]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
hugetlb: pull gigantic page initialisation out of the default path
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20
21 #include <asm/page.h>
22 #include <asm/pgtable.h>
23 #include <asm/io.h>
24
25 #include <linux/hugetlb.h>
26 #include "internal.h"
27
28 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
29 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
30 unsigned long hugepages_treat_as_movable;
31
32 static int max_hstate;
33 unsigned int default_hstate_idx;
34 struct hstate hstates[HUGE_MAX_HSTATE];
35
36 __initdata LIST_HEAD(huge_boot_pages);
37
38 /* for command line parsing */
39 static struct hstate * __initdata parsed_hstate;
40 static unsigned long __initdata default_hstate_max_huge_pages;
41 static unsigned long __initdata default_hstate_size;
42
43 #define for_each_hstate(h) \
44         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
45
46 /*
47  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
48  */
49 static DEFINE_SPINLOCK(hugetlb_lock);
50
51 /*
52  * Region tracking -- allows tracking of reservations and instantiated pages
53  *                    across the pages in a mapping.
54  *
55  * The region data structures are protected by a combination of the mmap_sem
56  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
57  * must either hold the mmap_sem for write, or the mmap_sem for read and
58  * the hugetlb_instantiation mutex:
59  *
60  *      down_write(&mm->mmap_sem);
61  * or
62  *      down_read(&mm->mmap_sem);
63  *      mutex_lock(&hugetlb_instantiation_mutex);
64  */
65 struct file_region {
66         struct list_head link;
67         long from;
68         long to;
69 };
70
71 static long region_add(struct list_head *head, long f, long t)
72 {
73         struct file_region *rg, *nrg, *trg;
74
75         /* Locate the region we are either in or before. */
76         list_for_each_entry(rg, head, link)
77                 if (f <= rg->to)
78                         break;
79
80         /* Round our left edge to the current segment if it encloses us. */
81         if (f > rg->from)
82                 f = rg->from;
83
84         /* Check for and consume any regions we now overlap with. */
85         nrg = rg;
86         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
87                 if (&rg->link == head)
88                         break;
89                 if (rg->from > t)
90                         break;
91
92                 /* If this area reaches higher then extend our area to
93                  * include it completely.  If this is not the first area
94                  * which we intend to reuse, free it. */
95                 if (rg->to > t)
96                         t = rg->to;
97                 if (rg != nrg) {
98                         list_del(&rg->link);
99                         kfree(rg);
100                 }
101         }
102         nrg->from = f;
103         nrg->to = t;
104         return 0;
105 }
106
107 static long region_chg(struct list_head *head, long f, long t)
108 {
109         struct file_region *rg, *nrg;
110         long chg = 0;
111
112         /* Locate the region we are before or in. */
113         list_for_each_entry(rg, head, link)
114                 if (f <= rg->to)
115                         break;
116
117         /* If we are below the current region then a new region is required.
118          * Subtle, allocate a new region at the position but make it zero
119          * size such that we can guarantee to record the reservation. */
120         if (&rg->link == head || t < rg->from) {
121                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122                 if (!nrg)
123                         return -ENOMEM;
124                 nrg->from = f;
125                 nrg->to   = f;
126                 INIT_LIST_HEAD(&nrg->link);
127                 list_add(&nrg->link, rg->link.prev);
128
129                 return t - f;
130         }
131
132         /* Round our left edge to the current segment if it encloses us. */
133         if (f > rg->from)
134                 f = rg->from;
135         chg = t - f;
136
137         /* Check for and consume any regions we now overlap with. */
138         list_for_each_entry(rg, rg->link.prev, link) {
139                 if (&rg->link == head)
140                         break;
141                 if (rg->from > t)
142                         return chg;
143
144                 /* We overlap with this area, if it extends futher than
145                  * us then we must extend ourselves.  Account for its
146                  * existing reservation. */
147                 if (rg->to > t) {
148                         chg += rg->to - t;
149                         t = rg->to;
150                 }
151                 chg -= rg->to - rg->from;
152         }
153         return chg;
154 }
155
156 static long region_truncate(struct list_head *head, long end)
157 {
158         struct file_region *rg, *trg;
159         long chg = 0;
160
161         /* Locate the region we are either in or before. */
162         list_for_each_entry(rg, head, link)
163                 if (end <= rg->to)
164                         break;
165         if (&rg->link == head)
166                 return 0;
167
168         /* If we are in the middle of a region then adjust it. */
169         if (end > rg->from) {
170                 chg = rg->to - end;
171                 rg->to = end;
172                 rg = list_entry(rg->link.next, typeof(*rg), link);
173         }
174
175         /* Drop any remaining regions. */
176         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
177                 if (&rg->link == head)
178                         break;
179                 chg += rg->to - rg->from;
180                 list_del(&rg->link);
181                 kfree(rg);
182         }
183         return chg;
184 }
185
186 static long region_count(struct list_head *head, long f, long t)
187 {
188         struct file_region *rg;
189         long chg = 0;
190
191         /* Locate each segment we overlap with, and count that overlap. */
192         list_for_each_entry(rg, head, link) {
193                 int seg_from;
194                 int seg_to;
195
196                 if (rg->to <= f)
197                         continue;
198                 if (rg->from >= t)
199                         break;
200
201                 seg_from = max(rg->from, f);
202                 seg_to = min(rg->to, t);
203
204                 chg += seg_to - seg_from;
205         }
206
207         return chg;
208 }
209
210 /*
211  * Convert the address within this vma to the page offset within
212  * the mapping, in pagecache page units; huge pages here.
213  */
214 static pgoff_t vma_hugecache_offset(struct hstate *h,
215                         struct vm_area_struct *vma, unsigned long address)
216 {
217         return ((address - vma->vm_start) >> huge_page_shift(h)) +
218                         (vma->vm_pgoff >> huge_page_order(h));
219 }
220
221 /*
222  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
223  * bits of the reservation map pointer, which are always clear due to
224  * alignment.
225  */
226 #define HPAGE_RESV_OWNER    (1UL << 0)
227 #define HPAGE_RESV_UNMAPPED (1UL << 1)
228 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
229
230 /*
231  * These helpers are used to track how many pages are reserved for
232  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
233  * is guaranteed to have their future faults succeed.
234  *
235  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
236  * the reserve counters are updated with the hugetlb_lock held. It is safe
237  * to reset the VMA at fork() time as it is not in use yet and there is no
238  * chance of the global counters getting corrupted as a result of the values.
239  *
240  * The private mapping reservation is represented in a subtly different
241  * manner to a shared mapping.  A shared mapping has a region map associated
242  * with the underlying file, this region map represents the backing file
243  * pages which have ever had a reservation assigned which this persists even
244  * after the page is instantiated.  A private mapping has a region map
245  * associated with the original mmap which is attached to all VMAs which
246  * reference it, this region map represents those offsets which have consumed
247  * reservation ie. where pages have been instantiated.
248  */
249 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
250 {
251         return (unsigned long)vma->vm_private_data;
252 }
253
254 static void set_vma_private_data(struct vm_area_struct *vma,
255                                                         unsigned long value)
256 {
257         vma->vm_private_data = (void *)value;
258 }
259
260 struct resv_map {
261         struct kref refs;
262         struct list_head regions;
263 };
264
265 struct resv_map *resv_map_alloc(void)
266 {
267         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
268         if (!resv_map)
269                 return NULL;
270
271         kref_init(&resv_map->refs);
272         INIT_LIST_HEAD(&resv_map->regions);
273
274         return resv_map;
275 }
276
277 void resv_map_release(struct kref *ref)
278 {
279         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
280
281         /* Clear out any active regions before we release the map. */
282         region_truncate(&resv_map->regions, 0);
283         kfree(resv_map);
284 }
285
286 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
287 {
288         VM_BUG_ON(!is_vm_hugetlb_page(vma));
289         if (!(vma->vm_flags & VM_SHARED))
290                 return (struct resv_map *)(get_vma_private_data(vma) &
291                                                         ~HPAGE_RESV_MASK);
292         return 0;
293 }
294
295 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
296 {
297         VM_BUG_ON(!is_vm_hugetlb_page(vma));
298         VM_BUG_ON(vma->vm_flags & VM_SHARED);
299
300         set_vma_private_data(vma, (get_vma_private_data(vma) &
301                                 HPAGE_RESV_MASK) | (unsigned long)map);
302 }
303
304 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
305 {
306         VM_BUG_ON(!is_vm_hugetlb_page(vma));
307         VM_BUG_ON(vma->vm_flags & VM_SHARED);
308
309         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
310 }
311
312 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
313 {
314         VM_BUG_ON(!is_vm_hugetlb_page(vma));
315
316         return (get_vma_private_data(vma) & flag) != 0;
317 }
318
319 /* Decrement the reserved pages in the hugepage pool by one */
320 static void decrement_hugepage_resv_vma(struct hstate *h,
321                         struct vm_area_struct *vma)
322 {
323         if (vma->vm_flags & VM_NORESERVE)
324                 return;
325
326         if (vma->vm_flags & VM_SHARED) {
327                 /* Shared mappings always use reserves */
328                 h->resv_huge_pages--;
329         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
330                 /*
331                  * Only the process that called mmap() has reserves for
332                  * private mappings.
