]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memcontrol.c
52a45e16332cea20ed685678ab47924177844dd8
[karo-tx-linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES      5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account         (0)
77 #endif
78
79
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84         /*
85          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86          */
87         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
88         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
89         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
93         MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
98         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
99         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
100         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
101         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
102         MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111         MEM_CGROUP_TARGET_THRESH,
112         MEM_CGROUP_TARGET_SOFTLIMIT,
113         MEM_CGROUP_TARGET_NUMAINFO,
114         MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET  (1024)
119
120 struct mem_cgroup_stat_cpu {
121         long count[MEM_CGROUP_STAT_NSTATS];
122         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123         unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127         /* css_id of the last scanned hierarchy member */
128         int position;
129         /* scan generation, increased every round-trip */
130         unsigned int generation;
131 };
132
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137         struct lruvec           lruvec;
138         unsigned long           count[NR_LRU_LISTS];
139
140         struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142         struct zone_reclaim_stat reclaim_stat;
143         struct rb_node          tree_node;      /* RB tree node */
144         unsigned long long      usage_in_excess;/* Set to the value by which */
145                                                 /* the soft limit is exceeded*/
146         bool                    on_tree;
147         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
148                                                 /* use container_of        */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
152
153 struct mem_cgroup_per_node {
154         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156
157 struct mem_cgroup_lru_info {
158         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160
161 /*
162  * Cgroups above their limits are maintained in a RB-Tree, independent of
163  * their hierarchy representation
164  */
165
166 struct mem_cgroup_tree_per_zone {
167         struct rb_root rb_root;
168         spinlock_t lock;
169 };
170
171 struct mem_cgroup_tree_per_node {
172         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174
175 struct mem_cgroup_tree {
176         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181 struct mem_cgroup_threshold {
182         struct eventfd_ctx *eventfd;
183         u64 threshold;
184 };
185
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188         /* An array index points to threshold just below usage. */
189         int current_threshold;
190         /* Size of entries[] */
191         unsigned int size;
192         /* Array of thresholds */
193         struct mem_cgroup_threshold entries[0];
194 };
195
196 struct mem_cgroup_thresholds {
197         /* Primary thresholds array */
198         struct mem_cgroup_threshold_ary *primary;
199         /*
200          * Spare threshold array.
201          * This is needed to make mem_cgroup_unregister_event() "never fail".
202          * It must be able to store at least primary->size - 1 entries.
203          */
204         struct mem_cgroup_threshold_ary *spare;
205 };
206
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209         struct list_head list;
210         struct eventfd_ctx *eventfd;
211 };
212
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216 /*
217  * The memory controller data structure. The memory controller controls both
218  * page cache and RSS per cgroup. We would eventually like to provide
219  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220  * to help the administrator determine what knobs to tune.
221  *
222  * TODO: Add a water mark for the memory controller. Reclaim will begin when
223  * we hit the water mark. May be even add a low water mark, such that
224  * no reclaim occurs from a cgroup at it's low water mark, this is
225  * a feature that will be implemented much later in the future.
226  */
227 struct mem_cgroup {
228         struct cgroup_subsys_state css;
229         /*
230          * the counter to account for memory usage
231          */
232         struct res_counter res;
233         /*
234          * the counter to account for mem+swap usage.
235          */
236         struct res_counter memsw;
237         /*
238          * the counter to account for kmem usage.
239          */
240         struct res_counter kmem;
241         /*
242          * Per cgroup active and inactive list, similar to the
243          * per zone LRU lists.
244          */
245         struct mem_cgroup_lru_info info;
246         int last_scanned_node;
247 #if MAX_NUMNODES > 1
248         nodemask_t      scan_nodes;
249         atomic_t        numainfo_events;
250         atomic_t        numainfo_updating;
251 #endif
252         /*
253          * Should the accounting and control be hierarchical, per subtree?
254          */
255         bool use_hierarchy;
256
257         bool            oom_lock;
258         atomic_t        under_oom;
259
260         atomic_t        refcnt;
261
262         int     swappiness;
263         /* OOM-Killer disable */
264         int             oom_kill_disable;
265
266         /* set when res.limit == memsw.limit */
267         bool            memsw_is_minimum;
268
269         /* protect arrays of thresholds */
270         struct mutex thresholds_lock;
271
272         /* thresholds for memory usage. RCU-protected */
273         struct mem_cgroup_thresholds thresholds;
274
275         /* thresholds for mem+swap usage. RCU-protected */
276         struct mem_cgroup_thresholds memsw_thresholds;
277
278         /* For oom notifier event fd */
279         struct list_head oom_notify;
280
281         /*
282          * Should we move charges of a task when a task is moved into this
283          * mem_cgroup ? And what type of charges should we move ?
284          */
285         unsigned long   move_charge_at_immigrate;
286         /*
287          * Should kernel memory limits be stabilished independently
288          * from user memory ?
289          */
290         int             kmem_independent_accounting;
291         /*
292          * percpu counter.
293          */
294         struct mem_cgroup_stat_cpu *stat;
295         /*
296          * used when a cpu is offlined or other synchronizations
297          * See mem_cgroup_read_stat().
298          */
299         struct mem_cgroup_stat_cpu nocpu_base;
300         spinlock_t pcp_counter_lock;
301
302 #ifdef CONFIG_INET
303         struct tcp_memcontrol tcp_mem;
304 #endif
305 };
306
307 /* Stuffs for move charges at task migration. */
308 /*
309  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
310  * left-shifted bitmap of these types.
311  */
312 enum move_type {
313         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
314         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
315         NR_MOVE_TYPE,
316 };
317
318 /* "mc" and its members are protected by cgroup_mutex */
319 static struct move_charge_struct {
320         spinlock_t        lock; /* for from, to */
321         struct mem_cgroup *from;
322         struct mem_cgroup *to;
323         unsigned long precharge;
324         unsigned long moved_charge;
325         unsigned long moved_swap;
326         struct task_struct *moving_task;        /* a task moving charges */
327         wait_queue_head_t waitq;                /* a waitq for other context */
328 } mc = {
329         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
330         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
331 };
332
333 static bool move_anon(void)
334 {
335         return test_bit(MOVE_CHARGE_TYPE_ANON,
336                                         &mc.to->move_charge_at_immigrate);
337 }
338
339 static bool move_file(void)
340 {
341         return test_bit(MOVE_CHARGE_TYPE_FILE,
342                                         &mc.to->move_charge_at_immigrate);
343 }
344
345 /*
346  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
347  * limit reclaim to prevent infinite loops, if they ever occur.
348  */
349 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
350 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
351
352 enum charge_type {
353         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
354         MEM_CGROUP_CHARGE_TYPE_MAPPED,
355         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
356         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
357         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
358         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
359         NR_CHARGE_TYPE,
360 };
361
362 /* for encoding cft->private value on file */
363
364 enum mem_type {
365         _MEM = 0,
366         _MEMSWAP,
367         _OOM_TYPE,
368         _KMEM,
369 };
370
371 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
372 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
373 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
374 /* Used for OOM nofiier */
375 #define OOM_CONTROL             (0)
376
377 /*
378  * Reclaim flags for mem_cgroup_hierarchical_reclaim
379  */
380 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
381 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
382 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
383 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
384
385 static void mem_cgroup_get(struct mem_cgroup *memcg);
386 static void mem_cgroup_put(struct mem_cgroup *memcg);
387
388 /* Writing them here to avoid exposing memcg's inner layout */
389 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
390 #ifdef CONFIG_INET
391 #include <net/sock.h>
392 #include <net/ip.h>
393
394 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
395 void sock_update_memcg(struct sock *sk)
396 {
397         /* A socket spends its whole life in the same cgroup */
398         if (sk->sk_cgrp) {
399                 WARN_ON(1);
400                 return;
401         }
402         if (static_branch(&memcg_socket_limit_enabled)) {
403                 struct mem_cgroup *memcg;
404
405                 BUG_ON(!sk->sk_prot->proto_cgroup);
406
407                 rcu_read_lock();
408                 memcg = mem_cgroup_from_task(current);
409                 if (!mem_cgroup_is_root(memcg)) {
410                         mem_cgroup_get(memcg);
411                         sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
412                 }
413                 rcu_read_unlock();
414         }
415 }
416 EXPORT_SYMBOL(sock_update_memcg);
417
418 void sock_release_memcg(struct sock *sk)
419 {
420         if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
421                 struct mem_cgroup *memcg;
422                 WARN_ON(!sk->sk_cgrp->memcg);
423                 memcg = sk->sk_cgrp->memcg;
424                 mem_cgroup_put(memcg);
425         }
426 }
427
428 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
429 {
430         if (!memcg || mem_cgroup_is_root(memcg))
431                 return NULL;
432
433         return &memcg->tcp_mem.cg_proto;
434 }
435 EXPORT_SYMBOL(tcp_proto_cgroup);
436 #endif /* CONFIG_INET */
437 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
438
439 static void drain_all_stock_async(struct mem_cgroup *memcg);
440
441 static struct mem_cgroup_per_zone *
442 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
443 {
444         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
445 }
446
447 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
448 {
449         return &memcg->css;
450 }
451
452 static struct mem_cgroup_per_zone *
453 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
454 {
455         int nid = page_to_nid(page);
456         int zid = page_zonenum(page);
457
458         return mem_cgroup_zoneinfo(memcg, nid, zid);
459 }
460
461 static struct mem_cgroup_tree_per_zone *
462 soft_limit_tree_node_zone(int nid, int zid)
463 {
464         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
465 }
466
467 static struct mem_cgroup_tree_per_zone *
468 soft_limit_tree_from_page(struct page *page)
469 {
470         int nid = page_to_nid(page);
471         int zid = page_zonenum(page);
472
473         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
474 }
475
476 static void
477 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
478                                 struct mem_cgroup_per_zone *mz,
479                                 struct mem_cgroup_tree_per_zone *mctz,
480                                 unsigned long long new_usage_in_excess)
481 {
482         struct rb_node **p = &mctz->rb_root.rb_node;
483         struct rb_node *parent = NULL;
484         struct mem_cgroup_per_zone *mz_node;
485
486         if (mz->on_tree)
487                 return;
488
489         mz->usage_in_excess = new_usage_in_excess;
490         if (!mz->usage_in_excess)
491                 return;
492         while (*p) {
493                 parent = *p;
494                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
495                                         tree_node);
496                 if (mz->usage_in_excess < mz_node->usage_in_excess)
497                         p = &(*p)->rb_left;
498                 /*
499                  * We can't avoid mem cgroups that are over their soft
500                  * limit by the same amount
501                  */
502                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
503                         p = &(*p)->rb_right;
504         }
505         rb_link_node(&mz->tree_node, parent, p);
506         rb_insert_color(&mz->tree_node, &mctz->rb_root);
507         mz->on_tree = true;
508 }
509
510 static void
511 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
512                                 struct mem_cgroup_per_zone *mz,
513                                 struct mem_cgroup_tree_per_zone *mctz)
514 {
515         if (!mz->on_tree)
516                 return;
517         rb_erase(&mz->tree_node, &mctz->rb_root);
518         mz->on_tree = false;
519 }
520
521 static void
522 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
523                                 struct mem_cgroup_per_zone *mz,
524                                 struct mem_cgroup_tree_per_zone *mctz)
525 {
526         spin_lock(&mctz->lock);
527         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
528         spin_unlock(&mctz->lock);
529 }
530
531
532 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
533 {
534         unsigned long long excess;
535         struct mem_cgroup_per_zone *mz;
536         struct mem_cgroup_tree_per_zone *mctz;
537         int nid = page_to_nid(page);
538         int zid = page_zonenum(page);
539         mctz = soft_limit_tree_from_page(page);
540
541         /*
542          * Necessary to update all ancestors when hierarchy is used.
543          * because their event counter is not touched.
544          */
545         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
546                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
547                 excess = res_counter_soft_limit_excess(&memcg->res);
548                 /*
549                  * We have to update the tree if mz is on RB-tree or
550                  * mem is over its softlimit.
551                  */
552                 if (excess || mz->on_tree) {
553                         spin_lock(&mctz->lock);
554                         /* if on-tree, remove it */
555                         if (mz->on_tree)
556                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
557                         /*
558                          * Insert again. mz->usage_in_excess will be updated.
559                          * If excess is 0, no tree ops.
560                          */
561                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
562                         spin_unlock(&mctz->lock);
563                 }
564         }
565 }
566
567 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
568 {
569         int node, zone;
570         struct mem_cgroup_per_zone *mz;
571         struct mem_cgroup_tree_per_zone *mctz;
572
573         for_each_node_state(node, N_POSSIBLE) {
574                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
575                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
576                         mctz = soft_limit_tree_node_zone(node, zone);
577                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
578                 }
579         }
580 }
581
582 static struct mem_cgroup_per_zone *
583 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584 {
585         struct rb_node *rightmost = NULL;
586         struct mem_cgroup_per_zone *mz;
587
588 retry:
589         mz = NULL;
590         rightmost = rb_last(&mctz->rb_root);
591         if (!rightmost)
592                 goto done;              /* Nothing to reclaim from */
593
594         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
595         /*
596          * Remove the node now but someone else can add it back,
597          * we will to add it back at the end of reclaim to its correct
598          * position in the tree.
599          */
600         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
601         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
602                 !css_tryget(&mz->mem->css))
603                 goto retry;
604 done:
605         return mz;
606 }
607
608 static struct mem_cgroup_per_zone *
609 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
610 {
611         struct mem_cgroup_per_zone *mz;
612
613         spin_lock(&mctz->lock);
614         mz = __mem_cgroup_largest_soft_limit_node(mctz);
615         spin_unlock(&mctz->lock);
616         return mz;
617 }
618
619 /*
620  * Implementation Note: reading percpu statistics for memcg.
621  *
622  * Both of vmstat[] and percpu_counter has threshold and do periodic
623  * synchronization to implement "quick" read. There are trade-off between
624  * reading cost and precision of value. Then, we may have a chance to implement
625  * a periodic synchronizion of counter in memcg's counter.
626  *
627  * But this _read() function is used for user interface now. The user accounts
628  * memory usage by memory cgroup and he _always_ requires exact value because
629  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
630  * have to visit all online cpus and make sum. So, for now, unnecessary
631  * synchronization is not implemented. (just implemented for cpu hotplug)
632  *
633  * If there are kernel internal actions which can make use of some not-exact
634  * value, and reading all cpu value can be performance bottleneck in some
635  * common workload, threashold and synchonization as vmstat[] should be
636  * implemented.
637  */
638 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
639                                  enum mem_cgroup_stat_index idx)
640 {
641         long val = 0;
642         int cpu;
643
644         get_online_cpus();
645         for_each_online_cpu(cpu)
646                 val += per_cpu(memcg->stat->count[idx], cpu);
647 #ifdef CONFIG_HOTPLUG_CPU
648         spin_lock(&memcg->pcp_counter_lock);
649         val += memcg->nocpu_base.count[idx];
650         spin_unlock(&memcg->pcp_counter_lock);
651 #endif
652         put_online_cpus();
653         return val;
654 }
655
656 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
657                                          bool charge)
658 {
659         int val = (charge) ? 1 : -1;
660         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
661 }
662
663 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
664 {
665         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
666 }
667
668 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
669 {
670         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
671 }
672
673 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
674                                             enum mem_cgroup_events_index idx)
675 {
676         unsigned long val = 0;
677         int cpu;
678
679         for_each_online_cpu(cpu)
680                 val += per_cpu(memcg->stat->events[idx], cpu);
681 #ifdef CONFIG_HOTPLUG_CPU
682         spin_lock(&memcg->pcp_counter_lock);
683         val += memcg->nocpu_base.events[idx];
684         spin_unlock(&memcg->pcp_counter_lock);
685 #endif
686         return val;
687 }
688
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690                                          bool file, int nr_pages)
691 {
692         preempt_disable();
693
694         if (file)
695                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
696                                 nr_pages);
697         else
698                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
699                                 nr_pages);
700
701         /* pagein of a big page is an event. So, ignore page size */
702         if (nr_pages > 0)
703                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
704         else {
705                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
706                 nr_pages = -nr_pages; /* for event */
707         }
708
709         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
710
711         preempt_enable();
712 }
713
714 unsigned long
715 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
716                         unsigned int lru_mask)
717 {
718         struct mem_cgroup_per_zone *mz;
719         enum lru_list l;
720         unsigned long ret = 0;
721
722         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
723
724         for_each_lru(l) {
725                 if (BIT(l) & lru_mask)
726                         ret += MEM_CGROUP_ZSTAT(mz, l);
727         }
728         return ret;
729 }
730
731 static unsigned long
732 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
733                         int nid, unsigned int lru_mask)
734 {
735         u64 total = 0;
736         int zid;
737
738         for (zid = 0; zid < MAX_NR_ZONES; zid++)
739                 total += mem_cgroup_zone_nr_lru_pages(memcg,
740                                                 nid, zid, lru_mask);
741
742         return total;
743 }
744
745 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746                         unsigned int lru_mask)
747 {
748         int nid;
749         u64 total = 0;
750
751         for_each_node_state(nid, N_HIGH_MEMORY)
752                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
753         return total;
754 }
755
756 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
757 {
758         unsigned long val, next;
759
760         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
761         next = __this_cpu_read(memcg->stat->targets[target]);
762         /* from time_after() in jiffies.h */
763         return ((long)next - (long)val < 0);
764 }
765
766 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
767 {
768         unsigned long val, next;
769
770         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
771
772         switch (target) {
773         case MEM_CGROUP_TARGET_THRESH:
774                 next = val + THRESHOLDS_EVENTS_TARGET;
775                 break;
776         case MEM_CGROUP_TARGET_SOFTLIMIT:
777                 next = val + SOFTLIMIT_EVENTS_TARGET;
778                 break;
779         case MEM_CGROUP_TARGET_NUMAINFO:
780                 next = val + NUMAINFO_EVENTS_TARGET;
781                 break;
782         default:
783                 return;
784         }
785
786         __this_cpu_write(memcg->stat->targets[target], next);
787 }
788
789 /*
790  * Check events in order.
791  *
792  */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795         preempt_disable();
796         /* threshold event is triggered in finer grain than soft limit */
797         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
798                 mem_cgroup_threshold(memcg);
799                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
800                 if (unlikely(__memcg_event_check(memcg,
801                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
802                         mem_cgroup_update_tree(memcg, page);
803                         __mem_cgroup_target_update(memcg,
804                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
805                 }
806 #if MAX_NUMNODES > 1
807                 if (unlikely(__memcg_event_check(memcg,
808                         MEM_CGROUP_TARGET_NUMAINFO))) {
809                         atomic_inc(&memcg->numainfo_events);
810                         __mem_cgroup_target_update(memcg,
811                                 MEM_CGROUP_TARGET_NUMAINFO);
812                 }
813 #endif
814         }
815         preempt_enable();
816 }
817
818 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
819 {
820         return container_of(cgroup_subsys_state(cont,
821                                 mem_cgroup_subsys_id), struct mem_cgroup,
822                                 css);
823 }
824
825 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
826 {
827         /*
828          * mm_update_next_owner() may clear mm->owner to NULL
829          * if it races with swapoff, page migration, etc.
830          * So this can be called with p == NULL.
831          */
832         if (unlikely(!p))
833                 return NULL;
834
835         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
836                                 struct mem_cgroup, css);
837 }
838
839 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
840 {
841         struct mem_cgroup *memcg = NULL;
842
843         if (!mm)
844                 return NULL;
845         /*
846          * Because we have no locks, mm->owner's may be being moved to other
847          * cgroup. We use css_tryget() here even if this looks
848          * pessimistic (rather than adding locks here).
849          */
850         rcu_read_lock();
851         do {
852                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
853                 if (unlikely(!memcg))
854                         break;
855         } while (!css_tryget(&memcg->css));
856         rcu_read_unlock();
857         return memcg;
858 }
859
860 /**
861  * mem_cgroup_iter - iterate over memory cgroup hierarchy
862  * @root: hierarchy root
863  * @prev: previously returned memcg, NULL on first invocation
864  * @reclaim: cookie for shared reclaim walks, NULL for full walks
865  *
866  * Returns references to children of the hierarchy below @root, or
867  * @root itself, or %NULL after a full round-trip.
868  *
869  * Caller must pass the return value in @prev on subsequent
870  * invocations for reference counting, or use mem_cgroup_iter_break()
871  * to cancel a hierarchy walk before the round-trip is complete.
