]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/ksm.c
dcefc371fc628bdd6f9f50528e254a4d785b3854
[karo-tx-linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * If the mm isn't the one associated with the current
354  * ksm_scan.mm_slot ksm_exit() will not down_write();up_write() and in
355  * turn the ksm_test_exit() check run inside a mm->mmap_sem critical
356  * section, will not prevent exit_mmap() to run from under us. In
357  * turn, in those cases where we could work with an "mm" that isn't
358  * guaranteed to be associated with the current ksm_scan.mm_slot,
359  * ksm_get_mm() is needed instead of the ksm_test_exit() run inside
360  * the mmap_sem. Return true if the mm_users was incremented or false
361  * if it we failed at taking the mm because it was freed from under
362  * us. If it returns 1, the caller must take care of calling mmput()
363  * after it finishes using the mm.
364  */
365 static __always_inline bool ksm_get_mm(struct mm_struct *mm)
366 {
367         return likely(atomic_inc_not_zero(&mm->mm_users));
368 }
369
370 /*
371  * We use break_ksm to break COW on a ksm page: it's a stripped down
372  *
373  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
374  *              put_page(page);
375  *
376  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
377  * in case the application has unmapped and remapped mm,addr meanwhile.
378  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
379  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
380  */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383         struct page *page;
384         int ret = 0;
385
386         do {
387                 cond_resched();
388                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
389                 if (IS_ERR_OR_NULL(page))
390                         break;
391                 if (PageKsm(page))
392                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
393                                                         FAULT_FLAG_WRITE);
394                 else
395                         ret = VM_FAULT_WRITE;
396                 put_page(page);
397         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
398         /*
399          * We must loop because handle_mm_fault() may back out if there's
400          * any difficulty e.g. if pte accessed bit gets updated concurrently.
401          *
402          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
403          * COW has been broken, even if the vma does not permit VM_WRITE;
404          * but note that a concurrent fault might break PageKsm for us.
405          *
406          * VM_FAULT_SIGBUS could occur if we race with truncation of the
407          * backing file, which also invalidates anonymous pages: that's
408          * okay, that truncation will have unmapped the PageKsm for us.
409          *
410          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
411          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
412          * current task has TIF_MEMDIE set, and will be OOM killed on return
413          * to user; and ksmd, having no mm, would never be chosen for that.
414          *
415          * But if the mm is in a limited mem_cgroup, then the fault may fail
416          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
417          * even ksmd can fail in this way - though it's usually breaking ksm
418          * just to undo a merge it made a moment before, so unlikely to oom.
419          *
420          * That's a pity: we might therefore have more kernel pages allocated
421          * than we're counting as nodes in the stable tree; but ksm_do_scan
422          * will retry to break_cow on each pass, so should recover the page
423          * in due course.  The important thing is to not let VM_MERGEABLE
424          * be cleared while any such pages might remain in the area.
425          */
426         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
427 }
428
429 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
430                 unsigned long addr)
431 {
432         struct vm_area_struct *vma;
433         vma = find_vma(mm, addr);
434         if (!vma || vma->vm_start > addr)
435                 return NULL;
436         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
437                 return NULL;
438         return vma;
439 }
440
441 static void break_cow(struct rmap_item *rmap_item)
442 {
443         struct mm_struct *mm = rmap_item->mm;
444         unsigned long addr = rmap_item->address;
445         struct vm_area_struct *vma;
446
447         /*
448          * It is not an accident that whenever we want to break COW
449          * to undo, we also need to drop a reference to the anon_vma.
450          */
451         put_anon_vma(rmap_item->anon_vma);
452
453         /*
454          * The "mm" of the unstable tree rmap_item isn't necessairly
455          * associated with the current ksm_scan.mm_slot, it could be
456          * any random mm. So we need ksm_get_mm here to prevent the
457          * exit_mmap to run from under us in mmput().
458          */
459         if (!ksm_get_mm(mm))
460                 return;
461
462         down_read(&mm->mmap_sem);
463         vma = find_mergeable_vma(mm, addr);
464         if (vma)
465                 break_ksm(vma, addr);
466         up_read(&mm->mmap_sem);
467         mmput(mm);
468 }
469
470 static struct page *page_trans_compound_anon(struct page *page)
471 {
472         if (PageTransCompound(page)) {
473                 struct page *head = compound_head(page);
474                 /*
475                  * head may actually be splitted and freed from under
476                  * us but it's ok here.
477                  */
478                 if (PageAnon(head))
479                         return head;
480         }
481         return NULL;
482 }
483
484 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
485 {
486         struct mm_struct *mm = rmap_item->mm;
487         unsigned long addr = rmap_item->address;
488         struct vm_area_struct *vma;
489         struct page *page;
490
491         /*
492          * The "mm" of the unstable tree rmap_item isn't necessairly
493          * associated with the current ksm_scan.mm_slot, it could be
494          * any random mm. So we need ksm_get_mm here to prevent the
495          * exit_mmap to run from under us in mmput().
496          */
497         if (!ksm_get_mm(mm))
498                 return NULL;
499
500         down_read(&mm->mmap_sem);
501         vma = find_mergeable_vma(mm, addr);
502         if (!vma)
503                 goto out;
504
505         page = follow_page(vma, addr, FOLL_GET);
506         if (IS_ERR_OR_NULL(page))
507                 goto out;
508         if (PageAnon(page) || page_trans_compound_anon(page)) {
509                 flush_anon_page(vma, page, addr);
510                 flush_dcache_page(page);
511         } else {
512                 put_page(page);
513 out:            page = NULL;
514         }
515         up_read(&mm->mmap_sem);
516         mmput(mm);
517         return page;
518 }
519
520 /*
521  * This helper is used for getting right index into array of tree roots.
522  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
523  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
524  * every node has its own stable and unstable tree.
525  */
526 static inline int get_kpfn_nid(unsigned long kpfn)
527 {
528         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
529 }
530
531 static void remove_node_from_stable_tree(struct stable_node *stable_node)
532 {
533         struct rmap_item *rmap_item;
534
535         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
536                 if (rmap_item->hlist.next)
537                         ksm_pages_sharing--;
538                 else
539                         ksm_pages_shared--;
540                 put_anon_vma(rmap_item->anon_vma);
541                 rmap_item->address &= PAGE_MASK;
542                 cond_resched();
543         }
544
545         if (stable_node->head == &migrate_nodes)
546                 list_del(&stable_node->list);
547         else
548                 rb_erase(&stable_node->node,
549                          root_stable_tree + NUMA(stable_node->nid));
550         free_stable_node(stable_node);
551 }
552
553 /*
554  * get_ksm_page: checks if the page indicated by the stable node
555  * is still its ksm page, despite having held no reference to it.
556  * In which case we can trust the content of the page, and it
557  * returns the gotten page; but if the page has now been zapped,
558  * remove the stale node from the stable tree and return NULL.
559  * But beware, the stable node's page might be being migrated.
560  *
561  * You would expect the stable_node to hold a reference to the ksm page.
562  * But if it increments the page's count, swapping out has to wait for
563  * ksmd to come around again before it can free the page, which may take
564  * seconds or even minutes: much too unresponsive.  So instead we use a
565  * "keyhole reference": access to the ksm page from the stable node peeps
566  * out through its keyhole to see if that page still holds the right key,
567  * pointing back to this stable node.  This relies on freeing a PageAnon
568  * page to reset its page->mapping to NULL, and relies on no other use of
569  * a page to put something that might look like our key in page->mapping.
570  * is on its way to being freed; but it is an anomaly to bear in mind.
571  */
572 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
573 {
574         struct page *page;
575         void *expected_mapping;
576         unsigned long kpfn;
577
578         expected_mapping = (void *)stable_node +
579                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
580 again:
581         kpfn = READ_ONCE(stable_node->kpfn);
582         page = pfn_to_page(kpfn);
583
584         /*
585          * page is computed from kpfn, so on most architectures reading
586          * page->mapping is naturally ordered after reading node->kpfn,
587          * but on Alpha we need to be more careful.
588          */
589         smp_read_barrier_depends();
590         if (READ_ONCE(page->mapping) != expected_mapping)
591                 goto stale;
592
593         /*
594          * We cannot do anything with the page while its refcount is 0.
595          * Usually 0 means free, or tail of a higher-order page: in which
596          * case this node is no longer referenced, and should be freed;
597          * however, it might mean that the page is under page_freeze_refs().
598          * The __remove_mapping() case is easy, again the node is now stale;
599          * but if page is swapcache in migrate_page_move_mapping(), it might
600          * still be our page, in which case it's essential to keep the node.