333                  */
334                 h->resv_huge_pages--;
335         }
336 }
337
338 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
339 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
340 {
341         VM_BUG_ON(!is_vm_hugetlb_page(vma));
342         if (!(vma->vm_flags & VM_SHARED))
343                 vma->vm_private_data = (void *)0;
344 }
345
346 /* Returns true if the VMA has associated reserve pages */
347 static int vma_has_reserves(struct vm_area_struct *vma)
348 {
349         if (vma->vm_flags & VM_SHARED)
350                 return 1;
351         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352                 return 1;
353         return 0;
354 }
355
356 static void clear_huge_page(struct page *page,
357                         unsigned long addr, unsigned long sz)
358 {
359         int i;
360
361         might_sleep();
362         for (i = 0; i < sz/PAGE_SIZE; i++) {
363                 cond_resched();
364                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
365         }
366 }
367
368 static void copy_huge_page(struct page *dst, struct page *src,
369                            unsigned long addr, struct vm_area_struct *vma)
370 {
371         int i;
372         struct hstate *h = hstate_vma(vma);
373
374         might_sleep();
375         for (i = 0; i < pages_per_huge_page(h); i++) {
376                 cond_resched();
377                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
378         }
379 }
380
381 static void enqueue_huge_page(struct hstate *h, struct page *page)
382 {
383         int nid = page_to_nid(page);
384         list_add(&page->lru, &h->hugepage_freelists[nid]);
385         h->free_huge_pages++;
386         h->free_huge_pages_node[nid]++;
387 }
388
389 static struct page *dequeue_huge_page(struct hstate *h)
390 {
391         int nid;
392         struct page *page = NULL;
393
394         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
395                 if (!list_empty(&h->hugepage_freelists[nid])) {
396                         page = list_entry(h->hugepage_freelists[nid].next,
397                                           struct page, lru);
398                         list_del(&page->lru);
399                         h->free_huge_pages--;
400                         h->free_huge_pages_node[nid]--;
401                         break;
402                 }
403         }
404         return page;
405 }
406
407 static struct page *dequeue_huge_page_vma(struct hstate *h,
408                                 struct vm_area_struct *vma,
409                                 unsigned long address, int avoid_reserve)
410 {
411         int nid;
412         struct page *page = NULL;
413         struct mempolicy *mpol;
414         nodemask_t *nodemask;
415         struct zonelist *zonelist = huge_zonelist(vma, address,
416                                         htlb_alloc_mask, &mpol, &nodemask);
417         struct zone *zone;
418         struct zoneref *z;
419
420         /*
421          * A child process with MAP_PRIVATE mappings created by their parent
422          * have no page reserves. This check ensures that reservations are
423          * not "stolen". The child may still get SIGKILLed
424          */
425         if (!vma_has_reserves(vma) &&
426                         h->free_huge_pages - h->resv_huge_pages == 0)
427                 return NULL;
428
429         /* If reserves cannot be used, ensure enough pages are in the pool */
430         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
431                 return NULL;
432
433         for_each_zone_zonelist_nodemask(zone, z, zonelist,
434                                                 MAX_NR_ZONES - 1, nodemask) {
435                 nid = zone_to_nid(zone);
436                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
437                     !list_empty(&h->hugepage_freelists[nid])) {
438                         page = list_entry(h->hugepage_freelists[nid].next,
439                                           struct page, lru);
440                         list_del(&page->lru);
441                         h->free_huge_pages--;
442                         h->free_huge_pages_node[nid]--;
443
444                         if (!avoid_reserve)
445                                 decrement_hugepage_resv_vma(h, vma);
446
447                         break;
448                 }
449         }
450         mpol_cond_put(mpol);
451         return page;
452 }
453
454 static void update_and_free_page(struct hstate *h, struct page *page)
455 {
456         int i;
457
458         VM_BUG_ON(h->order >= MAX_ORDER);
459
460         h->nr_huge_pages--;
461         h->nr_huge_pages_node[page_to_nid(page)]--;
462         for (i = 0; i < pages_per_huge_page(h); i++) {
463                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
464                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
465                                 1 << PG_private | 1<< PG_writeback);
466         }
467         set_compound_page_dtor(page, NULL);
468         set_page_refcounted(page);
469         arch_release_hugepage(page);
470         __free_pages(page, huge_page_order(h));
471 }
472
473 struct hstate *size_to_hstate(unsigned long size)
474 {
475         struct hstate *h;
476
477         for_each_hstate(h) {
478                 if (huge_page_size(h) == size)
479                         return h;
480         }
481         return NULL;
482 }
483
484 static void free_huge_page(struct page *page)
485 {
486         /*
487          * Can't pass hstate in here because it is called from the
488          * compound page destructor.
489          */
490         struct hstate *h = page_hstate(page);
491         int nid = page_to_nid(page);
492         struct address_space *mapping;
493
494         mapping = (struct address_space *) page_private(page);
495         set_page_private(page, 0);
496         BUG_ON(page_count(page));
497         INIT_LIST_HEAD(&page->lru);
498
499         spin_lock(&hugetlb_lock);
500         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
501                 update_and_free_page(h, page);
502                 h->surplus_huge_pages--;
503                 h->surplus_huge_pages_node[nid]--;
504         } else {
505                 enqueue_huge_page(h, page);
506         }
507         spin_unlock(&hugetlb_lock);
508         if (mapping)
509                 hugetlb_put_quota(mapping, 1);
510 }
511
512 /*
513  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
514  * balanced by operating on them in a round-robin fashion.
515  * Returns 1 if an adjustment was made.
516  */
517 static int adjust_pool_surplus(struct hstate *h, int delta)
518 {
519         static int prev_nid;
520         int nid = prev_nid;
521         int ret = 0;
522
523         VM_BUG_ON(delta != -1 && delta != 1);
524         do {
525                 nid = next_node(nid, node_online_map);
526                 if (nid == MAX_NUMNODES)
527                         nid = first_node(node_online_map);
528
529                 /* To shrink on this node, there must be a surplus page */
530                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
531                         continue;
532                 /* Surplus cannot exceed the total number of pages */
533                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
534                                                 h->nr_huge_pages_node[nid])
535                         continue;
536
537                 h->surplus_huge_pages += delta;
538                 h->surplus_huge_pages_node[nid] += delta;
539                 ret = 1;
540                 break;
541         } while (nid != prev_nid);
542
543         prev_nid = nid;
544         return ret;
545 }
546
547 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
548 {
549         set_compound_page_dtor(page, free_huge_page);
550         spin_lock(&hugetlb_lock);
551         h->nr_huge_pages++;
552         h->nr_huge_pages_node[nid]++;
553         spin_unlock(&hugetlb_lock);
554         put_page(page); /* free it into the hugepage allocator */
555 }
556
557 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
558 {
559         struct page *page;
560
561         if (h->order >= MAX_ORDER)
562                 return NULL;
563
564         page = alloc_pages_node(nid,
565                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
566                                                 __GFP_REPEAT|__GFP_NOWARN,
567                 huge_page_order(h));
568         if (page) {
569                 if (arch_prepare_hugepage(page)) {
570                         __free_pages(page, huge_page_order(h));
571                         return NULL;
572                 }
573                 prep_new_huge_page(h, page, nid);
574         }
575
576         return page;
577 }
578
579 /*
580  * Use a helper variable to find the next node and then
581  * copy it back to hugetlb_next_nid afterwards:
582  * otherwise there's a window in which a racer might
583  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
584  * But we don't need to use a spin_lock here: it really
585  * doesn't matter if occasionally a racer chooses the
586  * same nid as we do.  Move nid forward in the mask even
587  * if we just successfully allocated a hugepage so that
588  * the next caller gets hugepages on the next node.
