2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/bootmem.h>
18 #include <linux/sysfs.h>
21 #include <asm/pgtable.h>
23 #include <linux/hugetlb.h>
26 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28 unsigned long hugepages_treat_as_movable;
30 static int max_hstate;
31 unsigned int default_hstate_idx;
32 struct hstate hstates[HUGE_MAX_HSTATE];
34 /* for command line parsing */
35 static struct hstate * __initdata parsed_hstate;
36 static unsigned long __initdata default_hstate_max_huge_pages;
37 static unsigned long __initdata default_hstate_size;
39 #define for_each_hstate(h) \
40 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
43 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
45 static DEFINE_SPINLOCK(hugetlb_lock);
48 * Region tracking -- allows tracking of reservations and instantiated pages
49 * across the pages in a mapping.
51 * The region data structures are protected by a combination of the mmap_sem
52 * and the hugetlb_instantion_mutex. To access or modify a region the caller
53 * must either hold the mmap_sem for write, or the mmap_sem for read and
54 * the hugetlb_instantiation mutex:
56 * down_write(&mm->mmap_sem);
58 * down_read(&mm->mmap_sem);
59 * mutex_lock(&hugetlb_instantiation_mutex);
62 struct list_head link;
67 static long region_add(struct list_head *head, long f, long t)
69 struct file_region *rg, *nrg, *trg;
71 /* Locate the region we are either in or before. */
72 list_for_each_entry(rg, head, link)
76 /* Round our left edge to the current segment if it encloses us. */
80 /* Check for and consume any regions we now overlap with. */
82 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
83 if (&rg->link == head)
88 /* If this area reaches higher then extend our area to
89 * include it completely. If this is not the first area
90 * which we intend to reuse, free it. */
103 static long region_chg(struct list_head *head, long f, long t)
105 struct file_region *rg, *nrg;
108 /* Locate the region we are before or in. */
109 list_for_each_entry(rg, head, link)
113 /* If we are below the current region then a new region is required.
114 * Subtle, allocate a new region at the position but make it zero
115 * size such that we can guarantee to record the reservation. */
116 if (&rg->link == head || t < rg->from) {
117 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
122 INIT_LIST_HEAD(&nrg->link);
123 list_add(&nrg->link, rg->link.prev);
128 /* Round our left edge to the current segment if it encloses us. */
133 /* Check for and consume any regions we now overlap with. */
134 list_for_each_entry(rg, rg->link.prev, link) {
135 if (&rg->link == head)
140 /* We overlap with this area, if it extends futher than
141 * us then we must extend ourselves. Account for its
142 * existing reservation. */
147 chg -= rg->to - rg->from;
152 static long region_truncate(struct list_head *head, long end)
154 struct file_region *rg, *trg;
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
161 if (&rg->link == head)
164 /* If we are in the middle of a region then adjust it. */
165 if (end > rg->from) {
168 rg = list_entry(rg->link.next, typeof(*rg), link);
171 /* Drop any remaining regions. */
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
175 chg += rg->to - rg->from;
182 static long region_count(struct list_head *head, long f, long t)
184 struct file_region *rg;
187 /* Locate each segment we overlap with, and count that overlap. */
188 list_for_each_entry(rg, head, link) {
197 seg_from = max(rg->from, f);
198 seg_to = min(rg->to, t);
200 chg += seg_to - seg_from;
207 * Convert the address within this vma to the page offset within
208 * the mapping, in pagecache page units; huge pages here.
210 static pgoff_t vma_hugecache_offset(struct hstate *h,
211 struct vm_area_struct *vma, unsigned long address)
213 return ((address - vma->vm_start) >> huge_page_shift(h)) +
214 (vma->vm_pgoff >> huge_page_order(h));
218 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
219 * bits of the reservation map pointer, which are always clear due to
222 #define HPAGE_RESV_OWNER (1UL << 0)
223 #define HPAGE_RESV_UNMAPPED (1UL << 1)
224 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
227 * These helpers are used to track how many pages are reserved for
228 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
229 * is guaranteed to have their future faults succeed.
231 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
232 * the reserve counters are updated with the hugetlb_lock held. It is safe
233 * to reset the VMA at fork() time as it is not in use yet and there is no
234 * chance of the global counters getting corrupted as a result of the values.
236 * The private mapping reservation is represented in a subtly different
237 * manner to a shared mapping. A shared mapping has a region map associated
238 * with the underlying file, this region map represents the backing file
239 * pages which have ever had a reservation assigned which this persists even
240 * after the page is instantiated. A private mapping has a region map
241 * associated with the original mmap which is attached to all VMAs which
242 * reference it, this region map represents those offsets which have consumed
243 * reservation ie. where pages have been instantiated.
