2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 spin_lock_init(&spool->lock);
100 spool->max_hpages = max_hpages;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 spool->rsv_hpages = min_hpages;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
164 spin_unlock(&spool->lock);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 list_del(&nrg->link);
285 list_add(&nrg->link, rg->link.prev);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
319 add += (nrg->from - f); /* Added to beginning of region */
321 add += t - nrg->to; /* Added to end of region */
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
360 spin_lock(&resv->lock);
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
406 INIT_LIST_HEAD(&nrg->link);
410 list_add(&nrg->link, rg->link.prev);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg -= rg->to - rg->from;
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv->lock);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
513 list_del(&nrg->link);
514 resv->region_cache_count--;
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
535 list_add(&nrg->link, &rg->link);
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
547 if (f <= rg->from) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv->lock);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
572 struct hugepage_subpool *spool = subpool_inode(inode);
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
740 VM_BUG_ON(resv_map->adds_in_progress);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
760 return (struct resv_map *)(get_vma_private_data(vma) &
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
841 static void enqueue_huge_page(struct hstate *h, struct page *page)
843 int nid = page_to_nid(page);
844 list_move(&page->lru, &h->hugepage_freelists[nid]);
845 h->free_huge_pages++;
846 h->free_huge_pages_node[nid]++;
849 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
853 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
854 if (!is_migrate_isolate_page(page))
857 * if 'non-isolated free hugepage' not found on the list,
858 * the allocation fails.
860 if (&h->hugepage_freelists[nid] == &page->lru)
862 list_move(&page->lru, &h->hugepage_activelist);
863 set_page_refcounted(page);
864 h->free_huge_pages--;
865 h->free_huge_pages_node[nid]--;
869 /* Movability of hugepages depends on migration support. */
870 static inline gfp_t htlb_alloc_mask(struct hstate *h)
872 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
873 return GFP_HIGHUSER_MOVABLE;
878 static struct page *dequeue_huge_page_vma(struct hstate *h,
879 struct vm_area_struct *vma,
880 unsigned long address, int avoid_reserve,
883 struct page *page = NULL;
884 struct mempolicy *mpol;
885 nodemask_t *nodemask;
886 struct zonelist *zonelist;
889 unsigned int cpuset_mems_cookie;
892 * A child process with MAP_PRIVATE mappings created by their parent
893 * have no page reserves. This check ensures that reservations are
894 * not "stolen". The child may still get SIGKILLed
896 if (!vma_has_reserves(vma, chg) &&
897 h->free_huge_pages - h->resv_huge_pages == 0)
900 /* If reserves cannot be used, ensure enough pages are in the pool */
901 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 zonelist = huge_zonelist(vma, address,
907 htlb_alloc_mask(h), &mpol, &nodemask);
909 for_each_zone_zonelist_nodemask(zone, z, zonelist,
910 MAX_NR_ZONES - 1, nodemask) {
911 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
912 page = dequeue_huge_page_node(h, zone_to_nid(zone));
916 if (!vma_has_reserves(vma, chg))
919 SetPagePrivate(page);
920 h->resv_huge_pages--;
927 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
936 * common helper functions for hstate_next_node_to_{alloc|free}.
937 * We may have allocated or freed a huge page based on a different
938 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
939 * be outside of *nodes_allowed. Ensure that we use an allowed
940 * node for alloc or free.
942 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
944 nid = next_node_in(nid, *nodes_allowed);
945 VM_BUG_ON(nid >= MAX_NUMNODES);
950 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
952 if (!node_isset(nid, *nodes_allowed))
953 nid = next_node_allowed(nid, nodes_allowed);
958 * returns the previously saved node ["this node"] from which to
959 * allocate a persistent huge page for the pool and advance the
960 * next node from which to allocate, handling wrap at end of node
963 static int hstate_next_node_to_alloc(struct hstate *h,
964 nodemask_t *nodes_allowed)
968 VM_BUG_ON(!nodes_allowed);
970 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
971 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
977 * helper for free_pool_huge_page() - return the previously saved
978 * node ["this node"] from which to free a huge page. Advance the
979 * next node id whether or not we find a free huge page to free so
980 * that the next attempt to free addresses the next node.
982 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
986 VM_BUG_ON(!nodes_allowed);
988 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
989 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
994 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
995 for (nr_nodes = nodes_weight(*mask); \
997 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1000 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1001 for (nr_nodes = nodes_weight(*mask); \
1003 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1006 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1007 static void destroy_compound_gigantic_page(struct page *page,
1011 int nr_pages = 1 << order;
1012 struct page *p = page + 1;
1014 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1015 clear_compound_head(p);
1016 set_page_refcounted(p);
1019 set_compound_order(page, 0);
1020 __ClearPageHead(page);
1023 static void free_gigantic_page(struct page *page, unsigned int order)
1025 free_contig_range(page_to_pfn(page), 1 << order);
1028 static int __alloc_gigantic_page(unsigned long start_pfn,
1029 unsigned long nr_pages)
1031 unsigned long end_pfn = start_pfn + nr_pages;
1032 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1035 static bool pfn_range_valid_gigantic(struct zone *z,
1036 unsigned long start_pfn, unsigned long nr_pages)
1038 unsigned long i, end_pfn = start_pfn + nr_pages;
1041 for (i = start_pfn; i < end_pfn; i++) {
1045 page = pfn_to_page(i);
1047 if (page_zone(page) != z)
1050 if (PageReserved(page))
1053 if (page_count(page) > 0)
1063 static bool zone_spans_last_pfn(const struct zone *zone,
1064 unsigned long start_pfn, unsigned long nr_pages)
1066 unsigned long last_pfn = start_pfn + nr_pages - 1;
1067 return zone_spans_pfn(zone, last_pfn);
1070 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1072 unsigned long nr_pages = 1 << order;
1073 unsigned long ret, pfn, flags;
1076 z = NODE_DATA(nid)->node_zones;
1077 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1078 spin_lock_irqsave(&z->lock, flags);
1080 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1081 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1082 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1084 * We release the zone lock here because
1085 * alloc_contig_range() will also lock the zone
1086 * at some point. If there's an allocation
1087 * spinning on this lock, it may win the race
1088 * and cause alloc_contig_range() to fail...
1090 spin_unlock_irqrestore(&z->lock, flags);
1091 ret = __alloc_gigantic_page(pfn, nr_pages);
1093 return pfn_to_page(pfn);
1094 spin_lock_irqsave(&z->lock, flags);
1099 spin_unlock_irqrestore(&z->lock, flags);
1105 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1106 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1108 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1112 page = alloc_gigantic_page(nid, huge_page_order(h));
1114 prep_compound_gigantic_page(page, huge_page_order(h));
1115 prep_new_huge_page(h, page, nid);
1121 static int alloc_fresh_gigantic_page(struct hstate *h,
1122 nodemask_t *nodes_allowed)
1124 struct page *page = NULL;
1127 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1128 page = alloc_fresh_gigantic_page_node(h, node);
1136 static inline bool gigantic_page_supported(void) { return true; }
1138 static inline bool gigantic_page_supported(void) { return false; }
1139 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1140 static inline void destroy_compound_gigantic_page(struct page *page,
1141 unsigned int order) { }
1142 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1143 nodemask_t *nodes_allowed) { return 0; }
1146 static void update_and_free_page(struct hstate *h, struct page *page)
1150 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1154 h->nr_huge_pages_node[page_to_nid(page)]--;
1155 for (i = 0; i < pages_per_huge_page(h); i++) {
1156 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1157 1 << PG_referenced | 1 << PG_dirty |
1158 1 << PG_active | 1 << PG_private |
1161 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1162 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1163 set_page_refcounted(page);
1164 if (hstate_is_gigantic(h)) {
1165 destroy_compound_gigantic_page(page, huge_page_order(h));
1166 free_gigantic_page(page, huge_page_order(h));
1168 __free_pages(page, huge_page_order(h));
1172 struct hstate *size_to_hstate(unsigned long size)
1176 for_each_hstate(h) {
1177 if (huge_page_size(h) == size)
1184 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1185 * to hstate->hugepage_activelist.)
1187 * This function can be called for tail pages, but never returns true for them.
1189 bool page_huge_active(struct page *page)
1191 VM_BUG_ON_PAGE(!PageHuge(page), page);
1192 return PageHead(page) && PagePrivate(&page[1]);
1195 /* never called for tail page */
1196 static void set_page_huge_active(struct page *page)
1198 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1199 SetPagePrivate(&page[1]);
1202 static void clear_page_huge_active(struct page *page)
1204 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1205 ClearPagePrivate(&page[1]);
1208 void free_huge_page(struct page *page)
1211 * Can't pass hstate in here because it is called from the
1212 * compound page destructor.
1214 struct hstate *h = page_hstate(page);
1215 int nid = page_to_nid(page);
1216 struct hugepage_subpool *spool =
1217 (struct hugepage_subpool *)page_private(page);
1218 bool restore_reserve;
1220 set_page_private(page, 0);
1221 page->mapping = NULL;
1222 VM_BUG_ON_PAGE(page_count(page), page);
1223 VM_BUG_ON_PAGE(page_mapcount(page), page);
1224 restore_reserve = PagePrivate(page);
1225 ClearPagePrivate(page);
1228 * A return code of zero implies that the subpool will be under its
1229 * minimum size if the reservation is not restored after page is free.
1230 * Therefore, force restore_reserve operation.
1232 if (hugepage_subpool_put_pages(spool, 1) == 0)
1233 restore_reserve = true;
1235 spin_lock(&hugetlb_lock);
1236 clear_page_huge_active(page);
1237 hugetlb_cgroup_uncharge_page(hstate_index(h),
1238 pages_per_huge_page(h), page);
1239 if (restore_reserve)
1240 h->resv_huge_pages++;
1242 if (h->surplus_huge_pages_node[nid]) {
1243 /* remove the page from active list */
1244 list_del(&page->lru);
1245 update_and_free_page(h, page);
1246 h->surplus_huge_pages--;
1247 h->surplus_huge_pages_node[nid]--;
1249 arch_clear_hugepage_flags(page);
1250 enqueue_huge_page(h, page);
1252 spin_unlock(&hugetlb_lock);
1255 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1257 INIT_LIST_HEAD(&page->lru);
1258 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1259 spin_lock(&hugetlb_lock);
1260 set_hugetlb_cgroup(page, NULL);
1262 h->nr_huge_pages_node[nid]++;
1263 spin_unlock(&hugetlb_lock);
1264 put_page(page); /* free it into the hugepage allocator */
1267 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1270 int nr_pages = 1 << order;
1271 struct page *p = page + 1;
1273 /* we rely on prep_new_huge_page to set the destructor */
1274 set_compound_order(page, order);
1275 __ClearPageReserved(page);
1276 __SetPageHead(page);
1277 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1279 * For gigantic hugepages allocated through bootmem at
1280 * boot, it's safer to be consistent with the not-gigantic
1281 * hugepages and clear the PG_reserved bit from all tail pages
1282 * too. Otherwse drivers using get_user_pages() to access tail
1283 * pages may get the reference counting wrong if they see
1284 * PG_reserved set on a tail page (despite the head page not
1285 * having PG_reserved set). Enforcing this consistency between
1286 * head and tail pages allows drivers to optimize away a check
1287 * on the head page when they need know if put_page() is needed
1288 * after get_user_pages().
