2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 spin_lock_init(&spool->lock);
100 spool->max_hpages = max_hpages;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 spool->rsv_hpages = min_hpages;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
164 spin_unlock(&spool->lock);
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
238 struct list_head link;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 list_del(&nrg->link);
285 list_add(&nrg->link, rg->link.prev);
291 /* Round our left edge to the current segment if it encloses us. */
295 /* Check for and consume any regions we now overlap with. */
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
319 add += (nrg->from - f); /* Added to beginning of region */
321 add += t - nrg->to; /* Added to end of region */
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
360 spin_lock(&resv->lock);
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
406 INIT_LIST_HEAD(&nrg->link);
410 list_add(&nrg->link, rg->link.prev);
415 /* Round our left edge to the current segment if it encloses us. */
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
434 chg -= rg->to - rg->from;
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
443 spin_unlock(&resv->lock);
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
513 list_del(&nrg->link);
514 resv->region_cache_count--;
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
527 /* New entry for end of split region */
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
535 list_add(&nrg->link, &rg->link);
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
547 if (f <= rg->from) { /* Trim beginning of region */
550 } else { /* Trim end of region */
556 spin_unlock(&resv->lock);
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
570 void hugetlb_fix_reserve_counts(struct inode *inode)
572 struct hugepage_subpool *spool = subpool_inode(inode);
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
740 VM_BUG_ON(resv_map->adds_in_progress);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
760 return (struct resv_map *)(get_vma_private_data(vma) &
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
832 * Only the process that called mmap() has reserves for
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h->hugepage_freelists[nid] == &page->lru)
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
908 unsigned int cpuset_mems_cookie;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
935 if (!vma_has_reserves(vma, chg))
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
987 VM_BUG_ON(!nodes_allowed);
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1005 VM_BUG_ON(!nodes_allowed);
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028 static void destroy_compound_gigantic_page(struct page *page,
1032 int nr_pages = 1 << order;
1033 struct page *p = page + 1;
1035 atomic_set(compound_mapcount_ptr(page), 0);
1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 clear_compound_head(p);
1038 set_page_refcounted(p);
1041 set_compound_order(page, 0);
1042 __ClearPageHead(page);
1045 static void free_gigantic_page(struct page *page, unsigned int order)
1047 free_contig_range(page_to_pfn(page), 1 << order);
1050 static int __alloc_gigantic_page(unsigned long start_pfn,
1051 unsigned long nr_pages)
1053 unsigned long end_pfn = start_pfn + nr_pages;
1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1057 static bool pfn_range_valid_gigantic(struct zone *z,
1058 unsigned long start_pfn, unsigned long nr_pages)
1060 unsigned long i, end_pfn = start_pfn + nr_pages;
1063 for (i = start_pfn; i < end_pfn; i++) {
1067 page = pfn_to_page(i);
1069 if (page_zone(page) != z)
1072 if (PageReserved(page))
1075 if (page_count(page) > 0)
1085 static bool zone_spans_last_pfn(const struct zone *zone,
1086 unsigned long start_pfn, unsigned long nr_pages)
1088 unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 return zone_spans_pfn(zone, last_pfn);
1092 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1094 unsigned long nr_pages = 1 << order;
1095 unsigned long ret, pfn, flags;
1098 z = NODE_DATA(nid)->node_zones;
1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 spin_lock_irqsave(&z->lock, flags);
1102 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 ret = __alloc_gigantic_page(pfn, nr_pages);
1115 return pfn_to_page(pfn);
1116 spin_lock_irqsave(&z->lock, flags);
1121 spin_unlock_irqrestore(&z->lock, flags);
1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134 page = alloc_gigantic_page(nid, huge_page_order(h));
1136 prep_compound_gigantic_page(page, huge_page_order(h));
1137 prep_new_huge_page(h, page, nid);
1143 static int alloc_fresh_gigantic_page(struct hstate *h,
1144 nodemask_t *nodes_allowed)
1146 struct page *page = NULL;
1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 page = alloc_fresh_gigantic_page_node(h, node);
1158 static inline bool gigantic_page_supported(void) { return true; }
1160 static inline bool gigantic_page_supported(void) { return false; }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 nodemask_t *nodes_allowed) { return 0; }
1168 static void update_and_free_page(struct hstate *h, struct page *page)
1172 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176 h->nr_huge_pages_node[page_to_nid(page)]--;
1177 for (i = 0; i < pages_per_huge_page(h); i++) {
1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 1 << PG_referenced | 1 << PG_dirty |
1180 1 << PG_active | 1 << PG_private |
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 set_page_refcounted(page);
1186 if (hstate_is_gigantic(h)) {
1187 destroy_compound_gigantic_page(page, huge_page_order(h));
1188 free_gigantic_page(page, huge_page_order(h));
1190 __free_pages(page, huge_page_order(h));
1194 struct hstate *size_to_hstate(unsigned long size)
1198 for_each_hstate(h) {
1199 if (huge_page_size(h) == size)
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1209 * This function can be called for tail pages, but never returns true for them.
1211 bool page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 return PageHead(page) && PagePrivate(&page[1]);
1217 /* never called for tail page */
1218 static void set_page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 SetPagePrivate(&page[1]);
1224 static void clear_page_huge_active(struct page *page)
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 ClearPagePrivate(&page[1]);
1230 void free_huge_page(struct page *page)
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1236 struct hstate *h = page_hstate(page);
1237 int nid = page_to_nid(page);
1238 struct hugepage_subpool *spool =
1239 (struct hugepage_subpool *)page_private(page);
1240 bool restore_reserve;
1242 set_page_private(page, 0);
1243 page->mapping = NULL;
1244 VM_BUG_ON_PAGE(page_count(page), page);
1245 VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 restore_reserve = PagePrivate(page);
1247 ClearPagePrivate(page);
1250 * A return code of zero implies that the subpool will be under its
1251 * minimum size if the reservation is not restored after page is free.
1252 * Therefore, force restore_reserve operation.
1254 if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 restore_reserve = true;
1257 spin_lock(&hugetlb_lock);
1258 clear_page_huge_active(page);
1259 hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 pages_per_huge_page(h), page);
1261 if (restore_reserve)
1262 h->resv_huge_pages++;
1264 if (h->surplus_huge_pages_node[nid]) {
1265 /* remove the page from active list */
1266 list_del(&page->lru);
1267 update_and_free_page(h, page);
1268 h->surplus_huge_pages--;
1269 h->surplus_huge_pages_node[nid]--;
1271 arch_clear_hugepage_flags(page);
1272 enqueue_huge_page(h, page);
1274 spin_unlock(&hugetlb_lock);
1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1279 INIT_LIST_HEAD(&page->lru);
1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 spin_lock(&hugetlb_lock);
1282 set_hugetlb_cgroup(page, NULL);
1284 h->nr_huge_pages_node[nid]++;
1285 spin_unlock(&hugetlb_lock);
1286 put_page(page); /* free it into the hugepage allocator */
1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1292 int nr_pages = 1 << order;
1293 struct page *p = page + 1;
1295 /* we rely on prep_new_huge_page to set the destructor */
1296 set_compound_order(page, order);
1297 __ClearPageReserved(page);
1298 __SetPageHead(page);
1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1301 * For gigantic hugepages allocated through bootmem at
1302 * boot, it's safer to be consistent with the not-gigantic
1303 * hugepages and clear the PG_reserved bit from all tail pages
1304 * too. Otherwse drivers using get_user_pages() to access tail
1305 * pages may get the reference counting wrong if they see
1306 * PG_reserved set on a tail page (despite the head page not
1307 * having PG_reserved set). Enforcing this consistency between
1308 * head and tail pages allows drivers to optimize away a check
1309 * on the head page when they need know if put_page() is needed
1310 * after get_user_pages().
1312 __ClearPageReserved(p);
1313 set_page_count(p, 0);
1314 set_compound_head(p, page);
1316 atomic_set(compound_mapcount_ptr(page), -1);
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages. See the PageTransHuge() documentation for more
1324 int PageHuge(struct page *page)
1326 if (!PageCompound(page))
1329 page = compound_head(page);
1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1332 EXPORT_SYMBOL_GPL(PageHuge);
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1338 int PageHeadHuge(struct page *page_head)
1340 if (!PageHead(page_head))
1343 return get_compound_page_dtor(page_head) == free_huge_page;
1346 pgoff_t __basepage_index(struct page *page)
1348 struct page *page_head = compound_head(page);
1349 pgoff_t index = page_index(page_head);
1350 unsigned long compound_idx;
1352 if (!PageHuge(page_head))
1353 return page_index(page);
1355 if (compound_order(page_head) >= MAX_ORDER)
1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1358 compound_idx = page - page_head;
1360 return (index << compound_order(page_head)) + compound_idx;
1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 page = __alloc_pages_node(nid,
1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 __GFP_REPEAT|__GFP_NOWARN,
1370 huge_page_order(h));
1372 prep_new_huge_page(h, page, nid);
1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 page = alloc_fresh_huge_page_node(h, node);
1393 count_vm_event(HTLB_BUDDY_PGALLOC);
1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1414 * If we're returning unused surplus pages, only examine
1415 * nodes with surplus pages.
1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 !list_empty(&h->hugepage_freelists[node])) {
1420 list_entry(h->hugepage_freelists[node].next,
1422 list_del(&page->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[node]--;
1426 h->surplus_huge_pages--;
1427 h->surplus_huge_pages_node[node]--;
1429 update_and_free_page(h, page);
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441 * number of free hugepages would be reduced below the number of reserved
1444 static int dissolve_free_huge_page(struct page *page)
1448 spin_lock(&hugetlb_lock);
1449 if (PageHuge(page) && !page_count(page)) {
1450 struct page *head = compound_head(page);
1451 struct hstate *h = page_hstate(head);
1452 int nid = page_to_nid(head);
1453 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457 list_del(&head->lru);
1458 h->free_huge_pages--;
1459 h->free_huge_pages_node[nid]--;
1460 h->max_huge_pages--;
1461 update_and_free_page(h, head);
1464 spin_unlock(&hugetlb_lock);
1469 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470 * make specified memory blocks removable from the system.
