]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memblock.c
memblock: Kill memblock_init()
[karo-tx-linux.git] / mm / memblock.c
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.     June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26 struct memblock memblock __initdata_memblock = {
27         .memory.regions         = memblock_memory_init_regions,
28         .memory.cnt             = 1,    /* empty dummy entry */
29         .memory.max             = INIT_MEMBLOCK_REGIONS,
30
31         .reserved.regions       = memblock_reserved_init_regions,
32         .reserved.cnt           = 1,    /* empty dummy entry */
33         .reserved.max           = INIT_MEMBLOCK_REGIONS,
34
35         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
36 };
37
38 int memblock_debug __initdata_memblock;
39 int memblock_can_resize __initdata_memblock;
40
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
43 {
44         if (type == &memblock.memory)
45                 return "memory";
46         else if (type == &memblock.reserved)
47                 return "reserved";
48         else
49                 return "unknown";
50 }
51
52 /*
53  * Address comparison utilities
54  */
55 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56                                        phys_addr_t base2, phys_addr_t size2)
57 {
58         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
59 }
60
61 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
62                                         phys_addr_t base, phys_addr_t size)
63 {
64         unsigned long i;
65
66         for (i = 0; i < type->cnt; i++) {
67                 phys_addr_t rgnbase = type->regions[i].base;
68                 phys_addr_t rgnsize = type->regions[i].size;
69                 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
70                         break;
71         }
72
73         return (i < type->cnt) ? i : -1;
74 }
75
76 /*
77  * Find, allocate, deallocate or reserve unreserved regions. All allocations
78  * are top-down.
79  */
80
81 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
82                                           phys_addr_t size, phys_addr_t align)
83 {
84         phys_addr_t base, res_base;
85         long j;
86
87         /* In case, huge size is requested */
88         if (end < size)
89                 return 0;
90
91         base = round_down(end - size, align);
92
93         /* Prevent allocations returning 0 as it's also used to
94          * indicate an allocation failure
95          */
96         if (start == 0)
97                 start = PAGE_SIZE;
98
99         while (start <= base) {
100                 j = memblock_overlaps_region(&memblock.reserved, base, size);
101                 if (j < 0)
102                         return base;
103                 res_base = memblock.reserved.regions[j].base;
104                 if (res_base < size)
105                         break;
106                 base = round_down(res_base - size, align);
107         }
108
109         return 0;
110 }
111
112 /*
113  * Find a free area with specified alignment in a specific range.
114  */
115 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
116                                         phys_addr_t size, phys_addr_t align)
117 {
118         long i;
119
120         BUG_ON(0 == size);
121
122         /* Pump up max_addr */
123         if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
124                 end = memblock.current_limit;
125
126         /* We do a top-down search, this tends to limit memory
127          * fragmentation by keeping early boot allocs near the
128          * top of memory
129          */
130         for (i = memblock.memory.cnt - 1; i >= 0; i--) {
131                 phys_addr_t memblockbase = memblock.memory.regions[i].base;
132                 phys_addr_t memblocksize = memblock.memory.regions[i].size;
133                 phys_addr_t bottom, top, found;
134
135                 if (memblocksize < size)
136                         continue;
137                 if ((memblockbase + memblocksize) <= start)
138                         break;
139                 bottom = max(memblockbase, start);
140                 top = min(memblockbase + memblocksize, end);
141                 if (bottom >= top)
142                         continue;
143                 found = memblock_find_region(bottom, top, size, align);
144                 if (found)
145                         return found;
146         }
147         return 0;
148 }
149
150 /*
151  * Free memblock.reserved.regions
152  */
153 int __init_memblock memblock_free_reserved_regions(void)
154 {
155         if (memblock.reserved.regions == memblock_reserved_init_regions)
156                 return 0;
157
158         return memblock_free(__pa(memblock.reserved.regions),
159                  sizeof(struct memblock_region) * memblock.reserved.max);
160 }
161
162 /*
163  * Reserve memblock.reserved.regions
164  */
165 int __init_memblock memblock_reserve_reserved_regions(void)
166 {
167         if (memblock.reserved.regions == memblock_reserved_init_regions)
168                 return 0;
