]> git.karo-electronics.de Git - linux-beck.git/blob - mm/memcontrol.c
mm: memcg: remove optimization of keeping the root_mem_cgroup LRU lists empty
[linux-beck.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES      5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account         (0)
77 #endif
78
79
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84         /*
85          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86          */
87         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
88         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
89         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
93         MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
98         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
99         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
100         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
101         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
102         MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105  * Per memcg event counter is incremented at every pagein/pageout. With THP,
106  * it will be incremated by the number of pages. This counter is used for
107  * for trigger some periodic events. This is straightforward and better
108  * than using jiffies etc. to handle periodic memcg event.
109  */
110 enum mem_cgroup_events_target {
111         MEM_CGROUP_TARGET_THRESH,
112         MEM_CGROUP_TARGET_SOFTLIMIT,
113         MEM_CGROUP_TARGET_NUMAINFO,
114         MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET  (1024)
119
120 struct mem_cgroup_stat_cpu {
121         long count[MEM_CGROUP_STAT_NSTATS];
122         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123         unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127         /* css_id of the last scanned hierarchy member */
128         int position;
129         /* scan generation, increased every round-trip */
130         unsigned int generation;
131 };
132
133 /*
134  * per-zone information in memory controller.
135  */
136 struct mem_cgroup_per_zone {
137         /*
138          * spin_lock to protect the per cgroup LRU
139          */
140         struct list_head        lists[NR_LRU_LISTS];
141         unsigned long           count[NR_LRU_LISTS];
142
143         struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
144
145         struct zone_reclaim_stat reclaim_stat;
146         struct rb_node          tree_node;      /* RB tree node */
147         unsigned long long      usage_in_excess;/* Set to the value by which */
148                                                 /* the soft limit is exceeded*/
149         bool                    on_tree;
150         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
151                                                 /* use container_of        */
152 };
153 /* Macro for accessing counter */
154 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
155
156 struct mem_cgroup_per_node {
157         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
158 };
159
160 struct mem_cgroup_lru_info {
161         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 };
163
164 /*
165  * Cgroups above their limits are maintained in a RB-Tree, independent of
166  * their hierarchy representation
167  */
168
169 struct mem_cgroup_tree_per_zone {
170         struct rb_root rb_root;
171         spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185         struct eventfd_ctx *eventfd;
186         u64 threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191         /* An array index points to threshold just below usage. */
192         int current_threshold;
193         /* Size of entries[] */
194         unsigned int size;
195         /* Array of thresholds */
196         struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200         /* Primary thresholds array */
201         struct mem_cgroup_threshold_ary *primary;
202         /*
203          * Spare threshold array.
204          * This is needed to make mem_cgroup_unregister_event() "never fail".
205          * It must be able to store at least primary->size - 1 entries.
206          */
207         struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212         struct list_head list;
213         struct eventfd_ctx *eventfd;
214 };
215
216 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
217 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
218
219 /*
220  * The memory controller data structure. The memory controller controls both
221  * page cache and RSS per cgroup. We would eventually like to provide
222  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
223  * to help the administrator determine what knobs to tune.
224  *
225  * TODO: Add a water mark for the memory controller. Reclaim will begin when
226  * we hit the water mark. May be even add a low water mark, such that
227  * no reclaim occurs from a cgroup at it's low water mark, this is
228  * a feature that will be implemented much later in the future.
229  */
230 struct mem_cgroup {
231         struct cgroup_subsys_state css;
232         /*
233          * the counter to account for memory usage
234          */
235         struct res_counter res;
236         /*
237          * the counter to account for mem+swap usage.
238          */
239         struct res_counter memsw;
240         /*
241          * Per cgroup active and inactive list, similar to the
242          * per zone LRU lists.
243          */
244         struct mem_cgroup_lru_info info;
245         int last_scanned_node;
246 #if MAX_NUMNODES > 1
247         nodemask_t      scan_nodes;
248         atomic_t        numainfo_events;
249         atomic_t        numainfo_updating;
250 #endif
251         /*
252          * Should the accounting and control be hierarchical, per subtree?
253          */
254         bool use_hierarchy;
255
256         bool            oom_lock;
257         atomic_t        under_oom;
258
259         atomic_t        refcnt;
260
261         int     swappiness;
262         /* OOM-Killer disable */
263         int             oom_kill_disable;
264
265         /* set when res.limit == memsw.limit */
266         bool            memsw_is_minimum;
267
268         /* protect arrays of thresholds */
269         struct mutex thresholds_lock;
270
271         /* thresholds for memory usage. RCU-protected */
272         struct mem_cgroup_thresholds thresholds;
273
274         /* thresholds for mem+swap usage. RCU-protected */
275         struct mem_cgroup_thresholds memsw_thresholds;
276
277         /* For oom notifier event fd */
278         struct list_head oom_notify;
279
280         /*
281          * Should we move charges of a task when a task is moved into this
282          * mem_cgroup ? And what type of charges should we move ?
283          */
284         unsigned long   move_charge_at_immigrate;
285         /*
286          * percpu counter.
287          */
288         struct mem_cgroup_stat_cpu *stat;
289         /*
290          * used when a cpu is offlined or other synchronizations
291          * See mem_cgroup_read_stat().
292          */
293         struct mem_cgroup_stat_cpu nocpu_base;
294         spinlock_t pcp_counter_lock;
295
296 #ifdef CONFIG_INET
297         struct tcp_memcontrol tcp_mem;
298 #endif
299 };
300
301 /* Stuffs for move charges at task migration. */
302 /*
303  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
304  * left-shifted bitmap of these types.
305  */
306 enum move_type {
307         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
308         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
309         NR_MOVE_TYPE,
310 };
311
312 /* "mc" and its members are protected by cgroup_mutex */
313 static struct move_charge_struct {
314         spinlock_t        lock; /* for from, to */
315         struct mem_cgroup *from;
316         struct mem_cgroup *to;
317         unsigned long precharge;
318         unsigned long moved_charge;
319         unsigned long moved_swap;
320         struct task_struct *moving_task;        /* a task moving charges */
321         wait_queue_head_t waitq;                /* a waitq for other context */
322 } mc = {
323         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
324         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
325 };
326
327 static bool move_anon(void)
328 {
329         return test_bit(MOVE_CHARGE_TYPE_ANON,
330                                         &mc.to->move_charge_at_immigrate);
331 }
332
333 static bool move_file(void)
334 {
335         return test_bit(MOVE_CHARGE_TYPE_FILE,
336                                         &mc.to->move_charge_at_immigrate);
337 }
338
339 /*
340  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
341  * limit reclaim to prevent infinite loops, if they ever occur.
342  */
343 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
344 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
345
346 enum charge_type {
347         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
348         MEM_CGROUP_CHARGE_TYPE_MAPPED,
349         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
350         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
351         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
352         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
353         NR_CHARGE_TYPE,
354 };
355
356 /* for encoding cft->private value on file */
357 #define _MEM                    (0)
358 #define _MEMSWAP                (1)
359 #define _OOM_TYPE               (2)
360 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
361 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
362 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
363 /* Used for OOM nofiier */
364 #define OOM_CONTROL             (0)
365
366 /*
367  * Reclaim flags for mem_cgroup_hierarchical_reclaim
368  */
369 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
370 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
371 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
372 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
373
374 static void mem_cgroup_get(struct mem_cgroup *memcg);
375 static void mem_cgroup_put(struct mem_cgroup *memcg);
376
377 /* Writing them here to avoid exposing memcg's inner layout */
378 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
379 #ifdef CONFIG_INET
380 #include <net/sock.h>
381 #include <net/ip.h>
382
383 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
384 void sock_update_memcg(struct sock *sk)
385 {
386         if (static_branch(&memcg_socket_limit_enabled)) {
387                 struct mem_cgroup *memcg;
388
389                 BUG_ON(!sk->sk_prot->proto_cgroup);
390
391                 /* Socket cloning can throw us here with sk_cgrp already
392                  * filled. It won't however, necessarily happen from
393                  * process context. So the test for root memcg given
394                  * the current task's memcg won't help us in this case.
395                  *
396                  * Respecting the original socket's memcg is a better
397                  * decision in this case.
398                  */
399                 if (sk->sk_cgrp) {
400                         BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
401                         mem_cgroup_get(sk->sk_cgrp->memcg);
402                         return;
403                 }
404
405                 rcu_read_lock();
406                 memcg = mem_cgroup_from_task(current);
407                 if (!mem_cgroup_is_root(memcg)) {
408                         mem_cgroup_get(memcg);
409                         sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
410                 }
411                 rcu_read_unlock();
412         }
413 }
414 EXPORT_SYMBOL(sock_update_memcg);
415
416 void sock_release_memcg(struct sock *sk)
417 {
418         if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
419                 struct mem_cgroup *memcg;
420                 WARN_ON(!sk->sk_cgrp->memcg);
421                 memcg = sk->sk_cgrp->memcg;
422                 mem_cgroup_put(memcg);
423         }
424 }
425
426 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
427 {
428         if (!memcg || mem_cgroup_is_root(memcg))
429                 return NULL;
430
431         return &memcg->tcp_mem.cg_proto;
432 }
433 EXPORT_SYMBOL(tcp_proto_cgroup);
434 #endif /* CONFIG_INET */
435 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
436
437 static void drain_all_stock_async(struct mem_cgroup *memcg);
438
439 static struct mem_cgroup_per_zone *
440 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
441 {
442         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
443 }
444
445 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
446 {
447         return &memcg->css;
448 }
449
450 static struct mem_cgroup_per_zone *
451 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         int zid = page_zonenum(page);
455
456         return mem_cgroup_zoneinfo(memcg, nid, zid);
457 }
458
459 static struct mem_cgroup_tree_per_zone *
460 soft_limit_tree_node_zone(int nid, int zid)
461 {
462         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
463 }
464
465 static struct mem_cgroup_tree_per_zone *
466 soft_limit_tree_from_page(struct page *page)
467 {
468         int nid = page_to_nid(page);
469         int zid = page_zonenum(page);
470
471         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
472 }
473
474 static void
475 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
476                                 struct mem_cgroup_per_zone *mz,
477                                 struct mem_cgroup_tree_per_zone *mctz,
478                                 unsigned long long new_usage_in_excess)
479 {
480         struct rb_node **p = &mctz->rb_root.rb_node;
481         struct rb_node *parent = NULL;
482         struct mem_cgroup_per_zone *mz_node;
483
484         if (mz->on_tree)
485                 return;
486
487         mz->usage_in_excess = new_usage_in_excess;
488         if (!mz->usage_in_excess)
489                 return;
490         while (*p) {
491                 parent = *p;
492                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
493                                         tree_node);
494                 if (mz->usage_in_excess < mz_node->usage_in_excess)
495                         p = &(*p)->rb_left;
496                 /*
497                  * We can't avoid mem cgroups that are over their soft
498                  * limit by the same amount
499                  */
500                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
501                         p = &(*p)->rb_right;
502         }
503         rb_link_node(&mz->tree_node, parent, p);
504         rb_insert_color(&mz->tree_node, &mctz->rb_root);
505         mz->on_tree = true;
506 }
507
508 static void
509 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
510                                 struct mem_cgroup_per_zone *mz,
511                                 struct mem_cgroup_tree_per_zone *mctz)
512 {
513         if (!mz->on_tree)
514                 return;
515         rb_erase(&mz->tree_node, &mctz->rb_root);
516         mz->on_tree = false;
517 }
518
519 static void
520 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
521                                 struct mem_cgroup_per_zone *mz,
522                                 struct mem_cgroup_tree_per_zone *mctz)
523 {
524         spin_lock(&mctz->lock);
525         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
526         spin_unlock(&mctz->lock);
527 }
528
529
530 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
531 {
532         unsigned long long excess;
533         struct mem_cgroup_per_zone *mz;
534         struct mem_cgroup_tree_per_zone *mctz;
535         int nid = page_to_nid(page);
536         int zid = page_zonenum(page);
537         mctz = soft_limit_tree_from_page(page);
538
539         /*
540          * Necessary to update all ancestors when hierarchy is used.
541          * because their event counter is not touched.
542          */
543         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
544                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545                 excess = res_counter_soft_limit_excess(&memcg->res);
546                 /*
547                  * We have to update the tree if mz is on RB-tree or
548                  * mem is over its softlimit.
549                  */
550                 if (excess || mz->on_tree) {
551                         spin_lock(&mctz->lock);
552                         /* if on-tree, remove it */
553                         if (mz->on_tree)
554                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
555                         /*
556                          * Insert again. mz->usage_in_excess will be updated.
557                          * If excess is 0, no tree ops.
558                          */
559                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
560                         spin_unlock(&mctz->lock);
561                 }
562         }
563 }
564
565 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
566 {
567         int node, zone;
568         struct mem_cgroup_per_zone *mz;
569         struct mem_cgroup_tree_per_zone *mctz;
570
571         for_each_node_state(node, N_POSSIBLE) {
572                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
573                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
574                         mctz = soft_limit_tree_node_zone(node, zone);
575                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
576                 }
577         }
578 }
579
580 static struct mem_cgroup_per_zone *
581 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582 {
583         struct rb_node *rightmost = NULL;
584         struct mem_cgroup_per_zone *mz;
585
586 retry:
587         mz = NULL;
588         rightmost = rb_last(&mctz->rb_root);
589         if (!rightmost)
590                 goto done;              /* Nothing to reclaim from */
591
592         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
593         /*
594          * Remove the node now but someone else can add it back,
595          * we will to add it back at the end of reclaim to its correct
596          * position in the tree.
597          */
598         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
599         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
600                 !css_tryget(&mz->mem->css))
601                 goto retry;
602 done:
603         return mz;
604 }
605
606 static struct mem_cgroup_per_zone *
607 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
608 {
609         struct mem_cgroup_per_zone *mz;
610
611         spin_lock(&mctz->lock);
612         mz = __mem_cgroup_largest_soft_limit_node(mctz);
613         spin_unlock(&mctz->lock);
614         return mz;
615 }
616
617 /*
618  * Implementation Note: reading percpu statistics for memcg.
619  *
620  * Both of vmstat[] and percpu_counter has threshold and do periodic
621  * synchronization to implement "quick" read. There are trade-off between
622  * reading cost and precision of value. Then, we may have a chance to implement
623  * a periodic synchronizion of counter in memcg's counter.
624  *
625  * But this _read() function is used for user interface now. The user accounts
626  * memory usage by memory cgroup and he _always_ requires exact value because
627  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
628  * have to visit all online cpus and make sum. So, for now, unnecessary
629  * synchronization is not implemented. (just implemented for cpu hotplug)
630  *
631  * If there are kernel internal actions which can make use of some not-exact
632  * value, and reading all cpu value can be performance bottleneck in some
633  * common workload, threashold and synchonization as vmstat[] should be
634  * implemented.
635  */
636 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
637                                  enum mem_cgroup_stat_index idx)
638 {
639         long val = 0;
640         int cpu;
641
642         get_online_cpus();
643         for_each_online_cpu(cpu)
644                 val += per_cpu(memcg->stat->count[idx], cpu);
645 #ifdef CONFIG_HOTPLUG_CPU
646         spin_lock(&memcg->pcp_counter_lock);
647         val += memcg->nocpu_base.count[idx];
648         spin_unlock(&memcg->pcp_counter_lock);
649 #endif
650         put_online_cpus();
651         return val;
652 }
653
654 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
655                                          bool charge)
656 {
657         int val = (charge) ? 1 : -1;
658         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
659 }
660
661 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
662 {
663         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
664 }
665
666 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
667 {
668         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
669 }
670
671 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
672                                             enum mem_cgroup_events_index idx)
673 {
674         unsigned long val = 0;
675         int cpu;
676
677         for_each_online_cpu(cpu)
678                 val += per_cpu(memcg->stat->events[idx], cpu);
679 #ifdef CONFIG_HOTPLUG_CPU
680         spin_lock(&memcg->pcp_counter_lock);
681         val += memcg->nocpu_base.events[idx];
682         spin_unlock(&memcg->pcp_counter_lock);
683 #endif
684         return val;
685 }
686
687 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
688                                          bool file, int nr_pages)
689 {
690         preempt_disable();
691
692         if (file)
693                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
694                                 nr_pages);
695         else
696                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
697                                 nr_pages);
698
699         /* pagein of a big page is an event. So, ignore page size */
700         if (nr_pages > 0)
701                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
702         else {
703                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
704                 nr_pages = -nr_pages; /* for event */
705         }
706
707         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
708
709         preempt_enable();
710 }
711
712 unsigned long
713 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
714                         unsigned int lru_mask)
715 {
716         struct mem_cgroup_per_zone *mz;
717         enum lru_list l;
718         unsigned long ret = 0;
719
720         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
721
722         for_each_lru(l) {
723                 if (BIT(l) & lru_mask)
724                         ret += MEM_CGROUP_ZSTAT(mz, l);
725         }
726         return ret;
727 }
728
729 static unsigned long
730 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
731                         int nid, unsigned int lru_mask)
732 {
733         u64 total = 0;
734         int zid;
735
736         for (zid = 0; zid < MAX_NR_ZONES; zid++)
737                 total += mem_cgroup_zone_nr_lru_pages(memcg,
738                                                 nid, zid, lru_mask);
739
740         return total;
741 }
742
743 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
744                         unsigned int lru_mask)
745 {
746         int nid;
747         u64 total = 0;
748
749         for_each_node_state(nid, N_HIGH_MEMORY)
750                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
751         return total;
752 }
753
754 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
755 {
756         unsigned long val, next;
757
758         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
759         next = __this_cpu_read(memcg->stat->targets[target]);
760         /* from time_after() in jiffies.h */
761         return ((long)next - (long)val < 0);
762 }
763
764 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
765 {
766         unsigned long val, next;
767
768         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
769
770         switch (target) {
771         case MEM_CGROUP_TARGET_THRESH:
772                 next = val + THRESHOLDS_EVENTS_TARGET;
773                 break;
774         case MEM_CGROUP_TARGET_SOFTLIMIT:
775                 next = val + SOFTLIMIT_EVENTS_TARGET;
776                 break;
777         case MEM_CGROUP_TARGET_NUMAINFO:
778                 next = val + NUMAINFO_EVENTS_TARGET;
779                 break;
780         default:
781                 return;
782         }
783
784         __this_cpu_write(memcg->stat->targets[target], next);
785 }
786
787 /*
788  * Check events in order.
789  *
790  */
791 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792 {
793         preempt_disable();
794         /* threshold event is triggered in finer grain than soft limit */
795         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
796                 mem_cgroup_threshold(memcg);
797                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
798                 if (unlikely(__memcg_event_check(memcg,
799                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
800                         mem_cgroup_update_tree(memcg, page);
801                         __mem_cgroup_target_update(memcg,
802                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
803                 }
804 #if MAX_NUMNODES > 1
805                 if (unlikely(__memcg_event_check(memcg,
806                         MEM_CGROUP_TARGET_NUMAINFO))) {
807                         atomic_inc(&memcg->numainfo_events);
808                         __mem_cgroup_target_update(memcg,
809                                 MEM_CGROUP_TARGET_NUMAINFO);
810                 }
811 #endif
812         }
813         preempt_enable();
814 }
815
816 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
817 {
818         return container_of(cgroup_subsys_state(cont,
819                                 mem_cgroup_subsys_id), struct mem_cgroup,
820                                 css);
821 }
822
823 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
824 {
825         /*
826          * mm_update_next_owner() may clear mm->owner to NULL
827          * if it races with swapoff, page migration, etc.
828          * So this can be called with p == NULL.
829          */
830         if (unlikely(!p))
831                 return NULL;
832
833         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
834                                 struct mem_cgroup, css);
835 }
836
837 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
838 {
839         struct mem_cgroup *memcg = NULL;
840
841         if (!mm)
842                 return NULL;
843         /*
844          * Because we have no locks, mm->owner's may be being moved to other
845          * cgroup. We use css_tryget() here even if this looks
846          * pessimistic (rather than adding locks here).
847          */
848         rcu_read_lock();
849         do {
850                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851                 if (unlikely(!memcg))
852                         break;
853         } while (!css_tryget(&memcg->css));
854         rcu_read_unlock();
855         return memcg;
856 }
857
858 /**
859  * mem_cgroup_iter - iterate over memory cgroup hierarchy
860  * @root: hierarchy root
861  * @prev: previously returned memcg, NULL on first invocation
862  * @reclaim: cookie for shared reclaim walks, NULL for full walks
863  *
864  * Returns references to children of the hierarchy below @root, or
865  * @root itself, or %NULL after a full round-trip.