1471 * Note that this will dissolve a free gigantic hugepage completely, if any
1472 * part of it lies within the given range.
1473 * Also note that if dissolve_free_huge_page() returns with an error, all
1474 * free hugepages that were dissolved before that error are lost.
1476 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1482 if (!hugepages_supported())
1485 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1486 page = pfn_to_page(pfn);
1487 if (PageHuge(page) && !page_count(page)) {
1488 rc = dissolve_free_huge_page(page);
1498 * There are 3 ways this can get called:
1499 * 1. With vma+addr: we use the VMA's memory policy
1500 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1501 * page from any node, and let the buddy allocator itself figure
1503 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1504 * strictly from 'nid'
1506 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1507 struct vm_area_struct *vma, unsigned long addr, int nid)
1509 int order = huge_page_order(h);
1510 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1511 unsigned int cpuset_mems_cookie;
1514 * We need a VMA to get a memory policy. If we do not
1515 * have one, we use the 'nid' argument.
1517 * The mempolicy stuff below has some non-inlined bits
1518 * and calls ->vm_ops. That makes it hard to optimize at
1519 * compile-time, even when NUMA is off and it does
1520 * nothing. This helps the compiler optimize it out.
1522 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524 * If a specific node is requested, make sure to
1525 * get memory from there, but only when a node
1526 * is explicitly specified.
1528 if (nid != NUMA_NO_NODE)
1529 gfp |= __GFP_THISNODE;
1531 * Make sure to call something that can handle
1534 return alloc_pages_node(nid, gfp, order);
1538 * OK, so we have a VMA. Fetch the mempolicy and try to
1539 * allocate a huge page with it. We will only reach this
1540 * when CONFIG_NUMA=y.
1544 struct mempolicy *mpol;
1545 struct zonelist *zl;
1546 nodemask_t *nodemask;
1548 cpuset_mems_cookie = read_mems_allowed_begin();
1549 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1550 mpol_cond_put(mpol);
1551 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1560 * There are two ways to allocate a huge page:
1561 * 1. When you have a VMA and an address (like a fault)
1562 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1564 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1565 * this case which signifies that the allocation should be done with
1566 * respect for the VMA's memory policy.
1568 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569 * implies that memory policies will not be taken in to account.
1571 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1572 struct vm_area_struct *vma, unsigned long addr, int nid)
1577 if (hstate_is_gigantic(h))
1581 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582 * This makes sure the caller is picking _one_ of the modes with which
1583 * we can call this function, not both.
1585 if (vma || (addr != -1)) {
1586 VM_WARN_ON_ONCE(addr == -1);
1587 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1590 * Assume we will successfully allocate the surplus page to
1591 * prevent racing processes from causing the surplus to exceed
1594 * This however introduces a different race, where a process B
1595 * tries to grow the static hugepage pool while alloc_pages() is
1596 * called by process A. B will only examine the per-node
1597 * counters in determining if surplus huge pages can be
1598 * converted to normal huge pages in adjust_pool_surplus(). A
1599 * won't be able to increment the per-node counter, until the
1600 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601 * no more huge pages can be converted from surplus to normal
1602 * state (and doesn't try to convert again). Thus, we have a
1603 * case where a surplus huge page exists, the pool is grown, and
1604 * the surplus huge page still exists after, even though it
1605 * should just have been converted to a normal huge page. This
1606 * does not leak memory, though, as the hugepage will be freed
1607 * once it is out of use. It also does not allow the counters to
1608 * go out of whack in adjust_pool_surplus() as we don't modify
1609 * the node values until we've gotten the hugepage and only the
1610 * per-node value is checked there.
1612 spin_lock(&hugetlb_lock);
1613 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1614 spin_unlock(&hugetlb_lock);
1618 h->surplus_huge_pages++;
1620 spin_unlock(&hugetlb_lock);
1622 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624 spin_lock(&hugetlb_lock);
1626 INIT_LIST_HEAD(&page->lru);
1627 r_nid = page_to_nid(page);
1628 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1629 set_hugetlb_cgroup(page, NULL);
1631 * We incremented the global counters already
1633 h->nr_huge_pages_node[r_nid]++;
1634 h->surplus_huge_pages_node[r_nid]++;
1635 __count_vm_event(HTLB_BUDDY_PGALLOC);
1638 h->surplus_huge_pages--;
1639 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641 spin_unlock(&hugetlb_lock);
1647 * Allocate a huge page from 'nid'. Note, 'nid' may be
1648 * NUMA_NO_NODE, which means that it may be allocated
1652 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1654 unsigned long addr = -1;
1656 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1664 struct vm_area_struct *vma, unsigned long addr)
1666 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670 * This allocation function is useful in the context where vma is irrelevant.
1671 * E.g. soft-offlining uses this function because it only cares physical
1672 * address of error page.
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1676 struct page *page = NULL;
1678 spin_lock(&hugetlb_lock);
1679 if (h->free_huge_pages - h->resv_huge_pages > 0)
1680 page = dequeue_huge_page_node(h, nid);
1681 spin_unlock(&hugetlb_lock);
1684 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703 h->resv_huge_pages += delta;
1708 INIT_LIST_HEAD(&surplus_list);
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1719 list_add(&page->lru, &surplus_list);
1724 * After retaking hugetlb_lock, we need to recalculate 'needed'
1725 * because either resv_huge_pages or free_huge_pages may have changed.
1727 spin_lock(&hugetlb_lock);
1728 needed = (h->resv_huge_pages + delta) -
1729 (h->free_huge_pages + allocated);
1734 * We were not able to allocate enough pages to
1735 * satisfy the entire reservation so we free what
1736 * we've allocated so far.
1741 * The surplus_list now contains _at_least_ the number of extra pages
1742 * needed to accommodate the reservation. Add the appropriate number
1743 * of pages to the hugetlb pool and free the extras back to the buddy
1744 * allocator. Commit the entire reservation here to prevent another
1745 * process from stealing the pages as they are added to the pool but
1746 * before they are reserved.
1748 needed += allocated;
1749 h->resv_huge_pages += delta;
1752 /* Free the needed pages to the hugetlb pool */
1753 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 * This page is now managed by the hugetlb allocator and has
1758 * no users -- drop the buddy allocator's reference.
1760 put_page_testzero(page);
1761 VM_BUG_ON_PAGE(page_count(page), page);
1762 enqueue_huge_page(h, page);
1765 spin_unlock(&hugetlb_lock);
1767 /* Free unnecessary surplus pages to the buddy allocator */
1768 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 spin_lock(&hugetlb_lock);
1776 * When releasing a hugetlb pool reservation, any surplus pages that were
1777 * allocated to satisfy the reservation must be explicitly freed if they were
1779 * Called with hugetlb_lock held.
1781 static void return_unused_surplus_pages(struct hstate *h,
1782 unsigned long unused_resv_pages)
1784 unsigned long nr_pages;
1786 /* Uncommit the reservation */
1787 h->resv_huge_pages -= unused_resv_pages;
1789 /* Cannot return gigantic pages currently */
1790 if (hstate_is_gigantic(h))
1793 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1796 * We want to release as many surplus pages as possible, spread
1797 * evenly across all nodes with memory. Iterate across these nodes
1798 * until we can no longer free unreserved surplus pages. This occurs
1799 * when the nodes with surplus pages have no free pages.
1800 * free_pool_huge_page() will balance the the freed pages across the
1801 * on-line nodes with memory and will handle the hstate accounting.
1803 while (nr_pages--) {
1804 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1806 cond_resched_lock(&hugetlb_lock);
1812 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1813 * are used by the huge page allocation routines to manage reservations.
1815 * vma_needs_reservation is called to determine if the huge page at addr
1816 * within the vma has an associated reservation. If a reservation is
1817 * needed, the value 1 is returned. The caller is then responsible for
1818 * managing the global reservation and subpool usage counts. After
1819 * the huge page has been allocated, vma_commit_reservation is called
1820 * to add the page to the reservation map. If the page allocation fails,
1821 * the reservation must be ended instead of committed. vma_end_reservation
1822 * is called in such cases.
1824 * In the normal case, vma_commit_reservation returns the same value
1825 * as the preceding vma_needs_reservation call. The only time this
1826 * is not the case is if a reserve map was changed between calls. It
1827 * is the responsibility of the caller to notice the difference and
1828 * take appropriate action.
1830 * vma_add_reservation is used in error paths where a reservation must
1831 * be restored when a newly allocated huge page must be freed. It is
1832 * to be called after calling vma_needs_reservation to determine if a
1833 * reservation exists.
1835 enum vma_resv_mode {
1841 static long __vma_reservation_common(struct hstate *h,
1842 struct vm_area_struct *vma, unsigned long addr,
1843 enum vma_resv_mode mode)
1845 struct resv_map *resv;
1849 resv = vma_resv_map(vma);
1853 idx = vma_hugecache_offset(h, vma, addr);
1855 case VMA_NEEDS_RESV:
1856 ret = region_chg(resv, idx, idx + 1);
1858 case VMA_COMMIT_RESV:
1859 ret = region_add(resv, idx, idx + 1);
1862 region_abort(resv, idx, idx + 1);
1866 if (vma->vm_flags & VM_MAYSHARE)
1867 ret = region_add(resv, idx, idx + 1);
1869 region_abort(resv, idx, idx + 1);
1870 ret = region_del(resv, idx, idx + 1);
1877 if (vma->vm_flags & VM_MAYSHARE)
1879 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1881 * In most cases, reserves always exist for private mappings.
1882 * However, a file associated with mapping could have been
1883 * hole punched or truncated after reserves were consumed.
1884 * As subsequent fault on such a range will not use reserves.
1885 * Subtle - The reserve map for private mappings has the
1886 * opposite meaning than that of shared mappings. If NO
1887 * entry is in the reserve map, it means a reservation exists.
1888 * If an entry exists in the reserve map, it means the
1889 * reservation has already been consumed. As a result, the
1890 * return value of this routine is the opposite of the
1891 * value returned from reserve map manipulation routines above.