169
170         return memblock_reserve(__pa(memblock.reserved.regions),
171                  sizeof(struct memblock_region) * memblock.reserved.max);
172 }
173
174 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
175 {
176         memmove(&type->regions[r], &type->regions[r + 1],
177                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
178         type->cnt--;
179
180         /* Special case for empty arrays */
181         if (type->cnt == 0) {
182                 type->cnt = 1;
183                 type->regions[0].base = 0;
184                 type->regions[0].size = 0;
185                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
186         }
187 }
188
189 static int __init_memblock memblock_double_array(struct memblock_type *type)
190 {
191         struct memblock_region *new_array, *old_array;
192         phys_addr_t old_size, new_size, addr;
193         int use_slab = slab_is_available();
194
195         /* We don't allow resizing until we know about the reserved regions
196          * of memory that aren't suitable for allocation
197          */
198         if (!memblock_can_resize)
199                 return -1;
200
201         /* Calculate new doubled size */
202         old_size = type->max * sizeof(struct memblock_region);
203         new_size = old_size << 1;
204
205         /* Try to find some space for it.
206          *
207          * WARNING: We assume that either slab_is_available() and we use it or
208          * we use MEMBLOCK for allocations. That means that this is unsafe to use
209          * when bootmem is currently active (unless bootmem itself is implemented
210          * on top of MEMBLOCK which isn't the case yet)
211          *
212          * This should however not be an issue for now, as we currently only
213          * call into MEMBLOCK while it's still active, or much later when slab is
214          * active for memory hotplug operations
215          */
216         if (use_slab) {
217                 new_array = kmalloc(new_size, GFP_KERNEL);
218                 addr = new_array ? __pa(new_array) : 0;
219         } else
220                 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
221         if (!addr) {
222                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
223                        memblock_type_name(type), type->max, type->max * 2);
224                 return -1;
225         }
226         new_array = __va(addr);
227
228         memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
229                  memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
230
231         /* Found space, we now need to move the array over before
232          * we add the reserved region since it may be our reserved
233          * array itself that is full.
234          */
235         memcpy(new_array, type->regions, old_size);
236         memset(new_array + type->max, 0, old_size);
237         old_array = type->regions;
238         type->regions = new_array;
239         type->max <<= 1;
240
241         /* If we use SLAB that's it, we are done */
242         if (use_slab)
243                 return 0;
244
245         /* Add the new reserved region now. Should not fail ! */
246         BUG_ON(memblock_reserve(addr, new_size));
247
248         /* If the array wasn't our static init one, then free it. We only do
249          * that before SLAB is available as later on, we don't know whether
250          * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
251          * anyways
252          */
253         if (old_array != memblock_memory_init_regions &&
254             old_array != memblock_reserved_init_regions)
255                 memblock_free(__pa(old_array), old_size);
256
257         return 0;
258 }
259
260 /**
261  * memblock_merge_regions - merge neighboring compatible regions
262  * @type: memblock type to scan
263  *
264  * Scan @type and merge neighboring compatible regions.
265  */
266 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
267 {
268         int i = 0;
269
270         /* cnt never goes below 1 */
271         while (i < type->cnt - 1) {
272                 struct memblock_region *this = &type->regions[i];
273                 struct memblock_region *next = &type->regions[i + 1];
274
275                 if (this->base + this->size != next->base ||
276                     memblock_get_region_node(this) !=
277                     memblock_get_region_node(next)) {
278                         BUG_ON(this->base + this->size > next->base);
279                         i++;
280                         continue;
281                 }
282
283                 this->size += next->size;
284                 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
285                 type->cnt--;
286         }
287 }
288
289 /**
290  * memblock_insert_region - insert new memblock region
291  * @type: memblock type to insert into
292  * @idx: index for the insertion point
293  * @base: base address of the new region
294  * @size: size of the new region
295  *
296  * Insert new memblock region [@base,@base+@size) into @type at @idx.
