]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/kmemleak.c
s390/smp: use sigp condition code define
[karo-tx-linux.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/hardirq.h>
95 #include <linux/bootmem.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemcheck.h>
114 #include <linux/kmemleak.h>
115 #include <linux/memory_hotplug.h>
116
117 /*
118  * Kmemleak configuration and common defines.
119  */
120 #define MAX_TRACE               16      /* stack trace length */
121 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
122 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
123 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
124 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
125
126 #define BYTES_PER_POINTER       sizeof(void *)
127
128 /* GFP bitmask for kmemleak internal allocations */
129 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
130                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
131                                  __GFP_NOWARN)
132
133 /* scanning area inside a memory block */
134 struct kmemleak_scan_area {
135         struct hlist_node node;
136         unsigned long start;
137         size_t size;
138 };
139
140 #define KMEMLEAK_GREY   0
141 #define KMEMLEAK_BLACK  -1
142
143 /*
144  * Structure holding the metadata for each allocated memory block.
145  * Modifications to such objects should be made while holding the
146  * object->lock. Insertions or deletions from object_list, gray_list or
147  * rb_node are already protected by the corresponding locks or mutex (see
148  * the notes on locking above). These objects are reference-counted
149  * (use_count) and freed using the RCU mechanism.
150  */
151 struct kmemleak_object {
152         spinlock_t lock;
153         unsigned long flags;            /* object status flags */
154         struct list_head object_list;
155         struct list_head gray_list;
156         struct rb_node rb_node;
157         struct rcu_head rcu;            /* object_list lockless traversal */
158         /* object usage count; object freed when use_count == 0 */
159         atomic_t use_count;
160         unsigned long pointer;
161         size_t size;
162         /* minimum number of a pointers found before it is considered leak */
163         int min_count;
164         /* the total number of pointers found pointing to this object */
165         int count;
166         /* checksum for detecting modified objects */
167         u32 checksum;
168         /* memory ranges to be scanned inside an object (empty for all) */
169         struct hlist_head area_list;
170         unsigned long trace[MAX_TRACE];
171         unsigned int trace_len;
172         unsigned long jiffies;          /* creation timestamp */
173         pid_t pid;                      /* pid of the current task */
174         char comm[TASK_COMM_LEN];       /* executable name */
175 };
176
177 /* flag representing the memory block allocation status */
178 #define OBJECT_ALLOCATED        (1 << 0)
179 /* flag set after the first reporting of an unreference object */
180 #define OBJECT_REPORTED         (1 << 1)
181 /* flag set to not scan the object */
182 #define OBJECT_NO_SCAN          (1 << 2)
183
184 /* number of bytes to print per line; must be 16 or 32 */
185 #define HEX_ROW_SIZE            16
186 /* number of bytes to print at a time (1, 2, 4, 8) */
187 #define HEX_GROUP_SIZE          1
188 /* include ASCII after the hex output */
189 #define HEX_ASCII               1
190 /* max number of lines to be printed */
191 #define HEX_MAX_LINES           2
192
193 /* the list of all allocated objects */
194 static LIST_HEAD(object_list);
195 /* the list of gray-colored objects (see color_gray comment below) */
196 static LIST_HEAD(gray_list);
197 /* search tree for object boundaries */
198 static struct rb_root object_tree_root = RB_ROOT;
199 /* rw_lock protecting the access to object_list and object_tree_root */
200 static DEFINE_RWLOCK(kmemleak_lock);
201
202 /* allocation caches for kmemleak internal data */
203 static struct kmem_cache *object_cache;
204 static struct kmem_cache *scan_area_cache;
205
206 /* set if tracing memory operations is enabled */
207 static int kmemleak_enabled;
208 /* same as above but only for the kmemleak_free() callback */
209 static int kmemleak_free_enabled;
210 /* set in the late_initcall if there were no errors */
211 static int kmemleak_initialized;
212 /* enables or disables early logging of the memory operations */
213 static int kmemleak_early_log = 1;
214 /* set if a kmemleak warning was issued */
215 static int kmemleak_warning;
216 /* set if a fatal kmemleak error has occurred */
217 static int kmemleak_error;
218
219 /* minimum and maximum address that may be valid pointers */
220 static unsigned long min_addr = ULONG_MAX;
221 static unsigned long max_addr;
222
223 static struct task_struct *scan_thread;
224 /* used to avoid reporting of recently allocated objects */
225 static unsigned long jiffies_min_age;
226 static unsigned long jiffies_last_scan;
227 /* delay between automatic memory scannings */
228 static signed long jiffies_scan_wait;
229 /* enables or disables the task stacks scanning */
230 static int kmemleak_stack_scan = 1;
231 /* protects the memory scanning, parameters and debug/kmemleak file access */
232 static DEFINE_MUTEX(scan_mutex);
233 /* setting kmemleak=on, will set this var, skipping the disable */
234 static int kmemleak_skip_disable;
235 /* If there are leaks that can be reported */
236 static bool kmemleak_found_leaks;
237
238 /*
239  * Early object allocation/freeing logging. Kmemleak is initialized after the
240  * kernel allocator. However, both the kernel allocator and kmemleak may
241  * allocate memory blocks which need to be tracked. Kmemleak defines an
242  * arbitrary buffer to hold the allocation/freeing information before it is
243  * fully initialized.
244  */
245
246 /* kmemleak operation type for early logging */
247 enum {
248         KMEMLEAK_ALLOC,
249         KMEMLEAK_ALLOC_PERCPU,
250         KMEMLEAK_FREE,
251         KMEMLEAK_FREE_PART,
252         KMEMLEAK_FREE_PERCPU,
253         KMEMLEAK_NOT_LEAK,
254         KMEMLEAK_IGNORE,
255         KMEMLEAK_SCAN_AREA,
256         KMEMLEAK_NO_SCAN
257 };
258
259 /*
260  * Structure holding the information passed to kmemleak callbacks during the
261  * early logging.
262  */
263 struct early_log {
264         int op_type;                    /* kmemleak operation type */
265         const void *ptr;                /* allocated/freed memory block */
266         size_t size;                    /* memory block size */
267         int min_count;                  /* minimum reference count */
268         unsigned long trace[MAX_TRACE]; /* stack trace */
269         unsigned int trace_len;         /* stack trace length */
270 };
271
272 /* early logging buffer and current position */
273 static struct early_log
274         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
275 static int crt_early_log __initdata;
276
277 static void kmemleak_disable(void);
278
279 /*
280  * Print a warning and dump the stack trace.
281  */
282 #define kmemleak_warn(x...)     do {            \
283         pr_warn(x);                             \
284         dump_stack();                           \
285         kmemleak_warning = 1;                   \
286 } while (0)
287
288 /*
289  * Macro invoked when a serious kmemleak condition occurred and cannot be
290  * recovered from. Kmemleak will be disabled and further allocation/freeing
291  * tracing no longer available.
292  */
293 #define kmemleak_stop(x...)     do {    \
294         kmemleak_warn(x);               \
295         kmemleak_disable();             \
296 } while (0)
297
298 /*
299  * Printing of the objects hex dump to the seq file. The number of lines to be
300  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
301  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
302  * with the object->lock held.