1899 return ret < 0 ? ret : 0;
1902 static long vma_needs_reservation(struct hstate *h,
1903 struct vm_area_struct *vma, unsigned long addr)
1905 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1908 static long vma_commit_reservation(struct hstate *h,
1909 struct vm_area_struct *vma, unsigned long addr)
1911 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1914 static void vma_end_reservation(struct hstate *h,
1915 struct vm_area_struct *vma, unsigned long addr)
1917 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1920 static long vma_add_reservation(struct hstate *h,
1921 struct vm_area_struct *vma, unsigned long addr)
1923 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1927 * This routine is called to restore a reservation on error paths. In the
1928 * specific error paths, a huge page was allocated (via alloc_huge_page)
1929 * and is about to be freed. If a reservation for the page existed,
1930 * alloc_huge_page would have consumed the reservation and set PagePrivate
1931 * in the newly allocated page. When the page is freed via free_huge_page,
1932 * the global reservation count will be incremented if PagePrivate is set.
1933 * However, free_huge_page can not adjust the reserve map. Adjust the
1934 * reserve map here to be consistent with global reserve count adjustments
1935 * to be made by free_huge_page.
1937 static void restore_reserve_on_error(struct hstate *h,
1938 struct vm_area_struct *vma, unsigned long address,
1941 if (unlikely(PagePrivate(page))) {
1942 long rc = vma_needs_reservation(h, vma, address);
1944 if (unlikely(rc < 0)) {
1946 * Rare out of memory condition in reserve map
1947 * manipulation. Clear PagePrivate so that
1948 * global reserve count will not be incremented
1949 * by free_huge_page. This will make it appear
1950 * as though the reservation for this page was
1951 * consumed. This may prevent the task from
1952 * faulting in the page at a later time. This
1953 * is better than inconsistent global huge page
1954 * accounting of reserve counts.
1956 ClearPagePrivate(page);
1958 rc = vma_add_reservation(h, vma, address);
1959 if (unlikely(rc < 0))
1961 * See above comment about rare out of
1964 ClearPagePrivate(page);
1966 vma_end_reservation(h, vma, address);
1970 struct page *alloc_huge_page(struct vm_area_struct *vma,
1971 unsigned long addr, int avoid_reserve)
1973 struct hugepage_subpool *spool = subpool_vma(vma);
1974 struct hstate *h = hstate_vma(vma);
1976 long map_chg, map_commit;
1979 struct hugetlb_cgroup *h_cg;
1981 idx = hstate_index(h);
1983 * Examine the region/reserve map to determine if the process
1984 * has a reservation for the page to be allocated. A return
1985 * code of zero indicates a reservation exists (no change).
1987 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1989 return ERR_PTR(-ENOMEM);
1992 * Processes that did not create the mapping will have no
1993 * reserves as indicated by the region/reserve map. Check
1994 * that the allocation will not exceed the subpool limit.
1995 * Allocations for MAP_NORESERVE mappings also need to be
1996 * checked against any subpool limit.
1998 if (map_chg || avoid_reserve) {
1999 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2001 vma_end_reservation(h, vma, addr);
2002 return ERR_PTR(-ENOSPC);
2006 * Even though there was no reservation in the region/reserve
2007 * map, there could be reservations associated with the
2008 * subpool that can be used. This would be indicated if the
2009 * return value of hugepage_subpool_get_pages() is zero.
2010 * However, if avoid_reserve is specified we still avoid even
2011 * the subpool reservations.
2017 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2019 goto out_subpool_put;
2021 spin_lock(&hugetlb_lock);
2023 * glb_chg is passed to indicate whether or not a page must be taken
2024 * from the global free pool (global change). gbl_chg == 0 indicates
2025 * a reservation exists for the allocation.
2027 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2029 spin_unlock(&hugetlb_lock);
2030 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2032 goto out_uncharge_cgroup;
2033 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2034 SetPagePrivate(page);
2035 h->resv_huge_pages--;
2037 spin_lock(&hugetlb_lock);
2038 list_move(&page->lru, &h->hugepage_activelist);
2041 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2042 spin_unlock(&hugetlb_lock);
2044 set_page_private(page, (unsigned long)spool);
2046 map_commit = vma_commit_reservation(h, vma, addr);
2047 if (unlikely(map_chg > map_commit)) {
2049 * The page was added to the reservation map between
2050 * vma_needs_reservation and vma_commit_reservation.
2051 * This indicates a race with hugetlb_reserve_pages.
2052 * Adjust for the subpool count incremented above AND
2053 * in hugetlb_reserve_pages for the same page. Also,
2054 * the reservation count added in hugetlb_reserve_pages
2055 * no longer applies.
2059 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2060 hugetlb_acct_memory(h, -rsv_adjust);
2064 out_uncharge_cgroup:
2065 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2067 if (map_chg || avoid_reserve)
2068 hugepage_subpool_put_pages(spool, 1);
2069 vma_end_reservation(h, vma, addr);
2070 return ERR_PTR(-ENOSPC);
2074 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2075 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2076 * where no ERR_VALUE is expected to be returned.
2078 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2079 unsigned long addr, int avoid_reserve)
2081 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2087 int __weak alloc_bootmem_huge_page(struct hstate *h)
2089 struct huge_bootmem_page *m;
2092 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2095 addr = memblock_virt_alloc_try_nid_nopanic(
2096 huge_page_size(h), huge_page_size(h),
2097 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2100 * Use the beginning of the huge page to store the
2101 * huge_bootmem_page struct (until gather_bootmem
2102 * puts them into the mem_map).
2111 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2112 /* Put them into a private list first because mem_map is not up yet */
2113 list_add(&m->list, &huge_boot_pages);
2118 static void __init prep_compound_huge_page(struct page *page,
2121 if (unlikely(order > (MAX_ORDER - 1)))
2122 prep_compound_gigantic_page(page, order);
2124 prep_compound_page(page, order);
2127 /* Put bootmem huge pages into the standard lists after mem_map is up */
2128 static void __init gather_bootmem_prealloc(void)
2130 struct huge_bootmem_page *m;
2132 list_for_each_entry(m, &huge_boot_pages, list) {
2133 struct hstate *h = m->hstate;
2136 #ifdef CONFIG_HIGHMEM
2137 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2138 memblock_free_late(__pa(m),
2139 sizeof(struct huge_bootmem_page));
2141 page = virt_to_page(m);
2143 WARN_ON(page_count(page) != 1);
2144 prep_compound_huge_page(page, h->order);
2145 WARN_ON(PageReserved(page));
2146 prep_new_huge_page(h, page, page_to_nid(page));
2148 * If we had gigantic hugepages allocated at boot time, we need
2149 * to restore the 'stolen' pages to totalram_pages in order to
2150 * fix confusing memory reports from free(1) and another
2151 * side-effects, like CommitLimit going negative.
2153 if (hstate_is_gigantic(h))
2154 adjust_managed_page_count(page, 1 << h->order);
2158 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2162 for (i = 0; i < h->max_huge_pages; ++i) {
2163 if (hstate_is_gigantic(h)) {
2164 if (!alloc_bootmem_huge_page(h))
2166 } else if (!alloc_fresh_huge_page(h,
2167 &node_states[N_MEMORY]))
2170 h->max_huge_pages = i;
2173 static void __init hugetlb_init_hstates(void)
2177 for_each_hstate(h) {
2178 if (minimum_order > huge_page_order(h))
2179 minimum_order = huge_page_order(h);
2181 /* oversize hugepages were init'ed in early boot */
2182 if (!hstate_is_gigantic(h))
2183 hugetlb_hstate_alloc_pages(h);
2185 VM_BUG_ON(minimum_order == UINT_MAX);
2188 static char * __init memfmt(char *buf, unsigned long n)
2190 if (n >= (1UL << 30))
2191 sprintf(buf, "%lu GB", n >> 30);
2192 else if (n >= (1UL << 20))
2193 sprintf(buf, "%lu MB", n >> 20);
2195 sprintf(buf, "%lu KB", n >> 10);
2199 static void __init report_hugepages(void)
2203 for_each_hstate(h) {
2205 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2206 memfmt(buf, huge_page_size(h)),
2207 h->free_huge_pages);
2211 #ifdef CONFIG_HIGHMEM
2212 static void try_to_free_low(struct hstate *h, unsigned long count,
2213 nodemask_t *nodes_allowed)
2217 if (hstate_is_gigantic(h))
2220 for_each_node_mask(i, *nodes_allowed) {
2221 struct page *page, *next;
2222 struct list_head *freel = &h->hugepage_freelists[i];
2223 list_for_each_entry_safe(page, next, freel, lru) {
2224 if (count >= h->nr_huge_pages)
2226 if (PageHighMem(page))
2228 list_del(&page->lru);
2229 update_and_free_page(h, page);
2230 h->free_huge_pages--;
2231 h->free_huge_pages_node[page_to_nid(page)]--;
2236 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2237 nodemask_t *nodes_allowed)
2243 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2244 * balanced by operating on them in a round-robin fashion.
2245 * Returns 1 if an adjustment was made.
2247 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252 VM_BUG_ON(delta != -1 && delta != 1);
2255 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2256 if (h->surplus_huge_pages_node[node])
2260 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2261 if (h->surplus_huge_pages_node[node] <
2262 h->nr_huge_pages_node[node])
2269 h->surplus_huge_pages += delta;
2270 h->surplus_huge_pages_node[node] += delta;
2274 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2275 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2276 nodemask_t *nodes_allowed)
2278 unsigned long min_count, ret;
2280 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2281 return h->max_huge_pages;
2284 * Increase the pool size
2285 * First take pages out of surplus state. Then make up the
2286 * remaining difference by allocating fresh huge pages.
2288 * We might race with __alloc_buddy_huge_page() here and be unable
2289 * to convert a surplus huge page to a normal huge page. That is
2290 * not critical, though, it just means the overall size of the
2291 * pool might be one hugepage larger than it needs to be, but
2292 * within all the constraints specified by the sysctls.
2294 spin_lock(&hugetlb_lock);
2295 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2296 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2300 while (count > persistent_huge_pages(h)) {
2302 * If this allocation races such that we no longer need the
2303 * page, free_huge_page will handle it by freeing the page
2304 * and reducing the surplus.
