;
1796                 break;
1797         default:
1798                 BUG();
1799         }
1800
1801         if (vma->vm_flags & VM_MAYSHARE)
1802                 return ret;
1803         else
1804                 return ret < 0 ? ret : 0;
1805 }
1806
1807 static long vma_needs_reservation(struct hstate *h,
1808                         struct vm_area_struct *vma, unsigned long addr)
1809 {
1810         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1811 }
1812
1813 static long vma_commit_reservation(struct hstate *h,
1814                         struct vm_area_struct *vma, unsigned long addr)
1815 {
1816         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1817 }
1818
1819 static void vma_end_reservation(struct hstate *h,
1820                         struct vm_area_struct *vma, unsigned long addr)
1821 {
1822         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1823 }
1824
1825 struct page *alloc_huge_page(struct vm_area_struct *vma,
1826                                     unsigned long addr, int avoid_reserve)
1827 {
1828         struct hugepage_subpool *spool = subpool_vma(vma);
1829         struct hstate *h = hstate_vma(vma);
1830         struct page *page;
1831         long map_chg, map_commit;
1832         long gbl_chg;
1833         int ret, idx;
1834         struct hugetlb_cgroup *h_cg;
1835
1836         idx = hstate_index(h);
1837         /*
1838          * Examine the region/reserve map to determine if the process
1839          * has a reservation for the page to be allocated.  A return
1840          * code of zero indicates a reservation exists (no change).
1841          */
1842         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1843         if (map_chg < 0)
1844                 return ERR_PTR(-ENOMEM);
1845
1846         /*
1847          * Processes that did not create the mapping will have no
1848          * reserves as indicated by the region/reserve map. Check
1849          * that the allocation will not exceed the subpool limit.
1850          * Allocations for MAP_NORESERVE mappings also need to be
1851          * checked against any subpool limit.
1852          */
1853         if (map_chg || avoid_reserve) {
1854                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1855                 if (gbl_chg < 0) {
1856                         vma_end_reservation(h, vma, addr);
1857                         return ERR_PTR(-ENOSPC);
1858                 }
1859
1860                 /*
1861                  * Even though there was no reservation in the region/reserve
1862                  * map, there could be reservations associated with the
1863                  * subpool that can be used.  This would be indicated if the
1864                  * return value of hugepage_subpool_get_pages() is zero.
1865                  * However, if avoid_reserve is specified we still avoid even
1866                  * the subpool reservations.
1867                  */
1868                 if (avoid_reserve)
1869                         gbl_chg = 1;
1870         }
1871
1872         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1873         if (ret)
1874                 goto out_subpool_put;
1875
1876         spin_lock(&hugetlb_lock);
1877         /*
1878          * glb_chg is passed to indicate whether or not a page must be taken
1879          * from the global free pool (global change).  gbl_chg == 0 indicates
1880          * a reservation exists for the allocation.
1881          */
1882         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1883         if (!page) {
1884                 spin_unlock(&hugetlb_lock);
1885                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1886                 if (!page)
1887                         goto out_uncharge_cgroup;
1888
1889                 spin_lock(&hugetlb_lock);
1890                 list_move(&page->lru, &h->hugepage_activelist);
1891                 /* Fall through */
1892         }
1893         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1894         spin_unlock(&hugetlb_lock);
1895
1896         set_page_private(page, (unsigned long)spool);
1897
1898         map_commit = vma_commit_reservation(h, vma, addr);
1899         if (unlikely(map_chg > map_commit)) {
1900                 /*
1901                  * The page was added to the reservation map between
1902                  * vma_needs_reservation and vma_commit_reservation.
1903                  * This indicates a race with hugetlb_reserve_pages.
1904                  * Adjust for the subpool count incremented above AND
1905                  * in hugetlb_reserve_pages for the same page.  Also,
1906                  * the reservation count added in hugetlb_reserve_pages
1907                  * no longer applies.
1908                  */
1909                 long rsv_adjust;
1910
1911                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1912                 hugetlb_acct_memory(h, -rsv_adjust);
1913         }
1914         return page;
1915
1916 out_uncharge_cgroup:
1917         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1918 out_subpool_put:
1919         if (map_chg || avoid_reserve)
1920                 hugepage_subpool_put_pages(spool, 1);
1921         vma_end_reservation(h, vma, addr);
1922         return ERR_PTR(-ENOSPC);
1923 }
1924
1925 /*
1926  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1927  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1928  * where no ERR_VALUE is expected to be returned.
1929  */
1930 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1931                                 unsigned long addr, int avoid_reserve)
1932 {
1933         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1934         if (IS_ERR(page))
1935                 page = NULL;
1936         return page;
1937 }
1938
1939 int __weak alloc_bootmem_huge_page(struct hstate *h)
1940 {
1941         struct huge_bootmem_page *m;
1942         int nr_nodes, node;
1943
1944         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1945                 void *addr;
1946
1947                 addr = memblock_virt_alloc_try_nid_nopanic(
1948                                 huge_page_size(h), huge_page_size(h),
1949                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1950                 if (addr) {
1951                         /*
1952                          * Use the beginning of the huge page to store the
1953                          * huge_bootmem_page struct (until gather_bootmem
1954                          * puts them into the mem_map).
1955                          */
1956                         m = addr;
1957                         goto found;
1958                 }
1959         }
1960         return 0;
1961
1962 found:
1963         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1964         /* Put them into a private list first because mem_map is not up yet */
1965         list_add(&m->list, &huge_boot_pages);
1966         m->hstate = h;
1967         return 1;
1968 }
1969
1970 static void __init prep_compound_huge_page(struct page *page, int order)
1971 {
1972         if (unlikely(order > (MAX_ORDER - 1)))
1973                 prep_compound_gigantic_page(page, order);
1974         else
1975                 prep_compound_page(page, order);
1976 }
1977
1978 /* Put bootmem huge pages into the standard lists after mem_map is up */
1979 static void __init gather_bootmem_prealloc(void)
1980 {
1981         struct huge_bootmem_page *m;
1982
1983         list_for_each_entry(m, &huge_boot_pages, list) {
1984                 struct hstate *h = m->hstate;
1985                 struct page *page;
1986
1987 #ifdef CONFIG_HIGHMEM
1988                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1989                 memblock_free_late(__pa(m),
1990                                    sizeof(struct huge_bootmem_page));
1991 #else
1992                 page = virt_to_page(m);
1993 #endif
1994                 WARN_ON(page_count(page) != 1);
1995                 prep_compound_huge_page(page, h->order);
1996                 WARN_ON(PageReserved(page));
1997                 prep_new_huge_page(h, page, page_to_nid(page));
1998                 /*
1999                  * If we had gigantic hugepages allocated at boot time, we need
2000                  * to restore the 'stolen' pages to totalram_pages in order to
2001                  * fix confusing memory reports from free(1) and another
2002                  * side-effects, like CommitLimit going negative.
2003                  */
2004                 if (hstate_is_gigantic(h))
2005                         adjust_managed_page_count(page, 1 << h->order);
2006         }
2007 }
2008
2009 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2010 {
2011         unsigned long i;
2012
2013         for (i = 0; i < h->max_huge_pages; ++i) {
2014                 if (hstate_is_gigantic(h)) {
2015                         if (!alloc_bootmem_huge_page(h))
2016                                 break;
2017                 } else if (!alloc_fresh_huge_page(h,
2018                                          &node_states[N_MEMORY]))
2019                         break;
2020         }
2021         h->max_huge_pages = i;
2022 }
2023
2024 static void __init hugetlb_init_hstates(void)
2025 {
2026         struct hstate *h;
2027
2028         for_each_hstate(h) {
2029                 if (minimum_order > huge_page_order(h))
2030                         minimum_order = huge_page_order(h);
2031
2032                 /* oversize hugepages were init'ed in early boot */
2033                 if (!hstate_is_gigantic(h))
2034                         hugetlb_hstate_alloc_pages(h);
2035         }
2036         VM_BUG_ON(minimum_order == UINT_MAX);
2037 }
2038
2039 static char * __init memfmt(char *buf, unsigned long n)
2040 {
2041         if (n >= (1UL << 30))
2042                 sprintf(buf, "%lu GB", n >> 30);
2043         else if (n >= (1UL << 20))
2044                 sprintf(buf, "%lu MB", n >> 20);
2045         else
2046                 sprintf(buf, "%lu KB", n >> 10);
2047         return buf;
2048 }
2049
2050 static void __init report_hugepages(void)
2051 {
2052         struct hstate *h;
2053
2054         for_each_hstate(h) {
2055                 char buf[32];
2056                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2057                         memfmt(buf, huge_page_size(h)),
2058                         h->free_huge_pages);
2059         }
2060 }
2061
2062 #ifdef CONFIG_HIGHMEM
2063 static void try_to_free_low(struct hstate *h, unsigned long count,
2064                                                 nodemask_t *nodes_allowed)
2065 {
2066         int i;
2067
2068         if (hstate_is_gigantic(h))
2069                 return;
2070
2071         for_each_node_mask(i, *nodes_allowed) {
2072                 struct page *page, *next;
2073                 struct list_head *freel = &h->hugepage_freelists[i];
2074                 list_for_each_entry_safe(page, next, freel, lru) {
2075                         if (count >= h->nr_huge_pages)
2076                                 return;
2077                         if (PageHighMem(page))
2078                                 continue;
2079                         list_del(&page->lru);
2080                         update_and_free_page(h, page);
2081                         h->free_huge_pages--;
2082                         h->free_huge_pages_node[page_to_nid(page)]--;
2083                 }
2084         }
2085 }
2086 #else
2087 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2088                                                 nodemask_t *nodes_allowed)
2089 {
2090 }
2091 #endif
2092
2093 /*
2094  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2095  * balanced by operating on them in a round-robin fashion.
2096  * Returns 1 if an adjustment was made.
2097  */
2098 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2099                                 int delta)
2100 {
2101         int nr_nodes, node;
2102
2103         VM_BUG_ON(delta != -1 && delta != 1);
2104
2105         if (delta < 0) {
2106                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2107                         if (h->surplus_huge_pages_node[node])
2108                                 goto found;
2109                 }
2110         } else {
2111                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2112                         if (h->surplus_huge_pages_node[node] <
2113                                         h->nr_huge_pages_node[node])
2114                                 goto found;
2115                 }
2116         }
2117         return 0;
2118
2119 found:
2120         h->surplus_huge_pages += delta;
2121         h->surplus_huge_pages_node[node] += delta;
2122         return 1;
2123 }
2124
2125 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2126 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2127                                                 nodemask_t *nodes_allowed)
2128 {
2129         unsigned long min_count, ret;
2130
2131         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2132                 return h->max_huge_pages;
2133
2134         /*
2135          * Increase the pool size
2136          * First take pages out of surplus state.  Then make up the
2137          * remaining difference by allocating fresh huge pages.