872  *
873  * Reclaimers can specify a zone and a priority level in @reclaim to
874  * divide up the memcgs in the hierarchy among all concurrent
875  * reclaimers operating on the same zone and priority.
876  */
877 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
878                                    struct mem_cgroup *prev,
879                                    struct mem_cgroup_reclaim_cookie *reclaim)
880 {
881         struct mem_cgroup *memcg = NULL;
882         int id = 0;
883
884         if (mem_cgroup_disabled())
885                 return NULL;
886
887         if (!root)
888                 root = root_mem_cgroup;
889
890         if (prev && !reclaim)
891                 id = css_id(&prev->css);
892
893         if (prev && prev != root)
894                 css_put(&prev->css);
895
896         if (!root->use_hierarchy && root != root_mem_cgroup) {
897                 if (prev)
898                         return NULL;
899                 return root;
900         }
901
902         while (!memcg) {
903                 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
904                 struct cgroup_subsys_state *css;
905
906                 if (reclaim) {
907                         int nid = zone_to_nid(reclaim->zone);
908                         int zid = zone_idx(reclaim->zone);
909                         struct mem_cgroup_per_zone *mz;
910
911                         mz = mem_cgroup_zoneinfo(root, nid, zid);
912                         iter = &mz->reclaim_iter[reclaim->priority];
913                         if (prev && reclaim->generation != iter->generation)
914                                 return NULL;
915                         id = iter->position;
916                 }
917
918                 rcu_read_lock();
919                 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
920                 if (css) {
921                         if (css == &root->css || css_tryget(css))
922                                 memcg = container_of(css,
923                                                      struct mem_cgroup, css);
924                 } else
925                         id = 0;
926                 rcu_read_unlock();
927
928                 if (reclaim) {
929                         iter->position = id;
930                         if (!css)
931                                 iter->generation++;
932                         else if (!prev && memcg)
933                                 reclaim->generation = iter->generation;
934                 }
935
936                 if (prev && !css)
937                         return NULL;
938         }
939         return memcg;
940 }
941
942 /**
943  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
944  * @root: hierarchy root
945  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
946  */
947 void mem_cgroup_iter_break(struct mem_cgroup *root,
948                            struct mem_cgroup *prev)
949 {
950         if (!root)
951                 root = root_mem_cgroup;
952         if (prev && prev != root)
953                 css_put(&prev->css);
954 }
955
956 /*
957  * Iteration constructs for visiting all cgroups (under a tree).  If
958  * loops are exited prematurely (break), mem_cgroup_iter_break() must
959  * be used for reference counting.
960  */
961 #define for_each_mem_cgroup_tree(iter, root)            \
962         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
963              iter != NULL;                              \
964              iter = mem_cgroup_iter(root, iter, NULL))
965
966 #define for_each_mem_cgroup(iter)                       \
967         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
968              iter != NULL;                              \
969              iter = mem_cgroup_iter(NULL, iter, NULL))
970
971 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
972 {
973         return (memcg == root_mem_cgroup);
974 }
975
976 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
977 {
978         struct mem_cgroup *memcg;
979
980         if (!mm)
981                 return;
982
983         rcu_read_lock();
984         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
985         if (unlikely(!memcg))
986                 goto out;
987
988         switch (idx) {
989         case PGMAJFAULT:
990                 mem_cgroup_pgmajfault(memcg, 1);
991                 break;
992         case PGFAULT:
993                 mem_cgroup_pgfault(memcg, 1);
994                 break;
995         default:
996                 BUG();
997         }
998 out:
999         rcu_read_unlock();
1000 }
1001 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1002
1003 /*
1004  * Following LRU functions are allowed to be used without PCG_LOCK.
1005  * Operations are called by routine of global LRU independently from memcg.
1006  * What we have to take care of here is validness of pc->mem_cgroup.
1007  *
1008  * Changes to pc->mem_cgroup happens when
1009  * 1. charge
1010  * 2. moving account
1011  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1012  * It is added to LRU before charge.
1013  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1014  * When moving account, the page is not on LRU. It's isolated.
1015  */
1016
1017 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1018 {
1019         struct page_cgroup *pc;
1020         struct mem_cgroup_per_zone *mz;
1021
1022         if (mem_cgroup_disabled())
1023                 return;
1024         pc = lookup_page_cgroup(page);
1025         /* can happen while we handle swapcache. */
1026         if (!TestClearPageCgroupAcctLRU(pc))
1027                 return;
1028         VM_BUG_ON(!pc->mem_cgroup);
1029         /*
1030          * We don't check PCG_USED bit. It's cleared when the "page" is finally
1031          * removed from global LRU.
1032          */
1033         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1034         /* huge page split is done under lru_lock. so, we have no races. */
1035         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1036         VM_BUG_ON(list_empty(&pc->lru));
1037         list_del_init(&pc->lru);
1038 }
1039
1040 void mem_cgroup_del_lru(struct page *page)
1041 {
1042         mem_cgroup_del_lru_list(page, page_lru(page));
1043 }
1044
1045 /*
1046  * Writeback is about to end against a page which has been marked for immediate
1047  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1048  * inactive list.
1049  */
1050 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1051 {
1052         struct mem_cgroup_per_zone *mz;
1053         struct page_cgroup *pc;
1054         enum lru_list lru = page_lru(page);
1055
1056         if (mem_cgroup_disabled())
1057                 return;
1058
1059         pc = lookup_page_cgroup(page);
1060         /* unused page is not rotated. */
1061         if (!PageCgroupUsed(pc))
1062                 return;
1063         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1064         smp_rmb();
1065         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1066         list_move_tail(&pc->lru, &mz->lruvec.lists[lru]);
1067 }
1068
1069 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1070 {
1071         struct mem_cgroup_per_zone *mz;
1072         struct page_cgroup *pc;
1073
1074         if (mem_cgroup_disabled())
1075                 return;
1076
1077         pc = lookup_page_cgroup(page);
1078         /* unused page is not rotated. */
1079         if (!PageCgroupUsed(pc))
1080                 return;
1081         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1082         smp_rmb();
1083         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1084         list_move(&pc->lru, &mz->lruvec.lists[lru]);
1085 }
1086
1087 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1088 {
1089         struct page_cgroup *pc;
1090         struct mem_cgroup_per_zone *mz;
1091
1092         if (mem_cgroup_disabled())
1093                 return;
1094         pc = lookup_page_cgroup(page);
1095         VM_BUG_ON(PageCgroupAcctLRU(pc));
1096         /*
1097          * putback:                             charge:
1098          * SetPageLRU                           SetPageCgroupUsed
1099          * smp_mb                               smp_mb
1100          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1101          *
1102          * Ensure that one of the two sides adds the page to the memcg
1103          * LRU during a race.
1104          */
1105         smp_mb();
1106         if (!PageCgroupUsed(pc))
1107                 return;
1108         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1109         smp_rmb();
1110         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1111         /* huge page split is done under lru_lock. so, we have no races. */
1112         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1113         SetPageCgroupAcctLRU(pc);
1114         list_add(&pc->lru, &mz->lruvec.lists[lru]);
1115 }
1116
1117 /*
1118  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1119  * while it's linked to lru because the page may be reused after it's fully
1120  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1121  * It's done under lock_page and expected that zone->lru_lock isnever held.
1122  */
1123 static void mem_cgroup_lru_del_before_commit(struct page *page)
1124 {
1125         unsigned long flags;
1126         struct zone *zone = page_zone(page);
1127         struct page_cgroup *pc = lookup_page_cgroup(page);
1128
1129         /*
1130          * Doing this check without taking ->lru_lock seems wrong but this
1131          * is safe. Because if page_cgroup's USED bit is unset, the page
1132          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1133          * set, the commit after this will fail, anyway.
1134          * This all charge/uncharge is done under some mutual execustion.
1135          * So, we don't need to taking care of changes in USED bit.
1136          */
1137         if (likely(!PageLRU(page)))
1138                 return;
1139
1140         spin_lock_irqsave(&zone->lru_lock, flags);
1141         /*
1142          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1143          * is guarded by lock_page() because the page is SwapCache.
1144          */
1145         if (!PageCgroupUsed(pc))
1146                 mem_cgroup_del_lru_list(page, page_lru(page));
1147         spin_unlock_irqrestore(&zone->lru_lock, flags);
1148 }
1149
1150 static void mem_cgroup_lru_add_after_commit(struct page *page)
1151 {
1152         unsigned long flags;
1153         struct zone *zone = page_zone(page);
1154         struct page_cgroup *pc = lookup_page_cgroup(page);
1155         /*
1156          * putback:                             charge:
1157          * SetPageLRU                           SetPageCgroupUsed
1158          * smp_mb                               smp_mb
1159          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1160          *
1161          * Ensure that one of the two sides adds the page to the memcg
1162          * LRU during a race.
1163          */
1164         smp_mb();
1165         /* taking care of that the page is added to LRU while we commit it */
1166         if (likely(!PageLRU(page)))
1167                 return;
1168         spin_lock_irqsave(&zone->lru_lock, flags);
1169         /* link when the page is linked to LRU but page_cgroup isn't */
1170         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1171                 mem_cgroup_add_lru_list(page, page_lru(page));
1172         spin_unlock_irqrestore(&zone->lru_lock, flags);
1173 }
1174
1175
1176 void mem_cgroup_move_lists(struct page *page,
1177                            enum lru_list from, enum lru_list to)
1178 {
1179         if (mem_cgroup_disabled())
1180                 return;
1181         mem_cgroup_del_lru_list(page, from);
1182         mem_cgroup_add_lru_list(page, to);
1183 }
1184
1185 /*
1186  * Checks whether given mem is same or in the root_mem_cgroup's
1187  * hierarchy subtree
1188  */
1189 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1190                 struct mem_cgroup *memcg)
1191 {
1192         if (root_memcg != memcg) {
1193                 return (root_memcg->use_hierarchy &&
1194                         css_is_ancestor(&memcg->css, &root_memcg->css));
1195         }
1196
1197         return true;
1198 }
1199
1200 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1201 {
1202         int ret;
1203         struct mem_cgroup *curr = NULL;
1204         struct task_struct *p;
1205
1206         p = find_lock_task_mm(task);
1207         if (!p)
1208                 return 0;
1209         curr = try_get_mem_cgroup_from_mm(p->mm);
1210         task_unlock(p);
1211         if (!curr)
1212                 return 0;
1213         /*
1214          * We should check use_hierarchy of "memcg" not "curr". Because checking
1215          * use_hierarchy of "curr" here make this function true if hierarchy is
1216          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1217          * hierarchy(even if use_hierarchy is disabled in "memcg").
1218          */
1219         ret = mem_cgroup_same_or_subtree(memcg, curr);
1220         css_put(&curr->css);
1221         return ret;
1222 }
1223
1224 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1225 {
1226         unsigned long inactive_ratio;
1227         int nid = zone_to_nid(zone);
1228         int zid = zone_idx(zone);
1229         unsigned long inactive;
1230         unsigned long active;
1231         unsigned long gb;
1232
1233         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1234                                                 BIT(LRU_INACTIVE_ANON));
1235         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1236                                               BIT(LRU_ACTIVE_ANON));
1237
1238         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1239         if (gb)
1240                 inactive_ratio = int_sqrt(10 * gb);
1241         else
1242                 inactive_ratio = 1;
1243
1244         return inactive * inactive_ratio < active;
1245 }
1246
1247 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1248 {
1249         unsigned long active;
1250         unsigned long inactive;
1251         int zid = zone_idx(zone);
1252         int nid = zone_to_nid(zone);
1253
1254         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1255                                                 BIT(LRU_INACTIVE_FILE));
1256         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1257                                               BIT(LRU_ACTIVE_FILE));
1258
1259         return (active > inactive);
1260 }
1261
1262 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1263                                                       struct zone *zone)
1264 {
1265         int nid = zone_to_nid(zone);
1266         int zid = zone_idx(zone);
1267         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1268
1269         return &mz->reclaim_stat;
1270 }
1271
1272 struct zone_reclaim_stat *
1273 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1274 {
1275         struct page_cgroup *pc;
1276         struct mem_cgroup_per_zone *mz;
1277
1278         if (mem_cgroup_disabled())
1279                 return NULL;
1280
1281         pc = lookup_page_cgroup(page);
1282         if (!PageCgroupUsed(pc))
1283                 return NULL;
1284         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1285         smp_rmb();
1286         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1287         return &mz->reclaim_stat;
1288 }
1289
1290 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1291                                         struct list_head *dst,
1292                                         unsigned long *scanned, int order,
1293                                         isolate_mode_t mode,
1294                                         struct zone *z,
1295                                         struct mem_cgroup *mem_cont,
1296                                         int active, int file)
1297 {
1298         unsigned long nr_taken = 0;
1299         struct page *page;
1300         unsigned long scan;
1301         LIST_HEAD(pc_list);
1302         struct list_head *src;
1303         struct page_cgroup *pc, *tmp;
1304         int nid = zone_to_nid(z);
1305         int zid = zone_idx(z);
1306         struct mem_cgroup_per_zone *mz;
1307         int lru = LRU_FILE * file + active;
1308         int ret;
1309
1310         BUG_ON(!mem_cont);
1311         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1312         src = &mz->lruvec.lists[lru];
1313
1314         scan = 0;
1315         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1316                 if (scan >= nr_to_scan)
1317                         break;
1318
1319                 if (unlikely(!PageCgroupUsed(pc)))
1320                         continue;
1321
1322                 page = lookup_cgroup_page(pc);
1323
1324                 if (unlikely(!PageLRU(page)))
1325                         continue;
1326
1327                 scan++;
1328                 ret = __isolate_lru_page(page, mode, file);
1329                 switch (ret) {
1330                 case 0:
1331                         list_move(&page->lru, dst);
1332                         mem_cgroup_del_lru(page);
1333                         nr_taken += hpage_nr_pages(page);
1334                         break;
1335                 case -EBUSY:
1336                         /* we don't affect global LRU but rotate in our LRU */
1337                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1338                         break;
1339                 default:
1340                         break;
1341                 }
1342         }
1343
1344         *scanned = scan;
1345
1346         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1347                                       0, 0, 0, mode);
1348
1349         return nr_taken;
1350 }
1351
1352 #define mem_cgroup_from_res_counter(counter, member)    \
1353         container_of(counter, struct mem_cgroup, member)
1354
1355 /**
1356  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1357  * @mem: the memory cgroup
1358  *
1359  * Returns the maximum amount of memory @mem can be charged with, in
1360  * pages.
1361  */
1362 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1363 {
1364         unsigned long long margin;
1365
1366         margin = res_counter_margin(&memcg->res);
1367         if (do_swap_account)
1368                 margin = min(margin, res_counter_margin(&memcg->memsw));
1369         return margin >> PAGE_SHIFT;
1370 }
1371
1372 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1373 {
1374         struct cgroup *cgrp = memcg->css.cgroup;
1375
1376         /* root ? */
1377         if (cgrp->parent == NULL)
1378                 return vm_swappiness;
1379
1380         return memcg->swappiness;
1381 }
1382
1383 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1384 {
1385         int cpu;
1386
1387         get_online_cpus();
1388         spin_lock(&memcg->pcp_counter_lock);
1389         for_each_online_cpu(cpu)
1390                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1391         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1392         spin_unlock(&memcg->pcp_counter_lock);
1393         put_online_cpus();
1394
1395         synchronize_rcu();
1396 }
1397
1398 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1399 {
1400         int cpu;
1401
1402         if (!memcg)
1403                 return;
1404         get_online_cpus();
1405         spin_lock(&memcg->pcp_counter_lock);
1406         for_each_online_cpu(cpu)
1407                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1408         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1409         spin_unlock(&memcg->pcp_counter_lock);
1410         put_online_cpus();
1411 }
1412 /*
1413  * 2 routines for checking "mem" is under move_account() or not.
1414  *
1415  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1416  *                        for avoiding race in accounting. If true,
1417  *                        pc->mem_cgroup may be overwritten.
1418  *
1419  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1420  *                        under hierarchy of moving cgroups. This is for
1421  *                        waiting at hith-memory prressure caused by "move".
1422  */
1423
1424 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1425 {
1426         VM_BUG_ON(!rcu_read_lock_held());
1427         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1428 }
1429
1430 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1431 {
1432         struct mem_cgroup *from;
1433         struct mem_cgroup *to;
1434         bool ret = false;
1435         /*
1436          * Unlike task_move routines, we access mc.to, mc.from not under
1437          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1438          */
1439         spin_lock(&mc.lock);
1440         from = mc.from;
1441         to = mc.to;
1442         if (!from)
1443                 goto unlock;
1444
1445         ret = mem_cgroup_same_or_subtree(memcg, from)
1446                 || mem_cgroup_same_or_subtree(memcg, to);
1447 unlock:
1448         spin_unlock(&mc.lock);
1449         return ret;
1450 }
1451
1452 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1453 {
1454         if (mc.moving_task && current != mc.moving_task) {
1455                 if (mem_cgroup_under_move(memcg)) {
1456                         DEFINE_WAIT(wait);
1457                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1458                         /* moving charge context might have finished. */
1459                         if (mc.moving_task)
1460                                 schedule();
1461                         finish_wait(&mc.waitq, &wait);
1462                         return true;
1463                 }
1464         }
1465         return false;
1466 }
1467
1468 /**
1469  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1470  * @memcg: The memory cgroup that went over limit
1471  * @p: Task that is going to be killed
1472  *
1473  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1474  * enabled
1475  */
1476 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1477 {
1478         struct cgroup *task_cgrp;
1479         struct cgroup *mem_cgrp;
1480         /*
1481          * Need a buffer in BSS, can't rely on allocations. The code relies
1482          * on the assumption that OOM is serialized for memory controller.
1483          * If this assumption is broken, revisit this code.
1484          */
1485         static char memcg_name[PATH_MAX];
1486         int ret;
1487
1488         if (!memcg || !p)
1489                 return;
1490
1491
1492         rcu_read_lock();
1493
1494         mem_cgrp = memcg->css.cgroup;
1495         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1496
1497         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1498         if (ret < 0) {
1499                 /*
1500                  * Unfortunately, we are unable to convert to a useful name
1501                  * But we'll still print out the usage information
1502                  */
1503                 rcu_read_unlock();
1504                 goto done;
1505         }
1506         rcu_read_unlock();
1507
1508         printk(KERN_INFO "Task in %s killed", memcg_name);
1509
1510         rcu_read_lock();
1511         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1512         if (ret < 0) {
1513                 rcu_read_unlock();
1514                 goto done;
1515         }
1516         rcu_read_unlock();
1517
1518         /*
1519          * Continues from above, so we don't need an KERN_ level
1520          */
1521         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1522 done:
1523
1524         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1525                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1526                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1527                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1528         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1529                 "failcnt %llu\n",
1530                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1531                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1532                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1533 }
1534
1535 /*
1536  * This function returns the number of memcg under hierarchy tree. Returns
1537  * 1(self count) if no children.
1538  */
1539 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1540 {
1541         int num = 0;
1542         struct mem_cgroup *iter;
1543
1544         for_each_mem_cgroup_tree(iter, memcg)
1545                 num++;
1546         return num;
1547 }
1548
1549 /*
1550  * Return the memory (and swap, if configured) limit for a memcg.
1551  */
1552 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1553 {
1554         u64 limit;
1555         u64 memsw;
1556
1557         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1558         limit += total_swap_pages << PAGE_SHIFT;
1559
1560         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1561         /*
1562          * If memsw is finite and limits the amount of swap space available
1563          * to this memcg, return that limit.
1564          */
1565         return min(limit, memsw);
1566 }
1567
1568 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569                                         gfp_t gfp_mask,
1570                                         unsigned long flags)
1571 {
1572         unsigned long total = 0;
1573         bool noswap = false;
1574         int loop;
1575
1576         if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577                 noswap = true;
1578         if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1579                 noswap = true;
1580
1581         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582                 if (loop)
1583                         drain_all_stock_async(memcg);
1584                 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585                 /*
1586                  * Allow limit shrinkers, which are triggered directly
1587                  * by userspace, to catch signals and stop reclaim
1588                  * after minimal progress, regardless of the margin.
1589                  */
1590                 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591                         break;
1592                 if (mem_cgroup_margin(memcg))
1593                         break;
1594                 /*
1595                  * If nothing was reclaimed after two attempts, there
1596                  * may be no reclaimable pages in this hierarchy.
