2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
85 free_huge_pages_node[nid]--;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
96 struct page *page = NULL;
97 struct mempolicy *mpol;
99 struct zonelist *zonelist = huge_zonelist(vma, address,
100 htlb_alloc_mask, &mpol, &nodemask);
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
111 list_del(&page->lru);
113 free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE)
123 static void update_and_free_page(struct page *page)
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 arch_release_hugepage(page);
136 __free_pages(page, HUGETLB_PAGE_ORDER);
139 static void free_huge_page(struct page *page)
141 int nid = page_to_nid(page);
142 struct address_space *mapping;
144 mapping = (struct address_space *) page_private(page);
145 set_page_private(page, 0);
146 BUG_ON(page_count(page));
147 INIT_LIST_HEAD(&page->lru);
149 spin_lock(&hugetlb_lock);
150 if (surplus_huge_pages_node[nid]) {
151 update_and_free_page(page);
152 surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--;
155 enqueue_huge_page(page);
157 spin_unlock(&hugetlb_lock);
159 hugetlb_put_quota(mapping, 1);
163 * Increment or decrement surplus_huge_pages. Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
167 static int adjust_pool_surplus(int delta)
173 VM_BUG_ON(delta != -1 && delta != 1);
175 nid = next_node(nid, node_online_map);
176 if (nid == MAX_NUMNODES)
177 nid = first_node(node_online_map);
179 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid])
182 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid])
187 surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta;
191 } while (nid != prev_nid);
197 static struct page *alloc_fresh_huge_page_node(int nid)
201 page = alloc_pages_node(nid,
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
203 __GFP_REPEAT|__GFP_NOWARN,
206 if (arch_prepare_hugepage(page)) {
207 __free_pages(page, HUGETLB_PAGE_ORDER);
210 set_compound_page_dtor(page, free_huge_page);
211 spin_lock(&hugetlb_lock);
213 nr_huge_pages_node[nid]++;
214 spin_unlock(&hugetlb_lock);
215 put_page(page); /* free it into the hugepage allocator */
221 static int alloc_fresh_huge_page(void)
228 start_nid = hugetlb_next_nid;
231 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
235 * Use a helper variable to find the next node and then
236 * copy it back to hugetlb_next_nid afterwards:
237 * otherwise there's a window in which a racer might
238 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
239 * But we don't need to use a spin_lock here: it really
240 * doesn't matter if occasionally a racer chooses the
241 * same nid as we do. Move nid forward in the mask even
242 * if we just successfully allocated a hugepage so that
243 * the next caller gets hugepages on the next node.
245 next_nid = next_node(hugetlb_next_nid, node_online_map);
246 if (next_nid == MAX_NUMNODES)
247 next_nid = first_node(node_online_map);
248 hugetlb_next_nid = next_nid;
249 } while (!page && hugetlb_next_nid != start_nid);
252 count_vm_event(HTLB_BUDDY_PGALLOC);
254 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
259 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
260 unsigned long address)
266 * Assume we will successfully allocate the surplus page to
267 * prevent racing processes from causing the surplus to exceed
270 * This however introduces a different race, where a process B
271 * tries to grow the static hugepage pool while alloc_pages() is
272 * called by process A. B will only examine the per-node
273 * counters in determining if surplus huge pages can be
274 * converted to normal huge pages in adjust_pool_surplus(). A
275 * won't be able to increment the per-node counter, until the
276 * lock is dropped by B, but B doesn't drop hugetlb_lock until
277 * no more huge pages can be converted from surplus to normal
278 * state (and doesn't try to convert again). Thus, we have a
279 * case where a surplus huge page exists, the pool is grown, and
280 * the surplus huge page still exists after, even though it
281 * should just have been converted to a normal huge page. This
282 * does not leak memory, though, as the hugepage will be freed
283 * once it is out of use. It also does not allow the counters to
284 * go out of whack in adjust_pool_surplus() as we don't modify
285 * the node values until we've gotten the hugepage and only the
286 * per-node value is checked there.
288 spin_lock(&hugetlb_lock);
289 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
290 spin_unlock(&hugetlb_lock);
294 surplus_huge_pages++;
296 spin_unlock(&hugetlb_lock);
298 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
299 __GFP_REPEAT|__GFP_NOWARN,
302 spin_lock(&hugetlb_lock);
305 * This page is now managed by the hugetlb allocator and has
306 * no users -- drop the buddy allocator's reference.