601          */
602         while (!get_page_unless_zero(page)) {
603                 /*
604                  * Another check for page->mapping != expected_mapping would
605                  * work here too.  We have chosen the !PageSwapCache test to
606                  * optimize the common case, when the page is or is about to
607                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
608                  * in the freeze_refs section of __remove_mapping(); but Anon
609                  * page->mapping reset to NULL later, in free_pages_prepare().
610                  */
611                 if (!PageSwapCache(page))
612                         goto stale;
613                 cpu_relax();
614         }
615
616         if (READ_ONCE(page->mapping) != expected_mapping) {
617                 put_page(page);
618                 goto stale;
619         }
620
621         if (lock_it) {
622                 lock_page(page);
623                 if (READ_ONCE(page->mapping) != expected_mapping) {
624                         unlock_page(page);
625                         put_page(page);
626                         goto stale;
627                 }
628         }
629         return page;
630
631 stale:
632         /*
633          * We come here from above when page->mapping or !PageSwapCache
634          * suggests that the node is stale; but it might be under migration.
635          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
636          * before checking whether node->kpfn has been changed.
637          */
638         smp_rmb();
639         if (READ_ONCE(stable_node->kpfn) != kpfn)
640                 goto again;
641         remove_node_from_stable_tree(stable_node);
642         return NULL;
643 }
644
645 /*
646  * Removing rmap_item from stable or unstable tree.
647  * This function will clean the information from the stable/unstable tree.
648  */
649 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
650 {
651         if (rmap_item->address & STABLE_FLAG) {
652                 struct stable_node *stable_node;
653                 struct page *page;
654
655                 stable_node = rmap_item->head;
656                 page = get_ksm_page(stable_node, true);
657                 if (!page)
658                         goto out;
659
660                 hlist_del(&rmap_item->hlist);
661                 unlock_page(page);
662                 put_page(page);
663
664                 if (!hlist_empty(&stable_node->hlist))
665                         ksm_pages_sharing--;
666                 else
667                         ksm_pages_shared--;
668
669                 put_anon_vma(rmap_item->anon_vma);
670                 rmap_item->address &= PAGE_MASK;
671
672         } else if (rmap_item->address & UNSTABLE_FLAG) {
673                 unsigned char age;
674                 /*
675                  * Usually ksmd can and must skip the rb_erase, because
676                  * root_unstable_tree was already reset to RB_ROOT.
677                  * But be careful when an mm is exiting: do the rb_erase
678                  * if this rmap_item was inserted by this scan, rather
679                  * than left over from before.
680                  */
681                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
682                 BUG_ON(age > 1);
683                 if (!age)
684                         rb_erase(&rmap_item->node,
685                                  root_unstable_tree + NUMA(rmap_item->nid));
686                 ksm_pages_unshared--;
687                 rmap_item->address &= PAGE_MASK;
688         }
689 out:
690         cond_resched();         /* we're called from many long loops */
691 }
692
693 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
694                                        struct rmap_item **rmap_list)
695 {
696         while (*rmap_list) {
697                 struct rmap_item *rmap_item = *rmap_list;
698                 *rmap_list = rmap_item->rmap_list;
699                 remove_rmap_item_from_tree(rmap_item);
700                 free_rmap_item(rmap_item);
701         }
702 }
703
704 /*
705  * Though it's very tempting to unmerge rmap_items from stable tree rather
706  * than check every pte of a given vma, the locking doesn't quite work for
707  * that - an rmap_item is assigned to the stable tree after inserting ksm
708  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
709  * rmap_items from parent to child at fork time (so as not to waste time
710  * if exit comes before the next scan reaches it).
711  *
712  * Similarly, although we'd like to remove rmap_items (so updating counts
713  * and freeing memory) when unmerging an area, it's easier to leave that
714  * to the next pass of ksmd - consider, for example, how ksmd might be
715  * in cmp_and_merge_page on one of the rmap_items we would be removing.
716  */
717 static int unmerge_ksm_pages(struct vm_area_struct *vma,
718                              unsigned long start, unsigned long end)
719 {
720         unsigned long addr;
721         int err = 0;
722
723         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
724                 if (ksm_test_exit(vma->vm_mm))
725                         break;
726                 if (signal_pending(current))
727                         err = -ERESTARTSYS;
728                 else
729                         err = break_ksm(vma, addr);
730         }
731         return err;
732 }
733
734 #ifdef CONFIG_SYSFS
735 /*
736  * Only called through the sysfs control interface:
737  */
738 static int remove_stable_node(struct stable_node *stable_node)
739 {
740         struct page *page;
741         int err;
742
743         page = get_ksm_page(stable_node, true);
744         if (!page) {
745                 /*
746                  * get_ksm_page did remove_node_from_stable_tree itself.
747                  */
748                 return 0;
749         }
750
751         if (WARN_ON_ONCE(page_mapped(page))) {
752                 /*
753                  * This should not happen: but if it does, just refuse to let
754                  * merge_across_nodes be switched - there is no need to panic.
755                  */
756                 err = -EBUSY;
757         } else {
758                 /*
759                  * The stable node did not yet appear stale to get_ksm_page(),
760                  * since that allows for an unmapped ksm page to be recognized
761                  * right up until it is freed; but the node is safe to remove.
762                  * This page might be in a pagevec waiting to be freed,
763                  * or it might be PageSwapCache (perhaps under writeback),
764                  * or it might have been removed from swapcache a moment ago.
765                  */
766                 set_page_stable_node(page, NULL);
767                 remove_node_from_stable_tree(stable_node);
768                 err = 0;
769         }
770
771         unlock_page(page);
772         put_page(page);
773         return err;
774 }
775
776 static int remove_all_stable_nodes(void)
777 {
778         struct stable_node *stable_node;
779         struct list_head *this, *next;
780         int nid;
781         int err = 0;
782
783         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
784                 while (root_stable_tree[nid].rb_node) {
785                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
786                                                 struct stable_node, node);
787                         if (remove_stable_node(stable_node)) {
788                                 err = -EBUSY;
789                                 break;  /* proceed to next nid */
790                         }
791                         cond_resched();
792                 }
793         }
794         list_for_each_safe(this, next, &migrate_nodes) {
795                 stable_node = list_entry(this, struct stable_node, list);
796                 if (remove_stable_node(stable_node))
797                         err = -EBUSY;
798                 cond_resched();
799         }
800         return err;
801 }
802
803 static int unmerge_and_remove_all_rmap_items(void)
804 {
805         struct mm_slot *mm_slot;
806         struct mm_struct *mm;
807         struct vm_area_struct *vma;
808         int err = 0;
809
810         spin_lock(&ksm_mmlist_lock);
811         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
812                                                 struct mm_slot, mm_list);
813         spin_unlock(&ksm_mmlist_lock);
814
815         for (mm_slot = ksm_scan.mm_slot;
816                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
817                 mm = mm_slot->mm;
818                 down_read(&mm->mmap_sem);
819                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
820                         if (ksm_test_exit(mm))
821                                 break;
822                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
823                                 continue;
824                         err = unmerge_ksm_pages(vma,
825                                                 vma->vm_start, vma->vm_end);
826                         if (err)
827                                 goto error;
828                 }
829
830                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
831
832                 spin_lock(&ksm_mmlist_lock);
833                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
834                                                 struct mm_slot, mm_list);
835                 if (ksm_test_exit(mm)) {
836                         hash_del(&mm_slot->link);
837                         list_del(&mm_slot->mm_list);
838                         spin_unlock(&ksm_mmlist_lock);
839
840                         free_mm_slot(mm_slot);
841                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
842                         up_read(&mm->mmap_sem);
843                         mmdrop(mm);
844                 } else {
845                         spin_unlock(&ksm_mmlist_lock);
846                         up_read(&mm->mmap_sem);
847                 }
848         }
849
850         /* Clean up stable nodes, but don't worry if some are still busy */
851         remove_all_stable_nodes();
852         ksm_scan.seqnr = 0;
853         return 0;
854
855 error:
856         up_read(&mm->mmap_sem);
857         spin_lock(&ksm_mmlist_lock);
858         ksm_scan.mm_slot = &ksm_mm_head;
859         spin_unlock(&ksm_mmlist_lock);
860         return err;
861 }
862 #endif /* CONFIG_SYSFS */
863
864 static u32 calc_checksum(struct page *page)
865 {
866         u32 checksum;
867         void *addr = kmap_atomic(page);
868         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
869         kunmap_atomic(addr);
870         return checksum;
871 }
872
873 static int memcmp_pages(struct page *page1, struct page *page2)
874 {
875         char *addr1, *addr2;
876         int ret;
877
878         addr1 = kmap_atomic(page1);
879         addr2 = kmap_atomic(page2);
880         ret = memcmp(addr1, addr2, PAGE_SIZE);
881         kunmap_atomic(addr2);
882         kunmap_atomic(addr1);
883         return ret;
884 }
885
886 static inline int pages_identical(struct page *page1, struct page *page2)
887 {
888         return !memcmp_pages(page1, page2);
889 }
890
891 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
892                               pte_t *orig_pte)
893 {
894         struct mm_struct *mm = vma->vm_mm;
895         unsigned long addr;
896         pte_t *ptep;
897         spinlock_t *ptl;
898         int swapped;
899         int err = -EFAULT;
900         unsigned long mmun_start;       /* For mmu_notifiers */
901         unsigned long mmun_end;         /* For mmu_notifiers */
902
903         addr = page_address_in_vma(page, vma);
904         if (addr == -EFAULT)
905                 goto out;
906
907         BUG_ON(PageTransCompound(page));
908
909         mmun_start = addr;
910         mmun_end   = addr + PAGE_SIZE;
911         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
912
913         ptep = page_check_address(page, mm, addr, &ptl, 0);
914         if (!ptep)
915                 goto out_mn;
916
917         if (pte_write(*ptep) || pte_dirty(*ptep)) {
918                 pte_t entry;
919
920                 swapped = PageSwapCache(page);
921                 flush_cache_page(vma, addr, page_to_pfn(page));
922                 /*
923                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
924                  * take any lock, therefore the check that we are going to make
925                  * with the pagecount against the mapcount is racey and
926                  * O_DIRECT can happen right after the check.
