]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
mm: make compound_head() robust
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * A rare out of memory error was encountered which prevented removal of
551  * the reserve map region for a page.  The huge page itself was free'ed
552  * and removed from the page cache.  This routine will adjust the subpool
553  * usage count, and the global reserve count if needed.  By incrementing
554  * these counts, the reserve map entry which could not be deleted will
555  * appear as a "reserved" entry instead of simply dangling with incorrect
556  * counts.
557  */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560         struct hugepage_subpool *spool = subpool_inode(inode);
561         long rsv_adjust;
562
563         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564         if (restore_reserve && rsv_adjust) {
565                 struct hstate *h = hstate_inode(inode);
566
567                 hugetlb_acct_memory(h, 1);
568         }
569 }
570
571 /*
572  * Count and return the number of huge pages in the reserve map
573  * that intersect with the range [f, t).
574  */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577         struct list_head *head = &resv->regions;
578         struct file_region *rg;
579         long chg = 0;
580
581         spin_lock(&resv->lock);
582         /* Locate each segment we overlap with, and count that overlap. */
583         list_for_each_entry(rg, head, link) {
584                 long seg_from;
585                 long seg_to;
586
587                 if (rg->to <= f)
588                         continue;
589                 if (rg->from >= t)
590                         break;
591
592                 seg_from = max(rg->from, f);
593                 seg_to = min(rg->to, t);
594
595                 chg += seg_to - seg_from;
596         }
597         spin_unlock(&resv->lock);
598
599         return chg;
600 }
601
602 /*
603  * Convert the address within this vma to the page offset within
604  * the mapping, in pagecache page units; huge pages here.
605  */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607                         struct vm_area_struct *vma, unsigned long address)
608 {
609         return ((address - vma->vm_start) >> huge_page_shift(h)) +
610                         (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614                                      unsigned long address)
615 {
616         return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620  * Return the size of the pages allocated when backing a VMA. In the majority
621  * cases this will be same size as used by the page table entries.
622  */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625         struct hstate *hstate;
626
627         if (!is_vm_hugetlb_page(vma))
628                 return PAGE_SIZE;
629
630         hstate = hstate_vma(vma);
631
632         return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637  * Return the page size being used by the MMU to back a VMA. In the majority
638  * of cases, the page size used by the kernel matches the MMU size. On
639  * architectures where it differs, an architecture-specific version of this
640  * function is required.
641  */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645         return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
651  * bits of the reservation map pointer, which are always clear due to
652  * alignment.
653  */
654 #define HPAGE_RESV_OWNER    (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659  * These helpers are used to track how many pages are reserved for
660  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661  * is guaranteed to have their future faults succeed.
662  *
663  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664  * the reserve counters are updated with the hugetlb_lock held. It is safe
665  * to reset the VMA at fork() time as it is not in use yet and there is no
666  * chance of the global counters getting corrupted as a result of the values.
667  *
668  * The private mapping reservation is represented in a subtly different
669  * manner to a shared mapping.  A shared mapping has a region map associated
670  * with the underlying file, this region map represents the backing file
671  * pages which have ever had a reservation assigned which this persists even
672  * after the page is instantiated.  A private mapping has a region map
673  * associated with the original mmap which is attached to all VMAs which
674  * reference it, this region map represents those offsets which have consumed
675  * reservation ie. where pages have been instantiated.
676  */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679         return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683                                                         unsigned long value)
684 {
685         vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693         if (!resv_map || !rg) {
694                 kfree(resv_map);
695                 kfree(rg);
696                 return NULL;
697         }
698
699         kref_init(&resv_map->refs);
700         spin_lock_init(&resv_map->lock);
701         INIT_LIST_HEAD(&resv_map->regions);
702
703         resv_map->adds_in_progress = 0;
704
705         INIT_LIST_HEAD(&resv_map->region_cache);
706         list_add(&rg->link, &resv_map->region_cache);
707         resv_map->region_cache_count = 1;
708
709         return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715         struct list_head *head = &resv_map->region_cache;
716         struct file_region *rg, *trg;
717
718         /* Clear out any active regions before we release the map. */
719         region_del(resv_map, 0, LONG_MAX);
720
721         /* ... and any entries left in the cache */
722         list_for_each_entry_safe(rg, trg, head, link) {
723                 list_del(&rg->link);
724                 kfree(rg);
725         }
726
727         VM_BUG_ON(resv_map->adds_in_progress);
728
729         kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734         return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740         if (vma->vm_flags & VM_MAYSHARE) {
741                 struct address_space *mapping = vma->vm_file->f_mapping;
742                 struct inode *inode = mapping->host;
743
744                 return inode_resv_map(inode);
745
746         } else {
747                 return (struct resv_map *)(get_vma_private_data(vma) &
748                                                         ~HPAGE_RESV_MASK);
749         }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757         set_vma_private_data(vma, (get_vma_private_data(vma) &
758                                 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773         return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780         if (!(vma->vm_flags & VM_MAYSHARE))
781                 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787         if (vma->vm_flags & VM_NORESERVE) {
788                 /*
789                  * This address is already reserved by other process(chg == 0),
790                  * so, we should decrement reserved count. Without decrementing,
791                  * reserve count remains after releasing inode, because this
792                  * allocated page will go into page cache and is regarded as
793                  * coming from reserved pool in releasing step.  Currently, we
794                  * don't have any other solution to deal with this situation
795                  * properly, so add work-around here.
796                  */
797                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798                         return true;
799                 else
800                         return false;
801         }
802
803         /* Shared mappings always use reserves */
804         if (vma->vm_flags & VM_MAYSHARE) {
805                 /*
806                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
807                  * be a region map for all pages.  The only situation where
808                  * there is no region map is if a hole was punched via
809                  * fallocate.  In this case, there really are no reverves to
810                  * use.  This situation is indicated if chg != 0.
811                  */
812                 if (chg)
813                         return false;
814                 else
815                         return true;
816         }
817
818         /*
819          * Only the process that called mmap() has reserves for
820          * private mappings.
821          */
822         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823                 return true;
824
825         return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830         int nid = page_to_nid(page);
831         list_move(&page->lru, &h->hugepage_freelists[nid]);
832         h->free_huge_pages++;
833         h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838         struct page *page;
839
840         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841                 if (!is_migrate_isolate_page(page))
842                         break;
843         /*
844          * if 'non-isolated free hugepage' not found on the list,
845          * the allocation fails.
846          */
847         if (&h->hugepage_freelists[nid] == &page->lru)
848                 return NULL;
849         list_move(&page->lru, &h->hugepage_activelist);
850         set_page_refcounted(page);
851         h->free_huge_pages--;
852         h->free_huge_pages_node[nid]--;
853         return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860                 return GFP_HIGHUSER_MOVABLE;
861         else
862                 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866                                 struct vm_area_struct *vma,
867                                 unsigned long address, int avoid_reserve,
868                                 long chg)
869 {
870         struct page *page = NULL;
871         struct mempolicy *mpol;
872         nodemask_t *nodemask;
873         struct zonelist *zonelist;
874         struct zone *zone;
875         struct zoneref *z;
876         unsigned int cpuset_mems_cookie;
877
878         /*
879          * A child process with MAP_PRIVATE mappings created by their parent
880          * have no page reserves. This check ensures that reservations are
881          * not "stolen". The child may still get SIGKILLed
882          */
883         if (!vma_has_reserves(vma, chg) &&
884                         h->free_huge_pages - h->resv_huge_pages == 0)
885                 goto err;
886
887         /* If reserves cannot be used, ensure enough pages are in the pool */
888         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889                 goto err;
890
891 retry_cpuset:
892         cpuset_mems_cookie = read_mems_allowed_begin();
893         zonelist = huge_zonelist(vma, address,
894                                         htlb_alloc_mask(h), &mpol, &nodemask);
895
896         for_each_zone_zonelist_nodemask(zone, z, zonelist,
897                                                 MAX_NR_ZONES - 1, nodemask) {
898                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
900                         if (page) {
901                                 if (avoid_reserve)
902                                         break;
903                                 if (!vma_has_reserves(vma, chg))
904                                         break;
905
906                                 SetPagePrivate(page);
907                                 h->resv_huge_pages--;
908                                 break;
909                         }
910                 }
911         }
912
913         mpol_cond_put(mpol);
914         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916         return page;
917
918 err:
919         return NULL;
920 }
921
922 /*
923  * common helper functions for hstate_next_node_to_{alloc|free}.
924  * We may have allocated or freed a huge page based on a different
925  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926  * be outside of *nodes_allowed.  Ensure that we use an allowed
927  * node for alloc or free.
928  */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931         nid = next_node(nid, *nodes_allowed);
932         if (nid == MAX_NUMNODES)
933                 nid = first_node(*nodes_allowed);
934         VM_BUG_ON(nid >= MAX_NUMNODES);
935
936         return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941         if (!node_isset(nid, *nodes_allowed))
942                 nid = next_node_allowed(nid, nodes_allowed);
943         return nid;
944 }
945
946 /*
947  * returns the previously saved node ["this node"] from which to
948  * allocate a persistent huge page for the pool and advance the
949  * next node from which to allocate, handling wrap at end of node
950  * mask.
951  */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953                                         nodemask_t *nodes_allowed)
954 {
955         int nid;
956
957         VM_BUG_ON(!nodes_allowed);
958
959         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962         return nid;
963 }
964
965 /*
966  * helper for free_pool_huge_page() - return the previously saved
967  * node ["this node"] from which to free a huge page.  Advance the
968  * next node id whether or not we find a free huge page to free so
969  * that the next attempt to free addresses the next node.
970  */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973         int nid;
974
975         VM_BUG_ON(!nodes_allowed);
976
977         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980         return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
984         for (nr_nodes = nodes_weight(*mask);                            \
985                 nr_nodes > 0 &&                                         \
986                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
987                 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
990         for (nr_nodes = nodes_weight(*mask);                            \
991                 nr_nodes > 0 &&                                         \
992                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
993                 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997                                         unsigned long order)
998 {
999         int i;
1000         int nr_pages = 1 << order;
1001         struct page *p = page + 1;
1002
1003         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004                 clear_compound_head(p);
1005                 set_page_refcounted(p);
1006         }
1007
1008         set_compound_order(page, 0);
1009         __ClearPageHead(page);
1010 }
1011
1012 static void free_gigantic_page(struct page *page, unsigned order)
1013 {
1014         free_contig_range(page_to_pfn(page), 1 << order);
1015 }
1016
1017 static int __alloc_gigantic_page(unsigned long start_pfn,
1018                                 unsigned long nr_pages)
1019 {
1020         unsigned long end_pfn = start_pfn + nr_pages;
1021         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1022 }
1023
1024 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1025                                 unsigned long nr_pages)
1026 {
1027         unsigned long i, end_pfn = start_pfn + nr_pages;
1028         struct page *page;
1029
1030         for (i = start_pfn; i < end_pfn; i++) {
1031                 if (!pfn_valid(i))
1032                         return false;
1033
1034                 page = pfn_to_page(i);
1035
1036                 if (PageReserved(page))
1037                         return false;
1038
1039                 if (page_count(page) > 0)
1040                         return false;
1041
1042                 if (PageHuge(page))
1043                         return false;
1044         }
1045
1046         return true;
1047 }
1048
1049 static bool zone_spans_last_pfn(const struct zone *zone,
1050                         unsigned long start_pfn, unsigned long nr_pages)
1051 {
1052         unsigned long last_pfn = start_pfn + nr_pages - 1;
1053         return zone_spans_pfn(zone, last_pfn);
1054 }
1055
1056 static struct page *alloc_gigantic_page(int nid, unsigned order)
1057 {
1058         unsigned long nr_pages = 1 << order;
1059         unsigned long ret, pfn, flags;
1060         struct zone *z;
1061
1062         z = NODE_DATA(nid)->node_zones;
1063         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1064                 spin_lock_irqsave(&z->lock, flags);
1065
1066                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1067                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1068                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1069                                 /*
1070                                  * We release the zone lock here because
1071                                  * alloc_contig_range() will also lock the zone
1072                                  * at some point. If there's an allocation
1073                                  * spinning on this lock, it may win the race
1074                                  * and cause alloc_contig_range() to fail...
1075                                  */
1076                                 spin_unlock_irqrestore(&z->lock, flags);
1077                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1078                                 if (!ret)
1079                                         return pfn_to_page(pfn);
1080                                 spin_lock_irqsave(&z->lock, flags);
1081                         }
1082                         pfn += nr_pages;
1083                 }
1084
1085                 spin_unlock_irqrestore(&z->lock, flags);
1086         }
1087
1088         return NULL;
1089 }
1090
1091 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1092 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1093
1094 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1095 {
1096         struct page *page;
1097
1098         page = alloc_gigantic_page(nid, huge_page_order(h));
1099         if (page) {
1100                 prep_compound_gigantic_page(page, huge_page_order(h));
1101                 prep_new_huge_page(h, page, nid);
1102         }
1103
1104         return page;
1105 }
1106
1107 static int alloc_fresh_gigantic_page(struct hstate *h,
1108                                 nodemask_t *nodes_allowed)
1109 {
1110         struct page *page = NULL;
1111         int nr_nodes, node;
1112
1113         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1114                 page = alloc_fresh_gigantic_page_node(h, node);
1115                 if (page)
1116                         return 1;
1117         }
1118
1119         return 0;
1120 }
1121
1122 static inline bool gigantic_page_supported(void) { return true; }
1123 #else
1124 static inline bool gigantic_page_supported(void) { return false; }
1125 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1126 static inline void destroy_compound_gigantic_page(struct page *page,
1127                                                 unsigned long order) { }
1128 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1129                                         nodemask_t *nodes_allowed) { return 0; }
1130 #endif
1131
1132 static void update_and_free_page(struct hstate *h, struct page *page)
1133 {
1134         int i;
1135
1136         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1137                 return;
1138
1139         h->nr_huge_pages--;
1140         h->nr_huge_pages_node[page_to_nid(page)]--;
1141         for (i = 0; i < pages_per_huge_page(h); i++) {
1142                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1143                                 1 << PG_referenced | 1 << PG_dirty |
1144                                 1 << PG_active | 1 << PG_private |
1145                                 1 << PG_writeback);
1146         }
1147         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1148         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1149         set_page_refcounted(page);
1150         if (hstate_is_gigantic(h)) {
1151                 destroy_compound_gigantic_page(page, huge_page_order(h));
1152                 free_gigantic_page(page, huge_page_order(h));
1153         } else {
1154                 __free_pages(page, huge_page_order(h));
1155         }
1156 }
1157
1158 struct hstate *size_to_hstate(unsigned long size)
1159 {
1160         struct hstate *h;
1161
1162         for_each_hstate(h) {
1163                 if (huge_page_size(h) == size)
1164                         return h;
1165         }
1166         return NULL;
1167 }
1168
1169 /*
1170  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1171  * to hstate->hugepage_activelist.)