308 put_page_testzero(page);
309 VM_BUG_ON(page_count(page));
310 nid = page_to_nid(page);
311 set_compound_page_dtor(page, free_huge_page);
313 * We incremented the global counters already
315 nr_huge_pages_node[nid]++;
316 surplus_huge_pages_node[nid]++;
317 __count_vm_event(HTLB_BUDDY_PGALLOC);
320 surplus_huge_pages--;
321 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
323 spin_unlock(&hugetlb_lock);
329 * Increase the hugetlb pool such that it can accomodate a reservation
332 static int gather_surplus_pages(int delta)
334 struct list_head surplus_list;
335 struct page *page, *tmp;
337 int needed, allocated;
339 needed = (resv_huge_pages + delta) - free_huge_pages;
341 resv_huge_pages += delta;
346 INIT_LIST_HEAD(&surplus_list);
350 spin_unlock(&hugetlb_lock);
351 for (i = 0; i < needed; i++) {
352 page = alloc_buddy_huge_page(NULL, 0);
355 * We were not able to allocate enough pages to
356 * satisfy the entire reservation so we free what
357 * we've allocated so far.
359 spin_lock(&hugetlb_lock);
364 list_add(&page->lru, &surplus_list);
369 * After retaking hugetlb_lock, we need to recalculate 'needed'
370 * because either resv_huge_pages or free_huge_pages may have changed.
372 spin_lock(&hugetlb_lock);
373 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
378 * The surplus_list now contains _at_least_ the number of extra pages
379 * needed to accomodate the reservation. Add the appropriate number
380 * of pages to the hugetlb pool and free the extras back to the buddy
381 * allocator. Commit the entire reservation here to prevent another
382 * process from stealing the pages as they are added to the pool but
383 * before they are reserved.
386 resv_huge_pages += delta;
389 /* Free the needed pages to the hugetlb pool */
390 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
393 list_del(&page->lru);
394 enqueue_huge_page(page);
397 /* Free unnecessary surplus pages to the buddy allocator */
398 if (!list_empty(&surplus_list)) {
399 spin_unlock(&hugetlb_lock);
400 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
401 list_del(&page->lru);
403 * The page has a reference count of zero already, so
404 * call free_huge_page directly instead of using
405 * put_page. This must be done with hugetlb_lock
406 * unlocked which is safe because free_huge_page takes
407 * hugetlb_lock before deciding how to free the page.
409 free_huge_page(page);
411 spin_lock(&hugetlb_lock);
418 * When releasing a hugetlb pool reservation, any surplus pages that were
419 * allocated to satisfy the reservation must be explicitly freed if they were
422 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
426 unsigned long nr_pages;
429 * We want to release as many surplus pages as possible, spread
430 * evenly across all nodes. Iterate across all nodes until we
431 * can no longer free unreserved surplus pages. This occurs when
432 * the nodes with surplus pages have no free pages.
434 unsigned long remaining_iterations = num_online_nodes();
436 /* Uncommit the reservation */
437 resv_huge_pages -= unused_resv_pages;
439 nr_pages = min(unused_resv_pages, surplus_huge_pages);
441 while (remaining_iterations-- && nr_pages) {
442 nid = next_node(nid, node_online_map);
443 if (nid == MAX_NUMNODES)
444 nid = first_node(node_online_map);
446 if (!surplus_huge_pages_node[nid])
449 if (!list_empty(&hugepage_freelists[nid])) {
450 page = list_entry(hugepage_freelists[nid].next,
452 list_del(&page->lru);
453 update_and_free_page(page);
455 free_huge_pages_node[nid]--;
456 surplus_huge_pages--;
457 surplus_huge_pages_node[nid]--;
459 remaining_iterations = num_online_nodes();
465 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
470 spin_lock(&hugetlb_lock);
471 page = dequeue_huge_page_vma(vma, addr);
472 spin_unlock(&hugetlb_lock);