1597                  */
1598                 if (loop && !total)
1599                         break;
1600         }
1601         return total;
1602 }
1603
1604 /**
1605  * test_mem_cgroup_node_reclaimable
1606  * @mem: the target memcg
1607  * @nid: the node ID to be checked.
1608  * @noswap : specify true here if the user wants flle only information.
1609  *
1610  * This function returns whether the specified memcg contains any
1611  * reclaimable pages on a node. Returns true if there are any reclaimable
1612  * pages in the node.
1613  */
1614 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1615                 int nid, bool noswap)
1616 {
1617         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1618                 return true;
1619         if (noswap || !total_swap_pages)
1620                 return false;
1621         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1622                 return true;
1623         return false;
1624
1625 }
1626 #if MAX_NUMNODES > 1
1627
1628 /*
1629  * Always updating the nodemask is not very good - even if we have an empty
1630  * list or the wrong list here, we can start from some node and traverse all
1631  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632  *
1633  */
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1635 {
1636         int nid;
1637         /*
1638          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639          * pagein/pageout changes since the last update.
1640          */
1641         if (!atomic_read(&memcg->numainfo_events))
1642                 return;
1643         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1644                 return;
1645
1646         /* make a nodemask where this memcg uses memory from */
1647         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1648
1649         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1650
1651                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652                         node_clear(nid, memcg->scan_nodes);
1653         }
1654
1655         atomic_set(&memcg->numainfo_events, 0);
1656         atomic_set(&memcg->numainfo_updating, 0);
1657 }
1658
1659 /*
1660  * Selecting a node where we start reclaim from. Because what we need is just
1661  * reducing usage counter, start from anywhere is O,K. Considering
1662  * memory reclaim from current node, there are pros. and cons.
1663  *
1664  * Freeing memory from current node means freeing memory from a node which
1665  * we'll use or we've used. So, it may make LRU bad. And if several threads
1666  * hit limits, it will see a contention on a node. But freeing from remote
1667  * node means more costs for memory reclaim because of memory latency.
1668  *
1669  * Now, we use round-robin. Better algorithm is welcomed.
1670  */
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 {
1673         int node;
1674
1675         mem_cgroup_may_update_nodemask(memcg);
1676         node = memcg->last_scanned_node;
1677
1678         node = next_node(node, memcg->scan_nodes);
1679         if (node == MAX_NUMNODES)
1680                 node = first_node(memcg->scan_nodes);
1681         /*
1682          * We call this when we hit limit, not when pages are added to LRU.
1683          * No LRU may hold pages because all pages are UNEVICTABLE or
1684          * memcg is too small and all pages are not on LRU. In that case,
1685          * we use curret node.
1686          */
1687         if (unlikely(node == MAX_NUMNODES))
1688                 node = numa_node_id();
1689
1690         memcg->last_scanned_node = node;
1691         return node;
1692 }
1693
1694 /*
1695  * Check all nodes whether it contains reclaimable pages or not.
1696  * For quick scan, we make use of scan_nodes. This will allow us to skip
1697  * unused nodes. But scan_nodes is lazily updated and may not cotain
1698  * enough new information. We need to do double check.
1699  */
1700 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1701 {
1702         int nid;
1703
1704         /*
1705          * quick check...making use of scan_node.
1706          * We can skip unused nodes.
1707          */
1708         if (!nodes_empty(memcg->scan_nodes)) {
1709                 for (nid = first_node(memcg->scan_nodes);
1710                      nid < MAX_NUMNODES;
1711                      nid = next_node(nid, memcg->scan_nodes)) {
1712
1713                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1714                                 return true;
1715                 }
1716         }
1717         /*
1718          * Check rest of nodes.
1719          */
1720         for_each_node_state(nid, N_HIGH_MEMORY) {
1721                 if (node_isset(nid, memcg->scan_nodes))
1722                         continue;
1723                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1724                         return true;
1725         }
1726         return false;
1727 }
1728
1729 #else
1730 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1731 {
1732         return 0;
1733 }
1734
1735 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1736 {
1737         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1738 }
1739 #endif
1740
1741 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742                                    struct zone *zone,
1743                                    gfp_t gfp_mask,
1744                                    unsigned long *total_scanned)
1745 {
1746         struct mem_cgroup *victim = NULL;
1747         int total = 0;
1748         int loop = 0;
1749         unsigned long excess;
1750         unsigned long nr_scanned;
1751         struct mem_cgroup_reclaim_cookie reclaim = {
1752                 .zone = zone,
1753                 .priority = 0,
1754         };
1755
1756         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1757
1758         while (1) {
1759                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1760                 if (!victim) {
1761                         loop++;
1762                         if (loop >= 2) {
1763                                 /*
1764                                  * If we have not been able to reclaim
1765                                  * anything, it might because there are
1766                                  * no reclaimable pages under this hierarchy
1767                                  */
1768                                 if (!total)
1769                                         break;
1770                                 /*
1771                                  * We want to do more targeted reclaim.
1772                                  * excess >> 2 is not to excessive so as to
1773                                  * reclaim too much, nor too less that we keep
1774                                  * coming back to reclaim from this cgroup
1775                                  */
1776                                 if (total >= (excess >> 2) ||
1777                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1778                                         break;
1779                         }
1780                         continue;
1781                 }
1782                 if (!mem_cgroup_reclaimable(victim, false))
1783                         continue;
1784                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785                                                      zone, &nr_scanned);
1786                 *total_scanned += nr_scanned;
1787                 if (!res_counter_soft_limit_excess(&root_memcg->res))
1788                         break;
1789         }
1790         mem_cgroup_iter_break(root_memcg, victim);
1791         return total;
1792 }
1793
1794 /*
1795  * Check OOM-Killer is already running under our hierarchy.
1796  * If someone is running, return false.
1797  * Has to be called with memcg_oom_lock
1798  */
1799 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1800 {
1801         struct mem_cgroup *iter, *failed = NULL;
1802
1803         for_each_mem_cgroup_tree(iter, memcg) {
1804                 if (iter->oom_lock) {
1805                         /*
1806                          * this subtree of our hierarchy is already locked
1807                          * so we cannot give a lock.
1808                          */
1809                         failed = iter;
1810                         mem_cgroup_iter_break(memcg, iter);
1811                         break;
1812                 } else
1813                         iter->oom_lock = true;
1814         }
1815
1816         if (!failed)
1817                 return true;
1818
1819         /*
1820          * OK, we failed to lock the whole subtree so we have to clean up
1821          * what we set up to the failing subtree
1822          */
1823         for_each_mem_cgroup_tree(iter, memcg) {
1824                 if (iter == failed) {
1825                         mem_cgroup_iter_break(memcg, iter);
1826                         break;
1827                 }
1828                 iter->oom_lock = false;
1829         }
1830         return false;
1831 }
1832
1833 /*
1834  * Has to be called with memcg_oom_lock
1835  */
1836 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1837 {
1838         struct mem_cgroup *iter;
1839
1840         for_each_mem_cgroup_tree(iter, memcg)
1841                 iter->oom_lock = false;
1842         return 0;
1843 }
1844
1845 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1846 {
1847         struct mem_cgroup *iter;
1848
1849         for_each_mem_cgroup_tree(iter, memcg)
1850                 atomic_inc(&iter->under_oom);
1851 }
1852
1853 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1854 {
1855         struct mem_cgroup *iter;
1856
1857         /*
1858          * When a new child is created while the hierarchy is under oom,
1859          * mem_cgroup_oom_lock() may not be called. We have to use
1860          * atomic_add_unless() here.
1861          */
1862         for_each_mem_cgroup_tree(iter, memcg)
1863                 atomic_add_unless(&iter->under_oom, -1, 0);
1864 }
1865
1866 static DEFINE_SPINLOCK(memcg_oom_lock);
1867 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868
1869 struct oom_wait_info {
1870         struct mem_cgroup *mem;
1871         wait_queue_t    wait;
1872 };
1873
1874 static int memcg_oom_wake_function(wait_queue_t *wait,
1875         unsigned mode, int sync, void *arg)
1876 {
1877         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1878                           *oom_wait_memcg;
1879         struct oom_wait_info *oom_wait_info;
1880
1881         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1882         oom_wait_memcg = oom_wait_info->mem;
1883
1884         /*
1885          * Both of oom_wait_info->mem and wake_mem are stable under us.
1886          * Then we can use css_is_ancestor without taking care of RCU.
1887          */
1888         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1890                 return 0;
1891         return autoremove_wake_function(wait, mode, sync, arg);
1892 }
1893
1894 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1895 {
1896         /* for filtering, pass "memcg" as argument. */
1897         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1898 }
1899
1900 static void memcg_oom_recover(struct mem_cgroup *memcg)
1901 {
1902         if (memcg && atomic_read(&memcg->under_oom))
1903                 memcg_wakeup_oom(memcg);
1904 }
1905
1906 /*
1907  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908  */
1909 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1910 {
1911         struct oom_wait_info owait;
1912         bool locked, need_to_kill;
1913
1914         owait.mem = memcg;
1915         owait.wait.flags = 0;
1916         owait.wait.func = memcg_oom_wake_function;
1917         owait.wait.private = current;
1918         INIT_LIST_HEAD(&owait.wait.task_list);
1919         need_to_kill = true;
1920         mem_cgroup_mark_under_oom(memcg);
1921
1922         /* At first, try to OOM lock hierarchy under memcg.*/
1923         spin_lock(&memcg_oom_lock);
1924         locked = mem_cgroup_oom_lock(memcg);
1925         /*
1926          * Even if signal_pending(), we can't quit charge() loop without
1927          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928          * under OOM is always welcomed, use TASK_KILLABLE here.
1929          */
1930         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931         if (!locked || memcg->oom_kill_disable)
1932                 need_to_kill = false;
1933         if (locked)
1934                 mem_cgroup_oom_notify(memcg);
1935         spin_unlock(&memcg_oom_lock);
1936
1937         if (need_to_kill) {
1938                 finish_wait(&memcg_oom_waitq, &owait.wait);
1939                 mem_cgroup_out_of_memory(memcg, mask);
1940         } else {
1941                 schedule();
1942                 finish_wait(&memcg_oom_waitq, &owait.wait);
1943         }
1944         spin_lock(&memcg_oom_lock);
1945         if (locked)
1946                 mem_cgroup_oom_unlock(memcg);
1947         memcg_wakeup_oom(memcg);
1948         spin_unlock(&memcg_oom_lock);
1949
1950         mem_cgroup_unmark_under_oom(memcg);
1951
1952         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1953                 return false;
1954         /* Give chance to dying process */
1955         schedule_timeout_uninterruptible(1);
1956         return true;
1957 }
1958
1959 /*
1960  * Currently used to update mapped file statistics, but the routine can be
1961  * generalized to update other statistics as well.
1962  *
1963  * Notes: Race condition
1964  *
1965  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966  * it tends to be costly. But considering some conditions, we doesn't need
1967  * to do so _always_.
1968  *
1969  * Considering "charge", lock_page_cgroup() is not required because all
1970  * file-stat operations happen after a page is attached to radix-tree. There
1971  * are no race with "charge".
1972  *
1973  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975  * if there are race with "uncharge". Statistics itself is properly handled
1976  * by flags.
1977  *
1978  * Considering "move", this is an only case we see a race. To make the race
1979  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1980  * possibility of race condition. If there is, we take a lock.
1981  */
1982
1983 void mem_cgroup_update_page_stat(struct page *page,
1984                                  enum mem_cgroup_page_stat_item idx, int val)
1985 {
1986         struct mem_cgroup *memcg;
1987         struct page_cgroup *pc = lookup_page_cgroup(page);
1988         bool need_unlock = false;
1989         unsigned long uninitialized_var(flags);
1990
1991         if (unlikely(!pc))
1992                 return;
1993
1994         rcu_read_lock();
1995         memcg = pc->mem_cgroup;
1996         if (unlikely(!memcg || !PageCgroupUsed(pc)))
1997                 goto out;
1998         /* pc->mem_cgroup is unstable ? */
1999         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2000                 /* take a lock against to access pc->mem_cgroup */
2001                 move_lock_page_cgroup(pc, &flags);
2002                 need_unlock = true;
2003                 memcg = pc->mem_cgroup;
2004                 if (!memcg || !PageCgroupUsed(pc))
2005                         goto out;
2006         }
2007
2008         switch (idx) {
2009         case MEMCG_NR_FILE_MAPPED:
2010                 if (val > 0)
2011                         SetPageCgroupFileMapped(pc);
2012                 else if (!page_mapped(page))
2013                         ClearPageCgroupFileMapped(pc);
2014                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2015                 break;
2016         default:
2017                 BUG();
2018         }
2019
2020         this_cpu_add(memcg->stat->count[idx], val);
2021
2022 out:
2023         if (unlikely(need_unlock))
2024                 move_unlock_page_cgroup(pc, &flags);
2025         rcu_read_unlock();
2026         return;
2027 }
2028 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2029
2030 /*
2031  * size of first charge trial. "32" comes from vmscan.c's magic value.
2032  * TODO: maybe necessary to use big numbers in big irons.
2033  */
2034 #define CHARGE_BATCH    32U
2035 struct memcg_stock_pcp {
2036         struct mem_cgroup *cached; /* this never be root cgroup */
2037         unsigned int nr_pages;
2038         struct work_struct work;
2039         unsigned long flags;
2040 #define FLUSHING_CACHED_CHARGE  (0)
2041 };
2042 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2043 static DEFINE_MUTEX(percpu_charge_mutex);
2044
2045 /*
2046  * Try to consume stocked charge on this cpu. If success, one page is consumed
2047  * from local stock and true is returned. If the stock is 0 or charges from a
2048  * cgroup which is not current target, returns false. This stock will be
2049  * refilled.
2050  */
2051 static bool consume_stock(struct mem_cgroup *memcg)
2052 {
2053         struct memcg_stock_pcp *stock;
2054         bool ret = true;
2055
2056         stock = &get_cpu_var(memcg_stock);
2057         if (memcg == stock->cached && stock->nr_pages)
2058                 stock->nr_pages--;
2059         else /* need to call res_counter_charge */
2060                 ret = false;
2061         put_cpu_var(memcg_stock);
2062         return ret;
2063 }
2064
2065 /*
2066  * Returns stocks cached in percpu to res_counter and reset cached information.
2067  */
2068 static void drain_stock(struct memcg_stock_pcp *stock)
2069 {
2070         struct mem_cgroup *old = stock->cached;
2071
2072         if (stock->nr_pages) {
2073                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2074
2075                 res_counter_uncharge(&old->res, bytes);
2076                 if (do_swap_account)
2077                         res_counter_uncharge(&old->memsw, bytes);
2078                 stock->nr_pages = 0;
2079         }
2080         stock->cached = NULL;
2081 }
2082
2083 /*
2084  * This must be called under preempt disabled or must be called by
2085  * a thread which is pinned to local cpu.
2086  */
2087 static void drain_local_stock(struct work_struct *dummy)
2088 {
2089         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2090         drain_stock(stock);
2091         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2092 }
2093
2094 /*
2095  * Cache charges(val) which is from res_counter, to local per_cpu area.
2096  * This will be consumed by consume_stock() function, later.
2097  */
2098 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2099 {
2100         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2101
2102         if (stock->cached != memcg) { /* reset if necessary */
2103                 drain_stock(stock);
2104                 stock->cached = memcg;
2105         }
2106         stock->nr_pages += nr_pages;
2107         put_cpu_var(memcg_stock);
2108 }
2109
2110 /*
2111  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2112  * of the hierarchy under it. sync flag says whether we should block
2113  * until the work is done.
2114  */
2115 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2116 {
2117         int cpu, curcpu;
2118
2119         /* Notify other cpus that system-wide "drain" is running */
2120         get_online_cpus();
2121         curcpu = get_cpu();
2122         for_each_online_cpu(cpu) {
2123                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2124                 struct mem_cgroup *memcg;
2125
2126                 memcg = stock->cached;
2127                 if (!memcg || !stock->nr_pages)
2128                         continue;
2129                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2130                         continue;
2131                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2132                         if (cpu == curcpu)
2133                                 drain_local_stock(&stock->work);
2134                         else
2135                                 schedule_work_on(cpu, &stock->work);
2136                 }
2137         }
2138         put_cpu();
2139
2140         if (!sync)
2141                 goto out;
2142
2143         for_each_online_cpu(cpu) {
2144                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2145                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2146                         flush_work(&stock->work);
2147         }
2148 out:
2149         put_online_cpus();
2150 }
2151
2152 /*
2153  * Tries to drain stocked charges in other cpus. This function is asynchronous
2154  * and just put a work per cpu for draining localy on each cpu. Caller can
2155  * expects some charges will be back to res_counter later but cannot wait for
2156  * it.
2157  */
2158 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2159 {
2160         /*
2161          * If someone calls draining, avoid adding more kworker runs.
2162          */
2163         if (!mutex_trylock(&percpu_charge_mutex))
2164                 return;
2165         drain_all_stock(root_memcg, false);
2166         mutex_unlock(&percpu_charge_mutex);
2167 }
2168
2169 /* This is a synchronous drain interface. */
2170 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2171 {
2172         /* called when force_empty is called */
2173         mutex_lock(&percpu_charge_mutex);
2174         drain_all_stock(root_memcg, true);
2175         mutex_unlock(&percpu_charge_mutex);
2176 }
2177
2178 /*
2179  * This function drains percpu counter value from DEAD cpu and
2180  * move it to local cpu. Note that this function can be preempted.
2181  */
2182 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2183 {
2184         int i;
2185
2186         spin_lock(&memcg->pcp_counter_lock);
2187         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2188                 long x = per_cpu(memcg->stat->count[i], cpu);
2189
2190                 per_cpu(memcg->stat->count[i], cpu) = 0;
2191                 memcg->nocpu_base.count[i] += x;
2192         }
2193         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2194                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2195
2196                 per_cpu(memcg->stat->events[i], cpu) = 0;
2197                 memcg->nocpu_base.events[i] += x;
2198         }
2199         /* need to clear ON_MOVE value, works as a kind of lock. */
2200         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2201         spin_unlock(&memcg->pcp_counter_lock);
2202 }
2203
2204 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2205 {
2206         int idx = MEM_CGROUP_ON_MOVE;
2207
2208         spin_lock(&memcg->pcp_counter_lock);
2209         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2210         spin_unlock(&memcg->pcp_counter_lock);
2211 }
2212
2213 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2214                                         unsigned long action,
2215                                         void *hcpu)
2216 {
2217         int cpu = (unsigned long)hcpu;
2218         struct memcg_stock_pcp *stock;
2219         struct mem_cgroup *iter;
2220
2221         if ((action == CPU_ONLINE)) {
2222                 for_each_mem_cgroup(iter)
2223                         synchronize_mem_cgroup_on_move(iter, cpu);
2224                 return NOTIFY_OK;
2225         }
2226
2227         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2228                 return NOTIFY_OK;
2229
2230         for_each_mem_cgroup(iter)
2231                 mem_cgroup_drain_pcp_counter(iter, cpu);
2232
2233         stock = &per_cpu(memcg_stock, cpu);
2234         drain_stock(stock);
2235         return NOTIFY_OK;
2236 }
2237
2238
2239 /* See __mem_cgroup_try_charge() for details */
2240 enum {
2241         CHARGE_OK,              /* success */
2242         CHARGE_RETRY,           /* need to retry but retry is not bad */
2243         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2244         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2245         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2246 };
2247
2248 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2249                                 unsigned int nr_pages, bool oom_check)
2250 {
2251         unsigned long csize = nr_pages * PAGE_SIZE;
2252         struct mem_cgroup *mem_over_limit;
2253         struct res_counter *fail_res;
2254         unsigned long flags = 0;
2255         int ret;
2256
2257         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2258
2259         if (likely(!ret)) {
2260                 if (!do_swap_account)
2261                         return CHARGE_OK;
2262                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2263                 if (likely(!ret))
2264                         return CHARGE_OK;
2265
2266                 res_counter_uncharge(&memcg->res, csize);
2267                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2268                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2269         } else
2270                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2271         /*
2272          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2273          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2274          *
2275          * Never reclaim on behalf of optional batching, retry with a
2276          * single page instead.
2277          */
2278         if (nr_pages == CHARGE_BATCH)
2279                 return CHARGE_RETRY;
2280
2281         if (!(gfp_mask & __GFP_WAIT))
2282                 return CHARGE_WOULDBLOCK;
2283
2284         ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2285         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2286                 return CHARGE_RETRY;
2287         /*
2288          * Even though the limit is exceeded at this point, reclaim
2289          * may have been able to free some pages.  Retry the charge
2290          * before killing the task.