927                  * So we clear the pte and flush the tlb before the check
928                  * this assure us that no O_DIRECT can happen after the check
929                  * or in the middle of the check.
930                  */
931                 entry = ptep_clear_flush_notify(vma, addr, ptep);
932                 /*
933                  * Check that no O_DIRECT or similar I/O is in progress on the
934                  * page
935                  */
936                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
937                         set_pte_at(mm, addr, ptep, entry);
938                         goto out_unlock;
939                 }
940                 if (pte_dirty(entry))
941                         set_page_dirty(page);
942                 entry = pte_mkclean(pte_wrprotect(entry));
943                 set_pte_at_notify(mm, addr, ptep, entry);
944         }
945         *orig_pte = *ptep;
946         err = 0;
947
948 out_unlock:
949         pte_unmap_unlock(ptep, ptl);
950 out_mn:
951         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
952 out:
953         return err;
954 }
955
956 /**
957  * replace_page - replace page in vma by new ksm page
958  * @vma:      vma that holds the pte pointing to page
959  * @page:     the page we are replacing by kpage
960  * @kpage:    the ksm page we replace page by
961  * @orig_pte: the original value of the pte
962  *
963  * Returns 0 on success, -EFAULT on failure.
964  */
965 static int replace_page(struct vm_area_struct *vma, struct page *page,
966                         struct page *kpage, pte_t orig_pte)
967 {
968         struct mm_struct *mm = vma->vm_mm;
969         pmd_t *pmd;
970         pte_t *ptep;
971         spinlock_t *ptl;
972         unsigned long addr;
973         int err = -EFAULT;
974         unsigned long mmun_start;       /* For mmu_notifiers */
975         unsigned long mmun_end;         /* For mmu_notifiers */
976
977         addr = page_address_in_vma(page, vma);
978         if (addr == -EFAULT)
979                 goto out;
980
981         pmd = mm_find_pmd(mm, addr);
982         if (!pmd)
983                 goto out;
984
985         mmun_start = addr;
986         mmun_end   = addr + PAGE_SIZE;
987         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
988
989         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
990         if (!pte_same(*ptep, orig_pte)) {
991                 pte_unmap_unlock(ptep, ptl);
992                 goto out_mn;
993         }
994
995         get_page(kpage);
996         page_add_anon_rmap(kpage, vma, addr);
997
998         flush_cache_page(vma, addr, pte_pfn(*ptep));
999         ptep_clear_flush_notify(vma, addr, ptep);
1000         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
1001
1002         page_remove_rmap(page);
1003         if (!page_mapped(page))
1004                 try_to_free_swap(page);
1005         put_page(page);
1006
1007         pte_unmap_unlock(ptep, ptl);
1008         err = 0;
1009 out_mn:
1010         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1011 out:
1012         return err;
1013 }
1014
1015 static int page_trans_compound_anon_split(struct page *page)
1016 {
1017         int ret = 0;
1018         struct page *transhuge_head = page_trans_compound_anon(page);
1019         if (transhuge_head) {
1020                 /* Get the reference on the head to split it. */
1021                 if (get_page_unless_zero(transhuge_head)) {
1022                         /*
1023                          * Recheck we got the reference while the head
1024                          * was still anonymous.
1025                          */
1026                         if (PageAnon(transhuge_head))
1027                                 ret = split_huge_page(transhuge_head);
1028                         else
1029                                 /*
1030                                  * Retry later if split_huge_page run
1031                                  * from under us.
1032                                  */
1033                                 ret = 1;
1034                         put_page(transhuge_head);
1035                 } else
1036                         /* Retry later if split_huge_page run from under us. */
1037                         ret = 1;
1038         }
1039         return ret;
1040 }
1041
1042 /*
1043  * try_to_merge_one_page - take two pages and merge them into one
1044  * @vma: the vma that holds the pte pointing to page
1045  * @page: the PageAnon page that we want to replace with kpage
1046  * @kpage: the PageKsm page that we want to map instead of page,
1047  *         or NULL the first time when we want to use page as kpage.
1048  *
1049  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1050  */
1051 static int try_to_merge_one_page(struct vm_area_struct *vma,
1052                                  struct page *page, struct page *kpage)
1053 {
1054         pte_t orig_pte = __pte(0);
1055         int err = -EFAULT;
1056
1057         if (page == kpage)                      /* ksm page forked */
1058                 return 0;
1059
1060         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1061                 goto out;
1062         BUG_ON(PageTransCompound(page));
1063         if (!PageAnon(page))
1064                 goto out;
1065
1066         /*
1067          * We need the page lock to read a stable PageSwapCache in
1068          * write_protect_page().  We use trylock_page() instead of
1069          * lock_page() because we don't want to wait here - we
1070          * prefer to continue scanning and merging different pages,
1071          * then come back to this page when it is unlocked.
1072          */
1073         if (!trylock_page(page))
1074                 goto out;
1075         /*
1076          * If this anonymous page is mapped only here, its pte may need
1077          * to be write-protected.  If it's mapped elsewhere, all of its
1078          * ptes are necessarily already write-protected.  But in either
1079          * case, we need to lock and check page_count is not raised.
1080          */
1081         if (write_protect_page(vma, page, &orig_pte) == 0) {
1082                 if (!kpage) {
1083                         /*
1084                          * While we hold page lock, upgrade page from
1085                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1086                          * stable_tree_insert() will update stable_node.
1087                          */
1088                         set_page_stable_node(page, NULL);
1089                         mark_page_accessed(page);
1090                         err = 0;
1091                 } else if (pages_identical(page, kpage))
1092                         err = replace_page(vma, page, kpage, orig_pte);
1093         }
1094
1095         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1096                 munlock_vma_page(page);
1097                 if (!PageMlocked(kpage)) {
1098                         unlock_page(page);
1099                         lock_page(kpage);
1100                         mlock_vma_page(kpage);
1101                         page = kpage;           /* for final unlock */
1102                 }
1103         }
1104
1105         unlock_page(page);
1106 out:
1107         return err;
1108 }
1109
1110 /*
1111  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1112  * but no new kernel page is allocated: kpage must already be a ksm page.
1113  *
1114  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1115  */
1116 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1117                                       struct page *page, struct page *kpage)
1118 {
1119         struct mm_struct *mm = rmap_item->mm;
1120         struct vm_area_struct *vma;
1121         int err = -EFAULT;
1122
1123         /*
1124          * The "mm" of the unstable tree rmap_item isn't necessairly
1125          * associated with the current ksm_scan.mm_slot, it could be
1126          * any random mm. So we need ksm_get_mm() here to prevent the
1127          * exit_mmap to run from under us in mmput(). Otherwise
1128          * rmap_item->anon_vma could point to an anon_vma that has
1129          * already been freed (i.e. get_anon_vma() below would run too
1130          * late).