473 return page ? page : ERR_PTR(-VM_FAULT_OOM);
476 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
479 struct page *page = NULL;
481 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
482 return ERR_PTR(-VM_FAULT_SIGBUS);
484 spin_lock(&hugetlb_lock);
485 if (free_huge_pages > resv_huge_pages)
486 page = dequeue_huge_page_vma(vma, addr);
487 spin_unlock(&hugetlb_lock);
489 page = alloc_buddy_huge_page(vma, addr);
491 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
492 return ERR_PTR(-VM_FAULT_OOM);
498 static struct page *alloc_huge_page(struct vm_area_struct *vma,
502 struct address_space *mapping = vma->vm_file->f_mapping;
504 if (vma->vm_flags & VM_MAYSHARE)
505 page = alloc_huge_page_shared(vma, addr);
507 page = alloc_huge_page_private(vma, addr);
510 set_page_refcounted(page);
511 set_page_private(page, (unsigned long) mapping);
516 static int __init hugetlb_init(void)
520 if (HPAGE_SHIFT == 0)
523 for (i = 0; i < MAX_NUMNODES; ++i)
524 INIT_LIST_HEAD(&hugepage_freelists[i]);
526 hugetlb_next_nid = first_node(node_online_map);
528 for (i = 0; i < max_huge_pages; ++i) {
529 if (!alloc_fresh_huge_page())
532 max_huge_pages = free_huge_pages = nr_huge_pages = i;
533 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
536 module_init(hugetlb_init);
538 static int __init hugetlb_setup(char *s)
540 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
544 __setup("hugepages=", hugetlb_setup);
546 static unsigned int cpuset_mems_nr(unsigned int *array)
551 for_each_node_mask(node, cpuset_current_mems_allowed)
558 #ifdef CONFIG_HIGHMEM
559 static void try_to_free_low(unsigned long count)
563 for (i = 0; i < MAX_NUMNODES; ++i) {
564 struct page *page, *next;
565 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
566 if (count >= nr_huge_pages)
568 if (PageHighMem(page))
570 list_del(&page->lru);
571 update_and_free_page(page);
573 free_huge_pages_node[page_to_nid(page)]--;
578 static inline void try_to_free_low(unsigned long count)
583 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
584 static unsigned long set_max_huge_pages(unsigned long count)
586 unsigned long min_count, ret;
589 * Increase the pool size
590 * First take pages out of surplus state. Then make up the
591 * remaining difference by allocating fresh huge pages.
593 * We might race with alloc_buddy_huge_page() here and be unable
594 * to convert a surplus huge page to a normal huge page. That is
595 * not critical, though, it just means the overall size of the
596 * pool might be one hugepage larger than it needs to be, but
597 * within all the constraints specified by the sysctls.
599 spin_lock(&hugetlb_lock);
600 while (surplus_huge_pages && count > persistent_huge_pages) {
601 if (!adjust_pool_surplus(-1))
605 while (count > persistent_huge_pages) {
607 * If this allocation races such that we no longer need the
608 * page, free_huge_page will handle it by freeing the page
609 * and reducing the surplus.
611 spin_unlock(&hugetlb_lock);
612 ret = alloc_fresh_huge_page();
613 spin_lock(&hugetlb_lock);
620 * Decrease the pool size
621 * First return free pages to the buddy allocator (being careful
622 * to keep enough around to satisfy reservations). Then place
623 * pages into surplus state as needed so the pool will shrink
624 * to the desired size as pages become free.
626 * By placing pages into the surplus state independent of the
627 * overcommit value, we are allowing the surplus pool size to
628 * exceed overcommit. There are few sane options here. Since
629 * alloc_buddy_huge_page() is checking the global counter,
630 * though, we'll note that we're not allowed to exceed surplus
631 * and won't grow the pool anywhere else. Not until one of the
632 * sysctls are changed, or the surplus pages go out of use.