2306 spin_unlock(&hugetlb_lock);
2308 /* yield cpu to avoid soft lockup */
2311 if (hstate_is_gigantic(h))
2312 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2314 ret = alloc_fresh_huge_page(h, nodes_allowed);
2315 spin_lock(&hugetlb_lock);
2319 /* Bail for signals. Probably ctrl-c from user */
2320 if (signal_pending(current))
2325 * Decrease the pool size
2326 * First return free pages to the buddy allocator (being careful
2327 * to keep enough around to satisfy reservations). Then place
2328 * pages into surplus state as needed so the pool will shrink
2329 * to the desired size as pages become free.
2331 * By placing pages into the surplus state independent of the
2332 * overcommit value, we are allowing the surplus pool size to
2333 * exceed overcommit. There are few sane options here. Since
2334 * __alloc_buddy_huge_page() is checking the global counter,
2335 * though, we'll note that we're not allowed to exceed surplus
2336 * and won't grow the pool anywhere else. Not until one of the
2337 * sysctls are changed, or the surplus pages go out of use.
2339 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2340 min_count = max(count, min_count);
2341 try_to_free_low(h, min_count, nodes_allowed);
2342 while (min_count < persistent_huge_pages(h)) {
2343 if (!free_pool_huge_page(h, nodes_allowed, 0))
2345 cond_resched_lock(&hugetlb_lock);
2347 while (count < persistent_huge_pages(h)) {
2348 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2352 ret = persistent_huge_pages(h);
2353 spin_unlock(&hugetlb_lock);
2357 #define HSTATE_ATTR_RO(_name) \
2358 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2360 #define HSTATE_ATTR(_name) \
2361 static struct kobj_attribute _name##_attr = \
2362 __ATTR(_name, 0644, _name##_show, _name##_store)
2364 static struct kobject *hugepages_kobj;
2365 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2367 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2369 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2373 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2374 if (hstate_kobjs[i] == kobj) {
2376 *nidp = NUMA_NO_NODE;
2380 return kobj_to_node_hstate(kobj, nidp);
2383 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2384 struct kobj_attribute *attr, char *buf)
2387 unsigned long nr_huge_pages;
2390 h = kobj_to_hstate(kobj, &nid);
2391 if (nid == NUMA_NO_NODE)
2392 nr_huge_pages = h->nr_huge_pages;
2394 nr_huge_pages = h->nr_huge_pages_node[nid];
2396 return sprintf(buf, "%lu\n", nr_huge_pages);
2399 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2400 struct hstate *h, int nid,
2401 unsigned long count, size_t len)
2404 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2406 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2411 if (nid == NUMA_NO_NODE) {
2413 * global hstate attribute
2415 if (!(obey_mempolicy &&
2416 init_nodemask_of_mempolicy(nodes_allowed))) {
2417 NODEMASK_FREE(nodes_allowed);
2418 nodes_allowed = &node_states[N_MEMORY];
2420 } else if (nodes_allowed) {
2422 * per node hstate attribute: adjust count to global,
2423 * but restrict alloc/free to the specified node.
2425 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2426 init_nodemask_of_node(nodes_allowed, nid);
2428 nodes_allowed = &node_states[N_MEMORY];
2430 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2432 if (nodes_allowed != &node_states[N_MEMORY])
2433 NODEMASK_FREE(nodes_allowed);
2437 NODEMASK_FREE(nodes_allowed);
2441 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2442 struct kobject *kobj, const char *buf,
2446 unsigned long count;
2450 err = kstrtoul(buf, 10, &count);
2454 h = kobj_to_hstate(kobj, &nid);
2455 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2458 static ssize_t nr_hugepages_show(struct kobject *kobj,
2459 struct kobj_attribute *attr, char *buf)
2461 return nr_hugepages_show_common(kobj, attr, buf);
2464 static ssize_t nr_hugepages_store(struct kobject *kobj,
2465 struct kobj_attribute *attr, const char *buf, size_t len)
2467 return nr_hugepages_store_common(false, kobj, buf, len);
2469 HSTATE_ATTR(nr_hugepages);
2474 * hstate attribute for optionally mempolicy-based constraint on persistent
2475 * huge page alloc/free.
2477 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2478 struct kobj_attribute *attr, char *buf)
2480 return nr_hugepages_show_common(kobj, attr, buf);
2483 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2484 struct kobj_attribute *attr, const char *buf, size_t len)
2486 return nr_hugepages_store_common(true, kobj, buf, len);
2488 HSTATE_ATTR(nr_hugepages_mempolicy);
2492 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2493 struct kobj_attribute *attr, char *buf)
2495 struct hstate *h = kobj_to_hstate(kobj, NULL);
2496 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2499 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t count)
2503 unsigned long input;
2504 struct hstate *h = kobj_to_hstate(kobj, NULL);
2506 if (hstate_is_gigantic(h))
2509 err = kstrtoul(buf, 10, &input);
2513 spin_lock(&hugetlb_lock);
2514 h->nr_overcommit_huge_pages = input;
2515 spin_unlock(&hugetlb_lock);
2519 HSTATE_ATTR(nr_overcommit_hugepages);
2521 static ssize_t free_hugepages_show(struct kobject *kobj,
2522 struct kobj_attribute *attr, char *buf)
2525 unsigned long free_huge_pages;
2528 h = kobj_to_hstate(kobj, &nid);
2529 if (nid == NUMA_NO_NODE)
2530 free_huge_pages = h->free_huge_pages;
2532 free_huge_pages = h->free_huge_pages_node[nid];
2534 return sprintf(buf, "%lu\n", free_huge_pages);
2536 HSTATE_ATTR_RO(free_hugepages);
2538 static ssize_t resv_hugepages_show(struct kobject *kobj,
2539 struct kobj_attribute *attr, char *buf)
2541 struct hstate *h = kobj_to_hstate(kobj, NULL);
2542 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2544 HSTATE_ATTR_RO(resv_hugepages);
2546 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2550 unsigned long surplus_huge_pages;
2553 h = kobj_to_hstate(kobj, &nid);
2554 if (nid == NUMA_NO_NODE)
2555 surplus_huge_pages = h->surplus_huge_pages;
2557 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2559 return sprintf(buf, "%lu\n", surplus_huge_pages);
2561 HSTATE_ATTR_RO(surplus_hugepages);
2563 static struct attribute *hstate_attrs[] = {
2564 &nr_hugepages_attr.attr,
2565 &nr_overcommit_hugepages_attr.attr,
2566 &free_hugepages_attr.attr,
2567 &resv_hugepages_attr.attr,
2568 &surplus_hugepages_attr.attr,
2570 &nr_hugepages_mempolicy_attr.attr,
2575 static struct attribute_group hstate_attr_group = {
2576 .attrs = hstate_attrs,
2579 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2580 struct kobject **hstate_kobjs,
2581 struct attribute_group *hstate_attr_group)
2584 int hi = hstate_index(h);
2586 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2587 if (!hstate_kobjs[hi])
2590 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2592 kobject_put(hstate_kobjs[hi]);
2597 static void __init hugetlb_sysfs_init(void)
2602 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2603 if (!hugepages_kobj)
2606 for_each_hstate(h) {
2607 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2608 hstate_kobjs, &hstate_attr_group);
2610 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2617 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618 * with node devices in node_devices[] using a parallel array. The array
2619 * index of a node device or _hstate == node id.
2620 * This is here to avoid any static dependency of the node device driver, in
2621 * the base kernel, on the hugetlb module.
2623 struct node_hstate {
2624 struct kobject *hugepages_kobj;
2625 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2627 static struct node_hstate node_hstates[MAX_NUMNODES];
2630 * A subset of global hstate attributes for node devices
2632 static struct attribute *per_node_hstate_attrs[] = {
2633 &nr_hugepages_attr.attr,
2634 &free_hugepages_attr.attr,
2635 &surplus_hugepages_attr.attr,
2639 static struct attribute_group per_node_hstate_attr_group = {
2640 .attrs = per_node_hstate_attrs,
2644 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645 * Returns node id via non-NULL nidp.
2647 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2651 for (nid = 0; nid < nr_node_ids; nid++) {
2652 struct node_hstate *nhs = &node_hstates[nid];
2654 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2655 if (nhs->hstate_kobjs[i] == kobj) {
2667 * Unregister hstate attributes from a single node device.
2668 * No-op if no hstate attributes attached.
2670 static void hugetlb_unregister_node(struct node *node)
2673 struct node_hstate *nhs = &node_hstates[node->dev.id];
2675 if (!nhs->hugepages_kobj)
2676 return; /* no hstate attributes */
2678 for_each_hstate(h) {
2679 int idx = hstate_index(h);
2680 if (nhs->hstate_kobjs[idx]) {
2681 kobject_put(nhs->hstate_kobjs[idx]);
2682 nhs->hstate_kobjs[idx] = NULL;
2686 kobject_put(nhs->hugepages_kobj);
2687 nhs->hugepages_kobj = NULL;
2692 * Register hstate attributes for a single node device.
2693 * No-op if attributes already registered.
2695 static void hugetlb_register_node(struct node *node)
2698 struct node_hstate *nhs = &node_hstates[node->dev.id];
2701 if (nhs->hugepages_kobj)
2702 return; /* already allocated */
2704 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2706 if (!nhs->hugepages_kobj)
2709 for_each_hstate(h) {
2710 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2712 &per_node_hstate_attr_group);
2714 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715 h->name, node->dev.id);
2716 hugetlb_unregister_node(node);
2723 * hugetlb init time: register hstate attributes for all registered node
2724 * devices of nodes that have memory. All on-line nodes should have
2725 * registered their associated device by this time.
2727 static void __init hugetlb_register_all_nodes(void)
2731 for_each_node_state(nid, N_MEMORY) {
2732 struct node *node = node_devices[nid];
2733 if (node->dev.id == nid)
2734 hugetlb_register_node(node);
2738 * Let the node device driver know we're here so it can
2739 * [un]register hstate attributes on node hotplug.