1290 __ClearPageReserved(p);
1291 set_page_count(p, 0);
1292 set_compound_head(p, page);
1294 atomic_set(compound_mapcount_ptr(page), -1);
1298 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1299 * transparent huge pages. See the PageTransHuge() documentation for more
1302 int PageHuge(struct page *page)
1304 if (!PageCompound(page))
1307 page = compound_head(page);
1308 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1310 EXPORT_SYMBOL_GPL(PageHuge);
1313 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1314 * normal or transparent huge pages.
1316 int PageHeadHuge(struct page *page_head)
1318 if (!PageHead(page_head))
1321 return get_compound_page_dtor(page_head) == free_huge_page;
1324 pgoff_t __basepage_index(struct page *page)
1326 struct page *page_head = compound_head(page);
1327 pgoff_t index = page_index(page_head);
1328 unsigned long compound_idx;
1330 if (!PageHuge(page_head))
1331 return page_index(page);
1333 if (compound_order(page_head) >= MAX_ORDER)
1334 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1336 compound_idx = page - page_head;
1338 return (index << compound_order(page_head)) + compound_idx;
1341 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1345 page = __alloc_pages_node(nid,
1346 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1347 __GFP_REPEAT|__GFP_NOWARN,
1348 huge_page_order(h));
1350 prep_new_huge_page(h, page, nid);
1356 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1362 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1363 page = alloc_fresh_huge_page_node(h, node);
1371 count_vm_event(HTLB_BUDDY_PGALLOC);
1373 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1379 * Free huge page from pool from next node to free.
1380 * Attempt to keep persistent huge pages more or less
1381 * balanced over allowed nodes.
1382 * Called with hugetlb_lock locked.
1384 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1390 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1392 * If we're returning unused surplus pages, only examine
1393 * nodes with surplus pages.
1395 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1396 !list_empty(&h->hugepage_freelists[node])) {
1398 list_entry(h->hugepage_freelists[node].next,
1400 list_del(&page->lru);
1401 h->free_huge_pages--;
1402 h->free_huge_pages_node[node]--;
1404 h->surplus_huge_pages--;
1405 h->surplus_huge_pages_node[node]--;
1407 update_and_free_page(h, page);
1417 * Dissolve a given free hugepage into free buddy pages. This function does
1418 * nothing for in-use (including surplus) hugepages.
1420 static void dissolve_free_huge_page(struct page *page)
1422 spin_lock(&hugetlb_lock);
1423 if (PageHuge(page) && !page_count(page)) {
1424 struct hstate *h = page_hstate(page);
1425 int nid = page_to_nid(page);
1426 list_del(&page->lru);
1427 h->free_huge_pages--;
1428 h->free_huge_pages_node[nid]--;
1429 update_and_free_page(h, page);
1431 spin_unlock(&hugetlb_lock);
1435 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1436 * make specified memory blocks removable from the system.
1437 * Note that start_pfn should aligned with (minimum) hugepage size.
1439 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1443 if (!hugepages_supported())
1446 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1447 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1448 dissolve_free_huge_page(pfn_to_page(pfn));
1452 * There are 3 ways this can get called:
1453 * 1. With vma+addr: we use the VMA's memory policy
1454 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1455 * page from any node, and let the buddy allocator itself figure
1457 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1458 * strictly from 'nid'
1460 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1461 struct vm_area_struct *vma, unsigned long addr, int nid)
1463 int order = huge_page_order(h);
1464 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1465 unsigned int cpuset_mems_cookie;
1468 * We need a VMA to get a memory policy. If we do not
1469 * have one, we use the 'nid' argument.
1471 * The mempolicy stuff below has some non-inlined bits
1472 * and calls ->vm_ops. That makes it hard to optimize at
1473 * compile-time, even when NUMA is off and it does
1474 * nothing. This helps the compiler optimize it out.
1476 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1478 * If a specific node is requested, make sure to
1479 * get memory from there, but only when a node
1480 * is explicitly specified.
1482 if (nid != NUMA_NO_NODE)
1483 gfp |= __GFP_THISNODE;
1485 * Make sure to call something that can handle
1488 return alloc_pages_node(nid, gfp, order);
1492 * OK, so we have a VMA. Fetch the mempolicy and try to
1493 * allocate a huge page with it. We will only reach this
1494 * when CONFIG_NUMA=y.
1498 struct mempolicy *mpol;
1499 struct zonelist *zl;
1500 nodemask_t *nodemask;
1502 cpuset_mems_cookie = read_mems_allowed_begin();
1503 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1504 mpol_cond_put(mpol);
1505 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1508 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1514 * There are two ways to allocate a huge page:
1515 * 1. When you have a VMA and an address (like a fault)
1516 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1518 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1519 * this case which signifies that the allocation should be done with
1520 * respect for the VMA's memory policy.
1522 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1523 * implies that memory policies will not be taken in to account.
1525 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1526 struct vm_area_struct *vma, unsigned long addr, int nid)
1531 if (hstate_is_gigantic(h))
1535 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1536 * This makes sure the caller is picking _one_ of the modes with which
1537 * we can call this function, not both.
1539 if (vma || (addr != -1)) {
1540 VM_WARN_ON_ONCE(addr == -1);
1541 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1544 * Assume we will successfully allocate the surplus page to
1545 * prevent racing processes from causing the surplus to exceed
1548 * This however introduces a different race, where a process B
1549 * tries to grow the static hugepage pool while alloc_pages() is
1550 * called by process A. B will only examine the per-node
1551 * counters in determining if surplus huge pages can be
1552 * converted to normal huge pages in adjust_pool_surplus(). A
1553 * won't be able to increment the per-node counter, until the
1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 * no more huge pages can be converted from surplus to normal
1556 * state (and doesn't try to convert again). Thus, we have a
1557 * case where a surplus huge page exists, the pool is grown, and
1558 * the surplus huge page still exists after, even though it
1559 * should just have been converted to a normal huge page. This
1560 * does not leak memory, though, as the hugepage will be freed
1561 * once it is out of use. It also does not allow the counters to
1562 * go out of whack in adjust_pool_surplus() as we don't modify
1563 * the node values until we've gotten the hugepage and only the
1564 * per-node value is checked there.
1566 spin_lock(&hugetlb_lock);
1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 spin_unlock(&hugetlb_lock);
1572 h->surplus_huge_pages++;
1574 spin_unlock(&hugetlb_lock);
1576 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1578 spin_lock(&hugetlb_lock);
1580 INIT_LIST_HEAD(&page->lru);
1581 r_nid = page_to_nid(page);
1582 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583 set_hugetlb_cgroup(page, NULL);
1585 * We incremented the global counters already
1587 h->nr_huge_pages_node[r_nid]++;
1588 h->surplus_huge_pages_node[r_nid]++;
1589 __count_vm_event(HTLB_BUDDY_PGALLOC);
1592 h->surplus_huge_pages--;
1593 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1595 spin_unlock(&hugetlb_lock);
1601 * Allocate a huge page from 'nid'. Note, 'nid' may be
1602 * NUMA_NO_NODE, which means that it may be allocated
1606 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1608 unsigned long addr = -1;
1610 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1614 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1617 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1618 struct vm_area_struct *vma, unsigned long addr)
1620 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1624 * This allocation function is useful in the context where vma is irrelevant.
1625 * E.g. soft-offlining uses this function because it only cares physical
1626 * address of error page.
1628 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1630 struct page *page = NULL;
1632 spin_lock(&hugetlb_lock);
1633 if (h->free_huge_pages - h->resv_huge_pages > 0)
1634 page = dequeue_huge_page_node(h, nid);
1635 spin_unlock(&hugetlb_lock);
1638 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1644 * Increase the hugetlb pool such that it can accommodate a reservation
1647 static int gather_surplus_pages(struct hstate *h, int delta)
1649 struct list_head surplus_list;
1650 struct page *page, *tmp;
1652 int needed, allocated;
1653 bool alloc_ok = true;
1655 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1657 h->resv_huge_pages += delta;
1662 INIT_LIST_HEAD(&surplus_list);
1666 spin_unlock(&hugetlb_lock);
1667 for (i = 0; i < needed; i++) {
1668 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1673 list_add(&page->lru, &surplus_list);
1678 * After retaking hugetlb_lock, we need to recalculate 'needed'
1679 * because either resv_huge_pages or free_huge_pages may have changed.
1681 spin_lock(&hugetlb_lock);
1682 needed = (h->resv_huge_pages + delta) -
1683 (h->free_huge_pages + allocated);
1688 * We were not able to allocate enough pages to
1689 * satisfy the entire reservation so we free what
1690 * we've allocated so far.
1695 * The surplus_list now contains _at_least_ the number of extra pages
1696 * needed to accommodate the reservation. Add the appropriate number
1697 * of pages to the hugetlb pool and free the extras back to the buddy
1698 * allocator. Commit the entire reservation here to prevent another
1699 * process from stealing the pages as they are added to the pool but
1700 * before they are reserved.
1702 needed += allocated;
1703 h->resv_huge_pages += delta;
1706 /* Free the needed pages to the hugetlb pool */
1707 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1711 * This page is now managed by the hugetlb allocator and has
1712 * no users -- drop the buddy allocator's reference.