2291          *
2292          * Only for regular pages, though: huge pages are rather
2293          * unlikely to succeed so close to the limit, and we fall back
2294          * to regular pages anyway in case of failure.
2295          */
2296         if (nr_pages == 1 && ret)
2297                 return CHARGE_RETRY;
2298
2299         /*
2300          * At task move, charge accounts can be doubly counted. So, it's
2301          * better to wait until the end of task_move if something is going on.
2302          */
2303         if (mem_cgroup_wait_acct_move(mem_over_limit))
2304                 return CHARGE_RETRY;
2305
2306         /* If we don't need to call oom-killer at el, return immediately */
2307         if (!oom_check)
2308                 return CHARGE_NOMEM;
2309         /* check OOM */
2310         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2311                 return CHARGE_OOM_DIE;
2312
2313         return CHARGE_RETRY;
2314 }
2315
2316 /*
2317  * Unlike exported interface, "oom" parameter is added. if oom==true,
2318  * oom-killer can be invoked.
2319  */
2320 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2321                                    gfp_t gfp_mask,
2322                                    unsigned int nr_pages,
2323                                    struct mem_cgroup **ptr,
2324                                    bool oom)
2325 {
2326         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2327         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2328         struct mem_cgroup *memcg = NULL;
2329         int ret;
2330
2331         /*
2332          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2333          * in system level. So, allow to go ahead dying process in addition to
2334          * MEMDIE process.
2335          */
2336         if (unlikely(test_thread_flag(TIF_MEMDIE)
2337                      || fatal_signal_pending(current)))
2338                 goto bypass;
2339
2340         /*
2341          * We always charge the cgroup the mm_struct belongs to.
2342          * The mm_struct's mem_cgroup changes on task migration if the
2343          * thread group leader migrates. It's possible that mm is not
2344          * set, if so charge the init_mm (happens for pagecache usage).
2345          */
2346         if (!*ptr && !mm)
2347                 goto bypass;
2348 again:
2349         if (*ptr) { /* css should be a valid one */
2350                 memcg = *ptr;
2351                 VM_BUG_ON(css_is_removed(&memcg->css));
2352                 if (mem_cgroup_is_root(memcg))
2353                         goto done;
2354                 if (nr_pages == 1 && consume_stock(memcg))
2355                         goto done;
2356                 css_get(&memcg->css);
2357         } else {
2358                 struct task_struct *p;
2359
2360                 rcu_read_lock();
2361                 p = rcu_dereference(mm->owner);
2362                 /*
2363                  * Because we don't have task_lock(), "p" can exit.
2364                  * In that case, "memcg" can point to root or p can be NULL with
2365                  * race with swapoff. Then, we have small risk of mis-accouning.
2366                  * But such kind of mis-account by race always happens because
2367                  * we don't have cgroup_mutex(). It's overkill and we allo that
2368                  * small race, here.
2369                  * (*) swapoff at el will charge against mm-struct not against
2370                  * task-struct. So, mm->owner can be NULL.
2371                  */
2372                 memcg = mem_cgroup_from_task(p);
2373                 if (!memcg || mem_cgroup_is_root(memcg)) {
2374                         rcu_read_unlock();
2375                         goto done;
2376                 }
2377                 if (nr_pages == 1 && consume_stock(memcg)) {
2378                         /*
2379                          * It seems dagerous to access memcg without css_get().
2380                          * But considering how consume_stok works, it's not
2381                          * necessary. If consume_stock success, some charges
2382                          * from this memcg are cached on this cpu. So, we
2383                          * don't need to call css_get()/css_tryget() before
2384                          * calling consume_stock().
2385                          */
2386                         rcu_read_unlock();
2387                         goto done;
2388                 }
2389                 /* after here, we may be blocked. we need to get refcnt */
2390                 if (!css_tryget(&memcg->css)) {
2391                         rcu_read_unlock();
2392                         goto again;
2393                 }
2394                 rcu_read_unlock();
2395         }
2396
2397         do {
2398                 bool oom_check;
2399
2400                 /* If killed, bypass charge */
2401                 if (fatal_signal_pending(current)) {
2402                         css_put(&memcg->css);
2403                         goto bypass;
2404                 }
2405
2406                 oom_check = false;
2407                 if (oom && !nr_oom_retries) {
2408                         oom_check = true;
2409                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2410                 }
2411
2412                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2413                 switch (ret) {
2414                 case CHARGE_OK:
2415                         break;
2416                 case CHARGE_RETRY: /* not in OOM situation but retry */
2417                         batch = nr_pages;
2418                         css_put(&memcg->css);
2419                         memcg = NULL;
2420                         goto again;
2421                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2422                         css_put(&memcg->css);
2423                         goto nomem;
2424                 case CHARGE_NOMEM: /* OOM routine works */
2425                         if (!oom) {
2426                                 css_put(&memcg->css);
2427                                 goto nomem;
2428                         }
2429                         /* If oom, we never return -ENOMEM */
2430                         nr_oom_retries--;
2431                         break;
2432                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2433                         css_put(&memcg->css);
2434                         goto bypass;
2435                 }
2436         } while (ret != CHARGE_OK);
2437
2438         if (batch > nr_pages)
2439                 refill_stock(memcg, batch - nr_pages);
2440         css_put(&memcg->css);
2441 done:
2442         *ptr = memcg;
2443         return 0;
2444 nomem:
2445         *ptr = NULL;
2446         return -ENOMEM;
2447 bypass:
2448         *ptr = NULL;
2449         return 0;
2450 }
2451
2452 /*
2453  * Somemtimes we have to undo a charge we got by try_charge().
2454  * This function is for that and do uncharge, put css's refcnt.
2455  * gotten by try_charge().
2456  */
2457 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2458                                        unsigned int nr_pages)
2459 {
2460         if (!mem_cgroup_is_root(memcg)) {
2461                 unsigned long bytes = nr_pages * PAGE_SIZE;
2462
2463                 res_counter_uncharge(&memcg->res, bytes);
2464                 if (do_swap_account)
2465                         res_counter_uncharge(&memcg->memsw, bytes);
2466         }
2467 }
2468
2469 /*
2470  * A helper function to get mem_cgroup from ID. must be called under
2471  * rcu_read_lock(). The caller must check css_is_removed() or some if
2472  * it's concern. (dropping refcnt from swap can be called against removed
2473  * memcg.)
2474  */
2475 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2476 {
2477         struct cgroup_subsys_state *css;
2478
2479         /* ID 0 is unused ID */
2480         if (!id)
2481                 return NULL;
2482         css = css_lookup(&mem_cgroup_subsys, id);
2483         if (!css)
2484                 return NULL;
2485         return container_of(css, struct mem_cgroup, css);
2486 }
2487
2488 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2489 {
2490         struct mem_cgroup *memcg = NULL;
2491         struct page_cgroup *pc;
2492         unsigned short id;
2493         swp_entry_t ent;
2494
2495         VM_BUG_ON(!PageLocked(page));
2496
2497         pc = lookup_page_cgroup(page);
2498         lock_page_cgroup(pc);
2499         if (PageCgroupUsed(pc)) {
2500                 memcg = pc->mem_cgroup;
2501                 if (memcg && !css_tryget(&memcg->css))
2502                         memcg = NULL;
2503         } else if (PageSwapCache(page)) {
2504                 ent.val = page_private(page);
2505                 id = lookup_swap_cgroup(ent);
2506                 rcu_read_lock();
2507                 memcg = mem_cgroup_lookup(id);
2508                 if (memcg && !css_tryget(&memcg->css))
2509                         memcg = NULL;
2510                 rcu_read_unlock();
2511         }
2512         unlock_page_cgroup(pc);
2513         return memcg;
2514 }
2515
2516 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2517                                        struct page *page,
2518                                        unsigned int nr_pages,
2519                                        struct page_cgroup *pc,
2520                                        enum charge_type ctype)
2521 {
2522         lock_page_cgroup(pc);
2523         if (unlikely(PageCgroupUsed(pc))) {
2524                 unlock_page_cgroup(pc);
2525                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2526                 return;
2527         }
2528         /*
2529          * we don't need page_cgroup_lock about tail pages, becase they are not
2530          * accessed by any other context at this point.
2531          */
2532         pc->mem_cgroup = memcg;
2533         /*
2534          * We access a page_cgroup asynchronously without lock_page_cgroup().
2535          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2536          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2537          * before USED bit, we need memory barrier here.
2538          * See mem_cgroup_add_lru_list(), etc.
2539          */
2540         smp_wmb();
2541         switch (ctype) {
2542         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2543         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2544                 SetPageCgroupCache(pc);
2545                 SetPageCgroupUsed(pc);
2546                 break;
2547         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2548                 ClearPageCgroupCache(pc);
2549                 SetPageCgroupUsed(pc);
2550                 break;
2551         default:
2552                 break;
2553         }
2554
2555         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2556         unlock_page_cgroup(pc);
2557         /*
2558          * "charge_statistics" updated event counter. Then, check it.
2559          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2560          * if they exceeds softlimit.
2561          */
2562         memcg_check_events(memcg, page);
2563 }
2564
2565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2566
2567 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2568                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2569 /*
2570  * Because tail pages are not marked as "used", set it. We're under
2571  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2572  */
2573 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2574 {
2575         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2576         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2577         unsigned long flags;
2578
2579         if (mem_cgroup_disabled())
2580                 return;
2581         /*
2582          * We have no races with charge/uncharge but will have races with
2583          * page state accounting.
2584          */
2585         move_lock_page_cgroup(head_pc, &flags);
2586
2587         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2588         smp_wmb(); /* see __commit_charge() */
2589         if (PageCgroupAcctLRU(head_pc)) {
2590                 enum lru_list lru;
2591                 struct mem_cgroup_per_zone *mz;
2592
2593                 /*
2594                  * LRU flags cannot be copied because we need to add tail
2595                  *.page to LRU by generic call and our hook will be called.
2596                  * We hold lru_lock, then, reduce counter directly.
2597                  */
2598                 lru = page_lru(head);
2599                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2600                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2601         }
2602         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2603         move_unlock_page_cgroup(head_pc, &flags);
2604 }
2605 #endif
2606
2607 /**
2608  * mem_cgroup_move_account - move account of the page
2609  * @page: the page
2610  * @nr_pages: number of regular pages (>1 for huge pages)
2611  * @pc: page_cgroup of the page.
2612  * @from: mem_cgroup which the page is moved from.
2613  * @to: mem_cgroup which the page is moved to. @from != @to.
2614  * @uncharge: whether we should call uncharge and css_put against @from.
2615  *
2616  * The caller must confirm following.
2617  * - page is not on LRU (isolate_page() is useful.)
2618  * - compound_lock is held when nr_pages > 1
2619  *
2620  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2621  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2622  * true, this function does "uncharge" from old cgroup, but it doesn't if
2623  * @uncharge is false, so a caller should do "uncharge".
2624  */
2625 static int mem_cgroup_move_account(struct page *page,
2626                                    unsigned int nr_pages,
2627                                    struct page_cgroup *pc,
2628                                    struct mem_cgroup *from,
2629                                    struct mem_cgroup *to,
2630                                    bool uncharge)
2631 {
2632         unsigned long flags;
2633         int ret;
2634
2635         VM_BUG_ON(from == to);
2636         VM_BUG_ON(PageLRU(page));
2637         /*
2638          * The page is isolated from LRU. So, collapse function
2639          * will not handle this page. But page splitting can happen.
2640          * Do this check under compound_page_lock(). The caller should
2641          * hold it.
2642          */
2643         ret = -EBUSY;
2644         if (nr_pages > 1 && !PageTransHuge(page))
2645                 goto out;
2646
2647         lock_page_cgroup(pc);
2648
2649         ret = -EINVAL;
2650         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2651                 goto unlock;
2652
2653         move_lock_page_cgroup(pc, &flags);
2654
2655         if (PageCgroupFileMapped(pc)) {
2656                 /* Update mapped_file data for mem_cgroup */
2657                 preempt_disable();
2658                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2659                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2660                 preempt_enable();
2661         }
2662         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2663         if (uncharge)
2664                 /* This is not "cancel", but cancel_charge does all we need. */
2665                 __mem_cgroup_cancel_charge(from, nr_pages);
2666
2667         /* caller should have done css_get */
2668         pc->mem_cgroup = to;
2669         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2670         /*
2671          * We charges against "to" which may not have any tasks. Then, "to"
2672          * can be under rmdir(). But in current implementation, caller of
2673          * this function is just force_empty() and move charge, so it's
2674          * guaranteed that "to" is never removed. So, we don't check rmdir
2675          * status here.
2676          */
2677         move_unlock_page_cgroup(pc, &flags);
2678         ret = 0;
2679 unlock:
2680         unlock_page_cgroup(pc);
2681         /*
2682          * check events
2683          */
2684         memcg_check_events(to, page);
2685         memcg_check_events(from, page);
2686 out:
2687         return ret;
2688 }
2689
2690 /*
2691  * move charges to its parent.
2692  */
2693
2694 static int mem_cgroup_move_parent(struct page *page,
2695                                   struct page_cgroup *pc,
2696                                   struct mem_cgroup *child,
2697                                   gfp_t gfp_mask)
2698 {
2699         struct cgroup *cg = child->css.cgroup;
2700         struct cgroup *pcg = cg->parent;
2701         struct mem_cgroup *parent;
2702         unsigned int nr_pages;
2703         unsigned long uninitialized_var(flags);
2704         int ret;
2705
2706         /* Is ROOT ? */
2707         if (!pcg)
2708                 return -EINVAL;
2709
2710         ret = -EBUSY;
2711         if (!get_page_unless_zero(page))
2712                 goto out;
2713         if (isolate_lru_page(page))
2714                 goto put;
2715
2716         nr_pages = hpage_nr_pages(page);
2717
2718         parent = mem_cgroup_from_cont(pcg);
2719         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2720         if (ret || !parent)
2721                 goto put_back;
2722
2723         if (nr_pages > 1)
2724                 flags = compound_lock_irqsave(page);
2725
2726         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2727         if (ret)
2728                 __mem_cgroup_cancel_charge(parent, nr_pages);
2729
2730         if (nr_pages > 1)
2731                 compound_unlock_irqrestore(page, flags);
2732 put_back:
2733         putback_lru_page(page);
2734 put:
2735         put_page(page);
2736 out:
2737         return ret;
2738 }
2739
2740 /*
2741  * Charge the memory controller for page usage.
2742  * Return
2743  * 0 if the charge was successful
2744  * < 0 if the cgroup is over its limit
2745  */
2746 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2747                                 gfp_t gfp_mask, enum charge_type ctype)
2748 {
2749         struct mem_cgroup *memcg = NULL;
2750         unsigned int nr_pages = 1;
2751         struct page_cgroup *pc;
2752         bool oom = true;
2753         int ret;
2754
2755         if (PageTransHuge(page)) {
2756                 nr_pages <<= compound_order(page);
2757                 VM_BUG_ON(!PageTransHuge(page));
2758                 /*
2759                  * Never OOM-kill a process for a huge page.  The
2760                  * fault handler will fall back to regular pages.
2761                  */
2762                 oom = false;
2763         }
2764
2765         pc = lookup_page_cgroup(page);
2766         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2767
2768         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2769         if (ret || !memcg)
2770                 return ret;
2771
2772         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2773         return 0;
2774 }
2775
2776 int mem_cgroup_newpage_charge(struct page *page,
2777                               struct mm_struct *mm, gfp_t gfp_mask)
2778 {
2779         if (mem_cgroup_disabled())
2780                 return 0;
2781         /*
2782          * If already mapped, we don't have to account.
2783          * If page cache, page->mapping has address_space.
2784          * But page->mapping may have out-of-use anon_vma pointer,
2785          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2786          * is NULL.
2787          */
2788         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2789                 return 0;
2790         if (unlikely(!mm))
2791                 mm = &init_mm;
2792         return mem_cgroup_charge_common(page, mm, gfp_mask,
2793                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2794 }
2795
2796 static void
2797 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2798                                         enum charge_type ctype);
2799
2800 static void
2801 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2802                                         enum charge_type ctype)
2803 {
2804         struct page_cgroup *pc = lookup_page_cgroup(page);
2805         /*
2806          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2807          * is already on LRU. It means the page may on some other page_cgroup's
2808          * LRU. Take care of it.
2809          */
2810         mem_cgroup_lru_del_before_commit(page);
2811         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2812         mem_cgroup_lru_add_after_commit(page);
2813         return;
2814 }
2815
2816 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2817                                 gfp_t gfp_mask)
2818 {
2819         struct mem_cgroup *memcg = NULL;
2820         int ret;
2821
2822         if (mem_cgroup_disabled())
2823                 return 0;
2824         if (PageCompound(page))
2825                 return 0;
2826
2827         if (unlikely(!mm))
2828                 mm = &init_mm;
2829
2830         if (page_is_file_cache(page)) {
2831                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2832                 if (ret || !memcg)
2833                         return ret;
2834
2835                 /*
2836                  * FUSE reuses pages without going through the final
2837                  * put that would remove them from the LRU list, make
2838                  * sure that they get relinked properly.
2839                  */
2840                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2841                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2842                 return ret;
2843         }
2844         /* shmem */
2845         if (PageSwapCache(page)) {
2846                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2847                 if (!ret)
2848                         __mem_cgroup_commit_charge_swapin(page, memcg,
2849                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2850         } else
2851                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2852                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2853
2854         return ret;
2855 }
2856
2857 /*
2858  * While swap-in, try_charge -> commit or cancel, the page is locked.
2859  * And when try_charge() successfully returns, one refcnt to memcg without
2860  * struct page_cgroup is acquired. This refcnt will be consumed by
2861  * "commit()" or removed by "cancel()"
2862  */
2863 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2864                                  struct page *page,
2865                                  gfp_t mask, struct mem_cgroup **ptr)
2866 {
2867         struct mem_cgroup *memcg;
2868         int ret;
2869
2870         *ptr = NULL;
2871
2872         if (mem_cgroup_disabled())
2873                 return 0;
2874
2875         if (!do_swap_account)
2876                 goto charge_cur_mm;
2877         /*
2878          * A racing thread's fault, or swapoff, may have already updated
2879          * the pte, and even removed page from swap cache: in those cases
2880          * do_swap_page()'s pte_same() test will fail; but there's also a
2881          * KSM case which does need to charge the page.
2882          */
2883         if (!PageSwapCache(page))
2884                 goto charge_cur_mm;
2885         memcg = try_get_mem_cgroup_from_page(page);
2886         if (!memcg)
2887                 goto charge_cur_mm;
2888         *ptr = memcg;
2889         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2890         css_put(&memcg->css);
2891         return ret;
2892 charge_cur_mm:
2893         if (unlikely(!mm))
2894                 mm = &init_mm;
2895         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2896 }
2897
2898 static void
2899 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2900                                         enum charge_type ctype)
2901 {
2902         if (mem_cgroup_disabled())
2903                 return;
2904         if (!ptr)
2905                 return;
2906         cgroup_exclude_rmdir(&ptr->css);
2907
2908         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2909         /*
2910          * Now swap is on-memory. This means this page may be
2911          * counted both as mem and swap....double count.
2912          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2913          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2914          * may call delete_from_swap_cache() before reach here.
2915          */
2916         if (do_swap_account && PageSwapCache(page)) {
2917                 swp_entry_t ent = {.val = page_private(page)};
2918                 unsigned short id;
2919                 struct mem_cgroup *memcg;
2920
2921                 id = swap_cgroup_record(ent, 0);
2922                 rcu_read_lock();
2923                 memcg = mem_cgroup_lookup(id);
2924                 if (memcg) {
2925                         /*
2926                          * This recorded memcg can be obsolete one. So, avoid
2927                          * calling css_tryget
2928                          */
2929                         if (!mem_cgroup_is_root(memcg))
2930                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2931                         mem_cgroup_swap_statistics(memcg, false);
2932                         mem_cgroup_put(memcg);
2933                 }
2934                 rcu_read_unlock();
2935         }
2936         /*
2937          * At swapin, we may charge account against cgroup which has no tasks.
2938          * So, rmdir()->pre_destroy() can be called while we do this charge.
2939          * In that case, we need to call pre_destroy() again. check it here.