297  * @type must already have extra room to accomodate the new region.
298  */
299 static void __init_memblock memblock_insert_region(struct memblock_type *type,
300                                                    int idx, phys_addr_t base,
301                                                    phys_addr_t size, int nid)
302 {
303         struct memblock_region *rgn = &type->regions[idx];
304
305         BUG_ON(type->cnt >= type->max);
306         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
307         rgn->base = base;
308         rgn->size = size;
309         memblock_set_region_node(rgn, nid);
310         type->cnt++;
311 }
312
313 /**
314  * memblock_add_region - add new memblock region
315  * @type: memblock type to add new region into
316  * @base: base address of the new region
317  * @size: size of the new region
318  *
319  * Add new memblock region [@base,@base+@size) into @type.  The new region
320  * is allowed to overlap with existing ones - overlaps don't affect already
321  * existing regions.  @type is guaranteed to be minimal (all neighbouring
322  * compatible regions are merged) after the addition.
323  *
324  * RETURNS:
325  * 0 on success, -errno on failure.
326  */
327 static int __init_memblock memblock_add_region(struct memblock_type *type,
328                                                phys_addr_t base, phys_addr_t size)
329 {
330         bool insert = false;
331         phys_addr_t obase = base, end = base + size;
332         int i, nr_new;
333
334         /* special case for empty array */
335         if (type->regions[0].size == 0) {
336                 WARN_ON(type->cnt != 1);
337                 type->regions[0].base = base;
338                 type->regions[0].size = size;
339                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
340                 return 0;
341         }
342 repeat:
343         /*
344          * The following is executed twice.  Once with %false @insert and
345          * then with %true.  The first counts the number of regions needed
346          * to accomodate the new area.  The second actually inserts them.
347          */
348         base = obase;
349         nr_new = 0;
350
351         for (i = 0; i < type->cnt; i++) {
352                 struct memblock_region *rgn = &type->regions[i];
353                 phys_addr_t rbase = rgn->base;
354                 phys_addr_t rend = rbase + rgn->size;
355
356                 if (rbase >= end)
357                         break;
358                 if (rend <= base)
359                         continue;
360                 /*
361                  * @rgn overlaps.  If it separates the lower part of new
362                  * area, insert that portion.
363                  */
364                 if (rbase > base) {
365                         nr_new++;
366                         if (insert)
367                                 memblock_insert_region(type, i++, base,
368                                                 rbase - base, MAX_NUMNODES);
369                 }
370                 /* area below @rend is dealt with, forget about it */
371                 base = min(rend, end);
372         }
373
374         /* insert the remaining portion */
375         if (base < end) {
376                 nr_new++;
377                 if (insert)
378                         memblock_insert_region(type, i, base, end - base,
379                                                MAX_NUMNODES);
380         }
381
382         /*
383          * If this was the first round, resize array and repeat for actual
384          * insertions; otherwise, merge and return.