1172  *
1173  * This function can be called for tail pages, but never returns true for them.
1174  */
1175 bool page_huge_active(struct page *page)
1176 {
1177         VM_BUG_ON_PAGE(!PageHuge(page), page);
1178         return PageHead(page) && PagePrivate(&page[1]);
1179 }
1180
1181 /* never called for tail page */
1182 static void set_page_huge_active(struct page *page)
1183 {
1184         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1185         SetPagePrivate(&page[1]);
1186 }
1187
1188 static void clear_page_huge_active(struct page *page)
1189 {
1190         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1191         ClearPagePrivate(&page[1]);
1192 }
1193
1194 void free_huge_page(struct page *page)
1195 {
1196         /*
1197          * Can't pass hstate in here because it is called from the
1198          * compound page destructor.
1199          */
1200         struct hstate *h = page_hstate(page);
1201         int nid = page_to_nid(page);
1202         struct hugepage_subpool *spool =
1203                 (struct hugepage_subpool *)page_private(page);
1204         bool restore_reserve;
1205
1206         set_page_private(page, 0);
1207         page->mapping = NULL;
1208         BUG_ON(page_count(page));
1209         BUG_ON(page_mapcount(page));
1210         restore_reserve = PagePrivate(page);
1211         ClearPagePrivate(page);
1212
1213         /*
1214          * A return code of zero implies that the subpool will be under its
1215          * minimum size if the reservation is not restored after page is free.
1216          * Therefore, force restore_reserve operation.
1217          */
1218         if (hugepage_subpool_put_pages(spool, 1) == 0)
1219                 restore_reserve = true;
1220
1221         spin_lock(&hugetlb_lock);
1222         clear_page_huge_active(page);
1223         hugetlb_cgroup_uncharge_page(hstate_index(h),
1224                                      pages_per_huge_page(h), page);
1225         if (restore_reserve)
1226                 h->resv_huge_pages++;
1227
1228         if (h->surplus_huge_pages_node[nid]) {
1229                 /* remove the page from active list */
1230                 list_del(&page->lru);
1231                 update_and_free_page(h, page);
1232                 h->surplus_huge_pages--;
1233                 h->surplus_huge_pages_node[nid]--;
1234         } else {
1235                 arch_clear_hugepage_flags(page);
1236                 enqueue_huge_page(h, page);
1237         }
1238         spin_unlock(&hugetlb_lock);
1239 }
1240
1241 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1242 {
1243         INIT_LIST_HEAD(&page->lru);
1244         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1245         spin_lock(&hugetlb_lock);
1246         set_hugetlb_cgroup(page, NULL);
1247         h->nr_huge_pages++;
1248         h->nr_huge_pages_node[nid]++;
1249         spin_unlock(&hugetlb_lock);
1250         put_page(page); /* free it into the hugepage allocator */
1251 }
1252
1253 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         /* we rely on prep_new_huge_page to set the destructor */
1260         set_compound_order(page, order);
1261         __SetPageHead(page);
1262         __ClearPageReserved(page);
1263         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1264                 /*
1265                  * For gigantic hugepages allocated through bootmem at
1266                  * boot, it's safer to be consistent with the not-gigantic
1267                  * hugepages and clear the PG_reserved bit from all tail pages
1268                  * too.  Otherwse drivers using get_user_pages() to access tail
1269                  * pages may get the reference counting wrong if they see
1270                  * PG_reserved set on a tail page (despite the head page not
1271                  * having PG_reserved set).  Enforcing this consistency between
1272                  * head and tail pages allows drivers to optimize away a check
1273                  * on the head page when they need know if put_page() is needed
1274                  * after get_user_pages().
1275                  */
1276                 __ClearPageReserved(p);
1277                 set_page_count(p, 0);
1278                 set_compound_head(p, page);
1279         }
1280 }
1281
1282 /*
1283  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1284  * transparent huge pages.  See the PageTransHuge() documentation for more
1285  * details.
1286  */
1287 int PageHuge(struct page *page)
1288 {
1289         if (!PageCompound(page))
1290                 return 0;
1291
1292         page = compound_head(page);
1293         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1294 }
1295 EXPORT_SYMBOL_GPL(PageHuge);
1296
1297 /*
1298  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1299  * normal or transparent huge pages.
1300  */
1301 int PageHeadHuge(struct page *page_head)
1302 {
1303         if (!PageHead(page_head))
1304                 return 0;
1305
1306         return get_compound_page_dtor(page_head) == free_huge_page;
1307 }
1308
1309 pgoff_t __basepage_index(struct page *page)
1310 {
1311         struct page *page_head = compound_head(page);
1312         pgoff_t index = page_index(page_head);
1313         unsigned long compound_idx;
1314
1315         if (!PageHuge(page_head))
1316                 return page_index(page);
1317
1318         if (compound_order(page_head) >= MAX_ORDER)
1319                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1320         else
1321                 compound_idx = page - page_head;
1322
1323         return (index << compound_order(page_head)) + compound_idx;
1324 }
1325
1326 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1327 {
1328         struct page *page;
1329
1330         page = __alloc_pages_node(nid,
1331                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1332                                                 __GFP_REPEAT|__GFP_NOWARN,
1333                 huge_page_order(h));
1334         if (page) {
1335                 prep_new_huge_page(h, page, nid);
1336         }
1337
1338         return page;
1339 }
1340
1341 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1342 {
1343         struct page *page;
1344         int nr_nodes, node;
1345         int ret = 0;
1346
1347         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348                 page = alloc_fresh_huge_page_node(h, node);
1349                 if (page) {
1350                         ret = 1;
1351                         break;
1352                 }
1353         }
1354
1355         if (ret)
1356                 count_vm_event(HTLB_BUDDY_PGALLOC);
1357         else
1358                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1359
1360         return ret;
1361 }
1362
1363 /*
1364  * Free huge page from pool from next node to free.
1365  * Attempt to keep persistent huge pages more or less
1366  * balanced over allowed nodes.
1367  * Called with hugetlb_lock locked.
1368  */
1369 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1370                                                          bool acct_surplus)
1371 {
1372         int nr_nodes, node;
1373         int ret = 0;
1374
1375         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1376                 /*
1377                  * If we're returning unused surplus pages, only examine
1378                  * nodes with surplus pages.
1379                  */
1380                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1381                     !list_empty(&h->hugepage_freelists[node])) {
1382                         struct page *page =
1383                                 list_entry(h->hugepage_freelists[node].next,
1384                                           struct page, lru);
1385                         list_del(&page->lru);
1386                         h->free_huge_pages--;
1387                         h->free_huge_pages_node[node]--;
1388                         if (acct_surplus) {
1389                                 h->surplus_huge_pages--;
1390                                 h->surplus_huge_pages_node[node]--;
1391                         }
1392                         update_and_free_page(h, page);
1393                         ret = 1;
1394                         break;
1395                 }
1396         }
1397
1398         return ret;
1399 }
1400
1401 /*
1402  * Dissolve a given free hugepage into free buddy pages. This function does
1403  * nothing for in-use (including surplus) hugepages.
1404  */
1405 static void dissolve_free_huge_page(struct page *page)
1406 {
1407         spin_lock(&hugetlb_lock);
1408         if (PageHuge(page) && !page_count(page)) {
1409                 struct hstate *h = page_hstate(page);
1410                 int nid = page_to_nid(page);
1411                 list_del(&page->lru);
1412                 h->free_huge_pages--;
1413                 h->free_huge_pages_node[nid]--;
1414                 update_and_free_page(h, page);
1415         }
1416         spin_unlock(&hugetlb_lock);
1417 }
1418
1419 /*
1420  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1421  * make specified memory blocks removable from the system.
1422  * Note that start_pfn should aligned with (minimum) hugepage size.
1423  */
1424 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1425 {
1426         unsigned long pfn;
1427
1428         if (!hugepages_supported())
1429                 return;
1430
1431         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1432         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1433                 dissolve_free_huge_page(pfn_to_page(pfn));
1434 }
1435
1436 /*
1437  * There are 3 ways this can get called:
1438  * 1. With vma+addr: we use the VMA's memory policy
1439  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1440  *    page from any node, and let the buddy allocator itself figure
1441  *    it out.
1442  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1443  *    strictly from 'nid'
1444  */
1445 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1446                 struct vm_area_struct *vma, unsigned long addr, int nid)
1447 {
1448         int order = huge_page_order(h);
1449         gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1450         unsigned int cpuset_mems_cookie;
1451
1452         /*
1453          * We need a VMA to get a memory policy.  If we do not
1454          * have one, we use the 'nid' argument.
1455          *
1456          * The mempolicy stuff below has some non-inlined bits
1457          * and calls ->vm_ops.  That makes it hard to optimize at
1458          * compile-time, even when NUMA is off and it does
1459          * nothing.  This helps the compiler optimize it out.
1460          */
1461         if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1462                 /*
1463                  * If a specific node is requested, make sure to
1464                  * get memory from there, but only when a node
1465                  * is explicitly specified.
1466                  */
1467                 if (nid != NUMA_NO_NODE)
1468                         gfp |= __GFP_THISNODE;
1469                 /*
1470                  * Make sure to call something that can handle
1471                  * nid=NUMA_NO_NODE
1472                  */
1473                 return alloc_pages_node(nid, gfp, order);
1474         }
1475
1476         /*
1477          * OK, so we have a VMA.  Fetch the mempolicy and try to
1478          * allocate a huge page with it.  We will only reach this
1479          * when CONFIG_NUMA=y.
1480          */
1481         do {
1482                 struct page *page;
1483                 struct mempolicy *mpol;
1484                 struct zonelist *zl;
1485                 nodemask_t *nodemask;
1486
1487                 cpuset_mems_cookie = read_mems_allowed_begin();
1488                 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1489                 mpol_cond_put(mpol);
1490                 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1491                 if (page)
1492                         return page;
1493         } while (read_mems_allowed_retry(cpuset_mems_cookie));
1494
1495         return NULL;
1496 }
1497
1498 /*
1499  * There are two ways to allocate a huge page:
1500  * 1. When you have a VMA and an address (like a fault)
1501  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1502  *
1503  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1504  * this case which signifies that the allocation should be done with
1505  * respect for the VMA's memory policy.
1506  *
1507  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1508  * implies that memory policies will not be taken in to account.
1509  */
1510 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1511                 struct vm_area_struct *vma, unsigned long addr, int nid)
1512 {
1513         struct page *page;
1514         unsigned int r_nid;
1515
1516         if (hstate_is_gigantic(h))
1517                 return NULL;
1518
1519         /*
1520          * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1521          * This makes sure the caller is picking _one_ of the modes with which
1522          * we can call this function, not both.
1523          */
1524         if (vma || (addr != -1)) {
1525                 VM_WARN_ON_ONCE(addr == -1);
1526                 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1527         }
1528         /*
1529          * Assume we will successfully allocate the surplus page to
1530          * prevent racing processes from causing the surplus to exceed
1531          * overcommit
1532          *
1533          * This however introduces a different race, where a process B
1534          * tries to grow the static hugepage pool while alloc_pages() is
1535          * called by process A. B will only examine the per-node
1536          * counters in determining if surplus huge pages can be
1537          * converted to normal huge pages in adjust_pool_surplus(). A
1538          * won't be able to increment the per-node counter, until the
1539          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1540          * no more huge pages can be converted from surplus to normal
1541          * state (and doesn't try to convert again). Thus, we have a
1542          * case where a surplus huge page exists, the pool is grown, and
1543          * the surplus huge page still exists after, even though it
1544          * should just have been converted to a normal huge page. This
1545          * does not leak memory, though, as the hugepage will be freed
1546          * once it is out of use. It also does not allow the counters to
1547          * go out of whack in adjust_pool_surplus() as we don't modify
1548          * the node values until we've gotten the hugepage and only the
1549          * per-node value is checked there.
1550          */
1551         spin_lock(&hugetlb_lock);
1552         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1553                 spin_unlock(&hugetlb_lock);
1554                 return NULL;
1555         } else {
1556                 h->nr_huge_pages++;
1557                 h->surplus_huge_pages++;
1558         }
1559         spin_unlock(&hugetlb_lock);
1560
1561         page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1562
1563         spin_lock(&hugetlb_lock);
1564         if (page) {
1565                 INIT_LIST_HEAD(&page->lru);
1566                 r_nid = page_to_nid(page);
1567                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1568                 set_hugetlb_cgroup(page, NULL);
1569                 /*
1570                  * We incremented the global counters already
1571                  */
1572                 h->nr_huge_pages_node[r_nid]++;
1573                 h->surplus_huge_pages_node[r_nid]++;
1574                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1575         } else {
1576                 h->nr_huge_pages--;
1577                 h->surplus_huge_pages--;
1578                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1579         }
1580         spin_unlock(&hugetlb_lock);
1581
1582         return page;
1583 }
1584
1585 /*
1586  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1587  * NUMA_NO_NODE, which means that it may be allocated
1588  * anywhere.
1589  */
1590 static
1591 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1592 {
1593         unsigned long addr = -1;
1594
1595         return __alloc_buddy_huge_page(h, NULL, addr, nid);
1596 }
1597
1598 /*
1599  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1600  */
1601 static
1602 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1603                 struct vm_area_struct *vma, unsigned long addr)
1604 {
1605         return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1606 }
1607
1608 /*
1609  * This allocation function is useful in the context where vma is irrelevant.
1610  * E.g. soft-offlining uses this function because it only cares physical
1611  * address of error page.
1612  */
1613 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1614 {
1615         struct page *page = NULL;
1616
1617         spin_lock(&hugetlb_lock);
1618         if (h->free_huge_pages - h->resv_huge_pages > 0)
1619                 page = dequeue_huge_page_node(h, nid);
1620         spin_unlock(&hugetlb_lock);
1621
1622         if (!page)
1623                 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1624
1625         return page;
1626 }
1627
1628 /*
1629  * Increase the hugetlb pool such that it can accommodate a reservation
1630  * of size 'delta'.