303  */
304 static void hex_dump_object(struct seq_file *seq,
305                             struct kmemleak_object *object)
306 {
307         const u8 *ptr = (const u8 *)object->pointer;
308         size_t len;
309
310         /* limit the number of lines to HEX_MAX_LINES */
311         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
312
313         seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
314         kasan_disable_current();
315         seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
316                      HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
317         kasan_enable_current();
318 }
319
320 /*
321  * Object colors, encoded with count and min_count:
322  * - white - orphan object, not enough references to it (count < min_count)
323  * - gray  - not orphan, not marked as false positive (min_count == 0) or
324  *              sufficient references to it (count >= min_count)
325  * - black - ignore, it doesn't contain references (e.g. text section)
326  *              (min_count == -1). No function defined for this color.
327  * Newly created objects don't have any color assigned (object->count == -1)
328  * before the next memory scan when they become white.
329  */
330 static bool color_white(const struct kmemleak_object *object)
331 {
332         return object->count != KMEMLEAK_BLACK &&
333                 object->count < object->min_count;
334 }
335
336 static bool color_gray(const struct kmemleak_object *object)
337 {
338         return object->min_count != KMEMLEAK_BLACK &&
339                 object->count >= object->min_count;
340 }
341
342 /*
343  * Objects are considered unreferenced only if their color is white, they have
344  * not be deleted and have a minimum age to avoid false positives caused by
345  * pointers temporarily stored in CPU registers.
346  */
347 static bool unreferenced_object(struct kmemleak_object *object)
348 {
349         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
350                 time_before_eq(object->jiffies + jiffies_min_age,
351                                jiffies_last_scan);
352 }
353
354 /*
355  * Printing of the unreferenced objects information to the seq file. The
356  * print_unreferenced function must be called with the object->lock held.
357  */
358 static void print_unreferenced(struct seq_file *seq,
359                                struct kmemleak_object *object)
360 {
361         int i;
362         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
363
364         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
365                    object->pointer, object->size);
366         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
367                    object->comm, object->pid, object->jiffies,
368                    msecs_age / 1000, msecs_age % 1000);
369         hex_dump_object(seq, object);
370         seq_printf(seq, "  backtrace:\n");
371
372         for (i = 0; i < object->trace_len; i++) {
373                 void *ptr = (void *)object->trace[i];
374                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
375         }
376 }
377
378 /*
379  * Print the kmemleak_object information. This function is used mainly for
380  * debugging special cases when kmemleak operations. It must be called with
381  * the object->lock held.
382  */
383 static void dump_object_info(struct kmemleak_object *object)
384 {
385         struct stack_trace trace;
386
387         trace.nr_entries = object->trace_len;
388         trace.entries = object->trace;
389
390         pr_notice("Object 0x%08lx (size %zu):\n",
391                   object->pointer, object->size);
392         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
393                   object->comm, object->pid, object->jiffies);
394         pr_notice("  min_count = %d\n", object->min_count);
395         pr_notice("  count = %d\n", object->count);
396         pr_notice("  flags = 0x%lx\n", object->flags);
397         pr_notice("  checksum = %u\n", object->checksum);
398         pr_notice("  backtrace:\n");
399         print_stack_trace(&trace, 4);
400 }
401
402 /*
403  * Look-up a memory block metadata (kmemleak_object) in the object search
404  * tree based on a pointer value. If alias is 0, only values pointing to the
405  * beginning of the memory block are allowed. The kmemleak_lock must be held
406  * when calling this function.
407  */
408 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
409 {
410         struct rb_node *rb = object_tree_root.rb_node;
411
412         while (rb) {
413                 struct kmemleak_object *object =
414                         rb_entry(rb, struct kmemleak_object, rb_node);
415                 if (ptr < object->pointer)
416                         rb = object->rb_node.rb_left;
417                 else if (object->pointer + object->size <= ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (object->pointer == ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /*
432  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
433  * that once an object's use_count reached 0, the RCU freeing was already
434  * registered and the object should no longer be used. This function must be
435  * called under the protection of rcu_read_lock().
436  */
437 static int get_object(struct kmemleak_object *object)
438 {
439         return atomic_inc_not_zero(&object->use_count);
440 }
441
442 /*
443  * RCU callback to free a kmemleak_object.
444  */
445 static void free_object_rcu(struct rcu_head *rcu)
446 {
447         struct hlist_node *tmp;
448         struct kmemleak_scan_area *area;
449         struct kmemleak_object *object =
450                 container_of(rcu, struct kmemleak_object, rcu);
451
452         /*
453          * Once use_count is 0 (guaranteed by put_object), there is no other
454          * code accessing this object, hence no need for locking.
455          */
456         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
457                 hlist_del(&area->node);
458                 kmem_cache_free(scan_area_cache, area);
459         }
460         kmem_cache_free(object_cache, object);
461 }
462
463 /*
464  * Decrement the object use_count. Once the count is 0, free the object using
465  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
466  * delete_object() path, the delayed RCU freeing ensures that there is no
467  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
468  * is also possible.
469  */
470 static void put_object(struct kmemleak_object *object)
471 {
472         if (!atomic_dec_and_test(&object->use_count))
473                 return;
474
475         /* should only get here after delete_object was called */
476         WARN_ON(object->flags & OBJECT_ALLOCATED);
477
478         call_rcu(&object->rcu, free_object_rcu);
479 }
480
481 /*
482  * Look up an object in the object search tree and increase its use_count.
483  */
484 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
485 {
486         unsigned long flags;
487         struct kmemleak_object *object;
488
489         rcu_read_lock();
490         read_lock_irqsave(&kmemleak_lock, flags);
491         object = lookup_object(ptr, alias);
492         read_unlock_irqrestore(&kmemleak_lock, flags);
493
494         /* check whether the object is still available */
495         if (object && !get_object(object))
496                 object = NULL;
497         rcu_read_unlock();
498
499         return object;
500 }
501
502 /*
503  * Look up an object in the object search tree and remove it from both
504  * object_tree_root and object_list. The returned object's use_count should be
505  * at least 1, as initially set by create_object().
506  */
507 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
508 {
509         unsigned long flags;
510         struct kmemleak_object *object;
511
512         write_lock_irqsave(&kmemleak_lock, flags);
513         object = lookup_object(ptr, alias);
514         if (object) {
515                 rb_erase(&object->rb_node, &object_tree_root);
516                 list_del_rcu(&object->object_list);
517         }
518         write_unlock_irqrestore(&kmemleak_lock, flags);
519
520         return object;
521 }
522
523 /*
524  * Save stack trace to the given array of MAX_TRACE size.
525  */
526 static int __save_stack_trace(unsigned long *trace)
527 {
528         struct stack_trace stack_trace;
529
530         stack_trace.max_entries = MAX_TRACE;
531         stack_trace.nr_entries = 0;
532         stack_trace.entries = trace;
533         stack_trace.skip = 2;
534         save_stack_trace(&stack_trace);
535
536         return stack_trace.nr_entries;
537 }
538
539 /*
540  * Create the metadata (struct kmemleak_object) corresponding to an allocated
541  * memory block and add it to the object_list and object_tree_root.