2940          */
2941         cgroup_release_and_wakeup_rmdir(&ptr->css);
2942 }
2943
2944 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2945 {
2946         __mem_cgroup_commit_charge_swapin(page, ptr,
2947                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2948 }
2949
2950 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2951 {
2952         if (mem_cgroup_disabled())
2953                 return;
2954         if (!memcg)
2955                 return;
2956         __mem_cgroup_cancel_charge(memcg, 1);
2957 }
2958
2959 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2960                                    unsigned int nr_pages,
2961                                    const enum charge_type ctype)
2962 {
2963         struct memcg_batch_info *batch = NULL;
2964         bool uncharge_memsw = true;
2965
2966         /* If swapout, usage of swap doesn't decrease */
2967         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2968                 uncharge_memsw = false;
2969
2970         batch = &current->memcg_batch;
2971         /*
2972          * In usual, we do css_get() when we remember memcg pointer.
2973          * But in this case, we keep res->usage until end of a series of
2974          * uncharges. Then, it's ok to ignore memcg's refcnt.
2975          */
2976         if (!batch->memcg)
2977                 batch->memcg = memcg;
2978         /*
2979          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2980          * In those cases, all pages freed continuously can be expected to be in
2981          * the same cgroup and we have chance to coalesce uncharges.
2982          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2983          * because we want to do uncharge as soon as possible.
2984          */
2985
2986         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2987                 goto direct_uncharge;
2988
2989         if (nr_pages > 1)
2990                 goto direct_uncharge;
2991
2992         /*
2993          * In typical case, batch->memcg == mem. This means we can
2994          * merge a series of uncharges to an uncharge of res_counter.
2995          * If not, we uncharge res_counter ony by one.
2996          */
2997         if (batch->memcg != memcg)
2998                 goto direct_uncharge;
2999         /* remember freed charge and uncharge it later */
3000         batch->nr_pages++;
3001         if (uncharge_memsw)
3002                 batch->memsw_nr_pages++;
3003         return;
3004 direct_uncharge:
3005         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3006         if (uncharge_memsw)
3007                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3008         if (unlikely(batch->memcg != memcg))
3009                 memcg_oom_recover(memcg);
3010         return;
3011 }
3012
3013 /*
3014  * uncharge if !page_mapped(page)
3015  */
3016 static struct mem_cgroup *
3017 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3018 {
3019         struct mem_cgroup *memcg = NULL;
3020         unsigned int nr_pages = 1;
3021         struct page_cgroup *pc;
3022
3023         if (mem_cgroup_disabled())
3024                 return NULL;
3025
3026         if (PageSwapCache(page))
3027                 return NULL;
3028
3029         if (PageTransHuge(page)) {
3030                 nr_pages <<= compound_order(page);
3031                 VM_BUG_ON(!PageTransHuge(page));
3032         }
3033         /*
3034          * Check if our page_cgroup is valid
3035          */
3036         pc = lookup_page_cgroup(page);
3037         if (unlikely(!pc || !PageCgroupUsed(pc)))
3038                 return NULL;
3039
3040         lock_page_cgroup(pc);
3041
3042         memcg = pc->mem_cgroup;
3043
3044         if (!PageCgroupUsed(pc))
3045                 goto unlock_out;
3046
3047         switch (ctype) {
3048         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3049         case MEM_CGROUP_CHARGE_TYPE_DROP:
3050                 /* See mem_cgroup_prepare_migration() */
3051                 if (page_mapped(page) || PageCgroupMigration(pc))
3052                         goto unlock_out;
3053                 break;
3054         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3055                 if (!PageAnon(page)) {  /* Shared memory */
3056                         if (page->mapping && !page_is_file_cache(page))
3057                                 goto unlock_out;
3058                 } else if (page_mapped(page)) /* Anon */
3059                                 goto unlock_out;
3060                 break;
3061         default:
3062                 break;
3063         }
3064
3065         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3066
3067         ClearPageCgroupUsed(pc);
3068         /*
3069          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3070          * freed from LRU. This is safe because uncharged page is expected not
3071          * to be reused (freed soon). Exception is SwapCache, it's handled by
3072          * special functions.
3073          */
3074
3075         unlock_page_cgroup(pc);
3076         /*
3077          * even after unlock, we have memcg->res.usage here and this memcg
3078          * will never be freed.
3079          */
3080         memcg_check_events(memcg, page);
3081         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3082                 mem_cgroup_swap_statistics(memcg, true);
3083                 mem_cgroup_get(memcg);
3084         }
3085         if (!mem_cgroup_is_root(memcg))
3086                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3087
3088         return memcg;
3089
3090 unlock_out:
3091         unlock_page_cgroup(pc);
3092         return NULL;
3093 }
3094
3095 void mem_cgroup_uncharge_page(struct page *page)
3096 {
3097         /* early check. */
3098         if (page_mapped(page))
3099                 return;
3100         if (page->mapping && !PageAnon(page))
3101                 return;
3102         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3103 }
3104
3105 void mem_cgroup_uncharge_cache_page(struct page *page)
3106 {
3107         VM_BUG_ON(page_mapped(page));
3108         VM_BUG_ON(page->mapping);
3109         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3110 }
3111
3112 /*
3113  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3114  * In that cases, pages are freed continuously and we can expect pages
3115  * are in the same memcg. All these calls itself limits the number of
3116  * pages freed at once, then uncharge_start/end() is called properly.
3117  * This may be called prural(2) times in a context,
3118  */
3119
3120 void mem_cgroup_uncharge_start(void)
3121 {
3122         current->memcg_batch.do_batch++;
3123         /* We can do nest. */
3124         if (current->memcg_batch.do_batch == 1) {
3125                 current->memcg_batch.memcg = NULL;
3126                 current->memcg_batch.nr_pages = 0;
3127                 current->memcg_batch.memsw_nr_pages = 0;
3128         }
3129 }
3130
3131 void mem_cgroup_uncharge_end(void)
3132 {
3133         struct memcg_batch_info *batch = &current->memcg_batch;
3134
3135         if (!batch->do_batch)
3136                 return;
3137
3138         batch->do_batch--;
3139         if (batch->do_batch) /* If stacked, do nothing. */
3140                 return;
3141
3142         if (!batch->memcg)
3143                 return;
3144         /*
3145          * This "batch->memcg" is valid without any css_get/put etc...
3146          * bacause we hide charges behind us.
3147          */
3148         if (batch->nr_pages)
3149                 res_counter_uncharge(&batch->memcg->res,
3150                                      batch->nr_pages * PAGE_SIZE);
3151         if (batch->memsw_nr_pages)
3152                 res_counter_uncharge(&batch->memcg->memsw,
3153                                      batch->memsw_nr_pages * PAGE_SIZE);
3154         memcg_oom_recover(batch->memcg);
3155         /* forget this pointer (for sanity check) */
3156         batch->memcg = NULL;
3157 }
3158
3159 #ifdef CONFIG_SWAP
3160 /*
3161  * called after __delete_from_swap_cache() and drop "page" account.
3162  * memcg information is recorded to swap_cgroup of "ent"
3163  */
3164 void
3165 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3166 {
3167         struct mem_cgroup *memcg;
3168         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3169
3170         if (!swapout) /* this was a swap cache but the swap is unused ! */
3171                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3172
3173         memcg = __mem_cgroup_uncharge_common(page, ctype);
3174
3175         /*
3176          * record memcg information,  if swapout && memcg != NULL,
3177          * mem_cgroup_get() was called in uncharge().
3178          */
3179         if (do_swap_account && swapout && memcg)
3180                 swap_cgroup_record(ent, css_id(&memcg->css));
3181 }
3182 #endif
3183
3184 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3185 /*
3186  * called from swap_entry_free(). remove record in swap_cgroup and
3187  * uncharge "memsw" account.
3188  */
3189 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3190 {
3191         struct mem_cgroup *memcg;
3192         unsigned short id;
3193
3194         if (!do_swap_account)
3195                 return;
3196
3197         id = swap_cgroup_record(ent, 0);
3198         rcu_read_lock();
3199         memcg = mem_cgroup_lookup(id);
3200         if (memcg) {
3201                 /*
3202                  * We uncharge this because swap is freed.
3203                  * This memcg can be obsolete one. We avoid calling css_tryget
3204                  */
3205                 if (!mem_cgroup_is_root(memcg))
3206                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3207                 mem_cgroup_swap_statistics(memcg, false);
3208                 mem_cgroup_put(memcg);
3209         }
3210         rcu_read_unlock();
3211 }
3212
3213 /**
3214  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3215  * @entry: swap entry to be moved
3216  * @from:  mem_cgroup which the entry is moved from
3217  * @to:  mem_cgroup which the entry is moved to
3218  * @need_fixup: whether we should fixup res_counters and refcounts.
3219  *
3220  * It succeeds only when the swap_cgroup's record for this entry is the same
3221  * as the mem_cgroup's id of @from.
3222  *
3223  * Returns 0 on success, -EINVAL on failure.
3224  *
3225  * The caller must have charged to @to, IOW, called res_counter_charge() about
3226  * both res and memsw, and called css_get().
3227  */
3228 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3229                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3230 {
3231         unsigned short old_id, new_id;
3232
3233         old_id = css_id(&from->css);
3234         new_id = css_id(&to->css);
3235
3236         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3237                 mem_cgroup_swap_statistics(from, false);
3238                 mem_cgroup_swap_statistics(to, true);
3239                 /*
3240                  * This function is only called from task migration context now.
3241                  * It postpones res_counter and refcount handling till the end
3242                  * of task migration(mem_cgroup_clear_mc()) for performance
3243                  * improvement. But we cannot postpone mem_cgroup_get(to)
3244                  * because if the process that has been moved to @to does
3245                  * swap-in, the refcount of @to might be decreased to 0.
3246                  */
3247                 mem_cgroup_get(to);
3248                 if (need_fixup) {
3249                         if (!mem_cgroup_is_root(from))
3250                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3251                         mem_cgroup_put(from);
3252                         /*
3253                          * we charged both to->res and to->memsw, so we should
3254                          * uncharge to->res.
3255                          */
3256                         if (!mem_cgroup_is_root(to))
3257                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3258                 }
3259                 return 0;
3260         }
3261         return -EINVAL;
3262 }
3263 #else
3264 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3265                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3266 {
3267         return -EINVAL;
3268 }
3269 #endif
3270
3271 /*
3272  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3273  * page belongs to.
3274  */
3275 int mem_cgroup_prepare_migration(struct page *page,
3276         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3277 {
3278         struct mem_cgroup *memcg = NULL;
3279         struct page_cgroup *pc;
3280         enum charge_type ctype;
3281         int ret = 0;
3282
3283         *ptr = NULL;
3284
3285         VM_BUG_ON(PageTransHuge(page));
3286         if (mem_cgroup_disabled())
3287                 return 0;
3288
3289         pc = lookup_page_cgroup(page);
3290         lock_page_cgroup(pc);
3291         if (PageCgroupUsed(pc)) {
3292                 memcg = pc->mem_cgroup;
3293                 css_get(&memcg->css);
3294                 /*
3295                  * At migrating an anonymous page, its mapcount goes down
3296                  * to 0 and uncharge() will be called. But, even if it's fully
3297                  * unmapped, migration may fail and this page has to be
3298                  * charged again. We set MIGRATION flag here and delay uncharge
3299                  * until end_migration() is called
3300                  *
3301                  * Corner Case Thinking
3302                  * A)
3303                  * When the old page was mapped as Anon and it's unmap-and-freed
3304                  * while migration was ongoing.
3305                  * If unmap finds the old page, uncharge() of it will be delayed
3306                  * until end_migration(). If unmap finds a new page, it's
3307                  * uncharged when it make mapcount to be 1->0. If unmap code
3308                  * finds swap_migration_entry, the new page will not be mapped
3309                  * and end_migration() will find it(mapcount==0).
3310                  *
3311                  * B)
3312                  * When the old page was mapped but migraion fails, the kernel
3313                  * remaps it. A charge for it is kept by MIGRATION flag even
3314                  * if mapcount goes down to 0. We can do remap successfully
3315                  * without charging it again.
3316                  *
3317                  * C)
3318                  * The "old" page is under lock_page() until the end of
3319                  * migration, so, the old page itself will not be swapped-out.
3320                  * If the new page is swapped out before end_migraton, our
3321                  * hook to usual swap-out path will catch the event.
3322                  */
3323                 if (PageAnon(page))
3324                         SetPageCgroupMigration(pc);
3325         }
3326         unlock_page_cgroup(pc);
3327         /*
3328          * If the page is not charged at this point,
3329          * we return here.
3330          */
3331         if (!memcg)
3332                 return 0;
3333
3334         *ptr = memcg;
3335         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3336         css_put(&memcg->css);/* drop extra refcnt */
3337         if (ret || *ptr == NULL) {
3338                 if (PageAnon(page)) {
3339                         lock_page_cgroup(pc);
3340                         ClearPageCgroupMigration(pc);
3341                         unlock_page_cgroup(pc);
3342                         /*
3343                          * The old page may be fully unmapped while we kept it.
3344                          */
3345                         mem_cgroup_uncharge_page(page);
3346                 }
3347                 return -ENOMEM;
3348         }
3349         /*
3350          * We charge new page before it's used/mapped. So, even if unlock_page()
3351          * is called before end_migration, we can catch all events on this new
3352          * page. In the case new page is migrated but not remapped, new page's
3353          * mapcount will be finally 0 and we call uncharge in end_migration().
3354          */
3355         pc = lookup_page_cgroup(newpage);
3356         if (PageAnon(page))
3357                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3358         else if (page_is_file_cache(page))
3359                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3360         else
3361                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3362         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3363         return ret;
3364 }
3365
3366 /* remove redundant charge if migration failed*/
3367 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3368         struct page *oldpage, struct page *newpage, bool migration_ok)
3369 {
3370         struct page *used, *unused;
3371         struct page_cgroup *pc;
3372
3373         if (!memcg)
3374                 return;
3375         /* blocks rmdir() */
3376         cgroup_exclude_rmdir(&memcg->css);
3377         if (!migration_ok) {
3378                 used = oldpage;
3379                 unused = newpage;
3380         } else {
3381                 used = newpage;
3382                 unused = oldpage;
3383         }
3384         /*
3385          * We disallowed uncharge of pages under migration because mapcount
3386          * of the page goes down to zero, temporarly.
3387          * Clear the flag and check the page should be charged.
3388          */
3389         pc = lookup_page_cgroup(oldpage);
3390         lock_page_cgroup(pc);
3391         ClearPageCgroupMigration(pc);
3392         unlock_page_cgroup(pc);
3393
3394         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3395
3396         /*
3397          * If a page is a file cache, radix-tree replacement is very atomic
3398          * and we can skip this check. When it was an Anon page, its mapcount
3399          * goes down to 0. But because we added MIGRATION flage, it's not
3400          * uncharged yet. There are several case but page->mapcount check
3401          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3402          * check. (see prepare_charge() also)
3403          */
3404         if (PageAnon(used))
3405                 mem_cgroup_uncharge_page(used);
3406         /*
3407          * At migration, we may charge account against cgroup which has no
3408          * tasks.
3409          * So, rmdir()->pre_destroy() can be called while we do this charge.
3410          * In that case, we need to call pre_destroy() again. check it here.
3411          */
3412         cgroup_release_and_wakeup_rmdir(&memcg->css);
3413 }
3414
3415 #ifdef CONFIG_DEBUG_VM
3416 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3417 {
3418         struct page_cgroup *pc;
3419
3420         pc = lookup_page_cgroup(page);
3421         if (likely(pc) && PageCgroupUsed(pc))
3422                 return pc;
3423         return NULL;
3424 }
3425
3426 bool mem_cgroup_bad_page_check(struct page *page)
3427 {
3428         if (mem_cgroup_disabled())
3429                 return false;
3430
3431         return lookup_page_cgroup_used(page) != NULL;
3432 }
3433
3434 void mem_cgroup_print_bad_page(struct page *page)
3435 {
3436         struct page_cgroup *pc;
3437
3438         pc = lookup_page_cgroup_used(page);
3439         if (pc) {
3440                 int ret = -1;
3441                 char *path;
3442
3443                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3444                        pc, pc->flags, pc->mem_cgroup);
3445
3446                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3447                 if (path) {
3448                         rcu_read_lock();
3449                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3450                                                         path, PATH_MAX);
3451                         rcu_read_unlock();
3452                 }
3453
3454                 printk(KERN_CONT "(%s)\n",
3455                                 (ret < 0) ? "cannot get the path" : path);
3456                 kfree(path);
3457         }
3458 }
3459 #endif
3460
3461 static DEFINE_MUTEX(set_limit_mutex);
3462
3463 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3464                                 unsigned long long val)
3465 {
3466         int retry_count;
3467         u64 memswlimit, memlimit;
3468         int ret = 0;
3469         int children = mem_cgroup_count_children(memcg);
3470         u64 curusage, oldusage;
3471         int enlarge;
3472
3473         /*
3474          * For keeping hierarchical_reclaim simple, how long we should retry
3475          * is depends on callers. We set our retry-count to be function
3476          * of # of children which we should visit in this loop.
3477          */
3478         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3479
3480         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481
3482         enlarge = 0;
3483         while (retry_count) {
3484                 if (signal_pending(current)) {
3485                         ret = -EINTR;
3486                         break;
3487                 }
3488                 /*
3489                  * Rather than hide all in some function, I do this in
3490                  * open coded manner. You see what this really does.
3491                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3492                  */
3493                 mutex_lock(&set_limit_mutex);
3494                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3495                 if (memswlimit < val) {
3496                         ret = -EINVAL;
3497                         mutex_unlock(&set_limit_mutex);
3498                         break;
3499                 }
3500
3501                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3502                 if (memlimit < val)
3503                         enlarge = 1;
3504
3505                 ret = res_counter_set_limit(&memcg->res, val);
3506                 if (!ret) {
3507                         if (memswlimit == val)
3508                                 memcg->memsw_is_minimum = true;
3509                         else
3510                                 memcg->memsw_is_minimum = false;
3511                 }
3512                 mutex_unlock(&set_limit_mutex);
3513
3514                 if (!ret)
3515                         break;
3516
3517                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3518                                    MEM_CGROUP_RECLAIM_SHRINK);
3519                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3520                 /* Usage is reduced ? */
3521                 if (curusage >= oldusage)
3522                         retry_count--;
3523                 else
3524                         oldusage = curusage;
3525         }
3526         if (!ret && enlarge)
3527                 memcg_oom_recover(memcg);
3528
3529         return ret;
3530 }
3531
3532 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3533                                         unsigned long long val)
3534 {
3535         int retry_count;
3536         u64 memlimit, memswlimit, oldusage, curusage;
3537         int children = mem_cgroup_count_children(memcg);
3538         int ret = -EBUSY;
3539         int enlarge = 0;
3540
3541         /* see mem_cgroup_resize_res_limit */
3542         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3543         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3544         while (retry_count) {
3545                 if (signal_pending(current)) {
3546                         ret = -EINTR;
3547                         break;
3548                 }
3549                 /*
3550                  * Rather than hide all in some function, I do this in
3551                  * open coded manner. You see what this really does.
3552                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3553                  */
3554                 mutex_lock(&set_limit_mutex);
3555                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3556                 if (memlimit > val) {
3557                         ret = -EINVAL;
3558                         mutex_unlock(&set_limit_mutex);
3559                         break;
3560                 }
3561                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3562                 if (memswlimit < val)
3563                         enlarge = 1;
3564                 ret = res_counter_set_limit(&memcg->memsw, val);
3565                 if (!ret) {
3566                         if (memlimit == val)
3567                                 memcg->memsw_is_minimum = true;
3568                         else
3569                                 memcg->memsw_is_minimum = false;
3570                 }
3571                 mutex_unlock(&set_limit_mutex);
3572
3573                 if (!ret)
3574                         break;
3575
3576                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3577                                    MEM_CGROUP_RECLAIM_NOSWAP |
3578                                    MEM_CGROUP_RECLAIM_SHRINK);
3579                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3580                 /* Usage is reduced ? */
3581                 if (curusage >= oldusage)
3582                         retry_count--;
3583                 else
3584                         oldusage = curusage;
3585         }
3586         if (!ret && enlarge)
3587                 memcg_oom_recover(memcg);
3588         return ret;
3589 }
3590
3591 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3592                                             gfp_t gfp_mask,
3593                                             unsigned long *total_scanned)
3594 {
3595         unsigned long nr_reclaimed = 0;
3596         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3597         unsigned long reclaimed;
3598         int loop = 0;
3599         struct mem_cgroup_tree_per_zone *mctz;
3600         unsigned long long excess;
3601         unsigned long nr_scanned;
3602
3603         if (order > 0)
3604                 return 0;
3605
3606         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3607         /*
3608          * This loop can run a while, specially if mem_cgroup's continuously
3609          * keep exceeding their soft limit and putting the system under
3610          * pressure
3611          */
3612         do {
3613                 if (next_mz)
3614                         mz = next_mz;
3615                 else
3616                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3617                 if (!mz)
3618                         break;
3619
3620                 nr_scanned = 0;
3621                 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3622                                                     gfp_mask, &nr_scanned);
3623                 nr_reclaimed += reclaimed;
3624                 *total_scanned += nr_scanned;
3625                 spin_lock(&mctz->lock);
3626
3627                 /*
3628                  * If we failed to reclaim anything from this memory cgroup
3629                  * it is time to move on to the next cgroup
3630                  */
3631                 next_mz = NULL;
3632                 if (!reclaimed) {
3633                         do {
3634                                 /*
3635                                  * Loop until we find yet another one.