1631  */
1632 static int gather_surplus_pages(struct hstate *h, int delta)
1633 {
1634         struct list_head surplus_list;
1635         struct page *page, *tmp;
1636         int ret, i;
1637         int needed, allocated;
1638         bool alloc_ok = true;
1639
1640         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1641         if (needed <= 0) {
1642                 h->resv_huge_pages += delta;
1643                 return 0;
1644         }
1645
1646         allocated = 0;
1647         INIT_LIST_HEAD(&surplus_list);
1648
1649         ret = -ENOMEM;
1650 retry:
1651         spin_unlock(&hugetlb_lock);
1652         for (i = 0; i < needed; i++) {
1653                 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1654                 if (!page) {
1655                         alloc_ok = false;
1656                         break;
1657                 }
1658                 list_add(&page->lru, &surplus_list);
1659         }
1660         allocated += i;
1661
1662         /*
1663          * After retaking hugetlb_lock, we need to recalculate 'needed'
1664          * because either resv_huge_pages or free_huge_pages may have changed.
1665          */
1666         spin_lock(&hugetlb_lock);
1667         needed = (h->resv_huge_pages + delta) -
1668                         (h->free_huge_pages + allocated);
1669         if (needed > 0) {
1670                 if (alloc_ok)
1671                         goto retry;
1672                 /*
1673                  * We were not able to allocate enough pages to
1674                  * satisfy the entire reservation so we free what
1675                  * we've allocated so far.
1676                  */
1677                 goto free;
1678         }
1679         /*
1680          * The surplus_list now contains _at_least_ the number of extra pages
1681          * needed to accommodate the reservation.  Add the appropriate number
1682          * of pages to the hugetlb pool and free the extras back to the buddy
1683          * allocator.  Commit the entire reservation here to prevent another
1684          * process from stealing the pages as they are added to the pool but
1685          * before they are reserved.
1686          */
1687         needed += allocated;
1688         h->resv_huge_pages += delta;
1689         ret = 0;
1690
1691         /* Free the needed pages to the hugetlb pool */
1692         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1693                 if ((--needed) < 0)
1694                         break;
1695                 /*
1696                  * This page is now managed by the hugetlb allocator and has
1697                  * no users -- drop the buddy allocator's reference.
1698                  */
1699                 put_page_testzero(page);
1700                 VM_BUG_ON_PAGE(page_count(page), page);
1701                 enqueue_huge_page(h, page);
1702         }
1703 free:
1704         spin_unlock(&hugetlb_lock);
1705
1706         /* Free unnecessary surplus pages to the buddy allocator */
1707         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1708                 put_page(page);
1709         spin_lock(&hugetlb_lock);
1710
1711         return ret;
1712 }
1713
1714 /*
1715  * When releasing a hugetlb pool reservation, any surplus pages that were
1716  * allocated to satisfy the reservation must be explicitly freed if they were
1717  * never used.
1718  * Called with hugetlb_lock held.
1719  */
1720 static void return_unused_surplus_pages(struct hstate *h,
1721                                         unsigned long unused_resv_pages)
1722 {
1723         unsigned long nr_pages;
1724
1725         /* Uncommit the reservation */
1726         h->resv_huge_pages -= unused_resv_pages;
1727
1728         /* Cannot return gigantic pages currently */
1729         if (hstate_is_gigantic(h))
1730                 return;
1731
1732         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1733
1734         /*
1735          * We want to release as many surplus pages as possible, spread
1736          * evenly across all nodes with memory. Iterate across these nodes
1737          * until we can no longer free unreserved surplus pages. This occurs
1738          * when the nodes with surplus pages have no free pages.
1739          * free_pool_huge_page() will balance the the freed pages across the
1740          * on-line nodes with memory and will handle the hstate accounting.
1741          */
1742         while (nr_pages--) {
1743                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1744                         break;
1745                 cond_resched_lock(&hugetlb_lock);
1746         }
1747 }
1748
1749
1750 /*
1751  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1752  * are used by the huge page allocation routines to manage reservations.
1753  *
1754  * vma_needs_reservation is called to determine if the huge page at addr
1755  * within the vma has an associated reservation.  If a reservation is
1756  * needed, the value 1 is returned.  The caller is then responsible for
1757  * managing the global reservation and subpool usage counts.  After
1758  * the huge page has been allocated, vma_commit_reservation is called
1759  * to add the page to the reservation map.  If the page allocation fails,
1760  * the reservation must be ended instead of committed.  vma_end_reservation
1761  * is called in such cases.
1762  *
1763  * In the normal case, vma_commit_reservation returns the same value
1764  * as the preceding vma_needs_reservation call.  The only time this
1765  * is not the case is if a reserve map was changed between calls.  It
1766  * is the responsibility of the caller to notice the difference and
1767  * take appropriate action.
1768  */
1769 enum vma_resv_mode {
1770         VMA_NEEDS_RESV,
1771         VMA_COMMIT_RESV,
1772         VMA_END_RESV,
1773 };
1774 static long __vma_reservation_common(struct hstate *h,
1775                                 struct vm_area_struct *vma, unsigned long addr,
1776                                 enum vma_resv_mode mode)
1777 {
1778         struct resv_map *resv;
1779         pgoff_t idx;
1780         long ret;
1781
1782         resv = vma_resv_map(vma);
1783         if (!resv)
1784                 return 1;
1785
1786         idx = vma_hugecache_offset(h, vma, addr);
1787         switch (mode) {
1788         case VMA_NEEDS_RESV:
1789                 ret = region_chg(resv, idx, idx + 1);
1790                 break;
1791         case VMA_COMMIT_RESV:
1792                 ret = region_add(resv, idx, idx + 1);
1793                 break;
1794         case VMA_END_RESV:
1795                 region_abort(resv, idx, idx + 1);
1796                 ret = 0;
1797                 break;
1798         default:
1799                 BUG();
1800         }
1801
1802         if (vma->vm_flags & VM_MAYSHARE)
1803                 return ret;
1804         else
1805                 return ret < 0 ? ret : 0;
1806 }
1807
1808 static long vma_needs_reservation(struct hstate *h,
1809                         struct vm_area_struct *vma, unsigned long addr)
1810 {
1811         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1812 }
1813
1814 static long vma_commit_reservation(struct hstate *h,
1815                         struct vm_area_struct *vma, unsigned long addr)
1816 {
1817         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1818 }
1819
1820 static void vma_end_reservation(struct hstate *h,
1821                         struct vm_area_struct *vma, unsigned long addr)
1822 {
1823         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1824 }
1825
1826 struct page *alloc_huge_page(struct vm_area_struct *vma,
1827                                     unsigned long addr, int avoid_reserve)
1828 {
1829         struct hugepage_subpool *spool = subpool_vma(vma);
1830         struct hstate *h = hstate_vma(vma);
1831         struct page *page;
1832         long map_chg, map_commit;
1833         long gbl_chg;
1834         int ret, idx;
1835         struct hugetlb_cgroup *h_cg;
1836
1837         idx = hstate_index(h);
1838         /*
1839          * Examine the region/reserve map to determine if the process
1840          * has a reservation for the page to be allocated.  A return
1841          * code of zero indicates a reservation exists (no change).
1842          */
1843         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1844         if (map_chg < 0)
1845                 return ERR_PTR(-ENOMEM);
1846
1847         /*
1848          * Processes that did not create the mapping will have no
1849          * reserves as indicated by the region/reserve map. Check
1850          * that the allocation will not exceed the subpool limit.
1851          * Allocations for MAP_NORESERVE mappings also need to be
1852          * checked against any subpool limit.
1853          */
1854         if (map_chg || avoid_reserve) {
1855                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1856                 if (gbl_chg < 0) {
1857                         vma_end_reservation(h, vma, addr);
1858                         return ERR_PTR(-ENOSPC);
1859                 }
1860
1861                 /*
1862                  * Even though there was no reservation in the region/reserve
1863                  * map, there could be reservations associated with the
1864                  * subpool that can be used.  This would be indicated if the
1865                  * return value of hugepage_subpool_get_pages() is zero.
1866                  * However, if avoid_reserve is specified we still avoid even
1867                  * the subpool reservations.
1868                  */
1869                 if (avoid_reserve)
1870                         gbl_chg = 1;
1871         }
1872
1873         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1874         if (ret)
1875                 goto out_subpool_put;
1876
1877         spin_lock(&hugetlb_lock);
1878         /*
1879          * glb_chg is passed to indicate whether or not a page must be taken
1880          * from the global free pool (global change).  gbl_chg == 0 indicates
1881          * a reservation exists for the allocation.
1882          */
1883         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1884         if (!page) {
1885                 spin_unlock(&hugetlb_lock);
1886                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1887                 if (!page)
1888                         goto out_uncharge_cgroup;
1889
1890                 spin_lock(&hugetlb_lock);
1891                 list_move(&page->lru, &h->hugepage_activelist);
1892                 /* Fall through */
1893         }
1894         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1895         spin_unlock(&hugetlb_lock);
1896
1897         set_page_private(page, (unsigned long)spool);
1898
1899         map_commit = vma_commit_reservation(h, vma, addr);
1900         if (unlikely(map_chg > map_commit)) {
1901                 /*
1902                  * The page was added to the reservation map between
1903                  * vma_needs_reservation and vma_commit_reservation.
1904                  * This indicates a race with hugetlb_reserve_pages.
1905                  * Adjust for the subpool count incremented above AND
1906                  * in hugetlb_reserve_pages for the same page.  Also,
1907                  * the reservation count added in hugetlb_reserve_pages
1908                  * no longer applies.
1909                  */
1910                 long rsv_adjust;
1911
1912                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1913                 hugetlb_acct_memory(h, -rsv_adjust);
1914         }
1915         return page;
1916
1917 out_uncharge_cgroup:
1918         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1919 out_subpool_put:
1920         if (map_chg || avoid_reserve)
1921                 hugepage_subpool_put_pages(spool, 1);
1922         vma_end_reservation(h, vma, addr);
1923         return ERR_PTR(-ENOSPC);
1924 }
1925
1926 /*
1927  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1928  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1929  * where no ERR_VALUE is expected to be returned.
1930  */
1931 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1932                                 unsigned long addr, int avoid_reserve)
1933 {
1934         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1935         if (IS_ERR(page))
1936                 page = NULL;
1937         return page;
1938 }
1939
1940 int __weak alloc_bootmem_huge_page(struct hstate *h)
1941 {
1942         struct huge_bootmem_page *m;
1943         int nr_nodes, node;
1944
1945         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1946                 void *addr;
1947
1948                 addr = memblock_virt_alloc_try_nid_nopanic(
1949                                 huge_page_size(h), huge_page_size(h),
1950                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1951                 if (addr) {
1952                         /*
1953                          * Use the beginning of the huge page to store the
1954                          * huge_bootmem_page struct (until gather_bootmem
1955                          * puts them into the mem_map).
1956                          */
1957                         m = addr;
1958                         goto found;
1959                 }
1960         }
1961         return 0;
1962
1963 found:
1964         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1965         /* Put them into a private list first because mem_map is not up yet */
1966         list_add(&m->list, &huge_boot_pages);
1967         m->hstate = h;
1968         return 1;
1969 }
1970
1971 static void __init prep_compound_huge_page(struct page *page, int order)
1972 {
1973         if (unlikely(order > (MAX_ORDER - 1)))
1974                 prep_compound_gigantic_page(page, order);
1975         else
1976                 prep_compound_page(page, order);
1977 }
1978
1979 /* Put bootmem huge pages into the standard lists after mem_map is up */
1980 static void __init gather_bootmem_prealloc(void)
1981 {
1982         struct huge_bootmem_page *m;
1983
1984         list_for_each_entry(m, &huge_boot_pages, list) {
1985                 struct hstate *h = m->hstate;
1986                 struct page *page;
1987
1988 #ifdef CONFIG_HIGHMEM
1989                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1990                 memblock_free_late(__pa(m),
1991                                    sizeof(struct huge_bootmem_page));
1992 #else
1993                 page = virt_to_page(m);
1994 #endif
1995                 WARN_ON(page_count(page) != 1);
1996                 prep_compound_huge_page(page, h->order);
1997                 WARN_ON(PageReserved(page));
1998                 prep_new_huge_page(h, page, page_to_nid(page));
1999                 /*
2000                  * If we had gigantic hugepages allocated at boot time, we need
2001                  * to restore the 'stolen' pages to totalram_pages in order to
2002                  * fix confusing memory reports from free(1) and another
2003                  * side-effects, like CommitLimit going negative.
2004                  */
2005                 if (hstate_is_gigantic(h))
2006                         adjust_managed_page_count(page, 1 << h->order);
2007         }
2008 }
2009
2010 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2011 {
2012         unsigned long i;
2013
2014         for (i = 0; i < h->max_huge_pages; ++i) {
2015                 if (hstate_is_gigantic(h)) {
2016                         if (!alloc_bootmem_huge_page(h))
2017                                 break;
2018                 } else if (!alloc_fresh_huge_page(h,
2019                                          &node_states[N_MEMORY]))
2020                         break;
2021         }
2022         h->max_huge_pages = i;
2023 }
2024
2025 static void __init hugetlb_init_hstates(void)
2026 {
2027         struct hstate *h;
2028
2029         for_each_hstate(h) {
2030                 if (minimum_order > huge_page_order(h))
2031                         minimum_order = huge_page_order(h);
2032
2033                 /* oversize hugepages were init'ed in early boot */
2034                 if (!hstate_is_gigantic(h))
2035                         hugetlb_hstate_alloc_pages(h);
2036         }
2037         VM_BUG_ON(minimum_order == UINT_MAX);
2038 }
2039
2040 static char * __init memfmt(char *buf, unsigned long n)
2041 {
2042         if (n >= (1UL << 30))
2043                 sprintf(buf, "%lu GB", n >> 30);
2044         else if (n >= (1UL << 20))
2045                 sprintf(buf, "%lu MB", n >> 20);
2046         else
2047                 sprintf(buf, "%lu KB", n >> 10);
2048         return buf;
2049 }
2050
2051 static void __init report_hugepages(void)
2052 {
2053         struct hstate *h;
2054
2055         for_each_hstate(h) {
2056                 char buf[32];
2057                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2058                         memfmt(buf, huge_page_size(h)),
2059                         h->free_huge_pages);
2060         }
2061 }
2062
2063 #ifdef CONFIG_HIGHMEM
2064 static void try_to_free_low(struct hstate *h, unsigned long count,
2065                                                 nodemask_t *nodes_allowed)
2066 {
2067         int i;
2068
2069         if (hstate_is_gigantic(h))
2070                 return;
2071
2072         for_each_node_mask(i, *nodes_allowed) {
2073                 struct page *page, *next;
2074                 struct list_head *freel = &h->hugepage_freelists[i];
2075                 list_for_each_entry_safe(page, next, freel, lru) {
2076                         if (count >= h->nr_huge_pages)
2077                                 return;
2078                         if (PageHighMem(page))
2079                                 continue;
2080                         list_del(&page->lru);
2081                         update_and_free_page(h, page);
2082                         h->free_huge_pages--;
2083                         h->free_huge_pages_node[page_to_nid(page)]--;
2084                 }
2085         }
2086 }
2087 #else
2088 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2089                                                 nodemask_t *nodes_allowed)
2090 {
2091 }
2092 #endif
2093
2094 /*
2095  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2096  * balanced by operating on them in a round-robin fashion.
