]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memcontrol.c
Before calling schedule_timeout(), task state should be changed.
[karo-tx-linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53
54 #include <asm/uaccess.h>
55
56 #include <trace/events/vmscan.h>
57
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES      5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72
73 #else
74 #define do_swap_account         (0)
75 #endif
76
77
78 /*
79  * Statistics for memory cgroup.
80  */
81 enum mem_cgroup_stat_index {
82         /*
83          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84          */
85         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
86         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
87         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 enum mem_cgroup_events_index {
95         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
96         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
97         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
98         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
99         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
100         MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103  * Per memcg event counter is incremented at every pagein/pageout. With THP,
104  * it will be incremated by the number of pages. This counter is used for
105  * for trigger some periodic events. This is straightforward and better
106  * than using jiffies etc. to handle periodic memcg event.
107  */
108 enum mem_cgroup_events_target {
109         MEM_CGROUP_TARGET_THRESH,
110         MEM_CGROUP_TARGET_SOFTLIMIT,
111         MEM_CGROUP_TARGET_NUMAINFO,
112         MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET  (1024)
117
118 struct mem_cgroup_stat_cpu {
119         long count[MEM_CGROUP_STAT_NSTATS];
120         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121         unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 /*
125  * per-zone information in memory controller.
126  */
127 struct mem_cgroup_per_zone {
128         /*
129          * spin_lock to protect the per cgroup LRU
130          */
131         struct list_head        lists[NR_LRU_LISTS];
132         unsigned long           count[NR_LRU_LISTS];
133
134         struct zone_reclaim_stat reclaim_stat;
135         struct rb_node          tree_node;      /* RB tree node */
136         unsigned long long      usage_in_excess;/* Set to the value by which */
137                                                 /* the soft limit is exceeded*/
138         bool                    on_tree;
139         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
140                                                 /* use container_of        */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
144
145 struct mem_cgroup_per_node {
146         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148
149 struct mem_cgroup_lru_info {
150         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152
153 /*
154  * Cgroups above their limits are maintained in a RB-Tree, independent of
155  * their hierarchy representation
156  */
157
158 struct mem_cgroup_tree_per_zone {
159         struct rb_root rb_root;
160         spinlock_t lock;
161 };
162
163 struct mem_cgroup_tree_per_node {
164         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_tree {
168         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173 struct mem_cgroup_threshold {
174         struct eventfd_ctx *eventfd;
175         u64 threshold;
176 };
177
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180         /* An array index points to threshold just below usage. */
181         int current_threshold;
182         /* Size of entries[] */
183         unsigned int size;
184         /* Array of thresholds */
185         struct mem_cgroup_threshold entries[0];
186 };
187
188 struct mem_cgroup_thresholds {
189         /* Primary thresholds array */
190         struct mem_cgroup_threshold_ary *primary;
191         /*
192          * Spare threshold array.
193          * This is needed to make mem_cgroup_unregister_event() "never fail".
194          * It must be able to store at least primary->size - 1 entries.
195          */
196         struct mem_cgroup_threshold_ary *spare;
197 };
198
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201         struct list_head list;
202         struct eventfd_ctx *eventfd;
203 };
204
205 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207
208 enum {
209         SCAN_BY_LIMIT,
210         SCAN_BY_SYSTEM,
211         NR_SCAN_CONTEXT,
212         SCAN_BY_SHRINK, /* not recorded now */
213 };
214
215 enum {
216         SCAN,
217         SCAN_ANON,
218         SCAN_FILE,
219         ROTATE,
220         ROTATE_ANON,
221         ROTATE_FILE,
222         FREED,
223         FREED_ANON,
224         FREED_FILE,
225         ELAPSED,
226         NR_SCANSTATS,
227 };
228
229 struct scanstat {
230         spinlock_t      lock;
231         unsigned long   stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232         unsigned long   rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
233 };
234
235 const char *scanstat_string[NR_SCANSTATS] = {
236         "scanned_pages",
237         "scanned_anon_pages",
238         "scanned_file_pages",
239         "rotated_pages",
240         "rotated_anon_pages",
241         "rotated_file_pages",
242         "freed_pages",
243         "freed_anon_pages",
244         "freed_file_pages",
245         "elapsed_ns",
246 };
247 #define SCANSTAT_WORD_LIMIT     "_by_limit"
248 #define SCANSTAT_WORD_SYSTEM    "_by_system"
249 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
250
251
252 /*
253  * The memory controller data structure. The memory controller controls both
254  * page cache and RSS per cgroup. We would eventually like to provide
255  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256  * to help the administrator determine what knobs to tune.
257  *
258  * TODO: Add a water mark for the memory controller. Reclaim will begin when
259  * we hit the water mark. May be even add a low water mark, such that
260  * no reclaim occurs from a cgroup at it's low water mark, this is
261  * a feature that will be implemented much later in the future.
262  */
263 struct mem_cgroup {
264         struct cgroup_subsys_state css;
265         /*
266          * the counter to account for memory usage
267          */
268         struct res_counter res;
269         /*
270          * the counter to account for mem+swap usage.
271          */
272         struct res_counter memsw;
273         /*
274          * Per cgroup active and inactive list, similar to the
275          * per zone LRU lists.
276          */
277         struct mem_cgroup_lru_info info;
278         /*
279          * While reclaiming in a hierarchy, we cache the last child we
280          * reclaimed from.
281          */
282         int last_scanned_child;
283         int last_scanned_node;
284 #if MAX_NUMNODES > 1
285         nodemask_t      scan_nodes;
286         atomic_t        numainfo_events;
287         atomic_t        numainfo_updating;
288 #endif
289         /*
290          * Should the accounting and control be hierarchical, per subtree?
291          */
292         bool use_hierarchy;
293
294         bool            oom_lock;
295         atomic_t        under_oom;
296
297         atomic_t        refcnt;
298
299         int     swappiness;
300         /* OOM-Killer disable */
301         int             oom_kill_disable;
302
303         /* set when res.limit == memsw.limit */
304         bool            memsw_is_minimum;
305
306         /* protect arrays of thresholds */
307         struct mutex thresholds_lock;
308
309         /* thresholds for memory usage. RCU-protected */
310         struct mem_cgroup_thresholds thresholds;
311
312         /* thresholds for mem+swap usage. RCU-protected */
313         struct mem_cgroup_thresholds memsw_thresholds;
314
315         /* For oom notifier event fd */
316         struct list_head oom_notify;
317         /* For recording LRU-scan statistics */
318         struct scanstat scanstat;
319         /*
320          * Should we move charges of a task when a task is moved into this
321          * mem_cgroup ? And what type of charges should we move ?
322          */
323         unsigned long   move_charge_at_immigrate;
324         /*
325          * percpu counter.
326          */
327         struct mem_cgroup_stat_cpu *stat;
328         /*
329          * used when a cpu is offlined or other synchronizations
330          * See mem_cgroup_read_stat().
331          */
332         struct mem_cgroup_stat_cpu nocpu_base;
333         spinlock_t pcp_counter_lock;
334 };
335
336 /* Stuffs for move charges at task migration. */
337 /*
338  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339  * left-shifted bitmap of these types.
340  */
341 enum move_type {
342         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
343         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
344         NR_MOVE_TYPE,
345 };
346
347 /* "mc" and its members are protected by cgroup_mutex */
348 static struct move_charge_struct {
349         spinlock_t        lock; /* for from, to */
350         struct mem_cgroup *from;
351         struct mem_cgroup *to;
352         unsigned long precharge;
353         unsigned long moved_charge;
354         unsigned long moved_swap;
355         struct task_struct *moving_task;        /* a task moving charges */
356         wait_queue_head_t waitq;                /* a waitq for other context */
357 } mc = {
358         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360 };
361
362 static bool move_anon(void)
363 {
364         return test_bit(MOVE_CHARGE_TYPE_ANON,
365                                         &mc.to->move_charge_at_immigrate);
366 }
367
368 static bool move_file(void)
369 {
370         return test_bit(MOVE_CHARGE_TYPE_FILE,
371                                         &mc.to->move_charge_at_immigrate);
372 }
373
374 /*
375  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376  * limit reclaim to prevent infinite loops, if they ever occur.
377  */
378 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
379 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
380
381 enum charge_type {
382         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383         MEM_CGROUP_CHARGE_TYPE_MAPPED,
384         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
385         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
386         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
387         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
388         NR_CHARGE_TYPE,
389 };
390
391 /* for encoding cft->private value on file */
392 #define _MEM                    (0)
393 #define _MEMSWAP                (1)
394 #define _OOM_TYPE               (2)
395 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
397 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
398 /* Used for OOM nofiier */
399 #define OOM_CONTROL             (0)
400
401 /*
402  * Reclaim flags for mem_cgroup_hierarchical_reclaim
403  */
404 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
405 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
407 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
409 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410
411 static void mem_cgroup_get(struct mem_cgroup *memcg);
412 static void mem_cgroup_put(struct mem_cgroup *memcg);
413 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
414 static void drain_all_stock_async(struct mem_cgroup *memcg);
415
416 static struct mem_cgroup_per_zone *
417 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
418 {
419         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
420 }
421
422 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
423 {
424         return &memcg->css;
425 }
426
427 static struct mem_cgroup_per_zone *
428 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
429 {
430         int nid = page_to_nid(page);
431         int zid = page_zonenum(page);
432
433         return mem_cgroup_zoneinfo(memcg, nid, zid);
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_node_zone(int nid, int zid)
438 {
439         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
440 }
441
442 static struct mem_cgroup_tree_per_zone *
443 soft_limit_tree_from_page(struct page *page)
444 {
445         int nid = page_to_nid(page);
446         int zid = page_zonenum(page);
447
448         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
449 }
450
451 static void
452 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
453                                 struct mem_cgroup_per_zone *mz,
454                                 struct mem_cgroup_tree_per_zone *mctz,
455                                 unsigned long long new_usage_in_excess)
456 {
457         struct rb_node **p = &mctz->rb_root.rb_node;
458         struct rb_node *parent = NULL;
459         struct mem_cgroup_per_zone *mz_node;
460
461         if (mz->on_tree)
462                 return;
463
464         mz->usage_in_excess = new_usage_in_excess;
465         if (!mz->usage_in_excess)
466                 return;
467         while (*p) {
468                 parent = *p;
469                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470                                         tree_node);
471                 if (mz->usage_in_excess < mz_node->usage_in_excess)
472                         p = &(*p)->rb_left;
473                 /*
474                  * We can't avoid mem cgroups that are over their soft
475                  * limit by the same amount
476                  */
477                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478                         p = &(*p)->rb_right;
479         }
480         rb_link_node(&mz->tree_node, parent, p);
481         rb_insert_color(&mz->tree_node, &mctz->rb_root);
482         mz->on_tree = true;
483 }
484
485 static void
486 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
487                                 struct mem_cgroup_per_zone *mz,
488                                 struct mem_cgroup_tree_per_zone *mctz)
489 {
490         if (!mz->on_tree)
491                 return;
492         rb_erase(&mz->tree_node, &mctz->rb_root);
493         mz->on_tree = false;
494 }
495
496 static void
497 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
498                                 struct mem_cgroup_per_zone *mz,
499                                 struct mem_cgroup_tree_per_zone *mctz)
500 {
501         spin_lock(&mctz->lock);
502         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
503         spin_unlock(&mctz->lock);
504 }
505
506
507 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
508 {
509         unsigned long long excess;
510         struct mem_cgroup_per_zone *mz;
511         struct mem_cgroup_tree_per_zone *mctz;
512         int nid = page_to_nid(page);
513         int zid = page_zonenum(page);
514         mctz = soft_limit_tree_from_page(page);
515
516         /*
517          * Necessary to update all ancestors when hierarchy is used.
518          * because their event counter is not touched.
519          */
520         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
521                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
522                 excess = res_counter_soft_limit_excess(&memcg->res);
523                 /*
524                  * We have to update the tree if mz is on RB-tree or
525                  * mem is over its softlimit.
526                  */
527                 if (excess || mz->on_tree) {
528                         spin_lock(&mctz->lock);
529                         /* if on-tree, remove it */
530                         if (mz->on_tree)
531                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
532                         /*
533                          * Insert again. mz->usage_in_excess will be updated.
534                          * If excess is 0, no tree ops.
535                          */
536                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
537                         spin_unlock(&mctz->lock);
538                 }
539         }
540 }
541
542 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
543 {
544         int node, zone;
545         struct mem_cgroup_per_zone *mz;
546         struct mem_cgroup_tree_per_zone *mctz;
547
548         for_each_node_state(node, N_POSSIBLE) {
549                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
551                         mctz = soft_limit_tree_node_zone(node, zone);
552                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
553                 }
554         }
555 }
556
557 static struct mem_cgroup_per_zone *
558 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
559 {
560         struct rb_node *rightmost = NULL;
561         struct mem_cgroup_per_zone *mz;
562
563 retry:
564         mz = NULL;
565         rightmost = rb_last(&mctz->rb_root);
566         if (!rightmost)
567                 goto done;              /* Nothing to reclaim from */
568
569         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
570         /*
571          * Remove the node now but someone else can add it back,
572          * we will to add it back at the end of reclaim to its correct
573          * position in the tree.
574          */
575         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577                 !css_tryget(&mz->mem->css))
578                 goto retry;
579 done:
580         return mz;
581 }
582
583 static struct mem_cgroup_per_zone *
584 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
585 {
586         struct mem_cgroup_per_zone *mz;
587
588         spin_lock(&mctz->lock);
589         mz = __mem_cgroup_largest_soft_limit_node(mctz);
590         spin_unlock(&mctz->lock);
591         return mz;
592 }
593
594 /*
595  * Implementation Note: reading percpu statistics for memcg.
596  *
597  * Both of vmstat[] and percpu_counter has threshold and do periodic
598  * synchronization to implement "quick" read. There are trade-off between
599  * reading cost and precision of value. Then, we may have a chance to implement
600  * a periodic synchronizion of counter in memcg's counter.
601  *
602  * But this _read() function is used for user interface now. The user accounts
603  * memory usage by memory cgroup and he _always_ requires exact value because
604  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605  * have to visit all online cpus and make sum. So, for now, unnecessary
606  * synchronization is not implemented. (just implemented for cpu hotplug)
607  *
608  * If there are kernel internal actions which can make use of some not-exact
609  * value, and reading all cpu value can be performance bottleneck in some
610  * common workload, threashold and synchonization as vmstat[] should be
611  * implemented.
612  */
613 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
614                                  enum mem_cgroup_stat_index idx)
615 {
616         long val = 0;
617         int cpu;
618
619         get_online_cpus();
620         for_each_online_cpu(cpu)
621                 val += per_cpu(memcg->stat->count[idx], cpu);
622 #ifdef CONFIG_HOTPLUG_CPU
623         spin_lock(&memcg->pcp_counter_lock);
624         val += memcg->nocpu_base.count[idx];
625         spin_unlock(&memcg->pcp_counter_lock);
626 #endif
627         put_online_cpus();
628         return val;
629 }
630
631 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
632                                          bool charge)
633 {
634         int val = (charge) ? 1 : -1;
635         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 }
637
638 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
639 {
640         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
641 }
642
643 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
644 {
645         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
646 }
647
648 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
649                                             enum mem_cgroup_events_index idx)
650 {
651         unsigned long val = 0;
652         int cpu;
653
654         for_each_online_cpu(cpu)
655                 val += per_cpu(memcg->stat->events[idx], cpu);
656 #ifdef CONFIG_HOTPLUG_CPU
657         spin_lock(&memcg->pcp_counter_lock);
658         val += memcg->nocpu_base.events[idx];
659         spin_unlock(&memcg->pcp_counter_lock);
660 #endif
661         return val;
662 }
663
664 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
665                                          bool file, int nr_pages)
666 {
667         preempt_disable();
668
669         if (file)
670                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
671                                 nr_pages);
672         else
673                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
674                                 nr_pages);
675
676         /* pagein of a big page is an event. So, ignore page size */
677         if (nr_pages > 0)
678                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
679         else {
680                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
681                 nr_pages = -nr_pages; /* for event */
682         }
683
684         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
685
686         preempt_enable();
687 }
688
689 unsigned long
690 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
691                         unsigned int lru_mask)
692 {
693         struct mem_cgroup_per_zone *mz;
694         enum lru_list l;
695         unsigned long ret = 0;
696
697         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
698
699         for_each_lru(l) {
700                 if (BIT(l) & lru_mask)
701                         ret += MEM_CGROUP_ZSTAT(mz, l);
702         }
703         return ret;
704 }
705
706 static unsigned long
707 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
708                         int nid, unsigned int lru_mask)
709 {
710         u64 total = 0;
711         int zid;
712
713         for (zid = 0; zid < MAX_NR_ZONES; zid++)
714                 total += mem_cgroup_zone_nr_lru_pages(memcg,
715                                                 nid, zid, lru_mask);
716
717         return total;
718 }
719
720 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
721                         unsigned int lru_mask)
722 {
723         int nid;
724         u64 total = 0;
725
726         for_each_node_state(nid, N_HIGH_MEMORY)
727                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
728         return total;
729 }
730
731 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
732 {
733         unsigned long val, next;
734
735         val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
736         next = this_cpu_read(memcg->stat->targets[target]);
737         /* from time_after() in jiffies.h */
738         return ((long)next - (long)val < 0);
739 }
740
741 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
742 {
743         unsigned long val, next;
744
745         val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
746
747         switch (target) {
748         case MEM_CGROUP_TARGET_THRESH:
749                 next = val + THRESHOLDS_EVENTS_TARGET;
750                 break;
751         case MEM_CGROUP_TARGET_SOFTLIMIT:
752                 next = val + SOFTLIMIT_EVENTS_TARGET;
753                 break;
754         case MEM_CGROUP_TARGET_NUMAINFO:
755                 next = val + NUMAINFO_EVENTS_TARGET;
756                 break;
757         default:
758                 return;
759         }
760
761         this_cpu_write(memcg->stat->targets[target], next);
762 }
763
764 /*
765  * Check events in order.
766  *
767  */
768 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
769 {
770         /* threshold event is triggered in finer grain than soft limit */
771         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
772                 mem_cgroup_threshold(memcg);
773                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
774                 if (unlikely(__memcg_event_check(memcg,
775                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
776                         mem_cgroup_update_tree(memcg, page);
777                         __mem_cgroup_target_update(memcg,
778                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
779                 }
780 #if MAX_NUMNODES > 1
781                 if (unlikely(__memcg_event_check(memcg,
782                         MEM_CGROUP_TARGET_NUMAINFO))) {
783                         atomic_inc(&memcg->numainfo_events);
784                         __mem_cgroup_target_update(memcg,
785                                 MEM_CGROUP_TARGET_NUMAINFO);
786                 }
787 #endif
788         }
789 }
790
791 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
792 {
793         return container_of(cgroup_subsys_state(cont,
794                                 mem_cgroup_subsys_id), struct mem_cgroup,
795                                 css);
796 }
797
798 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
799 {
800         /*
801          * mm_update_next_owner() may clear mm->owner to NULL
802          * if it races with swapoff, page migration, etc.
803          * So this can be called with p == NULL.
804          */
805         if (unlikely(!p))
806                 return NULL;
807
808         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
809                                 struct mem_cgroup, css);
810 }
811
812 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
813 {
814         struct mem_cgroup *memcg = NULL;
815
816         if (!mm)
817                 return NULL;
818         /*
819          * Because we have no locks, mm->owner's may be being moved to other
820          * cgroup. We use css_tryget() here even if this looks
821          * pessimistic (rather than adding locks here).
822          */
823         rcu_read_lock();
824         do {
825                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
826                 if (unlikely(!memcg))
827                         break;
828         } while (!css_tryget(&memcg->css));
829         rcu_read_unlock();
830         return memcg;
831 }
832
833 /* The caller has to guarantee "mem" exists before calling this */
834 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
835 {
836         struct cgroup_subsys_state *css;
837         int found;
838
839         if (!memcg) /* ROOT cgroup has the smallest ID */
840                 return root_mem_cgroup; /*css_put/get against root is ignored*/
841         if (!memcg->use_hierarchy) {
842                 if (css_tryget(&memcg->css))
843                         return memcg;
844                 return NULL;
845         }
846         rcu_read_lock();
847         /*
848          * searching a memory cgroup which has the smallest ID under given
849          * ROOT cgroup. (ID >= 1)
850          */
851         css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
852         if (css && css_tryget(css))
853                 memcg = container_of(css, struct mem_cgroup, css);
854         else
855                 memcg = NULL;
856         rcu_read_unlock();
857         return memcg;
858 }
859
860 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
861                                         struct mem_cgroup *root,
862                                         bool cond)
863 {
864         int nextid = css_id(&iter->css) + 1;
865         int found;
866         int hierarchy_used;
867         struct cgroup_subsys_state *css;
868
869         hierarchy_used = iter->use_hierarchy;
870
871         css_put(&iter->css);
872         /* If no ROOT, walk all, ignore hierarchy */
873         if (!cond || (root && !hierarchy_used))
874                 return NULL;
875
876         if (!root)
877                 root = root_mem_cgroup;
878
879         do {
880                 iter = NULL;
881                 rcu_read_lock();
882
883                 css = css_get_next(&mem_cgroup_subsys, nextid,
884                                 &root->css, &found);
885                 if (css && css_tryget(css))
886                         iter = container_of(css, struct mem_cgroup, css);
887                 rcu_read_unlock();
888                 /* If css is NULL, no more cgroups will be found */
889                 nextid = found + 1;
890         } while (css && !iter);
891
892         return iter;
893 }
894 /*
895  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
896  * be careful that "break" loop is not allowed. We have reference count.