1131          */
1132         if (!ksm_get_mm(mm))
1133                 return err;
1134
1135         down_read(&mm->mmap_sem);
1136         vma = find_mergeable_vma(mm, rmap_item->address);
1137         if (!vma)
1138                 goto out;
1139
1140         err = try_to_merge_one_page(vma, page, kpage);
1141         if (err)
1142                 goto out;
1143
1144         /* Unstable nid is in union with stable anon_vma: remove first */
1145         remove_rmap_item_from_tree(rmap_item);
1146
1147         /* Must get reference to anon_vma while still holding mmap_sem */
1148         rmap_item->anon_vma = vma->anon_vma;
1149         get_anon_vma(vma->anon_vma);
1150 out:
1151         up_read(&mm->mmap_sem);
1152         mmput(mm);
1153         return err;
1154 }
1155
1156 /*
1157  * try_to_merge_two_pages - take two identical pages and prepare them
1158  * to be merged into one page.
1159  *
1160  * This function returns the kpage if we successfully merged two identical
1161  * pages into one ksm page, NULL otherwise.
1162  *
1163  * Note that this function upgrades page to ksm page: if one of the pages
1164  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1165  */
1166 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1167                                            struct page *page,
1168                                            struct rmap_item *tree_rmap_item,
1169                                            struct page *tree_page)
1170 {
1171         int err;
1172
1173         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1174         if (!err) {
1175                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1176                                                         tree_page, page);
1177                 /*
1178                  * If that fails, we have a ksm page with only one pte
1179                  * pointing to it: so break it.
1180                  */
1181                 if (err)
1182                         break_cow(rmap_item);
1183         }
1184         return err ? NULL : page;
1185 }
1186
1187 /*
1188  * stable_tree_search - search for page inside the stable tree
1189  *
1190  * This function checks if there is a page inside the stable tree
1191  * with identical content to the page that we are scanning right now.
1192  *
1193  * This function returns the stable tree node of identical content if found,
1194  * NULL otherwise.
1195  */
1196 static struct page *stable_tree_search(struct page *page)
1197 {
1198         int nid;
1199         struct rb_root *root;
1200         struct rb_node **new;
1201         struct rb_node *parent;
1202         struct stable_node *stable_node;
1203         struct stable_node *page_node;
1204
1205         page_node = page_stable_node(page);
1206         if (page_node && page_node->head != &migrate_nodes) {
1207                 /* ksm page forked */
1208                 get_page(page);
1209                 return page;
1210         }
1211
1212         nid = get_kpfn_nid(page_to_pfn(page));
1213         root = root_stable_tree + nid;
1214 again:
1215         new = &root->rb_node;
1216         parent = NULL;
1217
1218         while (*new) {
1219                 struct page *tree_page;
1220                 int ret;
1221
1222                 cond_resched();
1223                 stable_node = rb_entry(*new, struct stable_node, node);
1224                 tree_page = get_ksm_page(stable_node, false);
1225                 if (!tree_page)
1226                         /*
1227                          * If we walked over a stale stable_node,
1228                          * get_ksm_page() will call rb_erase() and it
1229                          * may rebalance the tree from under us. So
1230                          * restart the search from scratch. Returning
1231                          * NULL would be safe too, but we'd generate
1232                          * false negative insertions just because some
1233                          * stable_node was stale which would waste CPU
1234                          * by doing the preparation work twice at the
1235                          * next KSM pass.
1236                          */
1237                         goto again;
1238
1239                 ret = memcmp_pages(page, tree_page);
1240                 put_page(tree_page);
1241
1242                 parent = *new;
1243                 if (ret < 0)
1244                         new = &parent->rb_left;
1245                 else if (ret > 0)
1246                         new = &parent->rb_right;
1247                 else {
1248                         /*
1249                          * Lock and unlock the stable_node's page (which
1250                          * might already have been migrated) so that page
1251                          * migration is sure to notice its raised count.
1252                          * It would be more elegant to return stable_node
1253                          * than kpage, but that involves more changes.
1254                          */
1255                         tree_page = get_ksm_page(stable_node, true);
1256                         if (tree_page) {
1257                                 unlock_page(tree_page);
1258                                 if (get_kpfn_nid(stable_node->kpfn) !=
1259                                                 NUMA(stable_node->nid)) {
1260                                         put_page(tree_page);
1261                                         goto replace;
1262                                 }
1263                                 return tree_page;
1264                         }
1265                         /*
1266                          * There is now a place for page_node, but the tree may
1267                          * have been rebalanced, so re-evaluate parent and new.
1268                          */
1269                         if (page_node)
1270                                 goto again;
1271                         return NULL;
1272                 }
1273         }
1274
1275         if (!page_node)
1276                 return NULL;
1277
1278         list_del(&page_node->list);
1279         DO_NUMA(page_node->nid = nid);
1280         rb_link_node(&page_node->node, parent, new);
1281         rb_insert_color(&page_node->node, root);
1282         get_page(page);
1283         return page;
1284
1285 replace:
1286         if (page_node) {
1287                 list_del(&page_node->list);
1288                 DO_NUMA(page_node->nid = nid);
1289                 rb_replace_node(&stable_node->node, &page_node->node, root);
1290                 get_page(page);
1291         } else {
1292                 rb_erase(&stable_node->node, root);
1293                 page = NULL;
1294         }
1295         stable_node->head = &migrate_nodes;
1296         list_add(&stable_node->list, stable_node->head);
1297         return page;
1298 }
1299
1300 /*
1301  * stable_tree_insert - insert stable tree node pointing to new ksm page
1302  * into the stable tree.
1303  *
1304  * This function returns the stable tree node just allocated on success,
1305  * NULL otherwise.
1306  */
1307 static struct stable_node *stable_tree_insert(struct page *kpage)
1308 {
1309         int nid;
1310         unsigned long kpfn;
1311         struct rb_root *root;
1312         struct rb_node **new;
1313         struct rb_node *parent;
1314         struct stable_node *stable_node;
1315
1316         kpfn = page_to_pfn(kpage);
1317         nid = get_kpfn_nid(kpfn);
1318         root = root_stable_tree + nid;
1319 again:
1320         parent = NULL;
1321         new = &root->rb_node;
1322
1323         while (*new) {
1324                 struct page *tree_page;
1325                 int ret;
1326
1327                 cond_resched();
1328                 stable_node = rb_entry(*new, struct stable_node, node);
1329                 tree_page = get_ksm_page(stable_node, false);
1330                 if (!tree_page)
1331                         /*
1332                          * If we walked over a stale stable_node,
1333                          * get_ksm_page() will call rb_erase() and it
1334                          * may rebalance the tree from under us. So
1335                          * restart the search from scratch. Returning
1336                          * NULL would be safe too, but we'd generate
1337                          * false negative insertions just because some
1338                          * stable_node was stale which would waste CPU
1339                          * by doing the preparation work twice at the
1340                          * next KSM pass.
1341                          */
1342                         goto again;
1343
1344                 ret = memcmp_pages(kpage, tree_page);
1345                 put_page(tree_page);
1346
1347                 parent = *new;
1348                 if (ret < 0)
1349                         new = &parent->rb_left;
1350                 else if (ret > 0)
1351                         new = &parent->rb_right;
1352                 else {
1353                         /*
1354                          * It is not a bug that stable_tree_search() didn't
1355                          * find this node: because at that time our page was
1356                          * not yet write-protected, so may have changed since.
1357                          */
1358                         return NULL;
1359                 }
1360         }
1361
1362         stable_node = alloc_stable_node();
1363         if (!stable_node)
1364                 return NULL;
1365
1366         INIT_HLIST_HEAD(&stable_node->hlist);
1367         stable_node->kpfn = kpfn;
1368         set_page_stable_node(kpage, stable_node);
1369         DO_NUMA(stable_node->nid = nid);
1370         rb_link_node(&stable_node->node, parent, new);
1371         rb_insert_color(&stable_node->node, root);
1372
1373         return stable_node;
1374 }
1375
1376 /*
1377  * unstable_tree_search_insert - search for identical page,
1378  * else insert rmap_item into the unstable tree.
1379  *
1380  * This function searches for a page in the unstable tree identical to the
1381  * page currently being scanned; and if no identical page is found in the
1382  * tree, we insert rmap_item as a new object into the unstable tree.
1383  *
1384  * This function returns pointer to rmap_item found to be identical
1385  * to the currently scanned page, NULL otherwise.
1386  *
1387  * This function does both searching and inserting, because they share
1388  * the same walking algorithm in an rbtree.