2097  * Returns 1 if an adjustment was made.
2098  */
2099 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2100                                 int delta)
2101 {
2102         int nr_nodes, node;
2103
2104         VM_BUG_ON(delta != -1 && delta != 1);
2105
2106         if (delta < 0) {
2107                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2108                         if (h->surplus_huge_pages_node[node])
2109                                 goto found;
2110                 }
2111         } else {
2112                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2113                         if (h->surplus_huge_pages_node[node] <
2114                                         h->nr_huge_pages_node[node])
2115                                 goto found;
2116                 }
2117         }
2118         return 0;
2119
2120 found:
2121         h->surplus_huge_pages += delta;
2122         h->surplus_huge_pages_node[node] += delta;
2123         return 1;
2124 }
2125
2126 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2127 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2128                                                 nodemask_t *nodes_allowed)
2129 {
2130         unsigned long min_count, ret;
2131
2132         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2133                 return h->max_huge_pages;
2134
2135         /*
2136          * Increase the pool size
2137          * First take pages out of surplus state.  Then make up the
2138          * remaining difference by allocating fresh huge pages.
2139          *
2140          * We might race with alloc_buddy_huge_page() here and be unable
2141          * to convert a surplus huge page to a normal huge page. That is
2142          * not critical, though, it just means the overall size of the
2143          * pool might be one hugepage larger than it needs to be, but
2144          * within all the constraints specified by the sysctls.
2145          */
2146         spin_lock(&hugetlb_lock);
2147         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2148                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2149                         break;
2150         }
2151
2152         while (count > persistent_huge_pages(h)) {
2153                 /*
2154                  * If this allocation races such that we no longer need the
2155                  * page, free_huge_page will handle it by freeing the page
2156                  * and reducing the surplus.
2157                  */
2158                 spin_unlock(&hugetlb_lock);
2159                 if (hstate_is_gigantic(h))
2160                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2161                 else
2162                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2163                 spin_lock(&hugetlb_lock);
2164                 if (!ret)
2165                         goto out;
2166
2167                 /* Bail for signals. Probably ctrl-c from user */
2168                 if (signal_pending(current))
2169                         goto out;
2170         }
2171
2172         /*
2173          * Decrease the pool size
2174          * First return free pages to the buddy allocator (being careful
2175          * to keep enough around to satisfy reservations).  Then place
2176          * pages into surplus state as needed so the pool will shrink
2177          * to the desired size as pages become free.
2178          *
2179          * By placing pages into the surplus state independent of the
2180          * overcommit value, we are allowing the surplus pool size to
2181          * exceed overcommit. There are few sane options here. Since
2182          * alloc_buddy_huge_page() is checking the global counter,
2183          * though, we'll note that we're not allowed to exceed surplus
2184          * and won't grow the pool anywhere else. Not until one of the
2185          * sysctls are changed, or the surplus pages go out of use.
2186          */
2187         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2188         min_count = max(count, min_count);
2189         try_to_free_low(h, min_count, nodes_allowed);
2190         while (min_count < persistent_huge_pages(h)) {
2191                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2192                         break;
2193                 cond_resched_lock(&hugetlb_lock);
2194         }
2195         while (count < persistent_huge_pages(h)) {
2196                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2197                         break;
2198         }
2199 out:
2200         ret = persistent_huge_pages(h);
2201         spin_unlock(&hugetlb_lock);
2202         return ret;
2203 }
2204
2205 #define HSTATE_ATTR_RO(_name) \
2206         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2207
2208 #define HSTATE_ATTR(_name) \
2209         static struct kobj_attribute _name##_attr = \
2210                 __ATTR(_name, 0644, _name##_show, _name##_store)
2211
2212 static struct kobject *hugepages_kobj;
2213 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2214
2215 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2216
2217 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2218 {
2219         int i;
2220
2221         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2222                 if (hstate_kobjs[i] == kobj) {
2223                         if (nidp)
2224                                 *nidp = NUMA_NO_NODE;
2225                         return &hstates[i];
2226                 }
2227
2228         return kobj_to_node_hstate(kobj, nidp);
2229 }
2230
2231 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2232                                         struct kobj_attribute *attr, char *buf)
2233 {
2234         struct hstate *h;
2235         unsigned long nr_huge_pages;
2236         int nid;
2237
2238         h = kobj_to_hstate(kobj, &nid);
2239         if (nid == NUMA_NO_NODE)
2240                 nr_huge_pages = h->nr_huge_pages;
2241         else
2242                 nr_huge_pages = h->nr_huge_pages_node[nid];
2243
2244         return sprintf(buf, "%lu\n", nr_huge_pages);
2245 }
2246
2247 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2248                                            struct hstate *h, int nid,
2249                                            unsigned long count, size_t len)
2250 {
2251         int err;
2252         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2253
2254         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2255                 err = -EINVAL;
2256                 goto out;
2257         }
2258
2259         if (nid == NUMA_NO_NODE) {
2260                 /*
2261                  * global hstate attribute
2262                  */
2263                 if (!(obey_mempolicy &&
2264                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2265                         NODEMASK_FREE(nodes_allowed);
2266                         nodes_allowed = &node_states[N_MEMORY];
2267                 }
2268         } else if (nodes_allowed) {
2269                 /*
2270                  * per node hstate attribute: adjust count to global,
2271                  * but restrict alloc/free to the specified node.
2272                  */
2273                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2274                 init_nodemask_of_node(nodes_allowed, nid);
2275         } else
2276                 nodes_allowed = &node_states[N_MEMORY];
2277
2278         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2279
2280         if (nodes_allowed != &node_states[N_MEMORY])
2281                 NODEMASK_FREE(nodes_allowed);
2282
2283         return len;
2284 out:
2285         NODEMASK_FREE(nodes_allowed);
2286         return err;
2287 }
2288
2289 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2290                                          struct kobject *kobj, const char *buf,
2291                                          size_t len)
2292 {
2293         struct hstate *h;
2294         unsigned long count;
2295         int nid;
2296         int err;
2297
2298         err = kstrtoul(buf, 10, &count);
2299         if (err)
2300                 return err;
2301
2302         h = kobj_to_hstate(kobj, &nid);
2303         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2304 }
2305
2306 static ssize_t nr_hugepages_show(struct kobject *kobj,
2307                                        struct kobj_attribute *attr, char *buf)
2308 {
2309         return nr_hugepages_show_common(kobj, attr, buf);
2310 }
2311
2312 static ssize_t nr_hugepages_store(struct kobject *kobj,
2313                struct kobj_attribute *attr, const char *buf, size_t len)
2314 {
2315         return nr_hugepages_store_common(false, kobj, buf, len);
2316 }
2317 HSTATE_ATTR(nr_hugepages);
2318
2319 #ifdef CONFIG_NUMA
2320
2321 /*
2322  * hstate attribute for optionally mempolicy-based constraint on persistent
2323  * huge page alloc/free.
2324  */
2325 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2326                                        struct kobj_attribute *attr, char *buf)
2327 {
2328         return nr_hugepages_show_common(kobj, attr, buf);
2329 }
2330
2331 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2332                struct kobj_attribute *attr, const char *buf, size_t len)
2333 {
2334         return nr_hugepages_store_common(true, kobj, buf, len);
2335 }
2336 HSTATE_ATTR(nr_hugepages_mempolicy);
2337 #endif
2338
2339
2340 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2341                                         struct kobj_attribute *attr, char *buf)
2342 {
2343         struct hstate *h = kobj_to_hstate(kobj, NULL);
2344         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2345 }
2346
2347 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2348                 struct kobj_attribute *attr, const char *buf, size_t count)
2349 {
2350         int err;
2351         unsigned long input;
2352         struct hstate *h = kobj_to_hstate(kobj, NULL);
2353
2354         if (hstate_is_gigantic(h))
2355                 return -EINVAL;
2356
2357         err = kstrtoul(buf, 10, &input);
2358         if (err)
2359                 return err;
2360
2361         spin_lock(&hugetlb_lock);
2362         h->nr_overcommit_huge_pages = input;
2363         spin_unlock(&hugetlb_lock);
2364
2365         return count;
2366 }
2367 HSTATE_ATTR(nr_overcommit_hugepages);
2368
2369 static ssize_t free_hugepages_show(struct kobject *kobj,
2370                                         struct kobj_attribute *attr, char *buf)
2371 {
2372         struct hstate *h;
2373         unsigned long free_huge_pages;
2374         int nid;
2375
2376         h = kobj_to_hstate(kobj, &nid);
2377         if (nid == NUMA_NO_NODE)
2378                 free_huge_pages = h->free_huge_pages;
2379         else
2380                 free_huge_pages = h->free_huge_pages_node[nid];
2381
2382         return sprintf(buf, "%lu\n", free_huge_pages);
2383 }
2384 HSTATE_ATTR_RO(free_hugepages);
2385
2386 static ssize_t resv_hugepages_show(struct kobject *kobj,
2387                                         struct kobj_attribute *attr, char *buf)
2388 {
2389         struct hstate *h = kobj_to_hstate(kobj, NULL);
2390         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2391 }
2392 HSTATE_ATTR_RO(resv_hugepages);
2393
2394 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2395                                         struct kobj_attribute *attr, char *buf)
2396 {
2397         struct hstate *h;
2398         unsigned long surplus_huge_pages;
2399         int nid;
2400
2401         h = kobj_to_hstate(kobj, &nid);
2402         if (nid == NUMA_NO_NODE)
2403                 surplus_huge_pages = h->surplus_huge_pages;
2404         else
2405                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2406
2407         return sprintf(buf, "%lu\n", surplus_huge_pages);
2408 }
2409 HSTATE_ATTR_RO(surplus_hugepages);
2410
2411 static struct attribute *hstate_attrs[] = {
2412         &nr_hugepages_attr.attr,
2413         &nr_overcommit_hugepages_attr.attr,
2414         &free_hugepages_attr.attr,
2415         &resv_hugepages_attr.attr,
2416         &surplus_hugepages_attr.attr,
2417 #ifdef CONFIG_NUMA
2418         &nr_hugepages_mempolicy_attr.attr,
2419 #endif
2420         NULL,
2421 };
2422
2423 static struct attribute_group hstate_attr_group = {
2424         .attrs = hstate_attrs,
2425 };
2426
2427 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2428                                     struct kobject **hstate_kobjs,
2429                                     struct attribute_group *hstate_attr_group)
2430 {
2431         int retval;
2432         int hi = hstate_index(h);
2433
2434         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2435         if (!hstate_kobjs[hi])
2436                 return -ENOMEM;
2437
2438         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2439         if (retval)
2440                 kobject_put(hstate_kobjs[hi]);
2441
2442         return retval;
2443 }
2444
2445 static void __init hugetlb_sysfs_init(void)
2446 {
2447         struct hstate *h;
2448         int err;
2449
2450         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2451         if (!hugepages_kobj)
2452                 return;
2453
2454         for_each_hstate(h) {
2455                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2456                                          hstate_kobjs, &hstate_attr_group);
2457                 if (err)
2458                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2459         }
2460 }
2461
2462 #ifdef CONFIG_NUMA
2463
2464 /*
2465  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2466  * with node devices in node_devices[] using a parallel array.  The array
2467  * index of a node device or _hstate == node id.
2468  * This is here to avoid any static dependency of the node device driver, in
2469  * the base kernel, on the hugetlb module.
2470  */
2471 struct node_hstate {
2472         struct kobject          *hugepages_kobj;
2473         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2474 };
2475 static struct node_hstate node_hstates[MAX_NUMNODES];
2476
2477 /*
2478  * A subset of global hstate attributes for node devices
2479  */
2480 static struct attribute *per_node_hstate_attrs[] = {
2481         &nr_hugepages_attr.attr,
2482         &free_hugepages_attr.attr,
2483         &surplus_hugepages_attr.attr,
2484         NULL,
2485 };
2486
2487 static struct attribute_group per_node_hstate_attr_group = {
2488         .attrs = per_node_hstate_attrs,
2489 };
2490
2491 /*
2492  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2493  * Returns node id via non-NULL nidp.
2494  */
2495 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2496 {
2497         int nid;
2498
2499         for (nid = 0; nid < nr_node_ids; nid++) {
2500                 struct node_hstate *nhs = &node_hstates[nid];
2501                 int i;
2502                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2503                         if (nhs->hstate_kobjs[i] == kobj) {
2504                                 if (nidp)
2505                                         *nidp = nid;
2506                                 return &hstates[i];
2507                         }
2508         }
2509
2510         BUG();
2511         return NULL;
2512 }
2513
2514 /*
2515  * Unregister hstate attributes from a single node device.
2516  * No-op if no hstate attributes attached.
2517  */
2518 static void hugetlb_unregister_node(struct node *node)
2519 {
2520         struct hstate *h;
2521         struct node_hstate *nhs = &node_hstates[node->dev.id];
2522
2523         if (!nhs->hugepages_kobj)
2524                 return;         /* no hstate attributes */
2525
2526         for_each_hstate(h) {
2527                 int idx = hstate_index(h);
2528                 if (nhs->hstate_kobjs[idx]) {
2529                         kobject_put(nhs->hstate_kobjs[idx]);
2530                         nhs->hstate_kobjs[idx] = NULL;
2531                 }
2532         }
2533
2534         kobject_put(nhs->hugepages_kobj);
2535         nhs->hugepages_kobj = NULL;
2536 }
2537
2538 /*
2539  * hugetlb module exit:  unregister hstate attributes from node devices
2540  * that have them.
2541  */
2542 static void hugetlb_unregister_all_nodes(void)
2543 {
2544         int nid;
2545
2546         /*
2547          * disable node device registrations.
2548          */
2549         register_hugetlbfs_with_node(NULL, NULL);
2550
2551         /*
2552          * remove hstate attributes from any nodes that have them.
2553          */
2554         for (nid = 0; nid < nr_node_ids; nid++)
2555                 hugetlb_unregister_node(node_devices[nid]);
2556 }
2557
2558 /*
2559  * Register hstate attributes for a single node device.
2560  * No-op if attributes already registered.