589  */
590 static int hstate_next_node(struct hstate *h)
591 {
592         int next_nid;
593         next_nid = next_node(h->hugetlb_next_nid, node_online_map);
594         if (next_nid == MAX_NUMNODES)
595                 next_nid = first_node(node_online_map);
596         h->hugetlb_next_nid = next_nid;
597         return next_nid;
598 }
599
600 static int alloc_fresh_huge_page(struct hstate *h)
601 {
602         struct page *page;
603         int start_nid;
604         int next_nid;
605         int ret = 0;
606
607         start_nid = h->hugetlb_next_nid;
608
609         do {
610                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
611                 if (page)
612                         ret = 1;
613                 next_nid = hstate_next_node(h);
614         } while (!page && h->hugetlb_next_nid != start_nid);
615
616         if (ret)
617                 count_vm_event(HTLB_BUDDY_PGALLOC);
618         else
619                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
620
621         return ret;
622 }
623
624 static struct page *alloc_buddy_huge_page(struct hstate *h,
625                         struct vm_area_struct *vma, unsigned long address)
626 {
627         struct page *page;
628         unsigned int nid;
629
630         if (h->order >= MAX_ORDER)
631                 return NULL;
632
633         /*
634          * Assume we will successfully allocate the surplus page to
635          * prevent racing processes from causing the surplus to exceed
636          * overcommit
637          *
638          * This however introduces a different race, where a process B
639          * tries to grow the static hugepage pool while alloc_pages() is
640          * called by process A. B will only examine the per-node
641          * counters in determining if surplus huge pages can be
642          * converted to normal huge pages in adjust_pool_surplus(). A
643          * won't be able to increment the per-node counter, until the
644          * lock is dropped by B, but B doesn't drop hugetlb_lock until
645          * no more huge pages can be converted from surplus to normal
646          * state (and doesn't try to convert again). Thus, we have a
647          * case where a surplus huge page exists, the pool is grown, and
648          * the surplus huge page still exists after, even though it
649          * should just have been converted to a normal huge page. This
650          * does not leak memory, though, as the hugepage will be freed
651          * once it is out of use. It also does not allow the counters to
652          * go out of whack in adjust_pool_surplus() as we don't modify
653          * the node values until we've gotten the hugepage and only the
654          * per-node value is checked there.
655          */
656         spin_lock(&hugetlb_lock);
657         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
658                 spin_unlock(&hugetlb_lock);
659                 return NULL;
660         } else {
661                 h->nr_huge_pages++;
662                 h->surplus_huge_pages++;
663         }
664         spin_unlock(&hugetlb_lock);
665
666         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
667                                         __GFP_REPEAT|__GFP_NOWARN,
668                                         huge_page_order(h));
669
670         if (page && arch_prepare_hugepage(page)) {
671                 __free_pages(page, huge_page_order(h));
672                 return NULL;
673         }
674
675         spin_lock(&hugetlb_lock);
676         if (page) {
677                 /*
678                  * This page is now managed by the hugetlb allocator and has
679                  * no users -- drop the buddy allocator's reference.
680                  */
681                 put_page_testzero(page);
682                 VM_BUG_ON(page_count(page));
683                 nid = page_to_nid(page);
684                 set_compound_page_dtor(page, free_huge_page);
685                 /*
686                  * We incremented the global counters already
687                  */
688                 h->nr_huge_pages_node[nid]++;
689                 h->surplus_huge_pages_node[nid]++;
690                 __count_vm_event(HTLB_BUDDY_PGALLOC);
691         } else {
692                 h->nr_huge_pages--;
693                 h->surplus_huge_pages--;
694                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
695         }
696         spin_unlock(&hugetlb_lock);
697
698         return page;
699 }
700
701 /*
702  * Increase the hugetlb pool such that it can accomodate a reservation
703  * of size 'delta'.
704  */
705 static int gather_surplus_pages(struct hstate *h, int delta)
706 {
707         struct list_head surplus_list;
708         struct page *page, *tmp;
709         int ret, i;
710         int needed, allocated;
711
712         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
713         if (needed <= 0) {
714                 h->resv_huge_pages += delta;
715                 return 0;
716         }
717
718         allocated = 0;
719         INIT_LIST_HEAD(&surplus_list);
720
721         ret = -ENOMEM;
722 retry:
723         spin_unlock(&hugetlb_lock);
724         for (i = 0; i < needed; i++) {
725                 page = alloc_buddy_huge_page(h, NULL, 0);
726                 if (!page) {
727                         /*
728                          * We were not able to allocate enough pages to
729                          * satisfy the entire reservation so we free what
730                          * we've allocated so far.
731                          */
732                         spin_lock(&hugetlb_lock);
733                         needed = 0;
734                         goto free;
735                 }
736
737                 list_add(&page->lru, &surplus_list);
738         }
739         allocated += needed;
740
741         /*
742          * After retaking hugetlb_lock, we need to recalculate 'needed'
743          * because either resv_huge_pages or free_huge_pages may have changed.
744          */
745         spin_lock(&hugetlb_lock);
746         needed = (h->resv_huge_pages + delta) -
747                         (h->free_huge_pages + allocated);
748         if (needed > 0)
749                 goto retry;
750
751         /*
752          * The surplus_list now contains _at_least_ the number of extra pages
753          * needed to accomodate the reservation.  Add the appropriate number
754          * of pages to the hugetlb pool and free the extras back to the buddy
755          * allocator.  Commit the entire reservation here to prevent another
756          * process from stealing the pages as they are added to the pool but
757          * before they are reserved.
758          */
759         needed += allocated;
760         h->resv_huge_pages += delta;
761         ret = 0;
762 free:
763         /* Free the needed pages to the hugetlb pool */
764         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
765                 if ((--needed) < 0)
766                         break;
767                 list_del(&page->lru);
768                 enqueue_huge_page(h, page);
769         }
770
771         /* Free unnecessary surplus pages to the buddy allocator */
772         if (!list_empty(&surplus_list)) {
773                 spin_unlock(&hugetlb_lock);
774                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
775                         list_del(&page->lru);
776                         /*
777                          * The page has a reference count of zero already, so
778                          * call free_huge_page directly instead of using
779                          * put_page.  This must be done with hugetlb_lock
780                          * unlocked which is safe because free_huge_page takes
781                          * hugetlb_lock before deciding how to free the page.
782                          */
783                         free_huge_page(page);
784                 }
785                 spin_lock(&hugetlb_lock);
786         }
787
788         return ret;
789 }
790
791 /*
792  * When releasing a hugetlb pool reservation, any surplus pages that were
793  * allocated to satisfy the reservation must be explicitly freed if they were
794  * never used.
795  */
796 static void return_unused_surplus_pages(struct hstate *h,
797                                         unsigned long unused_resv_pages)
798 {
799         static int nid = -1;
800         struct page *page;
801         unsigned long nr_pages;
802
803         /*
804          * We want to release as many surplus pages as possible, spread
805          * evenly across all nodes. Iterate across all nodes until we
806          * can no longer free unreserved surplus pages. This occurs when
807          * the nodes with surplus pages have no free pages.
808          */
809         unsigned long remaining_iterations = num_online_nodes();
810
811         /* Uncommit the reservation */
812         h->resv_huge_pages -= unused_resv_pages;
813
814         /* Cannot return gigantic pages currently */
815         if (h->order >= MAX_ORDER)
816                 return;
817
818         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
819
820         while (remaining_iterations-- && nr_pages) {
821                 nid = next_node(nid, node_online_map);
822                 if (nid == MAX_NUMNODES)
823                         nid = first_node(node_online_map);
824
825                 if (!h->surplus_huge_pages_node[nid])
826                         continue;
827
828                 if (!list_empty(&h->hugepage_freelists[nid])) {
829                         page = list_entry(h->hugepage_freelists[nid].next,
830                                           struct page, lru);
831                         list_del(&page->lru);
832                         update_and_free_page(h, page);
833                         h->free_huge_pages--;
834                         h->free_huge_pages_node[nid]--;
835                         h->surplus_huge_pages--;
836                         h->surplus_huge_pages_node[nid]--;
837                         nr_pages--;
838                         remaining_iterations = num_online_nodes();
839                 }
840         }
841 }
842
843 /*
844  * Determine if the huge page at addr within the vma has an associated
845  * reservation.  Where it does not we will need to logically increase
846  * reservation and actually increase quota before an allocation can occur.
847  * Where any new reservation would be required the reservation change is
848  * prepared, but not committed.  Once the page has been quota'd allocated
849  * an instantiated the change should be committed via vma_commit_reservation.
850  * No action is required on failure.