2138          *
2139          * We might race with alloc_buddy_huge_page() here and be unable
2140          * to convert a surplus huge page to a normal huge page. That is
2141          * not critical, though, it just means the overall size of the
2142          * pool might be one hugepage larger than it needs to be, but
2143          * within all the constraints specified by the sysctls.
2144          */
2145         spin_lock(&hugetlb_lock);
2146         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2147                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2148                         break;
2149         }
2150
2151         while (count > persistent_huge_pages(h)) {
2152                 /*
2153                  * If this allocation races such that we no longer need the
2154                  * page, free_huge_page will handle it by freeing the page
2155                  * and reducing the surplus.
2156                  */
2157                 spin_unlock(&hugetlb_lock);
2158                 if (hstate_is_gigantic(h))
2159                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2160                 else
2161                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2162                 spin_lock(&hugetlb_lock);
2163                 if (!ret)
2164                         goto out;
2165
2166                 /* Bail for signals. Probably ctrl-c from user */
2167                 if (signal_pending(current))
2168                         goto out;
2169         }
2170
2171         /*
2172          * Decrease the pool size
2173          * First return free pages to the buddy allocator (being careful
2174          * to keep enough around to satisfy reservations).  Then place
2175          * pages into surplus state as needed so the pool will shrink
2176          * to the desired size as pages become free.
2177          *
2178          * By placing pages into the surplus state independent of the
2179          * overcommit value, we are allowing the surplus pool size to
2180          * exceed overcommit. There are few sane options here. Since
2181          * alloc_buddy_huge_page() is checking the global counter,
2182          * though, we'll note that we're not allowed to exceed surplus
2183          * and won't grow the pool anywhere else. Not until one of the
2184          * sysctls are changed, or the surplus pages go out of use.
2185          */
2186         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2187         min_count = max(count, min_count);
2188         try_to_free_low(h, min_count, nodes_allowed);
2189         while (min_count < persistent_huge_pages(h)) {
2190                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2191                         break;
2192                 cond_resched_lock(&hugetlb_lock);
2193         }
2194         while (count < persistent_huge_pages(h)) {
2195                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2196                         break;
2197         }
2198 out:
2199         ret = persistent_huge_pages(h);
2200         spin_unlock(&hugetlb_lock);
2201         return ret;
2202 }
2203
2204 #define HSTATE_ATTR_RO(_name) \
2205         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2206
2207 #define HSTATE_ATTR(_name) \
2208         static struct kobj_attribute _name##_attr = \
2209                 __ATTR(_name, 0644, _name##_show, _name##_store)
2210
2211 static struct kobject *hugepages_kobj;
2212 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2213
2214 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2215
2216 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2217 {
2218         int i;
2219
2220         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2221                 if (hstate_kobjs[i] == kobj) {
2222                         if (nidp)
2223                                 *nidp = NUMA_NO_NODE;
2224                         return &hstates[i];
2225                 }
2226
2227         return kobj_to_node_hstate(kobj, nidp);
2228 }
2229
2230 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2231                                         struct kobj_attribute *attr, char *buf)
2232 {
2233         struct hstate *h;
2234         unsigned long nr_huge_pages;
2235         int nid;
2236
2237         h = kobj_to_hstate(kobj, &nid);
2238         if (nid == NUMA_NO_NODE)
2239                 nr_huge_pages = h->nr_huge_pages;
2240         else
2241                 nr_huge_pages = h->nr_huge_pages_node[nid];
2242
2243         return sprintf(buf, "%lu\n", nr_huge_pages);
2244 }
2245
2246 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2247                                            struct hstate *h, int nid,
2248                                            unsigned long count, size_t len)
2249 {
2250         int err;
2251         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2252
2253         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2254                 err = -EINVAL;
2255                 goto out;
2256         }
2257
2258         if (nid == NUMA_NO_NODE) {
2259                 /*
2260                  * global hstate attribute
2261                  */
2262                 if (!(obey_mempolicy &&
2263                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2264                         NODEMASK_FREE(nodes_allowed);
2265                         nodes_allowed = &node_states[N_MEMORY];
2266                 }
2267         } else if (nodes_allowed) {
2268                 /*
2269                  * per node hstate attribute: adjust count to global,
2270                  * but restrict alloc/free to the specified node.
2271                  */
2272                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2273                 init_nodemask_of_node(nodes_allowed, nid);
2274         } else
2275                 nodes_allowed = &node_states[N_MEMORY];
2276
2277         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2278
2279         if (nodes_allowed != &node_states[N_MEMORY])
2280                 NODEMASK_FREE(nodes_allowed);
2281
2282         return len;
2283 out:
2284         NODEMASK_FREE(nodes_allowed);
2285         return err;
2286 }
2287
2288 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2289                                          struct kobject *kobj, const char *buf,
2290                                          size_t len)
2291 {
2292         struct hstate *h;
2293         unsigned long count;
2294         int nid;
2295         int err;
2296
2297         err = kstrtoul(buf, 10, &count);
2298         if (err)
2299                 return err;
2300
2301         h = kobj_to_hstate(kobj, &nid);
2302         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2303 }
2304
2305 static ssize_t nr_hugepages_show(struct kobject *kobj,
2306                                        struct kobj_attribute *attr, char *buf)
2307 {
2308         return nr_hugepages_show_common(kobj, attr, buf);
2309 }
2310
2311 static ssize_t nr_hugepages_store(struct kobject *kobj,
2312                struct kobj_attribute *attr, const char *buf, size_t len)
2313 {
2314         return nr_hugepages_store_common(false, kobj, buf, len);
2315 }
2316 HSTATE_ATTR(nr_hugepages);
2317
2318 #ifdef CONFIG_NUMA
2319
2320 /*
2321  * hstate attribute for optionally mempolicy-based constraint on persistent
2322  * huge page alloc/free.
2323  */
2324 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2325                                        struct kobj_attribute *attr, char *buf)
2326 {
2327         return nr_hugepages_show_common(kobj, attr, buf);
2328 }
2329
2330 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2331                struct kobj_attribute *attr, const char *buf, size_t len)
2332 {
2333         return nr_hugepages_store_common(true, kobj, buf, len);
2334 }
2335 HSTATE_ATTR(nr_hugepages_mempolicy);
2336 #endif
2337
2338
2339 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2340                                         struct kobj_attribute *attr, char *buf)
2341 {
2342         struct hstate *h = kobj_to_hstate(kobj, NULL);
2343         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2344 }
2345
2346 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2347                 struct kobj_attribute *attr, const char *buf, size_t count)
2348 {
2349         int err;
2350         unsigned long input;
2351         struct hstate *h = kobj_to_hstate(kobj, NULL);
2352
2353         if (hstate_is_gigantic(h))
2354                 return -EINVAL;
2355
2356         err = kstrtoul(buf, 10, &input);
2357         if (err)
2358                 return err;
2359
2360         spin_lock(&hugetlb_lock);
2361         h->nr_overcommit_huge_pages = input;
2362         spin_unlock(&hugetlb_lock);
2363
2364         return count;
2365 }
2366 HSTATE_ATTR(nr_overcommit_hugepages);
2367
2368 static ssize_t free_hugepages_show(struct kobject *kobj,
2369                                         struct kobj_attribute *attr, char *buf)
2370 {
2371         struct hstate *h;
2372         unsigned long free_huge_pages;
2373         int nid;
2374
2375         h = kobj_to_hstate(kobj, &nid);
2376         if (nid == NUMA_NO_NODE)
2377                 free_huge_pages = h->free_huge_pages;
2378         else
2379                 free_huge_pages = h->free_huge_pages_node[nid];
2380
2381         return sprintf(buf, "%lu\n", free_huge_pages);
2382 }
2383 HSTATE_ATTR_RO(free_hugepages);
2384
2385 static ssize_t resv_hugepages_show(struct kobject *kobj,
2386                                         struct kobj_attribute *attr, char *buf)
2387 {
2388         struct hstate *h = kobj_to_hstate(kobj, NULL);
2389         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2390 }
2391 HSTATE_ATTR_RO(resv_hugepages);
2392
2393 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2394                                         struct kobj_attribute *attr, char *buf)
2395 {
2396         struct hstate *h;
2397         unsigned long surplus_huge_pages;
2398         int nid;
2399
2400         h = kobj_to_hstate(kobj, &nid);
2401         if (nid == NUMA_NO_NODE)
2402                 surplus_huge_pages = h->surplus_huge_pages;
2403         else
2404                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2405
2406         return sprintf(buf, "%lu\n", surplus_huge_pages);
2407 }
2408 HSTATE_ATTR_RO(surplus_hugepages);
2409
2410 static struct attribute *hstate_attrs[] = {
2411         &nr_hugepages_attr.attr,
2412         &nr_overcommit_hugepages_attr.attr,
2413         &free_hugepages_attr.attr,
2414         &resv_hugepages_attr.attr,
2415         &surplus_hugepages_attr.attr,
2416 #ifdef CONFIG_NUMA
2417         &nr_hugepages_mempolicy_attr.attr,
2418 #endif
2419         NULL,
2420 };
2421
2422 static struct attribute_group hstate_attr_group = {
2423         .attrs = hstate_attrs,
2424 };
2425
2426 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2427                                     struct kobject **hstate_kobjs,
2428                                     struct attribute_group *hstate_attr_group)
2429 {
2430         int retval;
2431         int hi = hstate_index(h);
2432
2433         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2434         if (!hstate_kobjs[hi])
2435                 return -ENOMEM;
2436
2437         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2438         if (retval)
2439                 kobject_put(hstate_kobjs[hi]);
2440
2441         return retval;
2442 }
2443
2444 static void __init hugetlb_sysfs_init(void)
2445 {
2446         struct hstate *h;
2447         int err;
2448
2449         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2450         if (!hugepages_kobj)
2451                 return;
2452
2453         for_each_hstate(h) {
2454                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2455                                          hstate_kobjs, &hstate_attr_group);
2456                 if (err)
2457                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2458         }
2459 }
2460
2461 #ifdef CONFIG_NUMA
2462
2463 /*
2464  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2465  * with node devices in node_devices[] using a parallel array.  The array
2466  * index of a node device or _hstate == node id.
2467  * This is here to avoid any static dependency of the node device driver, in
2468  * the base kernel, on the hugetlb module.