2561  */
2562 static void hugetlb_register_node(struct node *node)
2563 {
2564         struct hstate *h;
2565         struct node_hstate *nhs = &node_hstates[node->dev.id];
2566         int err;
2567
2568         if (nhs->hugepages_kobj)
2569                 return;         /* already allocated */
2570
2571         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2572                                                         &node->dev.kobj);
2573         if (!nhs->hugepages_kobj)
2574                 return;
2575
2576         for_each_hstate(h) {
2577                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2578                                                 nhs->hstate_kobjs,
2579                                                 &per_node_hstate_attr_group);
2580                 if (err) {
2581                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2582                                 h->name, node->dev.id);
2583                         hugetlb_unregister_node(node);
2584                         break;
2585                 }
2586         }
2587 }
2588
2589 /*
2590  * hugetlb init time:  register hstate attributes for all registered node
2591  * devices of nodes that have memory.  All on-line nodes should have
2592  * registered their associated device by this time.
2593  */
2594 static void __init hugetlb_register_all_nodes(void)
2595 {
2596         int nid;
2597
2598         for_each_node_state(nid, N_MEMORY) {
2599                 struct node *node = node_devices[nid];
2600                 if (node->dev.id == nid)
2601                         hugetlb_register_node(node);
2602         }
2603
2604         /*
2605          * Let the node device driver know we're here so it can
2606          * [un]register hstate attributes on node hotplug.
2607          */
2608         register_hugetlbfs_with_node(hugetlb_register_node,
2609                                      hugetlb_unregister_node);
2610 }
2611 #else   /* !CONFIG_NUMA */
2612
2613 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2614 {
2615         BUG();
2616         if (nidp)
2617                 *nidp = -1;
2618         return NULL;
2619 }
2620
2621 static void hugetlb_unregister_all_nodes(void) { }
2622
2623 static void hugetlb_register_all_nodes(void) { }
2624
2625 #endif
2626
2627 static void __exit hugetlb_exit(void)
2628 {
2629         struct hstate *h;
2630
2631         hugetlb_unregister_all_nodes();
2632
2633         for_each_hstate(h) {
2634                 kobject_put(hstate_kobjs[hstate_index(h)]);
2635         }
2636
2637         kobject_put(hugepages_kobj);
2638         kfree(hugetlb_fault_mutex_table);
2639 }
2640 module_exit(hugetlb_exit);
2641
2642 static int __init hugetlb_init(void)
2643 {
2644         int i;
2645
2646         if (!hugepages_supported())
2647                 return 0;
2648
2649         if (!size_to_hstate(default_hstate_size)) {
2650                 default_hstate_size = HPAGE_SIZE;
2651                 if (!size_to_hstate(default_hstate_size))
2652                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2653         }
2654         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2655         if (default_hstate_max_huge_pages)
2656                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2657
2658         hugetlb_init_hstates();
2659         gather_bootmem_prealloc();
2660         report_hugepages();
2661
2662         hugetlb_sysfs_init();
2663         hugetlb_register_all_nodes();
2664         hugetlb_cgroup_file_init();
2665
2666 #ifdef CONFIG_SMP
2667         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2668 #else
2669         num_fault_mutexes = 1;
2670 #endif
2671         hugetlb_fault_mutex_table =
2672                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2673         BUG_ON(!hugetlb_fault_mutex_table);
2674
2675         for (i = 0; i < num_fault_mutexes; i++)
2676                 mutex_init(&hugetlb_fault_mutex_table[i]);
2677         return 0;
2678 }
2679 module_init(hugetlb_init);
2680
2681 /* Should be called on processing a hugepagesz=... option */
2682 void __init hugetlb_add_hstate(unsigned order)
2683 {
2684         struct hstate *h;
2685         unsigned long i;
2686
2687         if (size_to_hstate(PAGE_SIZE << order)) {
2688                 pr_warning("hugepagesz= specified twice, ignoring\n");
2689                 return;
2690         }
2691         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2692         BUG_ON(order == 0);
2693         h = &hstates[hugetlb_max_hstate++];
2694         h->order = order;
2695         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2696         h->nr_huge_pages = 0;
2697         h->free_huge_pages = 0;
2698         for (i = 0; i < MAX_NUMNODES; ++i)
2699                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2700         INIT_LIST_HEAD(&h->hugepage_activelist);
2701         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2702         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2703         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2704                                         huge_page_size(h)/1024);
2705
2706         parsed_hstate = h;
2707 }
2708
2709 static int __init hugetlb_nrpages_setup(char *s)
2710 {
2711         unsigned long *mhp;
2712         static unsigned long *last_mhp;
2713
2714         /*
2715          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2716          * so this hugepages= parameter goes to the "default hstate".
2717          */
2718         if (!hugetlb_max_hstate)
2719                 mhp = &default_hstate_max_huge_pages;
2720         else
2721                 mhp = &parsed_hstate->max_huge_pages;
2722
2723         if (mhp == last_mhp) {
2724                 pr_warning("hugepages= specified twice without "
2725                            "interleaving hugepagesz=, ignoring\n");
2726                 return 1;
2727         }
2728
2729         if (sscanf(s, "%lu", mhp) <= 0)
2730                 *mhp = 0;
2731
2732         /*
2733          * Global state is always initialized later in hugetlb_init.
2734          * But we need to allocate >= MAX_ORDER hstates here early to still
2735          * use the bootmem allocator.
2736          */
2737         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2738                 hugetlb_hstate_alloc_pages(parsed_hstate);
2739
2740         last_mhp = mhp;
2741
2742         return 1;
2743 }
2744 __setup("hugepages=", hugetlb_nrpages_setup);
2745
2746 static int __init hugetlb_default_setup(char *s)
2747 {
2748         default_hstate_size = memparse(s, &s);
2749         return 1;
2750 }
2751 __setup("default_hugepagesz=", hugetlb_default_setup);
2752
2753 static unsigned int cpuset_mems_nr(unsigned int *array)
2754 {
2755         int node;
2756         unsigned int nr = 0;
2757
2758         for_each_node_mask(node, cpuset_current_mems_allowed)
2759                 nr += array[node];
2760
2761         return nr;
2762 }
2763
2764 #ifdef CONFIG_SYSCTL
2765 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2766                          struct ctl_table *table, int write,
2767                          void __user *buffer, size_t *length, loff_t *ppos)
2768 {
2769         struct hstate *h = &default_hstate;
2770         unsigned long tmp = h->max_huge_pages;
2771         int ret;
2772
2773         if (!hugepages_supported())
2774                 return -ENOTSUPP;
2775
2776         table->data = &tmp;
2777         table->maxlen = sizeof(unsigned long);
2778         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2779         if (ret)
2780                 goto out;
2781
2782         if (write)
2783                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2784                                                   NUMA_NO_NODE, tmp, *length);
2785 out:
2786         return ret;
2787 }
2788
2789 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2790                           void __user *buffer, size_t *length, loff_t *ppos)
2791 {
2792
2793         return hugetlb_sysctl_handler_common(false, table, write,
2794                                                         buffer, length, ppos);
2795 }
2796
2797 #ifdef CONFIG_NUMA
2798 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2799                           void __user *buffer, size_t *length, loff_t *ppos)
2800 {
2801         return hugetlb_sysctl_handler_common(true, table, write,
2802                                                         buffer, length, ppos);
2803 }
2804 #endif /* CONFIG_NUMA */
2805
2806 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2807                         void __user *buffer,
2808                         size_t *length, loff_t *ppos)
2809 {
2810         struct hstate *h = &default_hstate;
2811         unsigned long tmp;
2812         int ret;
2813
2814         if (!hugepages_supported())
2815                 return -ENOTSUPP;
2816
2817         tmp = h->nr_overcommit_huge_pages;
2818
2819         if (write && hstate_is_gigantic(h))
2820                 return -EINVAL;
2821
2822         table->data = &tmp;
2823         table->maxlen = sizeof(unsigned long);
2824         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2825         if (ret)
2826                 goto out;
2827
2828         if (write) {
2829                 spin_lock(&hugetlb_lock);
2830                 h->nr_overcommit_huge_pages = tmp;
2831                 spin_unlock(&hugetlb_lock);
2832         }
2833 out:
2834         return ret;
2835 }
2836
2837 #endif /* CONFIG_SYSCTL */
2838
2839 void hugetlb_report_meminfo(struct seq_file *m)
2840 {
2841         struct hstate *h = &default_hstate;
2842         if (!hugepages_supported())
2843                 return;
2844         seq_printf(m,
2845                         "HugePages_Total:   %5lu\n"
2846                         "HugePages_Free:    %5lu\n"
2847                         "HugePages_Rsvd:    %5lu\n"
2848                         "HugePages_Surp:    %5lu\n"
2849                         "Hugepagesize:   %8lu kB\n",
2850                         h->nr_huge_pages,
2851                         h->free_huge_pages,
2852                         h->resv_huge_pages,
2853                         h->surplus_huge_pages,
2854                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2855 }
2856
2857 int hugetlb_report_node_meminfo(int nid, char *buf)
2858 {
2859         struct hstate *h = &default_hstate;
2860         if (!hugepages_supported())
2861                 return 0;
2862         return sprintf(buf,
2863                 "Node %d HugePages_Total: %5u\n"
2864                 "Node %d HugePages_Free:  %5u\n"
2865                 "Node %d HugePages_Surp:  %5u\n",
2866                 nid, h->nr_huge_pages_node[nid],
2867                 nid, h->free_huge_pages_node[nid],
2868                 nid, h->surplus_huge_pages_node[nid]);
2869 }
2870
2871 void hugetlb_show_meminfo(void)
2872 {
2873         struct hstate *h;
2874         int nid;
2875
2876         if (!hugepages_supported())
2877                 return;
2878
2879         for_each_node_state(nid, N_MEMORY)
2880                 for_each_hstate(h)
2881                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2882                                 nid,
2883                                 h->nr_huge_pages_node[nid],
2884                                 h->free_huge_pages_node[nid],
2885                                 h->surplus_huge_pages_node[nid],
2886                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2887 }
2888
2889 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2890 {
2891         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2892                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2893 }
2894
2895 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2896 unsigned long hugetlb_total_pages(void)
2897 {
2898         struct hstate *h;
2899         unsigned long nr_total_pages = 0;
2900
2901         for_each_hstate(h)
2902                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2903         return nr_total_pages;
2904 }
2905
2906 static int hugetlb_acct_memory(struct hstate *h, long delta)
2907 {
2908         int ret = -ENOMEM;
2909
2910         spin_lock(&hugetlb_lock);
2911         /*
2912          * When cpuset is configured, it breaks the strict hugetlb page
2913          * reservation as the accounting is done on a global variable. Such
2914          * reservation is completely rubbish in the presence of cpuset because
2915          * the reservation is not checked against page availability for the
2916          * current cpuset. Application can still potentially OOM'ed by kernel
2917          * with lack of free htlb page in cpuset that the task is in.
2918          * Attempt to enforce strict accounting with cpuset is almost
2919          * impossible (or too ugly) because cpuset is too fluid that
2920          * task or memory node can be dynamically moved between cpusets.
2921          *
2922          * The change of semantics for shared hugetlb mapping with cpuset is
2923          * undesirable. However, in order to preserve some of the semantics,
2924          * we fall back to check against current free page availability as
2925          * a best attempt and hopefully to minimize the impact of changing
2926          * semantics that cpuset has.
2927          */
2928         if (delta > 0) {
2929                 if (gather_surplus_pages(h, delta) < 0)
2930                         goto out;
2931
2932                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2933                         return_unused_surplus_pages(h, delta);
2934                         goto out;
2935                 }
2936         }
2937
2938         ret = 0;
2939         if (delta < 0)
2940                 return_unused_surplus_pages(h, (unsigned long) -delta);
2941
2942 out:
2943         spin_unlock(&hugetlb_lock);
2944         return ret;
2945 }
2946
2947 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2948 {
2949         struct resv_map *resv = vma_resv_map(vma);
2950
2951         /*
2952          * This new VMA should share its siblings reservation map if present.
2953          * The VMA will only ever have a valid reservation map pointer where
2954          * it is being copied for another still existing VMA.  As that VMA
2955          * has a reference to the reservation map it cannot disappear until
2956          * after this open call completes.  It is therefore safe to take a
2957          * new reference here without additional locking.
2958          */
2959         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2960                 kref_get(&resv->refs);
2961 }
2962
2963 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2964 {
2965         struct hstate *h = hstate_vma(vma);
2966         struct resv_map *resv = vma_resv_map(vma);
2967         struct hugepage_subpool *spool = subpool_vma(vma);
2968         unsigned long reserve, start, end;
2969         long gbl_reserve;
2970
2971         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2972                 return;
2973
2974         start = vma_hugecache_offset(h, vma, vma->vm_start);
2975         end = vma_hugecache_offset(h, vma, vma->vm_end);
2976
2977         reserve = (end - start) - region_count(resv, start, end);
2978
2979         kref_put(&resv->refs, resv_map_release);
2980
2981         if (reserve) {
2982                 /*
2983                  * Decrement reserve counts.  The global reserve count may be
2984                  * adjusted if the subpool has a minimum size.
2985                  */
2986                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2987                 hugetlb_acct_memory(h, -gbl_reserve);
2988         }
2989 }
2990
2991 /*
2992  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2993  * handle_mm_fault() to try to instantiate regular-sized pages in the
2994  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2995  * this far.