542  */
543 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
544                                              int min_count, gfp_t gfp)
545 {
546         unsigned long flags;
547         struct kmemleak_object *object, *parent;
548         struct rb_node **link, *rb_parent;
549
550         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
551         if (!object) {
552                 pr_warn("Cannot allocate a kmemleak_object structure\n");
553                 kmemleak_disable();
554                 return NULL;
555         }
556
557         INIT_LIST_HEAD(&object->object_list);
558         INIT_LIST_HEAD(&object->gray_list);
559         INIT_HLIST_HEAD(&object->area_list);
560         spin_lock_init(&object->lock);
561         atomic_set(&object->use_count, 1);
562         object->flags = OBJECT_ALLOCATED;
563         object->pointer = ptr;
564         object->size = size;
565         object->min_count = min_count;
566         object->count = 0;                      /* white color initially */
567         object->jiffies = jiffies;
568         object->checksum = 0;
569
570         /* task information */
571         if (in_irq()) {
572                 object->pid = 0;
573                 strncpy(object->comm, "hardirq", sizeof(object->comm));
574         } else if (in_softirq()) {
575                 object->pid = 0;
576                 strncpy(object->comm, "softirq", sizeof(object->comm));
577         } else {
578                 object->pid = current->pid;
579                 /*
580                  * There is a small chance of a race with set_task_comm(),
581                  * however using get_task_comm() here may cause locking
582                  * dependency issues with current->alloc_lock. In the worst
583                  * case, the command line is not correct.
584                  */
585                 strncpy(object->comm, current->comm, sizeof(object->comm));
586         }
587
588         /* kernel backtrace */
589         object->trace_len = __save_stack_trace(object->trace);
590
591         write_lock_irqsave(&kmemleak_lock, flags);
592
593         min_addr = min(min_addr, ptr);
594         max_addr = max(max_addr, ptr + size);
595         link = &object_tree_root.rb_node;
596         rb_parent = NULL;
597         while (*link) {
598                 rb_parent = *link;
599                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
600                 if (ptr + size <= parent->pointer)
601                         link = &parent->rb_node.rb_left;
602                 else if (parent->pointer + parent->size <= ptr)
603                         link = &parent->rb_node.rb_right;
604                 else {
605                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
606                                       ptr);
607                         /*
608                          * No need for parent->lock here since "parent" cannot
609                          * be freed while the kmemleak_lock is held.
610                          */
611                         dump_object_info(parent);
612                         kmem_cache_free(object_cache, object);
613                         object = NULL;
614                         goto out;
615                 }
616         }
617         rb_link_node(&object->rb_node, rb_parent, link);
618         rb_insert_color(&object->rb_node, &object_tree_root);
619
620         list_add_tail_rcu(&object->object_list, &object_list);
621 out:
622         write_unlock_irqrestore(&kmemleak_lock, flags);
623         return object;
624 }
625
626 /*
627  * Mark the object as not allocated and schedule RCU freeing via put_object().
628  */
629 static void __delete_object(struct kmemleak_object *object)
630 {
631         unsigned long flags;
632
633         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
634         WARN_ON(atomic_read(&object->use_count) < 1);
635
636         /*
637          * Locking here also ensures that the corresponding memory block
638          * cannot be freed when it is being scanned.
639          */
640         spin_lock_irqsave(&object->lock, flags);
641         object->flags &= ~OBJECT_ALLOCATED;
642         spin_unlock_irqrestore(&object->lock, flags);
643         put_object(object);
644 }
645
646 /*
647  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648  * delete it.
649  */
650 static void delete_object_full(unsigned long ptr)
651 {
652         struct kmemleak_object *object;
653
654         object = find_and_remove_object(ptr, 0);
655         if (!object) {
656 #ifdef DEBUG
657                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
658                               ptr);
659 #endif
660                 return;
661         }
662         __delete_object(object);
663 }
664
665 /*
666  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
667  * delete it. If the memory block is partially freed, the function may create
668  * additional metadata for the remaining parts of the block.
669  */
670 static void delete_object_part(unsigned long ptr, size_t size)
671 {
672         struct kmemleak_object *object;
673         unsigned long start, end;
674
675         object = find_and_remove_object(ptr, 1);
676         if (!object) {
677 #ifdef DEBUG
678                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
679                               ptr, size);
680 #endif
681                 return;
682         }
683
684         /*
685          * Create one or two objects that may result from the memory block
686          * split. Note that partial freeing is only done by free_bootmem() and
687          * this happens before kmemleak_init() is called. The path below is
688          * only executed during early log recording in kmemleak_init(), so
689          * GFP_KERNEL is enough.
690          */
691         start = object->pointer;
692         end = object->pointer + object->size;
693         if (ptr > start)
694                 create_object(start, ptr - start, object->min_count,
695                               GFP_KERNEL);
696         if (ptr + size < end)
697                 create_object(ptr + size, end - ptr - size, object->min_count,
698                               GFP_KERNEL);
699
700         __delete_object(object);
701 }
702
703 static void __paint_it(struct kmemleak_object *object, int color)
704 {
705         object->min_count = color;
706         if (color == KMEMLEAK_BLACK)
707                 object->flags |= OBJECT_NO_SCAN;
708 }
709
710 static void paint_it(struct kmemleak_object *object, int color)
711 {
712         unsigned long flags;
713
714         spin_lock_irqsave(&object->lock, flags);
715         __paint_it(object, color);
716         spin_unlock_irqrestore(&object->lock, flags);
717 }
718
719 static void paint_ptr(unsigned long ptr, int color)
720 {
721         struct kmemleak_object *object;
722
723         object = find_and_get_object(ptr, 0);
724         if (!object) {
725                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
726                               ptr,
727                               (color == KMEMLEAK_GREY) ? "Grey" :
728                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
729                 return;
730         }
731         paint_it(object, color);
732         put_object(object);
733 }
734
735 /*
736  * Mark an object permanently as gray-colored so that it can no longer be
737  * reported as a leak. This is used in general to mark a false positive.
738  */
739 static void make_gray_object(unsigned long ptr)
740 {
741         paint_ptr(ptr, KMEMLEAK_GREY);
742 }
743
744 /*
745  * Mark the object as black-colored so that it is ignored from scans and
746  * reporting.
747  */
748 static void make_black_object(unsigned long ptr)
749 {
750         paint_ptr(ptr, KMEMLEAK_BLACK);
751 }
752
753 /*
754  * Add a scanning area to the object. If at least one such area is added,
755  * kmemleak will only scan these ranges rather than the whole memory block.
756  */
757 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
758 {
759         unsigned long flags;
760         struct kmemleak_object *object;
761         struct kmemleak_scan_area *area;
762
763         object = find_and_get_object(ptr, 1);
764         if (!object) {
765                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
766                               ptr);
767                 return;
768         }
769
770         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
771         if (!area) {
772                 pr_warn("Cannot allocate a scan area\n");
773                 goto out;
774         }
775
776         spin_lock_irqsave(&object->lock, flags);
777         if (size == SIZE_MAX) {
778                 size = object->pointer + object->size - ptr;
779         } else if (ptr + size > object->pointer + object->size) {
780                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
781                 dump_object_info(object);
782                 kmem_cache_free(scan_area_cache, area);
783                 goto out_unlock;
784         }
785
786         INIT_HLIST_NODE(&area->node);
787         area->start = ptr;
788         area->size = size;
789
790         hlist_add_head(&area->node, &object->area_list);
791 out_unlock:
792         spin_unlock_irqrestore(&object->lock, flags);
793 out:
794         put_object(object);
795 }
796
797 /*
798  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
799  * pointer. Such object will not be scanned by kmemleak but references to it
800  * are searched.
801  */
802 static void object_no_scan(unsigned long ptr)
803 {
804         unsigned long flags;
805         struct kmemleak_object *object;
806
807         object = find_and_get_object(ptr, 0);
808         if (!object) {
809                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
810                 return;
811         }
812
813         spin_lock_irqsave(&object->lock, flags);
814         object->flags |= OBJECT_NO_SCAN;
815         spin_unlock_irqrestore(&object->lock, flags);
816         put_object(object);
817 }
818
819 /*
820  * Log an early kmemleak_* call to the early_log buffer. These calls will be
821  * processed later once kmemleak is fully initialized.