866  *
867  * Caller must pass the return value in @prev on subsequent
868  * invocations for reference counting, or use mem_cgroup_iter_break()
869  * to cancel a hierarchy walk before the round-trip is complete.
870  *
871  * Reclaimers can specify a zone and a priority level in @reclaim to
872  * divide up the memcgs in the hierarchy among all concurrent
873  * reclaimers operating on the same zone and priority.
874  */
875 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
876                                    struct mem_cgroup *prev,
877                                    struct mem_cgroup_reclaim_cookie *reclaim)
878 {
879         struct mem_cgroup *memcg = NULL;
880         int id = 0;
881
882         if (mem_cgroup_disabled())
883                 return NULL;
884
885         if (!root)
886                 root = root_mem_cgroup;
887
888         if (prev && !reclaim)
889                 id = css_id(&prev->css);
890
891         if (prev && prev != root)
892                 css_put(&prev->css);
893
894         if (!root->use_hierarchy && root != root_mem_cgroup) {
895                 if (prev)
896                         return NULL;
897                 return root;
898         }
899
900         while (!memcg) {
901                 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
902                 struct cgroup_subsys_state *css;
903
904                 if (reclaim) {
905                         int nid = zone_to_nid(reclaim->zone);
906                         int zid = zone_idx(reclaim->zone);
907                         struct mem_cgroup_per_zone *mz;
908
909                         mz = mem_cgroup_zoneinfo(root, nid, zid);
910                         iter = &mz->reclaim_iter[reclaim->priority];
911                         if (prev && reclaim->generation != iter->generation)
912                                 return NULL;
913                         id = iter->position;
914                 }
915
916                 rcu_read_lock();
917                 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
918                 if (css) {
919                         if (css == &root->css || css_tryget(css))
920                                 memcg = container_of(css,
921                                                      struct mem_cgroup, css);
922                 } else
923                         id = 0;
924                 rcu_read_unlock();
925
926                 if (reclaim) {
927                         iter->position = id;
928                         if (!css)
929                                 iter->generation++;
930                         else if (!prev && memcg)
931                                 reclaim->generation = iter->generation;
932                 }
933
934                 if (prev && !css)
935                         return NULL;
936         }
937         return memcg;
938 }
939
940 /**
941  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942  * @root: hierarchy root
943  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944  */
945 void mem_cgroup_iter_break(struct mem_cgroup *root,
946                            struct mem_cgroup *prev)
947 {
948         if (!root)
949                 root = root_mem_cgroup;
950         if (prev && prev != root)
951                 css_put(&prev->css);
952 }
953
954 /*
955  * Iteration constructs for visiting all cgroups (under a tree).  If
956  * loops are exited prematurely (break), mem_cgroup_iter_break() must
957  * be used for reference counting.
958  */
959 #define for_each_mem_cgroup_tree(iter, root)            \
960         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
961              iter != NULL;                              \
962              iter = mem_cgroup_iter(root, iter, NULL))
963
964 #define for_each_mem_cgroup(iter)                       \
965         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
966              iter != NULL;                              \
967              iter = mem_cgroup_iter(NULL, iter, NULL))
968
969 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
970 {
971         return (memcg == root_mem_cgroup);
972 }
973
974 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
975 {
976         struct mem_cgroup *memcg;
977
978         if (!mm)
979                 return;
980
981         rcu_read_lock();
982         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983         if (unlikely(!memcg))
984                 goto out;
985
986         switch (idx) {
987         case PGMAJFAULT:
988                 mem_cgroup_pgmajfault(memcg, 1);
989                 break;
990         case PGFAULT:
991                 mem_cgroup_pgfault(memcg, 1);
992                 break;
993         default:
994                 BUG();
995         }
996 out:
997         rcu_read_unlock();
998 }
999 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1000
1001 /*
1002  * Following LRU functions are allowed to be used without PCG_LOCK.
1003  * Operations are called by routine of global LRU independently from memcg.
1004  * What we have to take care of here is validness of pc->mem_cgroup.
1005  *
1006  * Changes to pc->mem_cgroup happens when
1007  * 1. charge
1008  * 2. moving account
1009  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1010  * It is added to LRU before charge.
1011  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1012  * When moving account, the page is not on LRU. It's isolated.
1013  */
1014
1015 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1016 {
1017         struct page_cgroup *pc;
1018         struct mem_cgroup_per_zone *mz;
1019
1020         if (mem_cgroup_disabled())
1021                 return;
1022         pc = lookup_page_cgroup(page);
1023         /* can happen while we handle swapcache. */
1024         if (!TestClearPageCgroupAcctLRU(pc))
1025                 return;
1026         VM_BUG_ON(!pc->mem_cgroup);
1027         /*
1028          * We don't check PCG_USED bit. It's cleared when the "page" is finally
1029          * removed from global LRU.
1030          */
1031         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1032         /* huge page split is done under lru_lock. so, we have no races. */
1033         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1034         VM_BUG_ON(list_empty(&pc->lru));
1035         list_del_init(&pc->lru);
1036 }
1037
1038 void mem_cgroup_del_lru(struct page *page)
1039 {
1040         mem_cgroup_del_lru_list(page, page_lru(page));
1041 }
1042
1043 /*
1044  * Writeback is about to end against a page which has been marked for immediate
1045  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1046  * inactive list.
1047  */
1048 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1049 {
1050         struct mem_cgroup_per_zone *mz;
1051         struct page_cgroup *pc;
1052         enum lru_list lru = page_lru(page);
1053
1054         if (mem_cgroup_disabled())
1055                 return;
1056
1057         pc = lookup_page_cgroup(page);
1058         /* unused page is not rotated. */
1059         if (!PageCgroupUsed(pc))
1060                 return;
1061         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062         smp_rmb();
1063         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1064         list_move_tail(&pc->lru, &mz->lists[lru]);
1065 }
1066
1067 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1068 {
1069         struct mem_cgroup_per_zone *mz;
1070         struct page_cgroup *pc;
1071
1072         if (mem_cgroup_disabled())
1073                 return;
1074
1075         pc = lookup_page_cgroup(page);
1076         /* unused page is not rotated. */
1077         if (!PageCgroupUsed(pc))
1078                 return;
1079         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1080         smp_rmb();
1081         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1082         list_move(&pc->lru, &mz->lists[lru]);
1083 }
1084
1085 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1086 {
1087         struct page_cgroup *pc;
1088         struct mem_cgroup_per_zone *mz;
1089
1090         if (mem_cgroup_disabled())
1091                 return;
1092         pc = lookup_page_cgroup(page);
1093         VM_BUG_ON(PageCgroupAcctLRU(pc));
1094         /*
1095          * putback:                             charge:
1096          * SetPageLRU                           SetPageCgroupUsed
1097          * smp_mb                               smp_mb
1098          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1099          *
1100          * Ensure that one of the two sides adds the page to the memcg
1101          * LRU during a race.
1102          */
1103         smp_mb();
1104         if (!PageCgroupUsed(pc))
1105                 return;
1106         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1107         smp_rmb();
1108         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1109         /* huge page split is done under lru_lock. so, we have no races. */
1110         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1111         SetPageCgroupAcctLRU(pc);
1112         list_add(&pc->lru, &mz->lists[lru]);
1113 }
1114
1115 /*
1116  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1117  * while it's linked to lru because the page may be reused after it's fully
1118  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1119  * It's done under lock_page and expected that zone->lru_lock isnever held.
1120  */
1121 static void mem_cgroup_lru_del_before_commit(struct page *page)
1122 {
1123         unsigned long flags;
1124         struct zone *zone = page_zone(page);
1125         struct page_cgroup *pc = lookup_page_cgroup(page);
1126
1127         /*
1128          * Doing this check without taking ->lru_lock seems wrong but this
1129          * is safe. Because if page_cgroup's USED bit is unset, the page
1130          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1131          * set, the commit after this will fail, anyway.
1132          * This all charge/uncharge is done under some mutual execustion.
1133          * So, we don't need to taking care of changes in USED bit.
1134          */
1135         if (likely(!PageLRU(page)))
1136                 return;
1137
1138         spin_lock_irqsave(&zone->lru_lock, flags);
1139         /*
1140          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1141          * is guarded by lock_page() because the page is SwapCache.
1142          */
1143         if (!PageCgroupUsed(pc))
1144                 mem_cgroup_del_lru_list(page, page_lru(page));
1145         spin_unlock_irqrestore(&zone->lru_lock, flags);
1146 }
1147
1148 static void mem_cgroup_lru_add_after_commit(struct page *page)
1149 {
1150         unsigned long flags;
1151         struct zone *zone = page_zone(page);
1152         struct page_cgroup *pc = lookup_page_cgroup(page);
1153         /*
1154          * putback:                             charge:
1155          * SetPageLRU                           SetPageCgroupUsed
1156          * smp_mb                               smp_mb
1157          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1158          *
1159          * Ensure that one of the two sides adds the page to the memcg
1160          * LRU during a race.
1161          */
1162         smp_mb();
1163         /* taking care of that the page is added to LRU while we commit it */
1164         if (likely(!PageLRU(page)))
1165                 return;
1166         spin_lock_irqsave(&zone->lru_lock, flags);
1167         /* link when the page is linked to LRU but page_cgroup isn't */
1168         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1169                 mem_cgroup_add_lru_list(page, page_lru(page));
1170         spin_unlock_irqrestore(&zone->lru_lock, flags);
1171 }
1172
1173
1174 void mem_cgroup_move_lists(struct page *page,
1175                            enum lru_list from, enum lru_list to)
1176 {
1177         if (mem_cgroup_disabled())
1178                 return;
1179         mem_cgroup_del_lru_list(page, from);
1180         mem_cgroup_add_lru_list(page, to);
1181 }
1182
1183 /*
1184  * Checks whether given mem is same or in the root_mem_cgroup's
1185  * hierarchy subtree
1186  */
1187 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1188                 struct mem_cgroup *memcg)
1189 {
1190         if (root_memcg != memcg) {
1191                 return (root_memcg->use_hierarchy &&
1192                         css_is_ancestor(&memcg->css, &root_memcg->css));
1193         }
1194
1195         return true;
1196 }
1197
1198 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1199 {
1200         int ret;
1201         struct mem_cgroup *curr = NULL;
1202         struct task_struct *p;
1203
1204         p = find_lock_task_mm(task);
1205         if (!p)
1206                 return 0;
1207         curr = try_get_mem_cgroup_from_mm(p->mm);
1208         task_unlock(p);
1209         if (!curr)
1210                 return 0;
1211         /*
1212          * We should check use_hierarchy of "memcg" not "curr". Because checking
1213          * use_hierarchy of "curr" here make this function true if hierarchy is
1214          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1215          * hierarchy(even if use_hierarchy is disabled in "memcg").
1216          */
1217         ret = mem_cgroup_same_or_subtree(memcg, curr);
1218         css_put(&curr->css);
1219         return ret;
1220 }
1221
1222 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1223 {
1224         unsigned long inactive_ratio;
1225         int nid = zone_to_nid(zone);
1226         int zid = zone_idx(zone);
1227         unsigned long inactive;
1228         unsigned long active;
1229         unsigned long gb;
1230
1231         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1232                                                 BIT(LRU_INACTIVE_ANON));
1233         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1234                                               BIT(LRU_ACTIVE_ANON));
1235
1236         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1237         if (gb)
1238                 inactive_ratio = int_sqrt(10 * gb);
1239         else
1240                 inactive_ratio = 1;
1241
1242         return inactive * inactive_ratio < active;
1243 }
1244
1245 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1246 {
1247         unsigned long active;
1248         unsigned long inactive;
1249         int zid = zone_idx(zone);
1250         int nid = zone_to_nid(zone);
1251
1252         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1253                                                 BIT(LRU_INACTIVE_FILE));
1254         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1255                                               BIT(LRU_ACTIVE_FILE));
1256
1257         return (active > inactive);
1258 }
1259
1260 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1261                                                       struct zone *zone)
1262 {
1263         int nid = zone_to_nid(zone);
1264         int zid = zone_idx(zone);
1265         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1266
1267         return &mz->reclaim_stat;
1268 }
1269
1270 struct zone_reclaim_stat *
1271 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1272 {
1273         struct page_cgroup *pc;
1274         struct mem_cgroup_per_zone *mz;
1275
1276         if (mem_cgroup_disabled())
1277                 return NULL;
1278
1279         pc = lookup_page_cgroup(page);
1280         if (!PageCgroupUsed(pc))
1281                 return NULL;
1282         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1283         smp_rmb();
1284         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1285         return &mz->reclaim_stat;
1286 }
1287
1288 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1289                                         struct list_head *dst,
1290                                         unsigned long *scanned, int order,
1291                                         isolate_mode_t mode,
1292                                         struct zone *z,
1293                                         struct mem_cgroup *mem_cont,
1294                                         int active, int file)
1295 {
1296         unsigned long nr_taken = 0;
1297         struct page *page;
1298         unsigned long scan;
1299         LIST_HEAD(pc_list);
1300         struct list_head *src;
1301         struct page_cgroup *pc, *tmp;
1302         int nid = zone_to_nid(z);
1303         int zid = zone_idx(z);
1304         struct mem_cgroup_per_zone *mz;
1305         int lru = LRU_FILE * file + active;
1306         int ret;
1307
1308         BUG_ON(!mem_cont);
1309         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1310         src = &mz->lists[lru];
1311
1312         scan = 0;
1313         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1314                 if (scan >= nr_to_scan)
1315                         break;
1316
1317                 if (unlikely(!PageCgroupUsed(pc)))
1318                         continue;
1319
1320                 page = lookup_cgroup_page(pc);
1321
1322                 if (unlikely(!PageLRU(page)))
1323                         continue;
1324
1325                 scan++;
1326                 ret = __isolate_lru_page(page, mode, file);
1327                 switch (ret) {
1328                 case 0:
1329                         list_move(&page->lru, dst);
1330                         mem_cgroup_del_lru(page);
1331                         nr_taken += hpage_nr_pages(page);
1332                         break;
1333                 case -EBUSY:
1334                         /* we don't affect global LRU but rotate in our LRU */
1335                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1336                         break;
1337                 default:
1338                         break;
1339                 }
1340         }
1341
1342         *scanned = scan;
1343
1344         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1345                                       0, 0, 0, mode);
1346
1347         return nr_taken;
1348 }
1349
1350 #define mem_cgroup_from_res_counter(counter, member)    \
1351         container_of(counter, struct mem_cgroup, member)
1352
1353 /**
1354  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1355  * @mem: the memory cgroup
1356  *
1357  * Returns the maximum amount of memory @mem can be charged with, in
1358  * pages.
1359  */
1360 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1361 {
1362         unsigned long long margin;
1363
1364         margin = res_counter_margin(&memcg->res);
1365         if (do_swap_account)
1366                 margin = min(margin, res_counter_margin(&memcg->memsw));
1367         return margin >> PAGE_SHIFT;
1368 }
1369
1370 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1371 {
1372         struct cgroup *cgrp = memcg->css.cgroup;
1373
1374         /* root ? */
1375         if (cgrp->parent == NULL)
1376                 return vm_swappiness;
1377
1378         return memcg->swappiness;
1379 }
1380
1381 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1382 {
1383         int cpu;
1384
1385         get_online_cpus();
1386         spin_lock(&memcg->pcp_counter_lock);
1387         for_each_online_cpu(cpu)
1388                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1389         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1390         spin_unlock(&memcg->pcp_counter_lock);
1391         put_online_cpus();
1392
1393         synchronize_rcu();
1394 }
1395
1396 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1397 {
1398         int cpu;
1399
1400         if (!memcg)
1401                 return;
1402         get_online_cpus();
1403         spin_lock(&memcg->pcp_counter_lock);
1404         for_each_online_cpu(cpu)
1405                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1406         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1407         spin_unlock(&memcg->pcp_counter_lock);
1408         put_online_cpus();
1409 }
1410 /*
1411  * 2 routines for checking "mem" is under move_account() or not.
1412  *
1413  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1414  *                        for avoiding race in accounting. If true,
1415  *                        pc->mem_cgroup may be overwritten.
1416  *
1417  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1418  *                        under hierarchy of moving cgroups. This is for
1419  *                        waiting at hith-memory prressure caused by "move".
1420  */
1421
1422 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1423 {
1424         VM_BUG_ON(!rcu_read_lock_held());
1425         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1426 }
1427
1428 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429 {
1430         struct mem_cgroup *from;
1431         struct mem_cgroup *to;
1432         bool ret = false;
1433         /*
1434          * Unlike task_move routines, we access mc.to, mc.from not under
1435          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436          */
1437         spin_lock(&mc.lock);
1438         from = mc.from;
1439         to = mc.to;
1440         if (!from)
1441                 goto unlock;
1442
1443         ret = mem_cgroup_same_or_subtree(memcg, from)
1444                 || mem_cgroup_same_or_subtree(memcg, to);
1445 unlock:
1446         spin_unlock(&mc.lock);
1447         return ret;
1448 }
1449
1450 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451 {
1452         if (mc.moving_task && current != mc.moving_task) {
1453                 if (mem_cgroup_under_move(memcg)) {
1454                         DEFINE_WAIT(wait);
1455                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456                         /* moving charge context might have finished. */
1457                         if (mc.moving_task)
1458                                 schedule();
1459                         finish_wait(&mc.waitq, &wait);
1460                         return true;
1461                 }
1462         }
1463         return false;
1464 }
1465
1466 /**
1467  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1468  * @memcg: The memory cgroup that went over limit
1469  * @p: Task that is going to be killed
1470  *
1471  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1472  * enabled
1473  */
1474 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1475 {
1476         struct cgroup *task_cgrp;
1477         struct cgroup *mem_cgrp;
1478         /*
1479          * Need a buffer in BSS, can't rely on allocations. The code relies
1480          * on the assumption that OOM is serialized for memory controller.
1481          * If this assumption is broken, revisit this code.
1482          */
1483         static char memcg_name[PATH_MAX];
1484         int ret;
1485
1486         if (!memcg || !p)
1487                 return;
1488
1489
1490         rcu_read_lock();
1491
1492         mem_cgrp = memcg->css.cgroup;
1493         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1494
1495         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1496         if (ret < 0) {
1497                 /*
1498                  * Unfortunately, we are unable to convert to a useful name
1499                  * But we'll still print out the usage information
1500                  */
1501                 rcu_read_unlock();
1502                 goto done;
1503         }
1504         rcu_read_unlock();
1505
1506         printk(KERN_INFO "Task in %s killed", memcg_name);
1507
1508         rcu_read_lock();
1509         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1510         if (ret < 0) {
1511                 rcu_read_unlock();
1512                 goto done;
1513         }
1514         rcu_read_unlock();
1515
1516         /*
1517          * Continues from above, so we don't need an KERN_ level
1518          */
1519         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1520 done:
1521
1522         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1523                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1524                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1525                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1526         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1527                 "failcnt %llu\n",
1528                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1529                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1530                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1531 }
1532
1533 /*
1534  * This function returns the number of memcg under hierarchy tree. Returns
1535  * 1(self count) if no children.
1536  */
1537 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1538 {
1539         int num = 0;
1540         struct mem_cgroup *iter;
1541
1542         for_each_mem_cgroup_tree(iter, memcg)
1543                 num++;
1544         return num;
1545 }
1546
1547 /*
1548  * Return the memory (and swap, if configured) limit for a memcg.
1549  */
1550 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1551 {
1552         u64 limit;
1553         u64 memsw;
1554
1555         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1556         limit += total_swap_pages << PAGE_SHIFT;
1557
1558         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1559         /*
1560          * If memsw is finite and limits the amount of swap space available
1561          * to this memcg, return that limit.
1562          */
1563         return min(limit, memsw);
1564 }
1565
1566 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1567                                         gfp_t gfp_mask,
1568                                         unsigned long flags)
1569 {
1570         unsigned long total = 0;
1571         bool noswap = false;
1572         int loop;
1573
1574         if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1575                 noswap = true;
1576         if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1577                 noswap = true;
1578
1579         for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1580                 if (loop)
1581                         drain_all_stock_async(memcg);
1582                 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1583                 /*
1584                  * Allow limit shrinkers, which are triggered directly
1585                  * by userspace, to catch signals and stop reclaim
1586                  * after minimal progress, regardless of the margin.