245 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
247 return (unsigned long)vma->vm_private_data;
250 static void set_vma_private_data(struct vm_area_struct *vma,
253 vma->vm_private_data = (void *)value;
258 struct list_head regions;
261 struct resv_map *resv_map_alloc(void)
263 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
267 kref_init(&resv_map->refs);
268 INIT_LIST_HEAD(&resv_map->regions);
273 void resv_map_release(struct kref *ref)
275 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
277 /* Clear out any active regions before we release the map. */
278 region_truncate(&resv_map->regions, 0);
282 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
284 VM_BUG_ON(!is_vm_hugetlb_page(vma));
285 if (!(vma->vm_flags & VM_SHARED))
286 return (struct resv_map *)(get_vma_private_data(vma) &
291 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
293 VM_BUG_ON(!is_vm_hugetlb_page(vma));
294 VM_BUG_ON(vma->vm_flags & VM_SHARED);
296 set_vma_private_data(vma, (get_vma_private_data(vma) &
297 HPAGE_RESV_MASK) | (unsigned long)map);
300 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
302 VM_BUG_ON(!is_vm_hugetlb_page(vma));
303 VM_BUG_ON(vma->vm_flags & VM_SHARED);
305 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
308 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
310 VM_BUG_ON(!is_vm_hugetlb_page(vma));
312 return (get_vma_private_data(vma) & flag) != 0;
315 /* Decrement the reserved pages in the hugepage pool by one */
316 static void decrement_hugepage_resv_vma(struct hstate *h,
317 struct vm_area_struct *vma)
319 if (vma->vm_flags & VM_NORESERVE)
322 if (vma->vm_flags & VM_SHARED) {
323 /* Shared mappings always use reserves */
324 h->resv_huge_pages--;
325 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
327 * Only the process that called mmap() has reserves for
330 h->resv_huge_pages--;
334 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
335 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 if (!(vma->vm_flags & VM_SHARED))
339 vma->vm_private_data = (void *)0;
342 /* Returns true if the VMA has associated reserve pages */
343 static int vma_has_private_reserves(struct vm_area_struct *vma)
345 if (vma->vm_flags & VM_SHARED)
347 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
352 static void clear_huge_page(struct page *page,
353 unsigned long addr, unsigned long sz)
358 for (i = 0; i < sz/PAGE_SIZE; i++) {
360 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
364 static void copy_huge_page(struct page *dst, struct page *src,
365 unsigned long addr, struct vm_area_struct *vma)
368 struct hstate *h = hstate_vma(vma);
371 for (i = 0; i < pages_per_huge_page(h); i++) {
373 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
377 static void enqueue_huge_page(struct hstate *h, struct page *page)
379 int nid = page_to_nid(page);
380 list_add(&page->lru, &h->hugepage_freelists[nid]);
381 h->free_huge_pages++;
382 h->free_huge_pages_node[nid]++;
385 static struct page *dequeue_huge_page(struct hstate *h)
388 struct page *page = NULL;
390 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
391 if (!list_empty(&h->hugepage_freelists[nid])) {
392 page = list_entry(h->hugepage_freelists[nid].next,
394 list_del(&page->lru);
395 h->free_huge_pages--;
396 h->free_huge_pages_node[nid]--;
403 static struct page *dequeue_huge_page_vma(struct hstate *h,
404 struct vm_area_struct *vma,
405 unsigned long address, int avoid_reserve)
408 struct page *page = NULL;
409 struct mempolicy *mpol;
410 nodemask_t *nodemask;
411 struct zonelist *zonelist = huge_zonelist(vma, address,
412 htlb_alloc_mask, &mpol, &nodemask);
417 * A child process with MAP_PRIVATE mappings created by their parent
418 * have no page reserves. This check ensures that reservations are
419 * not "stolen". The child may still get SIGKILLed
421 if (!vma_has_private_reserves(vma) &&
422 h->free_huge_pages - h->resv_huge_pages == 0)
425 /* If reserves cannot be used, ensure enough pages are in the pool */
426 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
429 for_each_zone_zonelist_nodemask(zone, z, zonelist,
430 MAX_NR_ZONES - 1, nodemask) {
431 nid = zone_to_nid(zone);
432 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
433 !list_empty(&h->hugepage_freelists[nid])) {
434 page = list_entry(h->hugepage_freelists[nid].next,
436 list_del(&page->lru);
437 h->free_huge_pages--;
438 h->free_huge_pages_node[nid]--;
441 decrement_hugepage_resv_vma(h, vma);
450 static void update_and_free_page(struct hstate *h, struct page *page)
455 h->nr_huge_pages_node[page_to_nid(page)]--;
456 for (i = 0; i < pages_per_huge_page(h); i++) {
457 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
458 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
459 1 << PG_private | 1<< PG_writeback);
461 set_compound_page_dtor(page, NULL);
462 set_page_refcounted(page);
463 arch_release_hugepage(page);
464 __free_pages(page, huge_page_order(h));
467 struct hstate *size_to_hstate(unsigned long size)
472 if (huge_page_size(h) == size)
478 static void free_huge_page(struct page *page)
481 * Can't pass hstate in here because it is called from the
482 * compound page destructor.
484 struct hstate *h = page_hstate(page);
485 int nid = page_to_nid(page);
486 struct address_space *mapping;
488 mapping = (struct address_space *) page_private(page);
489 set_page_private(page, 0);
490 BUG_ON(page_count(page));
491 INIT_LIST_HEAD(&page->lru);
493 spin_lock(&hugetlb_lock);
494 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
495 update_and_free_page(h, page);
496 h->surplus_huge_pages--;
497 h->surplus_huge_pages_node[nid]--;
499 enqueue_huge_page(h, page);
501 spin_unlock(&hugetlb_lock);
503 hugetlb_put_quota(mapping, 1);
507 * Increment or decrement surplus_huge_pages. Keep node-specific counters
508 * balanced by operating on them in a round-robin fashion.
509 * Returns 1 if an adjustment was made.
511 static int adjust_pool_surplus(struct hstate *h, int delta)
517 VM_BUG_ON(delta != -1 && delta != 1);
519 nid = next_node(nid, node_online_map);
520 if (nid == MAX_NUMNODES)
521 nid = first_node(node_online_map);
523 /* To shrink on this node, there must be a surplus page */
524 if (delta < 0 && !h->surplus_huge_pages_node[nid])
526 /* Surplus cannot exceed the total number of pages */
527 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
528 h->nr_huge_pages_node[nid])
531 h->surplus_huge_pages += delta;
532 h->surplus_huge_pages_node[nid] += delta;
535 } while (nid != prev_nid);
541 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
543 set_compound_page_dtor(page, free_huge_page);
544 spin_lock(&hugetlb_lock);
546 h->nr_huge_pages_node[nid]++;
547 spin_unlock(&hugetlb_lock);
548 put_page(page); /* free it into the hugepage allocator */
551 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
555 if (h->order >= MAX_ORDER)
558 page = alloc_pages_node(nid,
559 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
560 __GFP_REPEAT|__GFP_NOWARN,
563 if (arch_prepare_hugepage(page)) {
564 __free_pages(page, HUGETLB_PAGE_ORDER);
567 prep_new_huge_page(h, page, nid);
574 * Use a helper variable to find the next node and then
575 * copy it back to hugetlb_next_nid afterwards:
576 * otherwise there's a window in which a racer might
577 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
578 * But we don't need to use a spin_lock here: it really
579 * doesn't matter if occasionally a racer chooses the
580 * same nid as we do. Move nid forward in the mask even
581 * if we just successfully allocated a hugepage so that
582 * the next caller gets hugepages on the next node.