851  */
852 static int vma_needs_reservation(struct hstate *h,
853                         struct vm_area_struct *vma, unsigned long addr)
854 {
855         struct address_space *mapping = vma->vm_file->f_mapping;
856         struct inode *inode = mapping->host;
857
858         if (vma->vm_flags & VM_SHARED) {
859                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
860                 return region_chg(&inode->i_mapping->private_list,
861                                                         idx, idx + 1);
862
863         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
864                 return 1;
865
866         } else  {
867                 int err;
868                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
869                 struct resv_map *reservations = vma_resv_map(vma);
870
871                 err = region_chg(&reservations->regions, idx, idx + 1);
872                 if (err < 0)
873                         return err;
874                 return 0;
875         }
876 }
877 static void vma_commit_reservation(struct hstate *h,
878                         struct vm_area_struct *vma, unsigned long addr)
879 {
880         struct address_space *mapping = vma->vm_file->f_mapping;
881         struct inode *inode = mapping->host;
882
883         if (vma->vm_flags & VM_SHARED) {
884                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
885                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
886
887         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
888                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
889                 struct resv_map *reservations = vma_resv_map(vma);
890
891                 /* Mark this page used in the map. */
892                 region_add(&reservations->regions, idx, idx + 1);
893         }
894 }
895
896 static struct page *alloc_huge_page(struct vm_area_struct *vma,
897                                     unsigned long addr, int avoid_reserve)
898 {
899         struct hstate *h = hstate_vma(vma);
900         struct page *page;
901         struct address_space *mapping = vma->vm_file->f_mapping;
902         struct inode *inode = mapping->host;
903         unsigned int chg;
904
905         /*
906          * Processes that did not create the mapping will have no reserves and
907          * will not have accounted against quota. Check that the quota can be
908          * made before satisfying the allocation
909          * MAP_NORESERVE mappings may also need pages and quota allocated
910          * if no reserve mapping overlaps.
911          */
912         chg = vma_needs_reservation(h, vma, addr);
913         if (chg < 0)
914                 return ERR_PTR(chg);
915         if (chg)
916                 if (hugetlb_get_quota(inode->i_mapping, chg))
917                         return ERR_PTR(-ENOSPC);
918
919         spin_lock(&hugetlb_lock);
920         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
921         spin_unlock(&hugetlb_lock);
922
923         if (!page) {
924                 page = alloc_buddy_huge_page(h, vma, addr);
925                 if (!page) {
926                         hugetlb_put_quota(inode->i_mapping, chg);
927                         return ERR_PTR(-VM_FAULT_OOM);
928                 }
929         }
930
931         set_page_refcounted(page);
932         set_page_private(page, (unsigned long) mapping);
933
934         vma_commit_reservation(h, vma, addr);
935
936         return page;
937 }
938
939 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
940 {
941         struct huge_bootmem_page *m;
942         int nr_nodes = nodes_weight(node_online_map);
943
944         while (nr_nodes) {
945                 void *addr;
946
947                 addr = __alloc_bootmem_node_nopanic(
948                                 NODE_DATA(h->hugetlb_next_nid),
949                                 huge_page_size(h), huge_page_size(h), 0);
950
951                 if (addr) {
952                         /*
953                          * Use the beginning of the huge page to store the
954                          * huge_bootmem_page struct (until gather_bootmem
955                          * puts them into the mem_map).
956                          */
957                         m = addr;
958                         if (m)
959                                 goto found;
960                 }
961                 hstate_next_node(h);
962                 nr_nodes--;
963         }
964         return 0;
965
966 found:
967         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
968         /* Put them into a private list first because mem_map is not up yet */
969         list_add(&m->list, &huge_boot_pages);
970         m->hstate = h;
971         return 1;
972 }
973
974 static void prep_compound_huge_page(struct page *page, int order)
975 {
976         if (unlikely(order > (MAX_ORDER - 1)))
977                 prep_compound_gigantic_page(page, order);
978         else
979                 prep_compound_page(page, order);
980 }
981
982 /* Put bootmem huge pages into the standard lists after mem_map is up */
983 static void __init gather_bootmem_prealloc(void)
984 {
985         struct huge_bootmem_page *m;
986
987         list_for_each_entry(m, &huge_boot_pages, list) {
988                 struct page *page = virt_to_page(m);
989                 struct hstate *h = m->hstate;
990                 __ClearPageReserved(page);
991                 WARN_ON(page_count(page) != 1);
992                 prep_compound_huge_page(page, h->order);
993                 prep_new_huge_page(h, page, page_to_nid(page));
994         }
995 }
996
997 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
998 {
999         unsigned long i;
1000
1001         for (i = 0; i < h->max_huge_pages; ++i) {
1002                 if (h->order >= MAX_ORDER) {
1003                         if (!alloc_bootmem_huge_page(h))
1004                                 break;
1005                 } else if (!alloc_fresh_huge_page(h))
1006                         break;
1007         }
1008         h->max_huge_pages = i;
1009 }
1010
1011 static void __init hugetlb_init_hstates(void)
1012 {
1013         struct hstate *h;
1014
1015         for_each_hstate(h) {
1016                 /* oversize hugepages were init'ed in early boot */
1017                 if (h->order < MAX_ORDER)
1018                         hugetlb_hstate_alloc_pages(h);
1019         }
1020 }
1021
1022 static char * __init memfmt(char *buf, unsigned long n)
1023 {
1024         if (n >= (1UL << 30))
1025                 sprintf(buf, "%lu GB", n >> 30);
1026         else if (n >= (1UL << 20))
1027                 sprintf(buf, "%lu MB", n >> 20);
1028         else
1029                 sprintf(buf, "%lu KB", n >> 10);
1030         return buf;
1031 }
1032
1033 static void __init report_hugepages(void)
1034 {
1035         struct hstate *h;
1036
1037         for_each_hstate(h) {
1038                 char buf[32];
1039                 printk(KERN_INFO "HugeTLB registered %s page size, "
1040                                  "pre-allocated %ld pages\n",
1041                         memfmt(buf, huge_page_size(h)),
1042                         h->free_huge_pages);
1043         }
1044 }
1045
1046 #ifdef CONFIG_HIGHMEM
1047 static void try_to_free_low(struct hstate *h, unsigned long count)
1048 {
1049         int i;
1050
1051         if (h->order >= MAX_ORDER)
1052                 return;
1053
1054         for (i = 0; i < MAX_NUMNODES; ++i) {
1055                 struct page *page, *next;
1056                 struct list_head *freel = &h->hugepage_freelists[i];
1057                 list_for_each_entry_safe(page, next, freel, lru) {
1058                         if (count >= h->nr_huge_pages)
1059                                 return;
1060                         if (PageHighMem(page))
1061                                 continue;
1062                         list_del(&page->lru);
1063                         update_and_free_page(h, page);
1064                         h->free_huge_pages--;
1065                         h->free_huge_pages_node[page_to_nid(page)]--;
1066                 }
1067         }
1068 }
1069 #else
1070 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1071 {
1072 }
1073 #endif
1074
1075 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1076 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1077 {
1078         unsigned long min_count, ret;
1079
1080         if (h->order >= MAX_ORDER)
1081                 return h->max_huge_pages;
1082
1083         /*
1084          * Increase the pool size
1085          * First take pages out of surplus state.  Then make up the
1086          * remaining difference by allocating fresh huge pages.
1087          *
1088          * We might race with alloc_buddy_huge_page() here and be unable
1089          * to convert a surplus huge page to a normal huge page. That is
1090          * not critical, though, it just means the overall size of the
1091          * pool might be one hugepage larger than it needs to be, but
1092          * within all the constraints specified by the sysctls.
1093          */
1094         spin_lock(&hugetlb_lock);
1095         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1096                 if (!adjust_pool_surplus(h, -1))
1097                         break;
1098         }
1099
1100         while (count > persistent_huge_pages(h)) {
1101                 /*
1102                  * If this allocation races such that we no longer need the
1103                  * page, free_huge_page will handle it by freeing the page
1104                  * and reducing the surplus.
1105                  */
1106                 spin_unlock(&hugetlb_lock);
1107                 ret = alloc_fresh_huge_page(h);
1108                 spin_lock(&hugetlb_lock);
1109                 if (!ret)
1110                         goto out;
1111
1112         }
1113
1114         /*
1115          * Decrease the pool size
1116          * First return free pages to the buddy allocator (being careful
1117          * to keep enough around to satisfy reservations).  Then place
1118          * pages into surplus state as needed so the pool will shrink
1119          * to the desired size as pages become free.
1120          *
1121          * By placing pages into the surplus state independent of the
1122          * overcommit value, we are allowing the surplus pool size to
1123          * exceed overcommit. There are few sane options here. Since
1124          * alloc_buddy_huge_page() is checking the global counter,
1125          * though, we'll note that we're not allowed to exceed surplus
1126          * and won't grow the pool anywhere else. Not until one of the
1127          * sysctls are changed, or the surplus pages go out of use.