1714 put_page_testzero(page);
1715 VM_BUG_ON_PAGE(page_count(page), page);
1716 enqueue_huge_page(h, page);
1719 spin_unlock(&hugetlb_lock);
1721 /* Free unnecessary surplus pages to the buddy allocator */
1722 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1724 spin_lock(&hugetlb_lock);
1730 * When releasing a hugetlb pool reservation, any surplus pages that were
1731 * allocated to satisfy the reservation must be explicitly freed if they were
1733 * Called with hugetlb_lock held.
1735 static void return_unused_surplus_pages(struct hstate *h,
1736 unsigned long unused_resv_pages)
1738 unsigned long nr_pages;
1740 /* Uncommit the reservation */
1741 h->resv_huge_pages -= unused_resv_pages;
1743 /* Cannot return gigantic pages currently */
1744 if (hstate_is_gigantic(h))
1747 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1750 * We want to release as many surplus pages as possible, spread
1751 * evenly across all nodes with memory. Iterate across these nodes
1752 * until we can no longer free unreserved surplus pages. This occurs
1753 * when the nodes with surplus pages have no free pages.
1754 * free_pool_huge_page() will balance the the freed pages across the
1755 * on-line nodes with memory and will handle the hstate accounting.
1757 while (nr_pages--) {
1758 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1760 cond_resched_lock(&hugetlb_lock);
1766 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1767 * are used by the huge page allocation routines to manage reservations.
1769 * vma_needs_reservation is called to determine if the huge page at addr
1770 * within the vma has an associated reservation. If a reservation is
1771 * needed, the value 1 is returned. The caller is then responsible for
1772 * managing the global reservation and subpool usage counts. After
1773 * the huge page has been allocated, vma_commit_reservation is called
1774 * to add the page to the reservation map. If the page allocation fails,
1775 * the reservation must be ended instead of committed. vma_end_reservation
1776 * is called in such cases.
1778 * In the normal case, vma_commit_reservation returns the same value
1779 * as the preceding vma_needs_reservation call. The only time this
1780 * is not the case is if a reserve map was changed between calls. It
1781 * is the responsibility of the caller to notice the difference and
1782 * take appropriate action.
1784 enum vma_resv_mode {
1789 static long __vma_reservation_common(struct hstate *h,
1790 struct vm_area_struct *vma, unsigned long addr,
1791 enum vma_resv_mode mode)
1793 struct resv_map *resv;
1797 resv = vma_resv_map(vma);
1801 idx = vma_hugecache_offset(h, vma, addr);
1803 case VMA_NEEDS_RESV:
1804 ret = region_chg(resv, idx, idx + 1);
1806 case VMA_COMMIT_RESV:
1807 ret = region_add(resv, idx, idx + 1);
1810 region_abort(resv, idx, idx + 1);
1817 if (vma->vm_flags & VM_MAYSHARE)
1820 return ret < 0 ? ret : 0;
1823 static long vma_needs_reservation(struct hstate *h,
1824 struct vm_area_struct *vma, unsigned long addr)
1826 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1829 static long vma_commit_reservation(struct hstate *h,
1830 struct vm_area_struct *vma, unsigned long addr)
1832 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1835 static void vma_end_reservation(struct hstate *h,
1836 struct vm_area_struct *vma, unsigned long addr)
1838 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1841 struct page *alloc_huge_page(struct vm_area_struct *vma,
1842 unsigned long addr, int avoid_reserve)
1844 struct hugepage_subpool *spool = subpool_vma(vma);
1845 struct hstate *h = hstate_vma(vma);
1847 long map_chg, map_commit;
1850 struct hugetlb_cgroup *h_cg;
1852 idx = hstate_index(h);
1854 * Examine the region/reserve map to determine if the process
1855 * has a reservation for the page to be allocated. A return
1856 * code of zero indicates a reservation exists (no change).
1858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1860 return ERR_PTR(-ENOMEM);
1863 * Processes that did not create the mapping will have no
1864 * reserves as indicated by the region/reserve map. Check
1865 * that the allocation will not exceed the subpool limit.
1866 * Allocations for MAP_NORESERVE mappings also need to be
1867 * checked against any subpool limit.
1869 if (map_chg || avoid_reserve) {
1870 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1872 vma_end_reservation(h, vma, addr);
1873 return ERR_PTR(-ENOSPC);
1877 * Even though there was no reservation in the region/reserve
1878 * map, there could be reservations associated with the
1879 * subpool that can be used. This would be indicated if the
1880 * return value of hugepage_subpool_get_pages() is zero.
1881 * However, if avoid_reserve is specified we still avoid even
1882 * the subpool reservations.
1888 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1890 goto out_subpool_put;
1892 spin_lock(&hugetlb_lock);
1894 * glb_chg is passed to indicate whether or not a page must be taken
1895 * from the global free pool (global change). gbl_chg == 0 indicates
1896 * a reservation exists for the allocation.
1898 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1900 spin_unlock(&hugetlb_lock);
1901 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1903 goto out_uncharge_cgroup;
1904 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1905 SetPagePrivate(page);
1906 h->resv_huge_pages--;
1908 spin_lock(&hugetlb_lock);
1909 list_move(&page->lru, &h->hugepage_activelist);
1912 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1913 spin_unlock(&hugetlb_lock);
1915 set_page_private(page, (unsigned long)spool);
1917 map_commit = vma_commit_reservation(h, vma, addr);
1918 if (unlikely(map_chg > map_commit)) {
1920 * The page was added to the reservation map between
1921 * vma_needs_reservation and vma_commit_reservation.
1922 * This indicates a race with hugetlb_reserve_pages.
1923 * Adjust for the subpool count incremented above AND
1924 * in hugetlb_reserve_pages for the same page. Also,
1925 * the reservation count added in hugetlb_reserve_pages
1926 * no longer applies.
1930 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1931 hugetlb_acct_memory(h, -rsv_adjust);
1935 out_uncharge_cgroup:
1936 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1938 if (map_chg || avoid_reserve)
1939 hugepage_subpool_put_pages(spool, 1);
1940 vma_end_reservation(h, vma, addr);
1941 return ERR_PTR(-ENOSPC);
1945 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1946 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1947 * where no ERR_VALUE is expected to be returned.
1949 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1950 unsigned long addr, int avoid_reserve)
1952 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1958 int __weak alloc_bootmem_huge_page(struct hstate *h)
1960 struct huge_bootmem_page *m;
1963 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1966 addr = memblock_virt_alloc_try_nid_nopanic(
1967 huge_page_size(h), huge_page_size(h),
1968 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1971 * Use the beginning of the huge page to store the
1972 * huge_bootmem_page struct (until gather_bootmem
1973 * puts them into the mem_map).
1982 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1983 /* Put them into a private list first because mem_map is not up yet */
1984 list_add(&m->list, &huge_boot_pages);
1989 static void __init prep_compound_huge_page(struct page *page,
1992 if (unlikely(order > (MAX_ORDER - 1)))
1993 prep_compound_gigantic_page(page, order);
1995 prep_compound_page(page, order);
1998 /* Put bootmem huge pages into the standard lists after mem_map is up */
1999 static void __init gather_bootmem_prealloc(void)
2001 struct huge_bootmem_page *m;
2003 list_for_each_entry(m, &huge_boot_pages, list) {
2004 struct hstate *h = m->hstate;
2007 #ifdef CONFIG_HIGHMEM
2008 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2009 memblock_free_late(__pa(m),
2010 sizeof(struct huge_bootmem_page));
2012 page = virt_to_page(m);
2014 WARN_ON(page_count(page) != 1);
2015 prep_compound_huge_page(page, h->order);
2016 WARN_ON(PageReserved(page));
2017 prep_new_huge_page(h, page, page_to_nid(page));
2019 * If we had gigantic hugepages allocated at boot time, we need
2020 * to restore the 'stolen' pages to totalram_pages in order to
2021 * fix confusing memory reports from free(1) and another
2022 * side-effects, like CommitLimit going negative.
2024 if (hstate_is_gigantic(h))
2025 adjust_managed_page_count(page, 1 << h->order);
2029 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2033 for (i = 0; i < h->max_huge_pages; ++i) {
2034 if (hstate_is_gigantic(h)) {
2035 if (!alloc_bootmem_huge_page(h))
2037 } else if (!alloc_fresh_huge_page(h,
2038 &node_states[N_MEMORY]))
2041 h->max_huge_pages = i;
2044 static void __init hugetlb_init_hstates(void)
2048 for_each_hstate(h) {
2049 if (minimum_order > huge_page_order(h))
2050 minimum_order = huge_page_order(h);
2052 /* oversize hugepages were init'ed in early boot */
2053 if (!hstate_is_gigantic(h))
2054 hugetlb_hstate_alloc_pages(h);
2056 VM_BUG_ON(minimum_order == UINT_MAX);
2059 static char * __init memfmt(char *buf, unsigned long n)
2061 if (n >= (1UL << 30))
2062 sprintf(buf, "%lu GB", n >> 30);
2063 else if (n >= (1UL << 20))
2064 sprintf(buf, "%lu MB", n >> 20);
2066 sprintf(buf, "%lu KB", n >> 10);
2070 static void __init report_hugepages(void)
2074 for_each_hstate(h) {
2076 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2077 memfmt(buf, huge_page_size(h)),
2078 h->free_huge_pages);
2082 #ifdef CONFIG_HIGHMEM
2083 static void try_to_free_low(struct hstate *h, unsigned long count,
2084 nodemask_t *nodes_allowed)
2088 if (hstate_is_gigantic(h))
2091 for_each_node_mask(i, *nodes_allowed) {
2092 struct page *page, *next;
2093 struct list_head *freel = &h->hugepage_freelists[i];
2094 list_for_each_entry_safe(page, next, freel, lru) {
2095 if (count >= h->nr_huge_pages)
2097 if (PageHighMem(page))
2099 list_del(&page->lru);
2100 update_and_free_page(h, page);
2101 h->free_huge_pages--;
2102 h->free_huge_pages_node[page_to_nid(page)]--;
2107 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2108 nodemask_t *nodes_allowed)
2114 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2115 * balanced by operating on them in a round-robin fashion.
2116 * Returns 1 if an adjustment was made.
2118 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2123 VM_BUG_ON(delta != -1 && delta != 1);
2126 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2127 if (h->surplus_huge_pages_node[node])
2131 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2132 if (h->surplus_huge_pages_node[node] <
2133 h->nr_huge_pages_node[node])
2140 h->surplus_huge_pages += delta;
2141 h->surplus_huge_pages_node[node] += delta;
2145 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2146 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2147 nodemask_t *nodes_allowed)
2149 unsigned long min_count, ret;
2151 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2152 return h->max_huge_pages;
2155 * Increase the pool size
2156 * First take pages out of surplus state. Then make up the
2157 * remaining difference by allocating fresh huge pages.