1587                  */
1588                 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1589                         break;
1590                 if (mem_cgroup_margin(memcg))
1591                         break;
1592                 /*
1593                  * If nothing was reclaimed after two attempts, there
1594                  * may be no reclaimable pages in this hierarchy.
1595                  */
1596                 if (loop && !total)
1597                         break;
1598         }
1599         return total;
1600 }
1601
1602 /**
1603  * test_mem_cgroup_node_reclaimable
1604  * @mem: the target memcg
1605  * @nid: the node ID to be checked.
1606  * @noswap : specify true here if the user wants flle only information.
1607  *
1608  * This function returns whether the specified memcg contains any
1609  * reclaimable pages on a node. Returns true if there are any reclaimable
1610  * pages in the node.
1611  */
1612 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1613                 int nid, bool noswap)
1614 {
1615         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1616                 return true;
1617         if (noswap || !total_swap_pages)
1618                 return false;
1619         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1620                 return true;
1621         return false;
1622
1623 }
1624 #if MAX_NUMNODES > 1
1625
1626 /*
1627  * Always updating the nodemask is not very good - even if we have an empty
1628  * list or the wrong list here, we can start from some node and traverse all
1629  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630  *
1631  */
1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 {
1634         int nid;
1635         /*
1636          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637          * pagein/pageout changes since the last update.
1638          */
1639         if (!atomic_read(&memcg->numainfo_events))
1640                 return;
1641         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642                 return;
1643
1644         /* make a nodemask where this memcg uses memory from */
1645         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1646
1647         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1648
1649                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650                         node_clear(nid, memcg->scan_nodes);
1651         }
1652
1653         atomic_set(&memcg->numainfo_events, 0);
1654         atomic_set(&memcg->numainfo_updating, 0);
1655 }
1656
1657 /*
1658  * Selecting a node where we start reclaim from. Because what we need is just
1659  * reducing usage counter, start from anywhere is O,K. Considering
1660  * memory reclaim from current node, there are pros. and cons.
1661  *
1662  * Freeing memory from current node means freeing memory from a node which
1663  * we'll use or we've used. So, it may make LRU bad. And if several threads
1664  * hit limits, it will see a contention on a node. But freeing from remote
1665  * node means more costs for memory reclaim because of memory latency.
1666  *
1667  * Now, we use round-robin. Better algorithm is welcomed.
1668  */
1669 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 {
1671         int node;
1672
1673         mem_cgroup_may_update_nodemask(memcg);
1674         node = memcg->last_scanned_node;
1675
1676         node = next_node(node, memcg->scan_nodes);
1677         if (node == MAX_NUMNODES)
1678                 node = first_node(memcg->scan_nodes);
1679         /*
1680          * We call this when we hit limit, not when pages are added to LRU.
1681          * No LRU may hold pages because all pages are UNEVICTABLE or
1682          * memcg is too small and all pages are not on LRU. In that case,
1683          * we use curret node.
1684          */
1685         if (unlikely(node == MAX_NUMNODES))
1686                 node = numa_node_id();
1687
1688         memcg->last_scanned_node = node;
1689         return node;
1690 }
1691
1692 /*
1693  * Check all nodes whether it contains reclaimable pages or not.
1694  * For quick scan, we make use of scan_nodes. This will allow us to skip
1695  * unused nodes. But scan_nodes is lazily updated and may not cotain
1696  * enough new information. We need to do double check.
1697  */
1698 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1699 {
1700         int nid;
1701
1702         /*
1703          * quick check...making use of scan_node.
1704          * We can skip unused nodes.
1705          */
1706         if (!nodes_empty(memcg->scan_nodes)) {
1707                 for (nid = first_node(memcg->scan_nodes);
1708                      nid < MAX_NUMNODES;
1709                      nid = next_node(nid, memcg->scan_nodes)) {
1710
1711                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1712                                 return true;
1713                 }
1714         }
1715         /*
1716          * Check rest of nodes.
1717          */
1718         for_each_node_state(nid, N_HIGH_MEMORY) {
1719                 if (node_isset(nid, memcg->scan_nodes))
1720                         continue;
1721                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1722                         return true;
1723         }
1724         return false;
1725 }
1726
1727 #else
1728 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1729 {
1730         return 0;
1731 }
1732
1733 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1734 {
1735         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1736 }
1737 #endif
1738
1739 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1740                                    struct zone *zone,
1741                                    gfp_t gfp_mask,
1742                                    unsigned long *total_scanned)
1743 {
1744         struct mem_cgroup *victim = NULL;
1745         int total = 0;
1746         int loop = 0;
1747         unsigned long excess;
1748         unsigned long nr_scanned;
1749         struct mem_cgroup_reclaim_cookie reclaim = {
1750                 .zone = zone,
1751                 .priority = 0,
1752         };
1753
1754         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1755
1756         while (1) {
1757                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1758                 if (!victim) {
1759                         loop++;
1760                         if (loop >= 2) {
1761                                 /*
1762                                  * If we have not been able to reclaim
1763                                  * anything, it might because there are
1764                                  * no reclaimable pages under this hierarchy
1765                                  */
1766                                 if (!total)
1767                                         break;
1768                                 /*
1769                                  * We want to do more targeted reclaim.
1770                                  * excess >> 2 is not to excessive so as to
1771                                  * reclaim too much, nor too less that we keep
1772                                  * coming back to reclaim from this cgroup
1773                                  */
1774                                 if (total >= (excess >> 2) ||
1775                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1776                                         break;
1777                         }
1778                         continue;
1779                 }
1780                 if (!mem_cgroup_reclaimable(victim, false))
1781                         continue;
1782                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1783                                                      zone, &nr_scanned);
1784                 *total_scanned += nr_scanned;
1785                 if (!res_counter_soft_limit_excess(&root_memcg->res))
1786                         break;
1787         }
1788         mem_cgroup_iter_break(root_memcg, victim);
1789         return total;
1790 }
1791
1792 /*
1793  * Check OOM-Killer is already running under our hierarchy.
1794  * If someone is running, return false.
1795  * Has to be called with memcg_oom_lock
1796  */
1797 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1798 {
1799         struct mem_cgroup *iter, *failed = NULL;
1800
1801         for_each_mem_cgroup_tree(iter, memcg) {
1802                 if (iter->oom_lock) {
1803                         /*
1804                          * this subtree of our hierarchy is already locked
1805                          * so we cannot give a lock.
1806                          */
1807                         failed = iter;
1808                         mem_cgroup_iter_break(memcg, iter);
1809                         break;
1810                 } else
1811                         iter->oom_lock = true;
1812         }
1813
1814         if (!failed)
1815                 return true;
1816
1817         /*
1818          * OK, we failed to lock the whole subtree so we have to clean up
1819          * what we set up to the failing subtree
1820          */
1821         for_each_mem_cgroup_tree(iter, memcg) {
1822                 if (iter == failed) {
1823                         mem_cgroup_iter_break(memcg, iter);
1824                         break;
1825                 }
1826                 iter->oom_lock = false;
1827         }
1828         return false;
1829 }
1830
1831 /*
1832  * Has to be called with memcg_oom_lock
1833  */
1834 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1835 {
1836         struct mem_cgroup *iter;
1837
1838         for_each_mem_cgroup_tree(iter, memcg)
1839                 iter->oom_lock = false;
1840         return 0;
1841 }
1842
1843 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1844 {
1845         struct mem_cgroup *iter;
1846
1847         for_each_mem_cgroup_tree(iter, memcg)
1848                 atomic_inc(&iter->under_oom);
1849 }
1850
1851 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1852 {
1853         struct mem_cgroup *iter;
1854
1855         /*
1856          * When a new child is created while the hierarchy is under oom,
1857          * mem_cgroup_oom_lock() may not be called. We have to use
1858          * atomic_add_unless() here.
1859          */
1860         for_each_mem_cgroup_tree(iter, memcg)
1861                 atomic_add_unless(&iter->under_oom, -1, 0);
1862 }
1863
1864 static DEFINE_SPINLOCK(memcg_oom_lock);
1865 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1866
1867 struct oom_wait_info {
1868         struct mem_cgroup *mem;
1869         wait_queue_t    wait;
1870 };
1871
1872 static int memcg_oom_wake_function(wait_queue_t *wait,
1873         unsigned mode, int sync, void *arg)
1874 {
1875         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1876                           *oom_wait_memcg;
1877         struct oom_wait_info *oom_wait_info;
1878
1879         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1880         oom_wait_memcg = oom_wait_info->mem;
1881
1882         /*
1883          * Both of oom_wait_info->mem and wake_mem are stable under us.
1884          * Then we can use css_is_ancestor without taking care of RCU.
1885          */
1886         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1887                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1888                 return 0;
1889         return autoremove_wake_function(wait, mode, sync, arg);
1890 }
1891
1892 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1893 {
1894         /* for filtering, pass "memcg" as argument. */
1895         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1896 }
1897
1898 static void memcg_oom_recover(struct mem_cgroup *memcg)
1899 {
1900         if (memcg && atomic_read(&memcg->under_oom))
1901                 memcg_wakeup_oom(memcg);
1902 }
1903
1904 /*
1905  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1906  */
1907 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1908 {
1909         struct oom_wait_info owait;
1910         bool locked, need_to_kill;
1911
1912         owait.mem = memcg;
1913         owait.wait.flags = 0;
1914         owait.wait.func = memcg_oom_wake_function;
1915         owait.wait.private = current;
1916         INIT_LIST_HEAD(&owait.wait.task_list);
1917         need_to_kill = true;
1918         mem_cgroup_mark_under_oom(memcg);
1919
1920         /* At first, try to OOM lock hierarchy under memcg.*/
1921         spin_lock(&memcg_oom_lock);
1922         locked = mem_cgroup_oom_lock(memcg);
1923         /*
1924          * Even if signal_pending(), we can't quit charge() loop without
1925          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1926          * under OOM is always welcomed, use TASK_KILLABLE here.
1927          */
1928         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1929         if (!locked || memcg->oom_kill_disable)
1930                 need_to_kill = false;
1931         if (locked)
1932                 mem_cgroup_oom_notify(memcg);
1933         spin_unlock(&memcg_oom_lock);
1934
1935         if (need_to_kill) {
1936                 finish_wait(&memcg_oom_waitq, &owait.wait);
1937                 mem_cgroup_out_of_memory(memcg, mask);
1938         } else {
1939                 schedule();
1940                 finish_wait(&memcg_oom_waitq, &owait.wait);
1941         }
1942         spin_lock(&memcg_oom_lock);
1943         if (locked)
1944                 mem_cgroup_oom_unlock(memcg);
1945         memcg_wakeup_oom(memcg);
1946         spin_unlock(&memcg_oom_lock);
1947
1948         mem_cgroup_unmark_under_oom(memcg);
1949
1950         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1951                 return false;
1952         /* Give chance to dying process */
1953         schedule_timeout_uninterruptible(1);
1954         return true;
1955 }
1956
1957 /*
1958  * Currently used to update mapped file statistics, but the routine can be
1959  * generalized to update other statistics as well.
1960  *
1961  * Notes: Race condition
1962  *
1963  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1964  * it tends to be costly. But considering some conditions, we doesn't need
1965  * to do so _always_.
1966  *
1967  * Considering "charge", lock_page_cgroup() is not required because all
1968  * file-stat operations happen after a page is attached to radix-tree. There
1969  * are no race with "charge".
1970  *
1971  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1972  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1973  * if there are race with "uncharge". Statistics itself is properly handled
1974  * by flags.
1975  *
1976  * Considering "move", this is an only case we see a race. To make the race
1977  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1978  * possibility of race condition. If there is, we take a lock.
1979  */
1980
1981 void mem_cgroup_update_page_stat(struct page *page,
1982                                  enum mem_cgroup_page_stat_item idx, int val)
1983 {
1984         struct mem_cgroup *memcg;
1985         struct page_cgroup *pc = lookup_page_cgroup(page);
1986         bool need_unlock = false;
1987         unsigned long uninitialized_var(flags);
1988
1989         if (unlikely(!pc))
1990                 return;
1991
1992         rcu_read_lock();
1993         memcg = pc->mem_cgroup;
1994         if (unlikely(!memcg || !PageCgroupUsed(pc)))
1995                 goto out;
1996         /* pc->mem_cgroup is unstable ? */
1997         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1998                 /* take a lock against to access pc->mem_cgroup */
1999                 move_lock_page_cgroup(pc, &flags);
2000                 need_unlock = true;
2001                 memcg = pc->mem_cgroup;
2002                 if (!memcg || !PageCgroupUsed(pc))
2003                         goto out;
2004         }
2005
2006         switch (idx) {
2007         case MEMCG_NR_FILE_MAPPED:
2008                 if (val > 0)
2009                         SetPageCgroupFileMapped(pc);
2010                 else if (!page_mapped(page))
2011                         ClearPageCgroupFileMapped(pc);
2012                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2013                 break;
2014         default:
2015                 BUG();
2016         }
2017
2018         this_cpu_add(memcg->stat->count[idx], val);
2019
2020 out:
2021         if (unlikely(need_unlock))
2022                 move_unlock_page_cgroup(pc, &flags);
2023         rcu_read_unlock();
2024         return;
2025 }
2026 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2027
2028 /*
2029  * size of first charge trial. "32" comes from vmscan.c's magic value.
2030  * TODO: maybe necessary to use big numbers in big irons.
2031  */
2032 #define CHARGE_BATCH    32U
2033 struct memcg_stock_pcp {
2034         struct mem_cgroup *cached; /* this never be root cgroup */
2035         unsigned int nr_pages;
2036         struct work_struct work;
2037         unsigned long flags;
2038 #define FLUSHING_CACHED_CHARGE  (0)
2039 };
2040 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2041 static DEFINE_MUTEX(percpu_charge_mutex);
2042
2043 /*
2044  * Try to consume stocked charge on this cpu. If success, one page is consumed
2045  * from local stock and true is returned. If the stock is 0 or charges from a
2046  * cgroup which is not current target, returns false. This stock will be
2047  * refilled.
2048  */
2049 static bool consume_stock(struct mem_cgroup *memcg)
2050 {
2051         struct memcg_stock_pcp *stock;
2052         bool ret = true;
2053
2054         stock = &get_cpu_var(memcg_stock);
2055         if (memcg == stock->cached && stock->nr_pages)
2056                 stock->nr_pages--;
2057         else /* need to call res_counter_charge */
2058                 ret = false;
2059         put_cpu_var(memcg_stock);
2060         return ret;
2061 }
2062
2063 /*
2064  * Returns stocks cached in percpu to res_counter and reset cached information.
2065  */
2066 static void drain_stock(struct memcg_stock_pcp *stock)
2067 {
2068         struct mem_cgroup *old = stock->cached;
2069
2070         if (stock->nr_pages) {
2071                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2072
2073                 res_counter_uncharge(&old->res, bytes);
2074                 if (do_swap_account)
2075                         res_counter_uncharge(&old->memsw, bytes);
2076                 stock->nr_pages = 0;
2077         }
2078         stock->cached = NULL;
2079 }
2080
2081 /*
2082  * This must be called under preempt disabled or must be called by
2083  * a thread which is pinned to local cpu.
2084  */
2085 static void drain_local_stock(struct work_struct *dummy)
2086 {
2087         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2088         drain_stock(stock);
2089         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2090 }
2091
2092 /*
2093  * Cache charges(val) which is from res_counter, to local per_cpu area.
2094  * This will be consumed by consume_stock() function, later.
2095  */
2096 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2097 {
2098         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2099
2100         if (stock->cached != memcg) { /* reset if necessary */
2101                 drain_stock(stock);
2102                 stock->cached = memcg;
2103         }
2104         stock->nr_pages += nr_pages;
2105         put_cpu_var(memcg_stock);
2106 }
2107
2108 /*
2109  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2110  * of the hierarchy under it. sync flag says whether we should block
2111  * until the work is done.
2112  */
2113 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2114 {
2115         int cpu, curcpu;
2116
2117         /* Notify other cpus that system-wide "drain" is running */
2118         get_online_cpus();
2119         curcpu = get_cpu();
2120         for_each_online_cpu(cpu) {
2121                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2122                 struct mem_cgroup *memcg;
2123
2124                 memcg = stock->cached;
2125                 if (!memcg || !stock->nr_pages)
2126                         continue;
2127                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2128                         continue;
2129                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2130                         if (cpu == curcpu)
2131                                 drain_local_stock(&stock->work);
2132                         else
2133                                 schedule_work_on(cpu, &stock->work);
2134                 }
2135         }
2136         put_cpu();
2137
2138         if (!sync)
2139                 goto out;
2140
2141         for_each_online_cpu(cpu) {
2142                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2144                         flush_work(&stock->work);
2145         }
2146 out:
2147         put_online_cpus();
2148 }
2149
2150 /*
2151  * Tries to drain stocked charges in other cpus. This function is asynchronous
2152  * and just put a work per cpu for draining localy on each cpu. Caller can
2153  * expects some charges will be back to res_counter later but cannot wait for
2154  * it.
2155  */
2156 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2157 {
2158         /*
2159          * If someone calls draining, avoid adding more kworker runs.
2160          */
2161         if (!mutex_trylock(&percpu_charge_mutex))
2162                 return;
2163         drain_all_stock(root_memcg, false);
2164         mutex_unlock(&percpu_charge_mutex);
2165 }
2166
2167 /* This is a synchronous drain interface. */
2168 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2169 {
2170         /* called when force_empty is called */
2171         mutex_lock(&percpu_charge_mutex);
2172         drain_all_stock(root_memcg, true);
2173         mutex_unlock(&percpu_charge_mutex);
2174 }
2175
2176 /*
2177  * This function drains percpu counter value from DEAD cpu and
2178  * move it to local cpu. Note that this function can be preempted.
2179  */
2180 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2181 {
2182         int i;
2183
2184         spin_lock(&memcg->pcp_counter_lock);
2185         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2186                 long x = per_cpu(memcg->stat->count[i], cpu);
2187
2188                 per_cpu(memcg->stat->count[i], cpu) = 0;
2189                 memcg->nocpu_base.count[i] += x;
2190         }
2191         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2192                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2193
2194                 per_cpu(memcg->stat->events[i], cpu) = 0;
2195                 memcg->nocpu_base.events[i] += x;
2196         }
2197         /* need to clear ON_MOVE value, works as a kind of lock. */
2198         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2199         spin_unlock(&memcg->pcp_counter_lock);
2200 }
2201
2202 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2203 {
2204         int idx = MEM_CGROUP_ON_MOVE;
2205
2206         spin_lock(&memcg->pcp_counter_lock);
2207         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2208         spin_unlock(&memcg->pcp_counter_lock);
2209 }
2210
2211 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2212                                         unsigned long action,
2213                                         void *hcpu)
2214 {
2215         int cpu = (unsigned long)hcpu;
2216         struct memcg_stock_pcp *stock;
2217         struct mem_cgroup *iter;
2218
2219         if ((action == CPU_ONLINE)) {
2220                 for_each_mem_cgroup(iter)
2221                         synchronize_mem_cgroup_on_move(iter, cpu);
2222                 return NOTIFY_OK;
2223         }
2224
2225         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2226                 return NOTIFY_OK;
2227
2228         for_each_mem_cgroup(iter)
2229                 mem_cgroup_drain_pcp_counter(iter, cpu);
2230
2231         stock = &per_cpu(memcg_stock, cpu);
2232         drain_stock(stock);
2233         return NOTIFY_OK;
2234 }
2235
2236
2237 /* See __mem_cgroup_try_charge() for details */
2238 enum {
2239         CHARGE_OK,              /* success */
2240         CHARGE_RETRY,           /* need to retry but retry is not bad */
2241         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2242         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2243         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2244 };
2245
2246 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2247                                 unsigned int nr_pages, bool oom_check)
2248 {
2249         unsigned long csize = nr_pages * PAGE_SIZE;
2250         struct mem_cgroup *mem_over_limit;
2251         struct res_counter *fail_res;
2252         unsigned long flags = 0;
2253         int ret;
2254
2255         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2256
2257         if (likely(!ret)) {
2258                 if (!do_swap_account)
2259                         return CHARGE_OK;
2260                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2261                 if (likely(!ret))
2262                         return CHARGE_OK;
2263
2264                 res_counter_uncharge(&memcg->res, csize);
2265                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2266                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2267         } else
2268                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2269         /*
2270          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2271          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2272          *
2273          * Never reclaim on behalf of optional batching, retry with a
2274          * single page instead.