3636                                  *
3637                                  * By the time we get the soft_limit lock
3638                                  * again, someone might have aded the
3639                                  * group back on the RB tree. Iterate to
3640                                  * make sure we get a different mem.
3641                                  * mem_cgroup_largest_soft_limit_node returns
3642                                  * NULL if no other cgroup is present on
3643                                  * the tree
3644                                  */
3645                                 next_mz =
3646                                 __mem_cgroup_largest_soft_limit_node(mctz);
3647                                 if (next_mz == mz)
3648                                         css_put(&next_mz->mem->css);
3649                                 else /* next_mz == NULL or other memcg */
3650                                         break;
3651                         } while (1);
3652                 }
3653                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3654                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3655                 /*
3656                  * One school of thought says that we should not add
3657                  * back the node to the tree if reclaim returns 0.
3658                  * But our reclaim could return 0, simply because due
3659                  * to priority we are exposing a smaller subset of
3660                  * memory to reclaim from. Consider this as a longer
3661                  * term TODO.
3662                  */
3663                 /* If excess == 0, no tree ops */
3664                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3665                 spin_unlock(&mctz->lock);
3666                 css_put(&mz->mem->css);
3667                 loop++;
3668                 /*
3669                  * Could not reclaim anything and there are no more
3670                  * mem cgroups to try or we seem to be looping without
3671                  * reclaiming anything.
3672                  */
3673                 if (!nr_reclaimed &&
3674                         (next_mz == NULL ||
3675                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3676                         break;
3677         } while (!nr_reclaimed);
3678         if (next_mz)
3679                 css_put(&next_mz->mem->css);
3680         return nr_reclaimed;
3681 }
3682
3683 /*
3684  * This routine traverse page_cgroup in given list and drop them all.
3685  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3686  */
3687 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3688                                 int node, int zid, enum lru_list lru)
3689 {
3690         struct zone *zone;
3691         struct mem_cgroup_per_zone *mz;
3692         struct page_cgroup *pc, *busy;
3693         unsigned long flags, loop;
3694         struct list_head *list;
3695         int ret = 0;
3696
3697         zone = &NODE_DATA(node)->node_zones[zid];
3698         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3699         list = &mz->lruvec.lists[lru];
3700
3701         loop = MEM_CGROUP_ZSTAT(mz, lru);
3702         /* give some margin against EBUSY etc...*/
3703         loop += 256;
3704         busy = NULL;
3705         while (loop--) {
3706                 struct page *page;
3707
3708                 ret = 0;
3709                 spin_lock_irqsave(&zone->lru_lock, flags);
3710                 if (list_empty(list)) {
3711                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3712                         break;
3713                 }
3714                 pc = list_entry(list->prev, struct page_cgroup, lru);
3715                 if (busy == pc) {
3716                         list_move(&pc->lru, list);
3717                         busy = NULL;
3718                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3719                         continue;
3720                 }
3721                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3722
3723                 page = lookup_cgroup_page(pc);
3724
3725                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3726                 if (ret == -ENOMEM)
3727                         break;
3728
3729                 if (ret == -EBUSY || ret == -EINVAL) {
3730                         /* found lock contention or "pc" is obsolete. */
3731                         busy = pc;
3732                         cond_resched();
3733                 } else
3734                         busy = NULL;
3735         }
3736
3737         if (!ret && !list_empty(list))
3738                 return -EBUSY;
3739         return ret;
3740 }
3741
3742 /*
3743  * make mem_cgroup's charge to be 0 if there is no task.
3744  * This enables deleting this mem_cgroup.
3745  */
3746 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3747 {
3748         int ret;
3749         int node, zid, shrink;
3750         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3751         struct cgroup *cgrp = memcg->css.cgroup;
3752
3753         css_get(&memcg->css);
3754
3755         shrink = 0;
3756         /* should free all ? */
3757         if (free_all)
3758                 goto try_to_free;
3759 move_account:
3760         do {
3761                 ret = -EBUSY;
3762                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3763                         goto out;
3764                 ret = -EINTR;
3765                 if (signal_pending(current))
3766                         goto out;
3767                 /* This is for making all *used* pages to be on LRU. */
3768                 lru_add_drain_all();
3769                 drain_all_stock_sync(memcg);
3770                 ret = 0;
3771                 mem_cgroup_start_move(memcg);
3772                 for_each_node_state(node, N_HIGH_MEMORY) {
3773                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3774                                 enum lru_list l;
3775                                 for_each_lru(l) {
3776                                         ret = mem_cgroup_force_empty_list(memcg,
3777                                                         node, zid, l);
3778                                         if (ret)
3779                                                 break;
3780                                 }
3781                         }
3782                         if (ret)
3783                                 break;
3784                 }
3785                 mem_cgroup_end_move(memcg);
3786                 memcg_oom_recover(memcg);
3787                 /* it seems parent cgroup doesn't have enough mem */
3788                 if (ret == -ENOMEM)
3789                         goto try_to_free;
3790                 cond_resched();
3791         /* "ret" should also be checked to ensure all lists are empty. */
3792         } while (memcg->res.usage > 0 || ret);
3793 out:
3794         css_put(&memcg->css);
3795         return ret;
3796
3797 try_to_free:
3798         /* returns EBUSY if there is a task or if we come here twice. */
3799         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3800                 ret = -EBUSY;
3801                 goto out;
3802         }
3803         /* we call try-to-free pages for make this cgroup empty */
3804         lru_add_drain_all();
3805         /* try to free all pages in this cgroup */
3806         shrink = 1;
3807         while (nr_retries && memcg->res.usage > 0) {
3808                 int progress;
3809
3810                 if (signal_pending(current)) {
3811                         ret = -EINTR;
3812                         goto out;
3813                 }
3814                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3815                                                 false);
3816                 if (!progress) {
3817                         nr_retries--;
3818                         /* maybe some writeback is necessary */
3819                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3820                 }
3821
3822         }
3823         lru_add_drain();
3824         /* try move_account...there may be some *locked* pages. */
3825         goto move_account;
3826 }
3827
3828 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3829 {
3830         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3831 }
3832
3833
3834 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3835 {
3836         return mem_cgroup_from_cont(cont)->use_hierarchy;
3837 }
3838
3839 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3840                                         u64 val)
3841 {
3842         int retval = 0;
3843         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844         struct cgroup *parent = cont->parent;
3845         struct mem_cgroup *parent_memcg = NULL;
3846
3847         if (parent)
3848                 parent_memcg = mem_cgroup_from_cont(parent);
3849
3850         cgroup_lock();
3851         /*
3852          * If parent's use_hierarchy is set, we can't make any modifications
3853          * in the child subtrees. If it is unset, then the change can
3854          * occur, provided the current cgroup has no children.
3855          *
3856          * For the root cgroup, parent_mem is NULL, we allow value to be
3857          * set if there are no children.
3858          */
3859         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3860                                 (val == 1 || val == 0)) {
3861                 if (list_empty(&cont->children))
3862                         memcg->use_hierarchy = val;
3863                 else
3864                         retval = -EBUSY;
3865         } else
3866                 retval = -EINVAL;
3867         cgroup_unlock();
3868
3869         return retval;
3870 }
3871
3872
3873 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3874                                                enum mem_cgroup_stat_index idx)
3875 {
3876         struct mem_cgroup *iter;
3877         long val = 0;
3878
3879         /* Per-cpu values can be negative, use a signed accumulator */
3880         for_each_mem_cgroup_tree(iter, memcg)
3881                 val += mem_cgroup_read_stat(iter, idx);
3882
3883         if (val < 0) /* race ? */
3884                 val = 0;
3885         return val;
3886 }
3887
3888 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3889 {
3890         u64 val;
3891
3892         if (!mem_cgroup_is_root(memcg)) {
3893                 val = 0;
3894 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3895                 if (!memcg->kmem_independent_accounting)
3896                         val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
3897 #endif
3898                 if (!swap)
3899                         val += res_counter_read_u64(&memcg->res, RES_USAGE);
3900                 else
3901                         val += res_counter_read_u64(&memcg->memsw, RES_USAGE);
3902
3903                 return val;
3904         }
3905
3906         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3907         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3908
3909         if (swap)
3910                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3911
3912         return val << PAGE_SHIFT;
3913 }
3914
3915 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3916 {
3917         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3918         u64 val;
3919         int type, name;
3920
3921         type = MEMFILE_TYPE(cft->private);
3922         name = MEMFILE_ATTR(cft->private);
3923         switch (type) {
3924         case _MEM:
3925                 if (name == RES_USAGE)
3926                         val = mem_cgroup_usage(memcg, false);
3927                 else
3928                         val = res_counter_read_u64(&memcg->res, name);
3929                 break;
3930         case _MEMSWAP:
3931                 if (name == RES_USAGE)
3932                         val = mem_cgroup_usage(memcg, true);
3933                 else
3934                         val = res_counter_read_u64(&memcg->memsw, name);
3935                 break;
3936 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3937         case _KMEM:
3938                 val = res_counter_read_u64(&memcg->kmem, name);
3939                 break;
3940 #endif
3941         default:
3942                 BUG();
3943                 break;
3944         }
3945         return val;
3946 }
3947 /*
3948  * The user of this function is...
3949  * RES_LIMIT.
3950  */
3951 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3952                             const char *buffer)
3953 {
3954         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3955         int type, name;
3956         unsigned long long val;
3957         int ret;
3958
3959         type = MEMFILE_TYPE(cft->private);
3960         name = MEMFILE_ATTR(cft->private);
3961         switch (name) {
3962         case RES_LIMIT:
3963                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3964                         ret = -EINVAL;
3965                         break;
3966                 }
3967                 /* This function does all necessary parse...reuse it */
3968                 ret = res_counter_memparse_write_strategy(buffer, &val);
3969                 if (ret)
3970                         break;
3971                 if (type == _MEM)
3972                         ret = mem_cgroup_resize_limit(memcg, val);
3973                 else
3974                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3975                 break;
3976         case RES_SOFT_LIMIT:
3977                 ret = res_counter_memparse_write_strategy(buffer, &val);
3978                 if (ret)
3979                         break;
3980                 /*
3981                  * For memsw, soft limits are hard to implement in terms
3982                  * of semantics, for now, we support soft limits for
3983                  * control without swap
3984                  */
3985                 if (type == _MEM)
3986                         ret = res_counter_set_soft_limit(&memcg->res, val);
3987                 else
3988                         ret = -EINVAL;
3989                 break;
3990         default:
3991                 ret = -EINVAL; /* should be BUG() ? */
3992                 break;
3993         }
3994         return ret;
3995 }
3996
3997 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3998                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3999 {
4000         struct cgroup *cgroup;
4001         unsigned long long min_limit, min_memsw_limit, tmp;
4002
4003         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4004         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4005         cgroup = memcg->css.cgroup;
4006         if (!memcg->use_hierarchy)
4007                 goto out;
4008
4009         while (cgroup->parent) {
4010                 cgroup = cgroup->parent;
4011                 memcg = mem_cgroup_from_cont(cgroup);
4012                 if (!memcg->use_hierarchy)
4013                         break;
4014                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4015                 min_limit = min(min_limit, tmp);
4016                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4017                 min_memsw_limit = min(min_memsw_limit, tmp);
4018         }
4019 out:
4020         *mem_limit = min_limit;
4021         *memsw_limit = min_memsw_limit;
4022         return;
4023 }
4024
4025 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4026 {
4027         struct mem_cgroup *memcg;
4028         int type, name;
4029
4030         memcg = mem_cgroup_from_cont(cont);
4031         type = MEMFILE_TYPE(event);
4032         name = MEMFILE_ATTR(event);
4033         switch (name) {
4034         case RES_MAX_USAGE:
4035                 if (type == _MEM)
4036                         res_counter_reset_max(&memcg->res);
4037                 else
4038                         res_counter_reset_max(&memcg->memsw);
4039                 break;
4040         case RES_FAILCNT:
4041                 if (type == _MEM)
4042                         res_counter_reset_failcnt(&memcg->res);
4043                 else
4044                         res_counter_reset_failcnt(&memcg->memsw);
4045                 break;
4046         }
4047
4048         return 0;
4049 }
4050
4051 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4052                                         struct cftype *cft)
4053 {
4054         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4055 }
4056
4057 #ifdef CONFIG_MMU
4058 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4059                                         struct cftype *cft, u64 val)
4060 {
4061         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4062
4063         if (val >= (1 << NR_MOVE_TYPE))
4064                 return -EINVAL;
4065         /*
4066          * We check this value several times in both in can_attach() and
4067          * attach(), so we need cgroup lock to prevent this value from being
4068          * inconsistent.
4069          */
4070         cgroup_lock();
4071         memcg->move_charge_at_immigrate = val;
4072         cgroup_unlock();
4073
4074         return 0;
4075 }
4076 #else
4077 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4078                                         struct cftype *cft, u64 val)
4079 {
4080         return -ENOSYS;
4081 }
4082 #endif
4083
4084
4085 /* For read statistics */
4086 enum {
4087         MCS_CACHE,
4088         MCS_RSS,
4089         MCS_FILE_MAPPED,
4090         MCS_PGPGIN,
4091         MCS_PGPGOUT,
4092         MCS_SWAP,
4093         MCS_PGFAULT,
4094         MCS_PGMAJFAULT,
4095         MCS_INACTIVE_ANON,
4096         MCS_ACTIVE_ANON,
4097         MCS_INACTIVE_FILE,
4098         MCS_ACTIVE_FILE,
4099         MCS_UNEVICTABLE,
4100         NR_MCS_STAT,
4101 };
4102
4103 struct mcs_total_stat {
4104         s64 stat[NR_MCS_STAT];
4105 };
4106
4107 struct {
4108         char *local_name;
4109         char *total_name;
4110 } memcg_stat_strings[NR_MCS_STAT] = {
4111         {"cache", "total_cache"},
4112         {"rss", "total_rss"},
4113         {"mapped_file", "total_mapped_file"},
4114         {"pgpgin", "total_pgpgin"},
4115         {"pgpgout", "total_pgpgout"},
4116         {"swap", "total_swap"},
4117         {"pgfault", "total_pgfault"},
4118         {"pgmajfault", "total_pgmajfault"},
4119         {"inactive_anon", "total_inactive_anon"},
4120         {"active_anon", "total_active_anon"},
4121         {"inactive_file", "total_inactive_file"},
4122         {"active_file", "total_active_file"},
4123         {"unevictable", "total_unevictable"}
4124 };
4125
4126
4127 static void
4128 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4129 {
4130         s64 val;
4131
4132         /* per cpu stat */
4133         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4134         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4135         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4136         s->stat[MCS_RSS] += val * PAGE_SIZE;
4137         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4138         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4139         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4140         s->stat[MCS_PGPGIN] += val;
4141         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4142         s->stat[MCS_PGPGOUT] += val;
4143         if (do_swap_account) {
4144                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4145                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4146         }
4147         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4148         s->stat[MCS_PGFAULT] += val;
4149         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4150         s->stat[MCS_PGMAJFAULT] += val;
4151
4152         /* per zone stat */
4153         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4154         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4155         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4156         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4157         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4158         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4159         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4160         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4161         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4162         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4163 }
4164
4165 static void
4166 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4167 {
4168         struct mem_cgroup *iter;
4169
4170         for_each_mem_cgroup_tree(iter, memcg)
4171                 mem_cgroup_get_local_stat(iter, s);
4172 }
4173
4174 #ifdef CONFIG_NUMA
4175 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4176 {
4177         int nid;
4178         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4179         unsigned long node_nr;
4180         struct cgroup *cont = m->private;
4181         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4182
4183         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4184         seq_printf(m, "total=%lu", total_nr);
4185         for_each_node_state(nid, N_HIGH_MEMORY) {
4186                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4187                 seq_printf(m, " N%d=%lu", nid, node_nr);
4188         }
4189         seq_putc(m, '\n');
4190
4191         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4192         seq_printf(m, "file=%lu", file_nr);
4193         for_each_node_state(nid, N_HIGH_MEMORY) {
4194                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4195                                 LRU_ALL_FILE);
4196                 seq_printf(m, " N%d=%lu", nid, node_nr);
4197         }
4198         seq_putc(m, '\n');
4199
4200         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4201         seq_printf(m, "anon=%lu", anon_nr);
4202         for_each_node_state(nid, N_HIGH_MEMORY) {
4203                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4204                                 LRU_ALL_ANON);
4205                 seq_printf(m, " N%d=%lu", nid, node_nr);
4206         }
4207         seq_putc(m, '\n');
4208
4209         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4210         seq_printf(m, "unevictable=%lu", unevictable_nr);
4211         for_each_node_state(nid, N_HIGH_MEMORY) {
4212                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4213                                 BIT(LRU_UNEVICTABLE));
4214                 seq_printf(m, " N%d=%lu", nid, node_nr);
4215         }
4216         seq_putc(m, '\n');
4217         return 0;
4218 }
4219 #endif /* CONFIG_NUMA */
4220
4221 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4222                                  struct cgroup_map_cb *cb)
4223 {
4224         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4225         struct mcs_total_stat mystat;
4226         int i;
4227
4228         memset(&mystat, 0, sizeof(mystat));
4229         mem_cgroup_get_local_stat(mem_cont, &mystat);
4230
4231
4232         for (i = 0; i < NR_MCS_STAT; i++) {
4233                 if (i == MCS_SWAP && !do_swap_account)
4234                         continue;
4235                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4236         }
4237
4238         /* Hierarchical information */
4239         {
4240                 unsigned long long limit, memsw_limit;
4241                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4242                 cb->fill(cb, "hierarchical_memory_limit", limit);
4243                 if (do_swap_account)
4244                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4245         }
4246
4247         memset(&mystat, 0, sizeof(mystat));
4248         mem_cgroup_get_total_stat(mem_cont, &mystat);
4249         for (i = 0; i < NR_MCS_STAT; i++) {
4250                 if (i == MCS_SWAP && !do_swap_account)
4251                         continue;
4252                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4253         }
4254
4255 #ifdef CONFIG_DEBUG_VM
4256         {
4257                 int nid, zid;
4258                 struct mem_cgroup_per_zone *mz;
4259                 unsigned long recent_rotated[2] = {0, 0};
4260                 unsigned long recent_scanned[2] = {0, 0};
4261
4262                 for_each_online_node(nid)
4263                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4264                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4265
4266                                 recent_rotated[0] +=
4267                                         mz->reclaim_stat.recent_rotated[0];
4268                                 recent_rotated[1] +=
4269                                         mz->reclaim_stat.recent_rotated[1];
4270                                 recent_scanned[0] +=
4271                                         mz->reclaim_stat.recent_scanned[0];
4272                                 recent_scanned[1] +=
4273                                         mz->reclaim_stat.recent_scanned[1];
4274                         }
4275                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4276                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4277                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4278                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4279         }
4280 #endif
4281
4282         return 0;
4283 }
4284
4285 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4286 {
4287         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4288
4289         return mem_cgroup_swappiness(memcg);
4290 }
4291
4292 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4293                                        u64 val)
4294 {
4295         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4296         struct mem_cgroup *parent;
4297
4298         if (val > 100)
4299                 return -EINVAL;
4300
4301         if (cgrp->parent == NULL)
4302                 return -EINVAL;
4303
4304         parent = mem_cgroup_from_cont(cgrp->parent);
4305
4306         cgroup_lock();
4307
4308         /* If under hierarchy, only empty-root can set this value */
4309         if ((parent->use_hierarchy) ||
4310             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4311                 cgroup_unlock();
4312                 return -EINVAL;
4313         }
4314
4315         memcg->swappiness = val;
4316
4317         cgroup_unlock();
4318
4319         return 0;
4320 }
4321
4322 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4323 {
4324         struct mem_cgroup_threshold_ary *t;
4325         u64 usage;
4326         int i;
4327
4328         rcu_read_lock();
4329         if (!swap)
4330                 t = rcu_dereference(memcg->thresholds.primary);
4331         else
4332                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4333
4334         if (!t)
4335                 goto unlock;
4336
4337         usage = mem_cgroup_usage(memcg, swap);
4338
4339         /*
4340          * current_threshold points to threshold just below usage.