2159 * We might race with __alloc_buddy_huge_page() here and be unable
2160 * to convert a surplus huge page to a normal huge page. That is
2161 * not critical, though, it just means the overall size of the
2162 * pool might be one hugepage larger than it needs to be, but
2163 * within all the constraints specified by the sysctls.
2165 spin_lock(&hugetlb_lock);
2166 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2167 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2171 while (count > persistent_huge_pages(h)) {
2173 * If this allocation races such that we no longer need the
2174 * page, free_huge_page will handle it by freeing the page
2175 * and reducing the surplus.
2177 spin_unlock(&hugetlb_lock);
2178 if (hstate_is_gigantic(h))
2179 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2181 ret = alloc_fresh_huge_page(h, nodes_allowed);
2182 spin_lock(&hugetlb_lock);
2186 /* Bail for signals. Probably ctrl-c from user */
2187 if (signal_pending(current))
2192 * Decrease the pool size
2193 * First return free pages to the buddy allocator (being careful
2194 * to keep enough around to satisfy reservations). Then place
2195 * pages into surplus state as needed so the pool will shrink
2196 * to the desired size as pages become free.
2198 * By placing pages into the surplus state independent of the
2199 * overcommit value, we are allowing the surplus pool size to
2200 * exceed overcommit. There are few sane options here. Since
2201 * __alloc_buddy_huge_page() is checking the global counter,
2202 * though, we'll note that we're not allowed to exceed surplus
2203 * and won't grow the pool anywhere else. Not until one of the
2204 * sysctls are changed, or the surplus pages go out of use.
2206 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2207 min_count = max(count, min_count);
2208 try_to_free_low(h, min_count, nodes_allowed);
2209 while (min_count < persistent_huge_pages(h)) {
2210 if (!free_pool_huge_page(h, nodes_allowed, 0))
2212 cond_resched_lock(&hugetlb_lock);
2214 while (count < persistent_huge_pages(h)) {
2215 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2219 ret = persistent_huge_pages(h);
2220 spin_unlock(&hugetlb_lock);
2224 #define HSTATE_ATTR_RO(_name) \
2225 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2227 #define HSTATE_ATTR(_name) \
2228 static struct kobj_attribute _name##_attr = \
2229 __ATTR(_name, 0644, _name##_show, _name##_store)
2231 static struct kobject *hugepages_kobj;
2232 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2234 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2236 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2240 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2241 if (hstate_kobjs[i] == kobj) {
2243 *nidp = NUMA_NO_NODE;
2247 return kobj_to_node_hstate(kobj, nidp);
2250 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2251 struct kobj_attribute *attr, char *buf)
2254 unsigned long nr_huge_pages;
2257 h = kobj_to_hstate(kobj, &nid);
2258 if (nid == NUMA_NO_NODE)
2259 nr_huge_pages = h->nr_huge_pages;
2261 nr_huge_pages = h->nr_huge_pages_node[nid];
2263 return sprintf(buf, "%lu\n", nr_huge_pages);
2266 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2267 struct hstate *h, int nid,
2268 unsigned long count, size_t len)
2271 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2273 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2278 if (nid == NUMA_NO_NODE) {
2280 * global hstate attribute
2282 if (!(obey_mempolicy &&
2283 init_nodemask_of_mempolicy(nodes_allowed))) {
2284 NODEMASK_FREE(nodes_allowed);
2285 nodes_allowed = &node_states[N_MEMORY];
2287 } else if (nodes_allowed) {
2289 * per node hstate attribute: adjust count to global,
2290 * but restrict alloc/free to the specified node.
2292 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2293 init_nodemask_of_node(nodes_allowed, nid);
2295 nodes_allowed = &node_states[N_MEMORY];
2297 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2299 if (nodes_allowed != &node_states[N_MEMORY])
2300 NODEMASK_FREE(nodes_allowed);
2304 NODEMASK_FREE(nodes_allowed);
2308 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2309 struct kobject *kobj, const char *buf,
2313 unsigned long count;
2317 err = kstrtoul(buf, 10, &count);
2321 h = kobj_to_hstate(kobj, &nid);
2322 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2325 static ssize_t nr_hugepages_show(struct kobject *kobj,
2326 struct kobj_attribute *attr, char *buf)
2328 return nr_hugepages_show_common(kobj, attr, buf);
2331 static ssize_t nr_hugepages_store(struct kobject *kobj,
2332 struct kobj_attribute *attr, const char *buf, size_t len)
2334 return nr_hugepages_store_common(false, kobj, buf, len);
2336 HSTATE_ATTR(nr_hugepages);
2341 * hstate attribute for optionally mempolicy-based constraint on persistent
2342 * huge page alloc/free.
2344 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2345 struct kobj_attribute *attr, char *buf)
2347 return nr_hugepages_show_common(kobj, attr, buf);
2350 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2351 struct kobj_attribute *attr, const char *buf, size_t len)
2353 return nr_hugepages_store_common(true, kobj, buf, len);
2355 HSTATE_ATTR(nr_hugepages_mempolicy);
2359 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2360 struct kobj_attribute *attr, char *buf)
2362 struct hstate *h = kobj_to_hstate(kobj, NULL);
2363 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2366 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2367 struct kobj_attribute *attr, const char *buf, size_t count)
2370 unsigned long input;
2371 struct hstate *h = kobj_to_hstate(kobj, NULL);
2373 if (hstate_is_gigantic(h))
2376 err = kstrtoul(buf, 10, &input);
2380 spin_lock(&hugetlb_lock);
2381 h->nr_overcommit_huge_pages = input;
2382 spin_unlock(&hugetlb_lock);
2386 HSTATE_ATTR(nr_overcommit_hugepages);
2388 static ssize_t free_hugepages_show(struct kobject *kobj,
2389 struct kobj_attribute *attr, char *buf)
2392 unsigned long free_huge_pages;
2395 h = kobj_to_hstate(kobj, &nid);
2396 if (nid == NUMA_NO_NODE)
2397 free_huge_pages = h->free_huge_pages;
2399 free_huge_pages = h->free_huge_pages_node[nid];
2401 return sprintf(buf, "%lu\n", free_huge_pages);
2403 HSTATE_ATTR_RO(free_hugepages);
2405 static ssize_t resv_hugepages_show(struct kobject *kobj,
2406 struct kobj_attribute *attr, char *buf)
2408 struct hstate *h = kobj_to_hstate(kobj, NULL);
2409 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2411 HSTATE_ATTR_RO(resv_hugepages);
2413 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2414 struct kobj_attribute *attr, char *buf)
2417 unsigned long surplus_huge_pages;
2420 h = kobj_to_hstate(kobj, &nid);
2421 if (nid == NUMA_NO_NODE)
2422 surplus_huge_pages = h->surplus_huge_pages;
2424 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2426 return sprintf(buf, "%lu\n", surplus_huge_pages);
2428 HSTATE_ATTR_RO(surplus_hugepages);
2430 static struct attribute *hstate_attrs[] = {
2431 &nr_hugepages_attr.attr,
2432 &nr_overcommit_hugepages_attr.attr,
2433 &free_hugepages_attr.attr,
2434 &resv_hugepages_attr.attr,
2435 &surplus_hugepages_attr.attr,
2437 &nr_hugepages_mempolicy_attr.attr,
2442 static struct attribute_group hstate_attr_group = {
2443 .attrs = hstate_attrs,
2446 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2447 struct kobject **hstate_kobjs,
2448 struct attribute_group *hstate_attr_group)
2451 int hi = hstate_index(h);
2453 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2454 if (!hstate_kobjs[hi])
2457 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2459 kobject_put(hstate_kobjs[hi]);
2464 static void __init hugetlb_sysfs_init(void)
2469 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2470 if (!hugepages_kobj)
2473 for_each_hstate(h) {
2474 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2475 hstate_kobjs, &hstate_attr_group);
2477 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2484 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2485 * with node devices in node_devices[] using a parallel array. The array
2486 * index of a node device or _hstate == node id.
2487 * This is here to avoid any static dependency of the node device driver, in
2488 * the base kernel, on the hugetlb module.
2490 struct node_hstate {
2491 struct kobject *hugepages_kobj;
2492 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2494 static struct node_hstate node_hstates[MAX_NUMNODES];
2497 * A subset of global hstate attributes for node devices
2499 static struct attribute *per_node_hstate_attrs[] = {
2500 &nr_hugepages_attr.attr,
2501 &free_hugepages_attr.attr,
2502 &surplus_hugepages_attr.attr,
2506 static struct attribute_group per_node_hstate_attr_group = {
2507 .attrs = per_node_hstate_attrs,
2511 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2512 * Returns node id via non-NULL nidp.
2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2518 for (nid = 0; nid < nr_node_ids; nid++) {
2519 struct node_hstate *nhs = &node_hstates[nid];
2521 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2522 if (nhs->hstate_kobjs[i] == kobj) {
2534 * Unregister hstate attributes from a single node device.
2535 * No-op if no hstate attributes attached.
2537 static void hugetlb_unregister_node(struct node *node)
2540 struct node_hstate *nhs = &node_hstates[node->dev.id];
2542 if (!nhs->hugepages_kobj)
2543 return; /* no hstate attributes */
2545 for_each_hstate(h) {
2546 int idx = hstate_index(h);
2547 if (nhs->hstate_kobjs[idx]) {
2548 kobject_put(nhs->hstate_kobjs[idx]);
2549 nhs->hstate_kobjs[idx] = NULL;
2553 kobject_put(nhs->hugepages_kobj);
2554 nhs->hugepages_kobj = NULL;
2559 * Register hstate attributes for a single node device.
2560 * No-op if attributes already registered.
2562 static void hugetlb_register_node(struct node *node)
2565 struct node_hstate *nhs = &node_hstates[node->dev.id];
2568 if (nhs->hugepages_kobj)
2569 return; /* already allocated */
2571 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2573 if (!nhs->hugepages_kobj)
2576 for_each_hstate(h) {
2577 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2579 &per_node_hstate_attr_group);
2581 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2582 h->name, node->dev.id);
2583 hugetlb_unregister_node(node);
2590 * hugetlb init time: register hstate attributes for all registered node
2591 * devices of nodes that have memory. All on-line nodes should have
2592 * registered their associated device by this time.