897  * Instead of that modify "cond" to be false and "continue" to exit the loop.
898  */
899 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
900         for (iter = mem_cgroup_start_loop(root);\
901              iter != NULL;\
902              iter = mem_cgroup_get_next(iter, root, cond))
903
904 #define for_each_mem_cgroup_tree(iter, root) \
905         for_each_mem_cgroup_tree_cond(iter, root, true)
906
907 #define for_each_mem_cgroup_all(iter) \
908         for_each_mem_cgroup_tree_cond(iter, NULL, true)
909
910
911 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
912 {
913         return (memcg == root_mem_cgroup);
914 }
915
916 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
917 {
918         struct mem_cgroup *memcg;
919
920         if (!mm)
921                 return;
922
923         rcu_read_lock();
924         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925         if (unlikely(!memcg))
926                 goto out;
927
928         switch (idx) {
929         case PGMAJFAULT:
930                 mem_cgroup_pgmajfault(memcg, 1);
931                 break;
932         case PGFAULT:
933                 mem_cgroup_pgfault(memcg, 1);
934                 break;
935         default:
936                 BUG();
937         }
938 out:
939         rcu_read_unlock();
940 }
941 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
942
943 /*
944  * Following LRU functions are allowed to be used without PCG_LOCK.
945  * Operations are called by routine of global LRU independently from memcg.
946  * What we have to take care of here is validness of pc->mem_cgroup.
947  *
948  * Changes to pc->mem_cgroup happens when
949  * 1. charge
950  * 2. moving account
951  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
952  * It is added to LRU before charge.
953  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
954  * When moving account, the page is not on LRU. It's isolated.
955  */
956
957 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
958 {
959         struct page_cgroup *pc;
960         struct mem_cgroup_per_zone *mz;
961
962         if (mem_cgroup_disabled())
963                 return;
964         pc = lookup_page_cgroup(page);
965         /* can happen while we handle swapcache. */
966         if (!TestClearPageCgroupAcctLRU(pc))
967                 return;
968         VM_BUG_ON(!pc->mem_cgroup);
969         /*
970          * We don't check PCG_USED bit. It's cleared when the "page" is finally
971          * removed from global LRU.
972          */
973         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
974         /* huge page split is done under lru_lock. so, we have no races. */
975         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
976         if (mem_cgroup_is_root(pc->mem_cgroup))
977                 return;
978         VM_BUG_ON(list_empty(&pc->lru));
979         list_del_init(&pc->lru);
980 }
981
982 void mem_cgroup_del_lru(struct page *page)
983 {
984         mem_cgroup_del_lru_list(page, page_lru(page));
985 }
986
987 /*
988  * Writeback is about to end against a page which has been marked for immediate
989  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
990  * inactive list.
991  */
992 void mem_cgroup_rotate_reclaimable_page(struct page *page)
993 {
994         struct mem_cgroup_per_zone *mz;
995         struct page_cgroup *pc;
996         enum lru_list lru = page_lru(page);
997
998         if (mem_cgroup_disabled())
999                 return;
1000
1001         pc = lookup_page_cgroup(page);
1002         /* unused or root page is not rotated. */
1003         if (!PageCgroupUsed(pc))
1004                 return;
1005         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1006         smp_rmb();
1007         if (mem_cgroup_is_root(pc->mem_cgroup))
1008                 return;
1009         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1010         list_move_tail(&pc->lru, &mz->lists[lru]);
1011 }
1012
1013 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1014 {
1015         struct mem_cgroup_per_zone *mz;
1016         struct page_cgroup *pc;
1017
1018         if (mem_cgroup_disabled())
1019                 return;
1020
1021         pc = lookup_page_cgroup(page);
1022         /* unused or root page is not rotated. */
1023         if (!PageCgroupUsed(pc))
1024                 return;
1025         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1026         smp_rmb();
1027         if (mem_cgroup_is_root(pc->mem_cgroup))
1028                 return;
1029         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1030         list_move(&pc->lru, &mz->lists[lru]);
1031 }
1032
1033 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1034 {
1035         struct page_cgroup *pc;
1036         struct mem_cgroup_per_zone *mz;
1037
1038         if (mem_cgroup_disabled())
1039                 return;
1040         pc = lookup_page_cgroup(page);
1041         VM_BUG_ON(PageCgroupAcctLRU(pc));
1042         if (!PageCgroupUsed(pc))
1043                 return;
1044         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1045         smp_rmb();
1046         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1047         /* huge page split is done under lru_lock. so, we have no races. */
1048         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1049         SetPageCgroupAcctLRU(pc);
1050         if (mem_cgroup_is_root(pc->mem_cgroup))
1051                 return;
1052         list_add(&pc->lru, &mz->lists[lru]);
1053 }
1054
1055 /*
1056  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1057  * while it's linked to lru because the page may be reused after it's fully
1058  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1059  * It's done under lock_page and expected that zone->lru_lock isnever held.
1060  */
1061 static void mem_cgroup_lru_del_before_commit(struct page *page)
1062 {
1063         unsigned long flags;
1064         struct zone *zone = page_zone(page);
1065         struct page_cgroup *pc = lookup_page_cgroup(page);
1066
1067         /*
1068          * Doing this check without taking ->lru_lock seems wrong but this
1069          * is safe. Because if page_cgroup's USED bit is unset, the page
1070          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1071          * set, the commit after this will fail, anyway.
1072          * This all charge/uncharge is done under some mutual execustion.
1073          * So, we don't need to taking care of changes in USED bit.
1074          */
1075         if (likely(!PageLRU(page)))
1076                 return;
1077
1078         spin_lock_irqsave(&zone->lru_lock, flags);
1079         /*
1080          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1081          * is guarded by lock_page() because the page is SwapCache.
1082          */
1083         if (!PageCgroupUsed(pc))
1084                 mem_cgroup_del_lru_list(page, page_lru(page));
1085         spin_unlock_irqrestore(&zone->lru_lock, flags);
1086 }
1087
1088 static void mem_cgroup_lru_add_after_commit(struct page *page)
1089 {
1090         unsigned long flags;
1091         struct zone *zone = page_zone(page);
1092         struct page_cgroup *pc = lookup_page_cgroup(page);
1093
1094         /* taking care of that the page is added to LRU while we commit it */
1095         if (likely(!PageLRU(page)))
1096                 return;
1097         spin_lock_irqsave(&zone->lru_lock, flags);
1098         /* link when the page is linked to LRU but page_cgroup isn't */
1099         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1100                 mem_cgroup_add_lru_list(page, page_lru(page));
1101         spin_unlock_irqrestore(&zone->lru_lock, flags);
1102 }
1103
1104
1105 void mem_cgroup_move_lists(struct page *page,
1106                            enum lru_list from, enum lru_list to)
1107 {
1108         if (mem_cgroup_disabled())
1109                 return;
1110         mem_cgroup_del_lru_list(page, from);
1111         mem_cgroup_add_lru_list(page, to);
1112 }
1113
1114 /*
1115  * Checks whether given mem is same or in the root_mem's
1116  * hierarchy subtree
1117  */
1118 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1119                 struct mem_cgroup *memcg)
1120 {
1121         if (root_memcg != memcg) {
1122                 return (root_memcg->use_hierarchy &&
1123                         css_is_ancestor(&memcg->css, &root_memcg->css));
1124         }
1125
1126         return true;
1127 }
1128
1129 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1130 {
1131         int ret;
1132         struct mem_cgroup *curr = NULL;
1133         struct task_struct *p;
1134
1135         p = find_lock_task_mm(task);
1136         if (!p)
1137                 return 0;
1138         curr = try_get_mem_cgroup_from_mm(p->mm);
1139         task_unlock(p);
1140         if (!curr)
1141                 return 0;
1142         /*
1143          * We should check use_hierarchy of "memcg" not "curr". Because checking
1144          * use_hierarchy of "curr" here make this function true if hierarchy is
1145          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1146          * hierarchy(even if use_hierarchy is disabled in "memcg").
1147          */
1148         ret = mem_cgroup_same_or_subtree(memcg, curr);
1149         css_put(&curr->css);
1150         return ret;
1151 }
1152
1153 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1154 {
1155         unsigned long active;
1156         unsigned long inactive;
1157         unsigned long gb;
1158         unsigned long inactive_ratio;
1159
1160         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1161         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1162
1163         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1164         if (gb)
1165                 inactive_ratio = int_sqrt(10 * gb);
1166         else
1167                 inactive_ratio = 1;
1168
1169         if (present_pages) {
1170                 present_pages[0] = inactive;
1171                 present_pages[1] = active;
1172         }
1173
1174         return inactive_ratio;
1175 }
1176
1177 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1178 {
1179         unsigned long active;
1180         unsigned long inactive;
1181         unsigned long present_pages[2];
1182         unsigned long inactive_ratio;
1183
1184         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1185
1186         inactive = present_pages[0];
1187         active = present_pages[1];
1188
1189         if (inactive * inactive_ratio < active)
1190                 return 1;
1191
1192         return 0;
1193 }
1194
1195 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1196 {
1197         unsigned long active;
1198         unsigned long inactive;
1199
1200         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1201         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1202
1203         return (active > inactive);
1204 }
1205
1206 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1207                                                       struct zone *zone)
1208 {
1209         int nid = zone_to_nid(zone);
1210         int zid = zone_idx(zone);
1211         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1212
1213         return &mz->reclaim_stat;
1214 }
1215
1216 struct zone_reclaim_stat *
1217 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1218 {
1219         struct page_cgroup *pc;
1220         struct mem_cgroup_per_zone *mz;
1221
1222         if (mem_cgroup_disabled())
1223                 return NULL;
1224
1225         pc = lookup_page_cgroup(page);
1226         if (!PageCgroupUsed(pc))
1227                 return NULL;
1228         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1229         smp_rmb();
1230         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1231         return &mz->reclaim_stat;
1232 }
1233
1234 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1235                                         struct list_head *dst,
1236                                         unsigned long *scanned, int order,
1237                                         isolate_mode_t mode,
1238                                         struct zone *z,
1239                                         struct mem_cgroup *mem_cont,
1240                                         int active, int file)
1241 {
1242         unsigned long nr_taken = 0;
1243         struct page *page;
1244         unsigned long scan;
1245         LIST_HEAD(pc_list);
1246         struct list_head *src;
1247         struct page_cgroup *pc, *tmp;
1248         int nid = zone_to_nid(z);
1249         int zid = zone_idx(z);
1250         struct mem_cgroup_per_zone *mz;
1251         int lru = LRU_FILE * file + active;
1252         int ret;
1253
1254         BUG_ON(!mem_cont);
1255         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1256         src = &mz->lists[lru];
1257
1258         scan = 0;
1259         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1260                 if (scan >= nr_to_scan)
1261                         break;
1262
1263                 if (unlikely(!PageCgroupUsed(pc)))
1264                         continue;
1265
1266                 page = lookup_cgroup_page(pc);
1267
1268                 if (unlikely(!PageLRU(page)))
1269                         continue;
1270
1271                 scan++;
1272                 ret = __isolate_lru_page(page, mode, file);
1273                 switch (ret) {
1274                 case 0:
1275                         list_move(&page->lru, dst);
1276                         mem_cgroup_del_lru(page);
1277                         nr_taken += hpage_nr_pages(page);
1278                         break;
1279                 case -EBUSY:
1280                         /* we don't affect global LRU but rotate in our LRU */
1281                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1282                         break;
1283                 default:
1284                         break;
1285                 }
1286         }
1287
1288         *scanned = scan;
1289
1290         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1291                                       0, 0, 0, mode);
1292
1293         return nr_taken;
1294 }
1295
1296 #define mem_cgroup_from_res_counter(counter, member)    \
1297         container_of(counter, struct mem_cgroup, member)
1298
1299 /**
1300  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1301  * @mem: the memory cgroup
1302  *
1303  * Returns the maximum amount of memory @mem can be charged with, in
1304  * pages.
1305  */
1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1307 {
1308         unsigned long long margin;
1309
1310         margin = res_counter_margin(&memcg->res);
1311         if (do_swap_account)
1312                 margin = min(margin, res_counter_margin(&memcg->memsw));
1313         return margin >> PAGE_SHIFT;
1314 }
1315
1316 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1317 {
1318         struct cgroup *cgrp = memcg->css.cgroup;
1319
1320         /* root ? */
1321         if (cgrp->parent == NULL)
1322                 return vm_swappiness;
1323
1324         return memcg->swappiness;
1325 }
1326
1327 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1328 {
1329         int cpu;
1330
1331         get_online_cpus();
1332         spin_lock(&memcg->pcp_counter_lock);
1333         for_each_online_cpu(cpu)
1334                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1335         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1336         spin_unlock(&memcg->pcp_counter_lock);
1337         put_online_cpus();
1338
1339         synchronize_rcu();
1340 }
1341
1342 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1343 {
1344         int cpu;
1345
1346         if (!memcg)
1347                 return;
1348         get_online_cpus();
1349         spin_lock(&memcg->pcp_counter_lock);
1350         for_each_online_cpu(cpu)
1351                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1352         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1353         spin_unlock(&memcg->pcp_counter_lock);
1354         put_online_cpus();
1355 }
1356 /*
1357  * 2 routines for checking "mem" is under move_account() or not.
1358  *
1359  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1360  *                        for avoiding race in accounting. If true,
1361  *                        pc->mem_cgroup may be overwritten.
1362  *
1363  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1364  *                        under hierarchy of moving cgroups. This is for
1365  *                        waiting at hith-memory prressure caused by "move".
1366  */
1367
1368 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1369 {
1370         VM_BUG_ON(!rcu_read_lock_held());
1371         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1372 }
1373
1374 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1375 {
1376         struct mem_cgroup *from;
1377         struct mem_cgroup *to;
1378         bool ret = false;
1379         /*
1380          * Unlike task_move routines, we access mc.to, mc.from not under
1381          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1382          */
1383         spin_lock(&mc.lock);
1384         from = mc.from;
1385         to = mc.to;
1386         if (!from)
1387                 goto unlock;
1388
1389         ret = mem_cgroup_same_or_subtree(memcg, from)
1390                 || mem_cgroup_same_or_subtree(memcg, to);
1391 unlock:
1392         spin_unlock(&mc.lock);
1393         return ret;
1394 }
1395
1396 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1397 {
1398         if (mc.moving_task && current != mc.moving_task) {
1399                 if (mem_cgroup_under_move(memcg)) {
1400                         DEFINE_WAIT(wait);
1401                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1402                         /* moving charge context might have finished. */
1403                         if (mc.moving_task)
1404                                 schedule();
1405                         finish_wait(&mc.waitq, &wait);
1406                         return true;
1407                 }
1408         }
1409         return false;
1410 }
1411
1412 /**
1413  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1414  * @memcg: The memory cgroup that went over limit
1415  * @p: Task that is going to be killed
1416  *
1417  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1418  * enabled
1419  */
1420 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1421 {
1422         struct cgroup *task_cgrp;
1423         struct cgroup *mem_cgrp;
1424         /*
1425          * Need a buffer in BSS, can't rely on allocations. The code relies
1426          * on the assumption that OOM is serialized for memory controller.
1427          * If this assumption is broken, revisit this code.
1428          */
1429         static char memcg_name[PATH_MAX];
1430         int ret;
1431
1432         if (!memcg || !p)
1433                 return;
1434
1435
1436         rcu_read_lock();
1437
1438         mem_cgrp = memcg->css.cgroup;
1439         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1440
1441         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1442         if (ret < 0) {
1443                 /*
1444                  * Unfortunately, we are unable to convert to a useful name
1445                  * But we'll still print out the usage information
1446                  */
1447                 rcu_read_unlock();
1448                 goto done;
1449         }
1450         rcu_read_unlock();
1451
1452         printk(KERN_INFO "Task in %s killed", memcg_name);
1453
1454         rcu_read_lock();
1455         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1456         if (ret < 0) {
1457                 rcu_read_unlock();
1458                 goto done;
1459         }
1460         rcu_read_unlock();
1461
1462         /*
1463          * Continues from above, so we don't need an KERN_ level
1464          */
1465         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1466 done:
1467
1468         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1469                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1470                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1471                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1472         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1473                 "failcnt %llu\n",
1474                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1475                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1476                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1477 }
1478
1479 /*
1480  * This function returns the number of memcg under hierarchy tree. Returns
1481  * 1(self count) if no children.
1482  */
1483 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1484 {
1485         int num = 0;
1486         struct mem_cgroup *iter;
1487
1488         for_each_mem_cgroup_tree(iter, memcg)
1489                 num++;
1490         return num;
1491 }
1492
1493 /*
1494  * Return the memory (and swap, if configured) limit for a memcg.
1495  */
1496 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1497 {
1498         u64 limit;
1499         u64 memsw;
1500
1501         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1502         limit += total_swap_pages << PAGE_SHIFT;
1503
1504         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1505         /*
1506          * If memsw is finite and limits the amount of swap space available
1507          * to this memcg, return that limit.
1508          */
1509         return min(limit, memsw);
1510 }
1511
1512 /*
1513  * Visit the first child (need not be the first child as per the ordering
1514  * of the cgroup list, since we track last_scanned_child) of @mem and use
1515  * that to reclaim free pages from.
1516  */
1517 static struct mem_cgroup *
1518 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1519 {
1520         struct mem_cgroup *ret = NULL;
1521         struct cgroup_subsys_state *css;
1522         int nextid, found;
1523
1524         if (!root_memcg->use_hierarchy) {
1525                 css_get(&root_memcg->css);
1526                 ret = root_memcg;
1527         }
1528
1529         while (!ret) {
1530                 rcu_read_lock();
1531                 nextid = root_memcg->last_scanned_child + 1;
1532                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1533                                    &found);
1534                 if (css && css_tryget(css))
1535                         ret = container_of(css, struct mem_cgroup, css);
1536
1537                 rcu_read_unlock();
1538                 /* Updates scanning parameter */
1539                 if (!css) {
1540                         /* this means start scan from ID:1 */
1541                         root_memcg->last_scanned_child = 0;
1542                 } else
1543                         root_memcg->last_scanned_child = found;
1544         }
1545
1546         return ret;
1547 }
1548
1549 /**
1550  * test_mem_cgroup_node_reclaimable
1551  * @mem: the target memcg
1552  * @nid: the node ID to be checked.
1553  * @noswap : specify true here if the user wants flle only information.
1554  *
1555  * This function returns whether the specified memcg contains any
1556  * reclaimable pages on a node. Returns true if there are any reclaimable
1557  * pages in the node.
1558  */
1559 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1560                 int nid, bool noswap)
1561 {
1562         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1563                 return true;
1564         if (noswap || !total_swap_pages)
1565                 return false;
1566         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1567                 return true;
1568         return false;
1569
1570 }
1571 #if MAX_NUMNODES > 1
1572
1573 /*
1574  * Always updating the nodemask is not very good - even if we have an empty
1575  * list or the wrong list here, we can start from some node and traverse all
1576  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1577  *
1578  */
1579 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1580 {
1581         int nid;
1582         /*
1583          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1584          * pagein/pageout changes since the last update.
1585          */
1586         if (!atomic_read(&memcg->numainfo_events))
1587                 return;
1588         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1589                 return;
1590
1591         /* make a nodemask where this memcg uses memory from */
1592         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1593
1594         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1595
1596                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1597                         node_clear(nid, memcg->scan_nodes);
1598         }
1599
1600         atomic_set(&memcg->numainfo_events, 0);
1601         atomic_set(&memcg->numainfo_updating, 0);
1602 }
1603
1604 /*
1605  * Selecting a node where we start reclaim from. Because what we need is just
1606  * reducing usage counter, start from anywhere is O,K. Considering
1607  * memory reclaim from current node, there are pros. and cons.
