]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/memcontrol.c
memcg: fix oom schedule_timeout()
[mv-sheeva.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76
77 /*
78  * Statistics for memory cgroup.
79  */
80 enum mem_cgroup_stat_index {
81         /*
82          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83          */
84         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
85         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
86         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
90         MEM_CGROUP_STAT_NSTATS,
91 };
92
93 enum mem_cgroup_events_index {
94         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
95         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
96         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
97         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
98         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
99         MEM_CGROUP_EVENTS_NSTATS,
100 };
101 /*
102  * Per memcg event counter is incremented at every pagein/pageout. With THP,
103  * it will be incremated by the number of pages. This counter is used for
104  * for trigger some periodic events. This is straightforward and better
105  * than using jiffies etc. to handle periodic memcg event.
106  */
107 enum mem_cgroup_events_target {
108         MEM_CGROUP_TARGET_THRESH,
109         MEM_CGROUP_TARGET_SOFTLIMIT,
110         MEM_CGROUP_TARGET_NUMAINFO,
111         MEM_CGROUP_NTARGETS,
112 };
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET  (1024)
116
117 struct mem_cgroup_stat_cpu {
118         long count[MEM_CGROUP_STAT_NSTATS];
119         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120         unsigned long targets[MEM_CGROUP_NTARGETS];
121 };
122
123 /*
124  * per-zone information in memory controller.
125  */
126 struct mem_cgroup_per_zone {
127         /*
128          * spin_lock to protect the per cgroup LRU
129          */
130         struct list_head        lists[NR_LRU_LISTS];
131         unsigned long           count[NR_LRU_LISTS];
132
133         struct zone_reclaim_stat reclaim_stat;
134         struct rb_node          tree_node;      /* RB tree node */
135         unsigned long long      usage_in_excess;/* Set to the value by which */
136                                                 /* the soft limit is exceeded*/
137         bool                    on_tree;
138         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
139                                                 /* use container_of        */
140 };
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
143
144 struct mem_cgroup_per_node {
145         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146 };
147
148 struct mem_cgroup_lru_info {
149         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150 };
151
152 /*
153  * Cgroups above their limits are maintained in a RB-Tree, independent of
154  * their hierarchy representation
155  */
156
157 struct mem_cgroup_tree_per_zone {
158         struct rb_root rb_root;
159         spinlock_t lock;
160 };
161
162 struct mem_cgroup_tree_per_node {
163         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164 };
165
166 struct mem_cgroup_tree {
167         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168 };
169
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172 struct mem_cgroup_threshold {
173         struct eventfd_ctx *eventfd;
174         u64 threshold;
175 };
176
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179         /* An array index points to threshold just below usage. */
180         int current_threshold;
181         /* Size of entries[] */
182         unsigned int size;
183         /* Array of thresholds */
184         struct mem_cgroup_threshold entries[0];
185 };
186
187 struct mem_cgroup_thresholds {
188         /* Primary thresholds array */
189         struct mem_cgroup_threshold_ary *primary;
190         /*
191          * Spare threshold array.
192          * This is needed to make mem_cgroup_unregister_event() "never fail".
193          * It must be able to store at least primary->size - 1 entries.
194          */
195         struct mem_cgroup_threshold_ary *spare;
196 };
197
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200         struct list_head list;
201         struct eventfd_ctx *eventfd;
202 };
203
204 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
206
207 /*
208  * The memory controller data structure. The memory controller controls both
209  * page cache and RSS per cgroup. We would eventually like to provide
210  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211  * to help the administrator determine what knobs to tune.
212  *
213  * TODO: Add a water mark for the memory controller. Reclaim will begin when
214  * we hit the water mark. May be even add a low water mark, such that
215  * no reclaim occurs from a cgroup at it's low water mark, this is
216  * a feature that will be implemented much later in the future.
217  */
218 struct mem_cgroup {
219         struct cgroup_subsys_state css;
220         /*
221          * the counter to account for memory usage
222          */
223         struct res_counter res;
224         /*
225          * the counter to account for mem+swap usage.
226          */
227         struct res_counter memsw;
228         /*
229          * Per cgroup active and inactive list, similar to the
230          * per zone LRU lists.
231          */
232         struct mem_cgroup_lru_info info;
233         /*
234          * While reclaiming in a hierarchy, we cache the last child we
235          * reclaimed from.
236          */
237         int last_scanned_child;
238         int last_scanned_node;
239 #if MAX_NUMNODES > 1
240         nodemask_t      scan_nodes;
241         atomic_t        numainfo_events;
242         atomic_t        numainfo_updating;
243 #endif
244         /*
245          * Should the accounting and control be hierarchical, per subtree?
246          */
247         bool use_hierarchy;
248
249         bool            oom_lock;
250         atomic_t        under_oom;
251
252         atomic_t        refcnt;
253
254         int     swappiness;
255         /* OOM-Killer disable */
256         int             oom_kill_disable;
257
258         /* set when res.limit == memsw.limit */
259         bool            memsw_is_minimum;
260
261         /* protect arrays of thresholds */
262         struct mutex thresholds_lock;
263
264         /* thresholds for memory usage. RCU-protected */
265         struct mem_cgroup_thresholds thresholds;
266
267         /* thresholds for mem+swap usage. RCU-protected */
268         struct mem_cgroup_thresholds memsw_thresholds;
269
270         /* For oom notifier event fd */
271         struct list_head oom_notify;
272
273         /*
274          * Should we move charges of a task when a task is moved into this
275          * mem_cgroup ? And what type of charges should we move ?
276          */
277         unsigned long   move_charge_at_immigrate;
278         /*
279          * percpu counter.
280          */
281         struct mem_cgroup_stat_cpu *stat;
282         /*
283          * used when a cpu is offlined or other synchronizations
284          * See mem_cgroup_read_stat().
285          */
286         struct mem_cgroup_stat_cpu nocpu_base;
287         spinlock_t pcp_counter_lock;
288 };
289
290 /* Stuffs for move charges at task migration. */
291 /*
292  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293  * left-shifted bitmap of these types.
294  */
295 enum move_type {
296         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
297         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
298         NR_MOVE_TYPE,
299 };
300
301 /* "mc" and its members are protected by cgroup_mutex */
302 static struct move_charge_struct {
303         spinlock_t        lock; /* for from, to */
304         struct mem_cgroup *from;
305         struct mem_cgroup *to;
306         unsigned long precharge;
307         unsigned long moved_charge;
308         unsigned long moved_swap;
309         struct task_struct *moving_task;        /* a task moving charges */
310         wait_queue_head_t waitq;                /* a waitq for other context */
311 } mc = {
312         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
313         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314 };
315
316 static bool move_anon(void)
317 {
318         return test_bit(MOVE_CHARGE_TYPE_ANON,
319                                         &mc.to->move_charge_at_immigrate);
320 }
321
322 static bool move_file(void)
323 {
324         return test_bit(MOVE_CHARGE_TYPE_FILE,
325                                         &mc.to->move_charge_at_immigrate);
326 }
327
328 /*
329  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330  * limit reclaim to prevent infinite loops, if they ever occur.
331  */
332 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
333 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
335 enum charge_type {
336         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337         MEM_CGROUP_CHARGE_TYPE_MAPPED,
338         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
339         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
340         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
341         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
342         NR_CHARGE_TYPE,
343 };
344
345 /* for encoding cft->private value on file */
346 #define _MEM                    (0)
347 #define _MEMSWAP                (1)
348 #define _OOM_TYPE               (2)
349 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
351 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
352 /* Used for OOM nofiier */
353 #define OOM_CONTROL             (0)
354
355 /*
356  * Reclaim flags for mem_cgroup_hierarchical_reclaim
357  */
358 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
359 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
361 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
362 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
363 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
364
365 static void mem_cgroup_get(struct mem_cgroup *memcg);
366 static void mem_cgroup_put(struct mem_cgroup *memcg);
367 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
368 static void drain_all_stock_async(struct mem_cgroup *memcg);
369
370 static struct mem_cgroup_per_zone *
371 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
372 {
373         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
374 }
375
376 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
377 {
378         return &memcg->css;
379 }
380
381 static struct mem_cgroup_per_zone *
382 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
383 {
384         int nid = page_to_nid(page);
385         int zid = page_zonenum(page);
386
387         return mem_cgroup_zoneinfo(memcg, nid, zid);
388 }
389
390 static struct mem_cgroup_tree_per_zone *
391 soft_limit_tree_node_zone(int nid, int zid)
392 {
393         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 }
395
396 static struct mem_cgroup_tree_per_zone *
397 soft_limit_tree_from_page(struct page *page)
398 {
399         int nid = page_to_nid(page);
400         int zid = page_zonenum(page);
401
402         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403 }
404
405 static void
406 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
407                                 struct mem_cgroup_per_zone *mz,
408                                 struct mem_cgroup_tree_per_zone *mctz,
409                                 unsigned long long new_usage_in_excess)
410 {
411         struct rb_node **p = &mctz->rb_root.rb_node;
412         struct rb_node *parent = NULL;
413         struct mem_cgroup_per_zone *mz_node;
414
415         if (mz->on_tree)
416                 return;
417
418         mz->usage_in_excess = new_usage_in_excess;
419         if (!mz->usage_in_excess)
420                 return;
421         while (*p) {
422                 parent = *p;
423                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424                                         tree_node);
425                 if (mz->usage_in_excess < mz_node->usage_in_excess)
426                         p = &(*p)->rb_left;
427                 /*
428                  * We can't avoid mem cgroups that are over their soft
429                  * limit by the same amount
430                  */
431                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432                         p = &(*p)->rb_right;
433         }
434         rb_link_node(&mz->tree_node, parent, p);
435         rb_insert_color(&mz->tree_node, &mctz->rb_root);
436         mz->on_tree = true;
437 }
438
439 static void
440 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
441                                 struct mem_cgroup_per_zone *mz,
442                                 struct mem_cgroup_tree_per_zone *mctz)
443 {
444         if (!mz->on_tree)
445                 return;
446         rb_erase(&mz->tree_node, &mctz->rb_root);
447         mz->on_tree = false;
448 }
449
450 static void
451 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
452                                 struct mem_cgroup_per_zone *mz,
453                                 struct mem_cgroup_tree_per_zone *mctz)
454 {
455         spin_lock(&mctz->lock);
456         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
457         spin_unlock(&mctz->lock);
458 }
459
460
461 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462 {
463         unsigned long long excess;
464         struct mem_cgroup_per_zone *mz;
465         struct mem_cgroup_tree_per_zone *mctz;
466         int nid = page_to_nid(page);
467         int zid = page_zonenum(page);
468         mctz = soft_limit_tree_from_page(page);
469
470         /*
471          * Necessary to update all ancestors when hierarchy is used.