822  */
823 static void __init log_early(int op_type, const void *ptr, size_t size,
824                              int min_count)
825 {
826         unsigned long flags;
827         struct early_log *log;
828
829         if (kmemleak_error) {
830                 /* kmemleak stopped recording, just count the requests */
831                 crt_early_log++;
832                 return;
833         }
834
835         if (crt_early_log >= ARRAY_SIZE(early_log)) {
836                 crt_early_log++;
837                 kmemleak_disable();
838                 return;
839         }
840
841         /*
842          * There is no need for locking since the kernel is still in UP mode
843          * at this stage. Disabling the IRQs is enough.
844          */
845         local_irq_save(flags);
846         log = &early_log[crt_early_log];
847         log->op_type = op_type;
848         log->ptr = ptr;
849         log->size = size;
850         log->min_count = min_count;
851         log->trace_len = __save_stack_trace(log->trace);
852         crt_early_log++;
853         local_irq_restore(flags);
854 }
855
856 /*
857  * Log an early allocated block and populate the stack trace.
858  */
859 static void early_alloc(struct early_log *log)
860 {
861         struct kmemleak_object *object;
862         unsigned long flags;
863         int i;
864
865         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
866                 return;
867
868         /*
869          * RCU locking needed to ensure object is not freed via put_object().
870          */
871         rcu_read_lock();
872         object = create_object((unsigned long)log->ptr, log->size,
873                                log->min_count, GFP_ATOMIC);
874         if (!object)
875                 goto out;
876         spin_lock_irqsave(&object->lock, flags);
877         for (i = 0; i < log->trace_len; i++)
878                 object->trace[i] = log->trace[i];
879         object->trace_len = log->trace_len;
880         spin_unlock_irqrestore(&object->lock, flags);
881 out:
882         rcu_read_unlock();
883 }
884
885 /*
886  * Log an early allocated block and populate the stack trace.
887  */
888 static void early_alloc_percpu(struct early_log *log)
889 {
890         unsigned int cpu;
891         const void __percpu *ptr = log->ptr;
892
893         for_each_possible_cpu(cpu) {
894                 log->ptr = per_cpu_ptr(ptr, cpu);
895                 early_alloc(log);
896         }
897 }
898
899 /**
900  * kmemleak_alloc - register a newly allocated object
901  * @ptr:        pointer to beginning of the object
902  * @size:       size of the object
903  * @min_count:  minimum number of references to this object. If during memory
904  *              scanning a number of references less than @min_count is found,
905  *              the object is reported as a memory leak. If @min_count is 0,
906  *              the object is never reported as a leak. If @min_count is -1,
907  *              the object is ignored (not scanned and not reported as a leak)
908  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
909  *
910  * This function is called from the kernel allocators when a new object
911  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
912  */
913 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
914                           gfp_t gfp)
915 {
916         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
917
918         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
919                 create_object((unsigned long)ptr, size, min_count, gfp);
920         else if (kmemleak_early_log)
921                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
922 }
923 EXPORT_SYMBOL_GPL(kmemleak_alloc);
924
925 /**
926  * kmemleak_alloc_percpu - register a newly allocated __percpu object
927  * @ptr:        __percpu pointer to beginning of the object
928  * @size:       size of the object
929  * @gfp:        flags used for kmemleak internal memory allocations
930  *
931  * This function is called from the kernel percpu allocator when a new object
932  * (memory block) is allocated (alloc_percpu).
933  */
934 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
935                                  gfp_t gfp)
936 {
937         unsigned int cpu;
938
939         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
940
941         /*
942          * Percpu allocations are only scanned and not reported as leaks
943          * (min_count is set to 0).
944          */
945         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
946                 for_each_possible_cpu(cpu)
947                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
948                                       size, 0, gfp);
949         else if (kmemleak_early_log)
950                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
953
954 /**
955  * kmemleak_free - unregister a previously registered object
956  * @ptr:        pointer to beginning of the object
957  *
958  * This function is called from the kernel allocators when an object (memory
959  * block) is freed (kmem_cache_free, kfree, vfree etc.).
960  */
961 void __ref kmemleak_free(const void *ptr)
962 {
963         pr_debug("%s(0x%p)\n", __func__, ptr);
964
965         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
966                 delete_object_full((unsigned long)ptr);
967         else if (kmemleak_early_log)
968                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
969 }
970 EXPORT_SYMBOL_GPL(kmemleak_free);
971
972 /**
973  * kmemleak_free_part - partially unregister a previously registered object
974  * @ptr:        pointer to the beginning or inside the object. This also
975  *              represents the start of the range to be freed
976  * @size:       size to be unregistered
977  *
978  * This function is called when only a part of a memory block is freed
979  * (usually from the bootmem allocator).
980  */
981 void __ref kmemleak_free_part(const void *ptr, size_t size)
982 {
983         pr_debug("%s(0x%p)\n", __func__, ptr);
984
985         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
986                 delete_object_part((unsigned long)ptr, size);
987         else if (kmemleak_early_log)
988                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
989 }
990 EXPORT_SYMBOL_GPL(kmemleak_free_part);
991
992 /**
993  * kmemleak_free_percpu - unregister a previously registered __percpu object
994  * @ptr:        __percpu pointer to beginning of the object
995  *
996  * This function is called from the kernel percpu allocator when an object
997  * (memory block) is freed (free_percpu).
998  */
999 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1000 {
1001         unsigned int cpu;
1002
1003         pr_debug("%s(0x%p)\n", __func__, ptr);
1004
1005         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1006                 for_each_possible_cpu(cpu)
1007                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1008                                                                       cpu));
1009         else if (kmemleak_early_log)
1010                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1011 }
1012 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1013
1014 /**
1015  * kmemleak_update_trace - update object allocation stack trace
1016  * @ptr:        pointer to beginning of the object
1017  *
1018  * Override the object allocation stack trace for cases where the actual
1019  * allocation place is not always useful.
1020  */
1021 void __ref kmemleak_update_trace(const void *ptr)
1022 {
1023         struct kmemleak_object *object;
1024         unsigned long flags;
1025
1026         pr_debug("%s(0x%p)\n", __func__, ptr);
1027
1028         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1029                 return;
1030
1031         object = find_and_get_object((unsigned long)ptr, 1);
1032         if (!object) {
1033 #ifdef DEBUG
1034                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1035                               ptr);
1036 #endif
1037                 return;
1038         }
1039
1040         spin_lock_irqsave(&object->lock, flags);
1041         object->trace_len = __save_stack_trace(object->trace);
1042         spin_unlock_irqrestore(&object->lock, flags);
1043
1044         put_object(object);
1045 }
1046 EXPORT_SYMBOL(kmemleak_update_trace);
1047
1048 /**
1049  * kmemleak_not_leak - mark an allocated object as false positive
1050  * @ptr:        pointer to beginning of the object
1051  *
1052  * Calling this function on an object will cause the memory block to no longer
1053  * be reported as leak and always be scanned.
1054  */
1055 void __ref kmemleak_not_leak(const void *ptr)
1056 {
1057         pr_debug("%s(0x%p)\n", __func__, ptr);
1058
1059         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060                 make_gray_object((unsigned long)ptr);
1061         else if (kmemleak_early_log)
1062                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_not_leak);
1065
1066 /**
1067  * kmemleak_ignore - ignore an allocated object
1068  * @ptr:        pointer to beginning of the object
1069  *
1070  * Calling this function on an object will cause the memory block to be
1071  * ignored (not scanned and not reported as a leak). This is usually done when
1072  * it is known that the corresponding block is not a leak and does not contain
1073  * any references to other allocated memory blocks.