1608  *
1609  * Freeing memory from current node means freeing memory from a node which
1610  * we'll use or we've used. So, it may make LRU bad. And if several threads
1611  * hit limits, it will see a contention on a node. But freeing from remote
1612  * node means more costs for memory reclaim because of memory latency.
1613  *
1614  * Now, we use round-robin. Better algorithm is welcomed.
1615  */
1616 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1617 {
1618         int node;
1619
1620         mem_cgroup_may_update_nodemask(memcg);
1621         node = memcg->last_scanned_node;
1622
1623         node = next_node(node, memcg->scan_nodes);
1624         if (node == MAX_NUMNODES)
1625                 node = first_node(memcg->scan_nodes);
1626         /*
1627          * We call this when we hit limit, not when pages are added to LRU.
1628          * No LRU may hold pages because all pages are UNEVICTABLE or
1629          * memcg is too small and all pages are not on LRU. In that case,
1630          * we use curret node.
1631          */
1632         if (unlikely(node == MAX_NUMNODES))
1633                 node = numa_node_id();
1634
1635         memcg->last_scanned_node = node;
1636         return node;
1637 }
1638
1639 /*
1640  * Check all nodes whether it contains reclaimable pages or not.
1641  * For quick scan, we make use of scan_nodes. This will allow us to skip
1642  * unused nodes. But scan_nodes is lazily updated and may not cotain
1643  * enough new information. We need to do double check.
1644  */
1645 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1646 {
1647         int nid;
1648
1649         /*
1650          * quick check...making use of scan_node.
1651          * We can skip unused nodes.
1652          */
1653         if (!nodes_empty(memcg->scan_nodes)) {
1654                 for (nid = first_node(memcg->scan_nodes);
1655                      nid < MAX_NUMNODES;
1656                      nid = next_node(nid, memcg->scan_nodes)) {
1657
1658                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1659                                 return true;
1660                 }
1661         }
1662         /*
1663          * Check rest of nodes.
1664          */
1665         for_each_node_state(nid, N_HIGH_MEMORY) {
1666                 if (node_isset(nid, memcg->scan_nodes))
1667                         continue;
1668                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1669                         return true;
1670         }
1671         return false;
1672 }
1673
1674 #else
1675 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1676 {
1677         return 0;
1678 }
1679
1680 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1681 {
1682         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1683 }
1684 #endif
1685
1686 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1687                            struct memcg_scanrecord *rec)
1688 {
1689
1690         stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1691         stats[SCAN_ANON] += rec->nr_scanned[0];
1692         stats[SCAN_FILE] += rec->nr_scanned[1];
1693
1694         stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1695         stats[ROTATE_ANON] += rec->nr_rotated[0];
1696         stats[ROTATE_FILE] += rec->nr_rotated[1];
1697
1698         stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1699         stats[FREED_ANON] += rec->nr_freed[0];
1700         stats[FREED_FILE] += rec->nr_freed[1];
1701
1702         stats[ELAPSED] += rec->elapsed;
1703 }
1704
1705 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1706 {
1707         struct mem_cgroup *memcg;
1708         int context = rec->context;
1709
1710         if (context >= NR_SCAN_CONTEXT)
1711                 return;
1712
1713         memcg = rec->mem;
1714         spin_lock(&memcg->scanstat.lock);
1715         __mem_cgroup_record_scanstat(memcg->scanstat.stats[context], rec);
1716         spin_unlock(&memcg->scanstat.lock);
1717
1718         memcg = rec->root;
1719         spin_lock(&memcg->scanstat.lock);
1720         __mem_cgroup_record_scanstat(memcg->scanstat.rootstats[context], rec);
1721         spin_unlock(&memcg->scanstat.lock);
1722 }
1723
1724 /*
1725  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1726  * we reclaimed from, so that we don't end up penalizing one child extensively
1727  * based on its position in the children list.
1728  *
1729  * root_memcg is the original ancestor that we've been reclaim from.
1730  *
1731  * We give up and return to the caller when we visit root_memcg twice.
1732  * (other groups can be removed while we're walking....)
1733  *
1734  * If shrink==true, for avoiding to free too much, this returns immedieately.
1735  */
1736 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1737                                                 struct zone *zone,
1738                                                 gfp_t gfp_mask,
1739                                                 unsigned long reclaim_options,
1740                                                 unsigned long *total_scanned)
1741 {
1742         struct mem_cgroup *victim;
1743         int ret, total = 0;
1744         int loop = 0;
1745         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1746         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1747         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1748         struct memcg_scanrecord rec;
1749         unsigned long excess;
1750         unsigned long scanned;
1751
1752         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1753
1754         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1755         if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1756                 noswap = true;
1757
1758         if (shrink)
1759                 rec.context = SCAN_BY_SHRINK;
1760         else if (check_soft)
1761                 rec.context = SCAN_BY_SYSTEM;
1762         else
1763                 rec.context = SCAN_BY_LIMIT;
1764
1765         rec.root = root_memcg;
1766
1767         while (1) {
1768                 victim = mem_cgroup_select_victim(root_memcg);
1769                 if (victim == root_memcg) {
1770                         loop++;
1771                         /*
1772                          * We are not draining per cpu cached charges during
1773                          * soft limit reclaim  because global reclaim doesn't
1774                          * care about charges. It tries to free some memory and
1775                          * charges will not give any.
1776                          */
1777                         if (!check_soft && loop >= 1)
1778                                 drain_all_stock_async(root_memcg);
1779                         if (loop >= 2) {
1780                                 /*
1781                                  * If we have not been able to reclaim
1782                                  * anything, it might because there are
1783                                  * no reclaimable pages under this hierarchy
1784                                  */
1785                                 if (!check_soft || !total) {
1786                                         css_put(&victim->css);
1787                                         break;
1788                                 }
1789                                 /*
1790                                  * We want to do more targeted reclaim.
1791                                  * excess >> 2 is not to excessive so as to
1792                                  * reclaim too much, nor too less that we keep
1793                                  * coming back to reclaim from this cgroup
1794                                  */
1795                                 if (total >= (excess >> 2) ||
1796                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1797                                         css_put(&victim->css);
1798                                         break;
1799                                 }
1800                         }
1801                 }
1802                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1803                         /* this cgroup's local usage == 0 */
1804                         css_put(&victim->css);
1805                         continue;
1806                 }
1807                 rec.mem = victim;
1808                 rec.nr_scanned[0] = 0;
1809                 rec.nr_scanned[1] = 0;
1810                 rec.nr_rotated[0] = 0;
1811                 rec.nr_rotated[1] = 0;
1812                 rec.nr_freed[0] = 0;
1813                 rec.nr_freed[1] = 0;
1814                 rec.elapsed = 0;
1815                 /* we use swappiness of local cgroup */
1816                 if (check_soft) {
1817                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1818                                 noswap, zone, &rec, &scanned);
1819                         *total_scanned += scanned;
1820                 } else
1821                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1822                                                 noswap, &rec);
1823                 mem_cgroup_record_scanstat(&rec);
1824                 css_put(&victim->css);
1825                 /*
1826                  * At shrinking usage, we can't check we should stop here or
1827                  * reclaim more. It's depends on callers. last_scanned_child
1828                  * will work enough for keeping fairness under tree.
1829                  */
1830                 if (shrink)
1831                         return ret;
1832                 total += ret;
1833                 if (check_soft) {
1834                         if (!res_counter_soft_limit_excess(&root_memcg->res))
1835                                 return total;
1836                 } else if (mem_cgroup_margin(root_memcg))
1837                         return total;
1838         }
1839         return total;
1840 }
1841
1842 /*
1843  * Check OOM-Killer is already running under our hierarchy.
1844  * If someone is running, return false.
1845  * Has to be called with memcg_oom_lock
1846  */
1847 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1848 {
1849         struct mem_cgroup *iter, *failed = NULL;
1850         bool cond = true;
1851
1852         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1853                 if (iter->oom_lock) {
1854                         /*
1855                          * this subtree of our hierarchy is already locked
1856                          * so we cannot give a lock.
1857                          */
1858                         failed = iter;
1859                         cond = false;
1860                 } else
1861                         iter->oom_lock = true;
1862         }
1863
1864         if (!failed)
1865                 return true;
1866
1867         /*
1868          * OK, we failed to lock the whole subtree so we have to clean up
1869          * what we set up to the failing subtree
1870          */
1871         cond = true;
1872         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1873                 if (iter == failed) {
1874                         cond = false;
1875                         continue;
1876                 }
1877                 iter->oom_lock = false;
1878         }
1879         return false;
1880 }
1881
1882 /*
1883  * Has to be called with memcg_oom_lock
1884  */
1885 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1886 {
1887         struct mem_cgroup *iter;
1888
1889         for_each_mem_cgroup_tree(iter, memcg)
1890                 iter->oom_lock = false;
1891         return 0;
1892 }
1893
1894 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1895 {
1896         struct mem_cgroup *iter;
1897
1898         for_each_mem_cgroup_tree(iter, memcg)
1899                 atomic_inc(&iter->under_oom);
1900 }
1901
1902 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1903 {
1904         struct mem_cgroup *iter;
1905
1906         /*
1907          * When a new child is created while the hierarchy is under oom,
1908          * mem_cgroup_oom_lock() may not be called. We have to use
1909          * atomic_add_unless() here.
1910          */
1911         for_each_mem_cgroup_tree(iter, memcg)
1912                 atomic_add_unless(&iter->under_oom, -1, 0);
1913 }
1914
1915 static DEFINE_SPINLOCK(memcg_oom_lock);
1916 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1917
1918 struct oom_wait_info {
1919         struct mem_cgroup *mem;
1920         wait_queue_t    wait;
1921 };
1922
1923 static int memcg_oom_wake_function(wait_queue_t *wait,
1924         unsigned mode, int sync, void *arg)
1925 {
1926         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1927                           *oom_wait_memcg;
1928         struct oom_wait_info *oom_wait_info;
1929
1930         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1931         oom_wait_memcg = oom_wait_info->mem;
1932
1933         /*
1934          * Both of oom_wait_info->mem and wake_mem are stable under us.
1935          * Then we can use css_is_ancestor without taking care of RCU.
1936          */
1937         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1938                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1939                 return 0;
1940         return autoremove_wake_function(wait, mode, sync, arg);
1941 }
1942
1943 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1944 {
1945         /* for filtering, pass "memcg" as argument. */
1946         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1947 }
1948
1949 static void memcg_oom_recover(struct mem_cgroup *memcg)
1950 {
1951         if (memcg && atomic_read(&memcg->under_oom))
1952                 memcg_wakeup_oom(memcg);
1953 }
1954
1955 /*
1956  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1957  */
1958 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1959 {
1960         struct oom_wait_info owait;
1961         bool locked, need_to_kill;
1962
1963         owait.mem = memcg;
1964         owait.wait.flags = 0;
1965         owait.wait.func = memcg_oom_wake_function;
1966         owait.wait.private = current;
1967         INIT_LIST_HEAD(&owait.wait.task_list);
1968         need_to_kill = true;
1969         mem_cgroup_mark_under_oom(memcg);
1970
1971         /* At first, try to OOM lock hierarchy under memcg.*/
1972         spin_lock(&memcg_oom_lock);
1973         locked = mem_cgroup_oom_lock(memcg);
1974         /*
1975          * Even if signal_pending(), we can't quit charge() loop without
1976          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1977          * under OOM is always welcomed, use TASK_KILLABLE here.
1978          */
1979         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1980         if (!locked || memcg->oom_kill_disable)
1981                 need_to_kill = false;
1982         if (locked)
1983                 mem_cgroup_oom_notify(memcg);
1984         spin_unlock(&memcg_oom_lock);
1985
1986         if (need_to_kill) {
1987                 finish_wait(&memcg_oom_waitq, &owait.wait);
1988                 mem_cgroup_out_of_memory(memcg, mask);
1989         } else {
1990                 schedule();
1991                 finish_wait(&memcg_oom_waitq, &owait.wait);
1992         }
1993         spin_lock(&memcg_oom_lock);
1994         if (locked)
1995                 mem_cgroup_oom_unlock(memcg);
1996         memcg_wakeup_oom(memcg);
1997         spin_unlock(&memcg_oom_lock);
1998
1999         mem_cgroup_unmark_under_oom(memcg);
2000
2001         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2002                 return false;
2003         /* Give chance to dying process */
2004         schedule_timeout_uninterruptible(1);
2005         return true;
2006 }
2007
2008 /*
2009  * Currently used to update mapped file statistics, but the routine can be
2010  * generalized to update other statistics as well.
2011  *
2012  * Notes: Race condition
2013  *
2014  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2015  * it tends to be costly. But considering some conditions, we doesn't need
2016  * to do so _always_.
2017  *
2018  * Considering "charge", lock_page_cgroup() is not required because all
2019  * file-stat operations happen after a page is attached to radix-tree. There
2020  * are no race with "charge".
2021  *
2022  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2023  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2024  * if there are race with "uncharge". Statistics itself is properly handled
2025  * by flags.
2026  *
2027  * Considering "move", this is an only case we see a race. To make the race
2028  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2029  * possibility of race condition. If there is, we take a lock.
2030  */
2031
2032 void mem_cgroup_update_page_stat(struct page *page,
2033                                  enum mem_cgroup_page_stat_item idx, int val)
2034 {
2035         struct mem_cgroup *memcg;
2036         struct page_cgroup *pc = lookup_page_cgroup(page);
2037         bool need_unlock = false;
2038         unsigned long uninitialized_var(flags);
2039
2040         if (unlikely(!pc))
2041                 return;
2042
2043         rcu_read_lock();
2044         memcg = pc->mem_cgroup;
2045         if (unlikely(!memcg || !PageCgroupUsed(pc)))
2046                 goto out;
2047         /* pc->mem_cgroup is unstable ? */
2048         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2049                 /* take a lock against to access pc->mem_cgroup */
2050                 move_lock_page_cgroup(pc, &flags);
2051                 need_unlock = true;
2052                 memcg = pc->mem_cgroup;
2053                 if (!memcg || !PageCgroupUsed(pc))
2054                         goto out;
2055         }
2056
2057         switch (idx) {
2058         case MEMCG_NR_FILE_MAPPED:
2059                 if (val > 0)
2060                         SetPageCgroupFileMapped(pc);
2061                 else if (!page_mapped(page))
2062                         ClearPageCgroupFileMapped(pc);
2063                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2064                 break;
2065         default:
2066                 BUG();
2067         }
2068
2069         this_cpu_add(memcg->stat->count[idx], val);
2070
2071 out:
2072         if (unlikely(need_unlock))
2073                 move_unlock_page_cgroup(pc, &flags);
2074         rcu_read_unlock();
2075         return;
2076 }
2077 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2078
2079 /*
2080  * size of first charge trial. "32" comes from vmscan.c's magic value.
2081  * TODO: maybe necessary to use big numbers in big irons.
2082  */
2083 #define CHARGE_BATCH    32U
2084 struct memcg_stock_pcp {
2085         struct mem_cgroup *cached; /* this never be root cgroup */
2086         unsigned int nr_pages;
2087         struct work_struct work;
2088         unsigned long flags;
2089 #define FLUSHING_CACHED_CHARGE  (0)
2090 };
2091 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2092 static DEFINE_MUTEX(percpu_charge_mutex);
2093
2094 /*
2095  * Try to consume stocked charge on this cpu. If success, one page is consumed
2096  * from local stock and true is returned. If the stock is 0 or charges from a
2097  * cgroup which is not current target, returns false. This stock will be
2098  * refilled.
2099  */
2100 static bool consume_stock(struct mem_cgroup *memcg)
2101 {
2102         struct memcg_stock_pcp *stock;
2103         bool ret = true;
2104
2105         stock = &get_cpu_var(memcg_stock);
2106         if (memcg == stock->cached && stock->nr_pages)
2107                 stock->nr_pages--;
2108         else /* need to call res_counter_charge */
2109                 ret = false;
2110         put_cpu_var(memcg_stock);
2111         return ret;
2112 }
2113
2114 /*
2115  * Returns stocks cached in percpu to res_counter and reset cached information.
2116  */
2117 static void drain_stock(struct memcg_stock_pcp *stock)
2118 {
2119         struct mem_cgroup *old = stock->cached;
2120
2121         if (stock->nr_pages) {
2122                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2123
2124                 res_counter_uncharge(&old->res, bytes);
2125                 if (do_swap_account)
2126                         res_counter_uncharge(&old->memsw, bytes);
2127                 stock->nr_pages = 0;
2128         }
2129         stock->cached = NULL;
2130 }
2131
2132 /*
2133  * This must be called under preempt disabled or must be called by
2134  * a thread which is pinned to local cpu.
2135  */
2136 static void drain_local_stock(struct work_struct *dummy)
2137 {
2138         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2139         drain_stock(stock);
2140         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2141 }
2142
2143 /*
2144  * Cache charges(val) which is from res_counter, to local per_cpu area.
2145  * This will be consumed by consume_stock() function, later.
2146  */
2147 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2148 {
2149         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2150
2151         if (stock->cached != memcg) { /* reset if necessary */
2152                 drain_stock(stock);
2153                 stock->cached = memcg;
2154         }
2155         stock->nr_pages += nr_pages;
2156         put_cpu_var(memcg_stock);
2157 }
2158
2159 /*
2160  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2161  * of the hierarchy under it. sync flag says whether we should block
2162  * until the work is done.
2163  */
2164 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2165 {
2166         int cpu, curcpu;
2167
2168         /* Notify other cpus that system-wide "drain" is running */
2169         get_online_cpus();
2170         curcpu = get_cpu();
2171         for_each_online_cpu(cpu) {
2172                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2173                 struct mem_cgroup *memcg;
2174
2175                 memcg = stock->cached;
2176                 if (!memcg || !stock->nr_pages)
2177                         continue;
2178                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2179                         continue;
2180                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2181                         if (cpu == curcpu)
2182                                 drain_local_stock(&stock->work);
2183                         else
2184                                 schedule_work_on(cpu, &stock->work);
2185                 }
2186         }
2187         put_cpu();
2188
2189         if (!sync)
2190                 goto out;
2191
2192         for_each_online_cpu(cpu) {
2193                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2194                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2195                         flush_work(&stock->work);
2196         }
2197 out:
2198         put_online_cpus();
2199 }
2200
2201 /*
2202  * Tries to drain stocked charges in other cpus. This function is asynchronous
2203  * and just put a work per cpu for draining localy on each cpu. Caller can
2204  * expects some charges will be back to res_counter later but cannot wait for
2205  * it.
2206  */
2207 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2208 {
2209         /*
2210          * If someone calls draining, avoid adding more kworker runs.
2211          */
2212         if (!mutex_trylock(&percpu_charge_mutex))
2213                 return;
2214         drain_all_stock(root_memcg, false);
2215         mutex_unlock(&percpu_charge_mutex);
2216 }
2217
2218 /* This is a synchronous drain interface. */
2219 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2220 {
2221         /* called when force_empty is called */
2222         mutex_lock(&percpu_charge_mutex);
2223         drain_all_stock(root_memcg, true);
2224         mutex_unlock(&percpu_charge_mutex);
2225 }
2226
2227 /*
2228  * This function drains percpu counter value from DEAD cpu and
2229  * move it to local cpu. Note that this function can be preempted.
2230  */
2231 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2232 {
2233         int i;
2234
2235         spin_lock(&memcg->pcp_counter_lock);
2236         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2237                 long x = per_cpu(memcg->stat->count[i], cpu);
2238
2239                 per_cpu(memcg->stat->count[i], cpu) = 0;
2240                 memcg->nocpu_base.count[i] += x;
2241         }
2242         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2243                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2244
2245                 per_cpu(memcg->stat->events[i], cpu) = 0;
2246                 memcg->nocpu_base.events[i] += x;
2247         }
2248         /* need to clear ON_MOVE value, works as a kind of lock. */
2249         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2250         spin_unlock(&memcg->pcp_counter_lock);
2251 }
2252
2253 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2254 {
2255         int idx = MEM_CGROUP_ON_MOVE;
2256
2257         spin_lock(&memcg->pcp_counter_lock);
2258         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2259         spin_unlock(&memcg->pcp_counter_lock);
2260 }
2261
2262 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2263                                         unsigned long action,
2264                                         void *hcpu)
2265 {
2266         int cpu = (unsigned long)hcpu;
2267         struct memcg_stock_pcp *stock;
2268         struct mem_cgroup *iter;
2269
2270         if ((action == CPU_ONLINE)) {
2271                 for_each_mem_cgroup_all(iter)
2272                         synchronize_mem_cgroup_on_move(iter, cpu);
2273                 return NOTIFY_OK;
2274         }
2275
2276         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2277                 return NOTIFY_OK;
2278
2279         for_each_mem_cgroup_all(iter)
2280                 mem_cgroup_drain_pcp_counter(iter, cpu);
2281
2282         stock = &per_cpu(memcg_stock, cpu);
2283         drain_stock(stock);
2284         return NOTIFY_OK;
2285 }
2286
2287
2288 /* See __mem_cgroup_try_charge() for details */
2289 enum {
2290         CHARGE_OK,              /* success */
2291         CHARGE_RETRY,           /* need to retry but retry is not bad */
2292         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2293         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2294         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2295 };
2296
2297 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2298                                 unsigned int nr_pages, bool oom_check)
2299 {
2300         unsigned long csize = nr_pages * PAGE_SIZE;
2301         struct mem_cgroup *mem_over_limit;
2302         struct res_counter *fail_res;
2303         unsigned long flags = 0;
2304         int ret;
2305
2306         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2307
2308         if (likely(!ret)) {
2309                 if (!do_swap_account)
2310                         return CHARGE_OK;
2311                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2312                 if (likely(!ret))
2313                         return CHARGE_OK;
2314
2315                 res_counter_uncharge(&memcg->res, csize);
2316                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2317                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2318         } else
2319                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2320         /*
2321          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2322          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2323          *
2324          * Never reclaim on behalf of optional batching, retry with a
2325          * single page instead.