472          * because their event counter is not touched.
473          */
474         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
475                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
476                 excess = res_counter_soft_limit_excess(&memcg->res);
477                 /*
478                  * We have to update the tree if mz is on RB-tree or
479                  * mem is over its softlimit.
480                  */
481                 if (excess || mz->on_tree) {
482                         spin_lock(&mctz->lock);
483                         /* if on-tree, remove it */
484                         if (mz->on_tree)
485                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
486                         /*
487                          * Insert again. mz->usage_in_excess will be updated.
488                          * If excess is 0, no tree ops.
489                          */
490                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
491                         spin_unlock(&mctz->lock);
492                 }
493         }
494 }
495
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 {
498         int node, zone;
499         struct mem_cgroup_per_zone *mz;
500         struct mem_cgroup_tree_per_zone *mctz;
501
502         for_each_node_state(node, N_POSSIBLE) {
503                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
505                         mctz = soft_limit_tree_node_zone(node, zone);
506                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
507                 }
508         }
509 }
510
511 static struct mem_cgroup_per_zone *
512 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513 {
514         struct rb_node *rightmost = NULL;
515         struct mem_cgroup_per_zone *mz;
516
517 retry:
518         mz = NULL;
519         rightmost = rb_last(&mctz->rb_root);
520         if (!rightmost)
521                 goto done;              /* Nothing to reclaim from */
522
523         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524         /*
525          * Remove the node now but someone else can add it back,
526          * we will to add it back at the end of reclaim to its correct
527          * position in the tree.
528          */
529         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531                 !css_tryget(&mz->mem->css))
532                 goto retry;
533 done:
534         return mz;
535 }
536
537 static struct mem_cgroup_per_zone *
538 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539 {
540         struct mem_cgroup_per_zone *mz;
541
542         spin_lock(&mctz->lock);
543         mz = __mem_cgroup_largest_soft_limit_node(mctz);
544         spin_unlock(&mctz->lock);
545         return mz;
546 }
547
548 /*
549  * Implementation Note: reading percpu statistics for memcg.
550  *
551  * Both of vmstat[] and percpu_counter has threshold and do periodic
552  * synchronization to implement "quick" read. There are trade-off between
553  * reading cost and precision of value. Then, we may have a chance to implement
554  * a periodic synchronizion of counter in memcg's counter.
555  *
556  * But this _read() function is used for user interface now. The user accounts
557  * memory usage by memory cgroup and he _always_ requires exact value because
558  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559  * have to visit all online cpus and make sum. So, for now, unnecessary
560  * synchronization is not implemented. (just implemented for cpu hotplug)
561  *
562  * If there are kernel internal actions which can make use of some not-exact
563  * value, and reading all cpu value can be performance bottleneck in some
564  * common workload, threashold and synchonization as vmstat[] should be
565  * implemented.
566  */
567 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
568                                  enum mem_cgroup_stat_index idx)
569 {
570         long val = 0;
571         int cpu;
572
573         get_online_cpus();
574         for_each_online_cpu(cpu)
575                 val += per_cpu(memcg->stat->count[idx], cpu);
576 #ifdef CONFIG_HOTPLUG_CPU
577         spin_lock(&memcg->pcp_counter_lock);
578         val += memcg->nocpu_base.count[idx];
579         spin_unlock(&memcg->pcp_counter_lock);
580 #endif
581         put_online_cpus();
582         return val;
583 }
584
585 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
586                                          bool charge)
587 {
588         int val = (charge) ? 1 : -1;
589         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
590 }
591
592 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
593 {
594         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595 }
596
597 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
598 {
599         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600 }
601
602 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
603                                             enum mem_cgroup_events_index idx)
604 {
605         unsigned long val = 0;
606         int cpu;
607
608         for_each_online_cpu(cpu)
609                 val += per_cpu(memcg->stat->events[idx], cpu);
610 #ifdef CONFIG_HOTPLUG_CPU
611         spin_lock(&memcg->pcp_counter_lock);
612         val += memcg->nocpu_base.events[idx];
613         spin_unlock(&memcg->pcp_counter_lock);
614 #endif
615         return val;
616 }
617
618 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
619                                          bool file, int nr_pages)
620 {
621         preempt_disable();
622
623         if (file)
624                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
625                                 nr_pages);
626         else
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
628                                 nr_pages);
629
630         /* pagein of a big page is an event. So, ignore page size */
631         if (nr_pages > 0)
632                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633         else {
634                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635                 nr_pages = -nr_pages; /* for event */
636         }
637
638         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
639
640         preempt_enable();
641 }
642
643 unsigned long
644 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
645                         unsigned int lru_mask)
646 {
647         struct mem_cgroup_per_zone *mz;
648         enum lru_list l;
649         unsigned long ret = 0;
650
651         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
652
653         for_each_lru(l) {
654                 if (BIT(l) & lru_mask)
655                         ret += MEM_CGROUP_ZSTAT(mz, l);
656         }
657         return ret;
658 }
659
660 static unsigned long
661 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
662                         int nid, unsigned int lru_mask)
663 {
664         u64 total = 0;
665         int zid;
666
667         for (zid = 0; zid < MAX_NR_ZONES; zid++)
668                 total += mem_cgroup_zone_nr_lru_pages(memcg,
669                                                 nid, zid, lru_mask);
670
671         return total;
672 }
673
674 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
675                         unsigned int lru_mask)
676 {
677         int nid;
678         u64 total = 0;
679
680         for_each_node_state(nid, N_HIGH_MEMORY)
681                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
682         return total;
683 }
684
685 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
686 {
687         unsigned long val, next;
688
689         val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
690         next = this_cpu_read(memcg->stat->targets[target]);
691         /* from time_after() in jiffies.h */
692         return ((long)next - (long)val < 0);
693 }
694
695 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
696 {
697         unsigned long val, next;
698
699         val = this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
700
701         switch (target) {
702         case MEM_CGROUP_TARGET_THRESH:
703                 next = val + THRESHOLDS_EVENTS_TARGET;
704                 break;
705         case MEM_CGROUP_TARGET_SOFTLIMIT:
706                 next = val + SOFTLIMIT_EVENTS_TARGET;
707                 break;
708         case MEM_CGROUP_TARGET_NUMAINFO:
709                 next = val + NUMAINFO_EVENTS_TARGET;
710                 break;
711         default:
712                 return;
713         }
714
715         this_cpu_write(memcg->stat->targets[target], next);
716 }
717
718 /*
719  * Check events in order.
720  *
721  */
722 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
723 {
724         /* threshold event is triggered in finer grain than soft limit */
725         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
726                 mem_cgroup_threshold(memcg);
727                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
728                 if (unlikely(__memcg_event_check(memcg,
729                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
730                         mem_cgroup_update_tree(memcg, page);
731                         __mem_cgroup_target_update(memcg,
732                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
733                 }
734 #if MAX_NUMNODES > 1
735                 if (unlikely(__memcg_event_check(memcg,
736                         MEM_CGROUP_TARGET_NUMAINFO))) {
737                         atomic_inc(&memcg->numainfo_events);
738                         __mem_cgroup_target_update(memcg,
739                                 MEM_CGROUP_TARGET_NUMAINFO);
740                 }
741 #endif
742         }
743 }
744
745 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
746 {
747         return container_of(cgroup_subsys_state(cont,
748                                 mem_cgroup_subsys_id), struct mem_cgroup,
749                                 css);
750 }
751
752 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
753 {
754         /*
755          * mm_update_next_owner() may clear mm->owner to NULL
756          * if it races with swapoff, page migration, etc.
757          * So this can be called with p == NULL.
758          */
759         if (unlikely(!p))
760                 return NULL;
761
762         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
763                                 struct mem_cgroup, css);
764 }
765
766 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
767 {
768         struct mem_cgroup *memcg = NULL;
769
770         if (!mm)
771                 return NULL;
772         /*
773          * Because we have no locks, mm->owner's may be being moved to other
774          * cgroup. We use css_tryget() here even if this looks
775          * pessimistic (rather than adding locks here).
776          */
777         rcu_read_lock();
778         do {
779                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
780                 if (unlikely(!memcg))
781                         break;
782         } while (!css_tryget(&memcg->css));
783         rcu_read_unlock();
784         return memcg;
785 }
786
787 /* The caller has to guarantee "mem" exists before calling this */
788 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
789 {
790         struct cgroup_subsys_state *css;
791         int found;
792
793         if (!memcg) /* ROOT cgroup has the smallest ID */
794                 return root_mem_cgroup; /*css_put/get against root is ignored*/
795         if (!memcg->use_hierarchy) {
796                 if (css_tryget(&memcg->css))
797                         return memcg;
798                 return NULL;
799         }
800         rcu_read_lock();
801         /*
802          * searching a memory cgroup which has the smallest ID under given
803          * ROOT cgroup. (ID >= 1)
804          */
805         css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
806         if (css && css_tryget(css))
807                 memcg = container_of(css, struct mem_cgroup, css);
808         else
809                 memcg = NULL;
810         rcu_read_unlock();
811         return memcg;
812 }
813
814 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
815                                         struct mem_cgroup *root,
816                                         bool cond)
817 {
818         int nextid = css_id(&iter->css) + 1;
819         int found;
820         int hierarchy_used;
821         struct cgroup_subsys_state *css;
822
823         hierarchy_used = iter->use_hierarchy;
824
825         css_put(&iter->css);
826         /* If no ROOT, walk all, ignore hierarchy */
827         if (!cond || (root && !hierarchy_used))
828                 return NULL;
829
830         if (!root)
831                 root = root_mem_cgroup;
832
833         do {
834                 iter = NULL;
835                 rcu_read_lock();
836
837                 css = css_get_next(&mem_cgroup_subsys, nextid,
838                                 &root->css, &found);
839                 if (css && css_tryget(css))
840                         iter = container_of(css, struct mem_cgroup, css);
841                 rcu_read_unlock();
842                 /* If css is NULL, no more cgroups will be found */
843                 nextid = found + 1;
844         } while (css && !iter);
845
846         return iter;
847 }
848 /*
849  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
850  * be careful that "break" loop is not allowed. We have reference count.