385          */
386         if (!insert) {
387                 while (type->cnt + nr_new > type->max)
388                         if (memblock_double_array(type) < 0)
389                                 return -ENOMEM;
390                 insert = true;
391                 goto repeat;
392         } else {
393                 memblock_merge_regions(type);
394                 return 0;
395         }
396 }
397
398 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
399 {
400         return memblock_add_region(&memblock.memory, base, size);
401 }
402
403 static int __init_memblock __memblock_remove(struct memblock_type *type,
404                                              phys_addr_t base, phys_addr_t size)
405 {
406         phys_addr_t end = base + size;
407         int i;
408
409         /* Walk through the array for collisions */
410         for (i = 0; i < type->cnt; i++) {
411                 struct memblock_region *rgn = &type->regions[i];
412                 phys_addr_t rend = rgn->base + rgn->size;
413
414                 /* Nothing more to do, exit */
415                 if (rgn->base > end || rgn->size == 0)
416                         break;
417
418                 /* If we fully enclose the block, drop it */
419                 if (base <= rgn->base && end >= rend) {
420                         memblock_remove_region(type, i--);
421                         continue;
422                 }
423
424                 /* If we are fully enclosed within a block
425                  * then we need to split it and we are done
426                  */
427                 if (base > rgn->base && end < rend) {
428                         rgn->size = base - rgn->base;
429                         if (!memblock_add_region(type, end, rend - end))
430                                 return 0;
431                         /* Failure to split is bad, we at least
432                          * restore the block before erroring
433                          */
434                         rgn->size = rend - rgn->base;
435                         WARN_ON(1);
436                         return -1;
437                 }
438
439                 /* Check if we need to trim the bottom of a block */
440                 if (rgn->base < end && rend > end) {
441                         rgn->size -= end - rgn->base;
442                         rgn->base = end;
443                         break;
444                 }
445
446                 /* And check if we need to trim the top of a block */
447                 if (base < rend)
448                         rgn->size -= rend - base;
449
450         }
451         return 0;
452 }
453
454 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
455 {
456         return __memblock_remove(&memblock.memory, base, size);
457 }
458
459 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
460 {
461         memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
462                      (unsigned long long)base,
463                      (unsigned long long)base + size,
464                      (void *)_RET_IP_);
465
466         return __memblock_remove(&memblock.reserved, base, size);
467 }
468
469 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
470 {
471         struct memblock_type *_rgn = &memblock.reserved;
472
473         memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
474                      (unsigned long long)base,
475                      (unsigned long long)base + size,
476                      (void *)_RET_IP_);
477         BUG_ON(0 == size);
478
479         return memblock_add_region(_rgn, base, size);
480 }
481
482 /**
483  * __next_free_mem_range - next function for for_each_free_mem_range()
484  * @idx: pointer to u64 loop variable
485  * @nid: nid: node selector, %MAX_NUMNODES for all nodes
486  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
487  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
488  * @p_nid: ptr to int for nid of the range, can be %NULL
489  *
490  * Find the first free area from *@idx which matches @nid, fill the out
491  * parameters, and update *@idx for the next iteration.  The lower 32bit of
492  * *@idx contains index into memory region and the upper 32bit indexes the
493  * areas before each reserved region.  For example, if reserved regions
494  * look like the following,
495  *
496  *      0:[0-16), 1:[32-48), 2:[128-130)
497  *
498  * The upper 32bit indexes the following regions.
499  *
500  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
501  *
502  * As both region arrays are sorted, the function advances the two indices
503  * in lockstep and returns each intersection.
504  */
505 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
506                                            phys_addr_t *out_start,
507                                            phys_addr_t *out_end, int *out_nid)
508 {
509         struct memblock_type *mem = &memblock.memory;
510         struct memblock_type *rsv = &memblock.reserved;
511         int mi = *idx & 0xffffffff;
512         int ri = *idx >> 32;
513
514         for ( ; mi < mem->cnt; mi++) {
515                 struct memblock_region *m = &mem->regions[mi];
516                 phys_addr_t m_start = m->base;
517                 phys_addr_t m_end = m->base + m->size;
518
519                 /* only memory regions are associated with nodes, check it */
520                 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
521                         continue;
522
523                 /* scan areas before each reservation for intersection */
524                 for ( ; ri < rsv->cnt + 1; ri++) {
525                         struct memblock_region *r = &rsv->regions[ri];
526                         phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
527                         phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
528
529                         /* if ri advanced past mi, break out to advance mi */
530                         if (r_start >= m_end)
531                                 break;
532                         /* if the two regions intersect, we're done */
533                         if (m_start < r_end) {
534                                 if (out_start)
535                                         *out_start = max(m_start, r_start);
536                                 if (out_end)
537                                         *out_end = min(m_end, r_end);
538                                 if (out_nid)
539                                         *out_nid = memblock_get_region_node(m);
540                                 /*
541                                  * The region which ends first is advanced
542                                  * for the next iteration.