2741 register_hugetlbfs_with_node(hugetlb_register_node,
2742 hugetlb_unregister_node);
2744 #else /* !CONFIG_NUMA */
2746 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2754 static void hugetlb_register_all_nodes(void) { }
2758 static int __init hugetlb_init(void)
2762 if (!hugepages_supported())
2765 if (!size_to_hstate(default_hstate_size)) {
2766 default_hstate_size = HPAGE_SIZE;
2767 if (!size_to_hstate(default_hstate_size))
2768 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2770 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2771 if (default_hstate_max_huge_pages) {
2772 if (!default_hstate.max_huge_pages)
2773 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2776 hugetlb_init_hstates();
2777 gather_bootmem_prealloc();
2780 hugetlb_sysfs_init();
2781 hugetlb_register_all_nodes();
2782 hugetlb_cgroup_file_init();
2785 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2787 num_fault_mutexes = 1;
2789 hugetlb_fault_mutex_table =
2790 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2791 BUG_ON(!hugetlb_fault_mutex_table);
2793 for (i = 0; i < num_fault_mutexes; i++)
2794 mutex_init(&hugetlb_fault_mutex_table[i]);
2797 subsys_initcall(hugetlb_init);
2799 /* Should be called on processing a hugepagesz=... option */
2800 void __init hugetlb_bad_size(void)
2802 parsed_valid_hugepagesz = false;
2805 void __init hugetlb_add_hstate(unsigned int order)
2810 if (size_to_hstate(PAGE_SIZE << order)) {
2811 pr_warn("hugepagesz= specified twice, ignoring\n");
2814 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2816 h = &hstates[hugetlb_max_hstate++];
2818 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2819 h->nr_huge_pages = 0;
2820 h->free_huge_pages = 0;
2821 for (i = 0; i < MAX_NUMNODES; ++i)
2822 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2823 INIT_LIST_HEAD(&h->hugepage_activelist);
2824 h->next_nid_to_alloc = first_memory_node;
2825 h->next_nid_to_free = first_memory_node;
2826 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2827 huge_page_size(h)/1024);
2832 static int __init hugetlb_nrpages_setup(char *s)
2835 static unsigned long *last_mhp;
2837 if (!parsed_valid_hugepagesz) {
2838 pr_warn("hugepages = %s preceded by "
2839 "an unsupported hugepagesz, ignoring\n", s);
2840 parsed_valid_hugepagesz = true;
2844 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2845 * so this hugepages= parameter goes to the "default hstate".
2847 else if (!hugetlb_max_hstate)
2848 mhp = &default_hstate_max_huge_pages;
2850 mhp = &parsed_hstate->max_huge_pages;
2852 if (mhp == last_mhp) {
2853 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2857 if (sscanf(s, "%lu", mhp) <= 0)
2861 * Global state is always initialized later in hugetlb_init.
2862 * But we need to allocate >= MAX_ORDER hstates here early to still
2863 * use the bootmem allocator.
2865 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2866 hugetlb_hstate_alloc_pages(parsed_hstate);
2872 __setup("hugepages=", hugetlb_nrpages_setup);
2874 static int __init hugetlb_default_setup(char *s)
2876 default_hstate_size = memparse(s, &s);
2879 __setup("default_hugepagesz=", hugetlb_default_setup);
2881 static unsigned int cpuset_mems_nr(unsigned int *array)
2884 unsigned int nr = 0;
2886 for_each_node_mask(node, cpuset_current_mems_allowed)
2892 #ifdef CONFIG_SYSCTL
2893 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2894 struct ctl_table *table, int write,
2895 void __user *buffer, size_t *length, loff_t *ppos)
2897 struct hstate *h = &default_hstate;
2898 unsigned long tmp = h->max_huge_pages;
2901 if (!hugepages_supported())
2905 table->maxlen = sizeof(unsigned long);
2906 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2911 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2912 NUMA_NO_NODE, tmp, *length);
2917 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2918 void __user *buffer, size_t *length, loff_t *ppos)
2921 return hugetlb_sysctl_handler_common(false, table, write,
2922 buffer, length, ppos);
2926 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2927 void __user *buffer, size_t *length, loff_t *ppos)
2929 return hugetlb_sysctl_handler_common(true, table, write,
2930 buffer, length, ppos);
2932 #endif /* CONFIG_NUMA */
2934 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2935 void __user *buffer,
2936 size_t *length, loff_t *ppos)
2938 struct hstate *h = &default_hstate;
2942 if (!hugepages_supported())
2945 tmp = h->nr_overcommit_huge_pages;
2947 if (write && hstate_is_gigantic(h))
2951 table->maxlen = sizeof(unsigned long);
2952 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2957 spin_lock(&hugetlb_lock);
2958 h->nr_overcommit_huge_pages = tmp;
2959 spin_unlock(&hugetlb_lock);
2965 #endif /* CONFIG_SYSCTL */
2967 void hugetlb_report_meminfo(struct seq_file *m)
2969 struct hstate *h = &default_hstate;
2970 if (!hugepages_supported())
2973 "HugePages_Total: %5lu\n"
2974 "HugePages_Free: %5lu\n"
2975 "HugePages_Rsvd: %5lu\n"
2976 "HugePages_Surp: %5lu\n"
2977 "Hugepagesize: %8lu kB\n",
2981 h->surplus_huge_pages,
2982 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2985 int hugetlb_report_node_meminfo(int nid, char *buf)
2987 struct hstate *h = &default_hstate;
2988 if (!hugepages_supported())
2991 "Node %d HugePages_Total: %5u\n"
2992 "Node %d HugePages_Free: %5u\n"
2993 "Node %d HugePages_Surp: %5u\n",
2994 nid, h->nr_huge_pages_node[nid],
2995 nid, h->free_huge_pages_node[nid],
2996 nid, h->surplus_huge_pages_node[nid]);
2999 void hugetlb_show_meminfo(void)
3004 if (!hugepages_supported())
3007 for_each_node_state(nid, N_MEMORY)
3009 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3011 h->nr_huge_pages_node[nid],
3012 h->free_huge_pages_node[nid],
3013 h->surplus_huge_pages_node[nid],
3014 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3017 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3019 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3020 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3023 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3024 unsigned long hugetlb_total_pages(void)
3027 unsigned long nr_total_pages = 0;
3030 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3031 return nr_total_pages;
3034 static int hugetlb_acct_memory(struct hstate *h, long delta)
3038 spin_lock(&hugetlb_lock);
3040 * When cpuset is configured, it breaks the strict hugetlb page
3041 * reservation as the accounting is done on a global variable. Such
3042 * reservation is completely rubbish in the presence of cpuset because
3043 * the reservation is not checked against page availability for the
3044 * current cpuset. Application can still potentially OOM'ed by kernel
3045 * with lack of free htlb page in cpuset that the task is in.
3046 * Attempt to enforce strict accounting with cpuset is almost
3047 * impossible (or too ugly) because cpuset is too fluid that
3048 * task or memory node can be dynamically moved between cpusets.
3050 * The change of semantics for shared hugetlb mapping with cpuset is
3051 * undesirable. However, in order to preserve some of the semantics,
3052 * we fall back to check against current free page availability as
3053 * a best attempt and hopefully to minimize the impact of changing
3054 * semantics that cpuset has.
3057 if (gather_surplus_pages(h, delta) < 0)
3060 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3061 return_unused_surplus_pages(h, delta);
3068 return_unused_surplus_pages(h, (unsigned long) -delta);
3071 spin_unlock(&hugetlb_lock);
3075 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3077 struct resv_map *resv = vma_resv_map(vma);
3080 * This new VMA should share its siblings reservation map if present.
3081 * The VMA will only ever have a valid reservation map pointer where
3082 * it is being copied for another still existing VMA. As that VMA
3083 * has a reference to the reservation map it cannot disappear until
3084 * after this open call completes. It is therefore safe to take a
3085 * new reference here without additional locking.
3087 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3088 kref_get(&resv->refs);
3091 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3093 struct hstate *h = hstate_vma(vma);
3094 struct resv_map *resv = vma_resv_map(vma);
3095 struct hugepage_subpool *spool = subpool_vma(vma);
3096 unsigned long reserve, start, end;
3099 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3102 start = vma_hugecache_offset(h, vma, vma->vm_start);
3103 end = vma_hugecache_offset(h, vma, vma->vm_end);
3105 reserve = (end - start) - region_count(resv, start, end);
3107 kref_put(&resv->refs, resv_map_release);
3111 * Decrement reserve counts. The global reserve count may be
3112 * adjusted if the subpool has a minimum size.
3114 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3115 hugetlb_acct_memory(h, -gbl_reserve);
3120 * We cannot handle pagefaults against hugetlb pages at all. They cause
3121 * handle_mm_fault() to try to instantiate regular-sized pages in the
3122 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3125 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3131 const struct vm_operations_struct hugetlb_vm_ops = {
3132 .fault = hugetlb_vm_op_fault,
3133 .open = hugetlb_vm_op_open,
3134 .close = hugetlb_vm_op_close,
3137 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3143 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3144 vma->vm_page_prot)));
3146 entry = huge_pte_wrprotect(mk_huge_pte(page,
3147 vma->vm_page_prot));
3149 entry = pte_mkyoung(entry);
3150 entry = pte_mkhuge(entry);
3151 entry = arch_make_huge_pte(entry, vma, page, writable);
3156 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3157 unsigned long address, pte_t *ptep)
3161 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3162 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3163 update_mmu_cache(vma, address, ptep);
3166 static int is_hugetlb_entry_migration(pte_t pte)
3170 if (huge_pte_none(pte) || pte_present(pte))
3172 swp = pte_to_swp_entry(pte);
3173 if (non_swap_entry(swp) && is_migration_entry(swp))
3179 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3183 if (huge_pte_none(pte) || pte_present(pte))
3185 swp = pte_to_swp_entry(pte);
3186 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3192 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3193 struct vm_area_struct *vma)
3195 pte_t *src_pte, *dst_pte, entry;
3196 struct page *ptepage;
3199 struct hstate *h = hstate_vma(vma);
3200 unsigned long sz = huge_page_size(h);
3201 unsigned long mmun_start; /* For mmu_notifiers */
3202 unsigned long mmun_end; /* For mmu_notifiers */
3205 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3207 mmun_start = vma->vm_start;
3208 mmun_end = vma->vm_end;
3210 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3212 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3213 spinlock_t *src_ptl, *dst_ptl;
3214 src_pte = huge_pte_offset(src, addr);
3217 dst_pte = huge_pte_alloc(dst, addr, sz);
3223 /* If the pagetables are shared don't copy or take references */
3224 if (dst_pte == src_pte)
3227 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3228 src_ptl = huge_pte_lockptr(h, src, src_pte);
3229 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3230 entry = huge_ptep_get(src_pte);
3231 if (huge_pte_none(entry)) { /* skip none entry */
3233 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3234 is_hugetlb_entry_hwpoisoned(entry))) {
3235 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3237 if (is_write_migration_entry(swp_entry) && cow) {
3239 * COW mappings require pages in both
3240 * parent and child to be set to read.