1074  */
1075 void __ref kmemleak_ignore(const void *ptr)
1076 {
1077         pr_debug("%s(0x%p)\n", __func__, ptr);
1078
1079         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1080                 make_black_object((unsigned long)ptr);
1081         else if (kmemleak_early_log)
1082                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1083 }
1084 EXPORT_SYMBOL(kmemleak_ignore);
1085
1086 /**
1087  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1088  * @ptr:        pointer to beginning or inside the object. This also
1089  *              represents the start of the scan area
1090  * @size:       size of the scan area
1091  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1092  *
1093  * This function is used when it is known that only certain parts of an object
1094  * contain references to other objects. Kmemleak will only scan these areas
1095  * reducing the number false negatives.
1096  */
1097 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1098 {
1099         pr_debug("%s(0x%p)\n", __func__, ptr);
1100
1101         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1102                 add_scan_area((unsigned long)ptr, size, gfp);
1103         else if (kmemleak_early_log)
1104                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1105 }
1106 EXPORT_SYMBOL(kmemleak_scan_area);
1107
1108 /**
1109  * kmemleak_no_scan - do not scan an allocated object
1110  * @ptr:        pointer to beginning of the object
1111  *
1112  * This function notifies kmemleak not to scan the given memory block. Useful
1113  * in situations where it is known that the given object does not contain any
1114  * references to other objects. Kmemleak will not scan such objects reducing
1115  * the number of false negatives.
1116  */
1117 void __ref kmemleak_no_scan(const void *ptr)
1118 {
1119         pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122                 object_no_scan((unsigned long)ptr);
1123         else if (kmemleak_early_log)
1124                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1125 }
1126 EXPORT_SYMBOL(kmemleak_no_scan);
1127
1128 /**
1129  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1130  *                       address argument
1131  */
1132 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1133                                gfp_t gfp)
1134 {
1135         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1137 }
1138 EXPORT_SYMBOL(kmemleak_alloc_phys);
1139
1140 /**
1141  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1142  *                           physical address argument
1143  */
1144 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1145 {
1146         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1147                 kmemleak_free_part(__va(phys), size);
1148 }
1149 EXPORT_SYMBOL(kmemleak_free_part_phys);
1150
1151 /**
1152  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1153  *                          address argument
1154  */
1155 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1156 {
1157         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1158                 kmemleak_not_leak(__va(phys));
1159 }
1160 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1161
1162 /**
1163  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1164  *                        address argument
1165  */
1166 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1167 {
1168         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1169                 kmemleak_ignore(__va(phys));
1170 }
1171 EXPORT_SYMBOL(kmemleak_ignore_phys);
1172
1173 /*
1174  * Update an object's checksum and return true if it was modified.
1175  */
1176 static bool update_checksum(struct kmemleak_object *object)
1177 {
1178         u32 old_csum = object->checksum;
1179
1180         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1181                 return false;
1182
1183         kasan_disable_current();
1184         object->checksum = crc32(0, (void *)object->pointer, object->size);
1185         kasan_enable_current();
1186
1187         return object->checksum != old_csum;
1188 }
1189
1190 /*
1191  * Memory scanning is a long process and it needs to be interruptable. This
1192  * function checks whether such interrupt condition occurred.
1193  */
1194 static int scan_should_stop(void)
1195 {
1196         if (!kmemleak_enabled)
1197                 return 1;
1198
1199         /*
1200          * This function may be called from either process or kthread context,
1201          * hence the need to check for both stop conditions.
1202          */
1203         if (current->mm)
1204                 return signal_pending(current);
1205         else
1206                 return kthread_should_stop();
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Scan a memory block (exclusive range) for valid pointers and add those
1213  * found to the gray list.
1214  */
1215 static void scan_block(void *_start, void *_end,
1216                        struct kmemleak_object *scanned)
1217 {
1218         unsigned long *ptr;
1219         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1220         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1221         unsigned long flags;
1222
1223         read_lock_irqsave(&kmemleak_lock, flags);
1224         for (ptr = start; ptr < end; ptr++) {
1225                 struct kmemleak_object *object;
1226                 unsigned long pointer;
1227
1228                 if (scan_should_stop())
1229                         break;
1230
1231                 /* don't scan uninitialized memory */
1232                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1233                                                   BYTES_PER_POINTER))
1234                         continue;
1235
1236                 kasan_disable_current();
1237                 pointer = *ptr;
1238                 kasan_enable_current();
1239
1240                 if (pointer < min_addr || pointer >= max_addr)
1241                         continue;
1242
1243                 /*
1244                  * No need for get_object() here since we hold kmemleak_lock.
1245                  * object->use_count cannot be dropped to 0 while the object
1246                  * is still present in object_tree_root and object_list
1247                  * (with updates protected by kmemleak_lock).
1248                  */
1249                 object = lookup_object(pointer, 1);
1250                 if (!object)
1251                         continue;
1252                 if (object == scanned)
1253                         /* self referenced, ignore */
1254                         continue;
1255
1256                 /*
1257                  * Avoid the lockdep recursive warning on object->lock being
1258                  * previously acquired in scan_object(). These locks are
1259                  * enclosed by scan_mutex.
1260                  */
1261                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1262                 if (!color_white(object)) {
1263                         /* non-orphan, ignored or new */
1264                         spin_unlock(&object->lock);
1265                         continue;
1266                 }
1267
1268                 /*
1269                  * Increase the object's reference count (number of pointers
1270                  * to the memory block). If this count reaches the required
1271                  * minimum, the object's color will become gray and it will be
1272                  * added to the gray_list.
1273                  */
1274                 object->count++;
1275                 if (color_gray(object)) {
1276                         /* put_object() called when removing from gray_list */
1277                         WARN_ON(!get_object(object));
1278                         list_add_tail(&object->gray_list, &gray_list);
1279                 }
1280                 spin_unlock(&object->lock);
1281         }
1282         read_unlock_irqrestore(&kmemleak_lock, flags);
1283 }
1284
1285 /*
1286  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1287  */
1288 static void scan_large_block(void *start, void *end)
1289 {
1290         void *next;
1291
1292         while (start < end) {
1293                 next = min(start + MAX_SCAN_SIZE, end);
1294                 scan_block(start, next, NULL);
1295                 start = next;
1296                 cond_resched();
1297         }
1298 }
1299
1300 /*
1301  * Scan a memory block corresponding to a kmemleak_object. A condition is
1302  * that object->use_count >= 1.
1303  */
1304 static void scan_object(struct kmemleak_object *object)
1305 {
1306         struct kmemleak_scan_area *area;
1307         unsigned long flags;
1308
1309         /*
1310          * Once the object->lock is acquired, the corresponding memory block
1311          * cannot be freed (the same lock is acquired in delete_object).