543                                  */
544                                 if (m_end <= r_end)
545                                         mi++;
546                                 else
547                                         ri++;
548                                 *idx = (u32)mi | (u64)ri << 32;
549                                 return;
550                         }
551                 }
552         }
553
554         /* signal end of iteration */
555         *idx = ULLONG_MAX;
556 }
557
558 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
559 /*
560  * Common iterator interface used to define for_each_mem_range().
561  */
562 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
563                                 unsigned long *out_start_pfn,
564                                 unsigned long *out_end_pfn, int *out_nid)
565 {
566         struct memblock_type *type = &memblock.memory;
567         struct memblock_region *r;
568
569         while (++*idx < type->cnt) {
570                 r = &type->regions[*idx];
571
572                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
573                         continue;
574                 if (nid == MAX_NUMNODES || nid == r->nid)
575                         break;
576         }
577         if (*idx >= type->cnt) {
578                 *idx = -1;
579                 return;
580         }
581
582         if (out_start_pfn)
583                 *out_start_pfn = PFN_UP(r->base);
584         if (out_end_pfn)
585                 *out_end_pfn = PFN_DOWN(r->base + r->size);
586         if (out_nid)
587                 *out_nid = r->nid;
588 }
589
590 /**
591  * memblock_set_node - set node ID on memblock regions
592  * @base: base of area to set node ID for
593  * @size: size of area to set node ID for
594  * @nid: node ID to set
595  *
596  * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
597  * Regions which cross the area boundaries are split as necessary.
598  *
599  * RETURNS:
600  * 0 on success, -errno on failure.
601  */
602 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
603                                       int nid)
604 {
605         struct memblock_type *type = &memblock.memory;
606         phys_addr_t end = base + size;
607         int i;
608
609         /* we'll create at most two more regions */
610         while (type->cnt + 2 > type->max)
611                 if (memblock_double_array(type) < 0)
612                         return -ENOMEM;
613
614         for (i = 0; i < type->cnt; i++) {
615                 struct memblock_region *rgn = &type->regions[i];
616                 phys_addr_t rbase = rgn->base;
617                 phys_addr_t rend = rbase + rgn->size;
618
619                 if (rbase >= end)
620                         break;
621                 if (rend <= base)
622                         continue;
623
624                 if (rbase < base) {
625                         /*
626                          * @rgn intersects from below.  Split and continue
627                          * to process the next region - the new top half.
628                          */
629                         rgn->base = base;
630                         rgn->size = rend - rgn->base;
631                         memblock_insert_region(type, i, rbase, base - rbase,
632                                                rgn->nid);
633                 } else if (rend > end) {
634                         /*
635                          * @rgn intersects from above.  Split and redo the
636                          * current region - the new bottom half.
637                          */
638                         rgn->base = end;
639                         rgn->size = rend - rgn->base;
640                         memblock_insert_region(type, i--, rbase, end - rbase,
641                                                rgn->nid);
642                 } else {
643                         /* @rgn is fully contained, set ->nid */
644                         rgn->nid = nid;
645                 }
646         }
647
648         memblock_merge_regions(type);
649         return 0;
650 }
651 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
652
653 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
654 {
655         phys_addr_t found;
656
657         /* We align the size to limit fragmentation. Without this, a lot of
658          * small allocs quickly eat up the whole reserve array on sparc
659          */
660         size = round_up(size, align);
661
662         found = memblock_find_in_range(0, max_addr, size, align);
663         if (found && !memblock_reserve(found, size))
664                 return found;
665
666         return 0;
667 }
668
669 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
670 {
671         phys_addr_t alloc;
672
673         alloc = __memblock_alloc_base(size, align, max_addr);
674
675         if (alloc == 0)
676                 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
677                       (unsigned long long) size, (unsigned long long) max_addr);
678
679         return alloc;
680 }
681
682 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
683 {
684         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
685 }
686
687
688 /*
689  * Additional node-local top-down allocators.