3242 make_migration_entry_read(&swp_entry);
3243 entry = swp_entry_to_pte(swp_entry);
3244 set_huge_pte_at(src, addr, src_pte, entry);
3246 set_huge_pte_at(dst, addr, dst_pte, entry);
3249 huge_ptep_set_wrprotect(src, addr, src_pte);
3250 mmu_notifier_invalidate_range(src, mmun_start,
3253 entry = huge_ptep_get(src_pte);
3254 ptepage = pte_page(entry);
3256 page_dup_rmap(ptepage, true);
3257 set_huge_pte_at(dst, addr, dst_pte, entry);
3258 hugetlb_count_add(pages_per_huge_page(h), dst);
3260 spin_unlock(src_ptl);
3261 spin_unlock(dst_ptl);
3265 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3270 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3271 unsigned long start, unsigned long end,
3272 struct page *ref_page)
3274 struct mm_struct *mm = vma->vm_mm;
3275 unsigned long address;
3280 struct hstate *h = hstate_vma(vma);
3281 unsigned long sz = huge_page_size(h);
3282 const unsigned long mmun_start = start; /* For mmu_notifiers */
3283 const unsigned long mmun_end = end; /* For mmu_notifiers */
3285 WARN_ON(!is_vm_hugetlb_page(vma));
3286 BUG_ON(start & ~huge_page_mask(h));
3287 BUG_ON(end & ~huge_page_mask(h));
3289 tlb_start_vma(tlb, vma);
3290 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3292 for (; address < end; address += sz) {
3293 ptep = huge_pte_offset(mm, address);
3297 ptl = huge_pte_lock(h, mm, ptep);
3298 if (huge_pmd_unshare(mm, &address, ptep)) {
3303 pte = huge_ptep_get(ptep);
3304 if (huge_pte_none(pte)) {
3310 * Migrating hugepage or HWPoisoned hugepage is already
3311 * unmapped and its refcount is dropped, so just clear pte here.
3313 if (unlikely(!pte_present(pte))) {
3314 huge_pte_clear(mm, address, ptep);
3319 page = pte_page(pte);
3321 * If a reference page is supplied, it is because a specific
3322 * page is being unmapped, not a range. Ensure the page we
3323 * are about to unmap is the actual page of interest.
3326 if (page != ref_page) {
3331 * Mark the VMA as having unmapped its page so that
3332 * future faults in this VMA will fail rather than
3333 * looking like data was lost
3335 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3338 pte = huge_ptep_get_and_clear(mm, address, ptep);
3339 tlb_remove_tlb_entry(tlb, ptep, address);
3340 if (huge_pte_dirty(pte))
3341 set_page_dirty(page);
3343 hugetlb_count_sub(pages_per_huge_page(h), mm);
3344 page_remove_rmap(page, true);
3347 tlb_remove_page_size(tlb, page, huge_page_size(h));
3349 * Bail out after unmapping reference page if supplied
3354 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3355 tlb_end_vma(tlb, vma);
3358 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3359 struct vm_area_struct *vma, unsigned long start,
3360 unsigned long end, struct page *ref_page)
3362 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3365 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3366 * test will fail on a vma being torn down, and not grab a page table
3367 * on its way out. We're lucky that the flag has such an appropriate
3368 * name, and can in fact be safely cleared here. We could clear it
3369 * before the __unmap_hugepage_range above, but all that's necessary
3370 * is to clear it before releasing the i_mmap_rwsem. This works
3371 * because in the context this is called, the VMA is about to be
3372 * destroyed and the i_mmap_rwsem is held.
3374 vma->vm_flags &= ~VM_MAYSHARE;
3377 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3378 unsigned long end, struct page *ref_page)
3380 struct mm_struct *mm;
3381 struct mmu_gather tlb;
3385 tlb_gather_mmu(&tlb, mm, start, end);
3386 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3387 tlb_finish_mmu(&tlb, start, end);
3391 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3392 * mappping it owns the reserve page for. The intention is to unmap the page
3393 * from other VMAs and let the children be SIGKILLed if they are faulting the
3396 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3397 struct page *page, unsigned long address)
3399 struct hstate *h = hstate_vma(vma);
3400 struct vm_area_struct *iter_vma;
3401 struct address_space *mapping;
3405 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3406 * from page cache lookup which is in HPAGE_SIZE units.
3408 address = address & huge_page_mask(h);
3409 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3411 mapping = vma->vm_file->f_mapping;
3414 * Take the mapping lock for the duration of the table walk. As
3415 * this mapping should be shared between all the VMAs,
3416 * __unmap_hugepage_range() is called as the lock is already held
3418 i_mmap_lock_write(mapping);
3419 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3420 /* Do not unmap the current VMA */
3421 if (iter_vma == vma)
3425 * Shared VMAs have their own reserves and do not affect
3426 * MAP_PRIVATE accounting but it is possible that a shared
3427 * VMA is using the same page so check and skip such VMAs.
3429 if (iter_vma->vm_flags & VM_MAYSHARE)
3433 * Unmap the page from other VMAs without their own reserves.
3434 * They get marked to be SIGKILLed if they fault in these
3435 * areas. This is because a future no-page fault on this VMA
3436 * could insert a zeroed page instead of the data existing
3437 * from the time of fork. This would look like data corruption
3439 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3440 unmap_hugepage_range(iter_vma, address,
3441 address + huge_page_size(h), page);
3443 i_mmap_unlock_write(mapping);
3447 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3448 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3449 * cannot race with other handlers or page migration.
3450 * Keep the pte_same checks anyway to make transition from the mutex easier.
3452 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3453 unsigned long address, pte_t *ptep, pte_t pte,
3454 struct page *pagecache_page, spinlock_t *ptl)
3456 struct hstate *h = hstate_vma(vma);
3457 struct page *old_page, *new_page;
3458 int ret = 0, outside_reserve = 0;
3459 unsigned long mmun_start; /* For mmu_notifiers */
3460 unsigned long mmun_end; /* For mmu_notifiers */
3462 old_page = pte_page(pte);
3465 /* If no-one else is actually using this page, avoid the copy
3466 * and just make the page writable */
3467 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3468 page_move_anon_rmap(old_page, vma);
3469 set_huge_ptep_writable(vma, address, ptep);
3474 * If the process that created a MAP_PRIVATE mapping is about to
3475 * perform a COW due to a shared page count, attempt to satisfy
3476 * the allocation without using the existing reserves. The pagecache
3477 * page is used to determine if the reserve at this address was
3478 * consumed or not. If reserves were used, a partial faulted mapping
3479 * at the time of fork() could consume its reserves on COW instead
3480 * of the full address range.
3482 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3483 old_page != pagecache_page)
3484 outside_reserve = 1;
3489 * Drop page table lock as buddy allocator may be called. It will
3490 * be acquired again before returning to the caller, as expected.
3493 new_page = alloc_huge_page(vma, address, outside_reserve);
3495 if (IS_ERR(new_page)) {
3497 * If a process owning a MAP_PRIVATE mapping fails to COW,
3498 * it is due to references held by a child and an insufficient
3499 * huge page pool. To guarantee the original mappers
3500 * reliability, unmap the page from child processes. The child
3501 * may get SIGKILLed if it later faults.
3503 if (outside_reserve) {
3505 BUG_ON(huge_pte_none(pte));
3506 unmap_ref_private(mm, vma, old_page, address);
3507 BUG_ON(huge_pte_none(pte));
3509 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3511 pte_same(huge_ptep_get(ptep), pte)))
3512 goto retry_avoidcopy;
3514 * race occurs while re-acquiring page table
3515 * lock, and our job is done.
3520 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3521 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3522 goto out_release_old;
3526 * When the original hugepage is shared one, it does not have
3527 * anon_vma prepared.
3529 if (unlikely(anon_vma_prepare(vma))) {
3531 goto out_release_all;
3534 copy_user_huge_page(new_page, old_page, address, vma,
3535 pages_per_huge_page(h));
3536 __SetPageUptodate(new_page);
3537 set_page_huge_active(new_page);
3539 mmun_start = address & huge_page_mask(h);
3540 mmun_end = mmun_start + huge_page_size(h);
3541 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3544 * Retake the page table lock to check for racing updates
3545 * before the page tables are altered
3548 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3549 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3550 ClearPagePrivate(new_page);
3553 huge_ptep_clear_flush(vma, address, ptep);
3554 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3555 set_huge_pte_at(mm, address, ptep,
3556 make_huge_pte(vma, new_page, 1));
3557 page_remove_rmap(old_page, true);
3558 hugepage_add_new_anon_rmap(new_page, vma, address);
3559 /* Make the old page be freed below */
3560 new_page = old_page;
3563 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3565 restore_reserve_on_error(h, vma, address, new_page);
3570 spin_lock(ptl); /* Caller expects lock to be held */
3574 /* Return the pagecache page at a given address within a VMA */
3575 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3576 struct vm_area_struct *vma, unsigned long address)
3578 struct address_space *mapping;
3581 mapping = vma->vm_file->f_mapping;
3582 idx = vma_hugecache_offset(h, vma, address);
3584 return find_lock_page(mapping, idx);
3588 * Return whether there is a pagecache page to back given address within VMA.