851  * Instead of that modify "cond" to be false and "continue" to exit the loop.
852  */
853 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
854         for (iter = mem_cgroup_start_loop(root);\
855              iter != NULL;\
856              iter = mem_cgroup_get_next(iter, root, cond))
857
858 #define for_each_mem_cgroup_tree(iter, root) \
859         for_each_mem_cgroup_tree_cond(iter, root, true)
860
861 #define for_each_mem_cgroup_all(iter) \
862         for_each_mem_cgroup_tree_cond(iter, NULL, true)
863
864
865 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
866 {
867         return (memcg == root_mem_cgroup);
868 }
869
870 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
871 {
872         struct mem_cgroup *memcg;
873
874         if (!mm)
875                 return;
876
877         rcu_read_lock();
878         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
879         if (unlikely(!memcg))
880                 goto out;
881
882         switch (idx) {
883         case PGMAJFAULT:
884                 mem_cgroup_pgmajfault(memcg, 1);
885                 break;
886         case PGFAULT:
887                 mem_cgroup_pgfault(memcg, 1);
888                 break;
889         default:
890                 BUG();
891         }
892 out:
893         rcu_read_unlock();
894 }
895 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
896
897 /*
898  * Following LRU functions are allowed to be used without PCG_LOCK.
899  * Operations are called by routine of global LRU independently from memcg.
900  * What we have to take care of here is validness of pc->mem_cgroup.
901  *
902  * Changes to pc->mem_cgroup happens when
903  * 1. charge
904  * 2. moving account
905  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
906  * It is added to LRU before charge.
907  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
908  * When moving account, the page is not on LRU. It's isolated.
909  */
910
911 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
912 {
913         struct page_cgroup *pc;
914         struct mem_cgroup_per_zone *mz;
915
916         if (mem_cgroup_disabled())
917                 return;
918         pc = lookup_page_cgroup(page);
919         /* can happen while we handle swapcache. */
920         if (!TestClearPageCgroupAcctLRU(pc))
921                 return;
922         VM_BUG_ON(!pc->mem_cgroup);
923         /*
924          * We don't check PCG_USED bit. It's cleared when the "page" is finally
925          * removed from global LRU.
926          */
927         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
928         /* huge page split is done under lru_lock. so, we have no races. */
929         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
930         if (mem_cgroup_is_root(pc->mem_cgroup))
931                 return;
932         VM_BUG_ON(list_empty(&pc->lru));
933         list_del_init(&pc->lru);
934 }
935
936 void mem_cgroup_del_lru(struct page *page)
937 {
938         mem_cgroup_del_lru_list(page, page_lru(page));
939 }
940
941 /*
942  * Writeback is about to end against a page which has been marked for immediate
943  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
944  * inactive list.
945  */
946 void mem_cgroup_rotate_reclaimable_page(struct page *page)
947 {
948         struct mem_cgroup_per_zone *mz;
949         struct page_cgroup *pc;
950         enum lru_list lru = page_lru(page);
951
952         if (mem_cgroup_disabled())
953                 return;
954
955         pc = lookup_page_cgroup(page);
956         /* unused or root page is not rotated. */
957         if (!PageCgroupUsed(pc))
958                 return;
959         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
960         smp_rmb();
961         if (mem_cgroup_is_root(pc->mem_cgroup))
962                 return;
963         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
964         list_move_tail(&pc->lru, &mz->lists[lru]);
965 }
966
967 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
968 {
969         struct mem_cgroup_per_zone *mz;
970         struct page_cgroup *pc;
971
972         if (mem_cgroup_disabled())
973                 return;
974
975         pc = lookup_page_cgroup(page);
976         /* unused or root page is not rotated. */
977         if (!PageCgroupUsed(pc))
978                 return;
979         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
980         smp_rmb();
981         if (mem_cgroup_is_root(pc->mem_cgroup))
982                 return;
983         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
984         list_move(&pc->lru, &mz->lists[lru]);
985 }
986
987 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
988 {
989         struct page_cgroup *pc;
990         struct mem_cgroup_per_zone *mz;
991
992         if (mem_cgroup_disabled())
993                 return;
994         pc = lookup_page_cgroup(page);
995         VM_BUG_ON(PageCgroupAcctLRU(pc));
996         if (!PageCgroupUsed(pc))
997                 return;
998         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
999         smp_rmb();
1000         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1001         /* huge page split is done under lru_lock. so, we have no races. */
1002         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1003         SetPageCgroupAcctLRU(pc);
1004         if (mem_cgroup_is_root(pc->mem_cgroup))
1005                 return;
1006         list_add(&pc->lru, &mz->lists[lru]);
1007 }
1008
1009 /*
1010  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1011  * while it's linked to lru because the page may be reused after it's fully
1012  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1013  * It's done under lock_page and expected that zone->lru_lock isnever held.
1014  */
1015 static void mem_cgroup_lru_del_before_commit(struct page *page)
1016 {
1017         unsigned long flags;
1018         struct zone *zone = page_zone(page);
1019         struct page_cgroup *pc = lookup_page_cgroup(page);
1020
1021         /*
1022          * Doing this check without taking ->lru_lock seems wrong but this
1023          * is safe. Because if page_cgroup's USED bit is unset, the page
1024          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1025          * set, the commit after this will fail, anyway.
1026          * This all charge/uncharge is done under some mutual execustion.
1027          * So, we don't need to taking care of changes in USED bit.
1028          */
1029         if (likely(!PageLRU(page)))
1030                 return;
1031
1032         spin_lock_irqsave(&zone->lru_lock, flags);
1033         /*
1034          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1035          * is guarded by lock_page() because the page is SwapCache.
1036          */
1037         if (!PageCgroupUsed(pc))
1038                 mem_cgroup_del_lru_list(page, page_lru(page));
1039         spin_unlock_irqrestore(&zone->lru_lock, flags);
1040 }
1041
1042 static void mem_cgroup_lru_add_after_commit(struct page *page)
1043 {
1044         unsigned long flags;
1045         struct zone *zone = page_zone(page);
1046         struct page_cgroup *pc = lookup_page_cgroup(page);
1047
1048         /* taking care of that the page is added to LRU while we commit it */
1049         if (likely(!PageLRU(page)))
1050                 return;
1051         spin_lock_irqsave(&zone->lru_lock, flags);
1052         /* link when the page is linked to LRU but page_cgroup isn't */
1053         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1054                 mem_cgroup_add_lru_list(page, page_lru(page));
1055         spin_unlock_irqrestore(&zone->lru_lock, flags);
1056 }
1057
1058
1059 void mem_cgroup_move_lists(struct page *page,
1060                            enum lru_list from, enum lru_list to)
1061 {
1062         if (mem_cgroup_disabled())
1063                 return;
1064         mem_cgroup_del_lru_list(page, from);
1065         mem_cgroup_add_lru_list(page, to);
1066 }
1067
1068 /*
1069  * Checks whether given mem is same or in the root_mem_cgroup's
1070  * hierarchy subtree
1071  */
1072 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1073                 struct mem_cgroup *memcg)
1074 {
1075         if (root_memcg != memcg) {
1076                 return (root_memcg->use_hierarchy &&
1077                         css_is_ancestor(&memcg->css, &root_memcg->css));
1078         }
1079
1080         return true;
1081 }
1082
1083 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1084 {
1085         int ret;
1086         struct mem_cgroup *curr = NULL;
1087         struct task_struct *p;
1088
1089         p = find_lock_task_mm(task);
1090         if (!p)
1091                 return 0;
1092         curr = try_get_mem_cgroup_from_mm(p->mm);
1093         task_unlock(p);
1094         if (!curr)
1095                 return 0;
1096         /*
1097          * We should check use_hierarchy of "memcg" not "curr". Because checking
1098          * use_hierarchy of "curr" here make this function true if hierarchy is
1099          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1100          * hierarchy(even if use_hierarchy is disabled in "memcg").
1101          */
1102         ret = mem_cgroup_same_or_subtree(memcg, curr);
1103         css_put(&curr->css);
1104         return ret;
1105 }
1106
1107 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1108 {
1109         unsigned long active;
1110         unsigned long inactive;
1111         unsigned long gb;
1112         unsigned long inactive_ratio;
1113
1114         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1115         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1116
1117         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1118         if (gb)
1119                 inactive_ratio = int_sqrt(10 * gb);
1120         else
1121                 inactive_ratio = 1;
1122
1123         if (present_pages) {
1124                 present_pages[0] = inactive;
1125                 present_pages[1] = active;
1126         }
1127
1128         return inactive_ratio;
1129 }
1130
1131 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1132 {
1133         unsigned long active;
1134         unsigned long inactive;
1135         unsigned long present_pages[2];
1136         unsigned long inactive_ratio;
1137
1138         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1139
1140         inactive = present_pages[0];
1141         active = present_pages[1];
1142
1143         if (inactive * inactive_ratio < active)
1144                 return 1;
1145
1146         return 0;
1147 }
1148
1149 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1150 {
1151         unsigned long active;
1152         unsigned long inactive;
1153
1154         inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1155         active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1156
1157         return (active > inactive);
1158 }
1159
1160 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1161                                                       struct zone *zone)
1162 {
1163         int nid = zone_to_nid(zone);
1164         int zid = zone_idx(zone);
1165         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1166
1167         return &mz->reclaim_stat;
1168 }
1169
1170 struct zone_reclaim_stat *
1171 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1172 {
1173         struct page_cgroup *pc;
1174         struct mem_cgroup_per_zone *mz;
1175
1176         if (mem_cgroup_disabled())
1177                 return NULL;
1178
1179         pc = lookup_page_cgroup(page);
1180         if (!PageCgroupUsed(pc))
1181                 return NULL;
1182         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1183         smp_rmb();
1184         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1185         return &mz->reclaim_stat;
1186 }
1187
1188 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1189                                         struct list_head *dst,
1190                                         unsigned long *scanned, int order,
1191                                         isolate_mode_t mode,
1192                                         struct zone *z,
1193                                         struct mem_cgroup *mem_cont,
1194                                         int active, int file)
1195 {
1196         unsigned long nr_taken = 0;
1197         struct page *page;
1198         unsigned long scan;
1199         LIST_HEAD(pc_list);
1200         struct list_head *src;
1201         struct page_cgroup *pc, *tmp;
1202         int nid = zone_to_nid(z);
1203         int zid = zone_idx(z);
1204         struct mem_cgroup_per_zone *mz;
1205         int lru = LRU_FILE * file + active;
1206         int ret;
1207
1208         BUG_ON(!mem_cont);
1209         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1210         src = &mz->lists[lru];
1211
1212         scan = 0;
1213         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1214                 if (scan >= nr_to_scan)
1215                         break;
1216
1217                 if (unlikely(!PageCgroupUsed(pc)))
1218                         continue;
1219
1220                 page = lookup_cgroup_page(pc);
1221
1222                 if (unlikely(!PageLRU(page)))
1223                         continue;
1224
1225                 scan++;
1226                 ret = __isolate_lru_page(page, mode, file);
1227                 switch (ret) {
1228                 case 0:
1229                         list_move(&page->lru, dst);
1230                         mem_cgroup_del_lru(page);
1231                         nr_taken += hpage_nr_pages(page);
1232                         break;
1233                 case -EBUSY:
1234                         /* we don't affect global LRU but rotate in our LRU */
1235                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1236                         break;
1237                 default:
1238                         break;
1239                 }
1240         }
1241
1242         *scanned = scan;
1243
1244         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1245                                       0, 0, 0, mode);
1246
1247         return nr_taken;
1248 }
1249
1250 #define mem_cgroup_from_res_counter(counter, member)    \
1251         container_of(counter, struct mem_cgroup, member)
1252
1253 /**
1254  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1255  * @mem: the memory cgroup
1256  *
1257  * Returns the maximum amount of memory @mem can be charged with, in
1258  * pages.