2326          */
2327         if (nr_pages == CHARGE_BATCH)
2328                 return CHARGE_RETRY;
2329
2330         if (!(gfp_mask & __GFP_WAIT))
2331                 return CHARGE_WOULDBLOCK;
2332
2333         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2334                                               gfp_mask, flags, NULL);
2335         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2336                 return CHARGE_RETRY;
2337         /*
2338          * Even though the limit is exceeded at this point, reclaim
2339          * may have been able to free some pages.  Retry the charge
2340          * before killing the task.
2341          *
2342          * Only for regular pages, though: huge pages are rather
2343          * unlikely to succeed so close to the limit, and we fall back
2344          * to regular pages anyway in case of failure.
2345          */
2346         if (nr_pages == 1 && ret)
2347                 return CHARGE_RETRY;
2348
2349         /*
2350          * At task move, charge accounts can be doubly counted. So, it's
2351          * better to wait until the end of task_move if something is going on.
2352          */
2353         if (mem_cgroup_wait_acct_move(mem_over_limit))
2354                 return CHARGE_RETRY;
2355
2356         /* If we don't need to call oom-killer at el, return immediately */
2357         if (!oom_check)
2358                 return CHARGE_NOMEM;
2359         /* check OOM */
2360         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2361                 return CHARGE_OOM_DIE;
2362
2363         return CHARGE_RETRY;
2364 }
2365
2366 /*
2367  * Unlike exported interface, "oom" parameter is added. if oom==true,
2368  * oom-killer can be invoked.
2369  */
2370 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2371                                    gfp_t gfp_mask,
2372                                    unsigned int nr_pages,
2373                                    struct mem_cgroup **ptr,
2374                                    bool oom)
2375 {
2376         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2377         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2378         struct mem_cgroup *memcg = NULL;
2379         int ret;
2380
2381         /*
2382          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2383          * in system level. So, allow to go ahead dying process in addition to
2384          * MEMDIE process.
2385          */
2386         if (unlikely(test_thread_flag(TIF_MEMDIE)
2387                      || fatal_signal_pending(current)))
2388                 goto bypass;
2389
2390         /*
2391          * We always charge the cgroup the mm_struct belongs to.
2392          * The mm_struct's mem_cgroup changes on task migration if the
2393          * thread group leader migrates. It's possible that mm is not
2394          * set, if so charge the init_mm (happens for pagecache usage).
2395          */
2396         if (!*ptr && !mm)
2397                 goto bypass;
2398 again:
2399         if (*ptr) { /* css should be a valid one */
2400                 memcg = *ptr;
2401                 VM_BUG_ON(css_is_removed(&memcg->css));
2402                 if (mem_cgroup_is_root(memcg))
2403                         goto done;
2404                 if (nr_pages == 1 && consume_stock(memcg))
2405                         goto done;
2406                 css_get(&memcg->css);
2407         } else {
2408                 struct task_struct *p;
2409
2410                 rcu_read_lock();
2411                 p = rcu_dereference(mm->owner);
2412                 /*
2413                  * Because we don't have task_lock(), "p" can exit.
2414                  * In that case, "memcg" can point to root or p can be NULL with
2415                  * race with swapoff. Then, we have small risk of mis-accouning.
2416                  * But such kind of mis-account by race always happens because
2417                  * we don't have cgroup_mutex(). It's overkill and we allo that
2418                  * small race, here.
2419                  * (*) swapoff at el will charge against mm-struct not against
2420                  * task-struct. So, mm->owner can be NULL.
2421                  */
2422                 memcg = mem_cgroup_from_task(p);
2423                 if (!memcg || mem_cgroup_is_root(memcg)) {
2424                         rcu_read_unlock();
2425                         goto done;
2426                 }
2427                 if (nr_pages == 1 && consume_stock(memcg)) {
2428                         /*
2429                          * It seems dagerous to access memcg without css_get().
2430                          * But considering how consume_stok works, it's not
2431                          * necessary. If consume_stock success, some charges
2432                          * from this memcg are cached on this cpu. So, we
2433                          * don't need to call css_get()/css_tryget() before
2434                          * calling consume_stock().
2435                          */
2436                         rcu_read_unlock();
2437                         goto done;
2438                 }
2439                 /* after here, we may be blocked. we need to get refcnt */
2440                 if (!css_tryget(&memcg->css)) {
2441                         rcu_read_unlock();
2442                         goto again;
2443                 }
2444                 rcu_read_unlock();
2445         }
2446
2447         do {
2448                 bool oom_check;
2449
2450                 /* If killed, bypass charge */
2451                 if (fatal_signal_pending(current)) {
2452                         css_put(&memcg->css);
2453                         goto bypass;
2454                 }
2455
2456                 oom_check = false;
2457                 if (oom && !nr_oom_retries) {
2458                         oom_check = true;
2459                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2460                 }
2461
2462                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2463                 switch (ret) {
2464                 case CHARGE_OK:
2465                         break;
2466                 case CHARGE_RETRY: /* not in OOM situation but retry */
2467                         batch = nr_pages;
2468                         css_put(&memcg->css);
2469                         memcg = NULL;
2470                         goto again;
2471                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2472                         css_put(&memcg->css);
2473                         goto nomem;
2474                 case CHARGE_NOMEM: /* OOM routine works */
2475                         if (!oom) {
2476                                 css_put(&memcg->css);
2477                                 goto nomem;
2478                         }
2479                         /* If oom, we never return -ENOMEM */
2480                         nr_oom_retries--;
2481                         break;
2482                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2483                         css_put(&memcg->css);
2484                         goto bypass;
2485                 }
2486         } while (ret != CHARGE_OK);
2487
2488         if (batch > nr_pages)
2489                 refill_stock(memcg, batch - nr_pages);
2490         css_put(&memcg->css);
2491 done:
2492         *ptr = memcg;
2493         return 0;
2494 nomem:
2495         *ptr = NULL;
2496         return -ENOMEM;
2497 bypass:
2498         *ptr = NULL;
2499         return 0;
2500 }
2501
2502 /*
2503  * Somemtimes we have to undo a charge we got by try_charge().
2504  * This function is for that and do uncharge, put css's refcnt.
2505  * gotten by try_charge().
2506  */
2507 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2508                                        unsigned int nr_pages)
2509 {
2510         if (!mem_cgroup_is_root(memcg)) {
2511                 unsigned long bytes = nr_pages * PAGE_SIZE;
2512
2513                 res_counter_uncharge(&memcg->res, bytes);
2514                 if (do_swap_account)
2515                         res_counter_uncharge(&memcg->memsw, bytes);
2516         }
2517 }
2518
2519 /*
2520  * A helper function to get mem_cgroup from ID. must be called under
2521  * rcu_read_lock(). The caller must check css_is_removed() or some if
2522  * it's concern. (dropping refcnt from swap can be called against removed
2523  * memcg.)
2524  */
2525 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2526 {
2527         struct cgroup_subsys_state *css;
2528
2529         /* ID 0 is unused ID */
2530         if (!id)
2531                 return NULL;
2532         css = css_lookup(&mem_cgroup_subsys, id);
2533         if (!css)
2534                 return NULL;
2535         return container_of(css, struct mem_cgroup, css);
2536 }
2537
2538 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2539 {
2540         struct mem_cgroup *memcg = NULL;
2541         struct page_cgroup *pc;
2542         unsigned short id;
2543         swp_entry_t ent;
2544
2545         VM_BUG_ON(!PageLocked(page));
2546
2547         pc = lookup_page_cgroup(page);
2548         lock_page_cgroup(pc);
2549         if (PageCgroupUsed(pc)) {
2550                 memcg = pc->mem_cgroup;
2551                 if (memcg && !css_tryget(&memcg->css))
2552                         memcg = NULL;
2553         } else if (PageSwapCache(page)) {
2554                 ent.val = page_private(page);
2555                 id = lookup_swap_cgroup(ent);
2556                 rcu_read_lock();
2557                 memcg = mem_cgroup_lookup(id);
2558                 if (memcg && !css_tryget(&memcg->css))
2559                         memcg = NULL;
2560                 rcu_read_unlock();
2561         }
2562         unlock_page_cgroup(pc);
2563         return memcg;
2564 }
2565
2566 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2567                                        struct page *page,
2568                                        unsigned int nr_pages,
2569                                        struct page_cgroup *pc,
2570                                        enum charge_type ctype)
2571 {
2572         lock_page_cgroup(pc);
2573         if (unlikely(PageCgroupUsed(pc))) {
2574                 unlock_page_cgroup(pc);
2575                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2576                 return;
2577         }
2578         /*
2579          * we don't need page_cgroup_lock about tail pages, becase they are not
2580          * accessed by any other context at this point.
2581          */
2582         pc->mem_cgroup = memcg;
2583         /*
2584          * We access a page_cgroup asynchronously without lock_page_cgroup().
2585          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2586          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2587          * before USED bit, we need memory barrier here.
2588          * See mem_cgroup_add_lru_list(), etc.
2589          */
2590         smp_wmb();
2591         switch (ctype) {
2592         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2593         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2594                 SetPageCgroupCache(pc);
2595                 SetPageCgroupUsed(pc);
2596                 break;
2597         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2598                 ClearPageCgroupCache(pc);
2599                 SetPageCgroupUsed(pc);
2600                 break;
2601         default:
2602                 break;
2603         }
2604
2605         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2606         unlock_page_cgroup(pc);
2607         /*
2608          * "charge_statistics" updated event counter. Then, check it.
2609          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2610          * if they exceeds softlimit.
2611          */
2612         memcg_check_events(memcg, page);
2613 }
2614
2615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2616
2617 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2618                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2619 /*
2620  * Because tail pages are not marked as "used", set it. We're under
2621  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2622  */
2623 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2624 {
2625         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2626         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2627         unsigned long flags;
2628
2629         if (mem_cgroup_disabled())
2630                 return;
2631         /*
2632          * We have no races with charge/uncharge but will have races with
2633          * page state accounting.
2634          */
2635         move_lock_page_cgroup(head_pc, &flags);
2636
2637         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2638         smp_wmb(); /* see __commit_charge() */
2639         if (PageCgroupAcctLRU(head_pc)) {
2640                 enum lru_list lru;
2641                 struct mem_cgroup_per_zone *mz;
2642
2643                 /*
2644                  * LRU flags cannot be copied because we need to add tail
2645                  *.page to LRU by generic call and our hook will be called.
2646                  * We hold lru_lock, then, reduce counter directly.
2647                  */
2648                 lru = page_lru(head);
2649                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2650                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2651         }
2652         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2653         move_unlock_page_cgroup(head_pc, &flags);
2654 }
2655 #endif
2656
2657 /**
2658  * mem_cgroup_move_account - move account of the page
2659  * @page: the page
2660  * @nr_pages: number of regular pages (>1 for huge pages)
2661  * @pc: page_cgroup of the page.
2662  * @from: mem_cgroup which the page is moved from.
2663  * @to: mem_cgroup which the page is moved to. @from != @to.
2664  * @uncharge: whether we should call uncharge and css_put against @from.
2665  *
2666  * The caller must confirm following.
2667  * - page is not on LRU (isolate_page() is useful.)
2668  * - compound_lock is held when nr_pages > 1
2669  *
2670  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2671  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2672  * true, this function does "uncharge" from old cgroup, but it doesn't if
2673  * @uncharge is false, so a caller should do "uncharge".
2674  */
2675 static int mem_cgroup_move_account(struct page *page,
2676                                    unsigned int nr_pages,
2677                                    struct page_cgroup *pc,
2678                                    struct mem_cgroup *from,
2679                                    struct mem_cgroup *to,
2680                                    bool uncharge)
2681 {
2682         unsigned long flags;
2683         int ret;
2684
2685         VM_BUG_ON(from == to);
2686         VM_BUG_ON(PageLRU(page));
2687         /*
2688          * The page is isolated from LRU. So, collapse function
2689          * will not handle this page. But page splitting can happen.
2690          * Do this check under compound_page_lock(). The caller should
2691          * hold it.
2692          */
2693         ret = -EBUSY;
2694         if (nr_pages > 1 && !PageTransHuge(page))
2695                 goto out;
2696
2697         lock_page_cgroup(pc);
2698
2699         ret = -EINVAL;
2700         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2701                 goto unlock;
2702
2703         move_lock_page_cgroup(pc, &flags);
2704
2705         if (PageCgroupFileMapped(pc)) {
2706                 /* Update mapped_file data for mem_cgroup */
2707                 preempt_disable();
2708                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2709                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2710                 preempt_enable();
2711         }
2712         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2713         if (uncharge)
2714                 /* This is not "cancel", but cancel_charge does all we need. */
2715                 __mem_cgroup_cancel_charge(from, nr_pages);
2716
2717         /* caller should have done css_get */
2718         pc->mem_cgroup = to;
2719         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2720         /*
2721          * We charges against "to" which may not have any tasks. Then, "to"
2722          * can be under rmdir(). But in current implementation, caller of
2723          * this function is just force_empty() and move charge, so it's
2724          * guaranteed that "to" is never removed. So, we don't check rmdir
2725          * status here.
2726          */
2727         move_unlock_page_cgroup(pc, &flags);
2728         ret = 0;
2729 unlock:
2730         unlock_page_cgroup(pc);
2731         /*
2732          * check events
2733          */
2734         memcg_check_events(to, page);
2735         memcg_check_events(from, page);
2736 out:
2737         return ret;
2738 }
2739
2740 /*
2741  * move charges to its parent.
2742  */
2743
2744 static int mem_cgroup_move_parent(struct page *page,
2745                                   struct page_cgroup *pc,
2746                                   struct mem_cgroup *child,
2747                                   gfp_t gfp_mask)
2748 {
2749         struct cgroup *cg = child->css.cgroup;
2750         struct cgroup *pcg = cg->parent;
2751         struct mem_cgroup *parent;
2752         unsigned int nr_pages;
2753         unsigned long uninitialized_var(flags);
2754         int ret;
2755
2756         /* Is ROOT ? */
2757         if (!pcg)
2758                 return -EINVAL;
2759
2760         ret = -EBUSY;
2761         if (!get_page_unless_zero(page))
2762                 goto out;
2763         if (isolate_lru_page(page))
2764                 goto put;
2765
2766         nr_pages = hpage_nr_pages(page);
2767
2768         parent = mem_cgroup_from_cont(pcg);
2769         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2770         if (ret || !parent)
2771                 goto put_back;
2772
2773         if (nr_pages > 1)
2774                 flags = compound_lock_irqsave(page);
2775
2776         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2777         if (ret)
2778                 __mem_cgroup_cancel_charge(parent, nr_pages);
2779
2780         if (nr_pages > 1)
2781                 compound_unlock_irqrestore(page, flags);
2782 put_back:
2783         putback_lru_page(page);
2784 put:
2785         put_page(page);
2786 out:
2787         return ret;
2788 }
2789
2790 /*
2791  * Charge the memory controller for page usage.
2792  * Return
2793  * 0 if the charge was successful
2794  * < 0 if the cgroup is over its limit
2795  */
2796 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2797                                 gfp_t gfp_mask, enum charge_type ctype)
2798 {
2799         struct mem_cgroup *memcg = NULL;
2800         unsigned int nr_pages = 1;
2801         struct page_cgroup *pc;
2802         bool oom = true;
2803         int ret;
2804
2805         if (PageTransHuge(page)) {
2806                 nr_pages <<= compound_order(page);
2807                 VM_BUG_ON(!PageTransHuge(page));
2808                 /*
2809                  * Never OOM-kill a process for a huge page.  The
2810                  * fault handler will fall back to regular pages.
2811                  */
2812                 oom = false;
2813         }
2814
2815         pc = lookup_page_cgroup(page);
2816         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2817
2818         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2819         if (ret || !memcg)
2820                 return ret;
2821
2822         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2823         return 0;
2824 }
2825
2826 int mem_cgroup_newpage_charge(struct page *page,
2827                               struct mm_struct *mm, gfp_t gfp_mask)
2828 {
2829         if (mem_cgroup_disabled())
2830                 return 0;
2831         /*
2832          * If already mapped, we don't have to account.
2833          * If page cache, page->mapping has address_space.
2834          * But page->mapping may have out-of-use anon_vma pointer,
2835          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2836          * is NULL.
2837          */
2838         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2839                 return 0;
2840         if (unlikely(!mm))
2841                 mm = &init_mm;
2842         return mem_cgroup_charge_common(page, mm, gfp_mask,
2843                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2844 }
2845
2846 static void
2847 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2848                                         enum charge_type ctype);
2849
2850 static void
2851 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2852                                         enum charge_type ctype)
2853 {
2854         struct page_cgroup *pc = lookup_page_cgroup(page);
2855         /*
2856          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2857          * is already on LRU. It means the page may on some other page_cgroup's
2858          * LRU. Take care of it.
2859          */
2860         mem_cgroup_lru_del_before_commit(page);
2861         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2862         mem_cgroup_lru_add_after_commit(page);
2863         return;
2864 }
2865
2866 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2867                                 gfp_t gfp_mask)
2868 {
2869         struct mem_cgroup *memcg = NULL;
2870         int ret;
2871
2872         if (mem_cgroup_disabled())
2873                 return 0;
2874         if (PageCompound(page))
2875                 return 0;
2876
2877         if (unlikely(!mm))
2878                 mm = &init_mm;
2879
2880         if (page_is_file_cache(page)) {
2881                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2882                 if (ret || !memcg)
2883                         return ret;
2884
2885                 /*
2886                  * FUSE reuses pages without going through the final
2887                  * put that would remove them from the LRU list, make
2888                  * sure that they get relinked properly.
2889                  */
2890                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2891                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2892                 return ret;
2893         }
2894         /* shmem */
2895         if (PageSwapCache(page)) {
2896                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2897                 if (!ret)
2898                         __mem_cgroup_commit_charge_swapin(page, memcg,
2899                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2900         } else
2901                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2902                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2903
2904         return ret;
2905 }
2906
2907 /*
2908  * While swap-in, try_charge -> commit or cancel, the page is locked.
2909  * And when try_charge() successfully returns, one refcnt to memcg without
2910  * struct page_cgroup is acquired. This refcnt will be consumed by
2911  * "commit()" or removed by "cancel()"
2912  */
2913 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2914                                  struct page *page,
2915                                  gfp_t mask, struct mem_cgroup **ptr)
2916 {
2917         struct mem_cgroup *memcg;
2918         int ret;
2919
2920         *ptr = NULL;
2921
2922         if (mem_cgroup_disabled())
2923                 return 0;
2924
2925         if (!do_swap_account)
2926                 goto charge_cur_mm;
2927         /*
2928          * A racing thread's fault, or swapoff, may have already updated
2929          * the pte, and even removed page from swap cache: in those cases
2930          * do_swap_page()'s pte_same() test will fail; but there's also a
2931          * KSM case which does need to charge the page.
2932          */
2933         if (!PageSwapCache(page))
2934                 goto charge_cur_mm;
2935         memcg = try_get_mem_cgroup_from_page(page);
2936         if (!memcg)
2937                 goto charge_cur_mm;
2938         *ptr = memcg;
2939         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2940         css_put(&memcg->css);
2941         return ret;
2942 charge_cur_mm:
2943         if (unlikely(!mm))
2944                 mm = &init_mm;
2945         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2946 }
2947
2948 static void
2949 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2950                                         enum charge_type ctype)
2951 {
2952         if (mem_cgroup_disabled())
2953                 return;
2954         if (!ptr)
2955                 return;
2956         cgroup_exclude_rmdir(&ptr->css);
2957
2958         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2959         /*
2960          * Now swap is on-memory. This means this page may be
2961          * counted both as mem and swap....double count.