2594 static void __init hugetlb_register_all_nodes(void)
2598 for_each_node_state(nid, N_MEMORY) {
2599 struct node *node = node_devices[nid];
2600 if (node->dev.id == nid)
2601 hugetlb_register_node(node);
2605 * Let the node device driver know we're here so it can
2606 * [un]register hstate attributes on node hotplug.
2608 register_hugetlbfs_with_node(hugetlb_register_node,
2609 hugetlb_unregister_node);
2611 #else /* !CONFIG_NUMA */
2613 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2621 static void hugetlb_register_all_nodes(void) { }
2625 static int __init hugetlb_init(void)
2629 if (!hugepages_supported())
2632 if (!size_to_hstate(default_hstate_size)) {
2633 default_hstate_size = HPAGE_SIZE;
2634 if (!size_to_hstate(default_hstate_size))
2635 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2637 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2638 if (default_hstate_max_huge_pages) {
2639 if (!default_hstate.max_huge_pages)
2640 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2643 hugetlb_init_hstates();
2644 gather_bootmem_prealloc();
2647 hugetlb_sysfs_init();
2648 hugetlb_register_all_nodes();
2649 hugetlb_cgroup_file_init();
2652 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2654 num_fault_mutexes = 1;
2656 hugetlb_fault_mutex_table =
2657 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2658 BUG_ON(!hugetlb_fault_mutex_table);
2660 for (i = 0; i < num_fault_mutexes; i++)
2661 mutex_init(&hugetlb_fault_mutex_table[i]);
2664 subsys_initcall(hugetlb_init);
2666 /* Should be called on processing a hugepagesz=... option */
2667 void __init hugetlb_bad_size(void)
2669 parsed_valid_hugepagesz = false;
2672 void __init hugetlb_add_hstate(unsigned int order)
2677 if (size_to_hstate(PAGE_SIZE << order)) {
2678 pr_warn("hugepagesz= specified twice, ignoring\n");
2681 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2683 h = &hstates[hugetlb_max_hstate++];
2685 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2686 h->nr_huge_pages = 0;
2687 h->free_huge_pages = 0;
2688 for (i = 0; i < MAX_NUMNODES; ++i)
2689 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2690 INIT_LIST_HEAD(&h->hugepage_activelist);
2691 h->next_nid_to_alloc = first_memory_node;
2692 h->next_nid_to_free = first_memory_node;
2693 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2694 huge_page_size(h)/1024);
2699 static int __init hugetlb_nrpages_setup(char *s)
2702 static unsigned long *last_mhp;
2704 if (!parsed_valid_hugepagesz) {
2705 pr_warn("hugepages = %s preceded by "
2706 "an unsupported hugepagesz, ignoring\n", s);
2707 parsed_valid_hugepagesz = true;
2711 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712 * so this hugepages= parameter goes to the "default hstate".
2714 else if (!hugetlb_max_hstate)
2715 mhp = &default_hstate_max_huge_pages;
2717 mhp = &parsed_hstate->max_huge_pages;
2719 if (mhp == last_mhp) {
2720 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2724 if (sscanf(s, "%lu", mhp) <= 0)
2728 * Global state is always initialized later in hugetlb_init.
2729 * But we need to allocate >= MAX_ORDER hstates here early to still
2730 * use the bootmem allocator.
2732 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2733 hugetlb_hstate_alloc_pages(parsed_hstate);
2739 __setup("hugepages=", hugetlb_nrpages_setup);
2741 static int __init hugetlb_default_setup(char *s)
2743 default_hstate_size = memparse(s, &s);
2746 __setup("default_hugepagesz=", hugetlb_default_setup);
2748 static unsigned int cpuset_mems_nr(unsigned int *array)
2751 unsigned int nr = 0;
2753 for_each_node_mask(node, cpuset_current_mems_allowed)
2759 #ifdef CONFIG_SYSCTL
2760 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2761 struct ctl_table *table, int write,
2762 void __user *buffer, size_t *length, loff_t *ppos)
2764 struct hstate *h = &default_hstate;
2765 unsigned long tmp = h->max_huge_pages;
2768 if (!hugepages_supported())
2772 table->maxlen = sizeof(unsigned long);
2773 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2778 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2779 NUMA_NO_NODE, tmp, *length);
2784 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2785 void __user *buffer, size_t *length, loff_t *ppos)
2788 return hugetlb_sysctl_handler_common(false, table, write,
2789 buffer, length, ppos);
2793 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2794 void __user *buffer, size_t *length, loff_t *ppos)
2796 return hugetlb_sysctl_handler_common(true, table, write,
2797 buffer, length, ppos);
2799 #endif /* CONFIG_NUMA */
2801 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2802 void __user *buffer,
2803 size_t *length, loff_t *ppos)
2805 struct hstate *h = &default_hstate;
2809 if (!hugepages_supported())
2812 tmp = h->nr_overcommit_huge_pages;
2814 if (write && hstate_is_gigantic(h))
2818 table->maxlen = sizeof(unsigned long);
2819 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2824 spin_lock(&hugetlb_lock);
2825 h->nr_overcommit_huge_pages = tmp;
2826 spin_unlock(&hugetlb_lock);
2832 #endif /* CONFIG_SYSCTL */
2834 void hugetlb_report_meminfo(struct seq_file *m)
2836 struct hstate *h = &default_hstate;
2837 if (!hugepages_supported())
2840 "HugePages_Total: %5lu\n"
2841 "HugePages_Free: %5lu\n"
2842 "HugePages_Rsvd: %5lu\n"
2843 "HugePages_Surp: %5lu\n"
2844 "Hugepagesize: %8lu kB\n",
2848 h->surplus_huge_pages,
2849 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2852 int hugetlb_report_node_meminfo(int nid, char *buf)
2854 struct hstate *h = &default_hstate;
2855 if (!hugepages_supported())
2858 "Node %d HugePages_Total: %5u\n"
2859 "Node %d HugePages_Free: %5u\n"
2860 "Node %d HugePages_Surp: %5u\n",
2861 nid, h->nr_huge_pages_node[nid],
2862 nid, h->free_huge_pages_node[nid],
2863 nid, h->surplus_huge_pages_node[nid]);
2866 void hugetlb_show_meminfo(void)
2871 if (!hugepages_supported())
2874 for_each_node_state(nid, N_MEMORY)
2876 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2878 h->nr_huge_pages_node[nid],
2879 h->free_huge_pages_node[nid],
2880 h->surplus_huge_pages_node[nid],
2881 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2884 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2886 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2887 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2890 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2891 unsigned long hugetlb_total_pages(void)
2894 unsigned long nr_total_pages = 0;
2897 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2898 return nr_total_pages;
2901 static int hugetlb_acct_memory(struct hstate *h, long delta)
2905 spin_lock(&hugetlb_lock);
2907 * When cpuset is configured, it breaks the strict hugetlb page
2908 * reservation as the accounting is done on a global variable. Such
2909 * reservation is completely rubbish in the presence of cpuset because
2910 * the reservation is not checked against page availability for the
2911 * current cpuset. Application can still potentially OOM'ed by kernel
2912 * with lack of free htlb page in cpuset that the task is in.
2913 * Attempt to enforce strict accounting with cpuset is almost
2914 * impossible (or too ugly) because cpuset is too fluid that
2915 * task or memory node can be dynamically moved between cpusets.
2917 * The change of semantics for shared hugetlb mapping with cpuset is
2918 * undesirable. However, in order to preserve some of the semantics,
2919 * we fall back to check against current free page availability as
2920 * a best attempt and hopefully to minimize the impact of changing
2921 * semantics that cpuset has.
2924 if (gather_surplus_pages(h, delta) < 0)
2927 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2928 return_unused_surplus_pages(h, delta);
2935 return_unused_surplus_pages(h, (unsigned long) -delta);
2938 spin_unlock(&hugetlb_lock);
2942 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2944 struct resv_map *resv = vma_resv_map(vma);
2947 * This new VMA should share its siblings reservation map if present.
2948 * The VMA will only ever have a valid reservation map pointer where
2949 * it is being copied for another still existing VMA. As that VMA
2950 * has a reference to the reservation map it cannot disappear until
2951 * after this open call completes. It is therefore safe to take a
2952 * new reference here without additional locking.
2954 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2955 kref_get(&resv->refs);
2958 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2960 struct hstate *h = hstate_vma(vma);
2961 struct resv_map *resv = vma_resv_map(vma);
2962 struct hugepage_subpool *spool = subpool_vma(vma);
2963 unsigned long reserve, start, end;
2966 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2969 start = vma_hugecache_offset(h, vma, vma->vm_start);
2970 end = vma_hugecache_offset(h, vma, vma->vm_end);
2972 reserve = (end - start) - region_count(resv, start, end);
2974 kref_put(&resv->refs, resv_map_release);
2978 * Decrement reserve counts. The global reserve count may be
2979 * adjusted if the subpool has a minimum size.
2981 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2982 hugetlb_acct_memory(h, -gbl_reserve);
2987 * We cannot handle pagefaults against hugetlb pages at all. They cause
2988 * handle_mm_fault() to try to instantiate regular-sized pages in the
2989 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2992 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2998 const struct vm_operations_struct hugetlb_vm_ops = {
2999 .fault = hugetlb_vm_op_fault,
3000 .open = hugetlb_vm_op_open,
3001 .close = hugetlb_vm_op_close,
3004 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3010 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3011 vma->vm_page_prot)));
3013 entry = huge_pte_wrprotect(mk_huge_pte(page,
3014 vma->vm_page_prot));
3016 entry = pte_mkyoung(entry);
3017 entry = pte_mkhuge(entry);
3018 entry = arch_make_huge_pte(entry, vma, page, writable);
3023 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3024 unsigned long address, pte_t *ptep)
3028 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3029 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3030 update_mmu_cache(vma, address, ptep);
3033 static int is_hugetlb_entry_migration(pte_t pte)
3037 if (huge_pte_none(pte) || pte_present(pte))
3039 swp = pte_to_swp_entry(pte);
3040 if (non_swap_entry(swp) && is_migration_entry(swp))
3046 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3050 if (huge_pte_none(pte) || pte_present(pte))
3052 swp = pte_to_swp_entry(pte);
3053 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3059 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3060 struct vm_area_struct *vma)
3062 pte_t *src_pte, *dst_pte, entry;
3063 struct page *ptepage;
3066 struct hstate *h = hstate_vma(vma);
3067 unsigned long sz = huge_page_size(h);
3068 unsigned long mmun_start; /* For mmu_notifiers */
3069 unsigned long mmun_end; /* For mmu_notifiers */
3072 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3074 mmun_start = vma->vm_start;
3075 mmun_end = vma->vm_end;
3077 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3079 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3080 spinlock_t *src_ptl, *dst_ptl;
3081 src_pte = huge_pte_offset(src, addr);
3084 dst_pte = huge_pte_alloc(dst, addr, sz);
3090 /* If the pagetables are shared don't copy or take references */
3091 if (dst_pte == src_pte)
3094 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3095 src_ptl = huge_pte_lockptr(h, src, src_pte);
3096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3097 entry = huge_ptep_get(src_pte);
3098 if (huge_pte_none(entry)) { /* skip none entry */
3100 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3101 is_hugetlb_entry_hwpoisoned(entry))) {
3102 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3104 if (is_write_migration_entry(swp_entry) && cow) {
3106 * COW mappings require pages in both
3107 * parent and child to be set to read.