4341          * If it's not true, a threshold was crossed after last
4342          * call of __mem_cgroup_threshold().
4343          */
4344         i = t->current_threshold;
4345
4346         /*
4347          * Iterate backward over array of thresholds starting from
4348          * current_threshold and check if a threshold is crossed.
4349          * If none of thresholds below usage is crossed, we read
4350          * only one element of the array here.
4351          */
4352         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4353                 eventfd_signal(t->entries[i].eventfd, 1);
4354
4355         /* i = current_threshold + 1 */
4356         i++;
4357
4358         /*
4359          * Iterate forward over array of thresholds starting from
4360          * current_threshold+1 and check if a threshold is crossed.
4361          * If none of thresholds above usage is crossed, we read
4362          * only one element of the array here.
4363          */
4364         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4365                 eventfd_signal(t->entries[i].eventfd, 1);
4366
4367         /* Update current_threshold */
4368         t->current_threshold = i - 1;
4369 unlock:
4370         rcu_read_unlock();
4371 }
4372
4373 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4374 {
4375         while (memcg) {
4376                 __mem_cgroup_threshold(memcg, false);
4377                 if (do_swap_account)
4378                         __mem_cgroup_threshold(memcg, true);
4379
4380                 memcg = parent_mem_cgroup(memcg);
4381         }
4382 }
4383
4384 static int compare_thresholds(const void *a, const void *b)
4385 {
4386         const struct mem_cgroup_threshold *_a = a;
4387         const struct mem_cgroup_threshold *_b = b;
4388
4389         return _a->threshold - _b->threshold;
4390 }
4391
4392 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4393 {
4394         struct mem_cgroup_eventfd_list *ev;
4395
4396         list_for_each_entry(ev, &memcg->oom_notify, list)
4397                 eventfd_signal(ev->eventfd, 1);
4398         return 0;
4399 }
4400
4401 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4402 {
4403         struct mem_cgroup *iter;
4404
4405         for_each_mem_cgroup_tree(iter, memcg)
4406                 mem_cgroup_oom_notify_cb(iter);
4407 }
4408
4409 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4410         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4411 {
4412         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4413         struct mem_cgroup_thresholds *thresholds;
4414         struct mem_cgroup_threshold_ary *new;
4415         int type = MEMFILE_TYPE(cft->private);
4416         u64 threshold, usage;
4417         int i, size, ret;
4418
4419         ret = res_counter_memparse_write_strategy(args, &threshold);
4420         if (ret)
4421                 return ret;
4422
4423         mutex_lock(&memcg->thresholds_lock);
4424
4425         if (type == _MEM)
4426                 thresholds = &memcg->thresholds;
4427         else if (type == _MEMSWAP)
4428                 thresholds = &memcg->memsw_thresholds;
4429         else
4430                 BUG();
4431
4432         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4433
4434         /* Check if a threshold crossed before adding a new one */
4435         if (thresholds->primary)
4436                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4437
4438         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4439
4440         /* Allocate memory for new array of thresholds */
4441         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4442                         GFP_KERNEL);
4443         if (!new) {
4444                 ret = -ENOMEM;
4445                 goto unlock;
4446         }
4447         new->size = size;
4448
4449         /* Copy thresholds (if any) to new array */
4450         if (thresholds->primary) {
4451                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4452                                 sizeof(struct mem_cgroup_threshold));
4453         }
4454
4455         /* Add new threshold */
4456         new->entries[size - 1].eventfd = eventfd;
4457         new->entries[size - 1].threshold = threshold;
4458
4459         /* Sort thresholds. Registering of new threshold isn't time-critical */
4460         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4461                         compare_thresholds, NULL);
4462
4463         /* Find current threshold */
4464         new->current_threshold = -1;
4465         for (i = 0; i < size; i++) {
4466                 if (new->entries[i].threshold < usage) {
4467                         /*
4468                          * new->current_threshold will not be used until
4469                          * rcu_assign_pointer(), so it's safe to increment
4470                          * it here.
4471                          */
4472                         ++new->current_threshold;
4473                 }
4474         }
4475
4476         /* Free old spare buffer and save old primary buffer as spare */
4477         kfree(thresholds->spare);
4478         thresholds->spare = thresholds->primary;
4479
4480         rcu_assign_pointer(thresholds->primary, new);
4481
4482         /* To be sure that nobody uses thresholds */
4483         synchronize_rcu();
4484
4485 unlock:
4486         mutex_unlock(&memcg->thresholds_lock);
4487
4488         return ret;
4489 }
4490
4491 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4492         struct cftype *cft, struct eventfd_ctx *eventfd)
4493 {
4494         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4495         struct mem_cgroup_thresholds *thresholds;
4496         struct mem_cgroup_threshold_ary *new;
4497         int type = MEMFILE_TYPE(cft->private);
4498         u64 usage;
4499         int i, j, size;
4500
4501         mutex_lock(&memcg->thresholds_lock);
4502         if (type == _MEM)
4503                 thresholds = &memcg->thresholds;
4504         else if (type == _MEMSWAP)
4505                 thresholds = &memcg->memsw_thresholds;
4506         else
4507                 BUG();
4508
4509         /*
4510          * Something went wrong if we trying to unregister a threshold
4511          * if we don't have thresholds
4512          */
4513         BUG_ON(!thresholds);
4514
4515         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4516
4517         /* Check if a threshold crossed before removing */
4518         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4519
4520         /* Calculate new number of threshold */
4521         size = 0;
4522         for (i = 0; i < thresholds->primary->size; i++) {
4523                 if (thresholds->primary->entries[i].eventfd != eventfd)
4524                         size++;
4525         }
4526
4527         new = thresholds->spare;
4528
4529         /* Set thresholds array to NULL if we don't have thresholds */
4530         if (!size) {
4531                 kfree(new);
4532                 new = NULL;
4533                 goto swap_buffers;
4534         }
4535
4536         new->size = size;
4537
4538         /* Copy thresholds and find current threshold */
4539         new->current_threshold = -1;
4540         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4541                 if (thresholds->primary->entries[i].eventfd == eventfd)
4542                         continue;
4543
4544                 new->entries[j] = thresholds->primary->entries[i];
4545                 if (new->entries[j].threshold < usage) {
4546                         /*
4547                          * new->current_threshold will not be used
4548                          * until rcu_assign_pointer(), so it's safe to increment
4549                          * it here.
4550                          */
4551                         ++new->current_threshold;
4552                 }
4553                 j++;
4554         }
4555
4556 swap_buffers:
4557         /* Swap primary and spare array */
4558         thresholds->spare = thresholds->primary;
4559         rcu_assign_pointer(thresholds->primary, new);
4560
4561         /* To be sure that nobody uses thresholds */
4562         synchronize_rcu();
4563
4564         mutex_unlock(&memcg->thresholds_lock);
4565 }
4566
4567 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4568         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4569 {
4570         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4571         struct mem_cgroup_eventfd_list *event;
4572         int type = MEMFILE_TYPE(cft->private);
4573
4574         BUG_ON(type != _OOM_TYPE);
4575         event = kmalloc(sizeof(*event), GFP_KERNEL);
4576         if (!event)
4577                 return -ENOMEM;
4578
4579         spin_lock(&memcg_oom_lock);
4580
4581         event->eventfd = eventfd;
4582         list_add(&event->list, &memcg->oom_notify);
4583
4584         /* already in OOM ? */
4585         if (atomic_read(&memcg->under_oom))
4586                 eventfd_signal(eventfd, 1);
4587         spin_unlock(&memcg_oom_lock);
4588
4589         return 0;
4590 }
4591
4592 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4593         struct cftype *cft, struct eventfd_ctx *eventfd)
4594 {
4595         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4596         struct mem_cgroup_eventfd_list *ev, *tmp;
4597         int type = MEMFILE_TYPE(cft->private);
4598
4599         BUG_ON(type != _OOM_TYPE);
4600
4601         spin_lock(&memcg_oom_lock);
4602
4603         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4604                 if (ev->eventfd == eventfd) {
4605                         list_del(&ev->list);
4606                         kfree(ev);
4607                 }
4608         }
4609
4610         spin_unlock(&memcg_oom_lock);
4611 }
4612
4613 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4614         struct cftype *cft,  struct cgroup_map_cb *cb)
4615 {
4616         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4617
4618         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4619
4620         if (atomic_read(&memcg->under_oom))
4621                 cb->fill(cb, "under_oom", 1);
4622         else
4623                 cb->fill(cb, "under_oom", 0);
4624         return 0;
4625 }
4626
4627 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4628         struct cftype *cft, u64 val)
4629 {
4630         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4631         struct mem_cgroup *parent;
4632
4633         /* cannot set to root cgroup and only 0 and 1 are allowed */
4634         if (!cgrp->parent || !((val == 0) || (val == 1)))
4635                 return -EINVAL;
4636
4637         parent = mem_cgroup_from_cont(cgrp->parent);
4638
4639         cgroup_lock();
4640         /* oom-kill-disable is a flag for subhierarchy. */
4641         if ((parent->use_hierarchy) ||
4642             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4643                 cgroup_unlock();
4644                 return -EINVAL;
4645         }
4646         memcg->oom_kill_disable = val;
4647         if (!val)
4648                 memcg_oom_recover(memcg);
4649         cgroup_unlock();
4650         return 0;
4651 }
4652
4653 #ifdef CONFIG_NUMA
4654 static const struct file_operations mem_control_numa_stat_file_operations = {
4655         .read = seq_read,
4656         .llseek = seq_lseek,
4657         .release = single_release,
4658 };
4659
4660 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4661 {
4662         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4663
4664         file->f_op = &mem_control_numa_stat_file_operations;
4665         return single_open(file, mem_control_numa_stat_show, cont);
4666 }
4667 #endif /* CONFIG_NUMA */
4668
4669 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4670 static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
4671 {
4672         return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
4673 }
4674
4675 static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
4676                                         u64 val)
4677 {
4678         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
4679         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4680
4681         val = !!val;
4682
4683         /*
4684          * This follows the same hierarchy restrictions than
4685          * mem_cgroup_hierarchy_write()
4686          */
4687         if (!parent || !parent->use_hierarchy) {
4688                 if (list_empty(&cgroup->children))
4689                         memcg->kmem_independent_accounting = val;
4690                 else
4691                         return -EBUSY;
4692         }
4693         else
4694                 return -EINVAL;
4695
4696         return 0;
4697 }
4698 static struct cftype kmem_cgroup_files[] = {
4699         {
4700                 .name = "independent_kmem_limit",
4701                 .read_u64 = kmem_limit_independent_read,
4702                 .write_u64 = kmem_limit_independent_write,
4703         },
4704         {
4705                 .name = "kmem.usage_in_bytes",
4706                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4707                 .read_u64 = mem_cgroup_read,
4708         },
4709         {
4710                 .name = "kmem.limit_in_bytes",
4711                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4712                 .read_u64 = mem_cgroup_read,
4713         },
4714 };
4715
4716 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717 {
4718         int ret = 0;
4719
4720         ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
4721                                ARRAY_SIZE(kmem_cgroup_files));
4722
4723         /*
4724          * Part of this would be better living in a separate allocation
4725          * function, leaving us with just the cgroup tree population work.
4726          * We, however, depend on state such as network's proto_list that
4727          * is only initialized after cgroup creation. I found the less
4728          * cumbersome way to deal with it to defer it all to populate time
4729          */
4730         if (!ret)
4731                 ret = mem_cgroup_sockets_init(cont, ss);
4732         return ret;
4733 };
4734
4735 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4736                                 struct cgroup *cont)
4737 {
4738         mem_cgroup_sockets_destroy(cont, ss);
4739 }
4740 #else
4741 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4742 {
4743         return 0;
4744 }
4745
4746 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4747                                 struct cgroup *cont)
4748 {
4749 }
4750 #endif
4751
4752 static struct cftype mem_cgroup_files[] = {
4753         {
4754                 .name = "usage_in_bytes",
4755                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4756                 .read_u64 = mem_cgroup_read,
4757                 .register_event = mem_cgroup_usage_register_event,
4758                 .unregister_event = mem_cgroup_usage_unregister_event,
4759         },
4760         {
4761                 .name = "max_usage_in_bytes",
4762                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4763                 .trigger = mem_cgroup_reset,
4764                 .read_u64 = mem_cgroup_read,
4765         },
4766         {
4767                 .name = "limit_in_bytes",
4768                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4769                 .write_string = mem_cgroup_write,
4770                 .read_u64 = mem_cgroup_read,
4771         },
4772         {
4773                 .name = "soft_limit_in_bytes",
4774                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4775                 .write_string = mem_cgroup_write,
4776                 .read_u64 = mem_cgroup_read,
4777         },
4778         {
4779                 .name = "failcnt",
4780                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4781                 .trigger = mem_cgroup_reset,
4782                 .read_u64 = mem_cgroup_read,
4783         },
4784         {
4785                 .name = "stat",
4786                 .read_map = mem_control_stat_show,
4787         },
4788         {
4789                 .name = "force_empty",
4790                 .trigger = mem_cgroup_force_empty_write,
4791         },
4792         {
4793                 .name = "use_hierarchy",
4794                 .write_u64 = mem_cgroup_hierarchy_write,
4795                 .read_u64 = mem_cgroup_hierarchy_read,
4796         },
4797         {
4798                 .name = "swappiness",
4799                 .read_u64 = mem_cgroup_swappiness_read,
4800                 .write_u64 = mem_cgroup_swappiness_write,
4801         },
4802         {
4803                 .name = "move_charge_at_immigrate",
4804                 .read_u64 = mem_cgroup_move_charge_read,
4805                 .write_u64 = mem_cgroup_move_charge_write,
4806         },
4807         {
4808                 .name = "oom_control",
4809                 .read_map = mem_cgroup_oom_control_read,
4810                 .write_u64 = mem_cgroup_oom_control_write,
4811                 .register_event = mem_cgroup_oom_register_event,
4812                 .unregister_event = mem_cgroup_oom_unregister_event,
4813                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4814         },
4815 #ifdef CONFIG_NUMA
4816         {
4817                 .name = "numa_stat",
4818                 .open = mem_control_numa_stat_open,
4819                 .mode = S_IRUGO,
4820         },
4821 #endif
4822 };
4823
4824 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4825 static struct cftype memsw_cgroup_files[] = {
4826         {
4827                 .name = "memsw.usage_in_bytes",
4828                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4829                 .read_u64 = mem_cgroup_read,
4830                 .register_event = mem_cgroup_usage_register_event,
4831                 .unregister_event = mem_cgroup_usage_unregister_event,
4832         },
4833         {
4834                 .name = "memsw.max_usage_in_bytes",
4835                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4836                 .trigger = mem_cgroup_reset,
4837                 .read_u64 = mem_cgroup_read,
4838         },
4839         {
4840                 .name = "memsw.limit_in_bytes",
4841                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4842                 .write_string = mem_cgroup_write,
4843                 .read_u64 = mem_cgroup_read,
4844         },
4845         {
4846                 .name = "memsw.failcnt",
4847                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4848                 .trigger = mem_cgroup_reset,
4849                 .read_u64 = mem_cgroup_read,
4850         },
4851 };
4852
4853 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4854 {
4855         if (!do_swap_account)
4856                 return 0;
4857         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4858                                 ARRAY_SIZE(memsw_cgroup_files));
4859 };
4860 #else
4861 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4862 {
4863         return 0;
4864 }
4865 #endif
4866
4867 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4868 {
4869         struct mem_cgroup_per_node *pn;
4870         struct mem_cgroup_per_zone *mz;
4871         enum lru_list l;
4872         int zone, tmp = node;
4873         /*
4874          * This routine is called against possible nodes.
4875          * But it's BUG to call kmalloc() against offline node.
4876          *
4877          * TODO: this routine can waste much memory for nodes which will
4878          *       never be onlined. It's better to use memory hotplug callback
4879          *       function.
4880          */
4881         if (!node_state(node, N_NORMAL_MEMORY))
4882                 tmp = -1;
4883         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4884         if (!pn)
4885                 return 1;
4886
4887         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4888                 mz = &pn->zoneinfo[zone];
4889                 for_each_lru(l)
4890                         INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4891                 mz->usage_in_excess = 0;
4892                 mz->on_tree = false;
4893                 mz->mem = memcg;
4894         }
4895         memcg->info.nodeinfo[node] = pn;
4896         return 0;
4897 }
4898
4899 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4900 {
4901         kfree(memcg->info.nodeinfo[node]);
4902 }
4903
4904 static struct mem_cgroup *mem_cgroup_alloc(void)
4905 {
4906         struct mem_cgroup *mem;
4907         int size = sizeof(struct mem_cgroup);
4908
4909         /* Can be very big if MAX_NUMNODES is very big */
4910         if (size < PAGE_SIZE)
4911                 mem = kzalloc(size, GFP_KERNEL);
4912         else
4913                 mem = vzalloc(size);
4914
4915         if (!mem)
4916                 return NULL;
4917
4918         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4919         if (!mem->stat)
4920                 goto out_free;
4921         spin_lock_init(&mem->pcp_counter_lock);
4922         return mem;
4923
4924 out_free:
4925         if (size < PAGE_SIZE)
4926                 kfree(mem);
4927         else
4928                 vfree(mem);
4929         return NULL;
4930 }
4931
4932 /*
4933  * At destroying mem_cgroup, references from swap_cgroup can remain.
4934  * (scanning all at force_empty is too costly...)
4935  *
4936  * Instead of clearing all references at force_empty, we remember
4937  * the number of reference from swap_cgroup and free mem_cgroup when
4938  * it goes down to 0.
4939  *
4940  * Removal of cgroup itself succeeds regardless of refs from swap.
4941  */
4942
4943 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4944 {
4945         int node;
4946
4947         mem_cgroup_remove_from_trees(memcg);
4948         free_css_id(&mem_cgroup_subsys, &memcg->css);
4949
4950         for_each_node_state(node, N_POSSIBLE)
4951                 free_mem_cgroup_per_zone_info(memcg, node);
4952
4953         free_percpu(memcg->stat);
4954         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4955                 kfree(memcg);
4956         else
4957                 vfree(memcg);
4958 }
4959
4960 static void mem_cgroup_get(struct mem_cgroup *memcg)
4961 {
4962         atomic_inc(&memcg->refcnt);
4963 }
4964
4965 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4966 {
4967         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4968                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4969                 __mem_cgroup_free(memcg);
4970                 if (parent)
4971                         mem_cgroup_put(parent);
4972         }
4973 }
4974
4975 static void mem_cgroup_put(struct mem_cgroup *memcg)
4976 {
4977         __mem_cgroup_put(memcg, 1);
4978 }
4979
4980 /*
4981  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4982  */
4983 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4984 {
4985         if (!memcg->res.parent)
4986                 return NULL;
4987         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4988 }
4989 EXPORT_SYMBOL(parent_mem_cgroup);
4990
4991 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4992 static void __init enable_swap_cgroup(void)
4993 {
4994         if (!mem_cgroup_disabled() && really_do_swap_account)
4995                 do_swap_account = 1;
4996 }
4997 #else
4998 static void __init enable_swap_cgroup(void)
4999 {
5000 }
5001 #endif
5002
5003 static int mem_cgroup_soft_limit_tree_init(void)
5004 {
5005         struct mem_cgroup_tree_per_node *rtpn;
5006         struct mem_cgroup_tree_per_zone *rtpz;
5007         int tmp, node, zone;
5008
5009         for_each_node_state(node, N_POSSIBLE) {
5010                 tmp = node;
5011                 if (!node_state(node, N_NORMAL_MEMORY))
5012                         tmp = -1;
5013                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5014                 if (!rtpn)
5015                         return 1;
5016
5017                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5018
5019                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5020                         rtpz = &rtpn->rb_tree_per_zone[zone];
5021                         rtpz->rb_root = RB_ROOT;
5022                         spin_lock_init(&rtpz->lock);
5023                 }
5024         }
5025         return 0;
5026 }
5027
5028 static struct cgroup_subsys_state * __ref
5029 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5030 {
5031         struct mem_cgroup *memcg, *parent;
5032         long error = -ENOMEM;
5033         int node;
5034
5035         memcg = mem_cgroup_alloc();
5036         if (!memcg)
5037                 return ERR_PTR(error);
5038
5039         for_each_node_state(node, N_POSSIBLE)
5040                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5041                         goto free_out;
5042
5043         /* root ? */
5044         if (cont->parent == NULL) {
5045                 int cpu;
5046                 enable_swap_cgroup();
5047                 parent = NULL;
5048                 root_mem_cgroup = memcg;
5049                 if (mem_cgroup_soft_limit_tree_init())
5050                         goto free_out;
5051                 for_each_possible_cpu(cpu) {
5052                         struct memcg_stock_pcp *stock =
5053                                                 &per_cpu(memcg_stock, cpu);
5054                         INIT_WORK(&stock->work, drain_local_stock);
5055                 }
5056                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5057         } else {
5058                 parent = mem_cgroup_from_cont(cont->parent);
5059                 memcg->use_hierarchy = parent->use_hierarchy;
5060                 memcg->oom_kill_disable = parent->oom_kill_disable;
5061         }
5062
5063         if (parent && parent->use_hierarchy) {
5064                 res_counter_init(&memcg->res, &parent->res);
5065                 res_counter_init(&memcg->memsw, &parent->memsw);
5066                 res_counter_init(&memcg->kmem, &parent->kmem);
5067                 /*
5068                  * We increment refcnt of the parent to ensure that we can
5069                  * safely access it on res_counter_charge/uncharge.