584 static int hstate_next_node(struct hstate *h)
587 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
588 if (next_nid == MAX_NUMNODES)
589 next_nid = first_node(node_online_map);
590 h->hugetlb_next_nid = next_nid;
594 static int alloc_fresh_huge_page(struct hstate *h)
601 start_nid = h->hugetlb_next_nid;
604 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
607 next_nid = hstate_next_node(h);
608 } while (!page && h->hugetlb_next_nid != start_nid);
611 count_vm_event(HTLB_BUDDY_PGALLOC);
613 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
618 static struct page *alloc_buddy_huge_page(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
624 if (h->order >= MAX_ORDER)
628 * Assume we will successfully allocate the surplus page to
629 * prevent racing processes from causing the surplus to exceed
632 * This however introduces a different race, where a process B
633 * tries to grow the static hugepage pool while alloc_pages() is
634 * called by process A. B will only examine the per-node
635 * counters in determining if surplus huge pages can be
636 * converted to normal huge pages in adjust_pool_surplus(). A
637 * won't be able to increment the per-node counter, until the
638 * lock is dropped by B, but B doesn't drop hugetlb_lock until
639 * no more huge pages can be converted from surplus to normal
640 * state (and doesn't try to convert again). Thus, we have a
641 * case where a surplus huge page exists, the pool is grown, and
642 * the surplus huge page still exists after, even though it
643 * should just have been converted to a normal huge page. This
644 * does not leak memory, though, as the hugepage will be freed
645 * once it is out of use. It also does not allow the counters to
646 * go out of whack in adjust_pool_surplus() as we don't modify
647 * the node values until we've gotten the hugepage and only the
648 * per-node value is checked there.
650 spin_lock(&hugetlb_lock);
651 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
652 spin_unlock(&hugetlb_lock);
656 h->surplus_huge_pages++;
658 spin_unlock(&hugetlb_lock);
660 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
661 __GFP_REPEAT|__GFP_NOWARN,
664 spin_lock(&hugetlb_lock);
667 * This page is now managed by the hugetlb allocator and has
668 * no users -- drop the buddy allocator's reference.
670 put_page_testzero(page);
671 VM_BUG_ON(page_count(page));
672 nid = page_to_nid(page);
673 set_compound_page_dtor(page, free_huge_page);
675 * We incremented the global counters already
677 h->nr_huge_pages_node[nid]++;
678 h->surplus_huge_pages_node[nid]++;
679 __count_vm_event(HTLB_BUDDY_PGALLOC);
682 h->surplus_huge_pages--;
683 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685 spin_unlock(&hugetlb_lock);
691 * Increase the hugetlb pool such that it can accomodate a reservation
694 static int gather_surplus_pages(struct hstate *h, int delta)
696 struct list_head surplus_list;
697 struct page *page, *tmp;
699 int needed, allocated;
701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
703 h->resv_huge_pages += delta;
708 INIT_LIST_HEAD(&surplus_list);
712 spin_unlock(&hugetlb_lock);
713 for (i = 0; i < needed; i++) {
714 page = alloc_buddy_huge_page(h, NULL, 0);
717 * We were not able to allocate enough pages to
718 * satisfy the entire reservation so we free what
719 * we've allocated so far.
721 spin_lock(&hugetlb_lock);
726 list_add(&page->lru, &surplus_list);
731 * After retaking hugetlb_lock, we need to recalculate 'needed'
732 * because either resv_huge_pages or free_huge_pages may have changed.
734 spin_lock(&hugetlb_lock);
735 needed = (h->resv_huge_pages + delta) -
736 (h->free_huge_pages + allocated);
741 * The surplus_list now contains _at_least_ the number of extra pages
742 * needed to accomodate the reservation. Add the appropriate number
743 * of pages to the hugetlb pool and free the extras back to the buddy
744 * allocator. Commit the entire reservation here to prevent another
745 * process from stealing the pages as they are added to the pool but
746 * before they are reserved.
749 h->resv_huge_pages += delta;
752 /* Free the needed pages to the hugetlb pool */
753 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756 list_del(&page->lru);
757 enqueue_huge_page(h, page);
760 /* Free unnecessary surplus pages to the buddy allocator */
761 if (!list_empty(&surplus_list)) {
762 spin_unlock(&hugetlb_lock);
763 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
764 list_del(&page->lru);
766 * The page has a reference count of zero already, so
767 * call free_huge_page directly instead of using
768 * put_page. This must be done with hugetlb_lock
769 * unlocked which is safe because free_huge_page takes
770 * hugetlb_lock before deciding how to free the page.
772 free_huge_page(page);
774 spin_lock(&hugetlb_lock);
781 * When releasing a hugetlb pool reservation, any surplus pages that were
782 * allocated to satisfy the reservation must be explicitly freed if they were
785 static void return_unused_surplus_pages(struct hstate *h,
786 unsigned long unused_resv_pages)
790 unsigned long nr_pages;
793 * We want to release as many surplus pages as possible, spread
794 * evenly across all nodes. Iterate across all nodes until we
795 * can no longer free unreserved surplus pages. This occurs when
796 * the nodes with surplus pages have no free pages.
798 unsigned long remaining_iterations = num_online_nodes();
800 /* Uncommit the reservation */
801 h->resv_huge_pages -= unused_resv_pages;
803 /* Cannot return gigantic pages currently */
804 if (h->order >= MAX_ORDER)
807 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
809 while (remaining_iterations-- && nr_pages) {
810 nid = next_node(nid, node_online_map);
811 if (nid == MAX_NUMNODES)
812 nid = first_node(node_online_map);
814 if (!h->surplus_huge_pages_node[nid])
817 if (!list_empty(&h->hugepage_freelists[nid])) {
818 page = list_entry(h->hugepage_freelists[nid].next,
820 list_del(&page->lru);
821 update_and_free_page(h, page);
822 h->free_huge_pages--;
823 h->free_huge_pages_node[nid]--;
824 h->surplus_huge_pages--;
825 h->surplus_huge_pages_node[nid]--;
827 remaining_iterations = num_online_nodes();
833 * Determine if the huge page at addr within the vma has an associated
834 * reservation. Where it does not we will need to logically increase
835 * reservation and actually increase quota before an allocation can occur.
836 * Where any new reservation would be required the reservation change is
837 * prepared, but not committed. Once the page has been quota'd allocated
838 * an instantiated the change should be committed via vma_commit_reservation.
839 * No action is required on failure.