2469  */
2470 struct node_hstate {
2471         struct kobject          *hugepages_kobj;
2472         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2473 };
2474 static struct node_hstate node_hstates[MAX_NUMNODES];
2475
2476 /*
2477  * A subset of global hstate attributes for node devices
2478  */
2479 static struct attribute *per_node_hstate_attrs[] = {
2480         &nr_hugepages_attr.attr,
2481         &free_hugepages_attr.attr,
2482         &surplus_hugepages_attr.attr,
2483         NULL,
2484 };
2485
2486 static struct attribute_group per_node_hstate_attr_group = {
2487         .attrs = per_node_hstate_attrs,
2488 };
2489
2490 /*
2491  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2492  * Returns node id via non-NULL nidp.
2493  */
2494 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2495 {
2496         int nid;
2497
2498         for (nid = 0; nid < nr_node_ids; nid++) {
2499                 struct node_hstate *nhs = &node_hstates[nid];
2500                 int i;
2501                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2502                         if (nhs->hstate_kobjs[i] == kobj) {
2503                                 if (nidp)
2504                                         *nidp = nid;
2505                                 return &hstates[i];
2506                         }
2507         }
2508
2509         BUG();
2510         return NULL;
2511 }
2512
2513 /*
2514  * Unregister hstate attributes from a single node device.
2515  * No-op if no hstate attributes attached.
2516  */
2517 static void hugetlb_unregister_node(struct node *node)
2518 {
2519         struct hstate *h;
2520         struct node_hstate *nhs = &node_hstates[node->dev.id];
2521
2522         if (!nhs->hugepages_kobj)
2523                 return;         /* no hstate attributes */
2524
2525         for_each_hstate(h) {
2526                 int idx = hstate_index(h);
2527                 if (nhs->hstate_kobjs[idx]) {
2528                         kobject_put(nhs->hstate_kobjs[idx]);
2529                         nhs->hstate_kobjs[idx] = NULL;
2530                 }
2531         }
2532
2533         kobject_put(nhs->hugepages_kobj);
2534         nhs->hugepages_kobj = NULL;
2535 }
2536
2537 /*
2538  * hugetlb module exit:  unregister hstate attributes from node devices
2539  * that have them.
2540  */
2541 static void hugetlb_unregister_all_nodes(void)
2542 {
2543         int nid;
2544
2545         /*
2546          * disable node device registrations.
2547          */
2548         register_hugetlbfs_with_node(NULL, NULL);
2549
2550         /*
2551          * remove hstate attributes from any nodes that have them.
2552          */
2553         for (nid = 0; nid < nr_node_ids; nid++)
2554                 hugetlb_unregister_node(node_devices[nid]);
2555 }
2556
2557 /*
2558  * Register hstate attributes for a single node device.
2559  * No-op if attributes already registered.
2560  */
2561 static void hugetlb_register_node(struct node *node)
2562 {
2563         struct hstate *h;
2564         struct node_hstate *nhs = &node_hstates[node->dev.id];
2565         int err;
2566
2567         if (nhs->hugepages_kobj)
2568                 return;         /* already allocated */
2569
2570         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2571                                                         &node->dev.kobj);
2572         if (!nhs->hugepages_kobj)
2573                 return;
2574
2575         for_each_hstate(h) {
2576                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2577                                                 nhs->hstate_kobjs,
2578                                                 &per_node_hstate_attr_group);
2579                 if (err) {
2580                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2581                                 h->name, node->dev.id);
2582                         hugetlb_unregister_node(node);
2583                         break;
2584                 }
2585         }
2586 }
2587
2588 /*
2589  * hugetlb init time:  register hstate attributes for all registered node
2590  * devices of nodes that have memory.  All on-line nodes should have
2591  * registered their associated device by this time.
2592  */
2593 static void __init hugetlb_register_all_nodes(void)
2594 {
2595         int nid;
2596
2597         for_each_node_state(nid, N_MEMORY) {
2598                 struct node *node = node_devices[nid];
2599                 if (node->dev.id == nid)
2600                         hugetlb_register_node(node);
2601         }
2602
2603         /*
2604          * Let the node device driver know we're here so it can
2605          * [un]register hstate attributes on node hotplug.
2606          */
2607         register_hugetlbfs_with_node(hugetlb_register_node,
2608                                      hugetlb_unregister_node);
2609 }
2610 #else   /* !CONFIG_NUMA */
2611
2612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2613 {
2614         BUG();
2615         if (nidp)
2616                 *nidp = -1;
2617         return NULL;
2618 }
2619
2620 static void hugetlb_unregister_all_nodes(void) { }
2621
2622 static void hugetlb_register_all_nodes(void) { }
2623
2624 #endif
2625
2626 static void __exit hugetlb_exit(void)
2627 {
2628         struct hstate *h;
2629
2630         hugetlb_unregister_all_nodes();
2631
2632         for_each_hstate(h) {
2633                 kobject_put(hstate_kobjs[hstate_index(h)]);
2634         }
2635
2636         kobject_put(hugepages_kobj);
2637         kfree(hugetlb_fault_mutex_table);
2638 }
2639 module_exit(hugetlb_exit);
2640
2641 static int __init hugetlb_init(void)
2642 {
2643         int i;
2644
2645         if (!hugepages_supported())
2646                 return 0;
2647
2648         if (!size_to_hstate(default_hstate_size)) {
2649                 default_hstate_size = HPAGE_SIZE;
2650                 if (!size_to_hstate(default_hstate_size))
2651                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2652         }
2653         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2654         if (default_hstate_max_huge_pages)
2655                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2656
2657         hugetlb_init_hstates();
2658         gather_bootmem_prealloc();
2659         report_hugepages();
2660
2661         hugetlb_sysfs_init();
2662         hugetlb_register_all_nodes();
2663         hugetlb_cgroup_file_init();
2664
2665 #ifdef CONFIG_SMP
2666         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2667 #else
2668         num_fault_mutexes = 1;
2669 #endif
2670         hugetlb_fault_mutex_table =
2671                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2672         BUG_ON(!hugetlb_fault_mutex_table);
2673
2674         for (i = 0; i < num_fault_mutexes; i++)
2675                 mutex_init(&hugetlb_fault_mutex_table[i]);
2676         return 0;
2677 }
2678 module_init(hugetlb_init);
2679
2680 /* Should be called on processing a hugepagesz=... option */
2681 void __init hugetlb_add_hstate(unsigned order)
2682 {
2683         struct hstate *h;
2684         unsigned long i;
2685
2686         if (size_to_hstate(PAGE_SIZE << order)) {
2687                 pr_warning("hugepagesz= specified twice, ignoring\n");
2688                 return;
2689         }
2690         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2691         BUG_ON(order == 0);
2692         h = &hstates[hugetlb_max_hstate++];
2693         h->order = order;
2694         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2695         h->nr_huge_pages = 0;
2696         h->free_huge_pages = 0;
2697         for (i = 0; i < MAX_NUMNODES; ++i)
2698                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2699         INIT_LIST_HEAD(&h->hugepage_activelist);
2700         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2701         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2702         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2703                                         huge_page_size(h)/1024);
2704
2705         parsed_hstate = h;
2706 }
2707
2708 static int __init hugetlb_nrpages_setup(char *s)
2709 {
2710         unsigned long *mhp;
2711         static unsigned long *last_mhp;
2712
2713         /*
2714          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2715          * so this hugepages= parameter goes to the "default hstate".
2716          */
2717         if (!hugetlb_max_hstate)
2718                 mhp = &default_hstate_max_huge_pages;
2719         else
2720                 mhp = &parsed_hstate->max_huge_pages;
2721
2722         if (mhp == last_mhp) {
2723                 pr_warning("hugepages= specified twice without "
2724                            "interleaving hugepagesz=, ignoring\n");
2725                 return 1;
2726         }
2727
2728         if (sscanf(s, "%lu", mhp) <= 0)
2729                 *mhp = 0;
2730
2731         /*
2732          * Global state is always initialized later in hugetlb_init.
2733          * But we need to allocate >= MAX_ORDER hstates here early to still
2734          * use the bootmem allocator.