2962          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2963          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2964          * may call delete_from_swap_cache() before reach here.
2965          */
2966         if (do_swap_account && PageSwapCache(page)) {
2967                 swp_entry_t ent = {.val = page_private(page)};
2968                 unsigned short id;
2969                 struct mem_cgroup *memcg;
2970
2971                 id = swap_cgroup_record(ent, 0);
2972                 rcu_read_lock();
2973                 memcg = mem_cgroup_lookup(id);
2974                 if (memcg) {
2975                         /*
2976                          * This recorded memcg can be obsolete one. So, avoid
2977                          * calling css_tryget
2978                          */
2979                         if (!mem_cgroup_is_root(memcg))
2980                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2981                         mem_cgroup_swap_statistics(memcg, false);
2982                         mem_cgroup_put(memcg);
2983                 }
2984                 rcu_read_unlock();
2985         }
2986         /*
2987          * At swapin, we may charge account against cgroup which has no tasks.
2988          * So, rmdir()->pre_destroy() can be called while we do this charge.
2989          * In that case, we need to call pre_destroy() again. check it here.
2990          */
2991         cgroup_release_and_wakeup_rmdir(&ptr->css);
2992 }
2993
2994 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2995 {
2996         __mem_cgroup_commit_charge_swapin(page, ptr,
2997                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2998 }
2999
3000 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3001 {
3002         if (mem_cgroup_disabled())
3003                 return;
3004         if (!memcg)
3005                 return;
3006         __mem_cgroup_cancel_charge(memcg, 1);
3007 }
3008
3009 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3010                                    unsigned int nr_pages,
3011                                    const enum charge_type ctype)
3012 {
3013         struct memcg_batch_info *batch = NULL;
3014         bool uncharge_memsw = true;
3015
3016         /* If swapout, usage of swap doesn't decrease */
3017         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3018                 uncharge_memsw = false;
3019
3020         batch = &current->memcg_batch;
3021         /*
3022          * In usual, we do css_get() when we remember memcg pointer.
3023          * But in this case, we keep res->usage until end of a series of
3024          * uncharges. Then, it's ok to ignore memcg's refcnt.
3025          */
3026         if (!batch->memcg)
3027                 batch->memcg = memcg;
3028         /*
3029          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3030          * In those cases, all pages freed continuously can be expected to be in
3031          * the same cgroup and we have chance to coalesce uncharges.
3032          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3033          * because we want to do uncharge as soon as possible.
3034          */
3035
3036         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3037                 goto direct_uncharge;
3038
3039         if (nr_pages > 1)
3040                 goto direct_uncharge;
3041
3042         /*
3043          * In typical case, batch->memcg == mem. This means we can
3044          * merge a series of uncharges to an uncharge of res_counter.
3045          * If not, we uncharge res_counter ony by one.
3046          */
3047         if (batch->memcg != memcg)
3048                 goto direct_uncharge;
3049         /* remember freed charge and uncharge it later */
3050         batch->nr_pages++;
3051         if (uncharge_memsw)
3052                 batch->memsw_nr_pages++;
3053         return;
3054 direct_uncharge:
3055         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3056         if (uncharge_memsw)
3057                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3058         if (unlikely(batch->memcg != memcg))
3059                 memcg_oom_recover(memcg);
3060         return;
3061 }
3062
3063 /*
3064  * uncharge if !page_mapped(page)
3065  */
3066 static struct mem_cgroup *
3067 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3068 {
3069         struct mem_cgroup *memcg = NULL;
3070         unsigned int nr_pages = 1;
3071         struct page_cgroup *pc;
3072
3073         if (mem_cgroup_disabled())
3074                 return NULL;
3075
3076         if (PageSwapCache(page))
3077                 return NULL;
3078
3079         if (PageTransHuge(page)) {
3080                 nr_pages <<= compound_order(page);
3081                 VM_BUG_ON(!PageTransHuge(page));
3082         }
3083         /*
3084          * Check if our page_cgroup is valid
3085          */
3086         pc = lookup_page_cgroup(page);
3087         if (unlikely(!pc || !PageCgroupUsed(pc)))
3088                 return NULL;
3089
3090         lock_page_cgroup(pc);
3091
3092         memcg = pc->mem_cgroup;
3093
3094         if (!PageCgroupUsed(pc))
3095                 goto unlock_out;
3096
3097         switch (ctype) {
3098         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3099         case MEM_CGROUP_CHARGE_TYPE_DROP:
3100                 /* See mem_cgroup_prepare_migration() */
3101                 if (page_mapped(page) || PageCgroupMigration(pc))
3102                         goto unlock_out;
3103                 break;
3104         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3105                 if (!PageAnon(page)) {  /* Shared memory */
3106                         if (page->mapping && !page_is_file_cache(page))
3107                                 goto unlock_out;
3108                 } else if (page_mapped(page)) /* Anon */
3109                                 goto unlock_out;
3110                 break;
3111         default:
3112                 break;
3113         }
3114
3115         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3116
3117         ClearPageCgroupUsed(pc);
3118         /*
3119          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3120          * freed from LRU. This is safe because uncharged page is expected not
3121          * to be reused (freed soon). Exception is SwapCache, it's handled by
3122          * special functions.
3123          */
3124
3125         unlock_page_cgroup(pc);
3126         /*
3127          * even after unlock, we have mem->res.usage here and this memcg
3128          * will never be freed.
3129          */
3130         memcg_check_events(memcg, page);
3131         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3132                 mem_cgroup_swap_statistics(memcg, true);
3133                 mem_cgroup_get(memcg);
3134         }
3135         if (!mem_cgroup_is_root(memcg))
3136                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3137
3138         return memcg;
3139
3140 unlock_out:
3141         unlock_page_cgroup(pc);
3142         return NULL;
3143 }
3144
3145 void mem_cgroup_uncharge_page(struct page *page)
3146 {
3147         /* early check. */
3148         if (page_mapped(page))
3149                 return;
3150         if (page->mapping && !PageAnon(page))
3151                 return;
3152         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3153 }
3154
3155 void mem_cgroup_uncharge_cache_page(struct page *page)
3156 {
3157         VM_BUG_ON(page_mapped(page));
3158         VM_BUG_ON(page->mapping);
3159         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3160 }
3161
3162 /*
3163  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3164  * In that cases, pages are freed continuously and we can expect pages
3165  * are in the same memcg. All these calls itself limits the number of
3166  * pages freed at once, then uncharge_start/end() is called properly.
3167  * This may be called prural(2) times in a context,
3168  */
3169
3170 void mem_cgroup_uncharge_start(void)
3171 {
3172         current->memcg_batch.do_batch++;
3173         /* We can do nest. */
3174         if (current->memcg_batch.do_batch == 1) {
3175                 current->memcg_batch.memcg = NULL;
3176                 current->memcg_batch.nr_pages = 0;
3177                 current->memcg_batch.memsw_nr_pages = 0;
3178         }
3179 }
3180
3181 void mem_cgroup_uncharge_end(void)
3182 {
3183         struct memcg_batch_info *batch = &current->memcg_batch;
3184
3185         if (!batch->do_batch)
3186                 return;
3187
3188         batch->do_batch--;
3189         if (batch->do_batch) /* If stacked, do nothing. */
3190                 return;
3191
3192         if (!batch->memcg)
3193                 return;
3194         /*
3195          * This "batch->memcg" is valid without any css_get/put etc...
3196          * bacause we hide charges behind us.
3197          */
3198         if (batch->nr_pages)
3199                 res_counter_uncharge(&batch->memcg->res,
3200                                      batch->nr_pages * PAGE_SIZE);
3201         if (batch->memsw_nr_pages)
3202                 res_counter_uncharge(&batch->memcg->memsw,
3203                                      batch->memsw_nr_pages * PAGE_SIZE);
3204         memcg_oom_recover(batch->memcg);
3205         /* forget this pointer (for sanity check) */
3206         batch->memcg = NULL;
3207 }
3208
3209 #ifdef CONFIG_SWAP
3210 /*
3211  * called after __delete_from_swap_cache() and drop "page" account.
3212  * memcg information is recorded to swap_cgroup of "ent"
3213  */
3214 void
3215 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3216 {
3217         struct mem_cgroup *memcg;
3218         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3219
3220         if (!swapout) /* this was a swap cache but the swap is unused ! */
3221                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3222
3223         memcg = __mem_cgroup_uncharge_common(page, ctype);
3224
3225         /*
3226          * record memcg information,  if swapout && memcg != NULL,
3227          * mem_cgroup_get() was called in uncharge().
3228          */
3229         if (do_swap_account && swapout && memcg)
3230                 swap_cgroup_record(ent, css_id(&memcg->css));
3231 }
3232 #endif
3233
3234 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3235 /*
3236  * called from swap_entry_free(). remove record in swap_cgroup and
3237  * uncharge "memsw" account.
3238  */
3239 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3240 {
3241         struct mem_cgroup *memcg;
3242         unsigned short id;
3243
3244         if (!do_swap_account)
3245                 return;
3246
3247         id = swap_cgroup_record(ent, 0);
3248         rcu_read_lock();
3249         memcg = mem_cgroup_lookup(id);
3250         if (memcg) {
3251                 /*
3252                  * We uncharge this because swap is freed.
3253                  * This memcg can be obsolete one. We avoid calling css_tryget
3254                  */
3255                 if (!mem_cgroup_is_root(memcg))
3256                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3257                 mem_cgroup_swap_statistics(memcg, false);
3258                 mem_cgroup_put(memcg);
3259         }
3260         rcu_read_unlock();
3261 }
3262
3263 /**
3264  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3265  * @entry: swap entry to be moved
3266  * @from:  mem_cgroup which the entry is moved from
3267  * @to:  mem_cgroup which the entry is moved to
3268  * @need_fixup: whether we should fixup res_counters and refcounts.
3269  *
3270  * It succeeds only when the swap_cgroup's record for this entry is the same
3271  * as the mem_cgroup's id of @from.
3272  *
3273  * Returns 0 on success, -EINVAL on failure.
3274  *
3275  * The caller must have charged to @to, IOW, called res_counter_charge() about
3276  * both res and memsw, and called css_get().
3277  */
3278 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3279                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3280 {
3281         unsigned short old_id, new_id;
3282
3283         old_id = css_id(&from->css);
3284         new_id = css_id(&to->css);
3285
3286         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3287                 mem_cgroup_swap_statistics(from, false);
3288                 mem_cgroup_swap_statistics(to, true);
3289                 /*
3290                  * This function is only called from task migration context now.
3291                  * It postpones res_counter and refcount handling till the end
3292                  * of task migration(mem_cgroup_clear_mc()) for performance
3293                  * improvement. But we cannot postpone mem_cgroup_get(to)
3294                  * because if the process that has been moved to @to does
3295                  * swap-in, the refcount of @to might be decreased to 0.
3296                  */
3297                 mem_cgroup_get(to);
3298                 if (need_fixup) {
3299                         if (!mem_cgroup_is_root(from))
3300                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3301                         mem_cgroup_put(from);
3302                         /*
3303                          * we charged both to->res and to->memsw, so we should
3304                          * uncharge to->res.
3305                          */
3306                         if (!mem_cgroup_is_root(to))
3307                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3308                 }
3309                 return 0;
3310         }
3311         return -EINVAL;
3312 }
3313 #else
3314 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3315                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3316 {
3317         return -EINVAL;
3318 }
3319 #endif
3320
3321 /*
3322  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3323  * page belongs to.
3324  */
3325 int mem_cgroup_prepare_migration(struct page *page,
3326         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3327 {
3328         struct mem_cgroup *memcg = NULL;
3329         struct page_cgroup *pc;
3330         enum charge_type ctype;
3331         int ret = 0;
3332
3333         *ptr = NULL;
3334
3335         VM_BUG_ON(PageTransHuge(page));
3336         if (mem_cgroup_disabled())
3337                 return 0;
3338
3339         pc = lookup_page_cgroup(page);
3340         lock_page_cgroup(pc);
3341         if (PageCgroupUsed(pc)) {
3342                 memcg = pc->mem_cgroup;
3343                 css_get(&memcg->css);
3344                 /*
3345                  * At migrating an anonymous page, its mapcount goes down
3346                  * to 0 and uncharge() will be called. But, even if it's fully
3347                  * unmapped, migration may fail and this page has to be
3348                  * charged again. We set MIGRATION flag here and delay uncharge
3349                  * until end_migration() is called
3350                  *
3351                  * Corner Case Thinking
3352                  * A)
3353                  * When the old page was mapped as Anon and it's unmap-and-freed
3354                  * while migration was ongoing.
3355                  * If unmap finds the old page, uncharge() of it will be delayed
3356                  * until end_migration(). If unmap finds a new page, it's
3357                  * uncharged when it make mapcount to be 1->0. If unmap code
3358                  * finds swap_migration_entry, the new page will not be mapped
3359                  * and end_migration() will find it(mapcount==0).
3360                  *
3361                  * B)
3362                  * When the old page was mapped but migraion fails, the kernel
3363                  * remaps it. A charge for it is kept by MIGRATION flag even
3364                  * if mapcount goes down to 0. We can do remap successfully
3365                  * without charging it again.
3366                  *
3367                  * C)
3368                  * The "old" page is under lock_page() until the end of
3369                  * migration, so, the old page itself will not be swapped-out.
3370                  * If the new page is swapped out before end_migraton, our
3371                  * hook to usual swap-out path will catch the event.
3372                  */
3373                 if (PageAnon(page))
3374                         SetPageCgroupMigration(pc);
3375         }
3376         unlock_page_cgroup(pc);
3377         /*
3378          * If the page is not charged at this point,
3379          * we return here.
3380          */
3381         if (!memcg)
3382                 return 0;
3383
3384         *ptr = memcg;
3385         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3386         css_put(&memcg->css);/* drop extra refcnt */
3387         if (ret || *ptr == NULL) {
3388                 if (PageAnon(page)) {
3389                         lock_page_cgroup(pc);
3390                         ClearPageCgroupMigration(pc);
3391                         unlock_page_cgroup(pc);
3392                         /*
3393                          * The old page may be fully unmapped while we kept it.
3394                          */
3395                         mem_cgroup_uncharge_page(page);
3396                 }
3397                 return -ENOMEM;
3398         }
3399         /*
3400          * We charge new page before it's used/mapped. So, even if unlock_page()
3401          * is called before end_migration, we can catch all events on this new
3402          * page. In the case new page is migrated but not remapped, new page's
3403          * mapcount will be finally 0 and we call uncharge in end_migration().
3404          */
3405         pc = lookup_page_cgroup(newpage);
3406         if (PageAnon(page))
3407                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3408         else if (page_is_file_cache(page))
3409                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3410         else
3411                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3412         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3413         return ret;
3414 }
3415
3416 /* remove redundant charge if migration failed*/
3417 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3418         struct page *oldpage, struct page *newpage, bool migration_ok)
3419 {
3420         struct page *used, *unused;
3421         struct page_cgroup *pc;
3422
3423         if (!memcg)
3424                 return;
3425         /* blocks rmdir() */
3426         cgroup_exclude_rmdir(&memcg->css);
3427         if (!migration_ok) {
3428                 used = oldpage;
3429                 unused = newpage;
3430         } else {
3431                 used = newpage;
3432                 unused = oldpage;
3433         }
3434         /*
3435          * We disallowed uncharge of pages under migration because mapcount
3436          * of the page goes down to zero, temporarly.
3437          * Clear the flag and check the page should be charged.
3438          */
3439         pc = lookup_page_cgroup(oldpage);
3440         lock_page_cgroup(pc);
3441         ClearPageCgroupMigration(pc);
3442         unlock_page_cgroup(pc);
3443
3444         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3445
3446         /*
3447          * If a page is a file cache, radix-tree replacement is very atomic
3448          * and we can skip this check. When it was an Anon page, its mapcount
3449          * goes down to 0. But because we added MIGRATION flage, it's not
3450          * uncharged yet. There are several case but page->mapcount check
3451          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3452          * check. (see prepare_charge() also)
3453          */
3454         if (PageAnon(used))
3455                 mem_cgroup_uncharge_page(used);
3456         /*
3457          * At migration, we may charge account against cgroup which has no
3458          * tasks.
3459          * So, rmdir()->pre_destroy() can be called while we do this charge.
3460          * In that case, we need to call pre_destroy() again. check it here.
3461          */
3462         cgroup_release_and_wakeup_rmdir(&memcg->css);
3463 }
3464
3465 #ifdef CONFIG_DEBUG_VM
3466 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3467 {
3468         struct page_cgroup *pc;
3469
3470         pc = lookup_page_cgroup(page);
3471         if (likely(pc) && PageCgroupUsed(pc))
3472                 return pc;
3473         return NULL;
3474 }
3475
3476 bool mem_cgroup_bad_page_check(struct page *page)
3477 {
3478         if (mem_cgroup_disabled())
3479                 return false;
3480
3481         return lookup_page_cgroup_used(page) != NULL;
3482 }
3483
3484 void mem_cgroup_print_bad_page(struct page *page)
3485 {
3486         struct page_cgroup *pc;
3487
3488         pc = lookup_page_cgroup_used(page);
3489         if (pc) {
3490                 int ret = -1;
3491                 char *path;
3492
3493                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3494                        pc, pc->flags, pc->mem_cgroup);
3495
3496                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3497                 if (path) {
3498                         rcu_read_lock();
3499                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3500                                                         path, PATH_MAX);
3501                         rcu_read_unlock();
3502                 }
3503
3504                 printk(KERN_CONT "(%s)\n",
3505                                 (ret < 0) ? "cannot get the path" : path);
3506                 kfree(path);
3507         }
3508 }
3509 #endif
3510
3511 static DEFINE_MUTEX(set_limit_mutex);
3512
3513 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3514                                 unsigned long long val)
3515 {
3516         int retry_count;
3517         u64 memswlimit, memlimit;
3518         int ret = 0;
3519         int children = mem_cgroup_count_children(memcg);
3520         u64 curusage, oldusage;
3521         int enlarge;
3522
3523         /*
3524          * For keeping hierarchical_reclaim simple, how long we should retry
3525          * is depends on callers. We set our retry-count to be function
3526          * of # of children which we should visit in this loop.
3527          */
3528         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3529
3530         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3531
3532         enlarge = 0;
3533         while (retry_count) {
3534                 if (signal_pending(current)) {
3535                         ret = -EINTR;
3536                         break;
3537                 }
3538                 /*
3539                  * Rather than hide all in some function, I do this in
3540                  * open coded manner. You see what this really does.
3541                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3542                  */
3543                 mutex_lock(&set_limit_mutex);
3544                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3545                 if (memswlimit < val) {
3546                         ret = -EINVAL;
3547                         mutex_unlock(&set_limit_mutex);
3548                         break;
3549                 }
3550
3551                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3552                 if (memlimit < val)
3553                         enlarge = 1;
3554
3555                 ret = res_counter_set_limit(&memcg->res, val);
3556                 if (!ret) {
3557                         if (memswlimit == val)
3558                                 memcg->memsw_is_minimum = true;
3559                         else
3560                                 memcg->memsw_is_minimum = false;
3561                 }
3562                 mutex_unlock(&set_limit_mutex);
3563
3564                 if (!ret)
3565                         break;
3566
3567                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3568                                                 MEM_CGROUP_RECLAIM_SHRINK,
3569                                                 NULL);
3570                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3571                 /* Usage is reduced ? */
3572                 if (curusage >= oldusage)
3573                         retry_count--;
3574                 else
3575                         oldusage = curusage;
3576         }
3577         if (!ret && enlarge)
3578                 memcg_oom_recover(memcg);
3579
3580         return ret;
3581 }
3582
3583 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3584                                         unsigned long long val)
3585 {
3586         int retry_count;
3587         u64 memlimit, memswlimit, oldusage, curusage;
3588         int children = mem_cgroup_count_children(memcg);
3589         int ret = -EBUSY;
3590         int enlarge = 0;
3591
3592         /* see mem_cgroup_resize_res_limit */
3593         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3594         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3595         while (retry_count) {
3596                 if (signal_pending(current)) {
3597                         ret = -EINTR;
3598                         break;
3599                 }
3600                 /*
3601                  * Rather than hide all in some function, I do this in
3602                  * open coded manner. You see what this really does.