3109 make_migration_entry_read(&swp_entry);
3110 entry = swp_entry_to_pte(swp_entry);
3111 set_huge_pte_at(src, addr, src_pte, entry);
3113 set_huge_pte_at(dst, addr, dst_pte, entry);
3116 huge_ptep_set_wrprotect(src, addr, src_pte);
3117 mmu_notifier_invalidate_range(src, mmun_start,
3120 entry = huge_ptep_get(src_pte);
3121 ptepage = pte_page(entry);
3123 page_dup_rmap(ptepage, true);
3124 set_huge_pte_at(dst, addr, dst_pte, entry);
3125 hugetlb_count_add(pages_per_huge_page(h), dst);
3127 spin_unlock(src_ptl);
3128 spin_unlock(dst_ptl);
3132 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3137 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3138 unsigned long start, unsigned long end,
3139 struct page *ref_page)
3141 int force_flush = 0;
3142 struct mm_struct *mm = vma->vm_mm;
3143 unsigned long address;
3148 struct hstate *h = hstate_vma(vma);
3149 unsigned long sz = huge_page_size(h);
3150 const unsigned long mmun_start = start; /* For mmu_notifiers */
3151 const unsigned long mmun_end = end; /* For mmu_notifiers */
3153 WARN_ON(!is_vm_hugetlb_page(vma));
3154 BUG_ON(start & ~huge_page_mask(h));
3155 BUG_ON(end & ~huge_page_mask(h));
3157 tlb_start_vma(tlb, vma);
3158 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3161 for (; address < end; address += sz) {
3162 ptep = huge_pte_offset(mm, address);
3166 ptl = huge_pte_lock(h, mm, ptep);
3167 if (huge_pmd_unshare(mm, &address, ptep))
3170 pte = huge_ptep_get(ptep);
3171 if (huge_pte_none(pte))
3175 * Migrating hugepage or HWPoisoned hugepage is already
3176 * unmapped and its refcount is dropped, so just clear pte here.
3178 if (unlikely(!pte_present(pte))) {
3179 huge_pte_clear(mm, address, ptep);
3183 page = pte_page(pte);
3185 * If a reference page is supplied, it is because a specific
3186 * page is being unmapped, not a range. Ensure the page we
3187 * are about to unmap is the actual page of interest.
3190 if (page != ref_page)
3194 * Mark the VMA as having unmapped its page so that
3195 * future faults in this VMA will fail rather than
3196 * looking like data was lost
3198 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3201 pte = huge_ptep_get_and_clear(mm, address, ptep);
3202 tlb_remove_tlb_entry(tlb, ptep, address);
3203 if (huge_pte_dirty(pte))
3204 set_page_dirty(page);
3206 hugetlb_count_sub(pages_per_huge_page(h), mm);
3207 page_remove_rmap(page, true);
3208 force_flush = !__tlb_remove_page(tlb, page);
3214 /* Bail out after unmapping reference page if supplied */
3223 * mmu_gather ran out of room to batch pages, we break out of
3224 * the PTE lock to avoid doing the potential expensive TLB invalidate
3225 * and page-free while holding it.
3230 if (address < end && !ref_page)
3233 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3234 tlb_end_vma(tlb, vma);
3237 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3238 struct vm_area_struct *vma, unsigned long start,
3239 unsigned long end, struct page *ref_page)
3241 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3244 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3245 * test will fail on a vma being torn down, and not grab a page table
3246 * on its way out. We're lucky that the flag has such an appropriate
3247 * name, and can in fact be safely cleared here. We could clear it
3248 * before the __unmap_hugepage_range above, but all that's necessary
3249 * is to clear it before releasing the i_mmap_rwsem. This works
3250 * because in the context this is called, the VMA is about to be
3251 * destroyed and the i_mmap_rwsem is held.
3253 vma->vm_flags &= ~VM_MAYSHARE;
3256 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3257 unsigned long end, struct page *ref_page)
3259 struct mm_struct *mm;
3260 struct mmu_gather tlb;
3264 tlb_gather_mmu(&tlb, mm, start, end);
3265 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3266 tlb_finish_mmu(&tlb, start, end);
3270 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3271 * mappping it owns the reserve page for. The intention is to unmap the page
3272 * from other VMAs and let the children be SIGKILLed if they are faulting the
3275 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3276 struct page *page, unsigned long address)
3278 struct hstate *h = hstate_vma(vma);
3279 struct vm_area_struct *iter_vma;
3280 struct address_space *mapping;
3284 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3285 * from page cache lookup which is in HPAGE_SIZE units.
3287 address = address & huge_page_mask(h);
3288 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3290 mapping = file_inode(vma->vm_file)->i_mapping;
3293 * Take the mapping lock for the duration of the table walk. As
3294 * this mapping should be shared between all the VMAs,
3295 * __unmap_hugepage_range() is called as the lock is already held
3297 i_mmap_lock_write(mapping);
3298 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3299 /* Do not unmap the current VMA */
3300 if (iter_vma == vma)
3304 * Shared VMAs have their own reserves and do not affect
3305 * MAP_PRIVATE accounting but it is possible that a shared
3306 * VMA is using the same page so check and skip such VMAs.
3308 if (iter_vma->vm_flags & VM_MAYSHARE)
3312 * Unmap the page from other VMAs without their own reserves.
3313 * They get marked to be SIGKILLed if they fault in these
3314 * areas. This is because a future no-page fault on this VMA
3315 * could insert a zeroed page instead of the data existing
3316 * from the time of fork. This would look like data corruption
3318 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3319 unmap_hugepage_range(iter_vma, address,
3320 address + huge_page_size(h), page);
3322 i_mmap_unlock_write(mapping);
3326 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3327 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3328 * cannot race with other handlers or page migration.
3329 * Keep the pte_same checks anyway to make transition from the mutex easier.
3331 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3332 unsigned long address, pte_t *ptep, pte_t pte,
3333 struct page *pagecache_page, spinlock_t *ptl)
3335 struct hstate *h = hstate_vma(vma);
3336 struct page *old_page, *new_page;
3337 int ret = 0, outside_reserve = 0;
3338 unsigned long mmun_start; /* For mmu_notifiers */
3339 unsigned long mmun_end; /* For mmu_notifiers */
3341 old_page = pte_page(pte);
3344 /* If no-one else is actually using this page, avoid the copy
3345 * and just make the page writable */
3346 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3347 page_move_anon_rmap(old_page, vma, address);
3348 set_huge_ptep_writable(vma, address, ptep);
3353 * If the process that created a MAP_PRIVATE mapping is about to
3354 * perform a COW due to a shared page count, attempt to satisfy
3355 * the allocation without using the existing reserves. The pagecache
3356 * page is used to determine if the reserve at this address was
3357 * consumed or not. If reserves were used, a partial faulted mapping
3358 * at the time of fork() could consume its reserves on COW instead
3359 * of the full address range.
3361 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3362 old_page != pagecache_page)
3363 outside_reserve = 1;
3368 * Drop page table lock as buddy allocator may be called. It will
3369 * be acquired again before returning to the caller, as expected.
3372 new_page = alloc_huge_page(vma, address, outside_reserve);
3374 if (IS_ERR(new_page)) {
3376 * If a process owning a MAP_PRIVATE mapping fails to COW,
3377 * it is due to references held by a child and an insufficient
3378 * huge page pool. To guarantee the original mappers
3379 * reliability, unmap the page from child processes. The child
3380 * may get SIGKILLed if it later faults.
3382 if (outside_reserve) {
3384 BUG_ON(huge_pte_none(pte));
3385 unmap_ref_private(mm, vma, old_page, address);
3386 BUG_ON(huge_pte_none(pte));
3388 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3390 pte_same(huge_ptep_get(ptep), pte)))
3391 goto retry_avoidcopy;
3393 * race occurs while re-acquiring page table
3394 * lock, and our job is done.
3399 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3400 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3401 goto out_release_old;
3405 * When the original hugepage is shared one, it does not have
3406 * anon_vma prepared.
3408 if (unlikely(anon_vma_prepare(vma))) {
3410 goto out_release_all;
3413 copy_user_huge_page(new_page, old_page, address, vma,
3414 pages_per_huge_page(h));
3415 __SetPageUptodate(new_page);
3416 set_page_huge_active(new_page);
3418 mmun_start = address & huge_page_mask(h);
3419 mmun_end = mmun_start + huge_page_size(h);
3420 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3423 * Retake the page table lock to check for racing updates
3424 * before the page tables are altered
3427 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3428 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3429 ClearPagePrivate(new_page);
3432 huge_ptep_clear_flush(vma, address, ptep);
3433 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3434 set_huge_pte_at(mm, address, ptep,
3435 make_huge_pte(vma, new_page, 1));
3436 page_remove_rmap(old_page, true);
3437 hugepage_add_new_anon_rmap(new_page, vma, address);
3438 /* Make the old page be freed below */
3439 new_page = old_page;
3442 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3448 spin_lock(ptl); /* Caller expects lock to be held */
3452 /* Return the pagecache page at a given address within a VMA */
3453 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3454 struct vm_area_struct *vma, unsigned long address)
3456 struct address_space *mapping;
3459 mapping = vma->vm_file->f_mapping;
3460 idx = vma_hugecache_offset(h, vma, address);
3462 return find_lock_page(mapping, idx);
3466 * Return whether there is a pagecache page to back given address within VMA.