1259  */
1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261 {
1262         unsigned long long margin;
1263
1264         margin = res_counter_margin(&memcg->res);
1265         if (do_swap_account)
1266                 margin = min(margin, res_counter_margin(&memcg->memsw));
1267         return margin >> PAGE_SHIFT;
1268 }
1269
1270 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1271 {
1272         struct cgroup *cgrp = memcg->css.cgroup;
1273
1274         /* root ? */
1275         if (cgrp->parent == NULL)
1276                 return vm_swappiness;
1277
1278         return memcg->swappiness;
1279 }
1280
1281 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282 {
1283         int cpu;
1284
1285         get_online_cpus();
1286         spin_lock(&memcg->pcp_counter_lock);
1287         for_each_online_cpu(cpu)
1288                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1289         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1290         spin_unlock(&memcg->pcp_counter_lock);
1291         put_online_cpus();
1292
1293         synchronize_rcu();
1294 }
1295
1296 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1297 {
1298         int cpu;
1299
1300         if (!memcg)
1301                 return;
1302         get_online_cpus();
1303         spin_lock(&memcg->pcp_counter_lock);
1304         for_each_online_cpu(cpu)
1305                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1306         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1307         spin_unlock(&memcg->pcp_counter_lock);
1308         put_online_cpus();
1309 }
1310 /*
1311  * 2 routines for checking "mem" is under move_account() or not.
1312  *
1313  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1314  *                        for avoiding race in accounting. If true,
1315  *                        pc->mem_cgroup may be overwritten.
1316  *
1317  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1318  *                        under hierarchy of moving cgroups. This is for
1319  *                        waiting at hith-memory prressure caused by "move".
1320  */
1321
1322 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1323 {
1324         VM_BUG_ON(!rcu_read_lock_held());
1325         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1326 }
1327
1328 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1329 {
1330         struct mem_cgroup *from;
1331         struct mem_cgroup *to;
1332         bool ret = false;
1333         /*
1334          * Unlike task_move routines, we access mc.to, mc.from not under
1335          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1336          */
1337         spin_lock(&mc.lock);
1338         from = mc.from;
1339         to = mc.to;
1340         if (!from)
1341                 goto unlock;
1342
1343         ret = mem_cgroup_same_or_subtree(memcg, from)
1344                 || mem_cgroup_same_or_subtree(memcg, to);
1345 unlock:
1346         spin_unlock(&mc.lock);
1347         return ret;
1348 }
1349
1350 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1351 {
1352         if (mc.moving_task && current != mc.moving_task) {
1353                 if (mem_cgroup_under_move(memcg)) {
1354                         DEFINE_WAIT(wait);
1355                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1356                         /* moving charge context might have finished. */
1357                         if (mc.moving_task)
1358                                 schedule();
1359                         finish_wait(&mc.waitq, &wait);
1360                         return true;
1361                 }
1362         }
1363         return false;
1364 }
1365
1366 /**
1367  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1368  * @memcg: The memory cgroup that went over limit
1369  * @p: Task that is going to be killed
1370  *
1371  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1372  * enabled
1373  */
1374 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1375 {
1376         struct cgroup *task_cgrp;
1377         struct cgroup *mem_cgrp;
1378         /*
1379          * Need a buffer in BSS, can't rely on allocations. The code relies
1380          * on the assumption that OOM is serialized for memory controller.
1381          * If this assumption is broken, revisit this code.
1382          */
1383         static char memcg_name[PATH_MAX];
1384         int ret;
1385
1386         if (!memcg || !p)
1387                 return;
1388
1389
1390         rcu_read_lock();
1391
1392         mem_cgrp = memcg->css.cgroup;
1393         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1394
1395         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1396         if (ret < 0) {
1397                 /*
1398                  * Unfortunately, we are unable to convert to a useful name
1399                  * But we'll still print out the usage information
1400                  */
1401                 rcu_read_unlock();
1402                 goto done;
1403         }
1404         rcu_read_unlock();
1405
1406         printk(KERN_INFO "Task in %s killed", memcg_name);
1407
1408         rcu_read_lock();
1409         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1410         if (ret < 0) {
1411                 rcu_read_unlock();
1412                 goto done;
1413         }
1414         rcu_read_unlock();
1415
1416         /*
1417          * Continues from above, so we don't need an KERN_ level
1418          */
1419         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1420 done:
1421
1422         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1423                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1424                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1425                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1426         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1427                 "failcnt %llu\n",
1428                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1429                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1430                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1431 }
1432
1433 /*
1434  * This function returns the number of memcg under hierarchy tree. Returns
1435  * 1(self count) if no children.
1436  */
1437 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1438 {
1439         int num = 0;
1440         struct mem_cgroup *iter;
1441
1442         for_each_mem_cgroup_tree(iter, memcg)
1443                 num++;
1444         return num;
1445 }
1446
1447 /*
1448  * Return the memory (and swap, if configured) limit for a memcg.
1449  */
1450 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1451 {
1452         u64 limit;
1453         u64 memsw;
1454
1455         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1456         limit += total_swap_pages << PAGE_SHIFT;
1457
1458         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1459         /*
1460          * If memsw is finite and limits the amount of swap space available
1461          * to this memcg, return that limit.
1462          */
1463         return min(limit, memsw);
1464 }
1465
1466 /*
1467  * Visit the first child (need not be the first child as per the ordering
1468  * of the cgroup list, since we track last_scanned_child) of @mem and use
1469  * that to reclaim free pages from.
1470  */
1471 static struct mem_cgroup *
1472 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1473 {
1474         struct mem_cgroup *ret = NULL;
1475         struct cgroup_subsys_state *css;
1476         int nextid, found;
1477
1478         if (!root_memcg->use_hierarchy) {
1479                 css_get(&root_memcg->css);
1480                 ret = root_memcg;
1481         }
1482
1483         while (!ret) {
1484                 rcu_read_lock();
1485                 nextid = root_memcg->last_scanned_child + 1;
1486                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1487                                    &found);
1488                 if (css && css_tryget(css))
1489                         ret = container_of(css, struct mem_cgroup, css);
1490
1491                 rcu_read_unlock();
1492                 /* Updates scanning parameter */
1493                 if (!css) {
1494                         /* this means start scan from ID:1 */
1495                         root_memcg->last_scanned_child = 0;
1496                 } else
1497                         root_memcg->last_scanned_child = found;
1498         }
1499
1500         return ret;
1501 }
1502
1503 /**
1504  * test_mem_cgroup_node_reclaimable
1505  * @mem: the target memcg
1506  * @nid: the node ID to be checked.
1507  * @noswap : specify true here if the user wants flle only information.
1508  *
1509  * This function returns whether the specified memcg contains any
1510  * reclaimable pages on a node. Returns true if there are any reclaimable
1511  * pages in the node.
1512  */
1513 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1514                 int nid, bool noswap)
1515 {
1516         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1517                 return true;
1518         if (noswap || !total_swap_pages)
1519                 return false;
1520         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1521                 return true;
1522         return false;
1523
1524 }
1525 #if MAX_NUMNODES > 1
1526
1527 /*
1528  * Always updating the nodemask is not very good - even if we have an empty
1529  * list or the wrong list here, we can start from some node and traverse all
1530  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1531  *
1532  */
1533 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1534 {
1535         int nid;
1536         /*
1537          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1538          * pagein/pageout changes since the last update.
1539          */
1540         if (!atomic_read(&memcg->numainfo_events))
1541                 return;
1542         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1543                 return;
1544
1545         /* make a nodemask where this memcg uses memory from */
1546         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1547
1548         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1549
1550                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1551                         node_clear(nid, memcg->scan_nodes);
1552         }
1553
1554         atomic_set(&memcg->numainfo_events, 0);
1555         atomic_set(&memcg->numainfo_updating, 0);
1556 }
1557
1558 /*
1559  * Selecting a node where we start reclaim from. Because what we need is just
1560  * reducing usage counter, start from anywhere is O,K. Considering
1561  * memory reclaim from current node, there are pros. and cons.
1562  *
1563  * Freeing memory from current node means freeing memory from a node which
1564  * we'll use or we've used. So, it may make LRU bad. And if several threads
1565  * hit limits, it will see a contention on a node. But freeing from remote
1566  * node means more costs for memory reclaim because of memory latency.
1567  *
1568  * Now, we use round-robin. Better algorithm is welcomed.
1569  */
1570 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1571 {
1572         int node;
1573
1574         mem_cgroup_may_update_nodemask(memcg);
1575         node = memcg->last_scanned_node;
1576
1577         node = next_node(node, memcg->scan_nodes);
1578         if (node == MAX_NUMNODES)
1579                 node = first_node(memcg->scan_nodes);
1580         /*
1581          * We call this when we hit limit, not when pages are added to LRU.