2275          */
2276         if (nr_pages == CHARGE_BATCH)
2277                 return CHARGE_RETRY;
2278
2279         if (!(gfp_mask & __GFP_WAIT))
2280                 return CHARGE_WOULDBLOCK;
2281
2282         ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2283         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2284                 return CHARGE_RETRY;
2285         /*
2286          * Even though the limit is exceeded at this point, reclaim
2287          * may have been able to free some pages.  Retry the charge
2288          * before killing the task.
2289          *
2290          * Only for regular pages, though: huge pages are rather
2291          * unlikely to succeed so close to the limit, and we fall back
2292          * to regular pages anyway in case of failure.
2293          */
2294         if (nr_pages == 1 && ret)
2295                 return CHARGE_RETRY;
2296
2297         /*
2298          * At task move, charge accounts can be doubly counted. So, it's
2299          * better to wait until the end of task_move if something is going on.
2300          */
2301         if (mem_cgroup_wait_acct_move(mem_over_limit))
2302                 return CHARGE_RETRY;
2303
2304         /* If we don't need to call oom-killer at el, return immediately */
2305         if (!oom_check)
2306                 return CHARGE_NOMEM;
2307         /* check OOM */
2308         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2309                 return CHARGE_OOM_DIE;
2310
2311         return CHARGE_RETRY;
2312 }
2313
2314 /*
2315  * Unlike exported interface, "oom" parameter is added. if oom==true,
2316  * oom-killer can be invoked.
2317  */
2318 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2319                                    gfp_t gfp_mask,
2320                                    unsigned int nr_pages,
2321                                    struct mem_cgroup **ptr,
2322                                    bool oom)
2323 {
2324         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2325         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2326         struct mem_cgroup *memcg = NULL;
2327         int ret;
2328
2329         /*
2330          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2331          * in system level. So, allow to go ahead dying process in addition to
2332          * MEMDIE process.
2333          */
2334         if (unlikely(test_thread_flag(TIF_MEMDIE)
2335                      || fatal_signal_pending(current)))
2336                 goto bypass;
2337
2338         /*
2339          * We always charge the cgroup the mm_struct belongs to.
2340          * The mm_struct's mem_cgroup changes on task migration if the
2341          * thread group leader migrates. It's possible that mm is not
2342          * set, if so charge the init_mm (happens for pagecache usage).
2343          */
2344         if (!*ptr && !mm)
2345                 goto bypass;
2346 again:
2347         if (*ptr) { /* css should be a valid one */
2348                 memcg = *ptr;
2349                 VM_BUG_ON(css_is_removed(&memcg->css));
2350                 if (mem_cgroup_is_root(memcg))
2351                         goto done;
2352                 if (nr_pages == 1 && consume_stock(memcg))
2353                         goto done;
2354                 css_get(&memcg->css);
2355         } else {
2356                 struct task_struct *p;
2357
2358                 rcu_read_lock();
2359                 p = rcu_dereference(mm->owner);
2360                 /*
2361                  * Because we don't have task_lock(), "p" can exit.
2362                  * In that case, "memcg" can point to root or p can be NULL with
2363                  * race with swapoff. Then, we have small risk of mis-accouning.
2364                  * But such kind of mis-account by race always happens because
2365                  * we don't have cgroup_mutex(). It's overkill and we allo that
2366                  * small race, here.
2367                  * (*) swapoff at el will charge against mm-struct not against
2368                  * task-struct. So, mm->owner can be NULL.
2369                  */
2370                 memcg = mem_cgroup_from_task(p);
2371                 if (!memcg || mem_cgroup_is_root(memcg)) {
2372                         rcu_read_unlock();
2373                         goto done;
2374                 }
2375                 if (nr_pages == 1 && consume_stock(memcg)) {
2376                         /*
2377                          * It seems dagerous to access memcg without css_get().
2378                          * But considering how consume_stok works, it's not
2379                          * necessary. If consume_stock success, some charges
2380                          * from this memcg are cached on this cpu. So, we
2381                          * don't need to call css_get()/css_tryget() before
2382                          * calling consume_stock().
2383                          */
2384                         rcu_read_unlock();
2385                         goto done;
2386                 }
2387                 /* after here, we may be blocked. we need to get refcnt */
2388                 if (!css_tryget(&memcg->css)) {
2389                         rcu_read_unlock();
2390                         goto again;
2391                 }
2392                 rcu_read_unlock();
2393         }
2394
2395         do {
2396                 bool oom_check;
2397
2398                 /* If killed, bypass charge */
2399                 if (fatal_signal_pending(current)) {
2400                         css_put(&memcg->css);
2401                         goto bypass;
2402                 }
2403
2404                 oom_check = false;
2405                 if (oom && !nr_oom_retries) {
2406                         oom_check = true;
2407                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2408                 }
2409
2410                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2411                 switch (ret) {
2412                 case CHARGE_OK:
2413                         break;
2414                 case CHARGE_RETRY: /* not in OOM situation but retry */
2415                         batch = nr_pages;
2416                         css_put(&memcg->css);
2417                         memcg = NULL;
2418                         goto again;
2419                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2420                         css_put(&memcg->css);
2421                         goto nomem;
2422                 case CHARGE_NOMEM: /* OOM routine works */
2423                         if (!oom) {
2424                                 css_put(&memcg->css);
2425                                 goto nomem;
2426                         }
2427                         /* If oom, we never return -ENOMEM */
2428                         nr_oom_retries--;
2429                         break;
2430                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2431                         css_put(&memcg->css);
2432                         goto bypass;
2433                 }
2434         } while (ret != CHARGE_OK);
2435
2436         if (batch > nr_pages)
2437                 refill_stock(memcg, batch - nr_pages);
2438         css_put(&memcg->css);
2439 done:
2440         *ptr = memcg;
2441         return 0;
2442 nomem:
2443         *ptr = NULL;
2444         return -ENOMEM;
2445 bypass:
2446         *ptr = NULL;
2447         return 0;
2448 }
2449
2450 /*
2451  * Somemtimes we have to undo a charge we got by try_charge().
2452  * This function is for that and do uncharge, put css's refcnt.
2453  * gotten by try_charge().
2454  */
2455 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2456                                        unsigned int nr_pages)
2457 {
2458         if (!mem_cgroup_is_root(memcg)) {
2459                 unsigned long bytes = nr_pages * PAGE_SIZE;
2460
2461                 res_counter_uncharge(&memcg->res, bytes);
2462                 if (do_swap_account)
2463                         res_counter_uncharge(&memcg->memsw, bytes);
2464         }
2465 }
2466
2467 /*
2468  * A helper function to get mem_cgroup from ID. must be called under
2469  * rcu_read_lock(). The caller must check css_is_removed() or some if
2470  * it's concern. (dropping refcnt from swap can be called against removed
2471  * memcg.)
2472  */
2473 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2474 {
2475         struct cgroup_subsys_state *css;
2476
2477         /* ID 0 is unused ID */
2478         if (!id)
2479                 return NULL;
2480         css = css_lookup(&mem_cgroup_subsys, id);
2481         if (!css)
2482                 return NULL;
2483         return container_of(css, struct mem_cgroup, css);
2484 }
2485
2486 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2487 {
2488         struct mem_cgroup *memcg = NULL;
2489         struct page_cgroup *pc;
2490         unsigned short id;
2491         swp_entry_t ent;
2492
2493         VM_BUG_ON(!PageLocked(page));
2494
2495         pc = lookup_page_cgroup(page);
2496         lock_page_cgroup(pc);
2497         if (PageCgroupUsed(pc)) {
2498                 memcg = pc->mem_cgroup;
2499                 if (memcg && !css_tryget(&memcg->css))
2500                         memcg = NULL;
2501         } else if (PageSwapCache(page)) {
2502                 ent.val = page_private(page);
2503                 id = lookup_swap_cgroup(ent);
2504                 rcu_read_lock();
2505                 memcg = mem_cgroup_lookup(id);
2506                 if (memcg && !css_tryget(&memcg->css))
2507                         memcg = NULL;
2508                 rcu_read_unlock();
2509         }
2510         unlock_page_cgroup(pc);
2511         return memcg;
2512 }
2513
2514 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2515                                        struct page *page,
2516                                        unsigned int nr_pages,
2517                                        struct page_cgroup *pc,
2518                                        enum charge_type ctype)
2519 {
2520         lock_page_cgroup(pc);
2521         if (unlikely(PageCgroupUsed(pc))) {
2522                 unlock_page_cgroup(pc);
2523                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2524                 return;
2525         }
2526         /*
2527          * we don't need page_cgroup_lock about tail pages, becase they are not
2528          * accessed by any other context at this point.
2529          */
2530         pc->mem_cgroup = memcg;
2531         /*
2532          * We access a page_cgroup asynchronously without lock_page_cgroup().
2533          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2534          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2535          * before USED bit, we need memory barrier here.
2536          * See mem_cgroup_add_lru_list(), etc.
2537          */
2538         smp_wmb();
2539         switch (ctype) {
2540         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2541         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2542                 SetPageCgroupCache(pc);
2543                 SetPageCgroupUsed(pc);
2544                 break;
2545         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2546                 ClearPageCgroupCache(pc);
2547                 SetPageCgroupUsed(pc);
2548                 break;
2549         default:
2550                 break;
2551         }
2552
2553         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2554         unlock_page_cgroup(pc);
2555         /*
2556          * "charge_statistics" updated event counter. Then, check it.
2557          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2558          * if they exceeds softlimit.
2559          */
2560         memcg_check_events(memcg, page);
2561 }
2562
2563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564
2565 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2566                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2567 /*
2568  * Because tail pages are not marked as "used", set it. We're under
2569  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2570  */
2571 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2572 {
2573         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2575         unsigned long flags;
2576
2577         if (mem_cgroup_disabled())
2578                 return;
2579         /*
2580          * We have no races with charge/uncharge but will have races with
2581          * page state accounting.
2582          */
2583         move_lock_page_cgroup(head_pc, &flags);
2584
2585         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2586         smp_wmb(); /* see __commit_charge() */
2587         if (PageCgroupAcctLRU(head_pc)) {
2588                 enum lru_list lru;
2589                 struct mem_cgroup_per_zone *mz;
2590
2591                 /*
2592                  * LRU flags cannot be copied because we need to add tail
2593                  *.page to LRU by generic call and our hook will be called.
2594                  * We hold lru_lock, then, reduce counter directly.
2595                  */
2596                 lru = page_lru(head);
2597                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2598                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2599         }
2600         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2601         move_unlock_page_cgroup(head_pc, &flags);
2602 }
2603 #endif
2604
2605 /**
2606  * mem_cgroup_move_account - move account of the page
2607  * @page: the page
2608  * @nr_pages: number of regular pages (>1 for huge pages)
2609  * @pc: page_cgroup of the page.
2610  * @from: mem_cgroup which the page is moved from.
2611  * @to: mem_cgroup which the page is moved to. @from != @to.
2612  * @uncharge: whether we should call uncharge and css_put against @from.
2613  *
2614  * The caller must confirm following.
2615  * - page is not on LRU (isolate_page() is useful.)
2616  * - compound_lock is held when nr_pages > 1
2617  *
2618  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2619  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2620  * true, this function does "uncharge" from old cgroup, but it doesn't if
2621  * @uncharge is false, so a caller should do "uncharge".
2622  */
2623 static int mem_cgroup_move_account(struct page *page,
2624                                    unsigned int nr_pages,
2625                                    struct page_cgroup *pc,
2626                                    struct mem_cgroup *from,
2627                                    struct mem_cgroup *to,
2628                                    bool uncharge)
2629 {
2630         unsigned long flags;
2631         int ret;
2632
2633         VM_BUG_ON(from == to);
2634         VM_BUG_ON(PageLRU(page));
2635         /*
2636          * The page is isolated from LRU. So, collapse function
2637          * will not handle this page. But page splitting can happen.
2638          * Do this check under compound_page_lock(). The caller should
2639          * hold it.
2640          */
2641         ret = -EBUSY;
2642         if (nr_pages > 1 && !PageTransHuge(page))
2643                 goto out;
2644
2645         lock_page_cgroup(pc);
2646
2647         ret = -EINVAL;
2648         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2649                 goto unlock;
2650
2651         move_lock_page_cgroup(pc, &flags);
2652
2653         if (PageCgroupFileMapped(pc)) {
2654                 /* Update mapped_file data for mem_cgroup */
2655                 preempt_disable();
2656                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2657                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2658                 preempt_enable();
2659         }
2660         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2661         if (uncharge)
2662                 /* This is not "cancel", but cancel_charge does all we need. */
2663                 __mem_cgroup_cancel_charge(from, nr_pages);
2664
2665         /* caller should have done css_get */
2666         pc->mem_cgroup = to;
2667         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2668         /*
2669          * We charges against "to" which may not have any tasks. Then, "to"
2670          * can be under rmdir(). But in current implementation, caller of
2671          * this function is just force_empty() and move charge, so it's
2672          * guaranteed that "to" is never removed. So, we don't check rmdir
2673          * status here.
2674          */
2675         move_unlock_page_cgroup(pc, &flags);
2676         ret = 0;
2677 unlock:
2678         unlock_page_cgroup(pc);
2679         /*
2680          * check events
2681          */
2682         memcg_check_events(to, page);
2683         memcg_check_events(from, page);
2684 out:
2685         return ret;
2686 }
2687
2688 /*
2689  * move charges to its parent.
2690  */
2691
2692 static int mem_cgroup_move_parent(struct page *page,
2693                                   struct page_cgroup *pc,
2694                                   struct mem_cgroup *child,
2695                                   gfp_t gfp_mask)
2696 {
2697         struct cgroup *cg = child->css.cgroup;
2698         struct cgroup *pcg = cg->parent;
2699         struct mem_cgroup *parent;
2700         unsigned int nr_pages;
2701         unsigned long uninitialized_var(flags);
2702         int ret;
2703
2704         /* Is ROOT ? */
2705         if (!pcg)
2706                 return -EINVAL;
2707
2708         ret = -EBUSY;
2709         if (!get_page_unless_zero(page))
2710                 goto out;
2711         if (isolate_lru_page(page))
2712                 goto put;
2713
2714         nr_pages = hpage_nr_pages(page);
2715
2716         parent = mem_cgroup_from_cont(pcg);
2717         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2718         if (ret || !parent)
2719                 goto put_back;
2720
2721         if (nr_pages > 1)
2722                 flags = compound_lock_irqsave(page);
2723
2724         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2725         if (ret)
2726                 __mem_cgroup_cancel_charge(parent, nr_pages);
2727
2728         if (nr_pages > 1)
2729                 compound_unlock_irqrestore(page, flags);
2730 put_back:
2731         putback_lru_page(page);
2732 put:
2733         put_page(page);
2734 out:
2735         return ret;
2736 }
2737
2738 /*
2739  * Charge the memory controller for page usage.
2740  * Return
2741  * 0 if the charge was successful
2742  * < 0 if the cgroup is over its limit
2743  */
2744 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2745                                 gfp_t gfp_mask, enum charge_type ctype)
2746 {
2747         struct mem_cgroup *memcg = NULL;
2748         unsigned int nr_pages = 1;
2749         struct page_cgroup *pc;
2750         bool oom = true;
2751         int ret;
2752
2753         if (PageTransHuge(page)) {
2754                 nr_pages <<= compound_order(page);
2755                 VM_BUG_ON(!PageTransHuge(page));
2756                 /*
2757                  * Never OOM-kill a process for a huge page.  The
2758                  * fault handler will fall back to regular pages.
2759                  */
2760                 oom = false;
2761         }
2762
2763         pc = lookup_page_cgroup(page);
2764         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2765
2766         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2767         if (ret || !memcg)
2768                 return ret;
2769
2770         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2771         return 0;
2772 }
2773
2774 int mem_cgroup_newpage_charge(struct page *page,
2775                               struct mm_struct *mm, gfp_t gfp_mask)
2776 {
2777         if (mem_cgroup_disabled())
2778                 return 0;
2779         /*
2780          * If already mapped, we don't have to account.
2781          * If page cache, page->mapping has address_space.
2782          * But page->mapping may have out-of-use anon_vma pointer,
2783          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2784          * is NULL.
2785          */
2786         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2787                 return 0;
2788         if (unlikely(!mm))
2789                 mm = &init_mm;
2790         return mem_cgroup_charge_common(page, mm, gfp_mask,
2791                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2792 }
2793
2794 static void
2795 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2796                                         enum charge_type ctype);
2797
2798 static void
2799 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2800                                         enum charge_type ctype)
2801 {
2802         struct page_cgroup *pc = lookup_page_cgroup(page);
2803         /*
2804          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2805          * is already on LRU. It means the page may on some other page_cgroup's
2806          * LRU. Take care of it.
2807          */
2808         mem_cgroup_lru_del_before_commit(page);
2809         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2810         mem_cgroup_lru_add_after_commit(page);
2811         return;
2812 }
2813
2814 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2815                                 gfp_t gfp_mask)
2816 {
2817         struct mem_cgroup *memcg = NULL;
2818         int ret;
2819
2820         if (mem_cgroup_disabled())
2821                 return 0;
2822         if (PageCompound(page))
2823                 return 0;
2824
2825         if (unlikely(!mm))
2826                 mm = &init_mm;
2827
2828         if (page_is_file_cache(page)) {
2829                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2830                 if (ret || !memcg)
2831                         return ret;
2832
2833                 /*
2834                  * FUSE reuses pages without going through the final
2835                  * put that would remove them from the LRU list, make
2836                  * sure that they get relinked properly.
2837                  */
2838                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2839                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2840                 return ret;
2841         }
2842         /* shmem */
2843         if (PageSwapCache(page)) {
2844                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2845                 if (!ret)
2846                         __mem_cgroup_commit_charge_swapin(page, memcg,
2847                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2848         } else
2849                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2850                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2851
2852         return ret;
2853 }
2854
2855 /*
2856  * While swap-in, try_charge -> commit or cancel, the page is locked.
2857  * And when try_charge() successfully returns, one refcnt to memcg without
2858  * struct page_cgroup is acquired. This refcnt will be consumed by
2859  * "commit()" or removed by "cancel()"
2860  */
2861 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2862                                  struct page *page,
2863                                  gfp_t mask, struct mem_cgroup **ptr)
2864 {
2865         struct mem_cgroup *memcg;
2866         int ret;
2867
2868         *ptr = NULL;
2869
2870         if (mem_cgroup_disabled())
2871                 return 0;
2872
2873         if (!do_swap_account)
2874                 goto charge_cur_mm;
2875         /*
2876          * A racing thread's fault, or swapoff, may have already updated
2877          * the pte, and even removed page from swap cache: in those cases
2878          * do_swap_page()'s pte_same() test will fail; but there's also a
2879          * KSM case which does need to charge the page.
2880          */
2881         if (!PageSwapCache(page))
2882                 goto charge_cur_mm;
2883         memcg = try_get_mem_cgroup_from_page(page);
2884         if (!memcg)
2885                 goto charge_cur_mm;
2886         *ptr = memcg;
2887         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2888         css_put(&memcg->css);
2889         return ret;
2890 charge_cur_mm:
2891         if (unlikely(!mm))
2892                 mm = &init_mm;
2893         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2894 }
2895
2896 static void
2897 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2898                                         enum charge_type ctype)
2899 {
2900         if (mem_cgroup_disabled())
2901                 return;
2902         if (!ptr)
2903                 return;
2904         cgroup_exclude_rmdir(&ptr->css);
2905
2906         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2907         /*
2908          * Now swap is on-memory. This means this page may be
2909          * counted both as mem and swap....double count.
2910          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2911          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2912          * may call delete_from_swap_cache() before reach here.
2913          */
2914         if (do_swap_account && PageSwapCache(page)) {
2915                 swp_entry_t ent = {.val = page_private(page)};
2916                 unsigned short id;
2917                 struct mem_cgroup *memcg;
2918
2919                 id = swap_cgroup_record(ent, 0);
2920                 rcu_read_lock();
2921                 memcg = mem_cgroup_lookup(id);
2922                 if (memcg) {
2923                         /*
2924                          * This recorded memcg can be obsolete one. So, avoid
2925                          * calling css_tryget
2926                          */
2927                         if (!mem_cgroup_is_root(memcg))
2928                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2929                         mem_cgroup_swap_statistics(memcg, false);
2930                         mem_cgroup_put(memcg);
2931                 }
2932                 rcu_read_unlock();
2933         }
2934         /*
2935          * At swapin, we may charge account against cgroup which has no tasks.