841 static int vma_needs_reservation(struct hstate *h,
842 struct vm_area_struct *vma, unsigned long addr)
844 struct address_space *mapping = vma->vm_file->f_mapping;
845 struct inode *inode = mapping->host;
847 if (vma->vm_flags & VM_SHARED) {
848 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
849 return region_chg(&inode->i_mapping->private_list,
852 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
857 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858 struct resv_map *reservations = vma_resv_map(vma);
860 err = region_chg(&reservations->regions, idx, idx + 1);
866 static void vma_commit_reservation(struct hstate *h,
867 struct vm_area_struct *vma, unsigned long addr)
869 struct address_space *mapping = vma->vm_file->f_mapping;
870 struct inode *inode = mapping->host;
872 if (vma->vm_flags & VM_SHARED) {
873 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
874 region_add(&inode->i_mapping->private_list, idx, idx + 1);
876 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
877 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
878 struct resv_map *reservations = vma_resv_map(vma);
880 /* Mark this page used in the map. */
881 region_add(&reservations->regions, idx, idx + 1);
885 static struct page *alloc_huge_page(struct vm_area_struct *vma,
886 unsigned long addr, int avoid_reserve)
888 struct hstate *h = hstate_vma(vma);
890 struct address_space *mapping = vma->vm_file->f_mapping;
891 struct inode *inode = mapping->host;
895 * Processes that did not create the mapping will have no reserves and
896 * will not have accounted against quota. Check that the quota can be
897 * made before satisfying the allocation
898 * MAP_NORESERVE mappings may also need pages and quota allocated
899 * if no reserve mapping overlaps.
901 chg = vma_needs_reservation(h, vma, addr);
905 if (hugetlb_get_quota(inode->i_mapping, chg))
906 return ERR_PTR(-ENOSPC);
908 spin_lock(&hugetlb_lock);
909 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
910 spin_unlock(&hugetlb_lock);
913 page = alloc_buddy_huge_page(h, vma, addr);
915 hugetlb_put_quota(inode->i_mapping, chg);
916 return ERR_PTR(-VM_FAULT_OOM);
920 set_page_refcounted(page);
921 set_page_private(page, (unsigned long) mapping);
923 vma_commit_reservation(h, vma, addr);
928 static __initdata LIST_HEAD(huge_boot_pages);
930 struct huge_bootmem_page {
931 struct list_head list;
932 struct hstate *hstate;
935 static int __init alloc_bootmem_huge_page(struct hstate *h)
937 struct huge_bootmem_page *m;
938 int nr_nodes = nodes_weight(node_online_map);
943 addr = __alloc_bootmem_node_nopanic(
944 NODE_DATA(h->hugetlb_next_nid),
945 huge_page_size(h), huge_page_size(h), 0);
949 * Use the beginning of the huge page to store the
950 * huge_bootmem_page struct (until gather_bootmem
951 * puts them into the mem_map).
963 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
964 /* Put them into a private list first because mem_map is not up yet */
965 list_add(&m->list, &huge_boot_pages);
970 /* Put bootmem huge pages into the standard lists after mem_map is up */
971 static void __init gather_bootmem_prealloc(void)
973 struct huge_bootmem_page *m;
975 list_for_each_entry(m, &huge_boot_pages, list) {
976 struct page *page = virt_to_page(m);
977 struct hstate *h = m->hstate;
978 __ClearPageReserved(page);
979 WARN_ON(page_count(page) != 1);
980 prep_compound_page(page, h->order);
981 prep_new_huge_page(h, page, page_to_nid(page));
985 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
989 for (i = 0; i < h->max_huge_pages; ++i) {
990 if (h->order >= MAX_ORDER) {
991 if (!alloc_bootmem_huge_page(h))
993 } else if (!alloc_fresh_huge_page(h))
996 h->max_huge_pages = i;
999 static void __init hugetlb_init_hstates(void)
1003 for_each_hstate(h) {
1004 /* oversize hugepages were init'ed in early boot */
1005 if (h->order < MAX_ORDER)
1006 hugetlb_hstate_alloc_pages(h);
1010 static char * __init memfmt(char *buf, unsigned long n)
1012 if (n >= (1UL << 30))
1013 sprintf(buf, "%lu GB", n >> 30);
1014 else if (n >= (1UL << 20))
1015 sprintf(buf, "%lu MB", n >> 20);
1017 sprintf(buf, "%lu KB", n >> 10);
1021 static void __init report_hugepages(void)
1025 for_each_hstate(h) {
1027 printk(KERN_INFO "HugeTLB registered %s page size, "
1028 "pre-allocated %ld pages\n",
1029 memfmt(buf, huge_page_size(h)),
1030 h->free_huge_pages);
1034 #ifdef CONFIG_SYSCTL
1035 #ifdef CONFIG_HIGHMEM
1036 static void try_to_free_low(struct hstate *h, unsigned long count)
1040 if (h->order >= MAX_ORDER)
1043 for (i = 0; i < MAX_NUMNODES; ++i) {
1044 struct page *page, *next;
1045 struct list_head *freel = &h->hugepage_freelists[i];
1046 list_for_each_entry_safe(page, next, freel, lru) {
1047 if (count >= h->nr_huge_pages)
1049 if (PageHighMem(page))
1051 list_del(&page->lru);
1052 update_and_free_page(h, page);
1053 h->free_huge_pages--;
1054 h->free_huge_pages_node[page_to_nid(page)]--;
1059 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1064 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1065 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1067 unsigned long min_count, ret;
1069 if (h->order >= MAX_ORDER)
1070 return h->max_huge_pages;
1073 * Increase the pool size
1074 * First take pages out of surplus state. Then make up the
1075 * remaining difference by allocating fresh huge pages.
1077 * We might race with alloc_buddy_huge_page() here and be unable
1078 * to convert a surplus huge page to a normal huge page. That is
1079 * not critical, though, it just means the overall size of the
1080 * pool might be one hugepage larger than it needs to be, but
1081 * within all the constraints specified by the sysctls.
1083 spin_lock(&hugetlb_lock);
1084 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1085 if (!adjust_pool_surplus(h, -1))
1089 while (count > persistent_huge_pages(h)) {
1091 * If this allocation races such that we no longer need the
1092 * page, free_huge_page will handle it by freeing the page
1093 * and reducing the surplus.
1095 spin_unlock(&hugetlb_lock);
1096 ret = alloc_fresh_huge_page(h);
1097 spin_lock(&hugetlb_lock);
1104 * Decrease the pool size
1105 * First return free pages to the buddy allocator (being careful
1106 * to keep enough around to satisfy reservations). Then place
1107 * pages into surplus state as needed so the pool will shrink
1108 * to the desired size as pages become free.