1582          * No LRU may hold pages because all pages are UNEVICTABLE or
1583          * memcg is too small and all pages are not on LRU. In that case,
1584          * we use curret node.
1585          */
1586         if (unlikely(node == MAX_NUMNODES))
1587                 node = numa_node_id();
1588
1589         memcg->last_scanned_node = node;
1590         return node;
1591 }
1592
1593 /*
1594  * Check all nodes whether it contains reclaimable pages or not.
1595  * For quick scan, we make use of scan_nodes. This will allow us to skip
1596  * unused nodes. But scan_nodes is lazily updated and may not cotain
1597  * enough new information. We need to do double check.
1598  */
1599 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1600 {
1601         int nid;
1602
1603         /*
1604          * quick check...making use of scan_node.
1605          * We can skip unused nodes.
1606          */
1607         if (!nodes_empty(memcg->scan_nodes)) {
1608                 for (nid = first_node(memcg->scan_nodes);
1609                      nid < MAX_NUMNODES;
1610                      nid = next_node(nid, memcg->scan_nodes)) {
1611
1612                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1613                                 return true;
1614                 }
1615         }
1616         /*
1617          * Check rest of nodes.
1618          */
1619         for_each_node_state(nid, N_HIGH_MEMORY) {
1620                 if (node_isset(nid, memcg->scan_nodes))
1621                         continue;
1622                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1623                         return true;
1624         }
1625         return false;
1626 }
1627
1628 #else
1629 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1630 {
1631         return 0;
1632 }
1633
1634 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1635 {
1636         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1637 }
1638 #endif
1639
1640 /*
1641  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1642  * we reclaimed from, so that we don't end up penalizing one child extensively
1643  * based on its position in the children list.
1644  *
1645  * root_memcg is the original ancestor that we've been reclaim from.
1646  *
1647  * We give up and return to the caller when we visit root_memcg twice.
1648  * (other groups can be removed while we're walking....)
1649  *
1650  * If shrink==true, for avoiding to free too much, this returns immedieately.
1651  */
1652 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1653                                                 struct zone *zone,
1654                                                 gfp_t gfp_mask,
1655                                                 unsigned long reclaim_options,
1656                                                 unsigned long *total_scanned)
1657 {
1658         struct mem_cgroup *victim;
1659         int ret, total = 0;
1660         int loop = 0;
1661         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1662         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1663         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1664         unsigned long excess;
1665         unsigned long nr_scanned;
1666
1667         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1668
1669         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1670         if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1671                 noswap = true;
1672
1673         while (1) {
1674                 victim = mem_cgroup_select_victim(root_memcg);
1675                 if (victim == root_memcg) {
1676                         loop++;
1677                         /*
1678                          * We are not draining per cpu cached charges during
1679                          * soft limit reclaim  because global reclaim doesn't
1680                          * care about charges. It tries to free some memory and
1681                          * charges will not give any.
1682                          */
1683                         if (!check_soft && loop >= 1)
1684                                 drain_all_stock_async(root_memcg);
1685                         if (loop >= 2) {
1686                                 /*
1687                                  * If we have not been able to reclaim
1688                                  * anything, it might because there are
1689                                  * no reclaimable pages under this hierarchy
1690                                  */
1691                                 if (!check_soft || !total) {
1692                                         css_put(&victim->css);
1693                                         break;
1694                                 }
1695                                 /*
1696                                  * We want to do more targeted reclaim.
1697                                  * excess >> 2 is not to excessive so as to
1698                                  * reclaim too much, nor too less that we keep
1699                                  * coming back to reclaim from this cgroup
1700                                  */
1701                                 if (total >= (excess >> 2) ||
1702                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1703                                         css_put(&victim->css);
1704                                         break;
1705                                 }
1706                         }
1707                 }
1708                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1709                         /* this cgroup's local usage == 0 */
1710                         css_put(&victim->css);
1711                         continue;
1712                 }
1713                 /* we use swappiness of local cgroup */
1714                 if (check_soft) {
1715                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1716                                 noswap, zone, &nr_scanned);
1717                         *total_scanned += nr_scanned;
1718                 } else
1719                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1720                                                 noswap);
1721                 css_put(&victim->css);
1722                 /*
1723                  * At shrinking usage, we can't check we should stop here or
1724                  * reclaim more. It's depends on callers. last_scanned_child
1725                  * will work enough for keeping fairness under tree.
1726                  */
1727                 if (shrink)
1728                         return ret;
1729                 total += ret;
1730                 if (check_soft) {
1731                         if (!res_counter_soft_limit_excess(&root_memcg->res))
1732                                 return total;
1733                 } else if (mem_cgroup_margin(root_memcg))
1734                         return total;
1735         }
1736         return total;
1737 }
1738
1739 /*
1740  * Check OOM-Killer is already running under our hierarchy.
1741  * If someone is running, return false.
1742  * Has to be called with memcg_oom_lock
1743  */
1744 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1745 {
1746         struct mem_cgroup *iter, *failed = NULL;
1747         bool cond = true;
1748
1749         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1750                 if (iter->oom_lock) {
1751                         /*
1752                          * this subtree of our hierarchy is already locked
1753                          * so we cannot give a lock.
1754                          */
1755                         failed = iter;
1756                         cond = false;
1757                 } else
1758                         iter->oom_lock = true;
1759         }
1760
1761         if (!failed)
1762                 return true;
1763
1764         /*
1765          * OK, we failed to lock the whole subtree so we have to clean up
1766          * what we set up to the failing subtree
1767          */
1768         cond = true;
1769         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1770                 if (iter == failed) {
1771                         cond = false;
1772                         continue;
1773                 }
1774                 iter->oom_lock = false;
1775         }
1776         return false;
1777 }
1778
1779 /*
1780  * Has to be called with memcg_oom_lock
1781  */
1782 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783 {
1784         struct mem_cgroup *iter;
1785
1786         for_each_mem_cgroup_tree(iter, memcg)
1787                 iter->oom_lock = false;
1788         return 0;
1789 }
1790
1791 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 {
1793         struct mem_cgroup *iter;
1794
1795         for_each_mem_cgroup_tree(iter, memcg)
1796                 atomic_inc(&iter->under_oom);
1797 }
1798
1799 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 {
1801         struct mem_cgroup *iter;
1802
1803         /*
1804          * When a new child is created while the hierarchy is under oom,
1805          * mem_cgroup_oom_lock() may not be called. We have to use
1806          * atomic_add_unless() here.
1807          */
1808         for_each_mem_cgroup_tree(iter, memcg)
1809                 atomic_add_unless(&iter->under_oom, -1, 0);
1810 }
1811
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1814
1815 struct oom_wait_info {
1816         struct mem_cgroup *mem;
1817         wait_queue_t    wait;
1818 };
1819
1820 static int memcg_oom_wake_function(wait_queue_t *wait,
1821         unsigned mode, int sync, void *arg)
1822 {
1823         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1824                           *oom_wait_memcg;
1825         struct oom_wait_info *oom_wait_info;
1826
1827         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828         oom_wait_memcg = oom_wait_info->mem;
1829
1830         /*
1831          * Both of oom_wait_info->mem and wake_mem are stable under us.
1832          * Then we can use css_is_ancestor without taking care of RCU.
1833          */
1834         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1835                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1836                 return 0;
1837         return autoremove_wake_function(wait, mode, sync, arg);
1838 }
1839
1840 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1841 {
1842         /* for filtering, pass "memcg" as argument. */
1843         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1844 }
1845
1846 static void memcg_oom_recover(struct mem_cgroup *memcg)
1847 {
1848         if (memcg && atomic_read(&memcg->under_oom))
1849                 memcg_wakeup_oom(memcg);
1850 }
1851
1852 /*
1853  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1854  */
1855 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1856 {
1857         struct oom_wait_info owait;
1858         bool locked, need_to_kill;
1859
1860         owait.mem = memcg;
1861         owait.wait.flags = 0;
1862         owait.wait.func = memcg_oom_wake_function;
1863         owait.wait.private = current;
1864         INIT_LIST_HEAD(&owait.wait.task_list);
1865         need_to_kill = true;
1866         mem_cgroup_mark_under_oom(memcg);
1867
1868         /* At first, try to OOM lock hierarchy under memcg.*/
1869         spin_lock(&memcg_oom_lock);
1870         locked = mem_cgroup_oom_lock(memcg);
1871         /*
1872          * Even if signal_pending(), we can't quit charge() loop without
1873          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1874          * under OOM is always welcomed, use TASK_KILLABLE here.
1875          */
1876         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1877         if (!locked || memcg->oom_kill_disable)
1878                 need_to_kill = false;
1879         if (locked)
1880                 mem_cgroup_oom_notify(memcg);
1881         spin_unlock(&memcg_oom_lock);
1882
1883         if (need_to_kill) {
1884                 finish_wait(&memcg_oom_waitq, &owait.wait);
1885                 mem_cgroup_out_of_memory(memcg, mask);
1886         } else {
1887                 schedule();
1888                 finish_wait(&memcg_oom_waitq, &owait.wait);
1889         }
1890         spin_lock(&memcg_oom_lock);
1891         if (locked)
1892                 mem_cgroup_oom_unlock(memcg);
1893         memcg_wakeup_oom(memcg);
1894         spin_unlock(&memcg_oom_lock);
1895
1896         mem_cgroup_unmark_under_oom(memcg);
1897
1898         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1899                 return false;
1900         /* Give chance to dying process */
1901         schedule_timeout_uninterruptible(1);
1902         return true;
1903 }
1904
1905 /*
1906  * Currently used to update mapped file statistics, but the routine can be
1907  * generalized to update other statistics as well.
1908  *
1909  * Notes: Race condition
1910  *
1911  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1912  * it tends to be costly. But considering some conditions, we doesn't need
1913  * to do so _always_.
1914  *
1915  * Considering "charge", lock_page_cgroup() is not required because all
1916  * file-stat operations happen after a page is attached to radix-tree. There
1917  * are no race with "charge".
1918  *
1919  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1920  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1921  * if there are race with "uncharge". Statistics itself is properly handled
1922  * by flags.
1923  *
1924  * Considering "move", this is an only case we see a race. To make the race
1925  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1926  * possibility of race condition. If there is, we take a lock.