2936          * So, rmdir()->pre_destroy() can be called while we do this charge.
2937          * In that case, we need to call pre_destroy() again. check it here.
2938          */
2939         cgroup_release_and_wakeup_rmdir(&ptr->css);
2940 }
2941
2942 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2943 {
2944         __mem_cgroup_commit_charge_swapin(page, ptr,
2945                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2946 }
2947
2948 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2949 {
2950         if (mem_cgroup_disabled())
2951                 return;
2952         if (!memcg)
2953                 return;
2954         __mem_cgroup_cancel_charge(memcg, 1);
2955 }
2956
2957 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2958                                    unsigned int nr_pages,
2959                                    const enum charge_type ctype)
2960 {
2961         struct memcg_batch_info *batch = NULL;
2962         bool uncharge_memsw = true;
2963
2964         /* If swapout, usage of swap doesn't decrease */
2965         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2966                 uncharge_memsw = false;
2967
2968         batch = &current->memcg_batch;
2969         /*
2970          * In usual, we do css_get() when we remember memcg pointer.
2971          * But in this case, we keep res->usage until end of a series of
2972          * uncharges. Then, it's ok to ignore memcg's refcnt.
2973          */
2974         if (!batch->memcg)
2975                 batch->memcg = memcg;
2976         /*
2977          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2978          * In those cases, all pages freed continuously can be expected to be in
2979          * the same cgroup and we have chance to coalesce uncharges.
2980          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2981          * because we want to do uncharge as soon as possible.
2982          */
2983
2984         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2985                 goto direct_uncharge;
2986
2987         if (nr_pages > 1)
2988                 goto direct_uncharge;
2989
2990         /*
2991          * In typical case, batch->memcg == mem. This means we can
2992          * merge a series of uncharges to an uncharge of res_counter.
2993          * If not, we uncharge res_counter ony by one.
2994          */
2995         if (batch->memcg != memcg)
2996                 goto direct_uncharge;
2997         /* remember freed charge and uncharge it later */
2998         batch->nr_pages++;
2999         if (uncharge_memsw)
3000                 batch->memsw_nr_pages++;
3001         return;
3002 direct_uncharge:
3003         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3004         if (uncharge_memsw)
3005                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3006         if (unlikely(batch->memcg != memcg))
3007                 memcg_oom_recover(memcg);
3008         return;
3009 }
3010
3011 /*
3012  * uncharge if !page_mapped(page)
3013  */
3014 static struct mem_cgroup *
3015 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3016 {
3017         struct mem_cgroup *memcg = NULL;
3018         unsigned int nr_pages = 1;
3019         struct page_cgroup *pc;
3020
3021         if (mem_cgroup_disabled())
3022                 return NULL;
3023
3024         if (PageSwapCache(page))
3025                 return NULL;
3026
3027         if (PageTransHuge(page)) {
3028                 nr_pages <<= compound_order(page);
3029                 VM_BUG_ON(!PageTransHuge(page));
3030         }
3031         /*
3032          * Check if our page_cgroup is valid
3033          */
3034         pc = lookup_page_cgroup(page);
3035         if (unlikely(!pc || !PageCgroupUsed(pc)))
3036                 return NULL;
3037
3038         lock_page_cgroup(pc);
3039
3040         memcg = pc->mem_cgroup;
3041
3042         if (!PageCgroupUsed(pc))
3043                 goto unlock_out;
3044
3045         switch (ctype) {
3046         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3047         case MEM_CGROUP_CHARGE_TYPE_DROP:
3048                 /* See mem_cgroup_prepare_migration() */
3049                 if (page_mapped(page) || PageCgroupMigration(pc))
3050                         goto unlock_out;
3051                 break;
3052         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3053                 if (!PageAnon(page)) {  /* Shared memory */
3054                         if (page->mapping && !page_is_file_cache(page))
3055                                 goto unlock_out;
3056                 } else if (page_mapped(page)) /* Anon */
3057                                 goto unlock_out;
3058                 break;
3059         default:
3060                 break;
3061         }
3062
3063         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3064
3065         ClearPageCgroupUsed(pc);
3066         /*
3067          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3068          * freed from LRU. This is safe because uncharged page is expected not
3069          * to be reused (freed soon). Exception is SwapCache, it's handled by
3070          * special functions.
3071          */
3072
3073         unlock_page_cgroup(pc);
3074         /*
3075          * even after unlock, we have memcg->res.usage here and this memcg
3076          * will never be freed.
3077          */
3078         memcg_check_events(memcg, page);
3079         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3080                 mem_cgroup_swap_statistics(memcg, true);
3081                 mem_cgroup_get(memcg);
3082         }
3083         if (!mem_cgroup_is_root(memcg))
3084                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3085
3086         return memcg;
3087
3088 unlock_out:
3089         unlock_page_cgroup(pc);
3090         return NULL;
3091 }
3092
3093 void mem_cgroup_uncharge_page(struct page *page)
3094 {
3095         /* early check. */
3096         if (page_mapped(page))
3097                 return;
3098         if (page->mapping && !PageAnon(page))
3099                 return;
3100         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3101 }
3102
3103 void mem_cgroup_uncharge_cache_page(struct page *page)
3104 {
3105         VM_BUG_ON(page_mapped(page));
3106         VM_BUG_ON(page->mapping);
3107         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3108 }
3109
3110 /*
3111  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3112  * In that cases, pages are freed continuously and we can expect pages
3113  * are in the same memcg. All these calls itself limits the number of
3114  * pages freed at once, then uncharge_start/end() is called properly.
3115  * This may be called prural(2) times in a context,
3116  */
3117
3118 void mem_cgroup_uncharge_start(void)
3119 {
3120         current->memcg_batch.do_batch++;
3121         /* We can do nest. */
3122         if (current->memcg_batch.do_batch == 1) {
3123                 current->memcg_batch.memcg = NULL;
3124                 current->memcg_batch.nr_pages = 0;
3125                 current->memcg_batch.memsw_nr_pages = 0;
3126         }
3127 }
3128
3129 void mem_cgroup_uncharge_end(void)
3130 {
3131         struct memcg_batch_info *batch = &current->memcg_batch;
3132
3133         if (!batch->do_batch)
3134                 return;
3135
3136         batch->do_batch--;
3137         if (batch->do_batch) /* If stacked, do nothing. */
3138                 return;
3139
3140         if (!batch->memcg)
3141                 return;
3142         /*
3143          * This "batch->memcg" is valid without any css_get/put etc...
3144          * bacause we hide charges behind us.
3145          */
3146         if (batch->nr_pages)
3147                 res_counter_uncharge(&batch->memcg->res,
3148                                      batch->nr_pages * PAGE_SIZE);
3149         if (batch->memsw_nr_pages)
3150                 res_counter_uncharge(&batch->memcg->memsw,
3151                                      batch->memsw_nr_pages * PAGE_SIZE);
3152         memcg_oom_recover(batch->memcg);
3153         /* forget this pointer (for sanity check) */
3154         batch->memcg = NULL;
3155 }
3156
3157 #ifdef CONFIG_SWAP
3158 /*
3159  * called after __delete_from_swap_cache() and drop "page" account.
3160  * memcg information is recorded to swap_cgroup of "ent"
3161  */
3162 void
3163 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3164 {
3165         struct mem_cgroup *memcg;
3166         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3167
3168         if (!swapout) /* this was a swap cache but the swap is unused ! */
3169                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3170
3171         memcg = __mem_cgroup_uncharge_common(page, ctype);
3172
3173         /*
3174          * record memcg information,  if swapout && memcg != NULL,
3175          * mem_cgroup_get() was called in uncharge().
3176          */
3177         if (do_swap_account && swapout && memcg)
3178                 swap_cgroup_record(ent, css_id(&memcg->css));
3179 }
3180 #endif
3181
3182 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3183 /*
3184  * called from swap_entry_free(). remove record in swap_cgroup and
3185  * uncharge "memsw" account.
3186  */
3187 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3188 {
3189         struct mem_cgroup *memcg;
3190         unsigned short id;
3191
3192         if (!do_swap_account)
3193                 return;
3194
3195         id = swap_cgroup_record(ent, 0);
3196         rcu_read_lock();
3197         memcg = mem_cgroup_lookup(id);
3198         if (memcg) {
3199                 /*
3200                  * We uncharge this because swap is freed.
3201                  * This memcg can be obsolete one. We avoid calling css_tryget
3202                  */
3203                 if (!mem_cgroup_is_root(memcg))
3204                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3205                 mem_cgroup_swap_statistics(memcg, false);
3206                 mem_cgroup_put(memcg);
3207         }
3208         rcu_read_unlock();
3209 }
3210
3211 /**
3212  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3213  * @entry: swap entry to be moved
3214  * @from:  mem_cgroup which the entry is moved from
3215  * @to:  mem_cgroup which the entry is moved to
3216  * @need_fixup: whether we should fixup res_counters and refcounts.
3217  *
3218  * It succeeds only when the swap_cgroup's record for this entry is the same
3219  * as the mem_cgroup's id of @from.
3220  *
3221  * Returns 0 on success, -EINVAL on failure.
3222  *
3223  * The caller must have charged to @to, IOW, called res_counter_charge() about
3224  * both res and memsw, and called css_get().
3225  */
3226 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3227                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3228 {
3229         unsigned short old_id, new_id;
3230
3231         old_id = css_id(&from->css);
3232         new_id = css_id(&to->css);
3233
3234         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3235                 mem_cgroup_swap_statistics(from, false);
3236                 mem_cgroup_swap_statistics(to, true);
3237                 /*
3238                  * This function is only called from task migration context now.
3239                  * It postpones res_counter and refcount handling till the end
3240                  * of task migration(mem_cgroup_clear_mc()) for performance
3241                  * improvement. But we cannot postpone mem_cgroup_get(to)
3242                  * because if the process that has been moved to @to does
3243                  * swap-in, the refcount of @to might be decreased to 0.
3244                  */
3245                 mem_cgroup_get(to);
3246                 if (need_fixup) {
3247                         if (!mem_cgroup_is_root(from))
3248                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3249                         mem_cgroup_put(from);
3250                         /*
3251                          * we charged both to->res and to->memsw, so we should
3252                          * uncharge to->res.
3253                          */
3254                         if (!mem_cgroup_is_root(to))
3255                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3256                 }
3257                 return 0;
3258         }
3259         return -EINVAL;
3260 }
3261 #else
3262 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3263                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3264 {
3265         return -EINVAL;
3266 }
3267 #endif
3268
3269 /*
3270  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3271  * page belongs to.
3272  */
3273 int mem_cgroup_prepare_migration(struct page *page,
3274         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3275 {
3276         struct mem_cgroup *memcg = NULL;
3277         struct page_cgroup *pc;
3278         enum charge_type ctype;
3279         int ret = 0;
3280
3281         *ptr = NULL;
3282
3283         VM_BUG_ON(PageTransHuge(page));
3284         if (mem_cgroup_disabled())
3285                 return 0;
3286
3287         pc = lookup_page_cgroup(page);
3288         lock_page_cgroup(pc);
3289         if (PageCgroupUsed(pc)) {
3290                 memcg = pc->mem_cgroup;
3291                 css_get(&memcg->css);
3292                 /*
3293                  * At migrating an anonymous page, its mapcount goes down
3294                  * to 0 and uncharge() will be called. But, even if it's fully
3295                  * unmapped, migration may fail and this page has to be
3296                  * charged again. We set MIGRATION flag here and delay uncharge
3297                  * until end_migration() is called
3298                  *
3299                  * Corner Case Thinking
3300                  * A)
3301                  * When the old page was mapped as Anon and it's unmap-and-freed
3302                  * while migration was ongoing.
3303                  * If unmap finds the old page, uncharge() of it will be delayed
3304                  * until end_migration(). If unmap finds a new page, it's
3305                  * uncharged when it make mapcount to be 1->0. If unmap code
3306                  * finds swap_migration_entry, the new page will not be mapped
3307                  * and end_migration() will find it(mapcount==0).
3308                  *
3309                  * B)
3310                  * When the old page was mapped but migraion fails, the kernel
3311                  * remaps it. A charge for it is kept by MIGRATION flag even
3312                  * if mapcount goes down to 0. We can do remap successfully
3313                  * without charging it again.
3314                  *
3315                  * C)
3316                  * The "old" page is under lock_page() until the end of
3317                  * migration, so, the old page itself will not be swapped-out.
3318                  * If the new page is swapped out before end_migraton, our
3319                  * hook to usual swap-out path will catch the event.
3320                  */
3321                 if (PageAnon(page))
3322                         SetPageCgroupMigration(pc);
3323         }
3324         unlock_page_cgroup(pc);
3325         /*
3326          * If the page is not charged at this point,
3327          * we return here.
3328          */
3329         if (!memcg)
3330                 return 0;
3331
3332         *ptr = memcg;
3333         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3334         css_put(&memcg->css);/* drop extra refcnt */
3335         if (ret || *ptr == NULL) {
3336                 if (PageAnon(page)) {
3337                         lock_page_cgroup(pc);
3338                         ClearPageCgroupMigration(pc);
3339                         unlock_page_cgroup(pc);
3340                         /*
3341                          * The old page may be fully unmapped while we kept it.
3342                          */
3343                         mem_cgroup_uncharge_page(page);
3344                 }
3345                 return -ENOMEM;
3346         }
3347         /*
3348          * We charge new page before it's used/mapped. So, even if unlock_page()
3349          * is called before end_migration, we can catch all events on this new
3350          * page. In the case new page is migrated but not remapped, new page's
3351          * mapcount will be finally 0 and we call uncharge in end_migration().
3352          */
3353         pc = lookup_page_cgroup(newpage);
3354         if (PageAnon(page))
3355                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3356         else if (page_is_file_cache(page))
3357                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3358         else
3359                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3360         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3361         return ret;
3362 }
3363
3364 /* remove redundant charge if migration failed*/
3365 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3366         struct page *oldpage, struct page *newpage, bool migration_ok)
3367 {
3368         struct page *used, *unused;
3369         struct page_cgroup *pc;
3370
3371         if (!memcg)
3372                 return;
3373         /* blocks rmdir() */
3374         cgroup_exclude_rmdir(&memcg->css);
3375         if (!migration_ok) {
3376                 used = oldpage;
3377                 unused = newpage;
3378         } else {
3379                 used = newpage;
3380                 unused = oldpage;
3381         }
3382         /*
3383          * We disallowed uncharge of pages under migration because mapcount
3384          * of the page goes down to zero, temporarly.
3385          * Clear the flag and check the page should be charged.
3386          */
3387         pc = lookup_page_cgroup(oldpage);
3388         lock_page_cgroup(pc);
3389         ClearPageCgroupMigration(pc);
3390         unlock_page_cgroup(pc);
3391
3392         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3393
3394         /*
3395          * If a page is a file cache, radix-tree replacement is very atomic
3396          * and we can skip this check. When it was an Anon page, its mapcount
3397          * goes down to 0. But because we added MIGRATION flage, it's not
3398          * uncharged yet. There are several case but page->mapcount check
3399          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3400          * check. (see prepare_charge() also)
3401          */
3402         if (PageAnon(used))
3403                 mem_cgroup_uncharge_page(used);
3404         /*
3405          * At migration, we may charge account against cgroup which has no
3406          * tasks.
3407          * So, rmdir()->pre_destroy() can be called while we do this charge.
3408          * In that case, we need to call pre_destroy() again. check it here.
3409          */
3410         cgroup_release_and_wakeup_rmdir(&memcg->css);
3411 }
3412
3413 /*
3414  * At replace page cache, newpage is not under any memcg but it's on
3415  * LRU. So, this function doesn't touch res_counter but handles LRU
3416  * in correct way. Both pages are locked so we cannot race with uncharge.
3417  */
3418 void mem_cgroup_replace_page_cache(struct page *oldpage,
3419                                   struct page *newpage)
3420 {
3421         struct mem_cgroup *memcg;
3422         struct page_cgroup *pc;
3423         struct zone *zone;
3424         enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3425         unsigned long flags;
3426
3427         if (mem_cgroup_disabled())
3428                 return;
3429
3430         pc = lookup_page_cgroup(oldpage);
3431         /* fix accounting on old pages */
3432         lock_page_cgroup(pc);
3433         memcg = pc->mem_cgroup;
3434         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3435         ClearPageCgroupUsed(pc);
3436         unlock_page_cgroup(pc);
3437
3438         if (PageSwapBacked(oldpage))
3439                 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3440
3441         zone = page_zone(newpage);
3442         pc = lookup_page_cgroup(newpage);
3443         /*
3444          * Even if newpage->mapping was NULL before starting replacement,
3445          * the newpage may be on LRU(or pagevec for LRU) already. We lock
3446          * LRU while we overwrite pc->mem_cgroup.
3447          */
3448         spin_lock_irqsave(&zone->lru_lock, flags);
3449         if (PageLRU(newpage))
3450                 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3451         __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3452         if (PageLRU(newpage))
3453                 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3454         spin_unlock_irqrestore(&zone->lru_lock, flags);
3455 }
3456
3457 #ifdef CONFIG_DEBUG_VM
3458 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3459 {
3460         struct page_cgroup *pc;
3461
3462         pc = lookup_page_cgroup(page);
3463         if (likely(pc) && PageCgroupUsed(pc))
3464                 return pc;
3465         return NULL;
3466 }
3467
3468 bool mem_cgroup_bad_page_check(struct page *page)
3469 {
3470         if (mem_cgroup_disabled())
3471                 return false;
3472
3473         return lookup_page_cgroup_used(page) != NULL;
3474 }
3475
3476 void mem_cgroup_print_bad_page(struct page *page)
3477 {
3478         struct page_cgroup *pc;
3479
3480         pc = lookup_page_cgroup_used(page);
3481         if (pc) {
3482                 int ret = -1;
3483                 char *path;
3484
3485                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3486                        pc, pc->flags, pc->mem_cgroup);
3487
3488                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3489                 if (path) {
3490                         rcu_read_lock();
3491                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3492                                                         path, PATH_MAX);
3493                         rcu_read_unlock();
3494                 }
3495
3496                 printk(KERN_CONT "(%s)\n",
3497                                 (ret < 0) ? "cannot get the path" : path);
3498                 kfree(path);
3499         }
3500 }
3501 #endif
3502
3503 static DEFINE_MUTEX(set_limit_mutex);
3504
3505 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3506                                 unsigned long long val)
3507 {
3508         int retry_count;
3509         u64 memswlimit, memlimit;
3510         int ret = 0;
3511         int children = mem_cgroup_count_children(memcg);
3512         u64 curusage, oldusage;
3513         int enlarge;
3514
3515         /*
3516          * For keeping hierarchical_reclaim simple, how long we should retry
3517          * is depends on callers. We set our retry-count to be function
3518          * of # of children which we should visit in this loop.
3519          */
3520         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3521
3522         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3523
3524         enlarge = 0;
3525         while (retry_count) {
3526                 if (signal_pending(current)) {
3527                         ret = -EINTR;
3528                         break;
3529                 }
3530                 /*
3531                  * Rather than hide all in some function, I do this in
3532                  * open coded manner. You see what this really does.
3533                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3534                  */
3535                 mutex_lock(&set_limit_mutex);
3536                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3537                 if (memswlimit < val) {
3538                         ret = -EINVAL;
3539                         mutex_unlock(&set_limit_mutex);
3540                         break;
3541                 }
3542
3543                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3544                 if (memlimit < val)
3545                         enlarge = 1;
3546
3547                 ret = res_counter_set_limit(&memcg->res, val);
3548                 if (!ret) {
3549                         if (memswlimit == val)
3550                                 memcg->memsw_is_minimum = true;
3551                         else
3552                                 memcg->memsw_is_minimum = false;
3553                 }
3554                 mutex_unlock(&set_limit_mutex);
3555
3556                 if (!ret)
3557                         break;
3558
3559                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3560                                    MEM_CGROUP_RECLAIM_SHRINK);
3561                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3562                 /* Usage is reduced ? */
3563                 if (curusage >= oldusage)
3564                         retry_count--;
3565                 else
3566                         oldusage = curusage;
3567         }
3568         if (!ret && enlarge)
3569                 memcg_oom_recover(memcg);
3570
3571         return ret;
3572 }
3573
3574 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3575                                         unsigned long long val)
3576 {
3577         int retry_count;
3578         u64 memlimit, memswlimit, oldusage, curusage;
3579         int children = mem_cgroup_count_children(memcg);
3580         int ret = -EBUSY;
3581         int enlarge = 0;
3582
3583         /* see mem_cgroup_resize_res_limit */
3584         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3585         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3586         while (retry_count) {
3587                 if (signal_pending(current)) {
3588                         ret = -EINTR;
3589                         break;
3590                 }
3591                 /*
3592                  * Rather than hide all in some function, I do this in
3593                  * open coded manner. You see what this really does.