690  *
691  * WARNING: Only available after early_node_map[] has been populated,
692  * on some architectures, that is after all the calls to add_active_range()
693  * have been done to populate it.
694  */
695
696 static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
697                                                  phys_addr_t end, int *nid)
698 {
699 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
700         unsigned long start_pfn, end_pfn;
701         int i;
702
703         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
704                 if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
705                         return max(start, PFN_PHYS(start_pfn));
706 #endif
707         *nid = 0;
708         return start;
709 }
710
711 phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
712                                                phys_addr_t end,
713                                                phys_addr_t size,
714                                                phys_addr_t align, int nid)
715 {
716         struct memblock_type *mem = &memblock.memory;
717         int i;
718
719         BUG_ON(0 == size);
720
721         /* Pump up max_addr */
722         if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
723                 end = memblock.current_limit;
724
725         for (i = mem->cnt - 1; i >= 0; i--) {
726                 struct memblock_region *r = &mem->regions[i];
727                 phys_addr_t base = max(start, r->base);
728                 phys_addr_t top = min(end, r->base + r->size);
729
730                 while (base < top) {
731                         phys_addr_t tbase, ret;
732                         int tnid;
733
734                         tbase = memblock_nid_range_rev(base, top, &tnid);
735                         if (nid == MAX_NUMNODES || tnid == nid) {
736                                 ret = memblock_find_region(tbase, top, size, align);
737                                 if (ret)
738                                         return ret;
739                         }
740                         top = tbase;
741                 }
742         }
743
744         return 0;
745 }
746
747 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
748 {
749         phys_addr_t found;
750
751         /*
752          * We align the size to limit fragmentation. Without this, a lot of
753          * small allocs quickly eat up the whole reserve array on sparc
754          */
755         size = round_up(size, align);
756
757         found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
758                                             size, align, nid);
759         if (found && !memblock_reserve(found, size))
760                 return found;
761
762         return 0;
763 }
764
765 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
766 {
767         phys_addr_t res = memblock_alloc_nid(size, align, nid);
768
769         if (res)
770                 return res;
771         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
772 }
773
774
775 /*
776  * Remaining API functions
777  */
778
779 /* You must call memblock_analyze() before this. */
780 phys_addr_t __init memblock_phys_mem_size(void)
781 {
782         return memblock.memory_size;
783 }
784
785 /* lowest address */
786 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
787 {
788         return memblock.memory.regions[0].base;
789 }
790
791 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
792 {
793         int idx = memblock.memory.cnt - 1;
794
795         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
796 }
797
798 /* You must call memblock_analyze() after this. */
799 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
800 {
801         unsigned long i;
802         phys_addr_t limit;
803         struct memblock_region *p;
804
805         if (!memory_limit)
806                 return;
807
808         /* Truncate the memblock regions to satisfy the memory limit. */
809         limit = memory_limit;
810         for (i = 0; i < memblock.memory.cnt; i++) {
811                 if (limit > memblock.memory.regions[i].size) {
812                         limit -= memblock.memory.regions[i].size;
813                         continue;
814                 }
815
816                 memblock.memory.regions[i].size = limit;
817                 memblock.memory.cnt = i + 1;
818                 break;
819         }
820
821         memory_limit = memblock_end_of_DRAM();
822
823         /* And truncate any reserves above the limit also. */
824         for (i = 0; i < memblock.reserved.cnt; i++) {
825                 p = &memblock.reserved.regions[i];
826
827                 if (p->base > memory_limit)
828                         p->size = 0;
829                 else if ((p->base + p->size) > memory_limit)
830                         p->size = memory_limit - p->base;
831
832                 if (p->size == 0) {
833                         memblock_remove_region(&memblock.reserved, i);
834                         i--;
835                 }
836         }
837 }
838