5070                  * This refcnt will be decremented when freeing this
5071                  * mem_cgroup(see mem_cgroup_put).
5072                  */
5073                 mem_cgroup_get(parent);
5074         } else {
5075                 res_counter_init(&memcg->res, NULL);
5076                 res_counter_init(&memcg->memsw, NULL);
5077                 res_counter_init(&memcg->kmem, NULL);
5078         }
5079         memcg->last_scanned_node = MAX_NUMNODES;
5080         INIT_LIST_HEAD(&memcg->oom_notify);
5081
5082         if (parent)
5083                 memcg->swappiness = mem_cgroup_swappiness(parent);
5084         atomic_set(&memcg->refcnt, 1);
5085         memcg->move_charge_at_immigrate = 0;
5086         mutex_init(&memcg->thresholds_lock);
5087         return &memcg->css;
5088 free_out:
5089         __mem_cgroup_free(memcg);
5090         root_mem_cgroup = NULL;
5091         return ERR_PTR(error);
5092 }
5093
5094 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5095                                         struct cgroup *cont)
5096 {
5097         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5098
5099         return mem_cgroup_force_empty(memcg, false);
5100 }
5101
5102 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5103                                 struct cgroup *cont)
5104 {
5105         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5106
5107         kmem_cgroup_destroy(ss, cont);
5108
5109         mem_cgroup_put(memcg);
5110 }
5111
5112 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5113                                 struct cgroup *cont)
5114 {
5115         int ret;
5116
5117         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5118                                 ARRAY_SIZE(mem_cgroup_files));
5119
5120         if (!ret)
5121                 ret = register_memsw_files(cont, ss);
5122
5123         if (!ret)
5124                 ret = register_kmem_files(cont, ss);
5125
5126         return ret;
5127 }
5128
5129 #ifdef CONFIG_MMU
5130 /* Handlers for move charge at task migration. */
5131 #define PRECHARGE_COUNT_AT_ONCE 256
5132 static int mem_cgroup_do_precharge(unsigned long count)
5133 {
5134         int ret = 0;
5135         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5136         struct mem_cgroup *memcg = mc.to;
5137
5138         if (mem_cgroup_is_root(memcg)) {
5139                 mc.precharge += count;
5140                 /* we don't need css_get for root */
5141                 return ret;
5142         }
5143         /* try to charge at once */
5144         if (count > 1) {
5145                 struct res_counter *dummy;
5146                 /*
5147                  * "memcg" cannot be under rmdir() because we've already checked
5148                  * by cgroup_lock_live_cgroup() that it is not removed and we
5149                  * are still under the same cgroup_mutex. So we can postpone
5150                  * css_get().
5151                  */
5152                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5153                         goto one_by_one;
5154                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5155                                                 PAGE_SIZE * count, &dummy)) {
5156                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5157                         goto one_by_one;
5158                 }
5159                 mc.precharge += count;
5160                 return ret;
5161         }
5162 one_by_one:
5163         /* fall back to one by one charge */
5164         while (count--) {
5165                 if (signal_pending(current)) {
5166                         ret = -EINTR;
5167                         break;
5168                 }
5169                 if (!batch_count--) {
5170                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5171                         cond_resched();
5172                 }
5173                 ret = __mem_cgroup_try_charge(NULL,
5174                                         GFP_KERNEL, 1, &memcg, false);
5175                 if (ret || !memcg)
5176                         /* mem_cgroup_clear_mc() will do uncharge later */
5177                         return -ENOMEM;
5178                 mc.precharge++;
5179         }
5180         return ret;
5181 }
5182
5183 /**
5184  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5185  * @vma: the vma the pte to be checked belongs
5186  * @addr: the address corresponding to the pte to be checked
5187  * @ptent: the pte to be checked
5188  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5189  *
5190  * Returns
5191  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5192  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5193  *     move charge. if @target is not NULL, the page is stored in target->page
5194  *     with extra refcnt got(Callers should handle it).
5195  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5196  *     target for charge migration. if @target is not NULL, the entry is stored
5197  *     in target->ent.
5198  *
5199  * Called with pte lock held.
5200  */
5201 union mc_target {
5202         struct page     *page;
5203         swp_entry_t     ent;
5204 };
5205
5206 enum mc_target_type {
5207         MC_TARGET_NONE, /* not used */
5208         MC_TARGET_PAGE,
5209         MC_TARGET_SWAP,
5210 };
5211
5212 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5213                                                 unsigned long addr, pte_t ptent)
5214 {
5215         struct page *page = vm_normal_page(vma, addr, ptent);
5216
5217         if (!page || !page_mapped(page))
5218                 return NULL;
5219         if (PageAnon(page)) {
5220                 /* we don't move shared anon */
5221                 if (!move_anon() || page_mapcount(page) > 2)
5222                         return NULL;
5223         } else if (!move_file())
5224                 /* we ignore mapcount for file pages */
5225                 return NULL;
5226         if (!get_page_unless_zero(page))
5227                 return NULL;
5228
5229         return page;
5230 }
5231
5232 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5233                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5234 {
5235         int usage_count;
5236         struct page *page = NULL;
5237         swp_entry_t ent = pte_to_swp_entry(ptent);
5238
5239         if (!move_anon() || non_swap_entry(ent))
5240                 return NULL;
5241         usage_count = mem_cgroup_count_swap_user(ent, &page);
5242         if (usage_count > 1) { /* we don't move shared anon */
5243                 if (page)
5244                         put_page(page);
5245                 return NULL;
5246         }
5247         if (do_swap_account)
5248                 entry->val = ent.val;
5249
5250         return page;
5251 }
5252
5253 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5254                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5255 {
5256         struct page *page = NULL;
5257         struct inode *inode;
5258         struct address_space *mapping;
5259         pgoff_t pgoff;
5260
5261         if (!vma->vm_file) /* anonymous vma */
5262                 return NULL;
5263         if (!move_file())
5264                 return NULL;
5265
5266         inode = vma->vm_file->f_path.dentry->d_inode;
5267         mapping = vma->vm_file->f_mapping;
5268         if (pte_none(ptent))
5269                 pgoff = linear_page_index(vma, addr);
5270         else /* pte_file(ptent) is true */
5271                 pgoff = pte_to_pgoff(ptent);
5272
5273         /* page is moved even if it's not RSS of this task(page-faulted). */
5274         page = find_get_page(mapping, pgoff);
5275
5276 #ifdef CONFIG_SWAP
5277         /* shmem/tmpfs may report page out on swap: account for that too. */
5278         if (radix_tree_exceptional_entry(page)) {
5279                 swp_entry_t swap = radix_to_swp_entry(page);
5280                 if (do_swap_account)
5281                         *entry = swap;
5282                 page = find_get_page(&swapper_space, swap.val);
5283         }
5284 #endif
5285         return page;
5286 }
5287
5288 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5289                 unsigned long addr, pte_t ptent, union mc_target *target)
5290 {
5291         struct page *page = NULL;
5292         struct page_cgroup *pc;
5293         int ret = 0;
5294         swp_entry_t ent = { .val = 0 };
5295
5296         if (pte_present(ptent))
5297                 page = mc_handle_present_pte(vma, addr, ptent);
5298         else if (is_swap_pte(ptent))
5299                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5300         else if (pte_none(ptent) || pte_file(ptent))
5301                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5302
5303         if (!page && !ent.val)
5304                 return 0;
5305         if (page) {
5306                 pc = lookup_page_cgroup(page);
5307                 /*
5308                  * Do only loose check w/o page_cgroup lock.
5309                  * mem_cgroup_move_account() checks the pc is valid or not under
5310                  * the lock.
5311                  */
5312                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5313                         ret = MC_TARGET_PAGE;
5314                         if (target)
5315                                 target->page = page;
5316                 }
5317                 if (!ret || !target)
5318                         put_page(page);
5319         }
5320         /* There is a swap entry and a page doesn't exist or isn't charged */
5321         if (ent.val && !ret &&
5322                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5323                 ret = MC_TARGET_SWAP;
5324                 if (target)
5325                         target->ent = ent;
5326         }
5327         return ret;
5328 }
5329
5330 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5331                                         unsigned long addr, unsigned long end,
5332                                         struct mm_walk *walk)
5333 {
5334         struct vm_area_struct *vma = walk->private;
5335         pte_t *pte;
5336         spinlock_t *ptl;
5337
5338         split_huge_page_pmd(walk->mm, pmd);
5339
5340         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5341         for (; addr != end; pte++, addr += PAGE_SIZE)
5342                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5343                         mc.precharge++; /* increment precharge temporarily */
5344         pte_unmap_unlock(pte - 1, ptl);
5345         cond_resched();
5346
5347         return 0;
5348 }
5349
5350 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5351 {
5352         unsigned long precharge;
5353         struct vm_area_struct *vma;
5354
5355         down_read(&mm->mmap_sem);
5356         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5357                 struct mm_walk mem_cgroup_count_precharge_walk = {
5358                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5359                         .mm = mm,
5360                         .private = vma,
5361                 };
5362                 if (is_vm_hugetlb_page(vma))
5363                         continue;
5364                 walk_page_range(vma->vm_start, vma->vm_end,
5365                                         &mem_cgroup_count_precharge_walk);
5366         }
5367         up_read(&mm->mmap_sem);
5368
5369         precharge = mc.precharge;
5370         mc.precharge = 0;
5371
5372         return precharge;
5373 }
5374
5375 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5376 {
5377         unsigned long precharge = mem_cgroup_count_precharge(mm);
5378
5379         VM_BUG_ON(mc.moving_task);
5380         mc.moving_task = current;
5381         return mem_cgroup_do_precharge(precharge);
5382 }
5383
5384 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5385 static void __mem_cgroup_clear_mc(void)
5386 {
5387         struct mem_cgroup *from = mc.from;
5388         struct mem_cgroup *to = mc.to;
5389
5390         /* we must uncharge all the leftover precharges from mc.to */
5391         if (mc.precharge) {
5392                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5393                 mc.precharge = 0;
5394         }
5395         /*
5396          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5397          * we must uncharge here.
5398          */
5399         if (mc.moved_charge) {
5400                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5401                 mc.moved_charge = 0;
5402         }
5403         /* we must fixup refcnts and charges */
5404         if (mc.moved_swap) {
5405                 /* uncharge swap account from the old cgroup */
5406                 if (!mem_cgroup_is_root(mc.from))
5407                         res_counter_uncharge(&mc.from->memsw,
5408                                                 PAGE_SIZE * mc.moved_swap);
5409                 __mem_cgroup_put(mc.from, mc.moved_swap);
5410
5411                 if (!mem_cgroup_is_root(mc.to)) {
5412                         /*
5413                          * we charged both to->res and to->memsw, so we should
5414                          * uncharge to->res.
5415                          */
5416                         res_counter_uncharge(&mc.to->res,
5417                                                 PAGE_SIZE * mc.moved_swap);
5418                 }
5419                 /* we've already done mem_cgroup_get(mc.to) */
5420                 mc.moved_swap = 0;
5421         }
5422         memcg_oom_recover(from);
5423         memcg_oom_recover(to);
5424         wake_up_all(&mc.waitq);
5425 }
5426
5427 static void mem_cgroup_clear_mc(void)
5428 {
5429         struct mem_cgroup *from = mc.from;
5430
5431         /*
5432          * we must clear moving_task before waking up waiters at the end of
5433          * task migration.
5434          */
5435         mc.moving_task = NULL;
5436         __mem_cgroup_clear_mc();
5437         spin_lock(&mc.lock);
5438         mc.from = NULL;
5439         mc.to = NULL;
5440         spin_unlock(&mc.lock);
5441         mem_cgroup_end_move(from);
5442 }
5443
5444 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5445                                 struct cgroup *cgroup,
5446                                 struct cgroup_taskset *tset)
5447 {
5448         struct task_struct *p = cgroup_taskset_first(tset);
5449         int ret = 0;
5450         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5451
5452         if (memcg->move_charge_at_immigrate) {
5453                 struct mm_struct *mm;
5454                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5455
5456                 VM_BUG_ON(from == memcg);
5457
5458                 mm = get_task_mm(p);
5459                 if (!mm)
5460                         return 0;
5461                 /* We move charges only when we move a owner of the mm */
5462                 if (mm->owner == p) {
5463                         VM_BUG_ON(mc.from);
5464                         VM_BUG_ON(mc.to);
5465                         VM_BUG_ON(mc.precharge);
5466                         VM_BUG_ON(mc.moved_charge);
5467                         VM_BUG_ON(mc.moved_swap);
5468                         mem_cgroup_start_move(from);
5469                         spin_lock(&mc.lock);
5470                         mc.from = from;
5471                         mc.to = memcg;
5472                         spin_unlock(&mc.lock);
5473                         /* We set mc.moving_task later */
5474
5475                         ret = mem_cgroup_precharge_mc(mm);
5476                         if (ret)
5477                                 mem_cgroup_clear_mc();
5478                 }
5479                 mmput(mm);
5480         }
5481         return ret;
5482 }
5483
5484 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5485                                 struct cgroup *cgroup,
5486                                 struct cgroup_taskset *tset)
5487 {
5488         mem_cgroup_clear_mc();
5489 }
5490
5491 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5492                                 unsigned long addr, unsigned long end,
5493                                 struct mm_walk *walk)
5494 {
5495         int ret = 0;
5496         struct vm_area_struct *vma = walk->private;
5497         pte_t *pte;
5498         spinlock_t *ptl;
5499
5500         split_huge_page_pmd(walk->mm, pmd);
5501 retry:
5502         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5503         for (; addr != end; addr += PAGE_SIZE) {
5504                 pte_t ptent = *(pte++);
5505                 union mc_target target;
5506                 int type;
5507                 struct page *page;
5508                 struct page_cgroup *pc;
5509                 swp_entry_t ent;
5510
5511                 if (!mc.precharge)
5512                         break;
5513
5514                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5515                 switch (type) {
5516                 case MC_TARGET_PAGE:
5517                         page = target.page;
5518                         if (isolate_lru_page(page))
5519                                 goto put;
5520                         pc = lookup_page_cgroup(page);
5521                         if (!mem_cgroup_move_account(page, 1, pc,
5522                                                      mc.from, mc.to, false)) {
5523                                 mc.precharge--;
5524                                 /* we uncharge from mc.from later. */
5525                                 mc.moved_charge++;
5526                         }
5527                         putback_lru_page(page);
5528 put:                    /* is_target_pte_for_mc() gets the page */
5529                         put_page(page);
5530                         break;
5531                 case MC_TARGET_SWAP:
5532                         ent = target.ent;
5533                         if (!mem_cgroup_move_swap_account(ent,
5534                                                 mc.from, mc.to, false)) {
5535                                 mc.precharge--;
5536                                 /* we fixup refcnts and charges later. */
5537                                 mc.moved_swap++;
5538                         }
5539                         break;
5540                 default:
5541                         break;
5542                 }
5543         }
5544         pte_unmap_unlock(pte - 1, ptl);
5545         cond_resched();
5546
5547         if (addr != end) {
5548                 /*
5549                  * We have consumed all precharges we got in can_attach().
5550                  * We try charge one by one, but don't do any additional
5551                  * charges to mc.to if we have failed in charge once in attach()
5552                  * phase.
5553                  */
5554                 ret = mem_cgroup_do_precharge(1);
5555                 if (!ret)
5556                         goto retry;
5557         }
5558
5559         return ret;
5560 }
5561
5562 static void mem_cgroup_move_charge(struct mm_struct *mm)
5563 {
5564         struct vm_area_struct *vma;
5565
5566         lru_add_drain_all();
5567 retry:
5568         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569                 /*
5570                  * Someone who are holding the mmap_sem might be waiting in
5571                  * waitq. So we cancel all extra charges, wake up all waiters,
5572                  * and retry. Because we cancel precharges, we might not be able
5573                  * to move enough charges, but moving charge is a best-effort
5574                  * feature anyway, so it wouldn't be a big problem.
5575                  */
5576                 __mem_cgroup_clear_mc();
5577                 cond_resched();
5578                 goto retry;
5579         }
5580         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5581                 int ret;
5582                 struct mm_walk mem_cgroup_move_charge_walk = {
5583                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5584                         .mm = mm,
5585                         .private = vma,
5586                 };
5587                 if (is_vm_hugetlb_page(vma))
5588                         continue;
5589                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5590                                                 &mem_cgroup_move_charge_walk);
5591                 if (ret)
5592                         /*
5593                          * means we have consumed all precharges and failed in
5594                          * doing additional charge. Just abandon here.
5595                          */
5596                         break;
5597         }
5598         up_read(&mm->mmap_sem);
5599 }
5600
5601 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5602                                 struct cgroup *cont,
5603                                 struct cgroup_taskset *tset)
5604 {
5605         struct task_struct *p = cgroup_taskset_first(tset);
5606         struct mm_struct *mm = get_task_mm(p);
5607
5608         if (mm) {
5609                 if (mc.to)
5610                         mem_cgroup_move_charge(mm);
5611                 put_swap_token(mm);
5612                 mmput(mm);
5613         }
5614         if (mc.to)
5615                 mem_cgroup_clear_mc();
5616 }
5617 #else   /* !CONFIG_MMU */
5618 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5619                                 struct cgroup *cgroup,
5620                                 struct cgroup_taskset *tset)
5621 {
5622         return 0;
5623 }
5624 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5625                                 struct cgroup *cgroup,
5626                                 struct cgroup_taskset *tset)
5627 {
5628 }
5629 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5630                                 struct cgroup *cont,
5631                                 struct cgroup_taskset *tset)
5632 {
5633 }
5634 #endif
5635
5636 struct cgroup_subsys mem_cgroup_subsys = {
5637         .name = "memory",
5638         .subsys_id = mem_cgroup_subsys_id,
5639         .create = mem_cgroup_create,
5640         .pre_destroy = mem_cgroup_pre_destroy,
5641         .destroy = mem_cgroup_destroy,
5642         .populate = mem_cgroup_populate,
5643         .can_attach = mem_cgroup_can_attach,
5644         .cancel_attach = mem_cgroup_cancel_attach,
5645         .attach = mem_cgroup_move_task,
5646         .early_init = 0,
5647         .use_id = 1,
5648 };
5649
5650 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5651 static int __init enable_swap_account(char *s)
5652 {
5653         /* consider enabled if no parameter or 1 is given */
5654         if (!strcmp(s, "1"))
5655                 really_do_swap_account = 1;
5656         else if (!strcmp(s, "0"))
5657                 really_do_swap_account = 0;
5658         return 1;
5659 }
5660 __setup("swapaccount=", enable_swap_account);
5661
5662 #endif