1110 * By placing pages into the surplus state independent of the
1111 * overcommit value, we are allowing the surplus pool size to
1112 * exceed overcommit. There are few sane options here. Since
1113 * alloc_buddy_huge_page() is checking the global counter,
1114 * though, we'll note that we're not allowed to exceed surplus
1115 * and won't grow the pool anywhere else. Not until one of the
1116 * sysctls are changed, or the surplus pages go out of use.
1118 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1119 min_count = max(count, min_count);
1120 try_to_free_low(h, min_count);
1121 while (min_count < persistent_huge_pages(h)) {
1122 struct page *page = dequeue_huge_page(h);
1125 update_and_free_page(h, page);
1127 while (count < persistent_huge_pages(h)) {
1128 if (!adjust_pool_surplus(h, 1))
1132 ret = persistent_huge_pages(h);
1133 spin_unlock(&hugetlb_lock);
1137 #define HSTATE_ATTR_RO(_name) \
1138 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1140 #define HSTATE_ATTR(_name) \
1141 static struct kobj_attribute _name##_attr = \
1142 __ATTR(_name, 0644, _name##_show, _name##_store)
1144 static struct kobject *hugepages_kobj;
1145 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1147 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1150 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1151 if (hstate_kobjs[i] == kobj)
1157 static ssize_t nr_hugepages_show(struct kobject *kobj,
1158 struct kobj_attribute *attr, char *buf)
1160 struct hstate *h = kobj_to_hstate(kobj);
1161 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1163 static ssize_t nr_hugepages_store(struct kobject *kobj,
1164 struct kobj_attribute *attr, const char *buf, size_t count)
1167 unsigned long input;
1168 struct hstate *h = kobj_to_hstate(kobj);
1170 err = strict_strtoul(buf, 10, &input);
1174 h->max_huge_pages = set_max_huge_pages(h, input);
1178 HSTATE_ATTR(nr_hugepages);
1180 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1181 struct kobj_attribute *attr, char *buf)
1183 struct hstate *h = kobj_to_hstate(kobj);
1184 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1186 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1187 struct kobj_attribute *attr, const char *buf, size_t count)
1190 unsigned long input;
1191 struct hstate *h = kobj_to_hstate(kobj);
1193 err = strict_strtoul(buf, 10, &input);
1197 spin_lock(&hugetlb_lock);
1198 h->nr_overcommit_huge_pages = input;
1199 spin_unlock(&hugetlb_lock);
1203 HSTATE_ATTR(nr_overcommit_hugepages);
1205 static ssize_t free_hugepages_show(struct kobject *kobj,
1206 struct kobj_attribute *attr, char *buf)
1208 struct hstate *h = kobj_to_hstate(kobj);
1209 return sprintf(buf, "%lu\n", h->free_huge_pages);
1211 HSTATE_ATTR_RO(free_hugepages);
1213 static ssize_t resv_hugepages_show(struct kobject *kobj,
1214 struct kobj_attribute *attr, char *buf)
1216 struct hstate *h = kobj_to_hstate(kobj);
1217 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1219 HSTATE_ATTR_RO(resv_hugepages);
1221 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1222 struct kobj_attribute *attr, char *buf)
1224 struct hstate *h = kobj_to_hstate(kobj);
1225 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1227 HSTATE_ATTR_RO(surplus_hugepages);
1229 static struct attribute *hstate_attrs[] = {
1230 &nr_hugepages_attr.attr,
1231 &nr_overcommit_hugepages_attr.attr,
1232 &free_hugepages_attr.attr,
1233 &resv_hugepages_attr.attr,
1234 &surplus_hugepages_attr.attr,
1238 static struct attribute_group hstate_attr_group = {
1239 .attrs = hstate_attrs,
1242 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1246 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1248 if (!hstate_kobjs[h - hstates])
1251 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1252 &hstate_attr_group);
1254 kobject_put(hstate_kobjs[h - hstates]);
1259 static void __init hugetlb_sysfs_init(void)
1264 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1265 if (!hugepages_kobj)
1268 for_each_hstate(h) {
1269 err = hugetlb_sysfs_add_hstate(h);
1271 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1276 static void __exit hugetlb_exit(void)
1280 for_each_hstate(h) {
1281 kobject_put(hstate_kobjs[h - hstates]);
1284 kobject_put(hugepages_kobj);
1286 module_exit(hugetlb_exit);
1288 static int __init hugetlb_init(void)
1290 BUILD_BUG_ON(HPAGE_SHIFT == 0);
1292 if (!size_to_hstate(default_hstate_size)) {
1293 default_hstate_size = HPAGE_SIZE;
1294 if (!size_to_hstate(default_hstate_size))
1295 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1297 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1298 if (default_hstate_max_huge_pages)
1299 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1301 hugetlb_init_hstates();
1303 gather_bootmem_prealloc();
1307 hugetlb_sysfs_init();
1311 module_init(hugetlb_init);
1313 /* Should be called on processing a hugepagesz=... option */
1314 void __init hugetlb_add_hstate(unsigned order)
1319 if (size_to_hstate(PAGE_SIZE << order)) {
1320 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1323 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1325 h = &hstates[max_hstate++];
1327 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1328 h->nr_huge_pages = 0;
1329 h->free_huge_pages = 0;
1330 for (i = 0; i < MAX_NUMNODES; ++i)
1331 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1332 h->hugetlb_next_nid = first_node(node_online_map);
1333 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1334 huge_page_size(h)/1024);
1339 static int __init hugetlb_nrpages_setup(char *s)
1342 static unsigned long *last_mhp;
1345 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1346 * so this hugepages= parameter goes to the "default hstate".
1349 mhp = &default_hstate_max_huge_pages;
1351 mhp = &parsed_hstate->max_huge_pages;
1353 if (mhp == last_mhp) {
1354 printk(KERN_WARNING "hugepages= specified twice without "
1355 "interleaving hugepagesz=, ignoring\n");
1359 if (sscanf(s, "%lu", mhp) <= 0)
1363 * Global state is always initialized later in hugetlb_init.
1364 * But we need to allocate >= MAX_ORDER hstates here early to still
1365 * use the bootmem allocator.