2735          */
2736         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2737                 hugetlb_hstate_alloc_pages(parsed_hstate);
2738
2739         last_mhp = mhp;
2740
2741         return 1;
2742 }
2743 __setup("hugepages=", hugetlb_nrpages_setup);
2744
2745 static int __init hugetlb_default_setup(char *s)
2746 {
2747         default_hstate_size = memparse(s, &s);
2748         return 1;
2749 }
2750 __setup("default_hugepagesz=", hugetlb_default_setup);
2751
2752 static unsigned int cpuset_mems_nr(unsigned int *array)
2753 {
2754         int node;
2755         unsigned int nr = 0;
2756
2757         for_each_node_mask(node, cpuset_current_mems_allowed)
2758                 nr += array[node];
2759
2760         return nr;
2761 }
2762
2763 #ifdef CONFIG_SYSCTL
2764 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2765                          struct ctl_table *table, int write,
2766                          void __user *buffer, size_t *length, loff_t *ppos)
2767 {
2768         struct hstate *h = &default_hstate;
2769         unsigned long tmp = h->max_huge_pages;
2770         int ret;
2771
2772         if (!hugepages_supported())
2773                 return -ENOTSUPP;
2774
2775         table->data = &tmp;
2776         table->maxlen = sizeof(unsigned long);
2777         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2778         if (ret)
2779                 goto out;
2780
2781         if (write)
2782                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2783                                                   NUMA_NO_NODE, tmp, *length);
2784 out:
2785         return ret;
2786 }
2787
2788 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2789                           void __user *buffer, size_t *length, loff_t *ppos)
2790 {
2791
2792         return hugetlb_sysctl_handler_common(false, table, write,
2793                                                         buffer, length, ppos);
2794 }
2795
2796 #ifdef CONFIG_NUMA
2797 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2798                           void __user *buffer, size_t *length, loff_t *ppos)
2799 {
2800         return hugetlb_sysctl_handler_common(true, table, write,
2801                                                         buffer, length, ppos);
2802 }
2803 #endif /* CONFIG_NUMA */
2804
2805 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2806                         void __user *buffer,
2807                         size_t *length, loff_t *ppos)
2808 {
2809         struct hstate *h = &default_hstate;
2810         unsigned long tmp;
2811         int ret;
2812
2813         if (!hugepages_supported())
2814                 return -ENOTSUPP;
2815
2816         tmp = h->nr_overcommit_huge_pages;
2817
2818         if (write && hstate_is_gigantic(h))
2819                 return -EINVAL;
2820
2821         table->data = &tmp;
2822         table->maxlen = sizeof(unsigned long);
2823         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2824         if (ret)
2825                 goto out;
2826
2827         if (write) {
2828                 spin_lock(&hugetlb_lock);
2829                 h->nr_overcommit_huge_pages = tmp;
2830                 spin_unlock(&hugetlb_lock);
2831         }
2832 out:
2833         return ret;
2834 }
2835
2836 #endif /* CONFIG_SYSCTL */
2837
2838 void hugetlb_report_meminfo(struct seq_file *m)
2839 {
2840         struct hstate *h = &default_hstate;
2841         if (!hugepages_supported())
2842                 return;
2843         seq_printf(m,
2844                         "HugePages_Total:   %5lu\n"
2845                         "HugePages_Free:    %5lu\n"
2846                         "HugePages_Rsvd:    %5lu\n"
2847                         "HugePages_Surp:    %5lu\n"
2848                         "Hugepagesize:   %8lu kB\n",
2849                         h->nr_huge_pages,
2850                         h->free_huge_pages,
2851                         h->resv_huge_pages,
2852                         h->surplus_huge_pages,
2853                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2854 }
2855
2856 int hugetlb_report_node_meminfo(int nid, char *buf)
2857 {
2858         struct hstate *h = &default_hstate;
2859         if (!hugepages_supported())
2860                 return 0;
2861         return sprintf(buf,
2862                 "Node %d HugePages_Total: %5u\n"
2863                 "Node %d HugePages_Free:  %5u\n"
2864                 "Node %d HugePages_Surp:  %5u\n",
2865                 nid, h->nr_huge_pages_node[nid],
2866                 nid, h->free_huge_pages_node[nid],
2867                 nid, h->surplus_huge_pages_node[nid]);
2868 }
2869
2870 void hugetlb_show_meminfo(void)
2871 {
2872         struct hstate *h;
2873         int nid;
2874
2875         if (!hugepages_supported())
2876                 return;
2877
2878         for_each_node_state(nid, N_MEMORY)
2879                 for_each_hstate(h)
2880                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2881                                 nid,
2882                                 h->nr_huge_pages_node[nid],
2883                                 h->free_huge_pages_node[nid],
2884                                 h->surplus_huge_pages_node[nid],
2885                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2886 }
2887
2888 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2889 {
2890         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2891                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2892 }
2893
2894 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2895 unsigned long hugetlb_total_pages(void)
2896 {
2897         struct hstate *h;
2898         unsigned long nr_total_pages = 0;
2899
2900         for_each_hstate(h)
2901                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2902         return nr_total_pages;
2903 }
2904
2905 static int hugetlb_acct_memory(struct hstate *h, long delta)
2906 {
2907         int ret = -ENOMEM;
2908
2909         spin_lock(&hugetlb_lock);
2910         /*
2911          * When cpuset is configured, it breaks the strict hugetlb page
2912          * reservation as the accounting is done on a global variable. Such
2913          * reservation is completely rubbish in the presence of cpuset because
2914          * the reservation is not checked against page availability for the
2915          * current cpuset. Application can still potentially OOM'ed by kernel
2916          * with lack of free htlb page in cpuset that the task is in.
2917          * Attempt to enforce strict accounting with cpuset is almost
2918          * impossible (or too ugly) because cpuset is too fluid that
2919          * task or memory node can be dynamically moved between cpusets.
2920          *
2921          * The change of semantics for shared hugetlb mapping with cpuset is
2922          * undesirable. However, in order to preserve some of the semantics,
2923          * we fall back to check against current free page availability as
2924          * a best attempt and hopefully to minimize the impact of changing
2925          * semantics that cpuset has.
2926          */
2927         if (delta > 0) {
2928                 if (gather_surplus_pages(h, delta) < 0)
2929                         goto out;
2930
2931                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2932                         return_unused_surplus_pages(h, delta);
2933                         goto out;
2934                 }
2935         }
2936
2937         ret = 0;
2938         if (delta < 0)
2939                 return_unused_surplus_pages(h, (unsigned long) -delta);
2940
2941 out:
2942         spin_unlock(&hugetlb_lock);
2943         return ret;
2944 }
2945
2946 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2947 {
2948         struct resv_map *resv = vma_resv_map(vma);
2949
2950         /*
2951          * This new VMA should share its siblings reservation map if present.
2952          * The VMA will only ever have a valid reservation map pointer where
2953          * it is being copied for another still existing VMA.  As that VMA
2954          * has a reference to the reservation map it cannot disappear until
2955          * after this open call completes.  It is therefore safe to take a
2956          * new reference here without additional locking.
2957          */
2958         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2959                 kref_get(&resv->refs);
2960 }
2961
2962 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2963 {
2964         struct hstate *h = hstate_vma(vma);
2965         struct resv_map *resv = vma_resv_map(vma);
2966         struct hugepage_subpool *spool = subpool_vma(vma);
2967         unsigned long reserve, start, end;
2968         long gbl_reserve;
2969
2970         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2971                 return;
2972
2973         start = vma_hugecache_offset(h, vma, vma->vm_start);
2974         end = vma_hugecache_offset(h, vma, vma->vm_end);
2975
2976         reserve = (end - start) - region_count(resv, start, end);
2977
2978         kref_put(&resv->refs, resv_map_release);
2979
2980         if (reserve) {
2981                 /*
2982                  * Decrement reserve counts.  The global reserve count may be
2983                  * adjusted if the subpool has a minimum size.
2984                  */
2985                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2986                 hugetlb_acct_memory(h, -gbl_reserve);
2987         }
2988 }
2989
2990 /*
2991  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2992  * handle_mm_fault() to try to instantiate regular-sized pages in the
2993  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2994  * this far.
2995  */
2996 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2997 {
2998         BUG();
2999         return 0;
3000 }
3001
3002 const struct vm_operations_struct hugetlb_vm_ops = {
3003         .fault = hugetlb_vm_op_fault,
3004         .open = hugetlb_vm_op_open,
3005         .close = hugetlb_vm_op_close,
3006 };
3007
3008 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3009                                 int writable)
3010 {
3011         pte_t entry;
3012
3013         if (writable) {
3014                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3015                                          vma->vm_page_prot)));
3016         } else {
3017                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3018                                            vma->vm_page_prot));
3019         }
3020         entry = pte_mkyoung(entry);
3021         entry = pte_mkhuge(entry);
3022         entry = arch_make_huge_pte(entry, vma, page, writable);
3023
3024         return entry;
3025 }
3026
3027 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3028                                    unsigned long address, pte_t *ptep)
3029 {
3030         pte_t entry;
3031
3032         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3033         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3034                 update_mmu_cache(vma, address, ptep);
3035 }
3036
3037 static int is_hugetlb_entry_migration(pte_t pte)
3038 {
3039         swp_entry_t swp;
3040
3041         if (huge_pte_none(pte) || pte_present(pte))
3042                 return 0;
3043         swp = pte_to_swp_entry(pte);
3044         if (non_swap_entry(swp) && is_migration_entry(swp))
3045                 return 1;
3046         else
3047                 return 0;
3048 }
3049
3050 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3051 {
3052         swp_entry_t swp;
3053
3054         if (huge_pte_none(pte) || pte_present(pte))
3055                 return 0;
3056         swp = pte_to_swp_entry(pte);
3057         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3058                 return 1;
3059         else
3060                 return 0;
3061 }
3062
3063 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3064                             struct vm_area_struct *vma)
3065 {
3066         pte_t *src_pte, *dst_pte, entry;
3067         struct page *ptepage;
3068         unsigned long addr;
3069         int cow;
3070         struct hstate *h = hstate_vma(vma);
3071         unsigned long sz = huge_page_size(h);
3072         unsigned long mmun_start;       /* For mmu_notifiers */
3073         unsigned long mmun_end;         /* For mmu_notifiers */
3074         int ret = 0;
3075
3076         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3077
3078         mmun_start = vma->vm_start;
3079         mmun_end = vma->vm_end;
3080         if (cow)
3081                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3082
3083         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3084                 spinlock_t *src_ptl, *dst_ptl;
3085                 src_pte = huge_pte_offset(src, addr);
3086                 if (!src_pte)
3087                         continue;
3088                 dst_pte = huge_pte_alloc(dst, addr, sz);
3089                 if (!dst_pte) {
3090                         ret = -ENOMEM;
3091                         break;
3092                 }
3093
3094                 /* If the pagetables are shared don't copy or take references */
3095                 if (dst_pte == src_pte)
3096                         continue;
3097
3098                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3099                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3100                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3101                 entry = huge_ptep_get(src_pte);
3102                 if (huge_pte_none(entry)) { /* skip none entry */
3103                         ;
3104                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3105                                     is_hugetlb_entry_hwpoisoned(entry))) {
3106                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3107
3108                         if (is_write_migration_entry(swp_entry) && cow) {
3109                                 /*
3110                                  * COW mappings require pages in both
3111                                  * parent and child to be set to read.
3112                                  */
3113                                 make_migration_entry_read(&swp_entry);
3114                                 entry = swp_entry_to_pte(swp_entry);
3115                                 set_huge_pte_at(src, addr, src_pte, entry);
3116                         }
3117                         set_huge_pte_at(dst, addr, dst_pte, entry);
3118                 } else {
3119                         if (cow) {
3120                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3121                                 mmu_notifier_invalidate_range(src, mmun_start,
3122                                                                    mmun_end);
3123                         }
3124                         entry = huge_ptep_get(src_pte);
3125                         ptepage = pte_page(entry);
3126                         get_page(ptepage);
3127                         page_dup_rmap(ptepage);
3128                         set_huge_pte_at(dst, addr, dst_pte, entry);
3129                         hugetlb_count_add(pages_per_huge_page(h), dst);
3130                 }
3131                 spin_unlock(src_ptl);
3132                 spin_unlock(dst_ptl);
3133         }
3134
3135         if (cow)
3136                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3137
3138         return ret;
3139 }
3140
3141 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3142                             unsigned long start, unsigned long end,
3143                             struct page *ref_page)
3144 {
3145         int force_flush = 0;
3146         struct mm_struct *mm = vma->vm_mm;
3147         unsigned long address;
3148         pte_t *ptep;
3149         pte_t pte;
3150         spinlock_t *ptl;
3151         struct page *page;
3152         struct hstate *h = hstate_vma(vma);
3153         unsigned long sz = huge_page_size(h);
3154         const unsigned long mmun_start = start; /* For mmu_notifiers */
3155         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3156
3157         WARN_ON(!is_vm_hugetlb_page(vma));
3158         BUG_ON(start & ~huge_page_mask(h));
3159         BUG_ON(end & ~huge_page_mask(h));
3160
3161         tlb_start_vma(tlb, vma);
3162         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3163         address = start;
3164 again:
3165         for (; address < end; address += sz) {
3166                 ptep = huge_pte_offset(mm, address);
3167                 if (!ptep)
3168                         continue;
3169
3170                 ptl = huge_pte_lock(h, mm, ptep);
3171                 if (huge_pmd_unshare(mm, &address, ptep))
3172                         goto unlock;
3173
3174                 pte = huge_ptep_get(ptep);
3175                 if (huge_pte_none(pte))
3176                         goto unlock;
3177
3178                 /*
3179                  * Migrating hugepage or HWPoisoned hugepage is already
3180                  * unmapped and its refcount is dropped, so just clear pte here.