1128          */
1129         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1130         min_count = max(count, min_count);
1131         try_to_free_low(h, min_count);
1132         while (min_count < persistent_huge_pages(h)) {
1133                 struct page *page = dequeue_huge_page(h);
1134                 if (!page)
1135                         break;
1136                 update_and_free_page(h, page);
1137         }
1138         while (count < persistent_huge_pages(h)) {
1139                 if (!adjust_pool_surplus(h, 1))
1140                         break;
1141         }
1142 out:
1143         ret = persistent_huge_pages(h);
1144         spin_unlock(&hugetlb_lock);
1145         return ret;
1146 }
1147
1148 #define HSTATE_ATTR_RO(_name) \
1149         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1150
1151 #define HSTATE_ATTR(_name) \
1152         static struct kobj_attribute _name##_attr = \
1153                 __ATTR(_name, 0644, _name##_show, _name##_store)
1154
1155 static struct kobject *hugepages_kobj;
1156 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1157
1158 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1159 {
1160         int i;
1161         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1162                 if (hstate_kobjs[i] == kobj)
1163                         return &hstates[i];
1164         BUG();
1165         return NULL;
1166 }
1167
1168 static ssize_t nr_hugepages_show(struct kobject *kobj,
1169                                         struct kobj_attribute *attr, char *buf)
1170 {
1171         struct hstate *h = kobj_to_hstate(kobj);
1172         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1173 }
1174 static ssize_t nr_hugepages_store(struct kobject *kobj,
1175                 struct kobj_attribute *attr, const char *buf, size_t count)
1176 {
1177         int err;
1178         unsigned long input;
1179         struct hstate *h = kobj_to_hstate(kobj);
1180
1181         err = strict_strtoul(buf, 10, &input);
1182         if (err)
1183                 return 0;
1184
1185         h->max_huge_pages = set_max_huge_pages(h, input);
1186
1187         return count;
1188 }
1189 HSTATE_ATTR(nr_hugepages);
1190
1191 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1192                                         struct kobj_attribute *attr, char *buf)
1193 {
1194         struct hstate *h = kobj_to_hstate(kobj);
1195         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1196 }
1197 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1198                 struct kobj_attribute *attr, const char *buf, size_t count)
1199 {
1200         int err;
1201         unsigned long input;
1202         struct hstate *h = kobj_to_hstate(kobj);
1203
1204         err = strict_strtoul(buf, 10, &input);
1205         if (err)
1206                 return 0;
1207
1208         spin_lock(&hugetlb_lock);
1209         h->nr_overcommit_huge_pages = input;
1210         spin_unlock(&hugetlb_lock);
1211
1212         return count;
1213 }
1214 HSTATE_ATTR(nr_overcommit_hugepages);
1215
1216 static ssize_t free_hugepages_show(struct kobject *kobj,
1217                                         struct kobj_attribute *attr, char *buf)
1218 {
1219         struct hstate *h = kobj_to_hstate(kobj);
1220         return sprintf(buf, "%lu\n", h->free_huge_pages);
1221 }
1222 HSTATE_ATTR_RO(free_hugepages);
1223
1224 static ssize_t resv_hugepages_show(struct kobject *kobj,
1225                                         struct kobj_attribute *attr, char *buf)
1226 {
1227         struct hstate *h = kobj_to_hstate(kobj);
1228         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1229 }
1230 HSTATE_ATTR_RO(resv_hugepages);
1231
1232 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1233                                         struct kobj_attribute *attr, char *buf)
1234 {
1235         struct hstate *h = kobj_to_hstate(kobj);
1236         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1237 }
1238 HSTATE_ATTR_RO(surplus_hugepages);
1239
1240 static struct attribute *hstate_attrs[] = {
1241         &nr_hugepages_attr.attr,
1242         &nr_overcommit_hugepages_attr.attr,
1243         &free_hugepages_attr.attr,
1244         &resv_hugepages_attr.attr,
1245         &surplus_hugepages_attr.attr,
1246         NULL,
1247 };
1248
1249 static struct attribute_group hstate_attr_group = {
1250         .attrs = hstate_attrs,
1251 };
1252
1253 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1254 {
1255         int retval;
1256
1257         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1258                                                         hugepages_kobj);
1259         if (!hstate_kobjs[h - hstates])
1260                 return -ENOMEM;
1261
1262         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1263                                                         &hstate_attr_group);
1264         if (retval)
1265                 kobject_put(hstate_kobjs[h - hstates]);
1266
1267         return retval;
1268 }
1269
1270 static void __init hugetlb_sysfs_init(void)
1271 {
1272         struct hstate *h;
1273         int err;
1274
1275         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1276         if (!hugepages_kobj)
1277                 return;
1278
1279         for_each_hstate(h) {
1280                 err = hugetlb_sysfs_add_hstate(h);
1281                 if (err)
1282                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1283                                                                 h->name);
1284         }
1285 }
1286
1287 static void __exit hugetlb_exit(void)
1288 {
1289         struct hstate *h;
1290
1291         for_each_hstate(h) {
1292                 kobject_put(hstate_kobjs[h - hstates]);
1293         }
1294
1295         kobject_put(hugepages_kobj);
1296 }
1297 module_exit(hugetlb_exit);
1298
1299 static int __init hugetlb_init(void)
1300 {
1301         /* Some platform decide whether they support huge pages at boot
1302          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1303          * there is no such support
1304          */
1305         if (HPAGE_SHIFT == 0)
1306                 return 0;
1307
1308         if (!size_to_hstate(default_hstate_size)) {
1309                 default_hstate_size = HPAGE_SIZE;
1310                 if (!size_to_hstate(default_hstate_size))
1311                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1312         }
1313         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1314         if (default_hstate_max_huge_pages)
1315                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1316
1317         hugetlb_init_hstates();
1318
1319         gather_bootmem_prealloc();
1320
1321         report_hugepages();
1322
1323         hugetlb_sysfs_init();
1324
1325         return 0;
1326 }
1327 module_init(hugetlb_init);
1328
1329 /* Should be called on processing a hugepagesz=... option */
1330 void __init hugetlb_add_hstate(unsigned order)
1331 {
1332         struct hstate *h;
1333         unsigned long i;
1334
1335         if (size_to_hstate(PAGE_SIZE << order)) {
1336                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1337                 return;
1338         }
1339         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1340         BUG_ON(order == 0);
1341         h = &hstates[max_hstate++];
1342         h->order = order;
1343         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1344         h->nr_huge_pages = 0;
1345         h->free_huge_pages = 0;
1346         for (i = 0; i < MAX_NUMNODES; ++i)
1347                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1348         h->hugetlb_next_nid = first_node(node_online_map);
1349         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1350                                         huge_page_size(h)/1024);
1351
1352         parsed_hstate = h;
1353 }
1354
1355 static int __init hugetlb_nrpages_setup(char *s)
1356 {
1357         unsigned long *mhp;
1358         static unsigned long *last_mhp;
1359
1360         /*
1361          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1362          * so this hugepages= parameter goes to the "default hstate".
1363          */
1364         if (!max_hstate)
1365                 mhp = &default_hstate_max_huge_pages;
1366         else
1367                 mhp = &parsed_hstate->max_huge_pages;
1368
1369         if (mhp == last_mhp) {
1370                 printk(KERN_WARNING "hugepages= specified twice without "
1371                         "interleaving hugepagesz=, ignoring\n");
1372                 return 1;
1373         }
1374
1375         if (sscanf(s, "%lu", mhp) <= 0)
1376                 *mhp = 0;
1377
1378         /*
1379          * Global state is always initialized later in hugetlb_init.
1380          * But we need to allocate >= MAX_ORDER hstates here early to still
1381          * use the bootmem allocator.