1312          */
1313         spin_lock_irqsave(&object->lock, flags);
1314         if (object->flags & OBJECT_NO_SCAN)
1315                 goto out;
1316         if (!(object->flags & OBJECT_ALLOCATED))
1317                 /* already freed object */
1318                 goto out;
1319         if (hlist_empty(&object->area_list)) {
1320                 void *start = (void *)object->pointer;
1321                 void *end = (void *)(object->pointer + object->size);
1322                 void *next;
1323
1324                 do {
1325                         next = min(start + MAX_SCAN_SIZE, end);
1326                         scan_block(start, next, object);
1327
1328                         start = next;
1329                         if (start >= end)
1330                                 break;
1331
1332                         spin_unlock_irqrestore(&object->lock, flags);
1333                         cond_resched();
1334                         spin_lock_irqsave(&object->lock, flags);
1335                 } while (object->flags & OBJECT_ALLOCATED);
1336         } else
1337                 hlist_for_each_entry(area, &object->area_list, node)
1338                         scan_block((void *)area->start,
1339                                    (void *)(area->start + area->size),
1340                                    object);
1341 out:
1342         spin_unlock_irqrestore(&object->lock, flags);
1343 }
1344
1345 /*
1346  * Scan the objects already referenced (gray objects). More objects will be
1347  * referenced and, if there are no memory leaks, all the objects are scanned.
1348  */
1349 static void scan_gray_list(void)
1350 {
1351         struct kmemleak_object *object, *tmp;
1352
1353         /*
1354          * The list traversal is safe for both tail additions and removals
1355          * from inside the loop. The kmemleak objects cannot be freed from
1356          * outside the loop because their use_count was incremented.
1357          */
1358         object = list_entry(gray_list.next, typeof(*object), gray_list);
1359         while (&object->gray_list != &gray_list) {
1360                 cond_resched();
1361
1362                 /* may add new objects to the list */
1363                 if (!scan_should_stop())
1364                         scan_object(object);
1365
1366                 tmp = list_entry(object->gray_list.next, typeof(*object),
1367                                  gray_list);
1368
1369                 /* remove the object from the list and release it */
1370                 list_del(&object->gray_list);
1371                 put_object(object);
1372
1373                 object = tmp;
1374         }
1375         WARN_ON(!list_empty(&gray_list));
1376 }
1377
1378 /*
1379  * Scan data sections and all the referenced memory blocks allocated via the
1380  * kernel's standard allocators. This function must be called with the
1381  * scan_mutex held.
1382  */
1383 static void kmemleak_scan(void)
1384 {
1385         unsigned long flags;
1386         struct kmemleak_object *object;
1387         int i;
1388         int new_leaks = 0;
1389
1390         jiffies_last_scan = jiffies;
1391
1392         /* prepare the kmemleak_object's */
1393         rcu_read_lock();
1394         list_for_each_entry_rcu(object, &object_list, object_list) {
1395                 spin_lock_irqsave(&object->lock, flags);
1396 #ifdef DEBUG
1397                 /*
1398                  * With a few exceptions there should be a maximum of
1399                  * 1 reference to any object at this point.
1400                  */
1401                 if (atomic_read(&object->use_count) > 1) {
1402                         pr_debug("object->use_count = %d\n",
1403                                  atomic_read(&object->use_count));
1404                         dump_object_info(object);
1405                 }
1406 #endif
1407                 /* reset the reference count (whiten the object) */
1408                 object->count = 0;
1409                 if (color_gray(object) && get_object(object))
1410                         list_add_tail(&object->gray_list, &gray_list);
1411
1412                 spin_unlock_irqrestore(&object->lock, flags);
1413         }
1414         rcu_read_unlock();
1415
1416         /* data/bss scanning */
1417         scan_large_block(_sdata, _edata);
1418         scan_large_block(__bss_start, __bss_stop);
1419         scan_large_block(__start_ro_after_init, __end_ro_after_init);
1420
1421 #ifdef CONFIG_SMP
1422         /* per-cpu sections scanning */
1423         for_each_possible_cpu(i)
1424                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1425                                  __per_cpu_end + per_cpu_offset(i));
1426 #endif
1427
1428         /*
1429          * Struct page scanning for each node.
1430          */
1431         get_online_mems();
1432         for_each_online_node(i) {
1433                 unsigned long start_pfn = node_start_pfn(i);
1434                 unsigned long end_pfn = node_end_pfn(i);
1435                 unsigned long pfn;
1436
1437                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1438                         struct page *page;
1439
1440                         if (!pfn_valid(pfn))
1441                                 continue;
1442                         page = pfn_to_page(pfn);
1443                         /* only scan if page is in use */
1444                         if (page_count(page) == 0)
1445                                 continue;
1446                         scan_block(page, page + 1, NULL);
1447                 }
1448         }
1449         put_online_mems();
1450
1451         /*
1452          * Scanning the task stacks (may introduce false negatives).
1453          */
1454         if (kmemleak_stack_scan) {
1455                 struct task_struct *p, *g;
1456
1457                 read_lock(&tasklist_lock);
1458                 do_each_thread(g, p) {
1459                         void *stack = try_get_task_stack(p);
1460                         if (stack) {
1461                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1462                                 put_task_stack(p);
1463                         }
1464                 } while_each_thread(g, p);
1465                 read_unlock(&tasklist_lock);
1466         }
1467
1468         /*
1469          * Scan the objects already referenced from the sections scanned
1470          * above.
1471          */
1472         scan_gray_list();
1473
1474         /*
1475          * Check for new or unreferenced objects modified since the previous
1476          * scan and color them gray until the next scan.
1477          */
1478         rcu_read_lock();
1479         list_for_each_entry_rcu(object, &object_list, object_list) {
1480                 spin_lock_irqsave(&object->lock, flags);
1481                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1482                     && update_checksum(object) && get_object(object)) {
1483                         /* color it gray temporarily */
1484                         object->count = object->min_count;
1485                         list_add_tail(&object->gray_list, &gray_list);
1486                 }
1487                 spin_unlock_irqrestore(&object->lock, flags);
1488         }
1489         rcu_read_unlock();
1490
1491         /*
1492          * Re-scan the gray list for modified unreferenced objects.
1493          */
1494         scan_gray_list();
1495
1496         /*
1497          * If scanning was stopped do not report any new unreferenced objects.
1498          */
1499         if (scan_should_stop())
1500                 return;
1501
1502         /*
1503          * Scanning result reporting.
1504          */
1505         rcu_read_lock();
1506         list_for_each_entry_rcu(object, &object_list, object_list) {
1507                 spin_lock_irqsave(&object->lock, flags);
1508                 if (unreferenced_object(object) &&
1509                     !(object->flags & OBJECT_REPORTED)) {
1510                         object->flags |= OBJECT_REPORTED;
1511                         new_leaks++;
1512                 }
1513                 spin_unlock_irqrestore(&object->lock, flags);
1514         }
1515         rcu_read_unlock();
1516
1517         if (new_leaks) {
1518                 kmemleak_found_leaks = true;
1519
1520                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1521                         new_leaks);
1522         }
1523
1524 }
1525
1526 /*
1527  * Thread function performing automatic memory scanning. Unreferenced objects
1528  * at the end of a memory scan are reported but only the first time.
1529  */
1530 static int kmemleak_scan_thread(void *arg)
1531 {
1532         static int first_run = 1;
1533
1534         pr_info("Automatic memory scanning thread started\n");
1535         set_user_nice(current, 10);
1536
1537         /*
1538          * Wait before the first scan to allow the system to fully initialize.
1539          */
1540         if (first_run) {
1541                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1542                 first_run = 0;
1543                 while (timeout && !kthread_should_stop())
1544                         timeout = schedule_timeout_interruptible(timeout);
1545         }
1546
1547         while (!kthread_should_stop()) {
1548                 signed long timeout = jiffies_scan_wait;
1549
1550                 mutex_lock(&scan_mutex);
1551                 kmemleak_scan();
1552                 mutex_unlock(&scan_mutex);
1553
1554                 /* wait before the next scan */
1555                 while (timeout && !kthread_should_stop())
1556                         timeout = schedule_timeout_interruptible(timeout);
1557         }
1558
1559         pr_info("Automatic memory scanning thread ended\n");
1560
1561         return 0;
1562 }
1563
1564 /*
1565  * Start the automatic memory scanning thread. This function must be called
1566  * with the scan_mutex held.