1389  */
1390 static
1391 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1392                                               struct page *page,
1393                                               struct page **tree_pagep)
1394 {
1395         struct rb_node **new;
1396         struct rb_root *root;
1397         struct rb_node *parent = NULL;
1398         int nid;
1399
1400         nid = get_kpfn_nid(page_to_pfn(page));
1401         root = root_unstable_tree + nid;
1402         new = &root->rb_node;
1403
1404         while (*new) {
1405                 struct rmap_item *tree_rmap_item;
1406                 struct page *tree_page;
1407                 int ret;
1408
1409                 cond_resched();
1410                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1411                 tree_page = get_mergeable_page(tree_rmap_item);
1412                 if (!tree_page)
1413                         return NULL;
1414
1415                 /*
1416                  * Don't substitute a ksm page for a forked page.
1417                  */
1418                 if (page == tree_page) {
1419                         put_page(tree_page);
1420                         return NULL;
1421                 }
1422
1423                 ret = memcmp_pages(page, tree_page);
1424
1425                 parent = *new;
1426                 if (ret < 0) {
1427                         put_page(tree_page);
1428                         new = &parent->rb_left;
1429                 } else if (ret > 0) {
1430                         put_page(tree_page);
1431                         new = &parent->rb_right;
1432                 } else if (!ksm_merge_across_nodes &&
1433                            page_to_nid(tree_page) != nid) {
1434                         /*
1435                          * If tree_page has been migrated to another NUMA node,
1436                          * it will be flushed out and put in the right unstable
1437                          * tree next time: only merge with it when across_nodes.
1438                          */
1439                         put_page(tree_page);
1440                         return NULL;
1441                 } else {
1442                         *tree_pagep = tree_page;
1443                         return tree_rmap_item;
1444                 }
1445         }
1446
1447         rmap_item->address |= UNSTABLE_FLAG;
1448         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1449         DO_NUMA(rmap_item->nid = nid);
1450         rb_link_node(&rmap_item->node, parent, new);
1451         rb_insert_color(&rmap_item->node, root);
1452
1453         ksm_pages_unshared++;
1454         return NULL;
1455 }
1456
1457 /*
1458  * stable_tree_append - add another rmap_item to the linked list of
1459  * rmap_items hanging off a given node of the stable tree, all sharing
1460  * the same ksm page.
1461  */
1462 static void stable_tree_append(struct rmap_item *rmap_item,
1463                                struct stable_node *stable_node)
1464 {
1465         rmap_item->head = stable_node;
1466         rmap_item->address |= STABLE_FLAG;
1467         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1468
1469         if (rmap_item->hlist.next)
1470                 ksm_pages_sharing++;
1471         else
1472                 ksm_pages_shared++;
1473 }
1474
1475 /*
1476  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1477  * if not, compare checksum to previous and if it's the same, see if page can
1478  * be inserted into the unstable tree, or merged with a page already there and
1479  * both transferred to the stable tree.
1480  *
1481  * @page: the page that we are searching identical page to.
1482  * @rmap_item: the reverse mapping into the virtual address of this page
1483  */
1484 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1485 {
1486         struct rmap_item *tree_rmap_item;
1487         struct page *tree_page = NULL;
1488         struct stable_node *stable_node;
1489         struct page *kpage;
1490         unsigned int checksum;
1491         int err;
1492
1493         stable_node = page_stable_node(page);
1494         if (stable_node) {
1495                 if (stable_node->head != &migrate_nodes &&
1496                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1497                         rb_erase(&stable_node->node,
1498                                  root_stable_tree + NUMA(stable_node->nid));
1499                         stable_node->head = &migrate_nodes;
1500                         list_add(&stable_node->list, stable_node->head);
1501                 }
1502                 if (stable_node->head != &migrate_nodes &&
1503                     rmap_item->head == stable_node)
1504                         return;
1505         }
1506
1507         /* We first start with searching the page inside the stable tree */
1508         kpage = stable_tree_search(page);
1509         if (kpage == page && rmap_item->head == stable_node) {
1510                 put_page(kpage);
1511                 return;
1512         }
1513
1514         remove_rmap_item_from_tree(rmap_item);
1515
1516         if (kpage) {
1517                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1518                 if (!err) {
1519                         /*
1520                          * The page was successfully merged:
1521                          * add its rmap_item to the stable tree.
1522                          */
1523                         lock_page(kpage);
1524                         stable_tree_append(rmap_item, page_stable_node(kpage));
1525                         unlock_page(kpage);
1526                 }
1527                 put_page(kpage);
1528                 return;
1529         }
1530
1531         /*
1532          * If the hash value of the page has changed from the last time
1533          * we calculated it, this page is changing frequently: therefore we
1534          * don't want to insert it in the unstable tree, and we don't want
1535          * to waste our time searching for something identical to it there.
1536          */
1537         checksum = calc_checksum(page);
1538         if (rmap_item->oldchecksum != checksum) {
1539                 rmap_item->oldchecksum = checksum;
1540                 return;
1541         }
1542
1543         tree_rmap_item =
1544                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1545         if (tree_rmap_item) {
1546                 kpage = try_to_merge_two_pages(rmap_item, page,
1547                                                 tree_rmap_item, tree_page);
1548                 put_page(tree_page);
1549                 if (kpage) {
1550                         /*
1551                          * The pages were successfully merged: insert new
1552                          * node in the stable tree and add both rmap_items.
1553                          */
1554                         lock_page(kpage);
1555                         stable_node = stable_tree_insert(kpage);
1556                         if (stable_node) {
1557                                 stable_tree_append(tree_rmap_item, stable_node);
1558                                 stable_tree_append(rmap_item, stable_node);
1559                         }
1560                         unlock_page(kpage);
1561
1562                         /*
1563                          * If we fail to insert the page into the stable tree,
1564                          * we will have 2 virtual addresses that are pointing
1565                          * to a ksm page left outside the stable tree,
1566                          * in which case we need to break_cow on both.
1567                          */
1568                         if (!stable_node) {
1569                                 break_cow(tree_rmap_item);
1570                                 break_cow(rmap_item);
1571                         }
1572                 }
1573         }
1574 }
1575
1576 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1577                                             struct rmap_item **rmap_list,
1578                                             unsigned long addr)
1579 {
1580         struct rmap_item *rmap_item;
1581
1582         while (*rmap_list) {
1583                 rmap_item = *rmap_list;
1584                 if ((rmap_item->address & PAGE_MASK) == addr)
1585                         return rmap_item;
1586                 if (rmap_item->address > addr)
1587                         break;
1588                 *rmap_list = rmap_item->rmap_list;
1589                 remove_rmap_item_from_tree(rmap_item);
1590                 free_rmap_item(rmap_item);
1591         }
1592
1593         rmap_item = alloc_rmap_item();
1594         if (rmap_item) {
1595                 /* It has already been zeroed */
1596                 rmap_item->mm = mm_slot->mm;
1597                 rmap_item->address = addr;
1598                 rmap_item->rmap_list = *rmap_list;
1599                 *rmap_list = rmap_item;
1600         }
1601         return rmap_item;
1602 }
1603
1604 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1605 {
1606         struct mm_struct *mm;
1607         struct mm_slot *slot;
1608         struct vm_area_struct *vma;
1609         struct rmap_item *rmap_item;
1610         int nid;
1611
1612         if (list_empty(&ksm_mm_head.mm_list))
1613                 return NULL;
1614
1615         slot = ksm_scan.mm_slot;
1616         if (slot == &ksm_mm_head) {
1617                 /*
1618                  * A number of pages can hang around indefinitely on per-cpu
1619                  * pagevecs, raised page count preventing write_protect_page
1620                  * from merging them.  Though it doesn't really matter much,
1621                  * it is puzzling to see some stuck in pages_volatile until
1622                  * other activity jostles them out, and they also prevented
1623                  * LTP's KSM test from succeeding deterministically; so drain
1624                  * them here (here rather than on entry to ksm_do_scan(),
1625                  * so we don't IPI too often when pages_to_scan is set low).
1626                  */
1627                 lru_add_drain_all();
1628
1629                 /*
1630                  * Whereas stale stable_nodes on the stable_tree itself
1631                  * get pruned in the regular course of stable_tree_search(),
1632                  * those moved out to the migrate_nodes list can accumulate:
1633                  * so prune them once before each full scan.