634 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
635 min_count = max(count, min_count);
636 try_to_free_low(min_count);
637 while (min_count < persistent_huge_pages) {
638 struct page *page = dequeue_huge_page();
641 update_and_free_page(page);
643 while (count < persistent_huge_pages) {
644 if (!adjust_pool_surplus(1))
648 ret = persistent_huge_pages;
649 spin_unlock(&hugetlb_lock);
653 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
654 struct file *file, void __user *buffer,
655 size_t *length, loff_t *ppos)
657 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
658 max_huge_pages = set_max_huge_pages(max_huge_pages);
662 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
663 struct file *file, void __user *buffer,
664 size_t *length, loff_t *ppos)
666 proc_dointvec(table, write, file, buffer, length, ppos);
667 if (hugepages_treat_as_movable)
668 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
670 htlb_alloc_mask = GFP_HIGHUSER;
674 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
675 struct file *file, void __user *buffer,
676 size_t *length, loff_t *ppos)
678 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
679 spin_lock(&hugetlb_lock);
680 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
681 spin_unlock(&hugetlb_lock);
685 #endif /* CONFIG_SYSCTL */
687 int hugetlb_report_meminfo(char *buf)
690 "HugePages_Total: %5lu\n"
691 "HugePages_Free: %5lu\n"
692 "HugePages_Rsvd: %5lu\n"
693 "HugePages_Surp: %5lu\n"
694 "Hugepagesize: %5lu kB\n",
702 int hugetlb_report_node_meminfo(int nid, char *buf)
705 "Node %d HugePages_Total: %5u\n"
706 "Node %d HugePages_Free: %5u\n"
707 "Node %d HugePages_Surp: %5u\n",
708 nid, nr_huge_pages_node[nid],
709 nid, free_huge_pages_node[nid],
710 nid, surplus_huge_pages_node[nid]);
713 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
714 unsigned long hugetlb_total_pages(void)
716 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
719 static int hugetlb_acct_memory(long delta)
723 spin_lock(&hugetlb_lock);
725 * When cpuset is configured, it breaks the strict hugetlb page
726 * reservation as the accounting is done on a global variable. Such
727 * reservation is completely rubbish in the presence of cpuset because
728 * the reservation is not checked against page availability for the
729 * current cpuset. Application can still potentially OOM'ed by kernel
730 * with lack of free htlb page in cpuset that the task is in.
731 * Attempt to enforce strict accounting with cpuset is almost
732 * impossible (or too ugly) because cpuset is too fluid that
733 * task or memory node can be dynamically moved between cpusets.
735 * The change of semantics for shared hugetlb mapping with cpuset is
736 * undesirable. However, in order to preserve some of the semantics,
737 * we fall back to check against current free page availability as
738 * a best attempt and hopefully to minimize the impact of changing
739 * semantics that cpuset has.
742 if (gather_surplus_pages(delta) < 0)
745 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
746 return_unused_surplus_pages(delta);
753 return_unused_surplus_pages((unsigned long) -delta);
756 spin_unlock(&hugetlb_lock);
761 * We cannot handle pagefaults against hugetlb pages at all. They cause
762 * handle_mm_fault() to try to instantiate regular-sized pages in the
763 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
766 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
772 struct vm_operations_struct hugetlb_vm_ops = {
773 .fault = hugetlb_vm_op_fault,
776 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
783 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
785 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
787 entry = pte_mkyoung(entry);
788 entry = pte_mkhuge(entry);
793 static void set_huge_ptep_writable(struct vm_area_struct *vma,
794 unsigned long address, pte_t *ptep)
798 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
799 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
800 update_mmu_cache(vma, address, entry);
805 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
806 struct vm_area_struct *vma)
808 pte_t *src_pte, *dst_pte, entry;
809 struct page *ptepage;
813 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
815 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
816 src_pte = huge_pte_offset(src, addr);
819 dst_pte = huge_pte_alloc(dst, addr);
823 /* If the pagetables are shared don't copy or take references */
824 if (dst_pte == src_pte)
827 spin_lock(&dst->page_table_lock);
828 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
829 if (!huge_pte_none(huge_ptep_get(src_pte))) {
831 huge_ptep_set_wrprotect(src, addr, src_pte);
832 entry = huge_ptep_get(src_pte);
833 ptepage = pte_page(entry);
835 set_huge_pte_at(dst, addr, dst_pte, entry);
837 spin_unlock(&src->page_table_lock);
838 spin_unlock(&dst->page_table_lock);
846 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
849 struct mm_struct *mm = vma->vm_mm;
850 unsigned long address;
856 * A page gathering list, protected by per file i_mmap_lock. The
857 * lock is used to avoid list corruption from multiple unmapping
858 * of the same page since we are using page->lru.