1567  */
1568 static void start_scan_thread(void)
1569 {
1570         if (scan_thread)
1571                 return;
1572         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1573         if (IS_ERR(scan_thread)) {
1574                 pr_warn("Failed to create the scan thread\n");
1575                 scan_thread = NULL;
1576         }
1577 }
1578
1579 /*
1580  * Stop the automatic memory scanning thread. This function must be called
1581  * with the scan_mutex held.
1582  */
1583 static void stop_scan_thread(void)
1584 {
1585         if (scan_thread) {
1586                 kthread_stop(scan_thread);
1587                 scan_thread = NULL;
1588         }
1589 }
1590
1591 /*
1592  * Iterate over the object_list and return the first valid object at or after
1593  * the required position with its use_count incremented. The function triggers
1594  * a memory scanning when the pos argument points to the first position.
1595  */
1596 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1597 {
1598         struct kmemleak_object *object;
1599         loff_t n = *pos;
1600         int err;
1601
1602         err = mutex_lock_interruptible(&scan_mutex);
1603         if (err < 0)
1604                 return ERR_PTR(err);
1605
1606         rcu_read_lock();
1607         list_for_each_entry_rcu(object, &object_list, object_list) {
1608                 if (n-- > 0)
1609                         continue;
1610                 if (get_object(object))
1611                         goto out;
1612         }
1613         object = NULL;
1614 out:
1615         return object;
1616 }
1617
1618 /*
1619  * Return the next object in the object_list. The function decrements the
1620  * use_count of the previous object and increases that of the next one.
1621  */
1622 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1623 {
1624         struct kmemleak_object *prev_obj = v;
1625         struct kmemleak_object *next_obj = NULL;
1626         struct kmemleak_object *obj = prev_obj;
1627
1628         ++(*pos);
1629
1630         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1631                 if (get_object(obj)) {
1632                         next_obj = obj;
1633                         break;
1634                 }
1635         }
1636
1637         put_object(prev_obj);
1638         return next_obj;
1639 }
1640
1641 /*
1642  * Decrement the use_count of the last object required, if any.
1643  */
1644 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1645 {
1646         if (!IS_ERR(v)) {
1647                 /*
1648                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1649                  * waiting was interrupted, so only release it if !IS_ERR.
1650                  */
1651                 rcu_read_unlock();
1652                 mutex_unlock(&scan_mutex);
1653                 if (v)
1654                         put_object(v);
1655         }
1656 }
1657
1658 /*
1659  * Print the information for an unreferenced object to the seq file.
1660  */
1661 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1662 {
1663         struct kmemleak_object *object = v;
1664         unsigned long flags;
1665
1666         spin_lock_irqsave(&object->lock, flags);
1667         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1668                 print_unreferenced(seq, object);
1669         spin_unlock_irqrestore(&object->lock, flags);
1670         return 0;
1671 }
1672
1673 static const struct seq_operations kmemleak_seq_ops = {
1674         .start = kmemleak_seq_start,
1675         .next  = kmemleak_seq_next,
1676         .stop  = kmemleak_seq_stop,
1677         .show  = kmemleak_seq_show,
1678 };
1679
1680 static int kmemleak_open(struct inode *inode, struct file *file)
1681 {
1682         return seq_open(file, &kmemleak_seq_ops);
1683 }
1684
1685 static int dump_str_object_info(const char *str)
1686 {
1687         unsigned long flags;
1688         struct kmemleak_object *object;
1689         unsigned long addr;
1690
1691         if (kstrtoul(str, 0, &addr))
1692                 return -EINVAL;
1693         object = find_and_get_object(addr, 0);
1694         if (!object) {
1695                 pr_info("Unknown object at 0x%08lx\n", addr);
1696                 return -EINVAL;
1697         }
1698
1699         spin_lock_irqsave(&object->lock, flags);
1700         dump_object_info(object);
1701         spin_unlock_irqrestore(&object->lock, flags);
1702
1703         put_object(object);
1704         return 0;
1705 }
1706
1707 /*
1708  * We use grey instead of black to ensure we can do future scans on the same
1709  * objects. If we did not do future scans these black objects could
1710  * potentially contain references to newly allocated objects in the future and
1711  * we'd end up with false positives.
1712  */
1713 static void kmemleak_clear(void)
1714 {
1715         struct kmemleak_object *object;
1716         unsigned long flags;
1717
1718         rcu_read_lock();
1719         list_for_each_entry_rcu(object, &object_list, object_list) {
1720                 spin_lock_irqsave(&object->lock, flags);
1721                 if ((object->flags & OBJECT_REPORTED) &&
1722                     unreferenced_object(object))
1723                         __paint_it(object, KMEMLEAK_GREY);
1724                 spin_unlock_irqrestore(&object->lock, flags);
1725         }
1726         rcu_read_unlock();
1727
1728         kmemleak_found_leaks = false;
1729 }
1730
1731 static void __kmemleak_do_cleanup(void);
1732
1733 /*
1734  * File write operation to configure kmemleak at run-time. The following
1735  * commands can be written to the /sys/kernel/debug/kmemleak file:
1736  *   off        - disable kmemleak (irreversible)
1737  *   stack=on   - enable the task stacks scanning
1738  *   stack=off  - disable the tasks stacks scanning
1739  *   scan=on    - start the automatic memory scanning thread
1740  *   scan=off   - stop the automatic memory scanning thread
1741  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1742  *                disable it)
1743  *   scan       - trigger a memory scan
1744  *   clear      - mark all current reported unreferenced kmemleak objects as
1745  *                grey to ignore printing them, or free all kmemleak objects
1746  *                if kmemleak has been disabled.