1927  */
1928
1929 void mem_cgroup_update_page_stat(struct page *page,
1930                                  enum mem_cgroup_page_stat_item idx, int val)
1931 {
1932         struct mem_cgroup *memcg;
1933         struct page_cgroup *pc = lookup_page_cgroup(page);
1934         bool need_unlock = false;
1935         unsigned long uninitialized_var(flags);
1936
1937         if (unlikely(!pc))
1938                 return;
1939
1940         rcu_read_lock();
1941         memcg = pc->mem_cgroup;
1942         if (unlikely(!memcg || !PageCgroupUsed(pc)))
1943                 goto out;
1944         /* pc->mem_cgroup is unstable ? */
1945         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1946                 /* take a lock against to access pc->mem_cgroup */
1947                 move_lock_page_cgroup(pc, &flags);
1948                 need_unlock = true;
1949                 memcg = pc->mem_cgroup;
1950                 if (!memcg || !PageCgroupUsed(pc))
1951                         goto out;
1952         }
1953
1954         switch (idx) {
1955         case MEMCG_NR_FILE_MAPPED:
1956                 if (val > 0)
1957                         SetPageCgroupFileMapped(pc);
1958                 else if (!page_mapped(page))
1959                         ClearPageCgroupFileMapped(pc);
1960                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1961                 break;
1962         default:
1963                 BUG();
1964         }
1965
1966         this_cpu_add(memcg->stat->count[idx], val);
1967
1968 out:
1969         if (unlikely(need_unlock))
1970                 move_unlock_page_cgroup(pc, &flags);
1971         rcu_read_unlock();
1972         return;
1973 }
1974 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1975
1976 /*
1977  * size of first charge trial. "32" comes from vmscan.c's magic value.
1978  * TODO: maybe necessary to use big numbers in big irons.
1979  */
1980 #define CHARGE_BATCH    32U
1981 struct memcg_stock_pcp {
1982         struct mem_cgroup *cached; /* this never be root cgroup */
1983         unsigned int nr_pages;
1984         struct work_struct work;
1985         unsigned long flags;
1986 #define FLUSHING_CACHED_CHARGE  (0)
1987 };
1988 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1989 static DEFINE_MUTEX(percpu_charge_mutex);
1990
1991 /*
1992  * Try to consume stocked charge on this cpu. If success, one page is consumed
1993  * from local stock and true is returned. If the stock is 0 or charges from a
1994  * cgroup which is not current target, returns false. This stock will be
1995  * refilled.
1996  */
1997 static bool consume_stock(struct mem_cgroup *memcg)
1998 {
1999         struct memcg_stock_pcp *stock;
2000         bool ret = true;
2001
2002         stock = &get_cpu_var(memcg_stock);
2003         if (memcg == stock->cached && stock->nr_pages)
2004                 stock->nr_pages--;
2005         else /* need to call res_counter_charge */
2006                 ret = false;
2007         put_cpu_var(memcg_stock);
2008         return ret;
2009 }
2010
2011 /*
2012  * Returns stocks cached in percpu to res_counter and reset cached information.
2013  */
2014 static void drain_stock(struct memcg_stock_pcp *stock)
2015 {
2016         struct mem_cgroup *old = stock->cached;
2017
2018         if (stock->nr_pages) {
2019                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2020
2021                 res_counter_uncharge(&old->res, bytes);
2022                 if (do_swap_account)
2023                         res_counter_uncharge(&old->memsw, bytes);
2024                 stock->nr_pages = 0;
2025         }
2026         stock->cached = NULL;
2027 }
2028
2029 /*
2030  * This must be called under preempt disabled or must be called by
2031  * a thread which is pinned to local cpu.
2032  */
2033 static void drain_local_stock(struct work_struct *dummy)
2034 {
2035         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2036         drain_stock(stock);
2037         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2038 }
2039
2040 /*
2041  * Cache charges(val) which is from res_counter, to local per_cpu area.
2042  * This will be consumed by consume_stock() function, later.
2043  */
2044 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2045 {
2046         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2047
2048         if (stock->cached != memcg) { /* reset if necessary */
2049                 drain_stock(stock);
2050                 stock->cached = memcg;
2051         }
2052         stock->nr_pages += nr_pages;
2053         put_cpu_var(memcg_stock);
2054 }
2055
2056 /*
2057  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2058  * of the hierarchy under it. sync flag says whether we should block
2059  * until the work is done.
2060  */
2061 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2062 {
2063         int cpu, curcpu;
2064
2065         /* Notify other cpus that system-wide "drain" is running */
2066         get_online_cpus();
2067         curcpu = get_cpu();
2068         for_each_online_cpu(cpu) {
2069                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2070                 struct mem_cgroup *memcg;
2071
2072                 memcg = stock->cached;
2073                 if (!memcg || !stock->nr_pages)
2074                         continue;
2075                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2076                         continue;
2077                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2078                         if (cpu == curcpu)
2079                                 drain_local_stock(&stock->work);
2080                         else
2081                                 schedule_work_on(cpu, &stock->work);
2082                 }
2083         }
2084         put_cpu();
2085
2086         if (!sync)
2087                 goto out;
2088
2089         for_each_online_cpu(cpu) {
2090                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2091                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2092                         flush_work(&stock->work);
2093         }
2094 out:
2095         put_online_cpus();
2096 }
2097
2098 /*
2099  * Tries to drain stocked charges in other cpus. This function is asynchronous
2100  * and just put a work per cpu for draining localy on each cpu. Caller can
2101  * expects some charges will be back to res_counter later but cannot wait for
2102  * it.
2103  */
2104 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2105 {
2106         /*
2107          * If someone calls draining, avoid adding more kworker runs.
2108          */
2109         if (!mutex_trylock(&percpu_charge_mutex))
2110                 return;
2111         drain_all_stock(root_memcg, false);
2112         mutex_unlock(&percpu_charge_mutex);
2113 }
2114
2115 /* This is a synchronous drain interface. */
2116 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2117 {
2118         /* called when force_empty is called */
2119         mutex_lock(&percpu_charge_mutex);
2120         drain_all_stock(root_memcg, true);
2121         mutex_unlock(&percpu_charge_mutex);
2122 }
2123
2124 /*
2125  * This function drains percpu counter value from DEAD cpu and
2126  * move it to local cpu. Note that this function can be preempted.
2127  */
2128 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2129 {
2130         int i;
2131
2132         spin_lock(&memcg->pcp_counter_lock);
2133         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2134                 long x = per_cpu(memcg->stat->count[i], cpu);
2135
2136                 per_cpu(memcg->stat->count[i], cpu) = 0;
2137                 memcg->nocpu_base.count[i] += x;
2138         }
2139         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2140                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2141
2142                 per_cpu(memcg->stat->events[i], cpu) = 0;
2143                 memcg->nocpu_base.events[i] += x;
2144         }
2145         /* need to clear ON_MOVE value, works as a kind of lock. */
2146         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2147         spin_unlock(&memcg->pcp_counter_lock);
2148 }
2149
2150 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2151 {
2152         int idx = MEM_CGROUP_ON_MOVE;
2153
2154         spin_lock(&memcg->pcp_counter_lock);
2155         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2156         spin_unlock(&memcg->pcp_counter_lock);
2157 }
2158
2159 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2160                                         unsigned long action,
2161                                         void *hcpu)
2162 {
2163         int cpu = (unsigned long)hcpu;
2164         struct memcg_stock_pcp *stock;
2165         struct mem_cgroup *iter;
2166
2167         if ((action == CPU_ONLINE)) {
2168                 for_each_mem_cgroup_all(iter)
2169                         synchronize_mem_cgroup_on_move(iter, cpu);
2170                 return NOTIFY_OK;
2171         }
2172
2173         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2174                 return NOTIFY_OK;
2175
2176         for_each_mem_cgroup_all(iter)
2177                 mem_cgroup_drain_pcp_counter(iter, cpu);
2178
2179         stock = &per_cpu(memcg_stock, cpu);
2180         drain_stock(stock);
2181         return NOTIFY_OK;
2182 }
2183
2184
2185 /* See __mem_cgroup_try_charge() for details */
2186 enum {
2187         CHARGE_OK,              /* success */
2188         CHARGE_RETRY,           /* need to retry but retry is not bad */
2189         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2190         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2191         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2192 };
2193
2194 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2195                                 unsigned int nr_pages, bool oom_check)
2196 {
2197         unsigned long csize = nr_pages * PAGE_SIZE;
2198         struct mem_cgroup *mem_over_limit;
2199         struct res_counter *fail_res;
2200         unsigned long flags = 0;
2201         int ret;
2202
2203         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2204
2205         if (likely(!ret)) {
2206                 if (!do_swap_account)
2207                         return CHARGE_OK;
2208                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2209                 if (likely(!ret))
2210                         return CHARGE_OK;
2211
2212                 res_counter_uncharge(&memcg->res, csize);
2213                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2214                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2215         } else
2216                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2217         /*
2218          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2219          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2220          *
2221          * Never reclaim on behalf of optional batching, retry with a
2222          * single page instead.
2223          */
2224         if (nr_pages == CHARGE_BATCH)
2225                 return CHARGE_RETRY;
2226
2227         if (!(gfp_mask & __GFP_WAIT))
2228                 return CHARGE_WOULDBLOCK;
2229
2230         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2231                                               gfp_mask, flags, NULL);
2232         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2233                 return CHARGE_RETRY;
2234         /*
2235          * Even though the limit is exceeded at this point, reclaim
2236          * may have been able to free some pages.  Retry the charge
2237          * before killing the task.
2238          *
2239          * Only for regular pages, though: huge pages are rather
2240          * unlikely to succeed so close to the limit, and we fall back
2241          * to regular pages anyway in case of failure.
2242          */
2243         if (nr_pages == 1 && ret)
2244                 return CHARGE_RETRY;
2245
2246         /*
2247          * At task move, charge accounts can be doubly counted. So, it's
2248          * better to wait until the end of task_move if something is going on.
2249          */
2250         if (mem_cgroup_wait_acct_move(mem_over_limit))
2251                 return CHARGE_RETRY;
2252
2253         /* If we don't need to call oom-killer at el, return immediately */
2254         if (!oom_check)
2255                 return CHARGE_NOMEM;
2256         /* check OOM */
2257         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2258                 return CHARGE_OOM_DIE;
2259
2260         return CHARGE_RETRY;
2261 }
2262
2263 /*
2264  * Unlike exported interface, "oom" parameter is added. if oom==true,
2265  * oom-killer can be invoked.