3589 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3591 static bool hugetlbfs_pagecache_present(struct hstate *h,
3592 struct vm_area_struct *vma, unsigned long address)
3594 struct address_space *mapping;
3598 mapping = vma->vm_file->f_mapping;
3599 idx = vma_hugecache_offset(h, vma, address);
3601 page = find_get_page(mapping, idx);
3604 return page != NULL;
3607 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3610 struct inode *inode = mapping->host;
3611 struct hstate *h = hstate_inode(inode);
3612 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3616 ClearPagePrivate(page);
3618 spin_lock(&inode->i_lock);
3619 inode->i_blocks += blocks_per_huge_page(h);
3620 spin_unlock(&inode->i_lock);
3624 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3625 struct address_space *mapping, pgoff_t idx,
3626 unsigned long address, pte_t *ptep, unsigned int flags)
3628 struct hstate *h = hstate_vma(vma);
3629 int ret = VM_FAULT_SIGBUS;
3637 * Currently, we are forced to kill the process in the event the
3638 * original mapper has unmapped pages from the child due to a failed
3639 * COW. Warn that such a situation has occurred as it may not be obvious
3641 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3642 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3648 * Use page lock to guard against racing truncation
3649 * before we get page_table_lock.
3652 page = find_lock_page(mapping, idx);
3654 size = i_size_read(mapping->host) >> huge_page_shift(h);
3657 page = alloc_huge_page(vma, address, 0);
3659 ret = PTR_ERR(page);
3663 ret = VM_FAULT_SIGBUS;
3666 clear_huge_page(page, address, pages_per_huge_page(h));
3667 __SetPageUptodate(page);
3668 set_page_huge_active(page);
3670 if (vma->vm_flags & VM_MAYSHARE) {
3671 int err = huge_add_to_page_cache(page, mapping, idx);
3680 if (unlikely(anon_vma_prepare(vma))) {
3682 goto backout_unlocked;
3688 * If memory error occurs between mmap() and fault, some process
3689 * don't have hwpoisoned swap entry for errored virtual address.
3690 * So we need to block hugepage fault by PG_hwpoison bit check.
3692 if (unlikely(PageHWPoison(page))) {
3693 ret = VM_FAULT_HWPOISON |
3694 VM_FAULT_SET_HINDEX(hstate_index(h));
3695 goto backout_unlocked;
3700 * If we are going to COW a private mapping later, we examine the
3701 * pending reservations for this page now. This will ensure that
3702 * any allocations necessary to record that reservation occur outside
3705 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3706 if (vma_needs_reservation(h, vma, address) < 0) {
3708 goto backout_unlocked;
3710 /* Just decrements count, does not deallocate */
3711 vma_end_reservation(h, vma, address);
3714 ptl = huge_pte_lockptr(h, mm, ptep);
3716 size = i_size_read(mapping->host) >> huge_page_shift(h);
3721 if (!huge_pte_none(huge_ptep_get(ptep)))
3725 ClearPagePrivate(page);
3726 hugepage_add_new_anon_rmap(page, vma, address);
3728 page_dup_rmap(page, true);
3729 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3730 && (vma->vm_flags & VM_SHARED)));
3731 set_huge_pte_at(mm, address, ptep, new_pte);
3733 hugetlb_count_add(pages_per_huge_page(h), mm);
3734 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3735 /* Optimization, do the COW without a second fault */
3736 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3748 restore_reserve_on_error(h, vma, address, page);
3754 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3755 struct vm_area_struct *vma,
3756 struct address_space *mapping,
3757 pgoff_t idx, unsigned long address)
3759 unsigned long key[2];
3762 if (vma->vm_flags & VM_SHARED) {
3763 key[0] = (unsigned long) mapping;
3766 key[0] = (unsigned long) mm;
3767 key[1] = address >> huge_page_shift(h);
3770 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3772 return hash & (num_fault_mutexes - 1);
3776 * For uniprocesor systems we always use a single mutex, so just
3777 * return 0 and avoid the hashing overhead.
3779 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3780 struct vm_area_struct *vma,
3781 struct address_space *mapping,
3782 pgoff_t idx, unsigned long address)
3788 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3789 unsigned long address, unsigned int flags)
3796 struct page *page = NULL;
3797 struct page *pagecache_page = NULL;
3798 struct hstate *h = hstate_vma(vma);
3799 struct address_space *mapping;
3800 int need_wait_lock = 0;
3802 address &= huge_page_mask(h);
3804 ptep = huge_pte_offset(mm, address);
3806 entry = huge_ptep_get(ptep);
3807 if (unlikely(is_hugetlb_entry_migration(entry))) {
3808 migration_entry_wait_huge(vma, mm, ptep);
3810 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3811 return VM_FAULT_HWPOISON_LARGE |
3812 VM_FAULT_SET_HINDEX(hstate_index(h));
3814 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3816 return VM_FAULT_OOM;
3819 mapping = vma->vm_file->f_mapping;
3820 idx = vma_hugecache_offset(h, vma, address);
3823 * Serialize hugepage allocation and instantiation, so that we don't
3824 * get spurious allocation failures if two CPUs race to instantiate
3825 * the same page in the page cache.
3827 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3828 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3830 entry = huge_ptep_get(ptep);
3831 if (huge_pte_none(entry)) {
3832 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3839 * entry could be a migration/hwpoison entry at this point, so this
3840 * check prevents the kernel from going below assuming that we have
3841 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3842 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3845 if (!pte_present(entry))
3849 * If we are going to COW the mapping later, we examine the pending
3850 * reservations for this page now. This will ensure that any
3851 * allocations necessary to record that reservation occur outside the
3852 * spinlock. For private mappings, we also lookup the pagecache
3853 * page now as it is used to determine if a reservation has been
3856 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3857 if (vma_needs_reservation(h, vma, address) < 0) {
3861 /* Just decrements count, does not deallocate */
3862 vma_end_reservation(h, vma, address);
3864 if (!(vma->vm_flags & VM_MAYSHARE))
3865 pagecache_page = hugetlbfs_pagecache_page(h,
3869 ptl = huge_pte_lock(h, mm, ptep);
3871 /* Check for a racing update before calling hugetlb_cow */
3872 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3876 * hugetlb_cow() requires page locks of pte_page(entry) and
3877 * pagecache_page, so here we need take the former one
3878 * when page != pagecache_page or !pagecache_page.
3880 page = pte_page(entry);
3881 if (page != pagecache_page)
3882 if (!trylock_page(page)) {
3889 if (flags & FAULT_FLAG_WRITE) {
3890 if (!huge_pte_write(entry)) {
3891 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3892 pagecache_page, ptl);
3895 entry = huge_pte_mkdirty(entry);
3897 entry = pte_mkyoung(entry);
3898 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3899 flags & FAULT_FLAG_WRITE))
3900 update_mmu_cache(vma, address, ptep);
3902 if (page != pagecache_page)
3908 if (pagecache_page) {
3909 unlock_page(pagecache_page);
3910 put_page(pagecache_page);
3913 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3915 * Generally it's safe to hold refcount during waiting page lock. But
3916 * here we just wait to defer the next page fault to avoid busy loop and
3917 * the page is not used after unlocked before returning from the current
3918 * page fault. So we are safe from accessing freed page, even if we wait
3919 * here without taking refcount.
3922 wait_on_page_locked(page);
3926 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3927 struct page **pages, struct vm_area_struct **vmas,
3928 unsigned long *position, unsigned long *nr_pages,
3929 long i, unsigned int flags)
3931 unsigned long pfn_offset;
3932 unsigned long vaddr = *position;
3933 unsigned long remainder = *nr_pages;
3934 struct hstate *h = hstate_vma(vma);
3936 while (vaddr < vma->vm_end && remainder) {
3938 spinlock_t *ptl = NULL;
3943 * If we have a pending SIGKILL, don't keep faulting pages and
3944 * potentially allocating memory.
3946 if (unlikely(fatal_signal_pending(current))) {
3952 * Some archs (sparc64, sh*) have multiple pte_ts to
3953 * each hugepage. We have to make sure we get the
3954 * first, for the page indexing below to work.
3956 * Note that page table lock is not held when pte is null.
3958 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3960 ptl = huge_pte_lock(h, mm, pte);
3961 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3964 * When coredumping, it suits get_dump_page if we just return
3965 * an error where there's an empty slot with no huge pagecache
3966 * to back it. This way, we avoid allocating a hugepage, and
3967 * the sparse dumpfile avoids allocating disk blocks, but its
3968 * huge holes still show up with zeroes where they need to be.
3970 if (absent && (flags & FOLL_DUMP) &&
3971 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3979 * We need call hugetlb_fault for both hugepages under migration
3980 * (in which case hugetlb_fault waits for the migration,) and
3981 * hwpoisoned hugepages (in which case we need to prevent the
3982 * caller from accessing to them.) In order to do this, we use
3983 * here is_swap_pte instead of is_hugetlb_entry_migration and
3984 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3985 * both cases, and because we can't follow correct pages
3986 * directly from any kind of swap entries.
3988 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3989 ((flags & FOLL_WRITE) &&
3990 !huge_pte_write(huge_ptep_get(pte)))) {
3995 ret = hugetlb_fault(mm, vma, vaddr,
3996 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3997 if (!(ret & VM_FAULT_ERROR))
4004 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4005 page = pte_page(huge_ptep_get(pte));
4008 pages[i] = mem_map_offset(page, pfn_offset);
4019 if (vaddr < vma->vm_end && remainder &&
4020 pfn_offset < pages_per_huge_page(h)) {
4022 * We use pfn_offset to avoid touching the pageframes
4023 * of this compound page.
4029 *nr_pages = remainder;
4032 return i ? i : -EFAULT;
4035 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4037 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4040 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4043 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4044 unsigned long address, unsigned long end, pgprot_t newprot)
4046 struct mm_struct *mm = vma->vm_mm;
4047 unsigned long start = address;
4050 struct hstate *h = hstate_vma(vma);
4051 unsigned long pages = 0;
4053 BUG_ON(address >= end);
4054 flush_cache_range(vma, address, end);
4056 mmu_notifier_invalidate_range_start(mm, start, end);
4057 i_mmap_lock_write(vma->vm_file->f_mapping);
4058 for (; address < end; address += huge_page_size(h)) {
4060 ptep = huge_pte_offset(mm, address);
4063 ptl = huge_pte_lock(h, mm, ptep);
4064 if (huge_pmd_unshare(mm, &address, ptep)) {
4069 pte = huge_ptep_get(ptep);
4070 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4074 if (unlikely(is_hugetlb_entry_migration(pte))) {
4075 swp_entry_t entry = pte_to_swp_entry(pte);
4077 if (is_write_migration_entry(entry)) {
4080 make_migration_entry_read(&entry);
4081 newpte = swp_entry_to_pte(entry);
4082 set_huge_pte_at(mm, address, ptep, newpte);
4088 if (!huge_pte_none(pte)) {
4089 pte = huge_ptep_get_and_clear(mm, address, ptep);
4090 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4091 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4092 set_huge_pte_at(mm, address, ptep, pte);
4098 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4099 * may have cleared our pud entry and done put_page on the page table:
4100 * once we release i_mmap_rwsem, another task can do the final put_page
4101 * and that page table be reused and filled with junk.