1367 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1368 hugetlb_hstate_alloc_pages(parsed_hstate);
1374 __setup("hugepages=", hugetlb_nrpages_setup);
1376 static int __init hugetlb_default_setup(char *s)
1378 default_hstate_size = memparse(s, &s);
1381 __setup("default_hugepagesz=", hugetlb_default_setup);
1383 static unsigned int cpuset_mems_nr(unsigned int *array)
1386 unsigned int nr = 0;
1388 for_each_node_mask(node, cpuset_current_mems_allowed)
1394 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1395 struct file *file, void __user *buffer,
1396 size_t *length, loff_t *ppos)
1398 struct hstate *h = &default_hstate;
1402 tmp = h->max_huge_pages;
1405 table->maxlen = sizeof(unsigned long);
1406 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1409 h->max_huge_pages = set_max_huge_pages(h, tmp);
1414 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1415 struct file *file, void __user *buffer,
1416 size_t *length, loff_t *ppos)
1418 proc_dointvec(table, write, file, buffer, length, ppos);
1419 if (hugepages_treat_as_movable)
1420 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1422 htlb_alloc_mask = GFP_HIGHUSER;
1426 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1427 struct file *file, void __user *buffer,
1428 size_t *length, loff_t *ppos)
1430 struct hstate *h = &default_hstate;
1434 tmp = h->nr_overcommit_huge_pages;
1437 table->maxlen = sizeof(unsigned long);
1438 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1441 spin_lock(&hugetlb_lock);
1442 h->nr_overcommit_huge_pages = tmp;
1443 spin_unlock(&hugetlb_lock);
1449 #endif /* CONFIG_SYSCTL */
1451 int hugetlb_report_meminfo(char *buf)
1453 struct hstate *h = &default_hstate;
1455 "HugePages_Total: %5lu\n"
1456 "HugePages_Free: %5lu\n"
1457 "HugePages_Rsvd: %5lu\n"
1458 "HugePages_Surp: %5lu\n"
1459 "Hugepagesize: %5lu kB\n",
1463 h->surplus_huge_pages,
1464 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1467 int hugetlb_report_node_meminfo(int nid, char *buf)
1469 struct hstate *h = &default_hstate;
1471 "Node %d HugePages_Total: %5u\n"
1472 "Node %d HugePages_Free: %5u\n"
1473 "Node %d HugePages_Surp: %5u\n",
1474 nid, h->nr_huge_pages_node[nid],
1475 nid, h->free_huge_pages_node[nid],
1476 nid, h->surplus_huge_pages_node[nid]);
1479 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1480 unsigned long hugetlb_total_pages(void)
1482 struct hstate *h = &default_hstate;
1483 return h->nr_huge_pages * pages_per_huge_page(h);
1486 static int hugetlb_acct_memory(struct hstate *h, long delta)
1490 spin_lock(&hugetlb_lock);
1492 * When cpuset is configured, it breaks the strict hugetlb page
1493 * reservation as the accounting is done on a global variable. Such
1494 * reservation is completely rubbish in the presence of cpuset because
1495 * the reservation is not checked against page availability for the
1496 * current cpuset. Application can still potentially OOM'ed by kernel
1497 * with lack of free htlb page in cpuset that the task is in.
1498 * Attempt to enforce strict accounting with cpuset is almost
1499 * impossible (or too ugly) because cpuset is too fluid that
1500 * task or memory node can be dynamically moved between cpusets.
1502 * The change of semantics for shared hugetlb mapping with cpuset is
1503 * undesirable. However, in order to preserve some of the semantics,
1504 * we fall back to check against current free page availability as
1505 * a best attempt and hopefully to minimize the impact of changing
1506 * semantics that cpuset has.
1509 if (gather_surplus_pages(h, delta) < 0)
1512 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1513 return_unused_surplus_pages(h, delta);
1520 return_unused_surplus_pages(h, (unsigned long) -delta);
1523 spin_unlock(&hugetlb_lock);
1527 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1529 struct resv_map *reservations = vma_resv_map(vma);
1532 * This new VMA should share its siblings reservation map if present.
1533 * The VMA will only ever have a valid reservation map pointer where
1534 * it is being copied for another still existing VMA. As that VMA
1535 * has a reference to the reservation map it cannot dissappear until
1536 * after this open call completes. It is therefore safe to take a
1537 * new reference here without additional locking.
1540 kref_get(&reservations->refs);
1543 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1545 struct hstate *h = hstate_vma(vma);
1546 struct resv_map *reservations = vma_resv_map(vma);
1547 unsigned long reserve;
1548 unsigned long start;
1552 start = vma_hugecache_offset(h, vma, vma->vm_start);
1553 end = vma_hugecache_offset(h, vma, vma->vm_end);
1555 reserve = (end - start) -
1556 region_count(&reservations->regions, start, end);
1558 kref_put(&reservations->refs, resv_map_release);
1561 hugetlb_acct_memory(h, -reserve);
1566 * We cannot handle pagefaults against hugetlb pages at all. They cause
1567 * handle_mm_fault() to try to instantiate regular-sized pages in the
1568 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1571 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1577 struct vm_operations_struct hugetlb_vm_ops = {
1578 .fault = hugetlb_vm_op_fault,
1579 .open = hugetlb_vm_op_open,
1580 .close = hugetlb_vm_op_close,
1583 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1590 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1592 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1594 entry = pte_mkyoung(entry);
1595 entry = pte_mkhuge(entry);
1600 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1601 unsigned long address, pte_t *ptep)
1605 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1606 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1607 update_mmu_cache(vma, address, entry);
1612 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1613 struct vm_area_struct *vma)
1615 pte_t *src_pte, *dst_pte, entry;
1616 struct page *ptepage;
1619 struct hstate *h = hstate_vma(vma);
1620 unsigned long sz = huge_page_size(h);
1622 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1624 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1625 src_pte = huge_pte_offset(src, addr);
1628 dst_pte = huge_pte_alloc(dst, addr, sz);
1632 /* If the pagetables are shared don't copy or take references */
1633 if (dst_pte == src_pte)
1636 spin_lock(&dst->page_table_lock);
1637 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1638 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1640 huge_ptep_set_wrprotect(src, addr, src_pte);
1641 entry = huge_ptep_get(src_pte);
1642 ptepage = pte_page(entry);
1644 set_huge_pte_at(dst, addr, dst_pte, entry);
1646 spin_unlock(&src->page_table_lock);
1647 spin_unlock(&dst->page_table_lock);
1655 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1656 unsigned long end, struct page *ref_page)
1658 struct mm_struct *mm = vma->vm_mm;
1659 unsigned long address;
1664 struct hstate *h = hstate_vma(vma);
1665 unsigned long sz = huge_page_size(h);
1668 * A page gathering list, protected by per file i_mmap_lock. The
1669 * lock is used to avoid list corruption from multiple unmapping
1670 * of the same page since we are using page->lru.