1382          */
1383         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1384                 hugetlb_hstate_alloc_pages(parsed_hstate);
1385
1386         last_mhp = mhp;
1387
1388         return 1;
1389 }
1390 __setup("hugepages=", hugetlb_nrpages_setup);
1391
1392 static int __init hugetlb_default_setup(char *s)
1393 {
1394         default_hstate_size = memparse(s, &s);
1395         return 1;
1396 }
1397 __setup("default_hugepagesz=", hugetlb_default_setup);
1398
1399 static unsigned int cpuset_mems_nr(unsigned int *array)
1400 {
1401         int node;
1402         unsigned int nr = 0;
1403
1404         for_each_node_mask(node, cpuset_current_mems_allowed)
1405                 nr += array[node];
1406
1407         return nr;
1408 }
1409
1410 #ifdef CONFIG_SYSCTL
1411 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1412                            struct file *file, void __user *buffer,
1413                            size_t *length, loff_t *ppos)
1414 {
1415         struct hstate *h = &default_hstate;
1416         unsigned long tmp;
1417
1418         if (!write)
1419                 tmp = h->max_huge_pages;
1420
1421         table->data = &tmp;
1422         table->maxlen = sizeof(unsigned long);
1423         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1424
1425         if (write)
1426                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1427
1428         return 0;
1429 }
1430
1431 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1432                         struct file *file, void __user *buffer,
1433                         size_t *length, loff_t *ppos)
1434 {
1435         proc_dointvec(table, write, file, buffer, length, ppos);
1436         if (hugepages_treat_as_movable)
1437                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1438         else
1439                 htlb_alloc_mask = GFP_HIGHUSER;
1440         return 0;
1441 }
1442
1443 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1444                         struct file *file, void __user *buffer,
1445                         size_t *length, loff_t *ppos)
1446 {
1447         struct hstate *h = &default_hstate;
1448         unsigned long tmp;
1449
1450         if (!write)
1451                 tmp = h->nr_overcommit_huge_pages;
1452
1453         table->data = &tmp;
1454         table->maxlen = sizeof(unsigned long);
1455         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1456
1457         if (write) {
1458                 spin_lock(&hugetlb_lock);
1459                 h->nr_overcommit_huge_pages = tmp;
1460                 spin_unlock(&hugetlb_lock);
1461         }
1462
1463         return 0;
1464 }
1465
1466 #endif /* CONFIG_SYSCTL */
1467
1468 int hugetlb_report_meminfo(char *buf)
1469 {
1470         struct hstate *h = &default_hstate;
1471         return sprintf(buf,
1472                         "HugePages_Total: %5lu\n"
1473                         "HugePages_Free:  %5lu\n"
1474                         "HugePages_Rsvd:  %5lu\n"
1475                         "HugePages_Surp:  %5lu\n"
1476                         "Hugepagesize:    %5lu kB\n",
1477                         h->nr_huge_pages,
1478                         h->free_huge_pages,
1479                         h->resv_huge_pages,
1480                         h->surplus_huge_pages,
1481                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1482 }
1483
1484 int hugetlb_report_node_meminfo(int nid, char *buf)
1485 {
1486         struct hstate *h = &default_hstate;
1487         return sprintf(buf,
1488                 "Node %d HugePages_Total: %5u\n"
1489                 "Node %d HugePages_Free:  %5u\n"
1490                 "Node %d HugePages_Surp:  %5u\n",
1491                 nid, h->nr_huge_pages_node[nid],
1492                 nid, h->free_huge_pages_node[nid],
1493                 nid, h->surplus_huge_pages_node[nid]);
1494 }
1495
1496 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1497 unsigned long hugetlb_total_pages(void)
1498 {
1499         struct hstate *h = &default_hstate;
1500         return h->nr_huge_pages * pages_per_huge_page(h);
1501 }
1502
1503 static int hugetlb_acct_memory(struct hstate *h, long delta)
1504 {
1505         int ret = -ENOMEM;
1506
1507         spin_lock(&hugetlb_lock);
1508         /*
1509          * When cpuset is configured, it breaks the strict hugetlb page
1510          * reservation as the accounting is done on a global variable. Such
1511          * reservation is completely rubbish in the presence of cpuset because
1512          * the reservation is not checked against page availability for the
1513          * current cpuset. Application can still potentially OOM'ed by kernel
1514          * with lack of free htlb page in cpuset that the task is in.
1515          * Attempt to enforce strict accounting with cpuset is almost
1516          * impossible (or too ugly) because cpuset is too fluid that
1517          * task or memory node can be dynamically moved between cpusets.
1518          *
1519          * The change of semantics for shared hugetlb mapping with cpuset is
1520          * undesirable. However, in order to preserve some of the semantics,
1521          * we fall back to check against current free page availability as
1522          * a best attempt and hopefully to minimize the impact of changing
1523          * semantics that cpuset has.
1524          */
1525         if (delta > 0) {
1526                 if (gather_surplus_pages(h, delta) < 0)
1527                         goto out;
1528
1529                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1530                         return_unused_surplus_pages(h, delta);
1531                         goto out;
1532                 }
1533         }
1534
1535         ret = 0;
1536         if (delta < 0)
1537                 return_unused_surplus_pages(h, (unsigned long) -delta);
1538
1539 out:
1540         spin_unlock(&hugetlb_lock);
1541         return ret;
1542 }
1543
1544 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1545 {
1546         struct resv_map *reservations = vma_resv_map(vma);
1547
1548         /*
1549          * This new VMA should share its siblings reservation map if present.
1550          * The VMA will only ever have a valid reservation map pointer where
1551          * it is being copied for another still existing VMA.  As that VMA
1552          * has a reference to the reservation map it cannot dissappear until
1553          * after this open call completes.  It is therefore safe to take a
1554          * new reference here without additional locking.
1555          */
1556         if (reservations)
1557                 kref_get(&reservations->refs);
1558 }
1559
1560 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1561 {
1562         struct hstate *h = hstate_vma(vma);
1563         struct resv_map *reservations = vma_resv_map(vma);
1564         unsigned long reserve;
1565         unsigned long start;
1566         unsigned long end;
1567
1568         if (reservations) {
1569                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1570                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1571
1572                 reserve = (end - start) -
1573                         region_count(&reservations->regions, start, end);
1574
1575                 kref_put(&reservations->refs, resv_map_release);
1576
1577                 if (reserve) {
1578                         hugetlb_acct_memory(h, -reserve);
1579                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1580                 }
1581         }
1582 }
1583
1584 /*
1585  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1586  * handle_mm_fault() to try to instantiate regular-sized pages in the
1587  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1588  * this far.
1589  */
1590 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1591 {
1592         BUG();
1593         return 0;
1594 }
1595
1596 struct vm_operations_struct hugetlb_vm_ops = {
1597         .fault = hugetlb_vm_op_fault,
1598         .open = hugetlb_vm_op_open,
1599         .close = hugetlb_vm_op_close,
1600 };
1601
1602 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1603                                 int writable)
1604 {
1605         pte_t entry;
1606
1607         if (writable) {
1608                 entry =
1609                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1610         } else {
1611                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1612         }
1613         entry = pte_mkyoung(entry);
1614         entry = pte_mkhuge(entry);
1615
1616         return entry;
1617 }
1618
1619 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1620                                    unsigned long address, pte_t *ptep)
1621 {
1622         pte_t entry;
1623
1624         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1625         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1626                 update_mmu_cache(vma, address, entry);
1627         }
1628 }
1629
1630
1631 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1632                             struct vm_area_struct *vma)
1633 {
1634         pte_t *src_pte, *dst_pte, entry;
1635         struct page *ptepage;
1636         unsigned long addr;
1637         int cow;
1638         struct hstate *h = hstate_vma(vma);
1639         unsigned long sz = huge_page_size(h);
1640
1641         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1642
1643         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1644                 src_pte = huge_pte_offset(src, addr);
1645                 if (!src_pte)
1646                         continue;
1647                 dst_pte = huge_pte_alloc(dst, addr, sz);
1648                 if (!dst_pte)
1649                         goto nomem;
1650
1651                 /* If the pagetables are shared don't copy or take references */
1652                 if (dst_pte == src_pte)
1653                         continue;
1654
1655                 spin_lock(&dst->page_table_lock);
1656                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1657                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1658                         if (cow)
1659                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1660                         entry = huge_ptep_get(src_pte);
1661                         ptepage = pte_page(entry);
1662                         get_page(ptepage);
1663                         set_huge_pte_at(dst, addr, dst_pte, entry);
1664                 }
1665                 spin_unlock(&src->page_table_lock);
1666                 spin_unlock(&dst->page_table_lock);
1667         }
1668         return 0;
1669
1670 nomem:
1671         return -ENOMEM;
1672 }
1673
1674 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1675                             unsigned long end, struct page *ref_page)
1676 {
1677         struct mm_struct *mm = vma->vm_mm;
1678         unsigned long address;
1679         pte_t *ptep;
1680         pte_t pte;
1681         struct page *page;
1682         struct page *tmp;
1683         struct hstate *h = hstate_vma(vma);
1684         unsigned long sz = huge_page_size(h);
1685
1686         /*
1687          * A page gathering list, protected by per file i_mmap_lock. The
1688          * lock is used to avoid list corruption from multiple unmapping
1689          * of the same page since we are using page->lru.
1690          */
1691         LIST_HEAD(page_list);
1692
1693         WARN_ON(!is_vm_hugetlb_page(vma));
1694         BUG_ON(start & ~huge_page_mask(h));
1695         BUG_ON(end & ~huge_page_mask(h));
1696
1697         mmu_notifier_invalidate_range_start(mm, start, end);
1698         spin_lock(&mm->page_table_lock);
1699         for (address = start; address < end; address += sz) {
1700                 ptep = huge_pte_offset(mm, address);
1701                 if (!ptep)
1702                         continue;
1703
1704                 if (huge_pmd_unshare(mm, &address, ptep))
1705                         continue;
1706
1707                 /*
1708                  * If a reference page is supplied, it is because a specific
1709                  * page is being unmapped, not a range. Ensure the page we
1710                  * are about to unmap is the actual page of interest.