2266  */
2267 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2268                                    gfp_t gfp_mask,
2269                                    unsigned int nr_pages,
2270                                    struct mem_cgroup **ptr,
2271                                    bool oom)
2272 {
2273         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2274         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2275         struct mem_cgroup *memcg = NULL;
2276         int ret;
2277
2278         /*
2279          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2280          * in system level. So, allow to go ahead dying process in addition to
2281          * MEMDIE process.
2282          */
2283         if (unlikely(test_thread_flag(TIF_MEMDIE)
2284                      || fatal_signal_pending(current)))
2285                 goto bypass;
2286
2287         /*
2288          * We always charge the cgroup the mm_struct belongs to.
2289          * The mm_struct's mem_cgroup changes on task migration if the
2290          * thread group leader migrates. It's possible that mm is not
2291          * set, if so charge the init_mm (happens for pagecache usage).
2292          */
2293         if (!*ptr && !mm)
2294                 goto bypass;
2295 again:
2296         if (*ptr) { /* css should be a valid one */
2297                 memcg = *ptr;
2298                 VM_BUG_ON(css_is_removed(&memcg->css));
2299                 if (mem_cgroup_is_root(memcg))
2300                         goto done;
2301                 if (nr_pages == 1 && consume_stock(memcg))
2302                         goto done;
2303                 css_get(&memcg->css);
2304         } else {
2305                 struct task_struct *p;
2306
2307                 rcu_read_lock();
2308                 p = rcu_dereference(mm->owner);
2309                 /*
2310                  * Because we don't have task_lock(), "p" can exit.
2311                  * In that case, "memcg" can point to root or p can be NULL with
2312                  * race with swapoff. Then, we have small risk of mis-accouning.
2313                  * But such kind of mis-account by race always happens because
2314                  * we don't have cgroup_mutex(). It's overkill and we allo that
2315                  * small race, here.
2316                  * (*) swapoff at el will charge against mm-struct not against
2317                  * task-struct. So, mm->owner can be NULL.
2318                  */
2319                 memcg = mem_cgroup_from_task(p);
2320                 if (!memcg || mem_cgroup_is_root(memcg)) {
2321                         rcu_read_unlock();
2322                         goto done;
2323                 }
2324                 if (nr_pages == 1 && consume_stock(memcg)) {
2325                         /*
2326                          * It seems dagerous to access memcg without css_get().
2327                          * But considering how consume_stok works, it's not
2328                          * necessary. If consume_stock success, some charges
2329                          * from this memcg are cached on this cpu. So, we
2330                          * don't need to call css_get()/css_tryget() before
2331                          * calling consume_stock().
2332                          */
2333                         rcu_read_unlock();
2334                         goto done;
2335                 }
2336                 /* after here, we may be blocked. we need to get refcnt */
2337                 if (!css_tryget(&memcg->css)) {
2338                         rcu_read_unlock();
2339                         goto again;
2340                 }
2341                 rcu_read_unlock();
2342         }
2343
2344         do {
2345                 bool oom_check;
2346
2347                 /* If killed, bypass charge */
2348                 if (fatal_signal_pending(current)) {
2349                         css_put(&memcg->css);
2350                         goto bypass;
2351                 }
2352
2353                 oom_check = false;
2354                 if (oom && !nr_oom_retries) {
2355                         oom_check = true;
2356                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2357                 }
2358
2359                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2360                 switch (ret) {
2361                 case CHARGE_OK:
2362                         break;
2363                 case CHARGE_RETRY: /* not in OOM situation but retry */
2364                         batch = nr_pages;
2365                         css_put(&memcg->css);
2366                         memcg = NULL;
2367                         goto again;
2368                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2369                         css_put(&memcg->css);
2370                         goto nomem;
2371                 case CHARGE_NOMEM: /* OOM routine works */
2372                         if (!oom) {
2373                                 css_put(&memcg->css);
2374                                 goto nomem;
2375                         }
2376                         /* If oom, we never return -ENOMEM */
2377                         nr_oom_retries--;
2378                         break;
2379                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2380                         css_put(&memcg->css);
2381                         goto bypass;
2382                 }
2383         } while (ret != CHARGE_OK);
2384
2385         if (batch > nr_pages)
2386                 refill_stock(memcg, batch - nr_pages);
2387         css_put(&memcg->css);
2388 done:
2389         *ptr = memcg;
2390         return 0;
2391 nomem:
2392         *ptr = NULL;
2393         return -ENOMEM;
2394 bypass:
2395         *ptr = NULL;
2396         return 0;
2397 }
2398
2399 /*
2400  * Somemtimes we have to undo a charge we got by try_charge().
2401  * This function is for that and do uncharge, put css's refcnt.
2402  * gotten by try_charge().
2403  */
2404 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2405                                        unsigned int nr_pages)
2406 {
2407         if (!mem_cgroup_is_root(memcg)) {
2408                 unsigned long bytes = nr_pages * PAGE_SIZE;
2409
2410                 res_counter_uncharge(&memcg->res, bytes);
2411                 if (do_swap_account)
2412                         res_counter_uncharge(&memcg->memsw, bytes);
2413         }
2414 }
2415
2416 /*
2417  * A helper function to get mem_cgroup from ID. must be called under
2418  * rcu_read_lock(). The caller must check css_is_removed() or some if
2419  * it's concern. (dropping refcnt from swap can be called against removed
2420  * memcg.)
2421  */
2422 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2423 {
2424         struct cgroup_subsys_state *css;
2425
2426         /* ID 0 is unused ID */
2427         if (!id)
2428                 return NULL;
2429         css = css_lookup(&mem_cgroup_subsys, id);
2430         if (!css)
2431                 return NULL;
2432         return container_of(css, struct mem_cgroup, css);
2433 }
2434
2435 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436 {
2437         struct mem_cgroup *memcg = NULL;
2438         struct page_cgroup *pc;
2439         unsigned short id;
2440         swp_entry_t ent;
2441
2442         VM_BUG_ON(!PageLocked(page));
2443
2444         pc = lookup_page_cgroup(page);
2445         lock_page_cgroup(pc);
2446         if (PageCgroupUsed(pc)) {
2447                 memcg = pc->mem_cgroup;
2448                 if (memcg && !css_tryget(&memcg->css))
2449                         memcg = NULL;
2450         } else if (PageSwapCache(page)) {
2451                 ent.val = page_private(page);
2452                 id = lookup_swap_cgroup(ent);
2453                 rcu_read_lock();
2454                 memcg = mem_cgroup_lookup(id);
2455                 if (memcg && !css_tryget(&memcg->css))
2456                         memcg = NULL;
2457                 rcu_read_unlock();
2458         }
2459         unlock_page_cgroup(pc);
2460         return memcg;
2461 }
2462
2463 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464                                        struct page *page,
2465                                        unsigned int nr_pages,
2466                                        struct page_cgroup *pc,
2467                                        enum charge_type ctype)
2468 {
2469         lock_page_cgroup(pc);
2470         if (unlikely(PageCgroupUsed(pc))) {
2471                 unlock_page_cgroup(pc);
2472                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2473                 return;
2474         }
2475         /*
2476          * we don't need page_cgroup_lock about tail pages, becase they are not
2477          * accessed by any other context at this point.
2478          */
2479         pc->mem_cgroup = memcg;
2480         /*
2481          * We access a page_cgroup asynchronously without lock_page_cgroup().
2482          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2483          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2484          * before USED bit, we need memory barrier here.
2485          * See mem_cgroup_add_lru_list(), etc.
2486          */
2487         smp_wmb();
2488         switch (ctype) {
2489         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2490         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2491                 SetPageCgroupCache(pc);
2492                 SetPageCgroupUsed(pc);
2493                 break;
2494         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2495                 ClearPageCgroupCache(pc);
2496                 SetPageCgroupUsed(pc);
2497                 break;
2498         default:
2499                 break;
2500         }
2501
2502         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2503         unlock_page_cgroup(pc);
2504         /*
2505          * "charge_statistics" updated event counter. Then, check it.
2506          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2507          * if they exceeds softlimit.
2508          */
2509         memcg_check_events(memcg, page);
2510 }
2511
2512 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2513
2514 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2515                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2516 /*
2517  * Because tail pages are not marked as "used", set it. We're under
2518  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2519  */
2520 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2521 {
2522         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2523         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2524         unsigned long flags;
2525
2526         if (mem_cgroup_disabled())
2527                 return;
2528         /*
2529          * We have no races with charge/uncharge but will have races with
2530          * page state accounting.
2531          */
2532         move_lock_page_cgroup(head_pc, &flags);
2533
2534         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2535         smp_wmb(); /* see __commit_charge() */
2536         if (PageCgroupAcctLRU(head_pc)) {
2537                 enum lru_list lru;
2538                 struct mem_cgroup_per_zone *mz;
2539
2540                 /*
2541                  * LRU flags cannot be copied because we need to add tail
2542                  *.page to LRU by generic call and our hook will be called.
2543                  * We hold lru_lock, then, reduce counter directly.
2544                  */
2545                 lru = page_lru(head);
2546                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2547                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2548         }
2549         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2550         move_unlock_page_cgroup(head_pc, &flags);
2551 }
2552 #endif
2553
2554 /**
2555  * mem_cgroup_move_account - move account of the page
2556  * @page: the page
2557  * @nr_pages: number of regular pages (>1 for huge pages)
2558  * @pc: page_cgroup of the page.
2559  * @from: mem_cgroup which the page is moved from.
2560  * @to: mem_cgroup which the page is moved to. @from != @to.
2561  * @uncharge: whether we should call uncharge and css_put against @from.
2562  *
2563  * The caller must confirm following.
2564  * - page is not on LRU (isolate_page() is useful.)
2565  * - compound_lock is held when nr_pages > 1
2566  *
2567  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2568  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2569  * true, this function does "uncharge" from old cgroup, but it doesn't if
2570  * @uncharge is false, so a caller should do "uncharge".
2571  */
2572 static int mem_cgroup_move_account(struct page *page,
2573                                    unsigned int nr_pages,
2574                                    struct page_cgroup *pc,
2575                                    struct mem_cgroup *from,
2576                                    struct mem_cgroup *to,
2577                                    bool uncharge)
2578 {
2579         unsigned long flags;
2580         int ret;
2581
2582         VM_BUG_ON(from == to);
2583         VM_BUG_ON(PageLRU(page));
2584         /*
2585          * The page is isolated from LRU. So, collapse function
2586          * will not handle this page. But page splitting can happen.