1634                  */
1635                 if (!ksm_merge_across_nodes) {
1636                         struct stable_node *stable_node;
1637                         struct list_head *this, *next;
1638                         struct page *page;
1639
1640                         list_for_each_safe(this, next, &migrate_nodes) {
1641                                 stable_node = list_entry(this,
1642                                                 struct stable_node, list);
1643                                 page = get_ksm_page(stable_node, false);
1644                                 if (page)
1645                                         put_page(page);
1646                                 cond_resched();
1647                         }
1648                 }
1649
1650                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1651                         root_unstable_tree[nid] = RB_ROOT;
1652
1653                 spin_lock(&ksm_mmlist_lock);
1654                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1655                 ksm_scan.mm_slot = slot;
1656                 spin_unlock(&ksm_mmlist_lock);
1657                 /*
1658                  * Although we tested list_empty() above, a racing __ksm_exit
1659                  * of the last mm on the list may have removed it since then.
1660                  */
1661                 if (slot == &ksm_mm_head)
1662                         return NULL;
1663 next_mm:
1664                 ksm_scan.address = 0;
1665                 ksm_scan.rmap_list = &slot->rmap_list;
1666         }
1667
1668         mm = slot->mm;
1669         down_read(&mm->mmap_sem);
1670         if (ksm_test_exit(mm))
1671                 vma = NULL;
1672         else
1673                 vma = find_vma(mm, ksm_scan.address);
1674
1675         for (; vma; vma = vma->vm_next) {
1676                 if (!(vma->vm_flags & VM_MERGEABLE))
1677                         continue;
1678                 if (ksm_scan.address < vma->vm_start)
1679                         ksm_scan.address = vma->vm_start;
1680                 if (!vma->anon_vma)
1681                         ksm_scan.address = vma->vm_end;
1682
1683                 while (ksm_scan.address < vma->vm_end) {
1684                         if (ksm_test_exit(mm))
1685                                 break;
1686                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1687                         if (IS_ERR_OR_NULL(*page)) {
1688                                 ksm_scan.address += PAGE_SIZE;
1689                                 cond_resched();
1690                                 continue;
1691                         }
1692                         if (PageAnon(*page) ||
1693                             page_trans_compound_anon(*page)) {
1694                                 flush_anon_page(vma, *page, ksm_scan.address);
1695                                 flush_dcache_page(*page);
1696                                 rmap_item = get_next_rmap_item(slot,
1697                                         ksm_scan.rmap_list, ksm_scan.address);
1698                                 if (rmap_item) {
1699                                         ksm_scan.rmap_list =
1700                                                         &rmap_item->rmap_list;
1701                                         ksm_scan.address += PAGE_SIZE;
1702                                 } else
1703                                         put_page(*page);
1704                                 up_read(&mm->mmap_sem);
1705                                 return rmap_item;
1706                         }
1707                         put_page(*page);
1708                         ksm_scan.address += PAGE_SIZE;
1709                         cond_resched();
1710                 }
1711         }
1712
1713         if (ksm_test_exit(mm)) {
1714                 ksm_scan.address = 0;
1715                 ksm_scan.rmap_list = &slot->rmap_list;
1716         }
1717         /*
1718          * Nuke all the rmap_items that are above this current rmap:
1719          * because there were no VM_MERGEABLE vmas with such addresses.
1720          */
1721         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1722
1723         spin_lock(&ksm_mmlist_lock);
1724         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1725                                                 struct mm_slot, mm_list);
1726         if (ksm_scan.address == 0) {
1727                 /*
1728                  * We've completed a full scan of all vmas, holding mmap_sem
1729                  * throughout, and found no VM_MERGEABLE: so do the same as
1730                  * __ksm_exit does to remove this mm from all our lists now.
1731                  * This applies either when cleaning up after __ksm_exit
1732                  * (but beware: we can reach here even before __ksm_exit),
1733                  * or when all VM_MERGEABLE areas have been unmapped (and
1734                  * mmap_sem then protects against race with MADV_MERGEABLE).
1735                  */
1736                 hash_del(&slot->link);
1737                 list_del(&slot->mm_list);
1738                 spin_unlock(&ksm_mmlist_lock);
1739
1740                 free_mm_slot(slot);
1741                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1742                 up_read(&mm->mmap_sem);
1743                 mmdrop(mm);
1744         } else {
1745                 spin_unlock(&ksm_mmlist_lock);
1746                 up_read(&mm->mmap_sem);
1747         }
1748
1749         /* Repeat until we've completed scanning the whole list */
1750         slot = ksm_scan.mm_slot;
1751         if (slot != &ksm_mm_head)
1752                 goto next_mm;
1753
1754         ksm_scan.seqnr++;
1755         return NULL;
1756 }
1757
1758 /**
1759  * ksm_do_scan  - the ksm scanner main worker function.
1760  * @scan_npages - number of pages we want to scan before we return.
1761  */
1762 static void ksm_do_scan(unsigned int scan_npages)
1763 {
1764         struct rmap_item *rmap_item;
1765         struct page *uninitialized_var(page);
1766
1767         while (scan_npages-- && likely(!freezing(current))) {
1768                 cond_resched();
1769                 rmap_item = scan_get_next_rmap_item(&page);
1770                 if (!rmap_item)
1771                         return;
1772                 cmp_and_merge_page(page, rmap_item);
1773                 put_page(page);
1774         }
1775 }
1776
1777 static int ksmd_should_run(void)
1778 {
1779         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1780 }
1781
1782 static int ksm_scan_thread(void *nothing)
1783 {
1784         set_freezable();
1785         set_user_nice(current, 5);
1786
1787         while (!kthread_should_stop()) {
1788                 mutex_lock(&ksm_thread_mutex);
1789                 wait_while_offlining();
1790                 if (ksmd_should_run())
1791                         ksm_do_scan(ksm_thread_pages_to_scan);
1792                 mutex_unlock(&ksm_thread_mutex);
1793
1794                 try_to_freeze();
1795
1796                 if (ksmd_should_run()) {
1797                         schedule_timeout_interruptible(
1798                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1799                 } else {
1800                         wait_event_freezable(ksm_thread_wait,
1801                                 ksmd_should_run() || kthread_should_stop());
1802                 }
1803         }
1804         return 0;
1805 }
1806
1807 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1808                 unsigned long end, int advice, unsigned long *vm_flags)
1809 {
1810         struct mm_struct *mm = vma->vm_mm;
1811         int err;
1812
1813         switch (advice) {
1814         case MADV_MERGEABLE:
1815                 /*
1816                  * Be somewhat over-protective for now!
1817                  */
1818                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1819                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1820                                  VM_HUGETLB | VM_MIXEDMAP))
1821                         return 0;               /* just ignore the advice */
1822
1823 #ifdef VM_SAO
1824                 if (*vm_flags & VM_SAO)
1825                         return 0;
1826 #endif
1827
1828                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1829                         err = __ksm_enter(mm);
1830                         if (err)
1831                                 return err;
1832                 }
1833
1834                 *vm_flags |= VM_MERGEABLE;
1835                 break;
1836
1837         case MADV_UNMERGEABLE:
1838                 if (!(*vm_flags & VM_MERGEABLE))
1839                         return 0;               /* just ignore the advice */
1840
1841                 if (vma->anon_vma) {
1842                         err = unmerge_ksm_pages(vma, start, end);
1843                         if (err)
1844                                 return err;
1845                 }
1846
1847                 *vm_flags &= ~VM_MERGEABLE;
1848                 break;
1849         }
1850
1851         return 0;
1852 }
1853
1854 int __ksm_enter(struct mm_struct *mm)
1855 {
1856         struct mm_slot *mm_slot;
1857         int needs_wakeup;
1858
1859         mm_slot = alloc_mm_slot();
1860         if (!mm_slot)
1861                 return -ENOMEM;
1862
1863         /* Check ksm_run too?  Would need tighter locking */
1864         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1865
1866         spin_lock(&ksm_mmlist_lock);
1867         insert_to_mm_slots_hash(mm, mm_slot);
1868         /*
1869          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1870          * insert just behind the scanning cursor, to let the area settle
1871          * down a little; when fork is followed by immediate exec, we don't
1872          * want ksmd to waste time setting up and tearing down an rmap_list.
1873          *
1874          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1875          * scanning cursor, otherwise KSM pages in newly forked mms will be
1876          * missed: then we might as well insert at the end of the list.
1877          */
1878         if (ksm_run & KSM_RUN_UNMERGE)
1879                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1880         else
1881                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1882         spin_unlock(&ksm_mmlist_lock);
1883
1884         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1885         atomic_inc(&mm->mm_count);
1886
1887         if (needs_wakeup)
1888                 wake_up_interruptible(&ksm_thread_wait);
1889
1890         return 0;
1891 }
1892
1893 void __ksm_exit(struct mm_struct *mm)
1894 {
1895         struct mm_slot *mm_slot;
1896         int easy_to_free = 0;
1897
1898         /*
1899          * This process is exiting: if it's straightforward (as is the
1900          * case when ksmd was never running), free mm_slot immediately.