860 LIST_HEAD(page_list);
862 WARN_ON(!is_vm_hugetlb_page(vma));
863 BUG_ON(start & ~HPAGE_MASK);
864 BUG_ON(end & ~HPAGE_MASK);
866 spin_lock(&mm->page_table_lock);
867 for (address = start; address < end; address += HPAGE_SIZE) {
868 ptep = huge_pte_offset(mm, address);
872 if (huge_pmd_unshare(mm, &address, ptep))
875 pte = huge_ptep_get_and_clear(mm, address, ptep);
876 if (huge_pte_none(pte))
879 page = pte_page(pte);
881 set_page_dirty(page);
882 list_add(&page->lru, &page_list);
884 spin_unlock(&mm->page_table_lock);
885 flush_tlb_range(vma, start, end);
886 list_for_each_entry_safe(page, tmp, &page_list, lru) {
887 list_del(&page->lru);
892 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
896 * It is undesirable to test vma->vm_file as it should be non-null
897 * for valid hugetlb area. However, vm_file will be NULL in the error
898 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
899 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
900 * to clean up. Since no pte has actually been setup, it is safe to
901 * do nothing in this case.
904 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
905 __unmap_hugepage_range(vma, start, end);
906 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
910 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
911 unsigned long address, pte_t *ptep, pte_t pte)
913 struct page *old_page, *new_page;
916 old_page = pte_page(pte);
918 /* If no-one else is actually using this page, avoid the copy
919 * and just make the page writable */
920 avoidcopy = (page_count(old_page) == 1);
922 set_huge_ptep_writable(vma, address, ptep);
926 page_cache_get(old_page);
927 new_page = alloc_huge_page(vma, address);
929 if (IS_ERR(new_page)) {
930 page_cache_release(old_page);
931 return -PTR_ERR(new_page);
934 spin_unlock(&mm->page_table_lock);
935 copy_huge_page(new_page, old_page, address, vma);
936 __SetPageUptodate(new_page);
937 spin_lock(&mm->page_table_lock);
939 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
940 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
942 huge_ptep_clear_flush(vma, address, ptep);
943 set_huge_pte_at(mm, address, ptep,
944 make_huge_pte(vma, new_page, 1));
945 /* Make the old page be freed below */
948 page_cache_release(new_page);
949 page_cache_release(old_page);
953 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
954 unsigned long address, pte_t *ptep, int write_access)
956 int ret = VM_FAULT_SIGBUS;
960 struct address_space *mapping;
963 mapping = vma->vm_file->f_mapping;
964 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
965 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
968 * Use page lock to guard against racing truncation
969 * before we get page_table_lock.
972 page = find_lock_page(mapping, idx);
974 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
977 page = alloc_huge_page(vma, address);
979 ret = -PTR_ERR(page);
982 clear_huge_page(page, address);
983 __SetPageUptodate(page);
985 if (vma->vm_flags & VM_SHARED) {
987 struct inode *inode = mapping->host;
989 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
997 spin_lock(&inode->i_lock);
998 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
999 spin_unlock(&inode->i_lock);
1004 spin_lock(&mm->page_table_lock);
1005 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1010 if (!huge_pte_none(huge_ptep_get(ptep)))
1013 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1014 && (vma->vm_flags & VM_SHARED)));
1015 set_huge_pte_at(mm, address, ptep, new_pte);
1017 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1018 /* Optimization, do the COW without a second fault */
1019 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
1022 spin_unlock(&mm->page_table_lock);
1028 spin_unlock(&mm->page_table_lock);
1034 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1035 unsigned long address, int write_access)
1040 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1042 ptep = huge_pte_alloc(mm, address);
1044 return VM_FAULT_OOM;
1047 * Serialize hugepage allocation and instantiation, so that we don't
1048 * get spurious allocation failures if two CPUs race to instantiate
1049 * the same page in the page cache.
1051 mutex_lock(&hugetlb_instantiation_mutex);
1052 entry = huge_ptep_get(ptep);
1053 if (huge_pte_none(entry)) {
1054 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1055 mutex_unlock(&hugetlb_instantiation_mutex);
1061 spin_lock(&mm->page_table_lock);
1062 /* Check for a racing update before calling hugetlb_cow */
1063 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1064 if (write_access && !pte_write(entry))
1065 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1066 spin_unlock(&mm->page_table_lock);
1067 mutex_unlock(&hugetlb_instantiation_mutex);
1072 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1073 struct page **pages, struct vm_area_struct **vmas,
1074 unsigned long *position, int *length, int i,
1077 unsigned long pfn_offset;
1078 unsigned long vaddr = *position;
1079 int remainder = *length;
1081 spin_lock(&mm->page_table_lock);
1082 while (vaddr < vma->vm_end && remainder) {
1087 * Some archs (sparc64, sh*) have multiple pte_ts to
1088 * each hugepage. We have to make * sure we get the
1089 * first, for the page indexing below to work.