3603                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3604                  */
3605                 mutex_lock(&set_limit_mutex);
3606                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3607                 if (memlimit > val) {
3608                         ret = -EINVAL;
3609                         mutex_unlock(&set_limit_mutex);
3610                         break;
3611                 }
3612                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3613                 if (memswlimit < val)
3614                         enlarge = 1;
3615                 ret = res_counter_set_limit(&memcg->memsw, val);
3616                 if (!ret) {
3617                         if (memlimit == val)
3618                                 memcg->memsw_is_minimum = true;
3619                         else
3620                                 memcg->memsw_is_minimum = false;
3621                 }
3622                 mutex_unlock(&set_limit_mutex);
3623
3624                 if (!ret)
3625                         break;
3626
3627                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3628                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3629                                                 MEM_CGROUP_RECLAIM_SHRINK,
3630                                                 NULL);
3631                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3632                 /* Usage is reduced ? */
3633                 if (curusage >= oldusage)
3634                         retry_count--;
3635                 else
3636                         oldusage = curusage;
3637         }
3638         if (!ret && enlarge)
3639                 memcg_oom_recover(memcg);
3640         return ret;
3641 }
3642
3643 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3644                                             gfp_t gfp_mask,
3645                                             unsigned long *total_scanned)
3646 {
3647         unsigned long nr_reclaimed = 0;
3648         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3649         unsigned long reclaimed;
3650         int loop = 0;
3651         struct mem_cgroup_tree_per_zone *mctz;
3652         unsigned long long excess;
3653         unsigned long nr_scanned;
3654
3655         if (order > 0)
3656                 return 0;
3657
3658         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3659         /*
3660          * This loop can run a while, specially if mem_cgroup's continuously
3661          * keep exceeding their soft limit and putting the system under
3662          * pressure
3663          */
3664         do {
3665                 if (next_mz)
3666                         mz = next_mz;
3667                 else
3668                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3669                 if (!mz)
3670                         break;
3671
3672                 nr_scanned = 0;
3673                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3674                                                 gfp_mask,
3675                                                 MEM_CGROUP_RECLAIM_SOFT,
3676                                                 &nr_scanned);
3677                 nr_reclaimed += reclaimed;
3678                 *total_scanned += nr_scanned;
3679                 spin_lock(&mctz->lock);
3680
3681                 /*
3682                  * If we failed to reclaim anything from this memory cgroup
3683                  * it is time to move on to the next cgroup
3684                  */
3685                 next_mz = NULL;
3686                 if (!reclaimed) {
3687                         do {
3688                                 /*
3689                                  * Loop until we find yet another one.
3690                                  *
3691                                  * By the time we get the soft_limit lock
3692                                  * again, someone might have aded the
3693                                  * group back on the RB tree. Iterate to
3694                                  * make sure we get a different mem.
3695                                  * mem_cgroup_largest_soft_limit_node returns
3696                                  * NULL if no other cgroup is present on
3697                                  * the tree
3698                                  */
3699                                 next_mz =
3700                                 __mem_cgroup_largest_soft_limit_node(mctz);
3701                                 if (next_mz == mz)
3702                                         css_put(&next_mz->mem->css);
3703                                 else /* next_mz == NULL or other memcg */
3704                                         break;
3705                         } while (1);
3706                 }
3707                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3708                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3709                 /*
3710                  * One school of thought says that we should not add
3711                  * back the node to the tree if reclaim returns 0.
3712                  * But our reclaim could return 0, simply because due
3713                  * to priority we are exposing a smaller subset of
3714                  * memory to reclaim from. Consider this as a longer
3715                  * term TODO.
3716                  */
3717                 /* If excess == 0, no tree ops */
3718                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3719                 spin_unlock(&mctz->lock);
3720                 css_put(&mz->mem->css);
3721                 loop++;
3722                 /*
3723                  * Could not reclaim anything and there are no more
3724                  * mem cgroups to try or we seem to be looping without
3725                  * reclaiming anything.
3726                  */
3727                 if (!nr_reclaimed &&
3728                         (next_mz == NULL ||
3729                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3730                         break;
3731         } while (!nr_reclaimed);
3732         if (next_mz)
3733                 css_put(&next_mz->mem->css);
3734         return nr_reclaimed;
3735 }
3736
3737 /*
3738  * This routine traverse page_cgroup in given list and drop them all.
3739  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3740  */
3741 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3742                                 int node, int zid, enum lru_list lru)
3743 {
3744         struct zone *zone;
3745         struct mem_cgroup_per_zone *mz;
3746         struct page_cgroup *pc, *busy;
3747         unsigned long flags, loop;
3748         struct list_head *list;
3749         int ret = 0;
3750
3751         zone = &NODE_DATA(node)->node_zones[zid];
3752         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3753         list = &mz->lists[lru];
3754
3755         loop = MEM_CGROUP_ZSTAT(mz, lru);
3756         /* give some margin against EBUSY etc...*/
3757         loop += 256;
3758         busy = NULL;
3759         while (loop--) {
3760                 struct page *page;
3761
3762                 ret = 0;
3763                 spin_lock_irqsave(&zone->lru_lock, flags);
3764                 if (list_empty(list)) {
3765                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3766                         break;
3767                 }
3768                 pc = list_entry(list->prev, struct page_cgroup, lru);
3769                 if (busy == pc) {
3770                         list_move(&pc->lru, list);
3771                         busy = NULL;
3772                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3773                         continue;
3774                 }
3775                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3776
3777                 page = lookup_cgroup_page(pc);
3778
3779                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3780                 if (ret == -ENOMEM)
3781                         break;
3782
3783                 if (ret == -EBUSY || ret == -EINVAL) {
3784                         /* found lock contention or "pc" is obsolete. */
3785                         busy = pc;
3786                         cond_resched();
3787                 } else
3788                         busy = NULL;
3789         }
3790
3791         if (!ret && !list_empty(list))
3792                 return -EBUSY;
3793         return ret;
3794 }
3795
3796 /*
3797  * make mem_cgroup's charge to be 0 if there is no task.
3798  * This enables deleting this mem_cgroup.
3799  */
3800 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3801 {
3802         int ret;
3803         int node, zid, shrink;
3804         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3805         struct cgroup *cgrp = memcg->css.cgroup;
3806
3807         css_get(&memcg->css);
3808
3809         shrink = 0;
3810         /* should free all ? */
3811         if (free_all)
3812                 goto try_to_free;
3813 move_account:
3814         do {
3815                 ret = -EBUSY;
3816                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3817                         goto out;
3818                 ret = -EINTR;
3819                 if (signal_pending(current))
3820                         goto out;
3821                 /* This is for making all *used* pages to be on LRU. */
3822                 lru_add_drain_all();
3823                 drain_all_stock_sync(memcg);
3824                 ret = 0;
3825                 mem_cgroup_start_move(memcg);
3826                 for_each_node_state(node, N_HIGH_MEMORY) {
3827                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3828                                 enum lru_list l;
3829                                 for_each_lru(l) {
3830                                         ret = mem_cgroup_force_empty_list(memcg,
3831                                                         node, zid, l);
3832                                         if (ret)
3833                                                 break;
3834                                 }
3835                         }
3836                         if (ret)
3837                                 break;
3838                 }
3839                 mem_cgroup_end_move(memcg);
3840                 memcg_oom_recover(memcg);
3841                 /* it seems parent cgroup doesn't have enough mem */
3842                 if (ret == -ENOMEM)
3843                         goto try_to_free;
3844                 cond_resched();
3845         /* "ret" should also be checked to ensure all lists are empty. */
3846         } while (memcg->res.usage > 0 || ret);
3847 out:
3848         css_put(&memcg->css);
3849         return ret;
3850
3851 try_to_free:
3852         /* returns EBUSY if there is a task or if we come here twice. */
3853         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3854                 ret = -EBUSY;
3855                 goto out;
3856         }
3857         /* we call try-to-free pages for make this cgroup empty */
3858         lru_add_drain_all();
3859         /* try to free all pages in this cgroup */
3860         shrink = 1;
3861         while (nr_retries && memcg->res.usage > 0) {
3862                 struct memcg_scanrecord rec;
3863                 int progress;
3864
3865                 if (signal_pending(current)) {
3866                         ret = -EINTR;
3867                         goto out;
3868                 }
3869                 rec.context = SCAN_BY_SHRINK;
3870                 rec.mem = memcg;
3871                 rec.root = memcg;
3872                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3873                                                 false, &rec);
3874                 if (!progress) {
3875                         nr_retries--;
3876                         /* maybe some writeback is necessary */
3877                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3878                 }
3879
3880         }
3881         lru_add_drain();
3882         /* try move_account...there may be some *locked* pages. */
3883         goto move_account;
3884 }
3885
3886 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3887 {
3888         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3889 }
3890
3891
3892 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3893 {
3894         return mem_cgroup_from_cont(cont)->use_hierarchy;
3895 }
3896
3897 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3898                                         u64 val)
3899 {
3900         int retval = 0;
3901         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3902         struct cgroup *parent = cont->parent;
3903         struct mem_cgroup *parent_memcg = NULL;
3904
3905         if (parent)
3906                 parent_memcg = mem_cgroup_from_cont(parent);
3907
3908         cgroup_lock();
3909         /*
3910          * If parent's use_hierarchy is set, we can't make any modifications
3911          * in the child subtrees. If it is unset, then the change can
3912          * occur, provided the current cgroup has no children.
3913          *
3914          * For the root cgroup, parent_mem is NULL, we allow value to be
3915          * set if there are no children.
3916          */
3917         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3918                                 (val == 1 || val == 0)) {
3919                 if (list_empty(&cont->children))
3920                         memcg->use_hierarchy = val;
3921                 else
3922                         retval = -EBUSY;
3923         } else
3924                 retval = -EINVAL;
3925         cgroup_unlock();
3926
3927         return retval;
3928 }
3929
3930
3931 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3932                                                enum mem_cgroup_stat_index idx)
3933 {
3934         struct mem_cgroup *iter;
3935         long val = 0;
3936
3937         /* Per-cpu values can be negative, use a signed accumulator */
3938         for_each_mem_cgroup_tree(iter, memcg)
3939                 val += mem_cgroup_read_stat(iter, idx);
3940
3941         if (val < 0) /* race ? */
3942                 val = 0;
3943         return val;
3944 }
3945
3946 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3947 {
3948         u64 val;
3949
3950         if (!mem_cgroup_is_root(memcg)) {
3951                 if (!swap)
3952                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3953                 else
3954                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3955         }
3956
3957         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3958         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3959
3960         if (swap)
3961                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3962
3963         return val << PAGE_SHIFT;
3964 }
3965
3966 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3967 {
3968         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3969         u64 val;
3970         int type, name;
3971
3972         type = MEMFILE_TYPE(cft->private);
3973         name = MEMFILE_ATTR(cft->private);
3974         switch (type) {
3975         case _MEM:
3976                 if (name == RES_USAGE)
3977                         val = mem_cgroup_usage(memcg, false);
3978                 else
3979                         val = res_counter_read_u64(&memcg->res, name);
3980                 break;
3981         case _MEMSWAP:
3982                 if (name == RES_USAGE)
3983                         val = mem_cgroup_usage(memcg, true);
3984                 else
3985                         val = res_counter_read_u64(&memcg->memsw, name);
3986                 break;
3987         default:
3988                 BUG();
3989                 break;
3990         }
3991         return val;
3992 }
3993 /*
3994  * The user of this function is...
3995  * RES_LIMIT.
3996  */
3997 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3998                             const char *buffer)
3999 {
4000         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4001         int type, name;
4002         unsigned long long val;
4003         int ret;
4004
4005         type = MEMFILE_TYPE(cft->private);
4006         name = MEMFILE_ATTR(cft->private);
4007         switch (name) {
4008         case RES_LIMIT:
4009                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4010                         ret = -EINVAL;
4011                         break;
4012                 }
4013                 /* This function does all necessary parse...reuse it */
4014                 ret = res_counter_memparse_write_strategy(buffer, &val);
4015                 if (ret)
4016                         break;
4017                 if (type == _MEM)
4018                         ret = mem_cgroup_resize_limit(memcg, val);
4019                 else
4020                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
4021                 break;
4022         case RES_SOFT_LIMIT:
4023                 ret = res_counter_memparse_write_strategy(buffer, &val);
4024                 if (ret)
4025                         break;
4026                 /*
4027                  * For memsw, soft limits are hard to implement in terms
4028                  * of semantics, for now, we support soft limits for
4029                  * control without swap
4030                  */
4031                 if (type == _MEM)
4032                         ret = res_counter_set_soft_limit(&memcg->res, val);
4033                 else
4034                         ret = -EINVAL;
4035                 break;
4036         default:
4037                 ret = -EINVAL; /* should be BUG() ? */
4038                 break;
4039         }
4040         return ret;
4041 }
4042
4043 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4044                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4045 {
4046         struct cgroup *cgroup;
4047         unsigned long long min_limit, min_memsw_limit, tmp;
4048
4049         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4050         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4051         cgroup = memcg->css.cgroup;
4052         if (!memcg->use_hierarchy)
4053                 goto out;
4054
4055         while (cgroup->parent) {
4056                 cgroup = cgroup->parent;
4057                 memcg = mem_cgroup_from_cont(cgroup);
4058                 if (!memcg->use_hierarchy)
4059                         break;
4060                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4061                 min_limit = min(min_limit, tmp);
4062                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4063                 min_memsw_limit = min(min_memsw_limit, tmp);
4064         }
4065 out:
4066         *mem_limit = min_limit;
4067         *memsw_limit = min_memsw_limit;
4068         return;
4069 }
4070
4071 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4072 {
4073         struct mem_cgroup *memcg;
4074         int type, name;
4075
4076         memcg = mem_cgroup_from_cont(cont);
4077         type = MEMFILE_TYPE(event);
4078         name = MEMFILE_ATTR(event);
4079         switch (name) {
4080         case RES_MAX_USAGE:
4081                 if (type == _MEM)
4082                         res_counter_reset_max(&memcg->res);
4083                 else
4084                         res_counter_reset_max(&memcg->memsw);
4085                 break;
4086         case RES_FAILCNT:
4087                 if (type == _MEM)
4088                         res_counter_reset_failcnt(&memcg->res);
4089                 else
4090                         res_counter_reset_failcnt(&memcg->memsw);
4091                 break;
4092         }
4093
4094         return 0;
4095 }
4096
4097 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4098                                         struct cftype *cft)
4099 {
4100         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4101 }
4102
4103 #ifdef CONFIG_MMU
4104 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4105                                         struct cftype *cft, u64 val)
4106 {
4107         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4108
4109         if (val >= (1 << NR_MOVE_TYPE))
4110                 return -EINVAL;
4111         /*
4112          * We check this value several times in both in can_attach() and
4113          * attach(), so we need cgroup lock to prevent this value from being
4114          * inconsistent.
4115          */
4116         cgroup_lock();
4117         memcg->move_charge_at_immigrate = val;
4118         cgroup_unlock();
4119
4120         return 0;
4121 }
4122 #else
4123 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4124                                         struct cftype *cft, u64 val)
4125 {
4126         return -ENOSYS;
4127 }
4128 #endif
4129
4130
4131 /* For read statistics */
4132 enum {
4133         MCS_CACHE,
4134         MCS_RSS,
4135         MCS_FILE_MAPPED,
4136         MCS_PGPGIN,
4137         MCS_PGPGOUT,
4138         MCS_SWAP,
4139         MCS_PGFAULT,
4140         MCS_PGMAJFAULT,
4141         MCS_INACTIVE_ANON,
4142         MCS_ACTIVE_ANON,
4143         MCS_INACTIVE_FILE,
4144         MCS_ACTIVE_FILE,
4145         MCS_UNEVICTABLE,
4146         NR_MCS_STAT,
4147 };
4148
4149 struct mcs_total_stat {
4150         s64 stat[NR_MCS_STAT];
4151 };
4152
4153 struct {
4154         char *local_name;
4155         char *total_name;
4156 } memcg_stat_strings[NR_MCS_STAT] = {
4157         {"cache", "total_cache"},
4158         {"rss", "total_rss"},
4159         {"mapped_file", "total_mapped_file"},
4160         {"pgpgin", "total_pgpgin"},
4161         {"pgpgout", "total_pgpgout"},
4162         {"swap", "total_swap"},
4163         {"pgfault", "total_pgfault"},
4164         {"pgmajfault", "total_pgmajfault"},
4165         {"inactive_anon", "total_inactive_anon"},
4166         {"active_anon", "total_active_anon"},
4167         {"inactive_file", "total_inactive_file"},
4168         {"active_file", "total_active_file"},
4169         {"unevictable", "total_unevictable"}
4170 };
4171
4172
4173 static void
4174 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4175 {
4176         s64 val;
4177
4178         /* per cpu stat */
4179         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4180         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4181         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4182         s->stat[MCS_RSS] += val * PAGE_SIZE;
4183         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4184         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4185         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4186         s->stat[MCS_PGPGIN] += val;
4187         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4188         s->stat[MCS_PGPGOUT] += val;
4189         if (do_swap_account) {
4190                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4191                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4192         }
4193         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4194         s->stat[MCS_PGFAULT] += val;
4195         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4196         s->stat[MCS_PGMAJFAULT] += val;
4197
4198         /* per zone stat */
4199         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4200         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4201         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4202         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4203         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4204         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4205         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4206         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4207         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4208         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4209 }
4210
4211 static void
4212 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4213 {
4214         struct mem_cgroup *iter;
4215
4216         for_each_mem_cgroup_tree(iter, memcg)
4217                 mem_cgroup_get_local_stat(iter, s);
4218 }
4219
4220 #ifdef CONFIG_NUMA
4221 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4222 {
4223         int nid;
4224         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4225         unsigned long node_nr;
4226         struct cgroup *cont = m->private;
4227         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4228
4229         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4230         seq_printf(m, "total=%lu", total_nr);
4231         for_each_node_state(nid, N_HIGH_MEMORY) {
4232                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4233                 seq_printf(m, " N%d=%lu", nid, node_nr);
4234         }
4235         seq_putc(m, '\n');
4236
4237         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4238         seq_printf(m, "file=%lu", file_nr);
4239         for_each_node_state(nid, N_HIGH_MEMORY) {
4240                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4241                                 LRU_ALL_FILE);
4242                 seq_printf(m, " N%d=%lu", nid, node_nr);
4243         }
4244         seq_putc(m, '\n');
4245
4246         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4247         seq_printf(m, "anon=%lu", anon_nr);
4248         for_each_node_state(nid, N_HIGH_MEMORY) {
4249                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4250                                 LRU_ALL_ANON);
4251                 seq_printf(m, " N%d=%lu", nid, node_nr);
4252         }
4253         seq_putc(m, '\n');
4254
4255         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4256         seq_printf(m, "unevictable=%lu", unevictable_nr);
4257         for_each_node_state(nid, N_HIGH_MEMORY) {
4258                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4259                                 BIT(LRU_UNEVICTABLE));
4260                 seq_printf(m, " N%d=%lu", nid, node_nr);
4261         }
4262         seq_putc(m, '\n');
4263         return 0;
4264 }
4265 #endif /* CONFIG_NUMA */
4266
4267 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4268                                  struct cgroup_map_cb *cb)
4269 {
4270         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4271         struct mcs_total_stat mystat;
4272         int i;
4273
4274         memset(&mystat, 0, sizeof(mystat));
4275         mem_cgroup_get_local_stat(mem_cont, &mystat);
4276
4277
4278         for (i = 0; i < NR_MCS_STAT; i++) {
4279                 if (i == MCS_SWAP && !do_swap_account)
4280                         continue;
4281                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4282         }
4283
4284         /* Hierarchical information */
4285         {
4286                 unsigned long long limit, memsw_limit;
4287                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4288                 cb->fill(cb, "hierarchical_memory_limit", limit);
4289                 if (do_swap_account)
4290                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4291         }
4292
4293         memset(&mystat, 0, sizeof(mystat));
4294         mem_cgroup_get_total_stat(mem_cont, &mystat);
4295         for (i = 0; i < NR_MCS_STAT; i++) {
4296                 if (i == MCS_SWAP && !do_swap_account)
4297                         continue;
4298                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4299         }
4300
4301 #ifdef CONFIG_DEBUG_VM
4302         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4303
4304         {
4305                 int nid, zid;
4306                 struct mem_cgroup_per_zone *mz;
4307                 unsigned long recent_rotated[2] = {0, 0};
4308                 unsigned long recent_scanned[2] = {0, 0};
4309
4310                 for_each_online_node(nid)
4311                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4312                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4313
4314                                 recent_rotated[0] +=
4315                                         mz->reclaim_stat.recent_rotated[0];
4316                                 recent_rotated[1] +=
4317                                         mz->reclaim_stat.recent_rotated[1];
4318                                 recent_scanned[0] +=
4319                                         mz->reclaim_stat.recent_scanned[0];
4320                                 recent_scanned[1] +=
4321                                         mz->reclaim_stat.recent_scanned[1];
4322                         }
4323                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4324                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4325                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4326                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4327         }
4328 #endif
4329
4330         return 0;
4331 }
4332
4333 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4334 {
4335         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4336
4337         return mem_cgroup_swappiness(memcg);
4338 }
4339
4340 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4341                                        u64 val)
4342 {
4343         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4344         struct mem_cgroup *parent;
4345
4346         if (val > 100)
4347                 return -EINVAL;
4348
4349         if (cgrp->parent == NULL)
4350                 return -EINVAL;
4351
4352         parent = mem_cgroup_from_cont(cgrp->parent);
4353
4354         cgroup_lock();
4355
4356         /* If under hierarchy, only empty-root can set this value */
4357         if ((parent->use_hierarchy) ||
4358             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4359                 cgroup_unlock();
4360                 return -EINVAL;
4361         }
4362
4363         memcg->swappiness = val;
4364
4365         cgroup_unlock();
4366
4367         return 0;
4368 }
4369
4370 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4371 {
4372         struct mem_cgroup_threshold_ary *t;
4373         u64 usage;
4374         int i;
4375
4376         rcu_read_lock();
4377         if (!swap)
4378                 t = rcu_dereference(memcg->thresholds.primary);
4379         else
4380                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4381
4382         if (!t)
4383                 goto unlock;
4384
4385         usage = mem_cgroup_usage(memcg, swap);
4386
4387         /*
4388          * current_threshold points to threshold just below usage.