1901          * But if it's at the cursor or has rmap_items linked to it, use
1902          * mmap_sem to synchronize with any break_cows before pagetables
1903          * are freed, and leave the mm_slot on the list for ksmd to free.
1904          * Beware: ksm may already have noticed it exiting and freed the slot.
1905          */
1906
1907         spin_lock(&ksm_mmlist_lock);
1908         mm_slot = get_mm_slot(mm);
1909         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1910                 if (!mm_slot->rmap_list) {
1911                         hash_del(&mm_slot->link);
1912                         list_del(&mm_slot->mm_list);
1913                         easy_to_free = 1;
1914                 } else {
1915                         list_move(&mm_slot->mm_list,
1916                                   &ksm_scan.mm_slot->mm_list);
1917                 }
1918         }
1919         spin_unlock(&ksm_mmlist_lock);
1920
1921         if (easy_to_free) {
1922                 free_mm_slot(mm_slot);
1923                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1924                 mmdrop(mm);
1925         } else if (mm_slot) {
1926                 down_write(&mm->mmap_sem);
1927                 up_write(&mm->mmap_sem);
1928         }
1929 }
1930
1931 struct page *ksm_might_need_to_copy(struct page *page,
1932                         struct vm_area_struct *vma, unsigned long address)
1933 {
1934         struct anon_vma *anon_vma = page_anon_vma(page);
1935         struct page *new_page;
1936
1937         if (PageKsm(page)) {
1938                 if (page_stable_node(page) &&
1939                     !(ksm_run & KSM_RUN_UNMERGE))
1940                         return page;    /* no need to copy it */
1941         } else if (!anon_vma) {
1942                 return page;            /* no need to copy it */
1943         } else if (anon_vma->root == vma->anon_vma->root &&
1944                  page->index == linear_page_index(vma, address)) {
1945                 return page;            /* still no need to copy it */
1946         }
1947         if (!PageUptodate(page))
1948                 return page;            /* let do_swap_page report the error */
1949
1950         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1951         if (new_page) {
1952                 copy_user_highpage(new_page, page, address, vma);
1953
1954                 SetPageDirty(new_page);
1955                 __SetPageUptodate(new_page);
1956                 __set_page_locked(new_page);
1957         }
1958
1959         return new_page;
1960 }
1961
1962 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1963 {
1964         struct stable_node *stable_node;
1965         struct rmap_item *rmap_item;
1966         int ret = SWAP_AGAIN;
1967         int search_new_forks = 0;
1968
1969         VM_BUG_ON_PAGE(!PageKsm(page), page);
1970
1971         /*
1972          * Rely on the page lock to protect against concurrent modifications
1973          * to that page's node of the stable tree.
1974          */
1975         VM_BUG_ON_PAGE(!PageLocked(page), page);
1976
1977         stable_node = page_stable_node(page);
1978         if (!stable_node)
1979                 return ret;
1980 again:
1981         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1982                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1983                 struct anon_vma_chain *vmac;
1984                 struct vm_area_struct *vma;
1985
1986                 cond_resched();
1987                 anon_vma_lock_read(anon_vma);
1988                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1989                                                0, ULONG_MAX) {
1990                         cond_resched();
1991                         vma = vmac->vma;
1992                         if (rmap_item->address < vma->vm_start ||
1993                             rmap_item->address >= vma->vm_end)
1994                                 continue;
1995                         /*
1996                          * Initially we examine only the vma which covers this
1997                          * rmap_item; but later, if there is still work to do,
1998                          * we examine covering vmas in other mms: in case they
1999                          * were forked from the original since ksmd passed.
2000                          */
2001                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2002                                 continue;
2003
2004                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2005                                 continue;
2006
2007                         ret = rwc->rmap_one(page, vma,
2008                                         rmap_item->address, rwc->arg);
2009                         if (ret != SWAP_AGAIN) {
2010                                 anon_vma_unlock_read(anon_vma);
2011                                 goto out;
2012                         }
2013                         if (rwc->done && rwc->done(page)) {
2014                                 anon_vma_unlock_read(anon_vma);
2015                                 goto out;
2016                         }
2017                 }
2018                 anon_vma_unlock_read(anon_vma);
2019         }
2020         if (!search_new_forks++)
2021                 goto again;
2022 out:
2023         return ret;
2024 }
2025
2026 #ifdef CONFIG_MIGRATION
2027 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2028 {
2029         struct stable_node *stable_node;
2030
2031         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2032         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2033         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2034
2035         stable_node = page_stable_node(newpage);
2036         if (stable_node) {
2037                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2038                 stable_node->kpfn = page_to_pfn(newpage);
2039                 /*
2040                  * newpage->mapping was set in advance; now we need smp_wmb()
2041                  * to make sure that the new stable_node->kpfn is visible
2042                  * to get_ksm_page() before it can see that oldpage->mapping
2043                  * has gone stale (or that PageSwapCache has been cleared).
2044                  */
2045                 smp_wmb();
2046                 set_page_stable_node(oldpage, NULL);
2047         }
2048 }
2049 #endif /* CONFIG_MIGRATION */
2050
2051 #ifdef CONFIG_MEMORY_HOTREMOVE
2052 static void wait_while_offlining(void)
2053 {
2054         while (ksm_run & KSM_RUN_OFFLINE) {
2055                 mutex_unlock(&ksm_thread_mutex);
2056                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2057                             TASK_UNINTERRUPTIBLE);
2058                 mutex_lock(&ksm_thread_mutex);
2059         }
2060 }
2061
2062 static void ksm_check_stable_tree(unsigned long start_pfn,
2063                                   unsigned long end_pfn)
2064 {
2065         struct stable_node *stable_node;
2066         struct list_head *this, *next;
2067         struct rb_node *node;
2068         int nid;
2069
2070         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2071                 node = rb_first(root_stable_tree + nid);
2072                 while (node) {
2073                         stable_node = rb_entry(node, struct stable_node, node);
2074                         if (stable_node->kpfn >= start_pfn &&
2075                             stable_node->kpfn < end_pfn) {
2076                                 /*
2077                                  * Don't get_ksm_page, page has already gone:
2078                                  * which is why we keep kpfn instead of page*
2079                                  */
2080                                 remove_node_from_stable_tree(stable_node);
2081                                 node = rb_first(root_stable_tree + nid);
2082                         } else
2083                                 node = rb_next(node);
2084                         cond_resched();
2085                 }
2086         }
2087         list_for_each_safe(this, next, &migrate_nodes) {
2088                 stable_node = list_entry(this, struct stable_node, list);
2089                 if (stable_node->kpfn >= start_pfn &&
2090                     stable_node->kpfn < end_pfn)
2091                         remove_node_from_stable_tree(stable_node);
2092                 cond_resched();
2093         }
2094 }
2095
2096 static int ksm_memory_callback(struct notifier_block *self,
2097                                unsigned long action, void *arg)
2098 {
2099         struct memory_notify *mn = arg;
2100
2101         switch (action) {
2102         case MEM_GOING_OFFLINE:
2103                 /*
2104                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2105                  * and remove_all_stable_nodes() while memory is going offline:
2106                  * it is unsafe for them to touch the stable tree at this time.
2107                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2108                  * which do not need the ksm_thread_mutex are all safe.
2109                  */
2110                 mutex_lock(&ksm_thread_mutex);
2111                 ksm_run |= KSM_RUN_OFFLINE;
2112                 mutex_unlock(&ksm_thread_mutex);
2113                 break;
2114
2115         case MEM_OFFLINE:
2116                 /*
2117                  * Most of the work is done by page migration; but there might
2118                  * be a few stable_nodes left over, still pointing to struct
2119                  * pages which have been offlined: prune those from the tree,
2120                  * otherwise get_ksm_page() might later try to access a
2121                  * non-existent struct page.