1711                  */
1712                 if (ref_page) {
1713                         pte = huge_ptep_get(ptep);
1714                         if (huge_pte_none(pte))
1715                                 continue;
1716                         page = pte_page(pte);
1717                         if (page != ref_page)
1718                                 continue;
1719
1720                         /*
1721                          * Mark the VMA as having unmapped its page so that
1722                          * future faults in this VMA will fail rather than
1723                          * looking like data was lost
1724                          */
1725                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1726                 }
1727
1728                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1729                 if (huge_pte_none(pte))
1730                         continue;
1731
1732                 page = pte_page(pte);
1733                 if (pte_dirty(pte))
1734                         set_page_dirty(page);
1735                 list_add(&page->lru, &page_list);
1736         }
1737         spin_unlock(&mm->page_table_lock);
1738         flush_tlb_range(vma, start, end);
1739         mmu_notifier_invalidate_range_end(mm, start, end);
1740         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1741                 list_del(&page->lru);
1742                 put_page(page);
1743         }
1744 }
1745
1746 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1747                           unsigned long end, struct page *ref_page)
1748 {
1749         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1750         __unmap_hugepage_range(vma, start, end, ref_page);
1751         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1752 }
1753
1754 /*
1755  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1756  * mappping it owns the reserve page for. The intention is to unmap the page
1757  * from other VMAs and let the children be SIGKILLed if they are faulting the
1758  * same region.
1759  */
1760 int unmap_ref_private(struct mm_struct *mm,
1761                                         struct vm_area_struct *vma,
1762                                         struct page *page,
1763                                         unsigned long address)
1764 {
1765         struct vm_area_struct *iter_vma;
1766         struct address_space *mapping;
1767         struct prio_tree_iter iter;
1768         pgoff_t pgoff;
1769
1770         /*
1771          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1772          * from page cache lookup which is in HPAGE_SIZE units.
1773          */
1774         address = address & huge_page_mask(hstate_vma(vma));
1775         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1776                 + (vma->vm_pgoff >> PAGE_SHIFT);
1777         mapping = (struct address_space *)page_private(page);
1778
1779         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1780                 /* Do not unmap the current VMA */
1781                 if (iter_vma == vma)
1782                         continue;
1783
1784                 /*
1785                  * Unmap the page from other VMAs without their own reserves.
1786                  * They get marked to be SIGKILLed if they fault in these
1787                  * areas. This is because a future no-page fault on this VMA
1788                  * could insert a zeroed page instead of the data existing
1789                  * from the time of fork. This would look like data corruption
1790                  */
1791                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1792                         unmap_hugepage_range(iter_vma,
1793                                 address, address + HPAGE_SIZE,
1794                                 page);
1795         }
1796
1797         return 1;
1798 }
1799
1800 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1801                         unsigned long address, pte_t *ptep, pte_t pte,
1802                         struct page *pagecache_page)
1803 {
1804         struct hstate *h = hstate_vma(vma);
1805         struct page *old_page, *new_page;
1806         int avoidcopy;
1807         int outside_reserve = 0;
1808
1809         old_page = pte_page(pte);
1810
1811 retry_avoidcopy:
1812         /* If no-one else is actually using this page, avoid the copy
1813          * and just make the page writable */
1814         avoidcopy = (page_count(old_page) == 1);
1815         if (avoidcopy) {
1816                 set_huge_ptep_writable(vma, address, ptep);
1817                 return 0;
1818         }
1819
1820         /*
1821          * If the process that created a MAP_PRIVATE mapping is about to
1822          * perform a COW due to a shared page count, attempt to satisfy
1823          * the allocation without using the existing reserves. The pagecache
1824          * page is used to determine if the reserve at this address was
1825          * consumed or not. If reserves were used, a partial faulted mapping
1826          * at the time of fork() could consume its reserves on COW instead
1827          * of the full address range.
1828          */
1829         if (!(vma->vm_flags & VM_SHARED) &&
1830                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1831                         old_page != pagecache_page)
1832                 outside_reserve = 1;
1833
1834         page_cache_get(old_page);
1835         new_page = alloc_huge_page(vma, address, outside_reserve);
1836
1837         if (IS_ERR(new_page)) {
1838                 page_cache_release(old_page);
1839
1840                 /*
1841                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1842                  * it is due to references held by a child and an insufficient
1843                  * huge page pool. To guarantee the original mappers
1844                  * reliability, unmap the page from child processes. The child
1845                  * may get SIGKILLed if it later faults.
1846                  */
1847                 if (outside_reserve) {
1848                         BUG_ON(huge_pte_none(pte));
1849                         if (unmap_ref_private(mm, vma, old_page, address)) {
1850                                 BUG_ON(page_count(old_page) != 1);
1851                                 BUG_ON(huge_pte_none(pte));
1852                                 goto retry_avoidcopy;
1853                         }
1854                         WARN_ON_ONCE(1);
1855                 }
1856
1857                 return -PTR_ERR(new_page);
1858         }
1859
1860         spin_unlock(&mm->page_table_lock);
1861         copy_huge_page(new_page, old_page, address, vma);
1862         __SetPageUptodate(new_page);
1863         spin_lock(&mm->page_table_lock);
1864
1865         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1866         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1867                 /* Break COW */
1868                 huge_ptep_clear_flush(vma, address, ptep);
1869                 set_huge_pte_at(mm, address, ptep,
1870                                 make_huge_pte(vma, new_page, 1));
1871                 /* Make the old page be freed below */
1872                 new_page = old_page;
1873         }
1874         page_cache_release(new_page);
1875         page_cache_release(old_page);
1876         return 0;
1877 }
1878
1879 /* Return the pagecache page at a given address within a VMA */
1880 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1881                         struct vm_area_struct *vma, unsigned long address)
1882 {
1883         struct address_space *mapping;
1884         pgoff_t idx;
1885
1886         mapping = vma->vm_file->f_mapping;
1887         idx = vma_hugecache_offset(h, vma, address);
1888
1889         return find_lock_page(mapping, idx);
1890 }
1891
1892 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1893                         unsigned long address, pte_t *ptep, int write_access)
1894 {
1895         struct hstate *h = hstate_vma(vma);
1896         int ret = VM_FAULT_SIGBUS;
1897         pgoff_t idx;
1898         unsigned long size;
1899         struct page *page;
1900         struct address_space *mapping;
1901         pte_t new_pte;
1902
1903         /*
1904          * Currently, we are forced to kill the process in the event the
1905          * original mapper has unmapped pages from the child due to a failed
1906          * COW. Warn that such a situation has occured as it may not be obvious
1907          */
1908         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1909                 printk(KERN_WARNING
1910                         "PID %d killed due to inadequate hugepage pool\n",
1911                         current->pid);
1912                 return ret;
1913         }
1914
1915         mapping = vma->vm_file->f_mapping;
1916         idx = vma_hugecache_offset(h, vma, address);
1917
1918         /*
1919          * Use page lock to guard against racing truncation
1920          * before we get page_table_lock.
1921          */
1922 retry:
1923         page = find_lock_page(mapping, idx);
1924         if (!page) {
1925                 size = i_size_read(mapping->host) >> huge_page_shift(h);
1926                 if (idx >= size)
1927                         goto out;
1928                 page = alloc_huge_page(vma, address, 0);
1929                 if (IS_ERR(page)) {
1930                         ret = -PTR_ERR(page);
1931                         goto out;
1932                 }
1933                 clear_huge_page(page, address, huge_page_size(h));
1934                 __SetPageUptodate(page);
1935
1936                 if (vma->vm_flags & VM_SHARED) {
1937                         int err;
1938                         struct inode *inode = mapping->host;
1939
1940                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1941                         if (err) {
1942                                 put_page(page);
1943                                 if (err == -EEXIST)
1944                                         goto retry;
1945                                 goto out;
1946                         }
1947
1948                         spin_lock(&inode->i_lock);
1949                         inode->i_blocks += blocks_per_huge_page(h);
1950                         spin_unlock(&inode->i_lock);
1951                 } else
1952                         lock_page(page);
1953         }
1954
1955         /*
1956          * If we are going to COW a private mapping later, we examine the
1957          * pending reservations for this page now. This will ensure that
1958          * any allocations necessary to record that reservation occur outside
1959          * the spinlock.