3181                  */
3182                 if (unlikely(!pte_present(pte))) {
3183                         huge_pte_clear(mm, address, ptep);
3184                         goto unlock;
3185                 }
3186
3187                 page = pte_page(pte);
3188                 /*
3189                  * If a reference page is supplied, it is because a specific
3190                  * page is being unmapped, not a range. Ensure the page we
3191                  * are about to unmap is the actual page of interest.
3192                  */
3193                 if (ref_page) {
3194                         if (page != ref_page)
3195                                 goto unlock;
3196
3197                         /*
3198                          * Mark the VMA as having unmapped its page so that
3199                          * future faults in this VMA will fail rather than
3200                          * looking like data was lost
3201                          */
3202                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3203                 }
3204
3205                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3206                 tlb_remove_tlb_entry(tlb, ptep, address);
3207                 if (huge_pte_dirty(pte))
3208                         set_page_dirty(page);
3209
3210                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3211                 page_remove_rmap(page);
3212                 force_flush = !__tlb_remove_page(tlb, page);
3213                 if (force_flush) {
3214                         address += sz;
3215                         spin_unlock(ptl);
3216                         break;
3217                 }
3218                 /* Bail out after unmapping reference page if supplied */
3219                 if (ref_page) {
3220                         spin_unlock(ptl);
3221                         break;
3222                 }
3223 unlock:
3224                 spin_unlock(ptl);
3225         }
3226         /*
3227          * mmu_gather ran out of room to batch pages, we break out of
3228          * the PTE lock to avoid doing the potential expensive TLB invalidate
3229          * and page-free while holding it.
3230          */
3231         if (force_flush) {
3232                 force_flush = 0;
3233                 tlb_flush_mmu(tlb);
3234                 if (address < end && !ref_page)
3235                         goto again;
3236         }
3237         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3238         tlb_end_vma(tlb, vma);
3239 }
3240
3241 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3242                           struct vm_area_struct *vma, unsigned long start,
3243                           unsigned long end, struct page *ref_page)
3244 {
3245         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3246
3247         /*
3248          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3249          * test will fail on a vma being torn down, and not grab a page table
3250          * on its way out.  We're lucky that the flag has such an appropriate
3251          * name, and can in fact be safely cleared here. We could clear it
3252          * before the __unmap_hugepage_range above, but all that's necessary
3253          * is to clear it before releasing the i_mmap_rwsem. This works
3254          * because in the context this is called, the VMA is about to be
3255          * destroyed and the i_mmap_rwsem is held.
3256          */
3257         vma->vm_flags &= ~VM_MAYSHARE;
3258 }
3259
3260 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3261                           unsigned long end, struct page *ref_page)
3262 {
3263         struct mm_struct *mm;
3264         struct mmu_gather tlb;
3265
3266         mm = vma->vm_mm;
3267
3268         tlb_gather_mmu(&tlb, mm, start, end);
3269         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3270         tlb_finish_mmu(&tlb, start, end);
3271 }
3272
3273 /*
3274  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3275  * mappping it owns the reserve page for. The intention is to unmap the page
3276  * from other VMAs and let the children be SIGKILLed if they are faulting the
3277  * same region.
3278  */
3279 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3280                               struct page *page, unsigned long address)
3281 {
3282         struct hstate *h = hstate_vma(vma);
3283         struct vm_area_struct *iter_vma;
3284         struct address_space *mapping;
3285         pgoff_t pgoff;
3286
3287         /*
3288          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3289          * from page cache lookup which is in HPAGE_SIZE units.
3290          */
3291         address = address & huge_page_mask(h);
3292         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3293                         vma->vm_pgoff;
3294         mapping = file_inode(vma->vm_file)->i_mapping;
3295
3296         /*
3297          * Take the mapping lock for the duration of the table walk. As
3298          * this mapping should be shared between all the VMAs,
3299          * __unmap_hugepage_range() is called as the lock is already held
3300          */
3301         i_mmap_lock_write(mapping);
3302         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3303                 /* Do not unmap the current VMA */
3304                 if (iter_vma == vma)
3305                         continue;
3306
3307                 /*
3308                  * Shared VMAs have their own reserves and do not affect
3309                  * MAP_PRIVATE accounting but it is possible that a shared
3310                  * VMA is using the same page so check and skip such VMAs.
3311                  */
3312                 if (iter_vma->vm_flags & VM_MAYSHARE)
3313                         continue;
3314
3315                 /*
3316                  * Unmap the page from other VMAs without their own reserves.
3317                  * They get marked to be SIGKILLed if they fault in these
3318                  * areas. This is because a future no-page fault on this VMA
3319                  * could insert a zeroed page instead of the data existing
3320                  * from the time of fork. This would look like data corruption
3321                  */
3322                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3323                         unmap_hugepage_range(iter_vma, address,
3324                                              address + huge_page_size(h), page);
3325         }
3326         i_mmap_unlock_write(mapping);
3327 }
3328
3329 /*
3330  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3331  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3332  * cannot race with other handlers or page migration.
3333  * Keep the pte_same checks anyway to make transition from the mutex easier.
3334  */
3335 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3336                         unsigned long address, pte_t *ptep, pte_t pte,
3337                         struct page *pagecache_page, spinlock_t *ptl)
3338 {
3339         struct hstate *h = hstate_vma(vma);
3340         struct page *old_page, *new_page;
3341         int ret = 0, outside_reserve = 0;
3342         unsigned long mmun_start;       /* For mmu_notifiers */
3343         unsigned long mmun_end;         /* For mmu_notifiers */
3344
3345         old_page = pte_page(pte);
3346
3347 retry_avoidcopy:
3348         /* If no-one else is actually using this page, avoid the copy
3349          * and just make the page writable */
3350         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3351                 page_move_anon_rmap(old_page, vma, address);
3352                 set_huge_ptep_writable(vma, address, ptep);
3353                 return 0;
3354         }
3355
3356         /*
3357          * If the process that created a MAP_PRIVATE mapping is about to
3358          * perform a COW due to a shared page count, attempt to satisfy
3359          * the allocation without using the existing reserves. The pagecache
3360          * page is used to determine if the reserve at this address was
3361          * consumed or not. If reserves were used, a partial faulted mapping
3362          * at the time of fork() could consume its reserves on COW instead
3363          * of the full address range.
3364          */
3365         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3366                         old_page != pagecache_page)
3367                 outside_reserve = 1;
3368
3369         page_cache_get(old_page);
3370
3371         /*
3372          * Drop page table lock as buddy allocator may be called. It will
3373          * be acquired again before returning to the caller, as expected.
3374          */
3375         spin_unlock(ptl);
3376         new_page = alloc_huge_page(vma, address, outside_reserve);
3377
3378         if (IS_ERR(new_page)) {
3379                 /*
3380                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3381                  * it is due to references held by a child and an insufficient
3382                  * huge page pool. To guarantee the original mappers
3383                  * reliability, unmap the page from child processes. The child
3384                  * may get SIGKILLed if it later faults.
3385                  */
3386                 if (outside_reserve) {
3387                         page_cache_release(old_page);
3388                         BUG_ON(huge_pte_none(pte));
3389                         unmap_ref_private(mm, vma, old_page, address);
3390                         BUG_ON(huge_pte_none(pte));
3391                         spin_lock(ptl);
3392                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3393                         if (likely(ptep &&
3394                                    pte_same(huge_ptep_get(ptep), pte)))
3395                                 goto retry_avoidcopy;
3396                         /*
3397                          * race occurs while re-acquiring page table
3398                          * lock, and our job is done.
3399                          */
3400                         return 0;
3401                 }
3402
3403                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3404                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3405                 goto out_release_old;
3406         }
3407
3408         /*
3409          * When the original hugepage is shared one, it does not have
3410          * anon_vma prepared.
3411          */
3412         if (unlikely(anon_vma_prepare(vma))) {
3413                 ret = VM_FAULT_OOM;
3414                 goto out_release_all;
3415         }
3416
3417         copy_user_huge_page(new_page, old_page, address, vma,
3418                             pages_per_huge_page(h));
3419         __SetPageUptodate(new_page);
3420         set_page_huge_active(new_page);
3421
3422         mmun_start = address & huge_page_mask(h);
3423         mmun_end = mmun_start + huge_page_size(h);
3424         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3425
3426         /*
3427          * Retake the page table lock to check for racing updates
3428          * before the page tables are altered
3429          */
3430         spin_lock(ptl);
3431         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3432         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3433                 ClearPagePrivate(new_page);
3434
3435                 /* Break COW */
3436                 huge_ptep_clear_flush(vma, address, ptep);
3437                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3438                 set_huge_pte_at(mm, address, ptep,
3439                                 make_huge_pte(vma, new_page, 1));
3440                 page_remove_rmap(old_page);
3441                 hugepage_add_new_anon_rmap(new_page, vma, address);
3442                 /* Make the old page be freed below */
3443                 new_page = old_page;
3444         }
3445         spin_unlock(ptl);
3446         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3447 out_release_all:
3448         page_cache_release(new_page);
3449 out_release_old:
3450         page_cache_release(old_page);
3451
3452         spin_lock(ptl); /* Caller expects lock to be held */
3453         return ret;
3454 }
3455
3456 /* Return the pagecache page at a given address within a VMA */
3457 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3458                         struct vm_area_struct *vma, unsigned long address)
3459 {
3460         struct address_space *mapping;
3461         pgoff_t idx;
3462
3463         mapping = vma->vm_file->f_mapping;
3464         idx = vma_hugecache_offset(h, vma, address);
3465
3466         return find_lock_page(mapping, idx);
3467 }
3468
3469 /*
3470  * Return whether there is a pagecache page to back given address within VMA.