4389          * If it's not true, a threshold was crossed after last
4390          * call of __mem_cgroup_threshold().
4391          */
4392         i = t->current_threshold;
4393
4394         /*
4395          * Iterate backward over array of thresholds starting from
4396          * current_threshold and check if a threshold is crossed.
4397          * If none of thresholds below usage is crossed, we read
4398          * only one element of the array here.
4399          */
4400         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4401                 eventfd_signal(t->entries[i].eventfd, 1);
4402
4403         /* i = current_threshold + 1 */
4404         i++;
4405
4406         /*
4407          * Iterate forward over array of thresholds starting from
4408          * current_threshold+1 and check if a threshold is crossed.
4409          * If none of thresholds above usage is crossed, we read
4410          * only one element of the array here.
4411          */
4412         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4413                 eventfd_signal(t->entries[i].eventfd, 1);
4414
4415         /* Update current_threshold */
4416         t->current_threshold = i - 1;
4417 unlock:
4418         rcu_read_unlock();
4419 }
4420
4421 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4422 {
4423         while (memcg) {
4424                 __mem_cgroup_threshold(memcg, false);
4425                 if (do_swap_account)
4426                         __mem_cgroup_threshold(memcg, true);
4427
4428                 memcg = parent_mem_cgroup(memcg);
4429         }
4430 }
4431
4432 static int compare_thresholds(const void *a, const void *b)
4433 {
4434         const struct mem_cgroup_threshold *_a = a;
4435         const struct mem_cgroup_threshold *_b = b;
4436
4437         return _a->threshold - _b->threshold;
4438 }
4439
4440 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4441 {
4442         struct mem_cgroup_eventfd_list *ev;
4443
4444         list_for_each_entry(ev, &memcg->oom_notify, list)
4445                 eventfd_signal(ev->eventfd, 1);
4446         return 0;
4447 }
4448
4449 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4450 {
4451         struct mem_cgroup *iter;
4452
4453         for_each_mem_cgroup_tree(iter, memcg)
4454                 mem_cgroup_oom_notify_cb(iter);
4455 }
4456
4457 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4458         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4459 {
4460         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4461         struct mem_cgroup_thresholds *thresholds;
4462         struct mem_cgroup_threshold_ary *new;
4463         int type = MEMFILE_TYPE(cft->private);
4464         u64 threshold, usage;
4465         int i, size, ret;
4466
4467         ret = res_counter_memparse_write_strategy(args, &threshold);
4468         if (ret)
4469                 return ret;
4470
4471         mutex_lock(&memcg->thresholds_lock);
4472
4473         if (type == _MEM)
4474                 thresholds = &memcg->thresholds;
4475         else if (type == _MEMSWAP)
4476                 thresholds = &memcg->memsw_thresholds;
4477         else
4478                 BUG();
4479
4480         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4481
4482         /* Check if a threshold crossed before adding a new one */
4483         if (thresholds->primary)
4484                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4485
4486         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4487
4488         /* Allocate memory for new array of thresholds */
4489         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4490                         GFP_KERNEL);
4491         if (!new) {
4492                 ret = -ENOMEM;
4493                 goto unlock;
4494         }
4495         new->size = size;
4496
4497         /* Copy thresholds (if any) to new array */
4498         if (thresholds->primary) {
4499                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4500                                 sizeof(struct mem_cgroup_threshold));
4501         }
4502
4503         /* Add new threshold */
4504         new->entries[size - 1].eventfd = eventfd;
4505         new->entries[size - 1].threshold = threshold;
4506
4507         /* Sort thresholds. Registering of new threshold isn't time-critical */
4508         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4509                         compare_thresholds, NULL);
4510
4511         /* Find current threshold */
4512         new->current_threshold = -1;
4513         for (i = 0; i < size; i++) {
4514                 if (new->entries[i].threshold < usage) {
4515                         /*
4516                          * new->current_threshold will not be used until
4517                          * rcu_assign_pointer(), so it's safe to increment
4518                          * it here.
4519                          */
4520                         ++new->current_threshold;
4521                 }
4522         }
4523
4524         /* Free old spare buffer and save old primary buffer as spare */
4525         kfree(thresholds->spare);
4526         thresholds->spare = thresholds->primary;
4527
4528         rcu_assign_pointer(thresholds->primary, new);
4529
4530         /* To be sure that nobody uses thresholds */
4531         synchronize_rcu();
4532
4533 unlock:
4534         mutex_unlock(&memcg->thresholds_lock);
4535
4536         return ret;
4537 }
4538
4539 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4540         struct cftype *cft, struct eventfd_ctx *eventfd)
4541 {
4542         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4543         struct mem_cgroup_thresholds *thresholds;
4544         struct mem_cgroup_threshold_ary *new;
4545         int type = MEMFILE_TYPE(cft->private);
4546         u64 usage;
4547         int i, j, size;
4548
4549         mutex_lock(&memcg->thresholds_lock);
4550         if (type == _MEM)
4551                 thresholds = &memcg->thresholds;
4552         else if (type == _MEMSWAP)
4553                 thresholds = &memcg->memsw_thresholds;
4554         else
4555                 BUG();
4556
4557         /*
4558          * Something went wrong if we trying to unregister a threshold
4559          * if we don't have thresholds
4560          */
4561         BUG_ON(!thresholds);
4562
4563         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4564
4565         /* Check if a threshold crossed before removing */
4566         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4567
4568         /* Calculate new number of threshold */
4569         size = 0;
4570         for (i = 0; i < thresholds->primary->size; i++) {
4571                 if (thresholds->primary->entries[i].eventfd != eventfd)
4572                         size++;
4573         }
4574
4575         new = thresholds->spare;
4576
4577         /* Set thresholds array to NULL if we don't have thresholds */
4578         if (!size) {
4579                 kfree(new);
4580                 new = NULL;
4581                 goto swap_buffers;
4582         }
4583
4584         new->size = size;
4585
4586         /* Copy thresholds and find current threshold */
4587         new->current_threshold = -1;
4588         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4589                 if (thresholds->primary->entries[i].eventfd == eventfd)
4590                         continue;
4591
4592                 new->entries[j] = thresholds->primary->entries[i];
4593                 if (new->entries[j].threshold < usage) {
4594                         /*
4595                          * new->current_threshold will not be used
4596                          * until rcu_assign_pointer(), so it's safe to increment
4597                          * it here.
4598                          */
4599                         ++new->current_threshold;
4600                 }
4601                 j++;
4602         }
4603
4604 swap_buffers:
4605         /* Swap primary and spare array */
4606         thresholds->spare = thresholds->primary;
4607         rcu_assign_pointer(thresholds->primary, new);
4608
4609         /* To be sure that nobody uses thresholds */
4610         synchronize_rcu();
4611
4612         mutex_unlock(&memcg->thresholds_lock);
4613 }
4614
4615 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4616         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4617 {
4618         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4619         struct mem_cgroup_eventfd_list *event;
4620         int type = MEMFILE_TYPE(cft->private);
4621
4622         BUG_ON(type != _OOM_TYPE);
4623         event = kmalloc(sizeof(*event), GFP_KERNEL);
4624         if (!event)
4625                 return -ENOMEM;
4626
4627         spin_lock(&memcg_oom_lock);
4628
4629         event->eventfd = eventfd;
4630         list_add(&event->list, &memcg->oom_notify);
4631
4632         /* already in OOM ? */
4633         if (atomic_read(&memcg->under_oom))
4634                 eventfd_signal(eventfd, 1);
4635         spin_unlock(&memcg_oom_lock);
4636
4637         return 0;
4638 }
4639
4640 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4641         struct cftype *cft, struct eventfd_ctx *eventfd)
4642 {
4643         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4644         struct mem_cgroup_eventfd_list *ev, *tmp;
4645         int type = MEMFILE_TYPE(cft->private);
4646
4647         BUG_ON(type != _OOM_TYPE);
4648
4649         spin_lock(&memcg_oom_lock);
4650
4651         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4652                 if (ev->eventfd == eventfd) {
4653                         list_del(&ev->list);
4654                         kfree(ev);
4655                 }
4656         }
4657
4658         spin_unlock(&memcg_oom_lock);
4659 }
4660
4661 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4662         struct cftype *cft,  struct cgroup_map_cb *cb)
4663 {
4664         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4665
4666         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4667
4668         if (atomic_read(&memcg->under_oom))
4669                 cb->fill(cb, "under_oom", 1);
4670         else
4671                 cb->fill(cb, "under_oom", 0);
4672         return 0;
4673 }
4674
4675 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4676         struct cftype *cft, u64 val)
4677 {
4678         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4679         struct mem_cgroup *parent;
4680
4681         /* cannot set to root cgroup and only 0 and 1 are allowed */
4682         if (!cgrp->parent || !((val == 0) || (val == 1)))
4683                 return -EINVAL;
4684
4685         parent = mem_cgroup_from_cont(cgrp->parent);
4686
4687         cgroup_lock();
4688         /* oom-kill-disable is a flag for subhierarchy. */
4689         if ((parent->use_hierarchy) ||
4690             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4691                 cgroup_unlock();
4692                 return -EINVAL;
4693         }
4694         memcg->oom_kill_disable = val;
4695         if (!val)
4696                 memcg_oom_recover(memcg);
4697         cgroup_unlock();
4698         return 0;
4699 }
4700
4701 #ifdef CONFIG_NUMA
4702 static const struct file_operations mem_control_numa_stat_file_operations = {
4703         .read = seq_read,
4704         .llseek = seq_lseek,
4705         .release = single_release,
4706 };
4707
4708 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4709 {
4710         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4711
4712         file->f_op = &mem_control_numa_stat_file_operations;
4713         return single_open(file, mem_control_numa_stat_show, cont);
4714 }
4715 #endif /* CONFIG_NUMA */
4716
4717 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4718                                 struct cftype *cft,
4719                                 struct cgroup_map_cb *cb)
4720 {
4721         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4722         char string[64];
4723         int i;
4724
4725         for (i = 0; i < NR_SCANSTATS; i++) {
4726                 strcpy(string, scanstat_string[i]);
4727                 strcat(string, SCANSTAT_WORD_LIMIT);
4728                 cb->fill(cb, string, memcg->scanstat.stats[SCAN_BY_LIMIT][i]);
4729         }
4730
4731         for (i = 0; i < NR_SCANSTATS; i++) {
4732                 strcpy(string, scanstat_string[i]);
4733                 strcat(string, SCANSTAT_WORD_SYSTEM);
4734                 cb->fill(cb, string, memcg->scanstat.stats[SCAN_BY_SYSTEM][i]);
4735         }
4736
4737         for (i = 0; i < NR_SCANSTATS; i++) {
4738                 strcpy(string, scanstat_string[i]);
4739                 strcat(string, SCANSTAT_WORD_LIMIT);
4740                 strcat(string, SCANSTAT_WORD_HIERARCHY);
4741                 cb->fill(cb,
4742                         string, memcg->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4743         }
4744         for (i = 0; i < NR_SCANSTATS; i++) {
4745                 strcpy(string, scanstat_string[i]);
4746                 strcat(string, SCANSTAT_WORD_SYSTEM);
4747                 strcat(string, SCANSTAT_WORD_HIERARCHY);
4748                 cb->fill(cb,
4749                         string, memcg->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4750         }
4751         return 0;
4752 }
4753
4754 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4755                                 unsigned int event)
4756 {
4757         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4758
4759         spin_lock(&memcg->scanstat.lock);
4760         memset(&memcg->scanstat.stats, 0, sizeof(memcg->scanstat.stats));
4761         memset(&memcg->scanstat.rootstats,
4762                 0, sizeof(memcg->scanstat.rootstats));
4763         spin_unlock(&memcg->scanstat.lock);
4764         return 0;
4765 }
4766
4767
4768 static struct cftype mem_cgroup_files[] = {
4769         {
4770                 .name = "usage_in_bytes",
4771                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4772                 .read_u64 = mem_cgroup_read,
4773                 .register_event = mem_cgroup_usage_register_event,
4774                 .unregister_event = mem_cgroup_usage_unregister_event,
4775         },
4776         {
4777                 .name = "max_usage_in_bytes",
4778                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4779                 .trigger = mem_cgroup_reset,
4780                 .read_u64 = mem_cgroup_read,
4781         },
4782         {
4783                 .name = "limit_in_bytes",
4784                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4785                 .write_string = mem_cgroup_write,
4786                 .read_u64 = mem_cgroup_read,
4787         },
4788         {
4789                 .name = "soft_limit_in_bytes",
4790                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4791                 .write_string = mem_cgroup_write,
4792                 .read_u64 = mem_cgroup_read,
4793         },
4794         {
4795                 .name = "failcnt",
4796                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4797                 .trigger = mem_cgroup_reset,
4798                 .read_u64 = mem_cgroup_read,
4799         },
4800         {
4801                 .name = "stat",
4802                 .read_map = mem_control_stat_show,
4803         },
4804         {
4805                 .name = "force_empty",
4806                 .trigger = mem_cgroup_force_empty_write,
4807         },
4808         {
4809                 .name = "use_hierarchy",
4810                 .write_u64 = mem_cgroup_hierarchy_write,
4811                 .read_u64 = mem_cgroup_hierarchy_read,
4812         },
4813         {
4814                 .name = "swappiness",
4815                 .read_u64 = mem_cgroup_swappiness_read,
4816                 .write_u64 = mem_cgroup_swappiness_write,
4817         },
4818         {
4819                 .name = "move_charge_at_immigrate",
4820                 .read_u64 = mem_cgroup_move_charge_read,
4821                 .write_u64 = mem_cgroup_move_charge_write,
4822         },
4823         {
4824                 .name = "oom_control",
4825                 .read_map = mem_cgroup_oom_control_read,
4826                 .write_u64 = mem_cgroup_oom_control_write,
4827                 .register_event = mem_cgroup_oom_register_event,
4828                 .unregister_event = mem_cgroup_oom_unregister_event,
4829                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4830         },
4831 #ifdef CONFIG_NUMA
4832         {
4833                 .name = "numa_stat",
4834                 .open = mem_control_numa_stat_open,
4835                 .mode = S_IRUGO,
4836         },
4837 #endif
4838         {
4839                 .name = "vmscan_stat",
4840                 .read_map = mem_cgroup_vmscan_stat_read,
4841                 .trigger = mem_cgroup_reset_vmscan_stat,
4842         },
4843 };
4844
4845 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4846 static struct cftype memsw_cgroup_files[] = {
4847         {
4848                 .name = "memsw.usage_in_bytes",
4849                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4850                 .read_u64 = mem_cgroup_read,
4851                 .register_event = mem_cgroup_usage_register_event,
4852                 .unregister_event = mem_cgroup_usage_unregister_event,
4853         },
4854         {
4855                 .name = "memsw.max_usage_in_bytes",
4856                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4857                 .trigger = mem_cgroup_reset,
4858                 .read_u64 = mem_cgroup_read,
4859         },
4860         {
4861                 .name = "memsw.limit_in_bytes",
4862                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4863                 .write_string = mem_cgroup_write,
4864                 .read_u64 = mem_cgroup_read,
4865         },
4866         {
4867                 .name = "memsw.failcnt",
4868                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4869                 .trigger = mem_cgroup_reset,
4870                 .read_u64 = mem_cgroup_read,
4871         },
4872 };
4873
4874 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4875 {
4876         if (!do_swap_account)
4877                 return 0;
4878         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4879                                 ARRAY_SIZE(memsw_cgroup_files));
4880 };
4881 #else
4882 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4883 {
4884         return 0;
4885 }
4886 #endif
4887
4888 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4889 {
4890         struct mem_cgroup_per_node *pn;
4891         struct mem_cgroup_per_zone *mz;
4892         enum lru_list l;
4893         int zone, tmp = node;
4894         /*
4895          * This routine is called against possible nodes.
4896          * But it's BUG to call kmalloc() against offline node.
4897          *
4898          * TODO: this routine can waste much memory for nodes which will
4899          *       never be onlined. It's better to use memory hotplug callback
4900          *       function.
4901          */
4902         if (!node_state(node, N_NORMAL_MEMORY))
4903                 tmp = -1;
4904         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4905         if (!pn)
4906                 return 1;
4907
4908         memcg->info.nodeinfo[node] = pn;
4909         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4910                 mz = &pn->zoneinfo[zone];
4911                 for_each_lru(l)
4912                         INIT_LIST_HEAD(&mz->lists[l]);
4913                 mz->usage_in_excess = 0;
4914                 mz->on_tree = false;
4915                 mz->mem = memcg;
4916         }
4917         return 0;
4918 }
4919
4920 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4921 {
4922         kfree(memcg->info.nodeinfo[node]);
4923 }
4924
4925 static struct mem_cgroup *mem_cgroup_alloc(void)
4926 {
4927         struct mem_cgroup *mem;
4928         int size = sizeof(struct mem_cgroup);
4929
4930         /* Can be very big if MAX_NUMNODES is very big */
4931         if (size < PAGE_SIZE)
4932                 mem = kzalloc(size, GFP_KERNEL);
4933         else
4934                 mem = vzalloc(size);
4935
4936         if (!mem)
4937                 return NULL;
4938
4939         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4940         if (!mem->stat)
4941                 goto out_free;
4942         spin_lock_init(&mem->pcp_counter_lock);
4943         return mem;
4944
4945 out_free:
4946         if (size < PAGE_SIZE)
4947                 kfree(mem);
4948         else
4949                 vfree(mem);
4950         return NULL;
4951 }
4952
4953 /*
4954  * At destroying mem_cgroup, references from swap_cgroup can remain.
4955  * (scanning all at force_empty is too costly...)
4956  *
4957  * Instead of clearing all references at force_empty, we remember
4958  * the number of reference from swap_cgroup and free mem_cgroup when
4959  * it goes down to 0.
4960  *
4961  * Removal of cgroup itself succeeds regardless of refs from swap.