839 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
840 {
841         unsigned int left = 0, right = type->cnt;
842
843         do {
844                 unsigned int mid = (right + left) / 2;
845
846                 if (addr < type->regions[mid].base)
847                         right = mid;
848                 else if (addr >= (type->regions[mid].base +
849                                   type->regions[mid].size))
850                         left = mid + 1;
851                 else
852                         return mid;
853         } while (left < right);
854         return -1;
855 }
856
857 int __init memblock_is_reserved(phys_addr_t addr)
858 {
859         return memblock_search(&memblock.reserved, addr) != -1;
860 }
861
862 int __init_memblock memblock_is_memory(phys_addr_t addr)
863 {
864         return memblock_search(&memblock.memory, addr) != -1;
865 }
866
867 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
868 {
869         int idx = memblock_search(&memblock.memory, base);
870
871         if (idx == -1)
872                 return 0;
873         return memblock.memory.regions[idx].base <= base &&
874                 (memblock.memory.regions[idx].base +
875                  memblock.memory.regions[idx].size) >= (base + size);
876 }
877
878 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
879 {
880         return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
881 }
882
883
884 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
885 {
886         memblock.current_limit = limit;
887 }
888
889 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
890 {
891         unsigned long long base, size;
892         int i;
893
894         pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
895
896         for (i = 0; i < type->cnt; i++) {
897                 struct memblock_region *rgn = &type->regions[i];
898                 char nid_buf[32] = "";
899
900                 base = rgn->base;
901                 size = rgn->size;
902 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
903                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
904                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
905                                  memblock_get_region_node(rgn));
906 #endif
907                 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
908                         name, i, base, base + size - 1, size, nid_buf);
909         }
910 }
911
912 void __init_memblock __memblock_dump_all(void)
913 {
914         pr_info("MEMBLOCK configuration:\n");
915         pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
916
917         memblock_dump(&memblock.memory, "memory");
918         memblock_dump(&memblock.reserved, "reserved");
919 }
920
921 void __init memblock_analyze(void)
922 {
923         int i;
924
925         memblock.memory_size = 0;
926
927         for (i = 0; i < memblock.memory.cnt; i++)
928                 memblock.memory_size += memblock.memory.regions[i].size;
929
930         /* We allow resizing from there */
931         memblock_can_resize = 1;
932 }
933
934 static int __init early_memblock(char *p)
935 {
936         if (p && strstr(p, "debug"))
937                 memblock_debug = 1;
938         return 0;
939 }
940 early_param("memblock", early_memblock);
941
942 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
943
944 static int memblock_debug_show(struct seq_file *m, void *private)
945 {
946         struct memblock_type *type = m->private;
947         struct memblock_region *reg;
948         int i;
949
950         for (i = 0; i < type->cnt; i++) {
951                 reg = &type->regions[i];
952                 seq_printf(m, "%4d: ", i);
953                 if (sizeof(phys_addr_t) == 4)
954                         seq_printf(m, "0x%08lx..0x%08lx\n",
955                                    (unsigned long)reg->base,
956                                    (unsigned long)(reg->base + reg->size - 1));
957                 else
958                         seq_printf(m, "0x%016llx..0x%016llx\n",
959                                    (unsigned long long)reg->base,
960                                    (unsigned long long)(reg->base + reg->size - 1));
961
962         }
963         return 0;
964 }
965
966 static int memblock_debug_open(struct inode *inode, struct file *file)
967 {
968         return single_open(file, memblock_debug_show, inode->i_private);
969 }
970
971 static const struct file_operations memblock_debug_fops = {
972         .open = memblock_debug_open,
973         .read = seq_read,
974         .llseek = seq_lseek,
975         .release = single_release,
976 };
977
978 static int __init memblock_init_debugfs(void)
979 {
980         struct dentry *root = debugfs_create_dir("memblock", NULL);
981         if (!root)
982                 return -ENXIO;
983         debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
984         debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
985
986         return 0;
987 }
988 __initcall(memblock_init_debugfs);
989
990 #endif /* CONFIG_DEBUG_FS */