3471  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3472  */
3473 static bool hugetlbfs_pagecache_present(struct hstate *h,
3474                         struct vm_area_struct *vma, unsigned long address)
3475 {
3476         struct address_space *mapping;
3477         pgoff_t idx;
3478         struct page *page;
3479
3480         mapping = vma->vm_file->f_mapping;
3481         idx = vma_hugecache_offset(h, vma, address);
3482
3483         page = find_get_page(mapping, idx);
3484         if (page)
3485                 put_page(page);
3486         return page != NULL;
3487 }
3488
3489 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3490                            pgoff_t idx)
3491 {
3492         struct inode *inode = mapping->host;
3493         struct hstate *h = hstate_inode(inode);
3494         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3495
3496         if (err)
3497                 return err;
3498         ClearPagePrivate(page);
3499
3500         spin_lock(&inode->i_lock);
3501         inode->i_blocks += blocks_per_huge_page(h);
3502         spin_unlock(&inode->i_lock);
3503         return 0;
3504 }
3505
3506 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3507                            struct address_space *mapping, pgoff_t idx,
3508                            unsigned long address, pte_t *ptep, unsigned int flags)
3509 {
3510         struct hstate *h = hstate_vma(vma);
3511         int ret = VM_FAULT_SIGBUS;
3512         int anon_rmap = 0;
3513         unsigned long size;
3514         struct page *page;
3515         pte_t new_pte;
3516         spinlock_t *ptl;
3517
3518         /*
3519          * Currently, we are forced to kill the process in the event the
3520          * original mapper has unmapped pages from the child due to a failed
3521          * COW. Warn that such a situation has occurred as it may not be obvious
3522          */
3523         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3524                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3525                            current->pid);
3526                 return ret;
3527         }
3528
3529         /*
3530          * Use page lock to guard against racing truncation
3531          * before we get page_table_lock.
3532          */
3533 retry:
3534         page = find_lock_page(mapping, idx);
3535         if (!page) {
3536                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3537                 if (idx >= size)
3538                         goto out;
3539                 page = alloc_huge_page(vma, address, 0);
3540                 if (IS_ERR(page)) {
3541                         ret = PTR_ERR(page);
3542                         if (ret == -ENOMEM)
3543                                 ret = VM_FAULT_OOM;
3544                         else
3545                                 ret = VM_FAULT_SIGBUS;
3546                         goto out;
3547                 }
3548                 clear_huge_page(page, address, pages_per_huge_page(h));
3549                 __SetPageUptodate(page);
3550                 set_page_huge_active(page);
3551
3552                 if (vma->vm_flags & VM_MAYSHARE) {
3553                         int err = huge_add_to_page_cache(page, mapping, idx);
3554                         if (err) {
3555                                 put_page(page);
3556                                 if (err == -EEXIST)
3557                                         goto retry;
3558                                 goto out;
3559                         }
3560                 } else {
3561                         lock_page(page);
3562                         if (unlikely(anon_vma_prepare(vma))) {
3563                                 ret = VM_FAULT_OOM;
3564                                 goto backout_unlocked;
3565                         }
3566                         anon_rmap = 1;
3567                 }
3568         } else {
3569                 /*
3570                  * If memory error occurs between mmap() and fault, some process
3571                  * don't have hwpoisoned swap entry for errored virtual address.
3572                  * So we need to block hugepage fault by PG_hwpoison bit check.
3573                  */
3574                 if (unlikely(PageHWPoison(page))) {
3575                         ret = VM_FAULT_HWPOISON |
3576                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3577                         goto backout_unlocked;
3578                 }
3579         }
3580
3581         /*
3582          * If we are going to COW a private mapping later, we examine the
3583          * pending reservations for this page now. This will ensure that
3584          * any allocations necessary to record that reservation occur outside
3585          * the spinlock.
3586          */
3587         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3588                 if (vma_needs_reservation(h, vma, address) < 0) {
3589                         ret = VM_FAULT_OOM;
3590                         goto backout_unlocked;
3591                 }
3592                 /* Just decrements count, does not deallocate */
3593                 vma_end_reservation(h, vma, address);
3594         }
3595
3596         ptl = huge_pte_lockptr(h, mm, ptep);
3597         spin_lock(ptl);
3598         size = i_size_read(mapping->host) >> huge_page_shift(h);
3599         if (idx >= size)
3600                 goto backout;
3601
3602         ret = 0;
3603         if (!huge_pte_none(huge_ptep_get(ptep)))
3604                 goto backout;
3605
3606         if (anon_rmap) {
3607                 ClearPagePrivate(page);
3608                 hugepage_add_new_anon_rmap(page, vma, address);
3609         } else
3610                 page_dup_rmap(page);
3611         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3612                                 && (vma->vm_flags & VM_SHARED)));
3613         set_huge_pte_at(mm, address, ptep, new_pte);
3614
3615         hugetlb_count_add(pages_per_huge_page(h), mm);
3616         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3617                 /* Optimization, do the COW without a second fault */
3618                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3619         }
3620
3621         spin_unlock(ptl);
3622         unlock_page(page);
3623 out:
3624         return ret;
3625
3626 backout:
3627         spin_unlock(ptl);
3628 backout_unlocked:
3629         unlock_page(page);
3630         put_page(page);
3631         goto out;
3632 }
3633
3634 #ifdef CONFIG_SMP
3635 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3636                             struct vm_area_struct *vma,
3637                             struct address_space *mapping,
3638                             pgoff_t idx, unsigned long address)
3639 {
3640         unsigned long key[2];
3641         u32 hash;
3642
3643         if (vma->vm_flags & VM_SHARED) {
3644                 key[0] = (unsigned long) mapping;
3645                 key[1] = idx;
3646         } else {
3647                 key[0] = (unsigned long) mm;
3648                 key[1] = address >> huge_page_shift(h);
3649         }
3650
3651         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3652
3653         return hash & (num_fault_mutexes - 1);
3654 }
3655 #else
3656 /*
3657  * For uniprocesor systems we always use a single mutex, so just
3658  * return 0 and avoid the hashing overhead.
3659  */
3660 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3661                             struct vm_area_struct *vma,
3662                             struct address_space *mapping,
3663                             pgoff_t idx, unsigned long address)
3664 {
3665         return 0;
3666 }
3667 #endif
3668
3669 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3670                         unsigned long address, unsigned int flags)
3671 {
3672         pte_t *ptep, entry;
3673         spinlock_t *ptl;
3674         int ret;
3675         u32 hash;
3676         pgoff_t idx;
3677         struct page *page = NULL;
3678         struct page *pagecache_page = NULL;
3679         struct hstate *h = hstate_vma(vma);
3680         struct address_space *mapping;
3681         struct inode *inode = file_inode(vma->vm_file);
3682         int need_wait_lock = 0;
3683
3684         address &= huge_page_mask(h);
3685
3686         ptep = huge_pte_offset(mm, address);
3687         if (ptep) {
3688                 entry = huge_ptep_get(ptep);
3689                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3690                         migration_entry_wait_huge(vma, mm, ptep);
3691                         return 0;
3692                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3693                         return VM_FAULT_HWPOISON_LARGE |
3694                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3695         }
3696
3697         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3698         if (!ptep)
3699                 return VM_FAULT_OOM;
3700
3701         mapping = vma->vm_file->f_mapping;
3702         idx = vma_hugecache_offset(h, vma, address);
3703
3704         /*
3705          * page faults could race with fallocate hole punch.  If a page
3706          * is faulted between unmap and deallocation, it will still remain
3707          * in the punched hole.  During hole punch operations, a hugetlb_falloc
3708          * structure will be pointed to by i_private.  If this fault is for
3709          * a page in a hole being punched, wait for the operation to finish
3710          * before proceeding.
3711          *
3712          * Even with this strategy, it is still possible for a page fault to
3713          * race with hole punch.  In this case, remove_inode_hugepages() will
3714          * unmap the page and then remove.  Checking i_private as below should
3715          * catch most of these races as we want to minimize unmapping a page
3716          * multiple times.
3717          */
3718         if (unlikely(inode->i_private)) {
3719                 struct hugetlb_falloc *hugetlb_falloc;
3720
3721                 spin_lock(&inode->i_lock);
3722                 hugetlb_falloc = inode->i_private;
3723                 if (hugetlb_falloc && hugetlb_falloc->waitq &&
3724                     idx >= hugetlb_falloc->start &&
3725                     idx <= hugetlb_falloc->end) {
3726                         wait_queue_head_t *hugetlb_falloc_waitq;
3727                         DEFINE_WAIT(hugetlb_fault_wait);
3728
3729                         hugetlb_falloc_waitq = hugetlb_falloc->waitq;
3730                         prepare_to_wait(hugetlb_falloc_waitq,
3731                                         &hugetlb_fault_wait,
3732                                         TASK_UNINTERRUPTIBLE);
3733                         spin_unlock(&inode->i_lock);
3734                         schedule();
3735
3736                         spin_lock(&inode->i_lock);
3737                         finish_wait(hugetlb_falloc_waitq, &hugetlb_fault_wait);
3738                 }
3739                 spin_unlock(&inode->i_lock);
3740         }
3741
3742         /*
3743          * Serialize hugepage allocation and instantiation, so that we don't
3744          * get spurious allocation failures if two CPUs race to instantiate
3745          * the same page in the page cache.
3746          */
3747         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3748         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3749
3750         entry = huge_ptep_get(ptep);
3751         if (huge_pte_none(entry)) {
3752                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3753                 goto out_mutex;
3754         }
3755
3756         ret = 0;
3757
3758         /*
3759          * entry could be a migration/hwpoison entry at this point, so this
3760          * check prevents the kernel from going below assuming that we have
3761          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3762          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3763          * handle it.
3764          */
3765         if (!pte_present(entry))
3766                 goto out_mutex;
3767
3768         /*
3769          * If we are going to COW the mapping later, we examine the pending
3770          * reservations for this page now. This will ensure that any
3771          * allocations necessary to record that reservation occur outside the
3772          * spinlock. For private mappings, we also lookup the pagecache
3773          * page now as it is used to determine if a reservation has been
3774          * consumed.
3775          */
3776         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3777                 if (vma_needs_reservation(h, vma, address) < 0) {
3778                         ret = VM_FAULT_OOM;
3779                         goto out_mutex;
3780                 }
3781                 /* Just decrements count, does not deallocate */
3782                 vma_end_reservation(h, vma, address);
3783
3784                 if (!(vma->vm_flags & VM_MAYSHARE))
3785                         pagecache_page = hugetlbfs_pagecache_page(h,
3786                                                                 vma, address);
3787         }
3788
3789         ptl = huge_pte_lock(h, mm, ptep);
3790
3791         /* Check for a racing update before calling hugetlb_cow */
3792         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3793                 goto out_ptl;
3794
3795         /*
3796          * hugetlb_cow() requires page locks of pte_page(entry) and
3797          * pagecache_page, so here we need take the former one
3798          * when page != pagecache_page or !pagecache_page.