3467 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3469 static bool hugetlbfs_pagecache_present(struct hstate *h,
3470 struct vm_area_struct *vma, unsigned long address)
3472 struct address_space *mapping;
3476 mapping = vma->vm_file->f_mapping;
3477 idx = vma_hugecache_offset(h, vma, address);
3479 page = find_get_page(mapping, idx);
3482 return page != NULL;
3485 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3488 struct inode *inode = mapping->host;
3489 struct hstate *h = hstate_inode(inode);
3490 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3494 ClearPagePrivate(page);
3496 spin_lock(&inode->i_lock);
3497 inode->i_blocks += blocks_per_huge_page(h);
3498 spin_unlock(&inode->i_lock);
3502 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3503 struct address_space *mapping, pgoff_t idx,
3504 unsigned long address, pte_t *ptep, unsigned int flags)
3506 struct hstate *h = hstate_vma(vma);
3507 int ret = VM_FAULT_SIGBUS;
3515 * Currently, we are forced to kill the process in the event the
3516 * original mapper has unmapped pages from the child due to a failed
3517 * COW. Warn that such a situation has occurred as it may not be obvious
3519 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3520 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3526 * Use page lock to guard against racing truncation
3527 * before we get page_table_lock.
3530 page = find_lock_page(mapping, idx);
3532 size = i_size_read(mapping->host) >> huge_page_shift(h);
3535 page = alloc_huge_page(vma, address, 0);
3537 ret = PTR_ERR(page);
3541 ret = VM_FAULT_SIGBUS;
3544 clear_huge_page(page, address, pages_per_huge_page(h));
3545 __SetPageUptodate(page);
3546 set_page_huge_active(page);
3548 if (vma->vm_flags & VM_MAYSHARE) {
3549 int err = huge_add_to_page_cache(page, mapping, idx);
3558 if (unlikely(anon_vma_prepare(vma))) {
3560 goto backout_unlocked;
3566 * If memory error occurs between mmap() and fault, some process
3567 * don't have hwpoisoned swap entry for errored virtual address.
3568 * So we need to block hugepage fault by PG_hwpoison bit check.
3570 if (unlikely(PageHWPoison(page))) {
3571 ret = VM_FAULT_HWPOISON |
3572 VM_FAULT_SET_HINDEX(hstate_index(h));
3573 goto backout_unlocked;
3578 * If we are going to COW a private mapping later, we examine the
3579 * pending reservations for this page now. This will ensure that
3580 * any allocations necessary to record that reservation occur outside
3583 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3584 if (vma_needs_reservation(h, vma, address) < 0) {
3586 goto backout_unlocked;
3588 /* Just decrements count, does not deallocate */
3589 vma_end_reservation(h, vma, address);
3592 ptl = huge_pte_lockptr(h, mm, ptep);
3594 size = i_size_read(mapping->host) >> huge_page_shift(h);
3599 if (!huge_pte_none(huge_ptep_get(ptep)))
3603 ClearPagePrivate(page);
3604 hugepage_add_new_anon_rmap(page, vma, address);
3606 page_dup_rmap(page, true);
3607 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3608 && (vma->vm_flags & VM_SHARED)));
3609 set_huge_pte_at(mm, address, ptep, new_pte);
3611 hugetlb_count_add(pages_per_huge_page(h), mm);
3612 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3613 /* Optimization, do the COW without a second fault */
3614 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3631 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3632 struct vm_area_struct *vma,
3633 struct address_space *mapping,
3634 pgoff_t idx, unsigned long address)
3636 unsigned long key[2];
3639 if (vma->vm_flags & VM_SHARED) {
3640 key[0] = (unsigned long) mapping;
3643 key[0] = (unsigned long) mm;
3644 key[1] = address >> huge_page_shift(h);
3647 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3649 return hash & (num_fault_mutexes - 1);
3653 * For uniprocesor systems we always use a single mutex, so just
3654 * return 0 and avoid the hashing overhead.
3656 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3657 struct vm_area_struct *vma,
3658 struct address_space *mapping,
3659 pgoff_t idx, unsigned long address)
3665 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3666 unsigned long address, unsigned int flags)
3673 struct page *page = NULL;
3674 struct page *pagecache_page = NULL;
3675 struct hstate *h = hstate_vma(vma);
3676 struct address_space *mapping;
3677 int need_wait_lock = 0;
3679 address &= huge_page_mask(h);
3681 ptep = huge_pte_offset(mm, address);
3683 entry = huge_ptep_get(ptep);
3684 if (unlikely(is_hugetlb_entry_migration(entry))) {
3685 migration_entry_wait_huge(vma, mm, ptep);
3687 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3688 return VM_FAULT_HWPOISON_LARGE |
3689 VM_FAULT_SET_HINDEX(hstate_index(h));
3691 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3693 return VM_FAULT_OOM;
3696 mapping = vma->vm_file->f_mapping;
3697 idx = vma_hugecache_offset(h, vma, address);
3700 * Serialize hugepage allocation and instantiation, so that we don't
3701 * get spurious allocation failures if two CPUs race to instantiate
3702 * the same page in the page cache.
3704 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3705 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3707 entry = huge_ptep_get(ptep);
3708 if (huge_pte_none(entry)) {
3709 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3716 * entry could be a migration/hwpoison entry at this point, so this
3717 * check prevents the kernel from going below assuming that we have
3718 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3719 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3722 if (!pte_present(entry))
3726 * If we are going to COW the mapping later, we examine the pending
3727 * reservations for this page now. This will ensure that any
3728 * allocations necessary to record that reservation occur outside the
3729 * spinlock. For private mappings, we also lookup the pagecache
3730 * page now as it is used to determine if a reservation has been
3733 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3734 if (vma_needs_reservation(h, vma, address) < 0) {
3738 /* Just decrements count, does not deallocate */
3739 vma_end_reservation(h, vma, address);
3741 if (!(vma->vm_flags & VM_MAYSHARE))
3742 pagecache_page = hugetlbfs_pagecache_page(h,
3746 ptl = huge_pte_lock(h, mm, ptep);
3748 /* Check for a racing update before calling hugetlb_cow */
3749 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3753 * hugetlb_cow() requires page locks of pte_page(entry) and
3754 * pagecache_page, so here we need take the former one
3755 * when page != pagecache_page or !pagecache_page.
3757 page = pte_page(entry);
3758 if (page != pagecache_page)
3759 if (!trylock_page(page)) {
3766 if (flags & FAULT_FLAG_WRITE) {
3767 if (!huge_pte_write(entry)) {
3768 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3769 pagecache_page, ptl);
3772 entry = huge_pte_mkdirty(entry);
3774 entry = pte_mkyoung(entry);
3775 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3776 flags & FAULT_FLAG_WRITE))
3777 update_mmu_cache(vma, address, ptep);
3779 if (page != pagecache_page)
3785 if (pagecache_page) {
3786 unlock_page(pagecache_page);
3787 put_page(pagecache_page);
3790 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3792 * Generally it's safe to hold refcount during waiting page lock. But
3793 * here we just wait to defer the next page fault to avoid busy loop and
3794 * the page is not used after unlocked before returning from the current
3795 * page fault. So we are safe from accessing freed page, even if we wait
3796 * here without taking refcount.
3799 wait_on_page_locked(page);
3803 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3804 struct page **pages, struct vm_area_struct **vmas,
3805 unsigned long *position, unsigned long *nr_pages,
3806 long i, unsigned int flags)
3808 unsigned long pfn_offset;
3809 unsigned long vaddr = *position;
3810 unsigned long remainder = *nr_pages;
3811 struct hstate *h = hstate_vma(vma);
3813 while (vaddr < vma->vm_end && remainder) {
3815 spinlock_t *ptl = NULL;
3820 * If we have a pending SIGKILL, don't keep faulting pages and
3821 * potentially allocating memory.
3823 if (unlikely(fatal_signal_pending(current))) {
3829 * Some archs (sparc64, sh*) have multiple pte_ts to
3830 * each hugepage. We have to make sure we get the
3831 * first, for the page indexing below to work.
3833 * Note that page table lock is not held when pte is null.
3835 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3837 ptl = huge_pte_lock(h, mm, pte);
3838 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3841 * When coredumping, it suits get_dump_page if we just return
3842 * an error where there's an empty slot with no huge pagecache
3843 * to back it. This way, we avoid allocating a hugepage, and
3844 * the sparse dumpfile avoids allocating disk blocks, but its
3845 * huge holes still show up with zeroes where they need to be.
3847 if (absent && (flags & FOLL_DUMP) &&
3848 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3856 * We need call hugetlb_fault for both hugepages under migration
3857 * (in which case hugetlb_fault waits for the migration,) and
3858 * hwpoisoned hugepages (in which case we need to prevent the
3859 * caller from accessing to them.) In order to do this, we use
3860 * here is_swap_pte instead of is_hugetlb_entry_migration and
3861 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3862 * both cases, and because we can't follow correct pages
3863 * directly from any kind of swap entries.
3865 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3866 ((flags & FOLL_WRITE) &&
3867 !huge_pte_write(huge_ptep_get(pte)))) {
3872 ret = hugetlb_fault(mm, vma, vaddr,
3873 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3874 if (!(ret & VM_FAULT_ERROR))
3881 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3882 page = pte_page(huge_ptep_get(pte));
3885 pages[i] = mem_map_offset(page, pfn_offset);
3896 if (vaddr < vma->vm_end && remainder &&
3897 pfn_offset < pages_per_huge_page(h)) {
3899 * We use pfn_offset to avoid touching the pageframes
3900 * of this compound page.