4103 flush_hugetlb_tlb_range(vma, start, end);
4104 mmu_notifier_invalidate_range(mm, start, end);
4105 i_mmap_unlock_write(vma->vm_file->f_mapping);
4106 mmu_notifier_invalidate_range_end(mm, start, end);
4108 return pages << h->order;
4111 int hugetlb_reserve_pages(struct inode *inode,
4113 struct vm_area_struct *vma,
4114 vm_flags_t vm_flags)
4117 struct hstate *h = hstate_inode(inode);
4118 struct hugepage_subpool *spool = subpool_inode(inode);
4119 struct resv_map *resv_map;
4123 * Only apply hugepage reservation if asked. At fault time, an
4124 * attempt will be made for VM_NORESERVE to allocate a page
4125 * without using reserves
4127 if (vm_flags & VM_NORESERVE)
4131 * Shared mappings base their reservation on the number of pages that
4132 * are already allocated on behalf of the file. Private mappings need
4133 * to reserve the full area even if read-only as mprotect() may be
4134 * called to make the mapping read-write. Assume !vma is a shm mapping
4136 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4137 resv_map = inode_resv_map(inode);
4139 chg = region_chg(resv_map, from, to);
4142 resv_map = resv_map_alloc();
4148 set_vma_resv_map(vma, resv_map);
4149 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4158 * There must be enough pages in the subpool for the mapping. If
4159 * the subpool has a minimum size, there may be some global
4160 * reservations already in place (gbl_reserve).
4162 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4163 if (gbl_reserve < 0) {
4169 * Check enough hugepages are available for the reservation.
4170 * Hand the pages back to the subpool if there are not
4172 ret = hugetlb_acct_memory(h, gbl_reserve);
4174 /* put back original number of pages, chg */
4175 (void)hugepage_subpool_put_pages(spool, chg);
4180 * Account for the reservations made. Shared mappings record regions
4181 * that have reservations as they are shared by multiple VMAs.
4182 * When the last VMA disappears, the region map says how much
4183 * the reservation was and the page cache tells how much of
4184 * the reservation was consumed. Private mappings are per-VMA and
4185 * only the consumed reservations are tracked. When the VMA
4186 * disappears, the original reservation is the VMA size and the
4187 * consumed reservations are stored in the map. Hence, nothing
4188 * else has to be done for private mappings here
4190 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4191 long add = region_add(resv_map, from, to);
4193 if (unlikely(chg > add)) {
4195 * pages in this range were added to the reserve
4196 * map between region_chg and region_add. This
4197 * indicates a race with alloc_huge_page. Adjust
4198 * the subpool and reserve counts modified above
4199 * based on the difference.
4203 rsv_adjust = hugepage_subpool_put_pages(spool,
4205 hugetlb_acct_memory(h, -rsv_adjust);
4210 if (!vma || vma->vm_flags & VM_MAYSHARE)
4211 region_abort(resv_map, from, to);
4212 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4213 kref_put(&resv_map->refs, resv_map_release);
4217 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4220 struct hstate *h = hstate_inode(inode);
4221 struct resv_map *resv_map = inode_resv_map(inode);
4223 struct hugepage_subpool *spool = subpool_inode(inode);
4227 chg = region_del(resv_map, start, end);
4229 * region_del() can fail in the rare case where a region
4230 * must be split and another region descriptor can not be
4231 * allocated. If end == LONG_MAX, it will not fail.
4237 spin_lock(&inode->i_lock);
4238 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4239 spin_unlock(&inode->i_lock);
4242 * If the subpool has a minimum size, the number of global
4243 * reservations to be released may be adjusted.
4245 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4246 hugetlb_acct_memory(h, -gbl_reserve);
4251 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4252 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4253 struct vm_area_struct *vma,
4254 unsigned long addr, pgoff_t idx)
4256 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4258 unsigned long sbase = saddr & PUD_MASK;
4259 unsigned long s_end = sbase + PUD_SIZE;
4261 /* Allow segments to share if only one is marked locked */
4262 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4263 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4266 * match the virtual addresses, permission and the alignment of the
4269 if (pmd_index(addr) != pmd_index(saddr) ||
4270 vm_flags != svm_flags ||
4271 sbase < svma->vm_start || svma->vm_end < s_end)
4277 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4279 unsigned long base = addr & PUD_MASK;
4280 unsigned long end = base + PUD_SIZE;
4283 * check on proper vm_flags and page table alignment
4285 if (vma->vm_flags & VM_MAYSHARE &&
4286 vma->vm_start <= base && end <= vma->vm_end)
4292 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4293 * and returns the corresponding pte. While this is not necessary for the
4294 * !shared pmd case because we can allocate the pmd later as well, it makes the
4295 * code much cleaner. pmd allocation is essential for the shared case because
4296 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4297 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4298 * bad pmd for sharing.
4300 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4302 struct vm_area_struct *vma = find_vma(mm, addr);
4303 struct address_space *mapping = vma->vm_file->f_mapping;
4304 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4306 struct vm_area_struct *svma;
4307 unsigned long saddr;
4312 if (!vma_shareable(vma, addr))
4313 return (pte_t *)pmd_alloc(mm, pud, addr);
4315 i_mmap_lock_write(mapping);
4316 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4320 saddr = page_table_shareable(svma, vma, addr, idx);
4322 spte = huge_pte_offset(svma->vm_mm, saddr);
4324 get_page(virt_to_page(spte));
4333 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4335 if (pud_none(*pud)) {
4336 pud_populate(mm, pud,
4337 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4340 put_page(virt_to_page(spte));
4344 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4345 i_mmap_unlock_write(mapping);
4350 * unmap huge page backed by shared pte.
4352 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4353 * indicated by page_count > 1, unmap is achieved by clearing pud and
4354 * decrementing the ref count. If count == 1, the pte page is not shared.
4356 * called with page table lock held.
4358 * returns: 1 successfully unmapped a shared pte page
4359 * 0 the underlying pte page is not shared, or it is the last user
4361 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4363 pgd_t *pgd = pgd_offset(mm, *addr);
4364 pud_t *pud = pud_offset(pgd, *addr);
4366 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4367 if (page_count(virt_to_page(ptep)) == 1)
4371 put_page(virt_to_page(ptep));
4373 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4376 #define want_pmd_share() (1)
4377 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4378 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4383 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4387 #define want_pmd_share() (0)
4388 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4390 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4391 pte_t *huge_pte_alloc(struct mm_struct *mm,
4392 unsigned long addr, unsigned long sz)
4398 pgd = pgd_offset(mm, addr);
4399 pud = pud_alloc(mm, pgd, addr);
4401 if (sz == PUD_SIZE) {
4404 BUG_ON(sz != PMD_SIZE);
4405 if (want_pmd_share() && pud_none(*pud))
4406 pte = huge_pmd_share(mm, addr, pud);
4408 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4411 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4416 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4422 pgd = pgd_offset(mm, addr);
4423 if (pgd_present(*pgd)) {
4424 pud = pud_offset(pgd, addr);
4425 if (pud_present(*pud)) {
4427 return (pte_t *)pud;
4428 pmd = pmd_offset(pud, addr);
4431 return (pte_t *) pmd;
4434 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4437 * These functions are overwritable if your architecture needs its own
4440 struct page * __weak
4441 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4444 return ERR_PTR(-EINVAL);
4447 struct page * __weak
4448 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4449 pmd_t *pmd, int flags)
4451 struct page *page = NULL;
4454 ptl = pmd_lockptr(mm, pmd);
4457 * make sure that the address range covered by this pmd is not
4458 * unmapped from other threads.
4460 if (!pmd_huge(*pmd))
4462 if (pmd_present(*pmd)) {
4463 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4464 if (flags & FOLL_GET)
4467 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4469 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4473 * hwpoisoned entry is treated as no_page_table in
4474 * follow_page_mask().
4482 struct page * __weak
4483 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4484 pud_t *pud, int flags)
4486 if (flags & FOLL_GET)
4489 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4492 #ifdef CONFIG_MEMORY_FAILURE
4495 * This function is called from memory failure code.
4497 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4499 struct hstate *h = page_hstate(hpage);
4500 int nid = page_to_nid(hpage);
4503 spin_lock(&hugetlb_lock);
4505 * Just checking !page_huge_active is not enough, because that could be
4506 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4508 if (!page_huge_active(hpage) && !page_count(hpage)) {
4510 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4511 * but dangling hpage->lru can trigger list-debug warnings
4512 * (this happens when we call unpoison_memory() on it),
4513 * so let it point to itself with list_del_init().
4515 list_del_init(&hpage->lru);
4516 set_page_refcounted(hpage);
4517 h->free_huge_pages--;
4518 h->free_huge_pages_node[nid]--;
4521 spin_unlock(&hugetlb_lock);
4526 bool isolate_huge_page(struct page *page, struct list_head *list)
4530 VM_BUG_ON_PAGE(!PageHead(page), page);
4531 spin_lock(&hugetlb_lock);
4532 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4536 clear_page_huge_active(page);
4537 list_move_tail(&page->lru, list);
4539 spin_unlock(&hugetlb_lock);
4543 void putback_active_hugepage(struct page *page)
4545 VM_BUG_ON_PAGE(!PageHead(page), page);
4546 spin_lock(&hugetlb_lock);
4547 set_page_huge_active(page);
4548 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4549 spin_unlock(&hugetlb_lock);