3799          */
3800         page = pte_page(entry);
3801         if (page != pagecache_page)
3802                 if (!trylock_page(page)) {
3803                         need_wait_lock = 1;
3804                         goto out_ptl;
3805                 }
3806
3807         get_page(page);
3808
3809         if (flags & FAULT_FLAG_WRITE) {
3810                 if (!huge_pte_write(entry)) {
3811                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3812                                         pagecache_page, ptl);
3813                         goto out_put_page;
3814                 }
3815                 entry = huge_pte_mkdirty(entry);
3816         }
3817         entry = pte_mkyoung(entry);
3818         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3819                                                 flags & FAULT_FLAG_WRITE))
3820                 update_mmu_cache(vma, address, ptep);
3821 out_put_page:
3822         if (page != pagecache_page)
3823                 unlock_page(page);
3824         put_page(page);
3825 out_ptl:
3826         spin_unlock(ptl);
3827
3828         if (pagecache_page) {
3829                 unlock_page(pagecache_page);
3830                 put_page(pagecache_page);
3831         }
3832 out_mutex:
3833         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3834         /*
3835          * Generally it's safe to hold refcount during waiting page lock. But
3836          * here we just wait to defer the next page fault to avoid busy loop and
3837          * the page is not used after unlocked before returning from the current
3838          * page fault. So we are safe from accessing freed page, even if we wait
3839          * here without taking refcount.
3840          */
3841         if (need_wait_lock)
3842                 wait_on_page_locked(page);
3843         return ret;
3844 }
3845
3846 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3847                          struct page **pages, struct vm_area_struct **vmas,
3848                          unsigned long *position, unsigned long *nr_pages,
3849                          long i, unsigned int flags)
3850 {
3851         unsigned long pfn_offset;
3852         unsigned long vaddr = *position;
3853         unsigned long remainder = *nr_pages;
3854         struct hstate *h = hstate_vma(vma);
3855
3856         while (vaddr < vma->vm_end && remainder) {
3857                 pte_t *pte;
3858                 spinlock_t *ptl = NULL;
3859                 int absent;
3860                 struct page *page;
3861
3862                 /*
3863                  * If we have a pending SIGKILL, don't keep faulting pages and
3864                  * potentially allocating memory.
3865                  */
3866                 if (unlikely(fatal_signal_pending(current))) {
3867                         remainder = 0;
3868                         break;
3869                 }
3870
3871                 /*
3872                  * Some archs (sparc64, sh*) have multiple pte_ts to
3873                  * each hugepage.  We have to make sure we get the
3874                  * first, for the page indexing below to work.
3875                  *
3876                  * Note that page table lock is not held when pte is null.
3877                  */
3878                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3879                 if (pte)
3880                         ptl = huge_pte_lock(h, mm, pte);
3881                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3882
3883                 /*
3884                  * When coredumping, it suits get_dump_page if we just return
3885                  * an error where there's an empty slot with no huge pagecache
3886                  * to back it.  This way, we avoid allocating a hugepage, and
3887                  * the sparse dumpfile avoids allocating disk blocks, but its
3888                  * huge holes still show up with zeroes where they need to be.
3889                  */
3890                 if (absent && (flags & FOLL_DUMP) &&
3891                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3892                         if (pte)
3893                                 spin_unlock(ptl);
3894                         remainder = 0;
3895                         break;
3896                 }
3897
3898                 /*
3899                  * We need call hugetlb_fault for both hugepages under migration
3900                  * (in which case hugetlb_fault waits for the migration,) and
3901                  * hwpoisoned hugepages (in which case we need to prevent the
3902                  * caller from accessing to them.) In order to do this, we use
3903                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3904                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3905                  * both cases, and because we can't follow correct pages
3906                  * directly from any kind of swap entries.
3907                  */
3908                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3909                     ((flags & FOLL_WRITE) &&
3910                       !huge_pte_write(huge_ptep_get(pte)))) {
3911                         int ret;
3912
3913                         if (pte)
3914                                 spin_unlock(ptl);
3915                         ret = hugetlb_fault(mm, vma, vaddr,
3916                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3917                         if (!(ret & VM_FAULT_ERROR))
3918                                 continue;
3919
3920                         remainder = 0;
3921                         break;
3922                 }
3923
3924                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3925                 page = pte_page(huge_ptep_get(pte));
3926 same_page:
3927                 if (pages) {
3928                         pages[i] = mem_map_offset(page, pfn_offset);
3929                         get_page_foll(pages[i]);
3930                 }
3931
3932                 if (vmas)
3933                         vmas[i] = vma;
3934
3935                 vaddr += PAGE_SIZE;
3936                 ++pfn_offset;
3937                 --remainder;
3938                 ++i;
3939                 if (vaddr < vma->vm_end && remainder &&
3940                                 pfn_offset < pages_per_huge_page(h)) {
3941                         /*
3942                          * We use pfn_offset to avoid touching the pageframes
3943                          * of this compound page.
3944                          */
3945                         goto same_page;
3946                 }
3947                 spin_unlock(ptl);
3948         }
3949         *nr_pages = remainder;
3950         *position = vaddr;
3951
3952         return i ? i : -EFAULT;
3953 }
3954
3955 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3956                 unsigned long address, unsigned long end, pgprot_t newprot)
3957 {
3958         struct mm_struct *mm = vma->vm_mm;
3959         unsigned long start = address;
3960         pte_t *ptep;
3961         pte_t pte;
3962         struct hstate *h = hstate_vma(vma);
3963         unsigned long pages = 0;
3964
3965         BUG_ON(address >= end);
3966         flush_cache_range(vma, address, end);
3967
3968         mmu_notifier_invalidate_range_start(mm, start, end);
3969         i_mmap_lock_write(vma->vm_file->f_mapping);
3970         for (; address < end; address += huge_page_size(h)) {
3971                 spinlock_t *ptl;
3972                 ptep = huge_pte_offset(mm, address);
3973                 if (!ptep)
3974                         continue;
3975                 ptl = huge_pte_lock(h, mm, ptep);
3976                 if (huge_pmd_unshare(mm, &address, ptep)) {
3977                         pages++;
3978                         spin_unlock(ptl);
3979                         continue;
3980                 }
3981                 pte = huge_ptep_get(ptep);
3982                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3983                         spin_unlock(ptl);
3984                         continue;
3985                 }
3986                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3987                         swp_entry_t entry = pte_to_swp_entry(pte);
3988
3989                         if (is_write_migration_entry(entry)) {
3990                                 pte_t newpte;
3991
3992                                 make_migration_entry_read(&entry);
3993                                 newpte = swp_entry_to_pte(entry);
3994                                 set_huge_pte_at(mm, address, ptep, newpte);
3995                                 pages++;
3996                         }
3997                         spin_unlock(ptl);
3998                         continue;
3999                 }
4000                 if (!huge_pte_none(pte)) {
4001                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4002                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4003                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4004                         set_huge_pte_at(mm, address, ptep, pte);
4005                         pages++;
4006                 }
4007                 spin_unlock(ptl);
4008         }
4009         /*
4010          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4011          * may have cleared our pud entry and done put_page on the page table:
4012          * once we release i_mmap_rwsem, another task can do the final put_page
4013          * and that page table be reused and filled with junk.
4014          */
4015         flush_tlb_range(vma, start, end);
4016         mmu_notifier_invalidate_range(mm, start, end);
4017         i_mmap_unlock_write(vma->vm_file->f_mapping);
4018         mmu_notifier_invalidate_range_end(mm, start, end);
4019
4020         return pages << h->order;
4021 }
4022
4023 int hugetlb_reserve_pages(struct inode *inode,
4024                                         long from, long to,
4025                                         struct vm_area_struct *vma,
4026                                         vm_flags_t vm_flags)
4027 {
4028         long ret, chg;
4029         struct hstate *h = hstate_inode(inode);
4030         struct hugepage_subpool *spool = subpool_inode(inode);
4031         struct resv_map *resv_map;
4032         long gbl_reserve;
4033
4034         /*
4035          * Only apply hugepage reservation if asked. At fault time, an
4036          * attempt will be made for VM_NORESERVE to allocate a page
4037          * without using reserves
4038          */
4039         if (vm_flags & VM_NORESERVE)
4040                 return 0;
4041
4042         /*
4043          * Shared mappings base their reservation on the number of pages that
4044          * are already allocated on behalf of the file. Private mappings need
4045          * to reserve the full area even if read-only as mprotect() may be
4046          * called to make the mapping read-write. Assume !vma is a shm mapping
4047          */
4048         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4049                 resv_map = inode_resv_map(inode);
4050
4051                 chg = region_chg(resv_map, from, to);
4052
4053         } else {
4054                 resv_map = resv_map_alloc();
4055                 if (!resv_map)
4056                         return -ENOMEM;
4057
4058                 chg = to - from;
4059
4060                 set_vma_resv_map(vma, resv_map);
4061                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4062         }
4063
4064         if (chg < 0) {
4065                 ret = chg;
4066                 goto out_err;
4067         }
4068
4069         /*
4070          * There must be enough pages in the subpool for the mapping. If
4071          * the subpool has a minimum size, there may be some global
4072          * reservations already in place (gbl_reserve).
4073          */
4074         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4075         if (gbl_reserve < 0) {
4076                 ret = -ENOSPC;
4077                 goto out_err;
4078         }
4079
4080         /*
4081          * Check enough hugepages are available for the reservation.
4082          * Hand the pages back to the subpool if there are not
4083          */
4084         ret = hugetlb_acct_memory(h, gbl_reserve);
4085         if (ret < 0) {
4086                 /* put back original number of pages, chg */
4087                 (void)hugepage_subpool_put_pages(spool, chg);
4088                 goto out_err;
4089         }
4090
4091         /*
4092          * Account for the reservations made. Shared mappings record regions
4093          * that have reservations as they are shared by multiple VMAs.
4094          * When the last VMA disappears, the region map says how much
4095          * the reservation was and the page cache tells how much of
4096          * the reservation was consumed. Private mappings are per-VMA and
4097          * only the consumed reservations are tracked. When the VMA
4098          * disappears, the original reservation is the VMA size and the
4099          * consumed reservations are stored in the map. Hence, nothing
4100          * else has to be done for private mappings here
4101          */
4102         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4103                 long add = region_add(resv_map, from, to);
4104
4105                 if (unlikely(chg > add)) {
4106                         /*
4107                          * pages in this range were added to the reserve
4108                          * map between region_chg and region_add.  This
4109                          * indicates a race with alloc_huge_page.  Adjust
4110                          * the subpool and reserve counts modified above
4111                          * based on the difference.