1091 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1093 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1094 (write && !pte_write(huge_ptep_get(pte)))) {
1097 spin_unlock(&mm->page_table_lock);
1098 ret = hugetlb_fault(mm, vma, vaddr, write);
1099 spin_lock(&mm->page_table_lock);
1100 if (!(ret & VM_FAULT_ERROR))
1109 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1110 page = pte_page(huge_ptep_get(pte));
1114 pages[i] = page + pfn_offset;
1124 if (vaddr < vma->vm_end && remainder &&
1125 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1127 * We use pfn_offset to avoid touching the pageframes
1128 * of this compound page.
1133 spin_unlock(&mm->page_table_lock);
1134 *length = remainder;
1140 void hugetlb_change_protection(struct vm_area_struct *vma,
1141 unsigned long address, unsigned long end, pgprot_t newprot)
1143 struct mm_struct *mm = vma->vm_mm;
1144 unsigned long start = address;
1148 BUG_ON(address >= end);
1149 flush_cache_range(vma, address, end);
1151 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1152 spin_lock(&mm->page_table_lock);
1153 for (; address < end; address += HPAGE_SIZE) {
1154 ptep = huge_pte_offset(mm, address);
1157 if (huge_pmd_unshare(mm, &address, ptep))
1159 if (!huge_pte_none(huge_ptep_get(ptep))) {
1160 pte = huge_ptep_get_and_clear(mm, address, ptep);
1161 pte = pte_mkhuge(pte_modify(pte, newprot));
1162 set_huge_pte_at(mm, address, ptep, pte);
1165 spin_unlock(&mm->page_table_lock);
1166 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1168 flush_tlb_range(vma, start, end);
1171 struct file_region {
1172 struct list_head link;
1177 static long region_add(struct list_head *head, long f, long t)
1179 struct file_region *rg, *nrg, *trg;
1181 /* Locate the region we are either in or before. */
1182 list_for_each_entry(rg, head, link)
1186 /* Round our left edge to the current segment if it encloses us. */
1190 /* Check for and consume any regions we now overlap with. */
1192 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1193 if (&rg->link == head)
1198 /* If this area reaches higher then extend our area to
1199 * include it completely. If this is not the first area
1200 * which we intend to reuse, free it. */
1204 list_del(&rg->link);
1213 static long region_chg(struct list_head *head, long f, long t)
1215 struct file_region *rg, *nrg;
1218 /* Locate the region we are before or in. */
1219 list_for_each_entry(rg, head, link)
1223 /* If we are below the current region then a new region is required.
1224 * Subtle, allocate a new region at the position but make it zero
1225 * size such that we can guarantee to record the reservation. */
1226 if (&rg->link == head || t < rg->from) {
1227 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1232 INIT_LIST_HEAD(&nrg->link);
1233 list_add(&nrg->link, rg->link.prev);
1238 /* Round our left edge to the current segment if it encloses us. */
1243 /* Check for and consume any regions we now overlap with. */
1244 list_for_each_entry(rg, rg->link.prev, link) {
1245 if (&rg->link == head)
1250 /* We overlap with this area, if it extends futher than
1251 * us then we must extend ourselves. Account for its
1252 * existing reservation. */
1257 chg -= rg->to - rg->from;
1262 static long region_truncate(struct list_head *head, long end)
1264 struct file_region *rg, *trg;
1267 /* Locate the region we are either in or before. */
1268 list_for_each_entry(rg, head, link)
1271 if (&rg->link == head)
1274 /* If we are in the middle of a region then adjust it. */
1275 if (end > rg->from) {
1278 rg = list_entry(rg->link.next, typeof(*rg), link);
1281 /* Drop any remaining regions. */
1282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1283 if (&rg->link == head)
1285 chg += rg->to - rg->from;
1286 list_del(&rg->link);
1292 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1296 chg = region_chg(&inode->i_mapping->private_list, from, to);
1300 if (hugetlb_get_quota(inode->i_mapping, chg))
1302 ret = hugetlb_acct_memory(chg);
1304 hugetlb_put_quota(inode->i_mapping, chg);
1307 region_add(&inode->i_mapping->private_list, from, to);
1311 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1313 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1315 spin_lock(&inode->i_lock);
1316 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1317 spin_unlock(&inode->i_lock);
1319 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1320 hugetlb_acct_memory(-(chg - freed));