3594                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3595                  */
3596                 mutex_lock(&set_limit_mutex);
3597                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3598                 if (memlimit > val) {
3599                         ret = -EINVAL;
3600                         mutex_unlock(&set_limit_mutex);
3601                         break;
3602                 }
3603                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3604                 if (memswlimit < val)
3605                         enlarge = 1;
3606                 ret = res_counter_set_limit(&memcg->memsw, val);
3607                 if (!ret) {
3608                         if (memlimit == val)
3609                                 memcg->memsw_is_minimum = true;
3610                         else
3611                                 memcg->memsw_is_minimum = false;
3612                 }
3613                 mutex_unlock(&set_limit_mutex);
3614
3615                 if (!ret)
3616                         break;
3617
3618                 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3619                                    MEM_CGROUP_RECLAIM_NOSWAP |
3620                                    MEM_CGROUP_RECLAIM_SHRINK);
3621                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3622                 /* Usage is reduced ? */
3623                 if (curusage >= oldusage)
3624                         retry_count--;
3625                 else
3626                         oldusage = curusage;
3627         }
3628         if (!ret && enlarge)
3629                 memcg_oom_recover(memcg);
3630         return ret;
3631 }
3632
3633 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3634                                             gfp_t gfp_mask,
3635                                             unsigned long *total_scanned)
3636 {
3637         unsigned long nr_reclaimed = 0;
3638         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3639         unsigned long reclaimed;
3640         int loop = 0;
3641         struct mem_cgroup_tree_per_zone *mctz;
3642         unsigned long long excess;
3643         unsigned long nr_scanned;
3644
3645         if (order > 0)
3646                 return 0;
3647
3648         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3649         /*
3650          * This loop can run a while, specially if mem_cgroup's continuously
3651          * keep exceeding their soft limit and putting the system under
3652          * pressure
3653          */
3654         do {
3655                 if (next_mz)
3656                         mz = next_mz;
3657                 else
3658                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3659                 if (!mz)
3660                         break;
3661
3662                 nr_scanned = 0;
3663                 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3664                                                     gfp_mask, &nr_scanned);
3665                 nr_reclaimed += reclaimed;
3666                 *total_scanned += nr_scanned;
3667                 spin_lock(&mctz->lock);
3668
3669                 /*
3670                  * If we failed to reclaim anything from this memory cgroup
3671                  * it is time to move on to the next cgroup
3672                  */
3673                 next_mz = NULL;
3674                 if (!reclaimed) {
3675                         do {
3676                                 /*
3677                                  * Loop until we find yet another one.
3678                                  *
3679                                  * By the time we get the soft_limit lock
3680                                  * again, someone might have aded the
3681                                  * group back on the RB tree. Iterate to
3682                                  * make sure we get a different mem.
3683                                  * mem_cgroup_largest_soft_limit_node returns
3684                                  * NULL if no other cgroup is present on
3685                                  * the tree
3686                                  */
3687                                 next_mz =
3688                                 __mem_cgroup_largest_soft_limit_node(mctz);
3689                                 if (next_mz == mz)
3690                                         css_put(&next_mz->mem->css);
3691                                 else /* next_mz == NULL or other memcg */
3692                                         break;
3693                         } while (1);
3694                 }
3695                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3696                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3697                 /*
3698                  * One school of thought says that we should not add
3699                  * back the node to the tree if reclaim returns 0.
3700                  * But our reclaim could return 0, simply because due
3701                  * to priority we are exposing a smaller subset of
3702                  * memory to reclaim from. Consider this as a longer
3703                  * term TODO.
3704                  */
3705                 /* If excess == 0, no tree ops */
3706                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3707                 spin_unlock(&mctz->lock);
3708                 css_put(&mz->mem->css);
3709                 loop++;
3710                 /*
3711                  * Could not reclaim anything and there are no more
3712                  * mem cgroups to try or we seem to be looping without
3713                  * reclaiming anything.
3714                  */
3715                 if (!nr_reclaimed &&
3716                         (next_mz == NULL ||
3717                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3718                         break;
3719         } while (!nr_reclaimed);
3720         if (next_mz)
3721                 css_put(&next_mz->mem->css);
3722         return nr_reclaimed;
3723 }
3724
3725 /*
3726  * This routine traverse page_cgroup in given list and drop them all.
3727  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3728  */
3729 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3730                                 int node, int zid, enum lru_list lru)
3731 {
3732         struct zone *zone;
3733         struct mem_cgroup_per_zone *mz;
3734         struct page_cgroup *pc, *busy;
3735         unsigned long flags, loop;
3736         struct list_head *list;
3737         int ret = 0;
3738
3739         zone = &NODE_DATA(node)->node_zones[zid];
3740         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3741         list = &mz->lists[lru];
3742
3743         loop = MEM_CGROUP_ZSTAT(mz, lru);
3744         /* give some margin against EBUSY etc...*/
3745         loop += 256;
3746         busy = NULL;
3747         while (loop--) {
3748                 struct page *page;
3749
3750                 ret = 0;
3751                 spin_lock_irqsave(&zone->lru_lock, flags);
3752                 if (list_empty(list)) {
3753                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3754                         break;
3755                 }
3756                 pc = list_entry(list->prev, struct page_cgroup, lru);
3757                 if (busy == pc) {
3758                         list_move(&pc->lru, list);
3759                         busy = NULL;
3760                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3761                         continue;
3762                 }
3763                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3764
3765                 page = lookup_cgroup_page(pc);
3766
3767                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3768                 if (ret == -ENOMEM)
3769                         break;
3770
3771                 if (ret == -EBUSY || ret == -EINVAL) {
3772                         /* found lock contention or "pc" is obsolete. */
3773                         busy = pc;
3774                         cond_resched();
3775                 } else
3776                         busy = NULL;
3777         }
3778
3779         if (!ret && !list_empty(list))
3780                 return -EBUSY;
3781         return ret;
3782 }
3783
3784 /*
3785  * make mem_cgroup's charge to be 0 if there is no task.
3786  * This enables deleting this mem_cgroup.
3787  */
3788 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3789 {
3790         int ret;
3791         int node, zid, shrink;
3792         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3793         struct cgroup *cgrp = memcg->css.cgroup;
3794
3795         css_get(&memcg->css);
3796
3797         shrink = 0;
3798         /* should free all ? */
3799         if (free_all)
3800                 goto try_to_free;
3801 move_account:
3802         do {
3803                 ret = -EBUSY;
3804                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3805                         goto out;
3806                 ret = -EINTR;
3807                 if (signal_pending(current))
3808                         goto out;
3809                 /* This is for making all *used* pages to be on LRU. */
3810                 lru_add_drain_all();
3811                 drain_all_stock_sync(memcg);
3812                 ret = 0;
3813                 mem_cgroup_start_move(memcg);
3814                 for_each_node_state(node, N_HIGH_MEMORY) {
3815                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3816                                 enum lru_list l;
3817                                 for_each_lru(l) {
3818                                         ret = mem_cgroup_force_empty_list(memcg,
3819                                                         node, zid, l);
3820                                         if (ret)
3821                                                 break;
3822                                 }
3823                         }
3824                         if (ret)
3825                                 break;
3826                 }
3827                 mem_cgroup_end_move(memcg);
3828                 memcg_oom_recover(memcg);
3829                 /* it seems parent cgroup doesn't have enough mem */
3830                 if (ret == -ENOMEM)
3831                         goto try_to_free;
3832                 cond_resched();
3833         /* "ret" should also be checked to ensure all lists are empty. */
3834         } while (memcg->res.usage > 0 || ret);
3835 out:
3836         css_put(&memcg->css);
3837         return ret;
3838
3839 try_to_free:
3840         /* returns EBUSY if there is a task or if we come here twice. */
3841         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3842                 ret = -EBUSY;
3843                 goto out;
3844         }
3845         /* we call try-to-free pages for make this cgroup empty */
3846         lru_add_drain_all();
3847         /* try to free all pages in this cgroup */
3848         shrink = 1;
3849         while (nr_retries && memcg->res.usage > 0) {
3850                 int progress;
3851
3852                 if (signal_pending(current)) {
3853                         ret = -EINTR;
3854                         goto out;
3855                 }
3856                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3857                                                 false);
3858                 if (!progress) {
3859                         nr_retries--;
3860                         /* maybe some writeback is necessary */
3861                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3862                 }
3863
3864         }
3865         lru_add_drain();
3866         /* try move_account...there may be some *locked* pages. */
3867         goto move_account;
3868 }
3869
3870 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3871 {
3872         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3873 }
3874
3875
3876 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3877 {
3878         return mem_cgroup_from_cont(cont)->use_hierarchy;
3879 }
3880
3881 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3882                                         u64 val)
3883 {
3884         int retval = 0;
3885         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3886         struct cgroup *parent = cont->parent;
3887         struct mem_cgroup *parent_memcg = NULL;
3888
3889         if (parent)
3890                 parent_memcg = mem_cgroup_from_cont(parent);
3891
3892         cgroup_lock();
3893         /*
3894          * If parent's use_hierarchy is set, we can't make any modifications
3895          * in the child subtrees. If it is unset, then the change can
3896          * occur, provided the current cgroup has no children.
3897          *
3898          * For the root cgroup, parent_mem is NULL, we allow value to be
3899          * set if there are no children.
3900          */
3901         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3902                                 (val == 1 || val == 0)) {
3903                 if (list_empty(&cont->children))
3904                         memcg->use_hierarchy = val;
3905                 else
3906                         retval = -EBUSY;
3907         } else
3908                 retval = -EINVAL;
3909         cgroup_unlock();
3910
3911         return retval;
3912 }
3913
3914
3915 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3916                                                enum mem_cgroup_stat_index idx)
3917 {
3918         struct mem_cgroup *iter;
3919         long val = 0;
3920
3921         /* Per-cpu values can be negative, use a signed accumulator */
3922         for_each_mem_cgroup_tree(iter, memcg)
3923                 val += mem_cgroup_read_stat(iter, idx);
3924
3925         if (val < 0) /* race ? */
3926                 val = 0;
3927         return val;
3928 }
3929
3930 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3931 {
3932         u64 val;
3933
3934         if (!mem_cgroup_is_root(memcg)) {
3935                 if (!swap)
3936                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3937                 else
3938                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3939         }
3940
3941         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3942         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3943
3944         if (swap)
3945                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3946
3947         return val << PAGE_SHIFT;
3948 }
3949
3950 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3951 {
3952         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3953         u64 val;
3954         int type, name;
3955
3956         type = MEMFILE_TYPE(cft->private);
3957         name = MEMFILE_ATTR(cft->private);
3958         switch (type) {
3959         case _MEM:
3960                 if (name == RES_USAGE)
3961                         val = mem_cgroup_usage(memcg, false);
3962                 else
3963                         val = res_counter_read_u64(&memcg->res, name);
3964                 break;
3965         case _MEMSWAP:
3966                 if (name == RES_USAGE)
3967                         val = mem_cgroup_usage(memcg, true);
3968                 else
3969                         val = res_counter_read_u64(&memcg->memsw, name);
3970                 break;
3971         default:
3972                 BUG();
3973                 break;
3974         }
3975         return val;
3976 }
3977 /*
3978  * The user of this function is...
3979  * RES_LIMIT.
3980  */
3981 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3982                             const char *buffer)
3983 {
3984         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3985         int type, name;
3986         unsigned long long val;
3987         int ret;
3988
3989         type = MEMFILE_TYPE(cft->private);
3990         name = MEMFILE_ATTR(cft->private);
3991         switch (name) {
3992         case RES_LIMIT:
3993                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3994                         ret = -EINVAL;
3995                         break;
3996                 }
3997                 /* This function does all necessary parse...reuse it */
3998                 ret = res_counter_memparse_write_strategy(buffer, &val);
3999                 if (ret)
4000                         break;
4001                 if (type == _MEM)
4002                         ret = mem_cgroup_resize_limit(memcg, val);
4003                 else
4004                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
4005                 break;
4006         case RES_SOFT_LIMIT:
4007                 ret = res_counter_memparse_write_strategy(buffer, &val);
4008                 if (ret)
4009                         break;
4010                 /*
4011                  * For memsw, soft limits are hard to implement in terms
4012                  * of semantics, for now, we support soft limits for
4013                  * control without swap
4014                  */
4015                 if (type == _MEM)
4016                         ret = res_counter_set_soft_limit(&memcg->res, val);
4017                 else
4018                         ret = -EINVAL;
4019                 break;
4020         default:
4021                 ret = -EINVAL; /* should be BUG() ? */
4022                 break;
4023         }
4024         return ret;
4025 }
4026
4027 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4028                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4029 {
4030         struct cgroup *cgroup;
4031         unsigned long long min_limit, min_memsw_limit, tmp;
4032
4033         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4034         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4035         cgroup = memcg->css.cgroup;
4036         if (!memcg->use_hierarchy)
4037                 goto out;
4038
4039         while (cgroup->parent) {
4040                 cgroup = cgroup->parent;
4041                 memcg = mem_cgroup_from_cont(cgroup);
4042                 if (!memcg->use_hierarchy)
4043                         break;
4044                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045                 min_limit = min(min_limit, tmp);
4046                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4047                 min_memsw_limit = min(min_memsw_limit, tmp);
4048         }
4049 out:
4050         *mem_limit = min_limit;
4051         *memsw_limit = min_memsw_limit;
4052         return;
4053 }
4054
4055 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4056 {
4057         struct mem_cgroup *memcg;
4058         int type, name;
4059
4060         memcg = mem_cgroup_from_cont(cont);
4061         type = MEMFILE_TYPE(event);
4062         name = MEMFILE_ATTR(event);
4063         switch (name) {
4064         case RES_MAX_USAGE:
4065                 if (type == _MEM)
4066                         res_counter_reset_max(&memcg->res);
4067                 else
4068                         res_counter_reset_max(&memcg->memsw);
4069                 break;
4070         case RES_FAILCNT:
4071                 if (type == _MEM)
4072                         res_counter_reset_failcnt(&memcg->res);
4073                 else
4074                         res_counter_reset_failcnt(&memcg->memsw);
4075                 break;
4076         }
4077
4078         return 0;
4079 }
4080
4081 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4082                                         struct cftype *cft)
4083 {
4084         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4085 }
4086
4087 #ifdef CONFIG_MMU
4088 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4089                                         struct cftype *cft, u64 val)
4090 {
4091         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4092
4093         if (val >= (1 << NR_MOVE_TYPE))
4094                 return -EINVAL;
4095         /*
4096          * We check this value several times in both in can_attach() and
4097          * attach(), so we need cgroup lock to prevent this value from being
4098          * inconsistent.
4099          */
4100         cgroup_lock();
4101         memcg->move_charge_at_immigrate = val;
4102         cgroup_unlock();
4103
4104         return 0;
4105 }
4106 #else
4107 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4108                                         struct cftype *cft, u64 val)
4109 {
4110         return -ENOSYS;
4111 }
4112 #endif
4113
4114
4115 /* For read statistics */
4116 enum {
4117         MCS_CACHE,
4118         MCS_RSS,
4119         MCS_FILE_MAPPED,
4120         MCS_PGPGIN,
4121         MCS_PGPGOUT,
4122         MCS_SWAP,
4123         MCS_PGFAULT,
4124         MCS_PGMAJFAULT,
4125         MCS_INACTIVE_ANON,
4126         MCS_ACTIVE_ANON,
4127         MCS_INACTIVE_FILE,
4128         MCS_ACTIVE_FILE,
4129         MCS_UNEVICTABLE,
4130         NR_MCS_STAT,
4131 };
4132
4133 struct mcs_total_stat {
4134         s64 stat[NR_MCS_STAT];
4135 };
4136
4137 struct {
4138         char *local_name;
4139         char *total_name;
4140 } memcg_stat_strings[NR_MCS_STAT] = {
4141         {"cache", "total_cache"},
4142         {"rss", "total_rss"},
4143         {"mapped_file", "total_mapped_file"},
4144         {"pgpgin", "total_pgpgin"},
4145         {"pgpgout", "total_pgpgout"},
4146         {"swap", "total_swap"},
4147         {"pgfault", "total_pgfault"},
4148         {"pgmajfault", "total_pgmajfault"},
4149         {"inactive_anon", "total_inactive_anon"},
4150         {"active_anon", "total_active_anon"},
4151         {"inactive_file", "total_inactive_file"},
4152         {"active_file", "total_active_file"},
4153         {"unevictable", "total_unevictable"}
4154 };
4155
4156
4157 static void
4158 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4159 {
4160         s64 val;
4161
4162         /* per cpu stat */
4163         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4164         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4165         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4166         s->stat[MCS_RSS] += val * PAGE_SIZE;
4167         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4168         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4169         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4170         s->stat[MCS_PGPGIN] += val;
4171         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4172         s->stat[MCS_PGPGOUT] += val;
4173         if (do_swap_account) {
4174                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4175                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4176         }
4177         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4178         s->stat[MCS_PGFAULT] += val;
4179         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4180         s->stat[MCS_PGMAJFAULT] += val;
4181
4182         /* per zone stat */
4183         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4184         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4185         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4186         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4187         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4188         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4189         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4190         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4191         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4192         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4193 }
4194
4195 static void
4196 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4197 {
4198         struct mem_cgroup *iter;
4199
4200         for_each_mem_cgroup_tree(iter, memcg)
4201                 mem_cgroup_get_local_stat(iter, s);
4202 }
4203
4204 #ifdef CONFIG_NUMA
4205 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4206 {
4207         int nid;
4208         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4209         unsigned long node_nr;
4210         struct cgroup *cont = m->private;
4211         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4212
4213         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4214         seq_printf(m, "total=%lu", total_nr);
4215         for_each_node_state(nid, N_HIGH_MEMORY) {
4216                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4217                 seq_printf(m, " N%d=%lu", nid, node_nr);
4218         }
4219         seq_putc(m, '\n');
4220
4221         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4222         seq_printf(m, "file=%lu", file_nr);
4223         for_each_node_state(nid, N_HIGH_MEMORY) {
4224                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4225                                 LRU_ALL_FILE);
4226                 seq_printf(m, " N%d=%lu", nid, node_nr);
4227         }
4228         seq_putc(m, '\n');
4229
4230         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4231         seq_printf(m, "anon=%lu", anon_nr);
4232         for_each_node_state(nid, N_HIGH_MEMORY) {
4233                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4234                                 LRU_ALL_ANON);
4235                 seq_printf(m, " N%d=%lu", nid, node_nr);
4236         }
4237         seq_putc(m, '\n');
4238
4239         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4240         seq_printf(m, "unevictable=%lu", unevictable_nr);
4241         for_each_node_state(nid, N_HIGH_MEMORY) {
4242                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4243                                 BIT(LRU_UNEVICTABLE));
4244                 seq_printf(m, " N%d=%lu", nid, node_nr);
4245         }
4246         seq_putc(m, '\n');
4247         return 0;
4248 }
4249 #endif /* CONFIG_NUMA */
4250
4251 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4252                                  struct cgroup_map_cb *cb)
4253 {
4254         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4255         struct mcs_total_stat mystat;
4256         int i;
4257
4258         memset(&mystat, 0, sizeof(mystat));
4259         mem_cgroup_get_local_stat(mem_cont, &mystat);
4260
4261
4262         for (i = 0; i < NR_MCS_STAT; i++) {
4263                 if (i == MCS_SWAP && !do_swap_account)
4264                         continue;
4265                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4266         }
4267
4268         /* Hierarchical information */
4269         {
4270                 unsigned long long limit, memsw_limit;
4271                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4272                 cb->fill(cb, "hierarchical_memory_limit", limit);
4273                 if (do_swap_account)
4274                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4275         }
4276
4277         memset(&mystat, 0, sizeof(mystat));
4278         mem_cgroup_get_total_stat(mem_cont, &mystat);
4279         for (i = 0; i < NR_MCS_STAT; i++) {
4280                 if (i == MCS_SWAP && !do_swap_account)
4281                         continue;
4282                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4283         }
4284
4285 #ifdef CONFIG_DEBUG_VM
4286         {
4287                 int nid, zid;
4288                 struct mem_cgroup_per_zone *mz;
4289                 unsigned long recent_rotated[2] = {0, 0};
4290                 unsigned long recent_scanned[2] = {0, 0};
4291
4292                 for_each_online_node(nid)
4293                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4294                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4295
4296                                 recent_rotated[0] +=
4297                                         mz->reclaim_stat.recent_rotated[0];
4298                                 recent_rotated[1] +=
4299                                         mz->reclaim_stat.recent_rotated[1];
4300                                 recent_scanned[0] +=
4301                                         mz->reclaim_stat.recent_scanned[0];
4302                                 recent_scanned[1] +=
4303                                         mz->reclaim_stat.recent_scanned[1];
4304                         }
4305                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4306                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4307                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4308                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4309         }
4310 #endif
4311
4312         return 0;
4313 }
4314
4315 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4316 {
4317         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4318
4319         return mem_cgroup_swappiness(memcg);
4320 }
4321
4322 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4323                                        u64 val)
4324 {
4325         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4326         struct mem_cgroup *parent;
4327
4328         if (val > 100)
4329                 return -EINVAL;
4330
4331         if (cgrp->parent == NULL)
4332                 return -EINVAL;
4333
4334         parent = mem_cgroup_from_cont(cgrp->parent);
4335
4336         cgroup_lock();
4337
4338         /* If under hierarchy, only empty-root can set this value */
4339         if ((parent->use_hierarchy) ||
4340             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4341                 cgroup_unlock();
4342                 return -EINVAL;
4343         }
4344
4345         memcg->swappiness = val;
4346
4347         cgroup_unlock();
4348
4349         return 0;
4350 }
4351
4352 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4353 {
4354         struct mem_cgroup_threshold_ary *t;
4355         u64 usage;
4356         int i;
4357
4358         rcu_read_lock();
4359         if (!swap)
4360                 t = rcu_dereference(memcg->thresholds.primary);
4361         else
4362                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4363
4364         if (!t)
4365                 goto unlock;
4366
4367         usage = mem_cgroup_usage(memcg, swap);
4368
4369         /*
4370          * current_threshold points to threshold just below usage.