1960          */
1961         if (write_access && !(vma->vm_flags & VM_SHARED))
1962                 if (vma_needs_reservation(h, vma, address) < 0) {
1963                         ret = VM_FAULT_OOM;
1964                         goto backout_unlocked;
1965                 }
1966
1967         spin_lock(&mm->page_table_lock);
1968         size = i_size_read(mapping->host) >> huge_page_shift(h);
1969         if (idx >= size)
1970                 goto backout;
1971
1972         ret = 0;
1973         if (!huge_pte_none(huge_ptep_get(ptep)))
1974                 goto backout;
1975
1976         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1977                                 && (vma->vm_flags & VM_SHARED)));
1978         set_huge_pte_at(mm, address, ptep, new_pte);
1979
1980         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1981                 /* Optimization, do the COW without a second fault */
1982                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1983         }
1984
1985         spin_unlock(&mm->page_table_lock);
1986         unlock_page(page);
1987 out:
1988         return ret;
1989
1990 backout:
1991         spin_unlock(&mm->page_table_lock);
1992 backout_unlocked:
1993         unlock_page(page);
1994         put_page(page);
1995         goto out;
1996 }
1997
1998 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1999                         unsigned long address, int write_access)
2000 {
2001         pte_t *ptep;
2002         pte_t entry;
2003         int ret;
2004         struct page *pagecache_page = NULL;
2005         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2006         struct hstate *h = hstate_vma(vma);
2007
2008         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2009         if (!ptep)
2010                 return VM_FAULT_OOM;
2011
2012         /*
2013          * Serialize hugepage allocation and instantiation, so that we don't
2014          * get spurious allocation failures if two CPUs race to instantiate
2015          * the same page in the page cache.
2016          */
2017         mutex_lock(&hugetlb_instantiation_mutex);
2018         entry = huge_ptep_get(ptep);
2019         if (huge_pte_none(entry)) {
2020                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2021                 goto out_unlock;
2022         }
2023
2024         ret = 0;
2025
2026         /*
2027          * If we are going to COW the mapping later, we examine the pending
2028          * reservations for this page now. This will ensure that any
2029          * allocations necessary to record that reservation occur outside the
2030          * spinlock. For private mappings, we also lookup the pagecache
2031          * page now as it is used to determine if a reservation has been
2032          * consumed.
2033          */
2034         if (write_access && !pte_write(entry)) {
2035                 if (vma_needs_reservation(h, vma, address) < 0) {
2036                         ret = VM_FAULT_OOM;
2037                         goto out_unlock;
2038                 }
2039
2040                 if (!(vma->vm_flags & VM_SHARED))
2041                         pagecache_page = hugetlbfs_pagecache_page(h,
2042                                                                 vma, address);
2043         }
2044
2045         spin_lock(&mm->page_table_lock);
2046         /* Check for a racing update before calling hugetlb_cow */
2047         if (likely(pte_same(entry, huge_ptep_get(ptep))))
2048                 if (write_access && !pte_write(entry))
2049                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2050                                                         pagecache_page);
2051         spin_unlock(&mm->page_table_lock);
2052
2053         if (pagecache_page) {
2054                 unlock_page(pagecache_page);
2055                 put_page(pagecache_page);
2056         }
2057
2058 out_unlock:
2059         mutex_unlock(&hugetlb_instantiation_mutex);
2060
2061         return ret;
2062 }
2063
2064 /* Can be overriden by architectures */
2065 __attribute__((weak)) struct page *
2066 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2067                pud_t *pud, int write)
2068 {
2069         BUG();
2070         return NULL;
2071 }
2072
2073 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2074                         struct page **pages, struct vm_area_struct **vmas,
2075                         unsigned long *position, int *length, int i,
2076                         int write)
2077 {
2078         unsigned long pfn_offset;
2079         unsigned long vaddr = *position;
2080         int remainder = *length;
2081         struct hstate *h = hstate_vma(vma);
2082
2083         spin_lock(&mm->page_table_lock);
2084         while (vaddr < vma->vm_end && remainder) {
2085                 pte_t *pte;
2086                 struct page *page;
2087
2088                 /*
2089                  * Some archs (sparc64, sh*) have multiple pte_ts to
2090                  * each hugepage.  We have to make * sure we get the
2091                  * first, for the page indexing below to work.
2092                  */
2093                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2094
2095                 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2096                     (write && !pte_write(huge_ptep_get(pte)))) {
2097                         int ret;
2098
2099                         spin_unlock(&mm->page_table_lock);
2100                         ret = hugetlb_fault(mm, vma, vaddr, write);
2101                         spin_lock(&mm->page_table_lock);
2102                         if (!(ret & VM_FAULT_ERROR))
2103                                 continue;
2104
2105                         remainder = 0;
2106                         if (!i)
2107                                 i = -EFAULT;
2108                         break;
2109                 }
2110
2111                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2112                 page = pte_page(huge_ptep_get(pte));
2113 same_page:
2114                 if (pages) {
2115                         get_page(page);
2116                         pages[i] = page + pfn_offset;
2117                 }
2118
2119                 if (vmas)
2120                         vmas[i] = vma;
2121
2122                 vaddr += PAGE_SIZE;
2123                 ++pfn_offset;
2124                 --remainder;
2125                 ++i;
2126                 if (vaddr < vma->vm_end && remainder &&
2127                                 pfn_offset < pages_per_huge_page(h)) {
2128                         /*
2129                          * We use pfn_offset to avoid touching the pageframes
2130                          * of this compound page.
2131                          */
2132                         goto same_page;
2133                 }
2134         }
2135         spin_unlock(&mm->page_table_lock);
2136         *length = remainder;
2137         *position = vaddr;
2138
2139         return i;
2140 }
2141
2142 void hugetlb_change_protection(struct vm_area_struct *vma,
2143                 unsigned long address, unsigned long end, pgprot_t newprot)
2144 {
2145         struct mm_struct *mm = vma->vm_mm;
2146         unsigned long start = address;
2147         pte_t *ptep;
2148         pte_t pte;
2149         struct hstate *h = hstate_vma(vma);
2150
2151         BUG_ON(address >= end);
2152         flush_cache_range(vma, address, end);
2153
2154         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2155         spin_lock(&mm->page_table_lock);
2156         for (; address < end; address += huge_page_size(h)) {
2157                 ptep = huge_pte_offset(mm, address);
2158                 if (!ptep)
2159                         continue;
2160                 if (huge_pmd_unshare(mm, &address, ptep))
2161                         continue;
2162                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2163                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2164                         pte = pte_mkhuge(pte_modify(pte, newprot));
2165                         set_huge_pte_at(mm, address, ptep, pte);
2166                 }
2167         }
2168         spin_unlock(&mm->page_table_lock);
2169         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2170
2171         flush_tlb_range(vma, start, end);
2172 }
2173
2174 int hugetlb_reserve_pages(struct inode *inode,
2175                                         long from, long to,
2176                                         struct vm_area_struct *vma)
2177 {
2178         long ret, chg;
2179         struct hstate *h = hstate_inode(inode);
2180
2181         if (vma && vma->vm_flags & VM_NORESERVE)
2182                 return 0;
2183
2184         /*
2185          * Shared mappings base their reservation on the number of pages that
2186          * are already allocated on behalf of the file. Private mappings need
2187          * to reserve the full area even if read-only as mprotect() may be
2188          * called to make the mapping read-write. Assume !vma is a shm mapping
2189          */
2190         if (!vma || vma->vm_flags & VM_SHARED)
2191                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2192         else {
2193                 struct resv_map *resv_map = resv_map_alloc();
2194                 if (!resv_map)
2195                         return -ENOMEM;
2196
2197                 chg = to - from;
2198
2199                 set_vma_resv_map(vma, resv_map);
2200                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2201         }
2202
2203         if (chg < 0)
2204                 return chg;
2205
2206         if (hugetlb_get_quota(inode->i_mapping, chg))
2207                 return -ENOSPC;
2208         ret = hugetlb_acct_memory(h, chg);
2209         if (ret < 0) {
2210                 hugetlb_put_quota(inode->i_mapping, chg);
2211                 return ret;
2212         }
2213         if (!vma || vma->vm_flags & VM_SHARED)
2214                 region_add(&inode->i_mapping->private_list, from, to);
2215         return 0;
2216 }
2217
2218 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2219 {
2220         struct hstate *h = hstate_inode(inode);
2221         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2222
2223         spin_lock(&inode->i_lock);
2224         inode->i_blocks -= blocks_per_huge_page(h);
2225         spin_unlock(&inode->i_lock);
2226
2227         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2228         hugetlb_acct_memory(h, -(chg - freed));
2229 }