2996  */
2997 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2998 {
2999         BUG();
3000         return 0;
3001 }
3002
3003 const struct vm_operations_struct hugetlb_vm_ops = {
3004         .fault = hugetlb_vm_op_fault,
3005         .open = hugetlb_vm_op_open,
3006         .close = hugetlb_vm_op_close,
3007 };
3008
3009 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3010                                 int writable)
3011 {
3012         pte_t entry;
3013
3014         if (writable) {
3015                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3016                                          vma->vm_page_prot)));
3017         } else {
3018                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3019                                            vma->vm_page_prot));
3020         }
3021         entry = pte_mkyoung(entry);
3022         entry = pte_mkhuge(entry);
3023         entry = arch_make_huge_pte(entry, vma, page, writable);
3024
3025         return entry;
3026 }
3027
3028 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3029                                    unsigned long address, pte_t *ptep)
3030 {
3031         pte_t entry;
3032
3033         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3034         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3035                 update_mmu_cache(vma, address, ptep);
3036 }
3037
3038 static int is_hugetlb_entry_migration(pte_t pte)
3039 {
3040         swp_entry_t swp;
3041
3042         if (huge_pte_none(pte) || pte_present(pte))
3043                 return 0;
3044         swp = pte_to_swp_entry(pte);
3045         if (non_swap_entry(swp) && is_migration_entry(swp))
3046                 return 1;
3047         else
3048                 return 0;
3049 }
3050
3051 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3052 {
3053         swp_entry_t swp;
3054
3055         if (huge_pte_none(pte) || pte_present(pte))
3056                 return 0;
3057         swp = pte_to_swp_entry(pte);
3058         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3059                 return 1;
3060         else
3061                 return 0;
3062 }
3063
3064 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3065                             struct vm_area_struct *vma)
3066 {
3067         pte_t *src_pte, *dst_pte, entry;
3068         struct page *ptepage;
3069         unsigned long addr;
3070         int cow;
3071         struct hstate *h = hstate_vma(vma);
3072         unsigned long sz = huge_page_size(h);
3073         unsigned long mmun_start;       /* For mmu_notifiers */
3074         unsigned long mmun_end;         /* For mmu_notifiers */
3075         int ret = 0;
3076
3077         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3078
3079         mmun_start = vma->vm_start;
3080         mmun_end = vma->vm_end;
3081         if (cow)
3082                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3083
3084         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3085                 spinlock_t *src_ptl, *dst_ptl;
3086                 src_pte = huge_pte_offset(src, addr);
3087                 if (!src_pte)
3088                         continue;
3089                 dst_pte = huge_pte_alloc(dst, addr, sz);
3090                 if (!dst_pte) {
3091                         ret = -ENOMEM;
3092                         break;
3093                 }
3094
3095                 /* If the pagetables are shared don't copy or take references */
3096                 if (dst_pte == src_pte)
3097                         continue;
3098
3099                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3100                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3101                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3102                 entry = huge_ptep_get(src_pte);
3103                 if (huge_pte_none(entry)) { /* skip none entry */
3104                         ;
3105                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3106                                     is_hugetlb_entry_hwpoisoned(entry))) {
3107                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3108
3109                         if (is_write_migration_entry(swp_entry) && cow) {
3110                                 /*
3111                                  * COW mappings require pages in both
3112                                  * parent and child to be set to read.
3113                                  */
3114                                 make_migration_entry_read(&swp_entry);
3115                                 entry = swp_entry_to_pte(swp_entry);
3116                                 set_huge_pte_at(src, addr, src_pte, entry);
3117                         }
3118                         set_huge_pte_at(dst, addr, dst_pte, entry);
3119                 } else {
3120                         if (cow) {
3121                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3122                                 mmu_notifier_invalidate_range(src, mmun_start,
3123                                                                    mmun_end);
3124                         }
3125                         entry = huge_ptep_get(src_pte);
3126                         ptepage = pte_page(entry);
3127                         get_page(ptepage);
3128                         page_dup_rmap(ptepage);
3129                         set_huge_pte_at(dst, addr, dst_pte, entry);
3130                         hugetlb_count_add(pages_per_huge_page(h), dst);
3131                 }
3132                 spin_unlock(src_ptl);
3133                 spin_unlock(dst_ptl);
3134         }
3135
3136         if (cow)
3137                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3138
3139         return ret;
3140 }
3141
3142 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3143                             unsigned long start, unsigned long end,
3144                             struct page *ref_page)
3145 {
3146         int force_flush = 0;
3147         struct mm_struct *mm = vma->vm_mm;
3148         unsigned long address;
3149         pte_t *ptep;
3150         pte_t pte;
3151         spinlock_t *ptl;
3152         struct page *page;
3153         struct hstate *h = hstate_vma(vma);
3154         unsigned long sz = huge_page_size(h);
3155         const unsigned long mmun_start = start; /* For mmu_notifiers */
3156         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3157
3158         WARN_ON(!is_vm_hugetlb_page(vma));
3159         BUG_ON(start & ~huge_page_mask(h));
3160         BUG_ON(end & ~huge_page_mask(h));
3161
3162         tlb_start_vma(tlb, vma);
3163         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3164         address = start;
3165 again:
3166         for (; address < end; address += sz) {
3167                 ptep = huge_pte_offset(mm, address);
3168                 if (!ptep)
3169                         continue;
3170
3171                 ptl = huge_pte_lock(h, mm, ptep);
3172                 if (huge_pmd_unshare(mm, &address, ptep))
3173                         goto unlock;
3174
3175                 pte = huge_ptep_get(ptep);
3176                 if (huge_pte_none(pte))
3177                         goto unlock;
3178
3179                 /*
3180                  * Migrating hugepage or HWPoisoned hugepage is already
3181                  * unmapped and its refcount is dropped, so just clear pte here.
3182                  */
3183                 if (unlikely(!pte_present(pte))) {
3184                         huge_pte_clear(mm, address, ptep);
3185                         goto unlock;
3186                 }
3187
3188                 page = pte_page(pte);
3189                 /*
3190                  * If a reference page is supplied, it is because a specific
3191                  * page is being unmapped, not a range. Ensure the page we
3192                  * are about to unmap is the actual page of interest.
3193                  */
3194                 if (ref_page) {
3195                         if (page != ref_page)
3196                                 goto unlock;
3197
3198                         /*
3199                          * Mark the VMA as having unmapped its page so that
3200                          * future faults in this VMA will fail rather than
3201                          * looking like data was lost
3202                          */
3203                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3204                 }
3205
3206                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3207                 tlb_remove_tlb_entry(tlb, ptep, address);
3208                 if (huge_pte_dirty(pte))
3209                         set_page_dirty(page);
3210
3211                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3212                 page_remove_rmap(page);
3213                 force_flush = !__tlb_remove_page(tlb, page);
3214                 if (force_flush) {
3215                         address += sz;
3216                         spin_unlock(ptl);
3217                         break;
3218                 }
3219                 /* Bail out after unmapping reference page if supplied */
3220                 if (ref_page) {
3221                         spin_unlock(ptl);
3222                         break;
3223                 }
3224 unlock:
3225                 spin_unlock(ptl);
3226         }
3227         /*
3228          * mmu_gather ran out of room to batch pages, we break out of
3229          * the PTE lock to avoid doing the potential expensive TLB invalidate
3230          * and page-free while holding it.
3231          */
3232         if (force_flush) {
3233                 force_flush = 0;
3234                 tlb_flush_mmu(tlb);
3235                 if (address < end && !ref_page)
3236                         goto again;
3237         }
3238         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3239         tlb_end_vma(tlb, vma);
3240 }
3241
3242 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3243                           struct vm_area_struct *vma, unsigned long start,
3244                           unsigned long end, struct page *ref_page)
3245 {
3246         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3247
3248         /*
3249          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3250          * test will fail on a vma being torn down, and not grab a page table
3251          * on its way out.  We're lucky that the flag has such an appropriate
3252          * name, and can in fact be safely cleared here. We could clear it
3253          * before the __unmap_hugepage_range above, but all that's necessary
3254          * is to clear it before releasing the i_mmap_rwsem. This works
3255          * because in the context this is called, the VMA is about to be
3256          * destroyed and the i_mmap_rwsem is held.
3257          */
3258         vma->vm_flags &= ~VM_MAYSHARE;
3259 }
3260
3261 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3262                           unsigned long end, struct page *ref_page)
3263 {
3264         struct mm_struct *mm;
3265         struct mmu_gather tlb;
3266
3267         mm = vma->vm_mm;
3268
3269         tlb_gather_mmu(&tlb, mm, start, end);
3270         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3271         tlb_finish_mmu(&tlb, start, end);
3272 }
3273
3274 /*
3275  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3276  * mappping it owns the reserve page for. The intention is to unmap the page
3277  * from other VMAs and let the children be SIGKILLed if they are faulting the
3278  * same region.
3279  */
3280 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3281                               struct page *page, unsigned long address)
3282 {
3283         struct hstate *h = hstate_vma(vma);
3284         struct vm_area_struct *iter_vma;
3285         struct address_space *mapping;
3286         pgoff_t pgoff;
3287
3288         /*
3289          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3290          * from page cache lookup which is in HPAGE_SIZE units.
3291          */
3292         address = address & huge_page_mask(h);
3293         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3294                         vma->vm_pgoff;
3295         mapping = file_inode(vma->vm_file)->i_mapping;
3296
3297         /*
3298          * Take the mapping lock for the duration of the table walk. As
3299          * this mapping should be shared between all the VMAs,
3300          * __unmap_hugepage_range() is called as the lock is already held
3301          */
3302         i_mmap_lock_write(mapping);
3303         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3304                 /* Do not unmap the current VMA */
3305                 if (iter_vma == vma)
3306                         continue;
3307
3308                 /*
3309                  * Shared VMAs have their own reserves and do not affect
3310                  * MAP_PRIVATE accounting but it is possible that a shared
3311                  * VMA is using the same page so check and skip such VMAs.
3312                  */
3313                 if (iter_vma->vm_flags & VM_MAYSHARE)
3314                         continue;
3315
3316                 /*
3317                  * Unmap the page from other VMAs without their own reserves.
3318                  * They get marked to be SIGKILLed if they fault in these
3319                  * areas. This is because a future no-page fault on this VMA
3320                  * could insert a zeroed page instead of the data existing
3321                  * from the time of fork. This would look like data corruption
3322                  */
3323                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3324                         unmap_hugepage_range(iter_vma, address,
3325                                              address + huge_page_size(h), page);
3326         }
3327         i_mmap_unlock_write(mapping);
3328 }
3329
3330 /*
3331  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3332  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3333  * cannot race with other handlers or page migration.
3334  * Keep the pte_same checks anyway to make transition from the mutex easier.
3335  */
3336 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3337                         unsigned long address, pte_t *ptep, pte_t pte,
3338                         struct page *pagecache_page, spinlock_t *ptl)
3339 {
3340         struct hstate *h = hstate_vma(vma);
3341         struct page *old_page, *new_page;
3342         int ret = 0, outside_reserve = 0;
3343         unsigned long mmun_start;       /* For mmu_notifiers */
3344         unsigned long mmun_end;         /* For mmu_notifiers */
3345
3346         old_page = pte_page(pte);
3347
3348 retry_avoidcopy:
3349         /* If no-one else is actually using this page, avoid the copy
3350          * and just make the page writable */
3351         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3352                 page_move_anon_rmap(old_page, vma, address);
3353                 set_huge_ptep_writable(vma, address, ptep);
3354                 return 0;
3355         }
3356
3357         /*
3358          * If the process that created a MAP_PRIVATE mapping is about to
3359          * perform a COW due to a shared page count, attempt to satisfy
3360          * the allocation without using the existing reserves. The pagecache
3361          * page is used to determine if the reserve at this address was
3362          * consumed or not. If reserves were used, a partial faulted mapping
3363          * at the time of fork() could consume its reserves on COW instead
3364          * of the full address range.
3365          */
3366         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3367                         old_page != pagecache_page)
3368                 outside_reserve = 1;
3369
3370         page_cache_get(old_page);
3371
3372         /*
3373          * Drop page table lock as buddy allocator may be called. It will
3374          * be acquired again before returning to the caller, as expected.
3375          */
3376         spin_unlock(ptl);
3377         new_page = alloc_huge_page(vma, address, outside_reserve);
3378
3379         if (IS_ERR(new_page)) {
3380                 /*
3381                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3382                  * it is due to references held by a child and an insufficient
3383                  * huge page pool. To guarantee the original mappers
3384                  * reliability, unmap the page from child processes. The child
3385                  * may get SIGKILLed if it later faults.
3386                  */
3387                 if (outside_reserve) {
3388                         page_cache_release(old_page);
3389                         BUG_ON(huge_pte_none(pte));
3390                         unmap_ref_private(mm, vma, old_page, address);
3391                         BUG_ON(huge_pte_none(pte));
3392                         spin_lock(ptl);
3393                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3394                         if (likely(ptep &&
3395                                    pte_same(huge_ptep_get(ptep), pte)))
3396                                 goto retry_avoidcopy;
3397                         /*
3398                          * race occurs while re-acquiring page table
3399                          * lock, and our job is done.
3400                          */
3401                         return 0;
3402                 }
3403
3404                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3405                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3406                 goto out_release_old;
3407         }
3408
3409         /*
3410          * When the original hugepage is shared one, it does not have
3411          * anon_vma prepared.
3412          */
3413         if (unlikely(anon_vma_prepare(vma))) {
3414                 ret = VM_FAULT_OOM;
3415                 goto out_release_all;
3416         }
3417
3418         copy_user_huge_page(new_page, old_page, address, vma,
3419                             pages_per_huge_page(h));
3420         __SetPageUptodate(new_page);
3421         set_page_huge_active(new_page);
3422
3423         mmun_start = address & huge_page_mask(h);
3424         mmun_end = mmun_start + huge_page_size(h);
3425         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3426
3427         /*
3428          * Retake the page table lock to check for racing updates
3429          * before the page tables are altered
3430          */
3431         spin_lock(ptl);
3432         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3433         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3434                 ClearPagePrivate(new_page);
3435
3436                 /* Break COW */
3437                 huge_ptep_clear_flush(vma, address, ptep);
3438                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3439                 set_huge_pte_at(mm, address, ptep,
3440                                 make_huge_pte(vma, new_page, 1));
3441                 page_remove_rmap(old_page);
3442                 hugepage_add_new_anon_rmap(new_page, vma, address);
3443                 /* Make the old page be freed below */
3444                 new_page = old_page;
3445         }
3446         spin_unlock(ptl);
3447         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3448 out_release_all:
3449         page_cache_release(new_page);
3450 out_release_old:
3451         page_cache_release(old_page);
3452
3453         spin_lock(ptl); /* Caller expects lock to be held */
3454         return ret;
3455 }
3456
3457 /* Return the pagecache page at a given address within a VMA */
3458 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3459                         struct vm_area_struct *vma, unsigned long address)
3460 {
3461         struct address_space *mapping;
3462         pgoff_t idx;
3463
3464         mapping = vma->vm_file->f_mapping;
3465         idx = vma_hugecache_offset(h, vma, address);
3466
3467         return find_lock_page(mapping, idx);
3468 }
3469
3470 /*
3471  * Return whether there is a pagecache page to back given address within VMA.