4371          * If it's not true, a threshold was crossed after last
4372          * call of __mem_cgroup_threshold().
4373          */
4374         i = t->current_threshold;
4375
4376         /*
4377          * Iterate backward over array of thresholds starting from
4378          * current_threshold and check if a threshold is crossed.
4379          * If none of thresholds below usage is crossed, we read
4380          * only one element of the array here.
4381          */
4382         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4383                 eventfd_signal(t->entries[i].eventfd, 1);
4384
4385         /* i = current_threshold + 1 */
4386         i++;
4387
4388         /*
4389          * Iterate forward over array of thresholds starting from
4390          * current_threshold+1 and check if a threshold is crossed.
4391          * If none of thresholds above usage is crossed, we read
4392          * only one element of the array here.
4393          */
4394         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4395                 eventfd_signal(t->entries[i].eventfd, 1);
4396
4397         /* Update current_threshold */
4398         t->current_threshold = i - 1;
4399 unlock:
4400         rcu_read_unlock();
4401 }
4402
4403 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4404 {
4405         while (memcg) {
4406                 __mem_cgroup_threshold(memcg, false);
4407                 if (do_swap_account)
4408                         __mem_cgroup_threshold(memcg, true);
4409
4410                 memcg = parent_mem_cgroup(memcg);
4411         }
4412 }
4413
4414 static int compare_thresholds(const void *a, const void *b)
4415 {
4416         const struct mem_cgroup_threshold *_a = a;
4417         const struct mem_cgroup_threshold *_b = b;
4418
4419         return _a->threshold - _b->threshold;
4420 }
4421
4422 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4423 {
4424         struct mem_cgroup_eventfd_list *ev;
4425
4426         list_for_each_entry(ev, &memcg->oom_notify, list)
4427                 eventfd_signal(ev->eventfd, 1);
4428         return 0;
4429 }
4430
4431 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4432 {
4433         struct mem_cgroup *iter;
4434
4435         for_each_mem_cgroup_tree(iter, memcg)
4436                 mem_cgroup_oom_notify_cb(iter);
4437 }
4438
4439 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4440         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4441 {
4442         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4443         struct mem_cgroup_thresholds *thresholds;
4444         struct mem_cgroup_threshold_ary *new;
4445         int type = MEMFILE_TYPE(cft->private);
4446         u64 threshold, usage;
4447         int i, size, ret;
4448
4449         ret = res_counter_memparse_write_strategy(args, &threshold);
4450         if (ret)
4451                 return ret;
4452
4453         mutex_lock(&memcg->thresholds_lock);
4454
4455         if (type == _MEM)
4456                 thresholds = &memcg->thresholds;
4457         else if (type == _MEMSWAP)
4458                 thresholds = &memcg->memsw_thresholds;
4459         else
4460                 BUG();
4461
4462         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4463
4464         /* Check if a threshold crossed before adding a new one */
4465         if (thresholds->primary)
4466                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4467
4468         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4469
4470         /* Allocate memory for new array of thresholds */
4471         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4472                         GFP_KERNEL);
4473         if (!new) {
4474                 ret = -ENOMEM;
4475                 goto unlock;
4476         }
4477         new->size = size;
4478
4479         /* Copy thresholds (if any) to new array */
4480         if (thresholds->primary) {
4481                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4482                                 sizeof(struct mem_cgroup_threshold));
4483         }
4484
4485         /* Add new threshold */
4486         new->entries[size - 1].eventfd = eventfd;
4487         new->entries[size - 1].threshold = threshold;
4488
4489         /* Sort thresholds. Registering of new threshold isn't time-critical */
4490         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4491                         compare_thresholds, NULL);
4492
4493         /* Find current threshold */
4494         new->current_threshold = -1;
4495         for (i = 0; i < size; i++) {
4496                 if (new->entries[i].threshold < usage) {
4497                         /*
4498                          * new->current_threshold will not be used until
4499                          * rcu_assign_pointer(), so it's safe to increment
4500                          * it here.
4501                          */
4502                         ++new->current_threshold;
4503                 }
4504         }
4505
4506         /* Free old spare buffer and save old primary buffer as spare */
4507         kfree(thresholds->spare);
4508         thresholds->spare = thresholds->primary;
4509
4510         rcu_assign_pointer(thresholds->primary, new);
4511
4512         /* To be sure that nobody uses thresholds */
4513         synchronize_rcu();
4514
4515 unlock:
4516         mutex_unlock(&memcg->thresholds_lock);
4517
4518         return ret;
4519 }
4520
4521 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4522         struct cftype *cft, struct eventfd_ctx *eventfd)
4523 {
4524         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4525         struct mem_cgroup_thresholds *thresholds;
4526         struct mem_cgroup_threshold_ary *new;
4527         int type = MEMFILE_TYPE(cft->private);
4528         u64 usage;
4529         int i, j, size;
4530
4531         mutex_lock(&memcg->thresholds_lock);
4532         if (type == _MEM)
4533                 thresholds = &memcg->thresholds;
4534         else if (type == _MEMSWAP)
4535                 thresholds = &memcg->memsw_thresholds;
4536         else
4537                 BUG();
4538
4539         /*
4540          * Something went wrong if we trying to unregister a threshold
4541          * if we don't have thresholds
4542          */
4543         BUG_ON(!thresholds);
4544
4545         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4546
4547         /* Check if a threshold crossed before removing */
4548         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4549
4550         /* Calculate new number of threshold */
4551         size = 0;
4552         for (i = 0; i < thresholds->primary->size; i++) {
4553                 if (thresholds->primary->entries[i].eventfd != eventfd)
4554                         size++;
4555         }
4556
4557         new = thresholds->spare;
4558
4559         /* Set thresholds array to NULL if we don't have thresholds */
4560         if (!size) {
4561                 kfree(new);
4562                 new = NULL;
4563                 goto swap_buffers;
4564         }
4565
4566         new->size = size;
4567
4568         /* Copy thresholds and find current threshold */
4569         new->current_threshold = -1;
4570         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4571                 if (thresholds->primary->entries[i].eventfd == eventfd)
4572                         continue;
4573
4574                 new->entries[j] = thresholds->primary->entries[i];
4575                 if (new->entries[j].threshold < usage) {
4576                         /*
4577                          * new->current_threshold will not be used
4578                          * until rcu_assign_pointer(), so it's safe to increment
4579                          * it here.
4580                          */
4581                         ++new->current_threshold;
4582                 }
4583                 j++;
4584         }
4585
4586 swap_buffers:
4587         /* Swap primary and spare array */
4588         thresholds->spare = thresholds->primary;
4589         rcu_assign_pointer(thresholds->primary, new);
4590
4591         /* To be sure that nobody uses thresholds */
4592         synchronize_rcu();
4593
4594         mutex_unlock(&memcg->thresholds_lock);
4595 }
4596
4597 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4598         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4599 {
4600         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4601         struct mem_cgroup_eventfd_list *event;
4602         int type = MEMFILE_TYPE(cft->private);
4603
4604         BUG_ON(type != _OOM_TYPE);
4605         event = kmalloc(sizeof(*event), GFP_KERNEL);
4606         if (!event)
4607                 return -ENOMEM;
4608
4609         spin_lock(&memcg_oom_lock);
4610
4611         event->eventfd = eventfd;
4612         list_add(&event->list, &memcg->oom_notify);
4613
4614         /* already in OOM ? */
4615         if (atomic_read(&memcg->under_oom))
4616                 eventfd_signal(eventfd, 1);
4617         spin_unlock(&memcg_oom_lock);
4618
4619         return 0;
4620 }
4621
4622 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4623         struct cftype *cft, struct eventfd_ctx *eventfd)
4624 {
4625         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4626         struct mem_cgroup_eventfd_list *ev, *tmp;
4627         int type = MEMFILE_TYPE(cft->private);
4628
4629         BUG_ON(type != _OOM_TYPE);
4630
4631         spin_lock(&memcg_oom_lock);
4632
4633         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4634                 if (ev->eventfd == eventfd) {
4635                         list_del(&ev->list);
4636                         kfree(ev);
4637                 }
4638         }
4639
4640         spin_unlock(&memcg_oom_lock);
4641 }
4642
4643 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4644         struct cftype *cft,  struct cgroup_map_cb *cb)
4645 {
4646         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4647
4648         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4649
4650         if (atomic_read(&memcg->under_oom))
4651                 cb->fill(cb, "under_oom", 1);
4652         else
4653                 cb->fill(cb, "under_oom", 0);
4654         return 0;
4655 }
4656
4657 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4658         struct cftype *cft, u64 val)
4659 {
4660         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4661         struct mem_cgroup *parent;
4662
4663         /* cannot set to root cgroup and only 0 and 1 are allowed */
4664         if (!cgrp->parent || !((val == 0) || (val == 1)))
4665                 return -EINVAL;
4666
4667         parent = mem_cgroup_from_cont(cgrp->parent);
4668
4669         cgroup_lock();
4670         /* oom-kill-disable is a flag for subhierarchy. */
4671         if ((parent->use_hierarchy) ||
4672             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4673                 cgroup_unlock();
4674                 return -EINVAL;
4675         }
4676         memcg->oom_kill_disable = val;
4677         if (!val)
4678                 memcg_oom_recover(memcg);
4679         cgroup_unlock();
4680         return 0;
4681 }
4682
4683 #ifdef CONFIG_NUMA
4684 static const struct file_operations mem_control_numa_stat_file_operations = {
4685         .read = seq_read,
4686         .llseek = seq_lseek,
4687         .release = single_release,
4688 };
4689
4690 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4691 {
4692         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4693
4694         file->f_op = &mem_control_numa_stat_file_operations;
4695         return single_open(file, mem_control_numa_stat_show, cont);
4696 }
4697 #endif /* CONFIG_NUMA */
4698
4699 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4700 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4701 {
4702         /*
4703          * Part of this would be better living in a separate allocation
4704          * function, leaving us with just the cgroup tree population work.
4705          * We, however, depend on state such as network's proto_list that
4706          * is only initialized after cgroup creation. I found the less
4707          * cumbersome way to deal with it to defer it all to populate time
4708          */
4709         return mem_cgroup_sockets_init(cont, ss);
4710 };
4711
4712 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4713                                 struct cgroup *cont)
4714 {
4715         mem_cgroup_sockets_destroy(cont, ss);
4716 }
4717 #else
4718 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4719 {
4720         return 0;
4721 }
4722
4723 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4724                                 struct cgroup *cont)
4725 {
4726 }
4727 #endif
4728
4729 static struct cftype mem_cgroup_files[] = {
4730         {
4731                 .name = "usage_in_bytes",
4732                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4733                 .read_u64 = mem_cgroup_read,
4734                 .register_event = mem_cgroup_usage_register_event,
4735                 .unregister_event = mem_cgroup_usage_unregister_event,
4736         },
4737         {
4738                 .name = "max_usage_in_bytes",
4739                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4740                 .trigger = mem_cgroup_reset,
4741                 .read_u64 = mem_cgroup_read,
4742         },
4743         {
4744                 .name = "limit_in_bytes",
4745                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4746                 .write_string = mem_cgroup_write,
4747                 .read_u64 = mem_cgroup_read,
4748         },
4749         {
4750                 .name = "soft_limit_in_bytes",
4751                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4752                 .write_string = mem_cgroup_write,
4753                 .read_u64 = mem_cgroup_read,
4754         },
4755         {
4756                 .name = "failcnt",
4757                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4758                 .trigger = mem_cgroup_reset,
4759                 .read_u64 = mem_cgroup_read,
4760         },
4761         {
4762                 .name = "stat",
4763                 .read_map = mem_control_stat_show,
4764         },
4765         {
4766                 .name = "force_empty",
4767                 .trigger = mem_cgroup_force_empty_write,
4768         },
4769         {
4770                 .name = "use_hierarchy",
4771                 .write_u64 = mem_cgroup_hierarchy_write,
4772                 .read_u64 = mem_cgroup_hierarchy_read,
4773         },
4774         {
4775                 .name = "swappiness",
4776                 .read_u64 = mem_cgroup_swappiness_read,
4777                 .write_u64 = mem_cgroup_swappiness_write,
4778         },
4779         {
4780                 .name = "move_charge_at_immigrate",
4781                 .read_u64 = mem_cgroup_move_charge_read,
4782                 .write_u64 = mem_cgroup_move_charge_write,
4783         },
4784         {
4785                 .name = "oom_control",
4786                 .read_map = mem_cgroup_oom_control_read,
4787                 .write_u64 = mem_cgroup_oom_control_write,
4788                 .register_event = mem_cgroup_oom_register_event,
4789                 .unregister_event = mem_cgroup_oom_unregister_event,
4790                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4791         },
4792 #ifdef CONFIG_NUMA
4793         {
4794                 .name = "numa_stat",
4795                 .open = mem_control_numa_stat_open,
4796                 .mode = S_IRUGO,
4797         },
4798 #endif
4799 };
4800
4801 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4802 static struct cftype memsw_cgroup_files[] = {
4803         {
4804                 .name = "memsw.usage_in_bytes",
4805                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4806                 .read_u64 = mem_cgroup_read,
4807                 .register_event = mem_cgroup_usage_register_event,
4808                 .unregister_event = mem_cgroup_usage_unregister_event,
4809         },
4810         {
4811                 .name = "memsw.max_usage_in_bytes",
4812                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4813                 .trigger = mem_cgroup_reset,
4814                 .read_u64 = mem_cgroup_read,
4815         },
4816         {
4817                 .name = "memsw.limit_in_bytes",
4818                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4819                 .write_string = mem_cgroup_write,
4820                 .read_u64 = mem_cgroup_read,
4821         },
4822         {
4823                 .name = "memsw.failcnt",
4824                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4825                 .trigger = mem_cgroup_reset,
4826                 .read_u64 = mem_cgroup_read,
4827         },
4828 };
4829
4830 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4831 {
4832         if (!do_swap_account)
4833                 return 0;
4834         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4835                                 ARRAY_SIZE(memsw_cgroup_files));
4836 };
4837 #else
4838 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4839 {
4840         return 0;
4841 }
4842 #endif
4843
4844 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4845 {
4846         struct mem_cgroup_per_node *pn;
4847         struct mem_cgroup_per_zone *mz;
4848         enum lru_list l;
4849         int zone, tmp = node;
4850         /*
4851          * This routine is called against possible nodes.
4852          * But it's BUG to call kmalloc() against offline node.
4853          *
4854          * TODO: this routine can waste much memory for nodes which will
4855          *       never be onlined. It's better to use memory hotplug callback
4856          *       function.
4857          */
4858         if (!node_state(node, N_NORMAL_MEMORY))
4859                 tmp = -1;
4860         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4861         if (!pn)
4862                 return 1;
4863
4864         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4865                 mz = &pn->zoneinfo[zone];
4866                 for_each_lru(l)
4867                         INIT_LIST_HEAD(&mz->lists[l]);
4868                 mz->usage_in_excess = 0;
4869                 mz->on_tree = false;
4870                 mz->mem = memcg;
4871         }
4872         memcg->info.nodeinfo[node] = pn;
4873         return 0;
4874 }
4875
4876 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4877 {
4878         kfree(memcg->info.nodeinfo[node]);
4879 }
4880
4881 static struct mem_cgroup *mem_cgroup_alloc(void)
4882 {
4883         struct mem_cgroup *mem;
4884         int size = sizeof(struct mem_cgroup);
4885
4886         /* Can be very big if MAX_NUMNODES is very big */
4887         if (size < PAGE_SIZE)
4888                 mem = kzalloc(size, GFP_KERNEL);
4889         else
4890                 mem = vzalloc(size);
4891
4892         if (!mem)
4893                 return NULL;
4894
4895         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4896         if (!mem->stat)
4897                 goto out_free;
4898         spin_lock_init(&mem->pcp_counter_lock);
4899         return mem;
4900
4901 out_free:
4902         if (size < PAGE_SIZE)
4903                 kfree(mem);
4904         else
4905                 vfree(mem);
4906         return NULL;
4907 }
4908
4909 /*
4910  * At destroying mem_cgroup, references from swap_cgroup can remain.
4911  * (scanning all at force_empty is too costly...)
4912  *
4913  * Instead of clearing all references at force_empty, we remember
4914  * the number of reference from swap_cgroup and free mem_cgroup when
4915  * it goes down to 0.
4916  *
4917  * Removal of cgroup itself succeeds regardless of refs from swap.