1672 LIST_HEAD(page_list);
1674 WARN_ON(!is_vm_hugetlb_page(vma));
1675 BUG_ON(start & ~huge_page_mask(h));
1676 BUG_ON(end & ~huge_page_mask(h));
1678 spin_lock(&mm->page_table_lock);
1679 for (address = start; address < end; address += sz) {
1680 ptep = huge_pte_offset(mm, address);
1684 if (huge_pmd_unshare(mm, &address, ptep))
1688 * If a reference page is supplied, it is because a specific
1689 * page is being unmapped, not a range. Ensure the page we
1690 * are about to unmap is the actual page of interest.
1693 pte = huge_ptep_get(ptep);
1694 if (huge_pte_none(pte))
1696 page = pte_page(pte);
1697 if (page != ref_page)
1701 * Mark the VMA as having unmapped its page so that
1702 * future faults in this VMA will fail rather than
1703 * looking like data was lost
1705 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1708 pte = huge_ptep_get_and_clear(mm, address, ptep);
1709 if (huge_pte_none(pte))
1712 page = pte_page(pte);
1714 set_page_dirty(page);
1715 list_add(&page->lru, &page_list);
1717 spin_unlock(&mm->page_table_lock);
1718 flush_tlb_range(vma, start, end);
1719 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1720 list_del(&page->lru);
1725 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1726 unsigned long end, struct page *ref_page)
1728 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1729 __unmap_hugepage_range(vma, start, end, ref_page);
1730 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1734 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1735 * mappping it owns the reserve page for. The intention is to unmap the page
1736 * from other VMAs and let the children be SIGKILLed if they are faulting the
1739 int unmap_ref_private(struct mm_struct *mm,
1740 struct vm_area_struct *vma,
1742 unsigned long address)
1744 struct vm_area_struct *iter_vma;
1745 struct address_space *mapping;
1746 struct prio_tree_iter iter;
1750 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1751 * from page cache lookup which is in HPAGE_SIZE units.
1753 address = address & huge_page_mask(hstate_vma(vma));
1754 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1755 + (vma->vm_pgoff >> PAGE_SHIFT);
1756 mapping = (struct address_space *)page_private(page);
1758 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1759 /* Do not unmap the current VMA */
1760 if (iter_vma == vma)
1764 * Unmap the page from other VMAs without their own reserves.
1765 * They get marked to be SIGKILLed if they fault in these
1766 * areas. This is because a future no-page fault on this VMA
1767 * could insert a zeroed page instead of the data existing
1768 * from the time of fork. This would look like data corruption
1770 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1771 unmap_hugepage_range(iter_vma,
1772 address, address + HPAGE_SIZE,
1779 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1780 unsigned long address, pte_t *ptep, pte_t pte,
1781 struct page *pagecache_page)
1783 struct hstate *h = hstate_vma(vma);
1784 struct page *old_page, *new_page;
1786 int outside_reserve = 0;
1788 old_page = pte_page(pte);
1791 /* If no-one else is actually using this page, avoid the copy
1792 * and just make the page writable */
1793 avoidcopy = (page_count(old_page) == 1);
1795 set_huge_ptep_writable(vma, address, ptep);
1800 * If the process that created a MAP_PRIVATE mapping is about to
1801 * perform a COW due to a shared page count, attempt to satisfy
1802 * the allocation without using the existing reserves. The pagecache
1803 * page is used to determine if the reserve at this address was
1804 * consumed or not. If reserves were used, a partial faulted mapping
1805 * at the time of fork() could consume its reserves on COW instead
1806 * of the full address range.
1808 if (!(vma->vm_flags & VM_SHARED) &&
1809 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1810 old_page != pagecache_page)
1811 outside_reserve = 1;
1813 page_cache_get(old_page);
1814 new_page = alloc_huge_page(vma, address, outside_reserve);
1816 if (IS_ERR(new_page)) {
1817 page_cache_release(old_page);
1820 * If a process owning a MAP_PRIVATE mapping fails to COW,
1821 * it is due to references held by a child and an insufficient
1822 * huge page pool. To guarantee the original mappers
1823 * reliability, unmap the page from child processes. The child
1824 * may get SIGKILLed if it later faults.
1826 if (outside_reserve) {
1827 BUG_ON(huge_pte_none(pte));
1828 if (unmap_ref_private(mm, vma, old_page, address)) {
1829 BUG_ON(page_count(old_page) != 1);
1830 BUG_ON(huge_pte_none(pte));
1831 goto retry_avoidcopy;
1836 return -PTR_ERR(new_page);
1839 spin_unlock(&mm->page_table_lock);
1840 copy_huge_page(new_page, old_page, address, vma);
1841 __SetPageUptodate(new_page);
1842 spin_lock(&mm->page_table_lock);
1844 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1845 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1847 huge_ptep_clear_flush(vma, address, ptep);
1848 set_huge_pte_at(mm, address, ptep,
1849 make_huge_pte(vma, new_page, 1));
1850 /* Make the old page be freed below */
1851 new_page = old_page;
1853 page_cache_release(new_page);
1854 page_cache_release(old_page);
1858 /* Return the pagecache page at a given address within a VMA */
1859 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1860 struct vm_area_struct *vma, unsigned long address)
1862 struct address_space *mapping;
1865 mapping = vma->vm_file->f_mapping;
1866 idx = vma_hugecache_offset(h, vma, address);
1868 return find_lock_page(mapping, idx);
1871 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1872 unsigned long address, pte_t *ptep, int write_access)
1874 struct hstate *h = hstate_vma(vma);
1875 int ret = VM_FAULT_SIGBUS;
1879 struct address_space *mapping;
1883 * Currently, we are forced to kill the process in the event the
1884 * original mapper has unmapped pages from the child due to a failed
1885 * COW. Warn that such a situation has occured as it may not be obvious
1887 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1889 "PID %d killed due to inadequate hugepage pool\n",
1894 mapping = vma->vm_file->f_mapping;
1895 idx = vma_hugecache_offset(h, vma, address);
1898 * Use page lock to guard against racing truncation
1899 * before we get page_table_lock.