4112                          */
4113                         long rsv_adjust;
4114
4115                         rsv_adjust = hugepage_subpool_put_pages(spool,
4116                                                                 chg - add);
4117                         hugetlb_acct_memory(h, -rsv_adjust);
4118                 }
4119         }
4120         return 0;
4121 out_err:
4122         if (!vma || vma->vm_flags & VM_MAYSHARE)
4123                 region_abort(resv_map, from, to);
4124         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4125                 kref_put(&resv_map->refs, resv_map_release);
4126         return ret;
4127 }
4128
4129 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4130                                                                 long freed)
4131 {
4132         struct hstate *h = hstate_inode(inode);
4133         struct resv_map *resv_map = inode_resv_map(inode);
4134         long chg = 0;
4135         struct hugepage_subpool *spool = subpool_inode(inode);
4136         long gbl_reserve;
4137
4138         if (resv_map) {
4139                 chg = region_del(resv_map, start, end);
4140                 /*
4141                  * region_del() can fail in the rare case where a region
4142                  * must be split and another region descriptor can not be
4143                  * allocated.  If end == LONG_MAX, it will not fail.
4144                  */
4145                 if (chg < 0)
4146                         return chg;
4147         }
4148
4149         spin_lock(&inode->i_lock);
4150         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4151         spin_unlock(&inode->i_lock);
4152
4153         /*
4154          * If the subpool has a minimum size, the number of global
4155          * reservations to be released may be adjusted.
4156          */
4157         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4158         hugetlb_acct_memory(h, -gbl_reserve);
4159
4160         return 0;
4161 }
4162
4163 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4164 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4165                                 struct vm_area_struct *vma,
4166                                 unsigned long addr, pgoff_t idx)
4167 {
4168         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4169                                 svma->vm_start;
4170         unsigned long sbase = saddr & PUD_MASK;
4171         unsigned long s_end = sbase + PUD_SIZE;
4172
4173         /* Allow segments to share if only one is marked locked */
4174         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4175         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4176
4177         /*
4178          * match the virtual addresses, permission and the alignment of the
4179          * page table page.
4180          */
4181         if (pmd_index(addr) != pmd_index(saddr) ||
4182             vm_flags != svm_flags ||
4183             sbase < svma->vm_start || svma->vm_end < s_end)
4184                 return 0;
4185
4186         return saddr;
4187 }
4188
4189 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4190 {
4191         unsigned long base = addr & PUD_MASK;
4192         unsigned long end = base + PUD_SIZE;
4193
4194         /*
4195          * check on proper vm_flags and page table alignment
4196          */
4197         if (vma->vm_flags & VM_MAYSHARE &&
4198             vma->vm_start <= base && end <= vma->vm_end)
4199                 return true;
4200         return false;
4201 }
4202
4203 /*
4204  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4205  * and returns the corresponding pte. While this is not necessary for the
4206  * !shared pmd case because we can allocate the pmd later as well, it makes the
4207  * code much cleaner. pmd allocation is essential for the shared case because
4208  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4209  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4210  * bad pmd for sharing.
4211  */
4212 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4213 {
4214         struct vm_area_struct *vma = find_vma(mm, addr);
4215         struct address_space *mapping = vma->vm_file->f_mapping;
4216         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4217                         vma->vm_pgoff;
4218         struct vm_area_struct *svma;
4219         unsigned long saddr;
4220         pte_t *spte = NULL;
4221         pte_t *pte;
4222         spinlock_t *ptl;
4223
4224         if (!vma_shareable(vma, addr))
4225                 return (pte_t *)pmd_alloc(mm, pud, addr);
4226
4227         i_mmap_lock_write(mapping);
4228         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4229                 if (svma == vma)
4230                         continue;
4231
4232                 saddr = page_table_shareable(svma, vma, addr, idx);
4233                 if (saddr) {
4234                         spte = huge_pte_offset(svma->vm_mm, saddr);
4235                         if (spte) {
4236                                 mm_inc_nr_pmds(mm);
4237                                 get_page(virt_to_page(spte));
4238                                 break;
4239                         }
4240                 }
4241         }
4242
4243         if (!spte)
4244                 goto out;
4245
4246         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4247         spin_lock(ptl);
4248         if (pud_none(*pud)) {
4249                 pud_populate(mm, pud,
4250                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4251         } else {
4252                 put_page(virt_to_page(spte));
4253                 mm_inc_nr_pmds(mm);
4254         }
4255         spin_unlock(ptl);
4256 out:
4257         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4258         i_mmap_unlock_write(mapping);
4259         return pte;
4260 }
4261
4262 /*
4263  * unmap huge page backed by shared pte.
4264  *
4265  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4266  * indicated by page_count > 1, unmap is achieved by clearing pud and
4267  * decrementing the ref count. If count == 1, the pte page is not shared.
4268  *
4269  * called with page table lock held.
4270  *
4271  * returns: 1 successfully unmapped a shared pte page
4272  *          0 the underlying pte page is not shared, or it is the last user
4273  */
4274 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4275 {
4276         pgd_t *pgd = pgd_offset(mm, *addr);
4277         pud_t *pud = pud_offset(pgd, *addr);
4278
4279         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4280         if (page_count(virt_to_page(ptep)) == 1)
4281                 return 0;
4282
4283         pud_clear(pud);
4284         put_page(virt_to_page(ptep));
4285         mm_dec_nr_pmds(mm);
4286         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4287         return 1;
4288 }
4289 #define want_pmd_share()        (1)
4290 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4291 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4292 {
4293         return NULL;
4294 }
4295
4296 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4297 {
4298         return 0;
4299 }
4300 #define want_pmd_share()        (0)
4301 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4302
4303 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4304 pte_t *huge_pte_alloc(struct mm_struct *mm,
4305                         unsigned long addr, unsigned long sz)
4306 {
4307         pgd_t *pgd;
4308         pud_t *pud;
4309         pte_t *pte = NULL;
4310
4311         pgd = pgd_offset(mm, addr);
4312         pud = pud_alloc(mm, pgd, addr);
4313         if (pud) {
4314                 if (sz == PUD_SIZE) {
4315                         pte = (pte_t *)pud;
4316                 } else {
4317                         BUG_ON(sz != PMD_SIZE);
4318                         if (want_pmd_share() && pud_none(*pud))
4319                                 pte = huge_pmd_share(mm, addr, pud);
4320                         else
4321                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4322                 }
4323         }
4324         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4325
4326         return pte;
4327 }
4328
4329 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4330 {
4331         pgd_t *pgd;
4332         pud_t *pud;
4333         pmd_t *pmd = NULL;
4334
4335         pgd = pgd_offset(mm, addr);
4336         if (pgd_present(*pgd)) {
4337                 pud = pud_offset(pgd, addr);
4338                 if (pud_present(*pud)) {
4339                         if (pud_huge(*pud))
4340                                 return (pte_t *)pud;
4341                         pmd = pmd_offset(pud, addr);
4342                 }
4343         }
4344         return (pte_t *) pmd;
4345 }
4346
4347 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4348
4349 /*
4350  * These functions are overwritable if your architecture needs its own
4351  * behavior.
4352  */
4353 struct page * __weak
4354 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4355                               int write)
4356 {
4357         return ERR_PTR(-EINVAL);
4358 }
4359
4360 struct page * __weak
4361 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4362                 pmd_t *pmd, int flags)
4363 {
4364         struct page *page = NULL;
4365         spinlock_t *ptl;
4366 retry:
4367         ptl = pmd_lockptr(mm, pmd);
4368         spin_lock(ptl);
4369         /*
4370          * make sure that the address range covered by this pmd is not
4371          * unmapped from other threads.
4372          */
4373         if (!pmd_huge(*pmd))
4374                 goto out;
4375         if (pmd_present(*pmd)) {
4376                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4377                 if (flags & FOLL_GET)
4378                         get_page(page);
4379         } else {
4380                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4381                         spin_unlock(ptl);
4382                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4383                         goto retry;
4384                 }
4385                 /*
4386                  * hwpoisoned entry is treated as no_page_table in
4387                  * follow_page_mask().
4388                  */
4389         }
4390 out:
4391         spin_unlock(ptl);
4392         return page;
4393 }
4394
4395 struct page * __weak
4396 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4397                 pud_t *pud, int flags)
4398 {
4399         if (flags & FOLL_GET)
4400                 return NULL;
4401
4402         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4403 }
4404
4405 #ifdef CONFIG_MEMORY_FAILURE
4406
4407 /*
4408  * This function is called from memory failure code.
4409  * Assume the caller holds page lock of the head page.
4410  */
4411 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4412 {
4413         struct hstate *h = page_hstate(hpage);
4414         int nid = page_to_nid(hpage);
4415         int ret = -EBUSY;
4416
4417         spin_lock(&hugetlb_lock);
4418         /*
4419          * Just checking !page_huge_active is not enough, because that could be
4420          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4421          */
4422         if (!page_huge_active(hpage) && !page_count(hpage)) {
4423                 /*
4424                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4425                  * but dangling hpage->lru can trigger list-debug warnings
4426                  * (this happens when we call unpoison_memory() on it),
4427                  * so let it point to itself with list_del_init().
4428                  */
4429                 list_del_init(&hpage->lru);
4430                 set_page_refcounted(hpage);
4431                 h->free_huge_pages--;
4432                 h->free_huge_pages_node[nid]--;
4433                 ret = 0;
4434         }
4435         spin_unlock(&hugetlb_lock);
4436         return ret;
4437 }
4438 #endif
4439
4440 bool isolate_huge_page(struct page *page, struct list_head *list)
4441 {
4442         bool ret = true;
4443
4444         VM_BUG_ON_PAGE(!PageHead(page), page);
4445         spin_lock(&hugetlb_lock);
4446         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4447                 ret = false;
4448                 goto unlock;
4449         }
4450         clear_page_huge_active(page);
4451         list_move_tail(&page->lru, list);
4452 unlock:
4453         spin_unlock(&hugetlb_lock);
4454         return ret;
4455 }
4456
4457 void putback_active_hugepage(struct page *page)
4458 {
4459         VM_BUG_ON_PAGE(!PageHead(page), page);
4460         spin_lock(&hugetlb_lock);
4461         set_page_huge_active(page);
4462         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4463         spin_unlock(&hugetlb_lock);
4464         put_page(page);
4465 }