4918  */
4919
4920 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4921 {
4922         int node;
4923
4924         mem_cgroup_remove_from_trees(memcg);
4925         free_css_id(&mem_cgroup_subsys, &memcg->css);
4926
4927         for_each_node_state(node, N_POSSIBLE)
4928                 free_mem_cgroup_per_zone_info(memcg, node);
4929
4930         free_percpu(memcg->stat);
4931         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4932                 kfree(memcg);
4933         else
4934                 vfree(memcg);
4935 }
4936
4937 static void mem_cgroup_get(struct mem_cgroup *memcg)
4938 {
4939         atomic_inc(&memcg->refcnt);
4940 }
4941
4942 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4943 {
4944         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4945                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4946                 __mem_cgroup_free(memcg);
4947                 if (parent)
4948                         mem_cgroup_put(parent);
4949         }
4950 }
4951
4952 static void mem_cgroup_put(struct mem_cgroup *memcg)
4953 {
4954         __mem_cgroup_put(memcg, 1);
4955 }
4956
4957 /*
4958  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4959  */
4960 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4961 {
4962         if (!memcg->res.parent)
4963                 return NULL;
4964         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4965 }
4966 EXPORT_SYMBOL(parent_mem_cgroup);
4967
4968 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4969 static void __init enable_swap_cgroup(void)
4970 {
4971         if (!mem_cgroup_disabled() && really_do_swap_account)
4972                 do_swap_account = 1;
4973 }
4974 #else
4975 static void __init enable_swap_cgroup(void)
4976 {
4977 }
4978 #endif
4979
4980 static int mem_cgroup_soft_limit_tree_init(void)
4981 {
4982         struct mem_cgroup_tree_per_node *rtpn;
4983         struct mem_cgroup_tree_per_zone *rtpz;
4984         int tmp, node, zone;
4985
4986         for_each_node_state(node, N_POSSIBLE) {
4987                 tmp = node;
4988                 if (!node_state(node, N_NORMAL_MEMORY))
4989                         tmp = -1;
4990                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4991                 if (!rtpn)
4992                         return 1;
4993
4994                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4995
4996                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4997                         rtpz = &rtpn->rb_tree_per_zone[zone];
4998                         rtpz->rb_root = RB_ROOT;
4999                         spin_lock_init(&rtpz->lock);
5000                 }
5001         }
5002         return 0;
5003 }
5004
5005 static struct cgroup_subsys_state * __ref
5006 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5007 {
5008         struct mem_cgroup *memcg, *parent;
5009         long error = -ENOMEM;
5010         int node;
5011
5012         memcg = mem_cgroup_alloc();
5013         if (!memcg)
5014                 return ERR_PTR(error);
5015
5016         for_each_node_state(node, N_POSSIBLE)
5017                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5018                         goto free_out;
5019
5020         /* root ? */
5021         if (cont->parent == NULL) {
5022                 int cpu;
5023                 enable_swap_cgroup();
5024                 parent = NULL;
5025                 if (mem_cgroup_soft_limit_tree_init())
5026                         goto free_out;
5027                 root_mem_cgroup = memcg;
5028                 for_each_possible_cpu(cpu) {
5029                         struct memcg_stock_pcp *stock =
5030                                                 &per_cpu(memcg_stock, cpu);
5031                         INIT_WORK(&stock->work, drain_local_stock);
5032                 }
5033                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5034         } else {
5035                 parent = mem_cgroup_from_cont(cont->parent);
5036                 memcg->use_hierarchy = parent->use_hierarchy;
5037                 memcg->oom_kill_disable = parent->oom_kill_disable;
5038         }
5039
5040         if (parent && parent->use_hierarchy) {
5041                 res_counter_init(&memcg->res, &parent->res);
5042                 res_counter_init(&memcg->memsw, &parent->memsw);
5043                 /*
5044                  * We increment refcnt of the parent to ensure that we can
5045                  * safely access it on res_counter_charge/uncharge.
5046                  * This refcnt will be decremented when freeing this
5047                  * mem_cgroup(see mem_cgroup_put).
5048                  */
5049                 mem_cgroup_get(parent);
5050         } else {
5051                 res_counter_init(&memcg->res, NULL);
5052                 res_counter_init(&memcg->memsw, NULL);
5053         }
5054         memcg->last_scanned_node = MAX_NUMNODES;
5055         INIT_LIST_HEAD(&memcg->oom_notify);
5056
5057         if (parent)
5058                 memcg->swappiness = mem_cgroup_swappiness(parent);
5059         atomic_set(&memcg->refcnt, 1);
5060         memcg->move_charge_at_immigrate = 0;
5061         mutex_init(&memcg->thresholds_lock);
5062         return &memcg->css;
5063 free_out:
5064         __mem_cgroup_free(memcg);
5065         return ERR_PTR(error);
5066 }
5067
5068 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5069                                         struct cgroup *cont)
5070 {
5071         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5072
5073         return mem_cgroup_force_empty(memcg, false);
5074 }
5075
5076 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5077                                 struct cgroup *cont)
5078 {
5079         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5080
5081         kmem_cgroup_destroy(ss, cont);
5082
5083         mem_cgroup_put(memcg);
5084 }
5085
5086 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5087                                 struct cgroup *cont)
5088 {
5089         int ret;
5090
5091         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5092                                 ARRAY_SIZE(mem_cgroup_files));
5093
5094         if (!ret)
5095                 ret = register_memsw_files(cont, ss);
5096
5097         if (!ret)
5098                 ret = register_kmem_files(cont, ss);
5099
5100         return ret;
5101 }
5102
5103 #ifdef CONFIG_MMU
5104 /* Handlers for move charge at task migration. */
5105 #define PRECHARGE_COUNT_AT_ONCE 256
5106 static int mem_cgroup_do_precharge(unsigned long count)
5107 {
5108         int ret = 0;
5109         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5110         struct mem_cgroup *memcg = mc.to;
5111
5112         if (mem_cgroup_is_root(memcg)) {
5113                 mc.precharge += count;
5114                 /* we don't need css_get for root */
5115                 return ret;
5116         }
5117         /* try to charge at once */
5118         if (count > 1) {
5119                 struct res_counter *dummy;
5120                 /*
5121                  * "memcg" cannot be under rmdir() because we've already checked
5122                  * by cgroup_lock_live_cgroup() that it is not removed and we
5123                  * are still under the same cgroup_mutex. So we can postpone
5124                  * css_get().
5125                  */
5126                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5127                         goto one_by_one;
5128                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5129                                                 PAGE_SIZE * count, &dummy)) {
5130                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5131                         goto one_by_one;
5132                 }
5133                 mc.precharge += count;
5134                 return ret;
5135         }
5136 one_by_one:
5137         /* fall back to one by one charge */
5138         while (count--) {
5139                 if (signal_pending(current)) {
5140                         ret = -EINTR;
5141                         break;
5142                 }
5143                 if (!batch_count--) {
5144                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5145                         cond_resched();
5146                 }
5147                 ret = __mem_cgroup_try_charge(NULL,
5148                                         GFP_KERNEL, 1, &memcg, false);
5149                 if (ret || !memcg)
5150                         /* mem_cgroup_clear_mc() will do uncharge later */
5151                         return -ENOMEM;
5152                 mc.precharge++;
5153         }
5154         return ret;
5155 }
5156
5157 /**
5158  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5159  * @vma: the vma the pte to be checked belongs
5160  * @addr: the address corresponding to the pte to be checked
5161  * @ptent: the pte to be checked
5162  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5163  *
5164  * Returns
5165  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5166  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5167  *     move charge. if @target is not NULL, the page is stored in target->page
5168  *     with extra refcnt got(Callers should handle it).
5169  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5170  *     target for charge migration. if @target is not NULL, the entry is stored
5171  *     in target->ent.
5172  *
5173  * Called with pte lock held.
5174  */
5175 union mc_target {
5176         struct page     *page;
5177         swp_entry_t     ent;
5178 };
5179
5180 enum mc_target_type {
5181         MC_TARGET_NONE, /* not used */
5182         MC_TARGET_PAGE,
5183         MC_TARGET_SWAP,
5184 };
5185
5186 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5187                                                 unsigned long addr, pte_t ptent)
5188 {
5189         struct page *page = vm_normal_page(vma, addr, ptent);
5190
5191         if (!page || !page_mapped(page))
5192                 return NULL;
5193         if (PageAnon(page)) {
5194                 /* we don't move shared anon */
5195                 if (!move_anon() || page_mapcount(page) > 2)
5196                         return NULL;
5197         } else if (!move_file())
5198                 /* we ignore mapcount for file pages */
5199                 return NULL;
5200         if (!get_page_unless_zero(page))
5201                 return NULL;
5202
5203         return page;
5204 }
5205
5206 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5207                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5208 {
5209         int usage_count;
5210         struct page *page = NULL;
5211         swp_entry_t ent = pte_to_swp_entry(ptent);
5212
5213         if (!move_anon() || non_swap_entry(ent))
5214                 return NULL;
5215         usage_count = mem_cgroup_count_swap_user(ent, &page);
5216         if (usage_count > 1) { /* we don't move shared anon */
5217                 if (page)
5218                         put_page(page);
5219                 return NULL;
5220         }
5221         if (do_swap_account)
5222                 entry->val = ent.val;
5223
5224         return page;
5225 }
5226
5227 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5228                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5229 {
5230         struct page *page = NULL;
5231         struct inode *inode;
5232         struct address_space *mapping;
5233         pgoff_t pgoff;
5234
5235         if (!vma->vm_file) /* anonymous vma */
5236                 return NULL;
5237         if (!move_file())
5238                 return NULL;
5239
5240         inode = vma->vm_file->f_path.dentry->d_inode;
5241         mapping = vma->vm_file->f_mapping;
5242         if (pte_none(ptent))
5243                 pgoff = linear_page_index(vma, addr);
5244         else /* pte_file(ptent) is true */
5245                 pgoff = pte_to_pgoff(ptent);
5246
5247         /* page is moved even if it's not RSS of this task(page-faulted). */
5248         page = find_get_page(mapping, pgoff);
5249
5250 #ifdef CONFIG_SWAP
5251         /* shmem/tmpfs may report page out on swap: account for that too. */
5252         if (radix_tree_exceptional_entry(page)) {
5253                 swp_entry_t swap = radix_to_swp_entry(page);
5254                 if (do_swap_account)
5255                         *entry = swap;
5256                 page = find_get_page(&swapper_space, swap.val);
5257         }
5258 #endif
5259         return page;
5260 }
5261
5262 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5263                 unsigned long addr, pte_t ptent, union mc_target *target)
5264 {
5265         struct page *page = NULL;
5266         struct page_cgroup *pc;
5267         int ret = 0;
5268         swp_entry_t ent = { .val = 0 };
5269
5270         if (pte_present(ptent))
5271                 page = mc_handle_present_pte(vma, addr, ptent);
5272         else if (is_swap_pte(ptent))
5273                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5274         else if (pte_none(ptent) || pte_file(ptent))
5275                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5276
5277         if (!page && !ent.val)
5278                 return 0;
5279         if (page) {
5280                 pc = lookup_page_cgroup(page);
5281                 /*
5282                  * Do only loose check w/o page_cgroup lock.
5283                  * mem_cgroup_move_account() checks the pc is valid or not under
5284                  * the lock.
5285                  */
5286                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5287                         ret = MC_TARGET_PAGE;
5288                         if (target)
5289                                 target->page = page;
5290                 }
5291                 if (!ret || !target)
5292                         put_page(page);
5293         }
5294         /* There is a swap entry and a page doesn't exist or isn't charged */
5295         if (ent.val && !ret &&
5296                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5297                 ret = MC_TARGET_SWAP;
5298                 if (target)
5299                         target->ent = ent;
5300         }
5301         return ret;
5302 }
5303
5304 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5305                                         unsigned long addr, unsigned long end,
5306                                         struct mm_walk *walk)
5307 {
5308         struct vm_area_struct *vma = walk->private;
5309         pte_t *pte;
5310         spinlock_t *ptl;
5311
5312         split_huge_page_pmd(walk->mm, pmd);
5313
5314         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5315         for (; addr != end; pte++, addr += PAGE_SIZE)
5316                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5317                         mc.precharge++; /* increment precharge temporarily */
5318         pte_unmap_unlock(pte - 1, ptl);
5319         cond_resched();
5320
5321         return 0;
5322 }
5323
5324 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5325 {
5326         unsigned long precharge;
5327         struct vm_area_struct *vma;
5328
5329         down_read(&mm->mmap_sem);
5330         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5331                 struct mm_walk mem_cgroup_count_precharge_walk = {
5332                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5333                         .mm = mm,
5334                         .private = vma,
5335                 };
5336                 if (is_vm_hugetlb_page(vma))
5337                         continue;
5338                 walk_page_range(vma->vm_start, vma->vm_end,
5339                                         &mem_cgroup_count_precharge_walk);
5340         }
5341         up_read(&mm->mmap_sem);
5342
5343         precharge = mc.precharge;
5344         mc.precharge = 0;
5345
5346         return precharge;
5347 }
5348
5349 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5350 {
5351         unsigned long precharge = mem_cgroup_count_precharge(mm);
5352
5353         VM_BUG_ON(mc.moving_task);
5354         mc.moving_task = current;
5355         return mem_cgroup_do_precharge(precharge);
5356 }
5357
5358 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5359 static void __mem_cgroup_clear_mc(void)
5360 {
5361         struct mem_cgroup *from = mc.from;
5362         struct mem_cgroup *to = mc.to;
5363
5364         /* we must uncharge all the leftover precharges from mc.to */
5365         if (mc.precharge) {
5366                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5367                 mc.precharge = 0;
5368         }
5369         /*
5370          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5371          * we must uncharge here.
5372          */
5373         if (mc.moved_charge) {
5374                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5375                 mc.moved_charge = 0;
5376         }
5377         /* we must fixup refcnts and charges */
5378         if (mc.moved_swap) {
5379                 /* uncharge swap account from the old cgroup */
5380                 if (!mem_cgroup_is_root(mc.from))
5381                         res_counter_uncharge(&mc.from->memsw,
5382                                                 PAGE_SIZE * mc.moved_swap);
5383                 __mem_cgroup_put(mc.from, mc.moved_swap);
5384
5385                 if (!mem_cgroup_is_root(mc.to)) {
5386                         /*
5387                          * we charged both to->res and to->memsw, so we should
5388                          * uncharge to->res.
5389                          */
5390                         res_counter_uncharge(&mc.to->res,
5391                                                 PAGE_SIZE * mc.moved_swap);
5392                 }
5393                 /* we've already done mem_cgroup_get(mc.to) */
5394                 mc.moved_swap = 0;
5395         }
5396         memcg_oom_recover(from);
5397         memcg_oom_recover(to);
5398         wake_up_all(&mc.waitq);
5399 }
5400
5401 static void mem_cgroup_clear_mc(void)
5402 {
5403         struct mem_cgroup *from = mc.from;
5404
5405         /*
5406          * we must clear moving_task before waking up waiters at the end of
5407          * task migration.
5408          */
5409         mc.moving_task = NULL;
5410         __mem_cgroup_clear_mc();
5411         spin_lock(&mc.lock);
5412         mc.from = NULL;
5413         mc.to = NULL;
5414         spin_unlock(&mc.lock);
5415         mem_cgroup_end_move(from);
5416 }
5417
5418 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5419                                 struct cgroup *cgroup,
5420                                 struct cgroup_taskset *tset)
5421 {
5422         struct task_struct *p = cgroup_taskset_first(tset);
5423         int ret = 0;
5424         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5425
5426         if (memcg->move_charge_at_immigrate) {
5427                 struct mm_struct *mm;
5428                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5429
5430                 VM_BUG_ON(from == memcg);
5431
5432                 mm = get_task_mm(p);
5433                 if (!mm)
5434                         return 0;
5435                 /* We move charges only when we move a owner of the mm */
5436                 if (mm->owner == p) {
5437                         VM_BUG_ON(mc.from);
5438                         VM_BUG_ON(mc.to);
5439                         VM_BUG_ON(mc.precharge);
5440                         VM_BUG_ON(mc.moved_charge);
5441                         VM_BUG_ON(mc.moved_swap);
5442                         mem_cgroup_start_move(from);
5443                         spin_lock(&mc.lock);
5444                         mc.from = from;
5445                         mc.to = memcg;
5446                         spin_unlock(&mc.lock);
5447                         /* We set mc.moving_task later */
5448
5449                         ret = mem_cgroup_precharge_mc(mm);
5450                         if (ret)
5451                                 mem_cgroup_clear_mc();
5452                 }
5453                 mmput(mm);
5454         }
5455         return ret;
5456 }
5457
5458 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5459                                 struct cgroup *cgroup,
5460                                 struct cgroup_taskset *tset)
5461 {
5462         mem_cgroup_clear_mc();
5463 }
5464
5465 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5466                                 unsigned long addr, unsigned long end,
5467                                 struct mm_walk *walk)
5468 {
5469         int ret = 0;
5470         struct vm_area_struct *vma = walk->private;
5471         pte_t *pte;
5472         spinlock_t *ptl;
5473
5474         split_huge_page_pmd(walk->mm, pmd);
5475 retry:
5476         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5477         for (; addr != end; addr += PAGE_SIZE) {
5478                 pte_t ptent = *(pte++);
5479                 union mc_target target;
5480                 int type;
5481                 struct page *page;
5482                 struct page_cgroup *pc;
5483                 swp_entry_t ent;
5484
5485                 if (!mc.precharge)
5486                         break;
5487
5488                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5489                 switch (type) {
5490                 case MC_TARGET_PAGE:
5491                         page = target.page;
5492                         if (isolate_lru_page(page))
5493                                 goto put;
5494                         pc = lookup_page_cgroup(page);
5495                         if (!mem_cgroup_move_account(page, 1, pc,
5496                                                      mc.from, mc.to, false)) {
5497                                 mc.precharge--;
5498                                 /* we uncharge from mc.from later. */
5499                                 mc.moved_charge++;
5500                         }
5501                         putback_lru_page(page);
5502 put:                    /* is_target_pte_for_mc() gets the page */
5503                         put_page(page);
5504                         break;
5505                 case MC_TARGET_SWAP:
5506                         ent = target.ent;
5507                         if (!mem_cgroup_move_swap_account(ent,
5508                                                 mc.from, mc.to, false)) {
5509                                 mc.precharge--;
5510                                 /* we fixup refcnts and charges later. */
5511                                 mc.moved_swap++;
5512                         }
5513                         break;
5514                 default:
5515                         break;
5516                 }
5517         }
5518         pte_unmap_unlock(pte - 1, ptl);
5519         cond_resched();
5520
5521         if (addr != end) {
5522                 /*
5523                  * We have consumed all precharges we got in can_attach().
5524                  * We try charge one by one, but don't do any additional
5525                  * charges to mc.to if we have failed in charge once in attach()
5526                  * phase.
5527                  */
5528                 ret = mem_cgroup_do_precharge(1);
5529                 if (!ret)
5530                         goto retry;
5531         }
5532
5533         return ret;
5534 }
5535
5536 static void mem_cgroup_move_charge(struct mm_struct *mm)
5537 {
5538         struct vm_area_struct *vma;
5539
5540         lru_add_drain_all();
5541 retry:
5542         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5543                 /*
5544                  * Someone who are holding the mmap_sem might be waiting in
5545                  * waitq. So we cancel all extra charges, wake up all waiters,
5546                  * and retry. Because we cancel precharges, we might not be able
5547                  * to move enough charges, but moving charge is a best-effort
5548                  * feature anyway, so it wouldn't be a big problem.
5549                  */
5550                 __mem_cgroup_clear_mc();
5551                 cond_resched();
5552                 goto retry;
5553         }
5554         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5555                 int ret;
5556                 struct mm_walk mem_cgroup_move_charge_walk = {
5557                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5558                         .mm = mm,
5559                         .private = vma,
5560                 };
5561                 if (is_vm_hugetlb_page(vma))
5562                         continue;
5563                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5564                                                 &mem_cgroup_move_charge_walk);
5565                 if (ret)
5566                         /*
5567                          * means we have consumed all precharges and failed in
5568                          * doing additional charge. Just abandon here.
5569                          */
5570                         break;
5571         }
5572         up_read(&mm->mmap_sem);
5573 }
5574
5575 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5576                                 struct cgroup *cont,
5577                                 struct cgroup_taskset *tset)
5578 {
5579         struct task_struct *p = cgroup_taskset_first(tset);
5580         struct mm_struct *mm = get_task_mm(p);
5581
5582         if (mm) {
5583                 if (mc.to)
5584                         mem_cgroup_move_charge(mm);
5585                 put_swap_token(mm);
5586                 mmput(mm);
5587         }
5588         if (mc.to)
5589                 mem_cgroup_clear_mc();
5590 }
5591 #else   /* !CONFIG_MMU */
5592 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5593                                 struct cgroup *cgroup,
5594                                 struct cgroup_taskset *tset)
5595 {
5596         return 0;
5597 }
5598 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5599                                 struct cgroup *cgroup,
5600                                 struct cgroup_taskset *tset)
5601 {
5602 }
5603 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5604                                 struct cgroup *cont,
5605                                 struct cgroup_taskset *tset)
5606 {
5607 }
5608 #endif
5609
5610 struct cgroup_subsys mem_cgroup_subsys = {
5611         .name = "memory",
5612         .subsys_id = mem_cgroup_subsys_id,
5613         .create = mem_cgroup_create,
5614         .pre_destroy = mem_cgroup_pre_destroy,
5615         .destroy = mem_cgroup_destroy,
5616         .populate = mem_cgroup_populate,
5617         .can_attach = mem_cgroup_can_attach,
5618         .cancel_attach = mem_cgroup_cancel_attach,
5619         .attach = mem_cgroup_move_task,
5620         .early_init = 0,
5621         .use_id = 1,
5622 };
5623
5624 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5625 static int __init enable_swap_account(char *s)
5626 {
5627         /* consider enabled if no parameter or 1 is given */
5628         if (!strcmp(s, "1"))
5629                 really_do_swap_account = 1;
5630         else if (!strcmp(s, "0"))
5631                 really_do_swap_account = 0;
5632         return 1;
5633 }
5634 __setup("swapaccount=", enable_swap_account);
5635
5636 #endif