3472  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3473  */
3474 static bool hugetlbfs_pagecache_present(struct hstate *h,
3475                         struct vm_area_struct *vma, unsigned long address)
3476 {
3477         struct address_space *mapping;
3478         pgoff_t idx;
3479         struct page *page;
3480
3481         mapping = vma->vm_file->f_mapping;
3482         idx = vma_hugecache_offset(h, vma, address);
3483
3484         page = find_get_page(mapping, idx);
3485         if (page)
3486                 put_page(page);
3487         return page != NULL;
3488 }
3489
3490 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3491                            pgoff_t idx)
3492 {
3493         struct inode *inode = mapping->host;
3494         struct hstate *h = hstate_inode(inode);
3495         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3496
3497         if (err)
3498                 return err;
3499         ClearPagePrivate(page);
3500
3501         spin_lock(&inode->i_lock);
3502         inode->i_blocks += blocks_per_huge_page(h);
3503         spin_unlock(&inode->i_lock);
3504         return 0;
3505 }
3506
3507 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3508                            struct address_space *mapping, pgoff_t idx,
3509                            unsigned long address, pte_t *ptep, unsigned int flags)
3510 {
3511         struct hstate *h = hstate_vma(vma);
3512         int ret = VM_FAULT_SIGBUS;
3513         int anon_rmap = 0;
3514         unsigned long size;
3515         struct page *page;
3516         pte_t new_pte;
3517         spinlock_t *ptl;
3518
3519         /*
3520          * Currently, we are forced to kill the process in the event the
3521          * original mapper has unmapped pages from the child due to a failed
3522          * COW. Warn that such a situation has occurred as it may not be obvious
3523          */
3524         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3525                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3526                            current->pid);
3527                 return ret;
3528         }
3529
3530         /*
3531          * Use page lock to guard against racing truncation
3532          * before we get page_table_lock.
3533          */
3534 retry:
3535         page = find_lock_page(mapping, idx);
3536         if (!page) {
3537                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3538                 if (idx >= size)
3539                         goto out;
3540                 page = alloc_huge_page(vma, address, 0);
3541                 if (IS_ERR(page)) {
3542                         ret = PTR_ERR(page);
3543                         if (ret == -ENOMEM)
3544                                 ret = VM_FAULT_OOM;
3545                         else
3546                                 ret = VM_FAULT_SIGBUS;
3547                         goto out;
3548                 }
3549                 clear_huge_page(page, address, pages_per_huge_page(h));
3550                 __SetPageUptodate(page);
3551                 set_page_huge_active(page);
3552
3553                 if (vma->vm_flags & VM_MAYSHARE) {
3554                         int err = huge_add_to_page_cache(page, mapping, idx);
3555                         if (err) {
3556                                 put_page(page);
3557                                 if (err == -EEXIST)
3558                                         goto retry;
3559                                 goto out;
3560                         }
3561                 } else {
3562                         lock_page(page);
3563                         if (unlikely(anon_vma_prepare(vma))) {
3564                                 ret = VM_FAULT_OOM;
3565                                 goto backout_unlocked;
3566                         }
3567                         anon_rmap = 1;
3568                 }
3569         } else {
3570                 /*
3571                  * If memory error occurs between mmap() and fault, some process
3572                  * don't have hwpoisoned swap entry for errored virtual address.
3573                  * So we need to block hugepage fault by PG_hwpoison bit check.
3574                  */
3575                 if (unlikely(PageHWPoison(page))) {
3576                         ret = VM_FAULT_HWPOISON |
3577                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3578                         goto backout_unlocked;
3579                 }
3580         }
3581
3582         /*
3583          * If we are going to COW a private mapping later, we examine the
3584          * pending reservations for this page now. This will ensure that
3585          * any allocations necessary to record that reservation occur outside
3586          * the spinlock.
3587          */
3588         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3589                 if (vma_needs_reservation(h, vma, address) < 0) {
3590                         ret = VM_FAULT_OOM;
3591                         goto backout_unlocked;
3592                 }
3593                 /* Just decrements count, does not deallocate */
3594                 vma_end_reservation(h, vma, address);
3595         }
3596
3597         ptl = huge_pte_lockptr(h, mm, ptep);
3598         spin_lock(ptl);
3599         size = i_size_read(mapping->host) >> huge_page_shift(h);
3600         if (idx >= size)
3601                 goto backout;
3602
3603         ret = 0;
3604         if (!huge_pte_none(huge_ptep_get(ptep)))
3605                 goto backout;
3606
3607         if (anon_rmap) {
3608                 ClearPagePrivate(page);
3609                 hugepage_add_new_anon_rmap(page, vma, address);
3610         } else
3611                 page_dup_rmap(page);
3612         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3613                                 && (vma->vm_flags & VM_SHARED)));
3614         set_huge_pte_at(mm, address, ptep, new_pte);
3615
3616         hugetlb_count_add(pages_per_huge_page(h), mm);
3617         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3618                 /* Optimization, do the COW without a second fault */
3619                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3620         }
3621
3622         spin_unlock(ptl);
3623         unlock_page(page);
3624 out:
3625         return ret;
3626
3627 backout:
3628         spin_unlock(ptl);
3629 backout_unlocked:
3630         unlock_page(page);
3631         put_page(page);
3632         goto out;
3633 }
3634
3635 #ifdef CONFIG_SMP
3636 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3637                             struct vm_area_struct *vma,
3638                             struct address_space *mapping,
3639                             pgoff_t idx, unsigned long address)
3640 {
3641         unsigned long key[2];
3642         u32 hash;
3643
3644         if (vma->vm_flags & VM_SHARED) {
3645                 key[0] = (unsigned long) mapping;
3646                 key[1] = idx;
3647         } else {
3648                 key[0] = (unsigned long) mm;
3649                 key[1] = address >> huge_page_shift(h);
3650         }
3651
3652         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3653
3654         return hash & (num_fault_mutexes - 1);
3655 }
3656 #else
3657 /*
3658  * For uniprocesor systems we always use a single mutex, so just
3659  * return 0 and avoid the hashing overhead.
3660  */
3661 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3662                             struct vm_area_struct *vma,
3663                             struct address_space *mapping,
3664                             pgoff_t idx, unsigned long address)
3665 {
3666         return 0;
3667 }
3668 #endif
3669
3670 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3671                         unsigned long address, unsigned int flags)
3672 {
3673         pte_t *ptep, entry;
3674         spinlock_t *ptl;
3675         int ret;
3676         u32 hash;
3677         pgoff_t idx;
3678         struct page *page = NULL;
3679         struct page *pagecache_page = NULL;
3680         struct hstate *h = hstate_vma(vma);
3681         struct address_space *mapping;
3682         int need_wait_lock = 0;
3683
3684         address &= huge_page_mask(h);
3685
3686         ptep = huge_pte_offset(mm, address);
3687         if (ptep) {
3688                 entry = huge_ptep_get(ptep);
3689                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3690                         migration_entry_wait_huge(vma, mm, ptep);
3691                         return 0;
3692                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3693                         return VM_FAULT_HWPOISON_LARGE |
3694                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3695         }
3696
3697         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3698         if (!ptep)
3699                 return VM_FAULT_OOM;
3700
3701         mapping = vma->vm_file->f_mapping;
3702         idx = vma_hugecache_offset(h, vma, address);
3703
3704         /*
3705          * Serialize hugepage allocation and instantiation, so that we don't
3706          * get spurious allocation failures if two CPUs race to instantiate
3707          * the same page in the page cache.
3708          */
3709         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3710         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3711
3712         entry = huge_ptep_get(ptep);
3713         if (huge_pte_none(entry)) {
3714                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3715                 goto out_mutex;
3716         }
3717
3718         ret = 0;
3719
3720         /*
3721          * entry could be a migration/hwpoison entry at this point, so this
3722          * check prevents the kernel from going below assuming that we have
3723          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3724          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3725          * handle it.
3726          */
3727         if (!pte_present(entry))
3728                 goto out_mutex;
3729
3730         /*
3731          * If we are going to COW the mapping later, we examine the pending
3732          * reservations for this page now. This will ensure that any
3733          * allocations necessary to record that reservation occur outside the
3734          * spinlock. For private mappings, we also lookup the pagecache
3735          * page now as it is used to determine if a reservation has been
3736          * consumed.
3737          */
3738         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3739                 if (vma_needs_reservation(h, vma, address) < 0) {
3740                         ret = VM_FAULT_OOM;
3741                         goto out_mutex;
3742                 }
3743                 /* Just decrements count, does not deallocate */
3744                 vma_end_reservation(h, vma, address);
3745
3746                 if (!(vma->vm_flags & VM_MAYSHARE))
3747                         pagecache_page = hugetlbfs_pagecache_page(h,
3748                                                                 vma, address);
3749         }
3750
3751         ptl = huge_pte_lock(h, mm, ptep);
3752
3753         /* Check for a racing update before calling hugetlb_cow */
3754         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3755                 goto out_ptl;
3756
3757         /*
3758          * hugetlb_cow() requires page locks of pte_page(entry) and
3759          * pagecache_page, so here we need take the former one
3760          * when page != pagecache_page or !pagecache_page.
3761          */
3762         page = pte_page(entry);
3763         if (page != pagecache_page)
3764                 if (!trylock_page(page)) {
3765                         need_wait_lock = 1;
3766                         goto out_ptl;
3767                 }
3768
3769         get_page(page);
3770
3771         if (flags & FAULT_FLAG_WRITE) {
3772                 if (!huge_pte_write(entry)) {
3773                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3774                                         pagecache_page, ptl);
3775                         goto out_put_page;
3776                 }
3777                 entry = huge_pte_mkdirty(entry);
3778         }
3779         entry = pte_mkyoung(entry);
3780         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3781                                                 flags & FAULT_FLAG_WRITE))
3782                 update_mmu_cache(vma, address, ptep);
3783 out_put_page:
3784         if (page != pagecache_page)
3785                 unlock_page(page);
3786         put_page(page);
3787 out_ptl:
3788         spin_unlock(ptl);
3789
3790         if (pagecache_page) {
3791                 unlock_page(pagecache_page);
3792                 put_page(pagecache_page);
3793         }
3794 out_mutex:
3795         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3796         /*
3797          * Generally it's safe to hold refcount during waiting page lock. But
3798          * here we just wait to defer the next page fault to avoid busy loop and
3799          * the page is not used after unlocked before returning from the current
3800          * page fault. So we are safe from accessing freed page, even if we wait
3801          * here without taking refcount.
3802          */
3803         if (need_wait_lock)
3804                 wait_on_page_locked(page);
3805         return ret;
3806 }
3807
3808 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3809                          struct page **pages, struct vm_area_struct **vmas,
3810                          unsigned long *position, unsigned long *nr_pages,
3811                          long i, unsigned int flags)
3812 {
3813         unsigned long pfn_offset;
3814         unsigned long vaddr = *position;
3815         unsigned long remainder = *nr_pages;
3816         struct hstate *h = hstate_vma(vma);
3817
3818         while (vaddr < vma->vm_end && remainder) {
3819                 pte_t *pte;
3820                 spinlock_t *ptl = NULL;
3821                 int absent;
3822                 struct page *page;
3823
3824                 /*
3825                  * If we have a pending SIGKILL, don't keep faulting pages and
3826                  * potentially allocating memory.
3827                  */
3828                 if (unlikely(fatal_signal_pending(current))) {
3829                         remainder = 0;
3830                         break;
3831                 }
3832
3833                 /*
3834                  * Some archs (sparc64, sh*) have multiple pte_ts to
3835                  * each hugepage.  We have to make sure we get the
3836                  * first, for the page indexing below to work.
3837                  *
3838                  * Note that page table lock is not held when pte is null.
3839                  */
3840                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3841                 if (pte)
3842                         ptl = huge_pte_lock(h, mm, pte);
3843                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3844
3845                 /*
3846                  * When coredumping, it suits get_dump_page if we just return
3847                  * an error where there's an empty slot with no huge pagecache
3848                  * to back it.  This way, we avoid allocating a hugepage, and
3849                  * the sparse dumpfile avoids allocating disk blocks, but its
3850                  * huge holes still show up with zeroes where they need to be.
3851                  */
3852                 if (absent && (flags & FOLL_DUMP) &&
3853                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3854                         if (pte)
3855                                 spin_unlock(ptl);
3856                         remainder = 0;
3857                         break;
3858                 }
3859
3860                 /*
3861                  * We need call hugetlb_fault for both hugepages under migration
3862                  * (in which case hugetlb_fault waits for the migration,) and
3863                  * hwpoisoned hugepages (in which case we need to prevent the
3864                  * caller from accessing to them.) In order to do this, we use
3865                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3866                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3867                  * both cases, and because we can't follow correct pages
3868                  * directly from any kind of swap entries.
3869                  */
3870                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3871                     ((flags & FOLL_WRITE) &&
3872                       !huge_pte_write(huge_ptep_get(pte)))) {
3873                         int ret;
3874
3875                         if (pte)
3876                                 spin_unlock(ptl);
3877                         ret = hugetlb_fault(mm, vma, vaddr,
3878                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3879                         if (!(ret & VM_FAULT_ERROR))
3880                                 continue;
3881
3882                         remainder = 0;
3883                         break;
3884                 }
3885
3886                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3887                 page = pte_page(huge_ptep_get(pte));
3888 same_page:
3889                 if (pages) {
3890                         pages[i] = mem_map_offset(page, pfn_offset);
3891                         get_page_foll(pages[i]);
3892                 }
3893
3894                 if (vmas)
3895                         vmas[i] = vma;
3896
3897                 vaddr += PAGE_SIZE;
3898                 ++pfn_offset;
3899                 --remainder;
3900                 ++i;
3901                 if (vaddr < vma->vm_end && remainder &&
3902                                 pfn_offset < pages_per_huge_page(h)) {
3903                         /*
3904                          * We use pfn_offset to avoid touching the pageframes
3905                          * of this compound page.
3906                          */
3907                         goto same_page;
3908                 }
3909                 spin_unlock(ptl);
3910         }
3911         *nr_pages = remainder;
3912         *position = vaddr;
3913
3914         return i ? i : -EFAULT;
3915 }
3916
3917 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3918                 unsigned long address, unsigned long end, pgprot_t newprot)
3919 {
3920         struct mm_struct *mm = vma->vm_mm;
3921         unsigned long start = address;
3922         pte_t *ptep;
3923         pte_t pte;
3924         struct hstate *h = hstate_vma(vma);
3925         unsigned long pages = 0;
3926
3927         BUG_ON(address >= end);
3928         flush_cache_range(vma, address, end);
3929
3930         mmu_notifier_invalidate_range_start(mm, start, end);
3931         i_mmap_lock_write(vma->vm_file->f_mapping);
3932         for (; address < end; address += huge_page_size(h)) {
3933                 spinlock_t *ptl;
3934                 ptep = huge_pte_offset(mm, address);
3935                 if (!ptep)
3936                         continue;
3937                 ptl = huge_pte_lock(h, mm, ptep);
3938                 if (huge_pmd_unshare(mm, &address, ptep)) {
3939                         pages++;
3940                         spin_unlock(ptl);
3941                         continue;
3942                 }
3943                 pte = huge_ptep_get(ptep);
3944                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3945                         spin_unlock(ptl);
3946                         continue;
3947                 }
3948                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3949                         swp_entry_t entry = pte_to_swp_entry(pte);
3950
3951                         if (is_write_migration_entry(entry)) {
3952                                 pte_t newpte;
3953
3954                                 make_migration_entry_read(&entry);
3955                                 newpte = swp_entry_to_pte(entry);
3956                                 set_huge_pte_at(mm, address, ptep, newpte);
3957                                 pages++;
3958                         }
3959                         spin_unlock(ptl);
3960                         continue;
3961                 }
3962                 if (!huge_pte_none(pte)) {
3963                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3964                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3965                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3966                         set_huge_pte_at(mm, address, ptep, pte);
3967                         pages++;
3968                 }
3969                 spin_unlock(ptl);
3970         }
3971         /*
3972          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3973          * may have cleared our pud entry and done put_page on the page table:
3974          * once we release i_mmap_rwsem, another task can do the final put_page
3975          * and that page table be reused and filled with junk.