1902 page = find_lock_page(mapping, idx);
1904 size = i_size_read(mapping->host) >> huge_page_shift(h);
1907 page = alloc_huge_page(vma, address, 0);
1909 ret = -PTR_ERR(page);
1912 clear_huge_page(page, address, huge_page_size(h));
1913 __SetPageUptodate(page);
1915 if (vma->vm_flags & VM_SHARED) {
1917 struct inode *inode = mapping->host;
1919 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1927 spin_lock(&inode->i_lock);
1928 inode->i_blocks += blocks_per_huge_page(h);
1929 spin_unlock(&inode->i_lock);
1934 spin_lock(&mm->page_table_lock);
1935 size = i_size_read(mapping->host) >> huge_page_shift(h);
1940 if (!huge_pte_none(huge_ptep_get(ptep)))
1943 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1944 && (vma->vm_flags & VM_SHARED)));
1945 set_huge_pte_at(mm, address, ptep, new_pte);
1947 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1948 /* Optimization, do the COW without a second fault */
1949 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1952 spin_unlock(&mm->page_table_lock);
1958 spin_unlock(&mm->page_table_lock);
1964 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1965 unsigned long address, int write_access)
1970 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1971 struct hstate *h = hstate_vma(vma);
1973 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1975 return VM_FAULT_OOM;
1978 * Serialize hugepage allocation and instantiation, so that we don't
1979 * get spurious allocation failures if two CPUs race to instantiate
1980 * the same page in the page cache.
1982 mutex_lock(&hugetlb_instantiation_mutex);
1983 entry = huge_ptep_get(ptep);
1984 if (huge_pte_none(entry)) {
1985 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1986 mutex_unlock(&hugetlb_instantiation_mutex);
1992 spin_lock(&mm->page_table_lock);
1993 /* Check for a racing update before calling hugetlb_cow */
1994 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1995 if (write_access && !pte_write(entry)) {
1997 page = hugetlbfs_pagecache_page(h, vma, address);
1998 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
2004 spin_unlock(&mm->page_table_lock);
2005 mutex_unlock(&hugetlb_instantiation_mutex);
2010 /* Can be overriden by architectures */
2011 __attribute__((weak)) struct page *
2012 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2013 pud_t *pud, int write)
2019 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2020 struct page **pages, struct vm_area_struct **vmas,
2021 unsigned long *position, int *length, int i,
2024 unsigned long pfn_offset;
2025 unsigned long vaddr = *position;
2026 int remainder = *length;
2027 struct hstate *h = hstate_vma(vma);
2029 spin_lock(&mm->page_table_lock);
2030 while (vaddr < vma->vm_end && remainder) {
2035 * Some archs (sparc64, sh*) have multiple pte_ts to
2036 * each hugepage. We have to make * sure we get the
2037 * first, for the page indexing below to work.
2039 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2041 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
2042 (write && !pte_write(huge_ptep_get(pte)))) {
2045 spin_unlock(&mm->page_table_lock);
2046 ret = hugetlb_fault(mm, vma, vaddr, write);
2047 spin_lock(&mm->page_table_lock);
2048 if (!(ret & VM_FAULT_ERROR))
2057 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2058 page = pte_page(huge_ptep_get(pte));
2062 pages[i] = page + pfn_offset;
2072 if (vaddr < vma->vm_end && remainder &&
2073 pfn_offset < pages_per_huge_page(h)) {
2075 * We use pfn_offset to avoid touching the pageframes
2076 * of this compound page.
2081 spin_unlock(&mm->page_table_lock);
2082 *length = remainder;
2088 void hugetlb_change_protection(struct vm_area_struct *vma,
2089 unsigned long address, unsigned long end, pgprot_t newprot)
2091 struct mm_struct *mm = vma->vm_mm;
2092 unsigned long start = address;
2095 struct hstate *h = hstate_vma(vma);
2097 BUG_ON(address >= end);
2098 flush_cache_range(vma, address, end);
2100 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2101 spin_lock(&mm->page_table_lock);
2102 for (; address < end; address += huge_page_size(h)) {
2103 ptep = huge_pte_offset(mm, address);
2106 if (huge_pmd_unshare(mm, &address, ptep))
2108 if (!huge_pte_none(huge_ptep_get(ptep))) {
2109 pte = huge_ptep_get_and_clear(mm, address, ptep);
2110 pte = pte_mkhuge(pte_modify(pte, newprot));
2111 set_huge_pte_at(mm, address, ptep, pte);
2114 spin_unlock(&mm->page_table_lock);
2115 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2117 flush_tlb_range(vma, start, end);
2120 int hugetlb_reserve_pages(struct inode *inode,
2122 struct vm_area_struct *vma)
2125 struct hstate *h = hstate_inode(inode);
2127 if (vma && vma->vm_flags & VM_NORESERVE)
2131 * Shared mappings base their reservation on the number of pages that
2132 * are already allocated on behalf of the file. Private mappings need
2133 * to reserve the full area even if read-only as mprotect() may be
2134 * called to make the mapping read-write. Assume !vma is a shm mapping
2136 if (!vma || vma->vm_flags & VM_SHARED)
2137 chg = region_chg(&inode->i_mapping->private_list, from, to);
2139 struct resv_map *resv_map = resv_map_alloc();
2145 set_vma_resv_map(vma, resv_map);
2146 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2152 if (hugetlb_get_quota(inode->i_mapping, chg))
2154 ret = hugetlb_acct_memory(h, chg);
2156 hugetlb_put_quota(inode->i_mapping, chg);
2159 if (!vma || vma->vm_flags & VM_SHARED)
2160 region_add(&inode->i_mapping->private_list, from, to);
2164 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2166 struct hstate *h = hstate_inode(inode);
2167 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2169 spin_lock(&inode->i_lock);
2170 inode->i_blocks -= blocks_per_huge_page(h);
2171 spin_unlock(&inode->i_lock);
2173 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2174 hugetlb_acct_memory(h, -(chg - freed));