2122                  */
2123                 ksm_check_stable_tree(mn->start_pfn,
2124                                       mn->start_pfn + mn->nr_pages);
2125                 /* fallthrough */
2126
2127         case MEM_CANCEL_OFFLINE:
2128                 mutex_lock(&ksm_thread_mutex);
2129                 ksm_run &= ~KSM_RUN_OFFLINE;
2130                 mutex_unlock(&ksm_thread_mutex);
2131
2132                 smp_mb();       /* wake_up_bit advises this */
2133                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2134                 break;
2135         }
2136         return NOTIFY_OK;
2137 }
2138 #else
2139 static void wait_while_offlining(void)
2140 {
2141 }
2142 #endif /* CONFIG_MEMORY_HOTREMOVE */
2143
2144 #ifdef CONFIG_SYSFS
2145 /*
2146  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2147  */
2148
2149 #define KSM_ATTR_RO(_name) \
2150         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2151 #define KSM_ATTR(_name) \
2152         static struct kobj_attribute _name##_attr = \
2153                 __ATTR(_name, 0644, _name##_show, _name##_store)
2154
2155 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2156                                     struct kobj_attribute *attr, char *buf)
2157 {
2158         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2159 }
2160
2161 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2162                                      struct kobj_attribute *attr,
2163                                      const char *buf, size_t count)
2164 {
2165         unsigned long msecs;
2166         int err;
2167
2168         err = kstrtoul(buf, 10, &msecs);
2169         if (err || msecs > UINT_MAX)
2170                 return -EINVAL;
2171
2172         ksm_thread_sleep_millisecs = msecs;
2173
2174         return count;
2175 }
2176 KSM_ATTR(sleep_millisecs);
2177
2178 static ssize_t pages_to_scan_show(struct kobject *kobj,
2179                                   struct kobj_attribute *attr, char *buf)
2180 {
2181         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2182 }
2183
2184 static ssize_t pages_to_scan_store(struct kobject *kobj,
2185                                    struct kobj_attribute *attr,
2186                                    const char *buf, size_t count)
2187 {
2188         int err;
2189         unsigned long nr_pages;
2190
2191         err = kstrtoul(buf, 10, &nr_pages);
2192         if (err || nr_pages > UINT_MAX)
2193                 return -EINVAL;
2194
2195         ksm_thread_pages_to_scan = nr_pages;
2196
2197         return count;
2198 }
2199 KSM_ATTR(pages_to_scan);
2200
2201 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2202                         char *buf)
2203 {
2204         return sprintf(buf, "%lu\n", ksm_run);
2205 }
2206
2207 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2208                          const char *buf, size_t count)
2209 {
2210         int err;
2211         unsigned long flags;
2212
2213         err = kstrtoul(buf, 10, &flags);
2214         if (err || flags > UINT_MAX)
2215                 return -EINVAL;
2216         if (flags > KSM_RUN_UNMERGE)
2217                 return -EINVAL;
2218
2219         /*
2220          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2221          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2222          * breaking COW to free the pages_shared (but leaves mm_slots
2223          * on the list for when ksmd may be set running again).
2224          */
2225
2226         mutex_lock(&ksm_thread_mutex);
2227         wait_while_offlining();
2228         if (ksm_run != flags) {
2229                 ksm_run = flags;
2230                 if (flags & KSM_RUN_UNMERGE) {
2231                         set_current_oom_origin();
2232                         err = unmerge_and_remove_all_rmap_items();
2233                         clear_current_oom_origin();
2234                         if (err) {
2235                                 ksm_run = KSM_RUN_STOP;
2236                                 count = err;
2237                         }
2238                 }
2239         }
2240         mutex_unlock(&ksm_thread_mutex);
2241
2242         if (flags & KSM_RUN_MERGE)
2243                 wake_up_interruptible(&ksm_thread_wait);
2244
2245         return count;
2246 }
2247 KSM_ATTR(run);
2248
2249 #ifdef CONFIG_NUMA
2250 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2251                                 struct kobj_attribute *attr, char *buf)
2252 {
2253         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2254 }
2255
2256 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2257                                    struct kobj_attribute *attr,
2258                                    const char *buf, size_t count)
2259 {
2260         int err;
2261         unsigned long knob;
2262
2263         err = kstrtoul(buf, 10, &knob);
2264         if (err)
2265                 return err;
2266         if (knob > 1)
2267                 return -EINVAL;
2268
2269         mutex_lock(&ksm_thread_mutex);
2270         wait_while_offlining();
2271         if (ksm_merge_across_nodes != knob) {
2272                 if (ksm_pages_shared || remove_all_stable_nodes())
2273                         err = -EBUSY;
2274                 else if (root_stable_tree == one_stable_tree) {
2275                         struct rb_root *buf;
2276                         /*
2277                          * This is the first time that we switch away from the
2278                          * default of merging across nodes: must now allocate
2279                          * a buffer to hold as many roots as may be needed.
2280                          * Allocate stable and unstable together:
2281                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2282                          */
2283                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2284                                       GFP_KERNEL);
2285                         /* Let us assume that RB_ROOT is NULL is zero */
2286                         if (!buf)
2287                                 err = -ENOMEM;
2288                         else {
2289                                 root_stable_tree = buf;
2290                                 root_unstable_tree = buf + nr_node_ids;
2291                                 /* Stable tree is empty but not the unstable */
2292                                 root_unstable_tree[0] = one_unstable_tree[0];
2293                         }
2294                 }
2295                 if (!err) {
2296                         ksm_merge_across_nodes = knob;
2297                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2298                 }
2299         }
2300         mutex_unlock(&ksm_thread_mutex);
2301
2302         return err ? err : count;
2303 }
2304 KSM_ATTR(merge_across_nodes);
2305 #endif
2306
2307 static ssize_t pages_shared_show(struct kobject *kobj,
2308                                  struct kobj_attribute *attr, char *buf)
2309 {
2310         return sprintf(buf, "%lu\n", ksm_pages_shared);
2311 }
2312 KSM_ATTR_RO(pages_shared);
2313
2314 static ssize_t pages_sharing_show(struct kobject *kobj,
2315                                   struct kobj_attribute *attr, char *buf)
2316 {
2317         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2318 }
2319 KSM_ATTR_RO(pages_sharing);
2320
2321 static ssize_t pages_unshared_show(struct kobject *kobj,
2322                                    struct kobj_attribute *attr, char *buf)
2323 {
2324         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2325 }
2326 KSM_ATTR_RO(pages_unshared);
2327
2328 static ssize_t pages_volatile_show(struct kobject *kobj,
2329                                    struct kobj_attribute *attr, char *buf)
2330 {
2331         long ksm_pages_volatile;
2332
2333         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2334                                 - ksm_pages_sharing - ksm_pages_unshared;
2335         /*
2336          * It was not worth any locking to calculate that statistic,
2337          * but it might therefore sometimes be negative: conceal that.
2338          */
2339         if (ksm_pages_volatile < 0)
2340                 ksm_pages_volatile = 0;
2341         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2342 }
2343 KSM_ATTR_RO(pages_volatile);
2344
2345 static ssize_t full_scans_show(struct kobject *kobj,
2346                                struct kobj_attribute *attr, char *buf)
2347 {
2348         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2349 }
2350 KSM_ATTR_RO(full_scans);
2351
2352 static struct attribute *ksm_attrs[] = {
2353         &sleep_millisecs_attr.attr,
2354         &pages_to_scan_attr.attr,
2355         &run_attr.attr,
2356         &pages_shared_attr.attr,
2357         &pages_sharing_attr.attr,
2358         &pages_unshared_attr.attr,
2359         &pages_volatile_attr.attr,
2360         &full_scans_attr.attr,
2361 #ifdef CONFIG_NUMA
2362         &merge_across_nodes_attr.attr,
2363 #endif
2364         NULL,
2365 };
2366
2367 static struct attribute_group ksm_attr_group = {
2368         .attrs = ksm_attrs,
2369         .name = "ksm",
2370 };
2371 #endif /* CONFIG_SYSFS */
2372
2373 static int __init ksm_init(void)
2374 {
2375         struct task_struct *ksm_thread;
2376         int err;
2377
2378         err = ksm_slab_init();
2379         if (err)
2380                 goto out;
2381
2382         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2383         if (IS_ERR(ksm_thread)) {
2384                 pr_err("ksm: creating kthread failed\n");
2385                 err = PTR_ERR(ksm_thread);
2386                 goto out_free;
2387         }
2388
2389 #ifdef CONFIG_SYSFS
2390         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2391         if (err) {
2392                 pr_err("ksm: register sysfs failed\n");
2393                 kthread_stop(ksm_thread);
2394                 goto out_free;
2395         }
2396 #else
2397         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2398
2399 #endif /* CONFIG_SYSFS */
2400
2401 #ifdef CONFIG_MEMORY_HOTREMOVE
2402         /* There is no significance to this priority 100 */
2403         hotplug_memory_notifier(ksm_memory_callback, 100);
2404 #endif
2405         return 0;
2406
2407 out_free:
2408         ksm_slab_free();
2409 out:
2410         return err;
2411 }
2412 subsys_initcall(ksm_init);