1747  *   dump=...   - dump information about the object found at the given address
1748  */
1749 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1750                               size_t size, loff_t *ppos)
1751 {
1752         char buf[64];
1753         int buf_size;
1754         int ret;
1755
1756         buf_size = min(size, (sizeof(buf) - 1));
1757         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1758                 return -EFAULT;
1759         buf[buf_size] = 0;
1760
1761         ret = mutex_lock_interruptible(&scan_mutex);
1762         if (ret < 0)
1763                 return ret;
1764
1765         if (strncmp(buf, "clear", 5) == 0) {
1766                 if (kmemleak_enabled)
1767                         kmemleak_clear();
1768                 else
1769                         __kmemleak_do_cleanup();
1770                 goto out;
1771         }
1772
1773         if (!kmemleak_enabled) {
1774                 ret = -EBUSY;
1775                 goto out;
1776         }
1777
1778         if (strncmp(buf, "off", 3) == 0)
1779                 kmemleak_disable();
1780         else if (strncmp(buf, "stack=on", 8) == 0)
1781                 kmemleak_stack_scan = 1;
1782         else if (strncmp(buf, "stack=off", 9) == 0)
1783                 kmemleak_stack_scan = 0;
1784         else if (strncmp(buf, "scan=on", 7) == 0)
1785                 start_scan_thread();
1786         else if (strncmp(buf, "scan=off", 8) == 0)
1787                 stop_scan_thread();
1788         else if (strncmp(buf, "scan=", 5) == 0) {
1789                 unsigned long secs;
1790
1791                 ret = kstrtoul(buf + 5, 0, &secs);
1792                 if (ret < 0)
1793                         goto out;
1794                 stop_scan_thread();
1795                 if (secs) {
1796                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1797                         start_scan_thread();
1798                 }
1799         } else if (strncmp(buf, "scan", 4) == 0)
1800                 kmemleak_scan();
1801         else if (strncmp(buf, "dump=", 5) == 0)
1802                 ret = dump_str_object_info(buf + 5);
1803         else
1804                 ret = -EINVAL;
1805
1806 out:
1807         mutex_unlock(&scan_mutex);
1808         if (ret < 0)
1809                 return ret;
1810
1811         /* ignore the rest of the buffer, only one command at a time */
1812         *ppos += size;
1813         return size;
1814 }
1815
1816 static const struct file_operations kmemleak_fops = {
1817         .owner          = THIS_MODULE,
1818         .open           = kmemleak_open,
1819         .read           = seq_read,
1820         .write          = kmemleak_write,
1821         .llseek         = seq_lseek,
1822         .release        = seq_release,
1823 };
1824
1825 static void __kmemleak_do_cleanup(void)
1826 {
1827         struct kmemleak_object *object;
1828
1829         rcu_read_lock();
1830         list_for_each_entry_rcu(object, &object_list, object_list)
1831                 delete_object_full(object->pointer);
1832         rcu_read_unlock();
1833 }
1834
1835 /*
1836  * Stop the memory scanning thread and free the kmemleak internal objects if
1837  * no previous scan thread (otherwise, kmemleak may still have some useful
1838  * information on memory leaks).
1839  */
1840 static void kmemleak_do_cleanup(struct work_struct *work)
1841 {
1842         stop_scan_thread();
1843
1844         /*
1845          * Once the scan thread has stopped, it is safe to no longer track
1846          * object freeing. Ordering of the scan thread stopping and the memory
1847          * accesses below is guaranteed by the kthread_stop() function.
1848          */
1849         kmemleak_free_enabled = 0;
1850
1851         if (!kmemleak_found_leaks)
1852                 __kmemleak_do_cleanup();
1853         else
1854                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1855 }
1856
1857 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1858
1859 /*
1860  * Disable kmemleak. No memory allocation/freeing will be traced once this
1861  * function is called. Disabling kmemleak is an irreversible operation.
1862  */
1863 static void kmemleak_disable(void)
1864 {
1865         /* atomically check whether it was already invoked */
1866         if (cmpxchg(&kmemleak_error, 0, 1))
1867                 return;
1868
1869         /* stop any memory operation tracing */
1870         kmemleak_enabled = 0;
1871
1872         /* check whether it is too early for a kernel thread */
1873         if (kmemleak_initialized)
1874                 schedule_work(&cleanup_work);
1875         else
1876                 kmemleak_free_enabled = 0;
1877
1878         pr_info("Kernel memory leak detector disabled\n");
1879 }
1880
1881 /*
1882  * Allow boot-time kmemleak disabling (enabled by default).
1883  */
1884 static int kmemleak_boot_config(char *str)
1885 {
1886         if (!str)
1887                 return -EINVAL;
1888         if (strcmp(str, "off") == 0)
1889                 kmemleak_disable();
1890         else if (strcmp(str, "on") == 0)
1891                 kmemleak_skip_disable = 1;
1892         else
1893                 return -EINVAL;
1894         return 0;
1895 }
1896 early_param("kmemleak", kmemleak_boot_config);
1897
1898 static void __init print_log_trace(struct early_log *log)
1899 {
1900         struct stack_trace trace;
1901
1902         trace.nr_entries = log->trace_len;
1903         trace.entries = log->trace;
1904
1905         pr_notice("Early log backtrace:\n");
1906         print_stack_trace(&trace, 2);
1907 }
1908
1909 /*
1910  * Kmemleak initialization.
1911  */
1912 void __init kmemleak_init(void)
1913 {
1914         int i;
1915         unsigned long flags;
1916
1917 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1918         if (!kmemleak_skip_disable) {
1919                 kmemleak_early_log = 0;
1920                 kmemleak_disable();
1921                 return;
1922         }
1923 #endif
1924
1925         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1926         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1927
1928         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1929         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1930
1931         if (crt_early_log > ARRAY_SIZE(early_log))
1932                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1933                         crt_early_log);
1934
1935         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1936         local_irq_save(flags);
1937         kmemleak_early_log = 0;
1938         if (kmemleak_error) {
1939                 local_irq_restore(flags);
1940                 return;
1941         } else {
1942                 kmemleak_enabled = 1;
1943                 kmemleak_free_enabled = 1;
1944         }
1945         local_irq_restore(flags);
1946
1947         /*
1948          * This is the point where tracking allocations is safe. Automatic
1949          * scanning is started during the late initcall. Add the early logged
1950          * callbacks to the kmemleak infrastructure.
1951          */
1952         for (i = 0; i < crt_early_log; i++) {
1953                 struct early_log *log = &early_log[i];
1954
1955                 switch (log->op_type) {
1956                 case KMEMLEAK_ALLOC:
1957                         early_alloc(log);
1958                         break;
1959                 case KMEMLEAK_ALLOC_PERCPU:
1960                         early_alloc_percpu(log);
1961                         break;
1962                 case KMEMLEAK_FREE:
1963                         kmemleak_free(log->ptr);
1964                         break;
1965                 case KMEMLEAK_FREE_PART:
1966                         kmemleak_free_part(log->ptr, log->size);
1967                         break;
1968                 case KMEMLEAK_FREE_PERCPU:
1969                         kmemleak_free_percpu(log->ptr);
1970                         break;
1971                 case KMEMLEAK_NOT_LEAK:
1972                         kmemleak_not_leak(log->ptr);
1973                         break;
1974                 case KMEMLEAK_IGNORE:
1975                         kmemleak_ignore(log->ptr);
1976                         break;
1977                 case KMEMLEAK_SCAN_AREA:
1978                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1979                         break;
1980                 case KMEMLEAK_NO_SCAN:
1981                         kmemleak_no_scan(log->ptr);
1982                         break;
1983                 default:
1984                         kmemleak_warn("Unknown early log operation: %d\n",
1985                                       log->op_type);
1986                 }
1987
1988                 if (kmemleak_warning) {
1989                         print_log_trace(log);
1990                         kmemleak_warning = 0;
1991                 }
1992         }
1993 }
1994
1995 /*
1996  * Late initialization function.
1997  */
1998 static int __init kmemleak_late_init(void)
1999 {
2000         struct dentry *dentry;
2001
2002         kmemleak_initialized = 1;
2003
2004         if (kmemleak_error) {
2005                 /*
2006                  * Some error occurred and kmemleak was disabled. There is a
2007                  * small chance that kmemleak_disable() was called immediately
2008                  * after setting kmemleak_initialized and we may end up with
2009                  * two clean-up threads but serialized by scan_mutex.
2010                  */
2011                 schedule_work(&cleanup_work);
2012                 return -ENOMEM;
2013         }
2014
2015         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2016                                      &kmemleak_fops);
2017         if (!dentry)
2018                 pr_warn("Failed to create the debugfs kmemleak file\n");
2019         mutex_lock(&scan_mutex);
2020         start_scan_thread();
2021         mutex_unlock(&scan_mutex);
2022
2023         pr_info("Kernel memory leak detector initialized\n");
2024
2025         return 0;
2026 }
2027 late_initcall(kmemleak_late_init);