3976          */
3977         flush_tlb_range(vma, start, end);
3978         mmu_notifier_invalidate_range(mm, start, end);
3979         i_mmap_unlock_write(vma->vm_file->f_mapping);
3980         mmu_notifier_invalidate_range_end(mm, start, end);
3981
3982         return pages << h->order;
3983 }
3984
3985 int hugetlb_reserve_pages(struct inode *inode,
3986                                         long from, long to,
3987                                         struct vm_area_struct *vma,
3988                                         vm_flags_t vm_flags)
3989 {
3990         long ret, chg;
3991         struct hstate *h = hstate_inode(inode);
3992         struct hugepage_subpool *spool = subpool_inode(inode);
3993         struct resv_map *resv_map;
3994         long gbl_reserve;
3995
3996         /*
3997          * Only apply hugepage reservation if asked. At fault time, an
3998          * attempt will be made for VM_NORESERVE to allocate a page
3999          * without using reserves
4000          */
4001         if (vm_flags & VM_NORESERVE)
4002                 return 0;
4003
4004         /*
4005          * Shared mappings base their reservation on the number of pages that
4006          * are already allocated on behalf of the file. Private mappings need
4007          * to reserve the full area even if read-only as mprotect() may be
4008          * called to make the mapping read-write. Assume !vma is a shm mapping
4009          */
4010         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4011                 resv_map = inode_resv_map(inode);
4012
4013                 chg = region_chg(resv_map, from, to);
4014
4015         } else {
4016                 resv_map = resv_map_alloc();
4017                 if (!resv_map)
4018                         return -ENOMEM;
4019
4020                 chg = to - from;
4021
4022                 set_vma_resv_map(vma, resv_map);
4023                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4024         }
4025
4026         if (chg < 0) {
4027                 ret = chg;
4028                 goto out_err;
4029         }
4030
4031         /*
4032          * There must be enough pages in the subpool for the mapping. If
4033          * the subpool has a minimum size, there may be some global
4034          * reservations already in place (gbl_reserve).
4035          */
4036         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4037         if (gbl_reserve < 0) {
4038                 ret = -ENOSPC;
4039                 goto out_err;
4040         }
4041
4042         /*
4043          * Check enough hugepages are available for the reservation.
4044          * Hand the pages back to the subpool if there are not
4045          */
4046         ret = hugetlb_acct_memory(h, gbl_reserve);
4047         if (ret < 0) {
4048                 /* put back original number of pages, chg */
4049                 (void)hugepage_subpool_put_pages(spool, chg);
4050                 goto out_err;
4051         }
4052
4053         /*
4054          * Account for the reservations made. Shared mappings record regions
4055          * that have reservations as they are shared by multiple VMAs.
4056          * When the last VMA disappears, the region map says how much
4057          * the reservation was and the page cache tells how much of
4058          * the reservation was consumed. Private mappings are per-VMA and
4059          * only the consumed reservations are tracked. When the VMA
4060          * disappears, the original reservation is the VMA size and the
4061          * consumed reservations are stored in the map. Hence, nothing
4062          * else has to be done for private mappings here
4063          */
4064         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4065                 long add = region_add(resv_map, from, to);
4066
4067                 if (unlikely(chg > add)) {
4068                         /*
4069                          * pages in this range were added to the reserve
4070                          * map between region_chg and region_add.  This
4071                          * indicates a race with alloc_huge_page.  Adjust
4072                          * the subpool and reserve counts modified above
4073                          * based on the difference.
4074                          */
4075                         long rsv_adjust;
4076
4077                         rsv_adjust = hugepage_subpool_put_pages(spool,
4078                                                                 chg - add);
4079                         hugetlb_acct_memory(h, -rsv_adjust);
4080                 }
4081         }
4082         return 0;
4083 out_err:
4084         if (!vma || vma->vm_flags & VM_MAYSHARE)
4085                 region_abort(resv_map, from, to);
4086         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4087                 kref_put(&resv_map->refs, resv_map_release);
4088         return ret;
4089 }
4090
4091 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4092                                                                 long freed)
4093 {
4094         struct hstate *h = hstate_inode(inode);
4095         struct resv_map *resv_map = inode_resv_map(inode);
4096         long chg = 0;
4097         struct hugepage_subpool *spool = subpool_inode(inode);
4098         long gbl_reserve;
4099
4100         if (resv_map) {
4101                 chg = region_del(resv_map, start, end);
4102                 /*
4103                  * region_del() can fail in the rare case where a region
4104                  * must be split and another region descriptor can not be
4105                  * allocated.  If end == LONG_MAX, it will not fail.
4106                  */
4107                 if (chg < 0)
4108                         return chg;
4109         }
4110
4111         spin_lock(&inode->i_lock);
4112         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4113         spin_unlock(&inode->i_lock);
4114
4115         /*
4116          * If the subpool has a minimum size, the number of global
4117          * reservations to be released may be adjusted.
4118          */
4119         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4120         hugetlb_acct_memory(h, -gbl_reserve);
4121
4122         return 0;
4123 }
4124
4125 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4126 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4127                                 struct vm_area_struct *vma,
4128                                 unsigned long addr, pgoff_t idx)
4129 {
4130         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4131                                 svma->vm_start;
4132         unsigned long sbase = saddr & PUD_MASK;
4133         unsigned long s_end = sbase + PUD_SIZE;
4134
4135         /* Allow segments to share if only one is marked locked */
4136         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4137         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4138
4139         /*
4140          * match the virtual addresses, permission and the alignment of the
4141          * page table page.
4142          */
4143         if (pmd_index(addr) != pmd_index(saddr) ||
4144             vm_flags != svm_flags ||
4145             sbase < svma->vm_start || svma->vm_end < s_end)
4146                 return 0;
4147
4148         return saddr;
4149 }
4150
4151 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4152 {
4153         unsigned long base = addr & PUD_MASK;
4154         unsigned long end = base + PUD_SIZE;
4155
4156         /*
4157          * check on proper vm_flags and page table alignment
4158          */
4159         if (vma->vm_flags & VM_MAYSHARE &&
4160             vma->vm_start <= base && end <= vma->vm_end)
4161                 return true;
4162         return false;
4163 }
4164
4165 /*
4166  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4167  * and returns the corresponding pte. While this is not necessary for the
4168  * !shared pmd case because we can allocate the pmd later as well, it makes the
4169  * code much cleaner. pmd allocation is essential for the shared case because
4170  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4171  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4172  * bad pmd for sharing.
4173  */
4174 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4175 {
4176         struct vm_area_struct *vma = find_vma(mm, addr);
4177         struct address_space *mapping = vma->vm_file->f_mapping;
4178         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4179                         vma->vm_pgoff;
4180         struct vm_area_struct *svma;
4181         unsigned long saddr;
4182         pte_t *spte = NULL;
4183         pte_t *pte;
4184         spinlock_t *ptl;
4185
4186         if (!vma_shareable(vma, addr))
4187                 return (pte_t *)pmd_alloc(mm, pud, addr);
4188
4189         i_mmap_lock_write(mapping);
4190         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4191                 if (svma == vma)
4192                         continue;
4193
4194                 saddr = page_table_shareable(svma, vma, addr, idx);
4195                 if (saddr) {
4196                         spte = huge_pte_offset(svma->vm_mm, saddr);
4197                         if (spte) {
4198                                 mm_inc_nr_pmds(mm);
4199                                 get_page(virt_to_page(spte));
4200                                 break;
4201                         }
4202                 }
4203         }
4204
4205         if (!spte)
4206                 goto out;
4207
4208         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4209         spin_lock(ptl);
4210         if (pud_none(*pud)) {
4211                 pud_populate(mm, pud,
4212                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4213         } else {
4214                 put_page(virt_to_page(spte));
4215                 mm_inc_nr_pmds(mm);
4216         }
4217         spin_unlock(ptl);
4218 out:
4219         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4220         i_mmap_unlock_write(mapping);
4221         return pte;
4222 }
4223
4224 /*
4225  * unmap huge page backed by shared pte.
4226  *
4227  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4228  * indicated by page_count > 1, unmap is achieved by clearing pud and
4229  * decrementing the ref count. If count == 1, the pte page is not shared.
4230  *
4231  * called with page table lock held.
4232  *
4233  * returns: 1 successfully unmapped a shared pte page
4234  *          0 the underlying pte page is not shared, or it is the last user
4235  */
4236 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4237 {
4238         pgd_t *pgd = pgd_offset(mm, *addr);
4239         pud_t *pud = pud_offset(pgd, *addr);
4240
4241         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4242         if (page_count(virt_to_page(ptep)) == 1)
4243                 return 0;
4244
4245         pud_clear(pud);
4246         put_page(virt_to_page(ptep));
4247         mm_dec_nr_pmds(mm);
4248         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4249         return 1;
4250 }
4251 #define want_pmd_share()        (1)
4252 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4253 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4254 {
4255         return NULL;
4256 }
4257
4258 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4259 {
4260         return 0;
4261 }
4262 #define want_pmd_share()        (0)
4263 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4264
4265 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4266 pte_t *huge_pte_alloc(struct mm_struct *mm,
4267                         unsigned long addr, unsigned long sz)
4268 {
4269         pgd_t *pgd;
4270         pud_t *pud;
4271         pte_t *pte = NULL;
4272
4273         pgd = pgd_offset(mm, addr);
4274         pud = pud_alloc(mm, pgd, addr);
4275         if (pud) {
4276                 if (sz == PUD_SIZE) {
4277                         pte = (pte_t *)pud;
4278                 } else {
4279                         BUG_ON(sz != PMD_SIZE);
4280                         if (want_pmd_share() && pud_none(*pud))
4281                                 pte = huge_pmd_share(mm, addr, pud);
4282                         else
4283                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4284                 }
4285         }
4286         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4287
4288         return pte;
4289 }
4290
4291 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4292 {
4293         pgd_t *pgd;
4294         pud_t *pud;
4295         pmd_t *pmd = NULL;
4296
4297         pgd = pgd_offset(mm, addr);
4298         if (pgd_present(*pgd)) {
4299                 pud = pud_offset(pgd, addr);
4300                 if (pud_present(*pud)) {
4301                         if (pud_huge(*pud))
4302                                 return (pte_t *)pud;
4303                         pmd = pmd_offset(pud, addr);
4304                 }
4305         }
4306         return (pte_t *) pmd;
4307 }
4308
4309 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4310
4311 /*
4312  * These functions are overwritable if your architecture needs its own
4313  * behavior.
4314  */
4315 struct page * __weak
4316 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4317                               int write)
4318 {
4319         return ERR_PTR(-EINVAL);
4320 }
4321
4322 struct page * __weak
4323 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4324                 pmd_t *pmd, int flags)
4325 {
4326         struct page *page = NULL;
4327         spinlock_t *ptl;
4328 retry:
4329         ptl = pmd_lockptr(mm, pmd);
4330         spin_lock(ptl);
4331         /*
4332          * make sure that the address range covered by this pmd is not
4333          * unmapped from other threads.
4334          */
4335         if (!pmd_huge(*pmd))
4336                 goto out;
4337         if (pmd_present(*pmd)) {
4338                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4339                 if (flags & FOLL_GET)
4340                         get_page(page);
4341         } else {
4342                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4343                         spin_unlock(ptl);
4344                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4345                         goto retry;
4346                 }
4347                 /*
4348                  * hwpoisoned entry is treated as no_page_table in
4349                  * follow_page_mask().
4350                  */
4351         }
4352 out:
4353         spin_unlock(ptl);
4354         return page;
4355 }
4356
4357 struct page * __weak
4358 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4359                 pud_t *pud, int flags)
4360 {
4361         if (flags & FOLL_GET)
4362                 return NULL;
4363
4364         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4365 }
4366
4367 #ifdef CONFIG_MEMORY_FAILURE
4368
4369 /*
4370  * This function is called from memory failure code.
4371  * Assume the caller holds page lock of the head page.
4372  */
4373 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4374 {
4375         struct hstate *h = page_hstate(hpage);
4376         int nid = page_to_nid(hpage);
4377         int ret = -EBUSY;
4378
4379         spin_lock(&hugetlb_lock);
4380         /*
4381          * Just checking !page_huge_active is not enough, because that could be
4382          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4383          */
4384         if (!page_huge_active(hpage) && !page_count(hpage)) {
4385                 /*
4386                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4387                  * but dangling hpage->lru can trigger list-debug warnings
4388                  * (this happens when we call unpoison_memory() on it),
4389                  * so let it point to itself with list_del_init().
4390                  */
4391                 list_del_init(&hpage->lru);
4392                 set_page_refcounted(hpage);
4393                 h->free_huge_pages--;
4394                 h->free_huge_pages_node[nid]--;
4395                 ret = 0;
4396         }
4397         spin_unlock(&hugetlb_lock);
4398         return ret;
4399 }
4400 #endif
4401
4402 bool isolate_huge_page(struct page *page, struct list_head *list)
4403 {
4404         bool ret = true;
4405
4406         VM_BUG_ON_PAGE(!PageHead(page), page);
4407         spin_lock(&hugetlb_lock);
4408         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4409                 ret = false;
4410                 goto unlock;
4411         }
4412         clear_page_huge_active(page);
4413         list_move_tail(&page->lru, list);
4414 unlock:
4415         spin_unlock(&hugetlb_lock);
4416         return ret;
4417 }
4418
4419 void putback_active_hugepage(struct page *page)
4420 {
4421         VM_BUG_ON_PAGE(!PageHead(page), page);
4422         spin_lock(&hugetlb_lock);
4423         set_page_huge_active(page);
4424         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4425         spin_unlock(&hugetlb_lock);
4426         put_page(page);
4427 }