3906 *nr_pages = remainder;
3909 return i ? i : -EFAULT;
3912 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3913 unsigned long address, unsigned long end, pgprot_t newprot)
3915 struct mm_struct *mm = vma->vm_mm;
3916 unsigned long start = address;
3919 struct hstate *h = hstate_vma(vma);
3920 unsigned long pages = 0;
3922 BUG_ON(address >= end);
3923 flush_cache_range(vma, address, end);
3925 mmu_notifier_invalidate_range_start(mm, start, end);
3926 i_mmap_lock_write(vma->vm_file->f_mapping);
3927 for (; address < end; address += huge_page_size(h)) {
3929 ptep = huge_pte_offset(mm, address);
3932 ptl = huge_pte_lock(h, mm, ptep);
3933 if (huge_pmd_unshare(mm, &address, ptep)) {
3938 pte = huge_ptep_get(ptep);
3939 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3943 if (unlikely(is_hugetlb_entry_migration(pte))) {
3944 swp_entry_t entry = pte_to_swp_entry(pte);
3946 if (is_write_migration_entry(entry)) {
3949 make_migration_entry_read(&entry);
3950 newpte = swp_entry_to_pte(entry);
3951 set_huge_pte_at(mm, address, ptep, newpte);
3957 if (!huge_pte_none(pte)) {
3958 pte = huge_ptep_get_and_clear(mm, address, ptep);
3959 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3960 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3961 set_huge_pte_at(mm, address, ptep, pte);
3967 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3968 * may have cleared our pud entry and done put_page on the page table:
3969 * once we release i_mmap_rwsem, another task can do the final put_page
3970 * and that page table be reused and filled with junk.
3972 flush_tlb_range(vma, start, end);
3973 mmu_notifier_invalidate_range(mm, start, end);
3974 i_mmap_unlock_write(vma->vm_file->f_mapping);
3975 mmu_notifier_invalidate_range_end(mm, start, end);
3977 return pages << h->order;
3980 int hugetlb_reserve_pages(struct inode *inode,
3982 struct vm_area_struct *vma,
3983 vm_flags_t vm_flags)
3986 struct hstate *h = hstate_inode(inode);
3987 struct hugepage_subpool *spool = subpool_inode(inode);
3988 struct resv_map *resv_map;
3992 * Only apply hugepage reservation if asked. At fault time, an
3993 * attempt will be made for VM_NORESERVE to allocate a page
3994 * without using reserves
3996 if (vm_flags & VM_NORESERVE)
4000 * Shared mappings base their reservation on the number of pages that
4001 * are already allocated on behalf of the file. Private mappings need
4002 * to reserve the full area even if read-only as mprotect() may be
4003 * called to make the mapping read-write. Assume !vma is a shm mapping
4005 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4006 resv_map = inode_resv_map(inode);
4008 chg = region_chg(resv_map, from, to);
4011 resv_map = resv_map_alloc();
4017 set_vma_resv_map(vma, resv_map);
4018 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4027 * There must be enough pages in the subpool for the mapping. If
4028 * the subpool has a minimum size, there may be some global
4029 * reservations already in place (gbl_reserve).
4031 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4032 if (gbl_reserve < 0) {
4038 * Check enough hugepages are available for the reservation.
4039 * Hand the pages back to the subpool if there are not
4041 ret = hugetlb_acct_memory(h, gbl_reserve);
4043 /* put back original number of pages, chg */
4044 (void)hugepage_subpool_put_pages(spool, chg);
4049 * Account for the reservations made. Shared mappings record regions
4050 * that have reservations as they are shared by multiple VMAs.
4051 * When the last VMA disappears, the region map says how much
4052 * the reservation was and the page cache tells how much of
4053 * the reservation was consumed. Private mappings are per-VMA and
4054 * only the consumed reservations are tracked. When the VMA
4055 * disappears, the original reservation is the VMA size and the
4056 * consumed reservations are stored in the map. Hence, nothing
4057 * else has to be done for private mappings here
4059 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4060 long add = region_add(resv_map, from, to);
4062 if (unlikely(chg > add)) {
4064 * pages in this range were added to the reserve
4065 * map between region_chg and region_add. This
4066 * indicates a race with alloc_huge_page. Adjust
4067 * the subpool and reserve counts modified above
4068 * based on the difference.
4072 rsv_adjust = hugepage_subpool_put_pages(spool,
4074 hugetlb_acct_memory(h, -rsv_adjust);
4079 if (!vma || vma->vm_flags & VM_MAYSHARE)
4080 region_abort(resv_map, from, to);
4081 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4082 kref_put(&resv_map->refs, resv_map_release);
4086 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4089 struct hstate *h = hstate_inode(inode);
4090 struct resv_map *resv_map = inode_resv_map(inode);
4092 struct hugepage_subpool *spool = subpool_inode(inode);
4096 chg = region_del(resv_map, start, end);
4098 * region_del() can fail in the rare case where a region
4099 * must be split and another region descriptor can not be
4100 * allocated. If end == LONG_MAX, it will not fail.
4106 spin_lock(&inode->i_lock);
4107 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4108 spin_unlock(&inode->i_lock);
4111 * If the subpool has a minimum size, the number of global
4112 * reservations to be released may be adjusted.
4114 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4115 hugetlb_acct_memory(h, -gbl_reserve);
4120 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4121 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4122 struct vm_area_struct *vma,
4123 unsigned long addr, pgoff_t idx)
4125 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4127 unsigned long sbase = saddr & PUD_MASK;
4128 unsigned long s_end = sbase + PUD_SIZE;
4130 /* Allow segments to share if only one is marked locked */
4131 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4132 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4135 * match the virtual addresses, permission and the alignment of the
4138 if (pmd_index(addr) != pmd_index(saddr) ||
4139 vm_flags != svm_flags ||
4140 sbase < svma->vm_start || svma->vm_end < s_end)
4146 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4148 unsigned long base = addr & PUD_MASK;
4149 unsigned long end = base + PUD_SIZE;
4152 * check on proper vm_flags and page table alignment
4154 if (vma->vm_flags & VM_MAYSHARE &&
4155 vma->vm_start <= base && end <= vma->vm_end)
4161 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4162 * and returns the corresponding pte. While this is not necessary for the
4163 * !shared pmd case because we can allocate the pmd later as well, it makes the
4164 * code much cleaner. pmd allocation is essential for the shared case because
4165 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4166 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4167 * bad pmd for sharing.
4169 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4171 struct vm_area_struct *vma = find_vma(mm, addr);
4172 struct address_space *mapping = vma->vm_file->f_mapping;
4173 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4175 struct vm_area_struct *svma;
4176 unsigned long saddr;
4181 if (!vma_shareable(vma, addr))
4182 return (pte_t *)pmd_alloc(mm, pud, addr);
4184 i_mmap_lock_write(mapping);
4185 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4189 saddr = page_table_shareable(svma, vma, addr, idx);
4191 spte = huge_pte_offset(svma->vm_mm, saddr);
4194 get_page(virt_to_page(spte));
4203 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4205 if (pud_none(*pud)) {
4206 pud_populate(mm, pud,
4207 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4209 put_page(virt_to_page(spte));
4214 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4215 i_mmap_unlock_write(mapping);
4220 * unmap huge page backed by shared pte.
4222 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4223 * indicated by page_count > 1, unmap is achieved by clearing pud and
4224 * decrementing the ref count. If count == 1, the pte page is not shared.
4226 * called with page table lock held.
4228 * returns: 1 successfully unmapped a shared pte page
4229 * 0 the underlying pte page is not shared, or it is the last user
4231 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4233 pgd_t *pgd = pgd_offset(mm, *addr);
4234 pud_t *pud = pud_offset(pgd, *addr);
4236 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4237 if (page_count(virt_to_page(ptep)) == 1)
4241 put_page(virt_to_page(ptep));
4243 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4246 #define want_pmd_share() (1)
4247 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4248 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4253 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4257 #define want_pmd_share() (0)
4258 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4260 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4261 pte_t *huge_pte_alloc(struct mm_struct *mm,
4262 unsigned long addr, unsigned long sz)
4268 pgd = pgd_offset(mm, addr);
4269 pud = pud_alloc(mm, pgd, addr);
4271 if (sz == PUD_SIZE) {
4274 BUG_ON(sz != PMD_SIZE);
4275 if (want_pmd_share() && pud_none(*pud))
4276 pte = huge_pmd_share(mm, addr, pud);
4278 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4281 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4286 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4292 pgd = pgd_offset(mm, addr);
4293 if (pgd_present(*pgd)) {
4294 pud = pud_offset(pgd, addr);
4295 if (pud_present(*pud)) {
4297 return (pte_t *)pud;
4298 pmd = pmd_offset(pud, addr);
4301 return (pte_t *) pmd;
4304 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4307 * These functions are overwritable if your architecture needs its own
4310 struct page * __weak
4311 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4314 return ERR_PTR(-EINVAL);
4317 struct page * __weak
4318 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4319 pmd_t *pmd, int flags)
4321 struct page *page = NULL;
4324 ptl = pmd_lockptr(mm, pmd);
4327 * make sure that the address range covered by this pmd is not
4328 * unmapped from other threads.
4330 if (!pmd_huge(*pmd))
4332 if (pmd_present(*pmd)) {
4333 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4334 if (flags & FOLL_GET)
4337 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4339 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4343 * hwpoisoned entry is treated as no_page_table in
4344 * follow_page_mask().
4352 struct page * __weak
4353 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4354 pud_t *pud, int flags)
4356 if (flags & FOLL_GET)
4359 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4362 #ifdef CONFIG_MEMORY_FAILURE
4365 * This function is called from memory failure code.
4366 * Assume the caller holds page lock of the head page.
4368 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4370 struct hstate *h = page_hstate(hpage);
4371 int nid = page_to_nid(hpage);
4374 spin_lock(&hugetlb_lock);
4376 * Just checking !page_huge_active is not enough, because that could be
4377 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4379 if (!page_huge_active(hpage) && !page_count(hpage)) {
4381 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4382 * but dangling hpage->lru can trigger list-debug warnings
4383 * (this happens when we call unpoison_memory() on it),
4384 * so let it point to itself with list_del_init().
4386 list_del_init(&hpage->lru);
4387 set_page_refcounted(hpage);
4388 h->free_huge_pages--;
4389 h->free_huge_pages_node[nid]--;
4392 spin_unlock(&hugetlb_lock);
4397 bool isolate_huge_page(struct page *page, struct list_head *list)
4401 VM_BUG_ON_PAGE(!PageHead(page), page);
4402 spin_lock(&hugetlb_lock);
4403 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4407 clear_page_huge_active(page);
4408 list_move_tail(&page->lru, list);
4410 spin_unlock(&hugetlb_lock);
4414 void putback_active_hugepage(struct page *page)
4416 VM_BUG_ON_PAGE(!PageHead(page), page);
4417 spin_lock(&hugetlb_lock);
4418 set_page_huge_active(page);
4419 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4420 spin_unlock(&hugetlb_lock);