4962  */
4963
4964 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4965 {
4966         int node;
4967
4968         mem_cgroup_remove_from_trees(memcg);
4969         free_css_id(&mem_cgroup_subsys, &memcg->css);
4970
4971         for_each_node_state(node, N_POSSIBLE)
4972                 free_mem_cgroup_per_zone_info(memcg, node);
4973
4974         free_percpu(memcg->stat);
4975         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4976                 kfree(memcg);
4977         else
4978                 vfree(memcg);
4979 }
4980
4981 static void mem_cgroup_get(struct mem_cgroup *memcg)
4982 {
4983         atomic_inc(&memcg->refcnt);
4984 }
4985
4986 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4987 {
4988         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4989                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4990                 __mem_cgroup_free(memcg);
4991                 if (parent)
4992                         mem_cgroup_put(parent);
4993         }
4994 }
4995
4996 static void mem_cgroup_put(struct mem_cgroup *memcg)
4997 {
4998         __mem_cgroup_put(memcg, 1);
4999 }
5000
5001 /*
5002  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5003  */
5004 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5005 {
5006         if (!memcg->res.parent)
5007                 return NULL;
5008         return mem_cgroup_from_res_counter(memcg->res.parent, res);
5009 }
5010
5011 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5012 static void __init enable_swap_cgroup(void)
5013 {
5014         if (!mem_cgroup_disabled() && really_do_swap_account)
5015                 do_swap_account = 1;
5016 }
5017 #else
5018 static void __init enable_swap_cgroup(void)
5019 {
5020 }
5021 #endif
5022
5023 static int mem_cgroup_soft_limit_tree_init(void)
5024 {
5025         struct mem_cgroup_tree_per_node *rtpn;
5026         struct mem_cgroup_tree_per_zone *rtpz;
5027         int tmp, node, zone;
5028
5029         for_each_node_state(node, N_POSSIBLE) {
5030                 tmp = node;
5031                 if (!node_state(node, N_NORMAL_MEMORY))
5032                         tmp = -1;
5033                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5034                 if (!rtpn)
5035                         return 1;
5036
5037                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5038
5039                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5040                         rtpz = &rtpn->rb_tree_per_zone[zone];
5041                         rtpz->rb_root = RB_ROOT;
5042                         spin_lock_init(&rtpz->lock);
5043                 }
5044         }
5045         return 0;
5046 }
5047
5048 static struct cgroup_subsys_state * __ref
5049 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5050 {
5051         struct mem_cgroup *memcg, *parent;
5052         long error = -ENOMEM;
5053         int node;
5054
5055         memcg = mem_cgroup_alloc();
5056         if (!memcg)
5057                 return ERR_PTR(error);
5058
5059         for_each_node_state(node, N_POSSIBLE)
5060                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5061                         goto free_out;
5062
5063         /* root ? */
5064         if (cont->parent == NULL) {
5065                 int cpu;
5066                 enable_swap_cgroup();
5067                 parent = NULL;
5068                 root_mem_cgroup = memcg;
5069                 if (mem_cgroup_soft_limit_tree_init())
5070                         goto free_out;
5071                 for_each_possible_cpu(cpu) {
5072                         struct memcg_stock_pcp *stock =
5073                                                 &per_cpu(memcg_stock, cpu);
5074                         INIT_WORK(&stock->work, drain_local_stock);
5075                 }
5076                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5077         } else {
5078                 parent = mem_cgroup_from_cont(cont->parent);
5079                 memcg->use_hierarchy = parent->use_hierarchy;
5080                 memcg->oom_kill_disable = parent->oom_kill_disable;
5081         }
5082
5083         if (parent && parent->use_hierarchy) {
5084                 res_counter_init(&memcg->res, &parent->res);
5085                 res_counter_init(&memcg->memsw, &parent->memsw);
5086                 /*
5087                  * We increment refcnt of the parent to ensure that we can
5088                  * safely access it on res_counter_charge/uncharge.
5089                  * This refcnt will be decremented when freeing this
5090                  * mem_cgroup(see mem_cgroup_put).
5091                  */
5092                 mem_cgroup_get(parent);
5093         } else {
5094                 res_counter_init(&memcg->res, NULL);
5095                 res_counter_init(&memcg->memsw, NULL);
5096         }
5097         memcg->last_scanned_child = 0;
5098         memcg->last_scanned_node = MAX_NUMNODES;
5099         INIT_LIST_HEAD(&memcg->oom_notify);
5100
5101         if (parent)
5102                 memcg->swappiness = mem_cgroup_swappiness(parent);
5103         atomic_set(&memcg->refcnt, 1);
5104         memcg->move_charge_at_immigrate = 0;
5105         mutex_init(&memcg->thresholds_lock);
5106         spin_lock_init(&memcg->scanstat.lock);
5107         return &memcg->css;
5108 free_out:
5109         __mem_cgroup_free(memcg);
5110         root_mem_cgroup = NULL;
5111         return ERR_PTR(error);
5112 }
5113
5114 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5115                                         struct cgroup *cont)
5116 {
5117         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5118
5119         return mem_cgroup_force_empty(memcg, false);
5120 }
5121
5122 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5123                                 struct cgroup *cont)
5124 {
5125         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5126
5127         mem_cgroup_put(memcg);
5128 }
5129
5130 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5131                                 struct cgroup *cont)
5132 {
5133         int ret;
5134
5135         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5136                                 ARRAY_SIZE(mem_cgroup_files));
5137
5138         if (!ret)
5139                 ret = register_memsw_files(cont, ss);
5140         return ret;
5141 }
5142
5143 #ifdef CONFIG_MMU
5144 /* Handlers for move charge at task migration. */
5145 #define PRECHARGE_COUNT_AT_ONCE 256
5146 static int mem_cgroup_do_precharge(unsigned long count)
5147 {
5148         int ret = 0;
5149         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5150         struct mem_cgroup *memcg = mc.to;
5151
5152         if (mem_cgroup_is_root(memcg)) {
5153                 mc.precharge += count;
5154                 /* we don't need css_get for root */
5155                 return ret;
5156         }
5157         /* try to charge at once */
5158         if (count > 1) {
5159                 struct res_counter *dummy;
5160                 /*
5161                  * "memcg" cannot be under rmdir() because we've already checked
5162                  * by cgroup_lock_live_cgroup() that it is not removed and we
5163                  * are still under the same cgroup_mutex. So we can postpone
5164                  * css_get().
5165                  */
5166                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5167                         goto one_by_one;
5168                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5169                                                 PAGE_SIZE * count, &dummy)) {
5170                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5171                         goto one_by_one;
5172                 }
5173                 mc.precharge += count;
5174                 return ret;
5175         }
5176 one_by_one:
5177         /* fall back to one by one charge */
5178         while (count--) {
5179                 if (signal_pending(current)) {
5180                         ret = -EINTR;
5181                         break;
5182                 }
5183                 if (!batch_count--) {
5184                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5185                         cond_resched();
5186                 }
5187                 ret = __mem_cgroup_try_charge(NULL,
5188                                         GFP_KERNEL, 1, &memcg, false);
5189                 if (ret || !memcg)
5190                         /* mem_cgroup_clear_mc() will do uncharge later */
5191                         return -ENOMEM;
5192                 mc.precharge++;
5193         }
5194         return ret;
5195 }
5196
5197 /**
5198  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5199  * @vma: the vma the pte to be checked belongs
5200  * @addr: the address corresponding to the pte to be checked
5201  * @ptent: the pte to be checked
5202  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5203  *
5204  * Returns
5205  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5206  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5207  *     move charge. if @target is not NULL, the page is stored in target->page
5208  *     with extra refcnt got(Callers should handle it).
5209  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5210  *     target for charge migration. if @target is not NULL, the entry is stored
5211  *     in target->ent.
5212  *
5213  * Called with pte lock held.
5214  */
5215 union mc_target {
5216         struct page     *page;
5217         swp_entry_t     ent;
5218 };
5219
5220 enum mc_target_type {
5221         MC_TARGET_NONE, /* not used */
5222         MC_TARGET_PAGE,
5223         MC_TARGET_SWAP,
5224 };
5225
5226 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5227                                                 unsigned long addr, pte_t ptent)
5228 {
5229         struct page *page = vm_normal_page(vma, addr, ptent);
5230
5231         if (!page || !page_mapped(page))
5232                 return NULL;
5233         if (PageAnon(page)) {
5234                 /* we don't move shared anon */
5235                 if (!move_anon() || page_mapcount(page) > 2)
5236                         return NULL;
5237         } else if (!move_file())
5238                 /* we ignore mapcount for file pages */
5239                 return NULL;
5240         if (!get_page_unless_zero(page))
5241                 return NULL;
5242
5243         return page;
5244 }
5245
5246 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5247                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5248 {
5249         int usage_count;
5250         struct page *page = NULL;
5251         swp_entry_t ent = pte_to_swp_entry(ptent);
5252
5253         if (!move_anon() || non_swap_entry(ent))
5254                 return NULL;
5255         usage_count = mem_cgroup_count_swap_user(ent, &page);
5256         if (usage_count > 1) { /* we don't move shared anon */
5257                 if (page)
5258                         put_page(page);
5259                 return NULL;
5260         }
5261         if (do_swap_account)
5262                 entry->val = ent.val;
5263
5264         return page;
5265 }
5266
5267 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5268                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5269 {
5270         struct page *page = NULL;
5271         struct inode *inode;
5272         struct address_space *mapping;
5273         pgoff_t pgoff;
5274
5275         if (!vma->vm_file) /* anonymous vma */
5276                 return NULL;
5277         if (!move_file())
5278                 return NULL;
5279
5280         inode = vma->vm_file->f_path.dentry->d_inode;
5281         mapping = vma->vm_file->f_mapping;
5282         if (pte_none(ptent))
5283                 pgoff = linear_page_index(vma, addr);
5284         else /* pte_file(ptent) is true */
5285                 pgoff = pte_to_pgoff(ptent);
5286
5287         /* page is moved even if it's not RSS of this task(page-faulted). */
5288         page = find_get_page(mapping, pgoff);
5289
5290 #ifdef CONFIG_SWAP
5291         /* shmem/tmpfs may report page out on swap: account for that too. */
5292         if (radix_tree_exceptional_entry(page)) {
5293                 swp_entry_t swap = radix_to_swp_entry(page);
5294                 if (do_swap_account)
5295                         *entry = swap;
5296                 page = find_get_page(&swapper_space, swap.val);
5297         }
5298 #endif
5299         return page;
5300 }
5301
5302 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5303                 unsigned long addr, pte_t ptent, union mc_target *target)
5304 {
5305         struct page *page = NULL;
5306         struct page_cgroup *pc;
5307         int ret = 0;
5308         swp_entry_t ent = { .val = 0 };
5309
5310         if (pte_present(ptent))
5311                 page = mc_handle_present_pte(vma, addr, ptent);
5312         else if (is_swap_pte(ptent))
5313                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5314         else if (pte_none(ptent) || pte_file(ptent))
5315                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5316
5317         if (!page && !ent.val)
5318                 return 0;
5319         if (page) {
5320                 pc = lookup_page_cgroup(page);
5321                 /*
5322                  * Do only loose check w/o page_cgroup lock.
5323                  * mem_cgroup_move_account() checks the pc is valid or not under
5324                  * the lock.
5325                  */
5326                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5327                         ret = MC_TARGET_PAGE;
5328                         if (target)
5329                                 target->page = page;
5330                 }
5331                 if (!ret || !target)
5332                         put_page(page);
5333         }
5334         /* There is a swap entry and a page doesn't exist or isn't charged */
5335         if (ent.val && !ret &&
5336                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5337                 ret = MC_TARGET_SWAP;
5338                 if (target)
5339                         target->ent = ent;
5340         }
5341         return ret;
5342 }
5343
5344 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5345                                         unsigned long addr, unsigned long end,
5346                                         struct mm_walk *walk)
5347 {
5348         struct vm_area_struct *vma = walk->private;
5349         pte_t *pte;
5350         spinlock_t *ptl;
5351
5352         split_huge_page_pmd(walk->mm, pmd);
5353
5354         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5355         for (; addr != end; pte++, addr += PAGE_SIZE)
5356                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5357                         mc.precharge++; /* increment precharge temporarily */
5358         pte_unmap_unlock(pte - 1, ptl);
5359         cond_resched();
5360
5361         return 0;
5362 }
5363
5364 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5365 {
5366         unsigned long precharge;
5367         struct vm_area_struct *vma;
5368
5369         down_read(&mm->mmap_sem);
5370         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5371                 struct mm_walk mem_cgroup_count_precharge_walk = {
5372                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5373                         .mm = mm,
5374                         .private = vma,
5375                 };
5376                 if (is_vm_hugetlb_page(vma))
5377                         continue;
5378                 walk_page_range(vma->vm_start, vma->vm_end,
5379                                         &mem_cgroup_count_precharge_walk);
5380         }
5381         up_read(&mm->mmap_sem);
5382
5383         precharge = mc.precharge;
5384         mc.precharge = 0;
5385
5386         return precharge;
5387 }
5388
5389 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5390 {
5391         unsigned long precharge = mem_cgroup_count_precharge(mm);
5392
5393         VM_BUG_ON(mc.moving_task);
5394         mc.moving_task = current;
5395         return mem_cgroup_do_precharge(precharge);
5396 }
5397
5398 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5399 static void __mem_cgroup_clear_mc(void)
5400 {
5401         struct mem_cgroup *from = mc.from;
5402         struct mem_cgroup *to = mc.to;
5403
5404         /* we must uncharge all the leftover precharges from mc.to */
5405         if (mc.precharge) {
5406                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5407                 mc.precharge = 0;
5408         }
5409         /*
5410          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5411          * we must uncharge here.
5412          */
5413         if (mc.moved_charge) {
5414                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5415                 mc.moved_charge = 0;
5416         }
5417         /* we must fixup refcnts and charges */
5418         if (mc.moved_swap) {
5419                 /* uncharge swap account from the old cgroup */
5420                 if (!mem_cgroup_is_root(mc.from))
5421                         res_counter_uncharge(&mc.from->memsw,
5422                                                 PAGE_SIZE * mc.moved_swap);
5423                 __mem_cgroup_put(mc.from, mc.moved_swap);
5424
5425                 if (!mem_cgroup_is_root(mc.to)) {
5426                         /*
5427                          * we charged both to->res and to->memsw, so we should
5428                          * uncharge to->res.
5429                          */
5430                         res_counter_uncharge(&mc.to->res,
5431                                                 PAGE_SIZE * mc.moved_swap);
5432                 }
5433                 /* we've already done mem_cgroup_get(mc.to) */
5434                 mc.moved_swap = 0;
5435         }
5436         memcg_oom_recover(from);
5437         memcg_oom_recover(to);
5438         wake_up_all(&mc.waitq);
5439 }
5440
5441 static void mem_cgroup_clear_mc(void)
5442 {
5443         struct mem_cgroup *from = mc.from;
5444
5445         /*
5446          * we must clear moving_task before waking up waiters at the end of
5447          * task migration.
5448          */
5449         mc.moving_task = NULL;
5450         __mem_cgroup_clear_mc();
5451         spin_lock(&mc.lock);
5452         mc.from = NULL;
5453         mc.to = NULL;
5454         spin_unlock(&mc.lock);
5455         mem_cgroup_end_move(from);
5456 }
5457
5458 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5459                                 struct cgroup *cgroup,
5460                                 struct task_struct *p)
5461 {
5462         int ret = 0;
5463         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5464
5465         if (memcg->move_charge_at_immigrate) {
5466                 struct mm_struct *mm;
5467                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5468
5469                 VM_BUG_ON(from == memcg);
5470
5471                 mm = get_task_mm(p);
5472                 if (!mm)
5473                         return 0;
5474                 /* We move charges only when we move a owner of the mm */
5475                 if (mm->owner == p) {
5476                         VM_BUG_ON(mc.from);
5477                         VM_BUG_ON(mc.to);
5478                         VM_BUG_ON(mc.precharge);
5479                         VM_BUG_ON(mc.moved_charge);
5480                         VM_BUG_ON(mc.moved_swap);
5481                         mem_cgroup_start_move(from);
5482                         spin_lock(&mc.lock);
5483                         mc.from = from;
5484                         mc.to = memcg;
5485                         spin_unlock(&mc.lock);
5486                         /* We set mc.moving_task later */
5487
5488                         ret = mem_cgroup_precharge_mc(mm);
5489                         if (ret)
5490                                 mem_cgroup_clear_mc();
5491                 }
5492                 mmput(mm);
5493         }
5494         return ret;
5495 }
5496
5497 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5498                                 struct cgroup *cgroup,
5499                                 struct task_struct *p)
5500 {
5501         mem_cgroup_clear_mc();
5502 }
5503
5504 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5505                                 unsigned long addr, unsigned long end,
5506                                 struct mm_walk *walk)
5507 {
5508         int ret = 0;
5509         struct vm_area_struct *vma = walk->private;
5510         pte_t *pte;
5511         spinlock_t *ptl;
5512
5513         split_huge_page_pmd(walk->mm, pmd);
5514 retry:
5515         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5516         for (; addr != end; addr += PAGE_SIZE) {
5517                 pte_t ptent = *(pte++);
5518                 union mc_target target;
5519                 int type;
5520                 struct page *page;
5521                 struct page_cgroup *pc;
5522                 swp_entry_t ent;
5523
5524                 if (!mc.precharge)
5525                         break;
5526
5527                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5528                 switch (type) {
5529                 case MC_TARGET_PAGE:
5530                         page = target.page;
5531                         if (isolate_lru_page(page))
5532                                 goto put;
5533                         pc = lookup_page_cgroup(page);
5534                         if (!mem_cgroup_move_account(page, 1, pc,
5535                                                      mc.from, mc.to, false)) {
5536                                 mc.precharge--;
5537                                 /* we uncharge from mc.from later. */
5538                                 mc.moved_charge++;
5539                         }
5540                         putback_lru_page(page);
5541 put:                    /* is_target_pte_for_mc() gets the page */
5542                         put_page(page);
5543                         break;
5544                 case MC_TARGET_SWAP:
5545                         ent = target.ent;
5546                         if (!mem_cgroup_move_swap_account(ent,
5547                                                 mc.from, mc.to, false)) {
5548                                 mc.precharge--;
5549                                 /* we fixup refcnts and charges later. */
5550                                 mc.moved_swap++;
5551                         }
5552                         break;
5553                 default:
5554                         break;
5555                 }
5556         }
5557         pte_unmap_unlock(pte - 1, ptl);
5558         cond_resched();
5559
5560         if (addr != end) {
5561                 /*
5562                  * We have consumed all precharges we got in can_attach().
5563                  * We try charge one by one, but don't do any additional
5564                  * charges to mc.to if we have failed in charge once in attach()
5565                  * phase.
5566                  */
5567                 ret = mem_cgroup_do_precharge(1);
5568                 if (!ret)
5569                         goto retry;
5570         }
5571
5572         return ret;
5573 }
5574
5575 static void mem_cgroup_move_charge(struct mm_struct *mm)
5576 {
5577         struct vm_area_struct *vma;
5578
5579         lru_add_drain_all();
5580 retry:
5581         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5582                 /*
5583                  * Someone who are holding the mmap_sem might be waiting in
5584                  * waitq. So we cancel all extra charges, wake up all waiters,
5585                  * and retry. Because we cancel precharges, we might not be able
5586                  * to move enough charges, but moving charge is a best-effort
5587                  * feature anyway, so it wouldn't be a big problem.
5588                  */
5589                 __mem_cgroup_clear_mc();
5590                 cond_resched();
5591                 goto retry;
5592         }
5593         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5594                 int ret;
5595                 struct mm_walk mem_cgroup_move_charge_walk = {
5596                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5597                         .mm = mm,
5598                         .private = vma,
5599                 };
5600                 if (is_vm_hugetlb_page(vma))
5601                         continue;
5602                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5603                                                 &mem_cgroup_move_charge_walk);
5604                 if (ret)
5605                         /*
5606                          * means we have consumed all precharges and failed in
5607                          * doing additional charge. Just abandon here.
5608                          */
5609                         break;
5610         }
5611         up_read(&mm->mmap_sem);
5612 }
5613
5614 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5615                                 struct cgroup *cont,
5616                                 struct cgroup *old_cont,
5617                                 struct task_struct *p)
5618 {
5619         struct mm_struct *mm = get_task_mm(p);
5620
5621         if (mm) {
5622                 if (mc.to)
5623                         mem_cgroup_move_charge(mm);
5624                 put_swap_token(mm);
5625                 mmput(mm);
5626         }
5627         if (mc.to)
5628                 mem_cgroup_clear_mc();
5629 }
5630 #else   /* !CONFIG_MMU */
5631 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5632                                 struct cgroup *cgroup,
5633                                 struct task_struct *p)
5634 {
5635         return 0;
5636 }
5637 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5638                                 struct cgroup *cgroup,
5639                                 struct task_struct *p)
5640 {
5641 }
5642 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5643                                 struct cgroup *cont,
5644                                 struct cgroup *old_cont,
5645                                 struct task_struct *p)
5646 {
5647 }
5648 #endif
5649
5650 struct cgroup_subsys mem_cgroup_subsys = {
5651         .name = "memory",
5652         .subsys_id = mem_cgroup_subsys_id,
5653         .create = mem_cgroup_create,
5654         .pre_destroy = mem_cgroup_pre_destroy,
5655         .destroy = mem_cgroup_destroy,
5656         .populate = mem_cgroup_populate,
5657         .can_attach = mem_cgroup_can_attach,
5658         .cancel_attach = mem_cgroup_cancel_attach,
5659         .attach = mem_cgroup_move_task,
5660         .early_init = 0,
5661         .use_id = 1,
5662 };
5663
5664 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5665 static int __init enable_swap_account(char *s)
5666 {
5667         /* consider enabled if no parameter or 1 is given */
5668         if (!strcmp(s, "1"))
5669                 really_do_swap_account = 1;
5670         else if (!strcmp(s, "0"))
5671                 really_do_swap_account = 0;
5672         return 1;
5673 }
5674 __setup("swapaccount=", enable_swap_account);
5675
5676 #endif