2587          * Do this check under compound_page_lock(). The caller should
2588          * hold it.
2589          */
2590         ret = -EBUSY;
2591         if (nr_pages > 1 && !PageTransHuge(page))
2592                 goto out;
2593
2594         lock_page_cgroup(pc);
2595
2596         ret = -EINVAL;
2597         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2598                 goto unlock;
2599
2600         move_lock_page_cgroup(pc, &flags);
2601
2602         if (PageCgroupFileMapped(pc)) {
2603                 /* Update mapped_file data for mem_cgroup */
2604                 preempt_disable();
2605                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2606                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2607                 preempt_enable();
2608         }
2609         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2610         if (uncharge)
2611                 /* This is not "cancel", but cancel_charge does all we need. */
2612                 __mem_cgroup_cancel_charge(from, nr_pages);
2613
2614         /* caller should have done css_get */
2615         pc->mem_cgroup = to;
2616         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2617         /*
2618          * We charges against "to" which may not have any tasks. Then, "to"
2619          * can be under rmdir(). But in current implementation, caller of
2620          * this function is just force_empty() and move charge, so it's
2621          * guaranteed that "to" is never removed. So, we don't check rmdir
2622          * status here.
2623          */
2624         move_unlock_page_cgroup(pc, &flags);
2625         ret = 0;
2626 unlock:
2627         unlock_page_cgroup(pc);
2628         /*
2629          * check events
2630          */
2631         memcg_check_events(to, page);
2632         memcg_check_events(from, page);
2633 out:
2634         return ret;
2635 }
2636
2637 /*
2638  * move charges to its parent.
2639  */
2640
2641 static int mem_cgroup_move_parent(struct page *page,
2642                                   struct page_cgroup *pc,
2643                                   struct mem_cgroup *child,
2644                                   gfp_t gfp_mask)
2645 {
2646         struct cgroup *cg = child->css.cgroup;
2647         struct cgroup *pcg = cg->parent;
2648         struct mem_cgroup *parent;
2649         unsigned int nr_pages;
2650         unsigned long uninitialized_var(flags);
2651         int ret;
2652
2653         /* Is ROOT ? */
2654         if (!pcg)
2655                 return -EINVAL;
2656
2657         ret = -EBUSY;
2658         if (!get_page_unless_zero(page))
2659                 goto out;
2660         if (isolate_lru_page(page))
2661                 goto put;
2662
2663         nr_pages = hpage_nr_pages(page);
2664
2665         parent = mem_cgroup_from_cont(pcg);
2666         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2667         if (ret || !parent)
2668                 goto put_back;
2669
2670         if (nr_pages > 1)
2671                 flags = compound_lock_irqsave(page);
2672
2673         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2674         if (ret)
2675                 __mem_cgroup_cancel_charge(parent, nr_pages);
2676
2677         if (nr_pages > 1)
2678                 compound_unlock_irqrestore(page, flags);
2679 put_back:
2680         putback_lru_page(page);
2681 put:
2682         put_page(page);
2683 out:
2684         return ret;
2685 }
2686
2687 /*
2688  * Charge the memory controller for page usage.
2689  * Return
2690  * 0 if the charge was successful
2691  * < 0 if the cgroup is over its limit
2692  */
2693 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2694                                 gfp_t gfp_mask, enum charge_type ctype)
2695 {
2696         struct mem_cgroup *memcg = NULL;
2697         unsigned int nr_pages = 1;
2698         struct page_cgroup *pc;
2699         bool oom = true;
2700         int ret;
2701
2702         if (PageTransHuge(page)) {
2703                 nr_pages <<= compound_order(page);
2704                 VM_BUG_ON(!PageTransHuge(page));
2705                 /*
2706                  * Never OOM-kill a process for a huge page.  The
2707                  * fault handler will fall back to regular pages.
2708                  */
2709                 oom = false;
2710         }
2711
2712         pc = lookup_page_cgroup(page);
2713         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2714
2715         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716         if (ret || !memcg)
2717                 return ret;
2718
2719         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2720         return 0;
2721 }
2722
2723 int mem_cgroup_newpage_charge(struct page *page,
2724                               struct mm_struct *mm, gfp_t gfp_mask)
2725 {
2726         if (mem_cgroup_disabled())
2727                 return 0;
2728         /*
2729          * If already mapped, we don't have to account.
2730          * If page cache, page->mapping has address_space.
2731          * But page->mapping may have out-of-use anon_vma pointer,
2732          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2733          * is NULL.
2734          */
2735         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2736                 return 0;
2737         if (unlikely(!mm))
2738                 mm = &init_mm;
2739         return mem_cgroup_charge_common(page, mm, gfp_mask,
2740                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2741 }
2742
2743 static void
2744 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2745                                         enum charge_type ctype);
2746
2747 static void
2748 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2749                                         enum charge_type ctype)
2750 {
2751         struct page_cgroup *pc = lookup_page_cgroup(page);
2752         /*
2753          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2754          * is already on LRU. It means the page may on some other page_cgroup's
2755          * LRU. Take care of it.
2756          */
2757         mem_cgroup_lru_del_before_commit(page);
2758         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2759         mem_cgroup_lru_add_after_commit(page);
2760         return;
2761 }
2762
2763 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2764                                 gfp_t gfp_mask)
2765 {
2766         struct mem_cgroup *memcg = NULL;
2767         int ret;
2768
2769         if (mem_cgroup_disabled())
2770                 return 0;
2771         if (PageCompound(page))
2772                 return 0;
2773
2774         if (unlikely(!mm))
2775                 mm = &init_mm;
2776
2777         if (page_is_file_cache(page)) {
2778                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2779                 if (ret || !memcg)
2780                         return ret;
2781
2782                 /*
2783                  * FUSE reuses pages without going through the final
2784                  * put that would remove them from the LRU list, make
2785                  * sure that they get relinked properly.
2786                  */
2787                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2788                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2789                 return ret;
2790         }
2791         /* shmem */
2792         if (PageSwapCache(page)) {
2793                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2794                 if (!ret)
2795                         __mem_cgroup_commit_charge_swapin(page, memcg,
2796                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2797         } else
2798                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2799                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2800
2801         return ret;
2802 }
2803
2804 /*
2805  * While swap-in, try_charge -> commit or cancel, the page is locked.
2806  * And when try_charge() successfully returns, one refcnt to memcg without
2807  * struct page_cgroup is acquired. This refcnt will be consumed by
2808  * "commit()" or removed by "cancel()"
2809  */
2810 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2811                                  struct page *page,
2812                                  gfp_t mask, struct mem_cgroup **ptr)
2813 {
2814         struct mem_cgroup *memcg;
2815         int ret;
2816
2817         *ptr = NULL;
2818
2819         if (mem_cgroup_disabled())
2820                 return 0;
2821
2822         if (!do_swap_account)
2823                 goto charge_cur_mm;
2824         /*
2825          * A racing thread's fault, or swapoff, may have already updated
2826          * the pte, and even removed page from swap cache: in those cases
2827          * do_swap_page()'s pte_same() test will fail; but there's also a
2828          * KSM case which does need to charge the page.
2829          */
2830         if (!PageSwapCache(page))
2831                 goto charge_cur_mm;
2832         memcg = try_get_mem_cgroup_from_page(page);
2833         if (!memcg)
2834                 goto charge_cur_mm;
2835         *ptr = memcg;
2836         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2837         css_put(&memcg->css);
2838         return ret;
2839 charge_cur_mm:
2840         if (unlikely(!mm))
2841                 mm = &init_mm;
2842         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2843 }
2844
2845 static void
2846 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2847                                         enum charge_type ctype)
2848 {
2849         if (mem_cgroup_disabled())
2850                 return;
2851         if (!ptr)
2852                 return;
2853         cgroup_exclude_rmdir(&ptr->css);
2854
2855         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2856         /*
2857          * Now swap is on-memory. This means this page may be
2858          * counted both as mem and swap....double count.
2859          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2860          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2861          * may call delete_from_swap_cache() before reach here.
2862          */
2863         if (do_swap_account && PageSwapCache(page)) {
2864                 swp_entry_t ent = {.val = page_private(page)};
2865                 unsigned short id;
2866                 struct mem_cgroup *memcg;
2867
2868                 id = swap_cgroup_record(ent, 0);
2869                 rcu_read_lock();
2870                 memcg = mem_cgroup_lookup(id);
2871                 if (memcg) {
2872                         /*
2873                          * This recorded memcg can be obsolete one. So, avoid
2874                          * calling css_tryget
2875                          */
2876                         if (!mem_cgroup_is_root(memcg))
2877                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2878                         mem_cgroup_swap_statistics(memcg, false);
2879                         mem_cgroup_put(memcg);
2880                 }
2881                 rcu_read_unlock();
2882         }
2883         /*
2884          * At swapin, we may charge account against cgroup which has no tasks.
2885          * So, rmdir()->pre_destroy() can be called while we do this charge.
2886          * In that case, we need to call pre_destroy() again. check it here.
2887          */
2888         cgroup_release_and_wakeup_rmdir(&ptr->css);
2889 }
2890
2891 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2892 {
2893         __mem_cgroup_commit_charge_swapin(page, ptr,
2894                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2895 }
2896
2897 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2898 {
2899         if (mem_cgroup_disabled())
2900                 return;
2901         if (!memcg)
2902                 return;
2903         __mem_cgroup_cancel_charge(memcg, 1);
2904 }
2905
2906 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2907                                    unsigned int nr_pages,
2908                                    const enum charge_type ctype)
2909 {
2910         struct memcg_batch_info *batch = NULL;
2911         bool uncharge_memsw = true;
2912
2913         /* If swapout, usage of swap doesn't decrease */
2914         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2915                 uncharge_memsw = false;
2916
2917         batch = &current->memcg_batch;
2918         /*
2919          * In usual, we do css_get() when we remember memcg pointer.
2920          * But in this case, we keep res->usage until end of a series of
2921          * uncharges. Then, it's ok to ignore memcg's refcnt.
2922          */
2923         if (!batch->memcg)
2924                 batch->memcg = memcg;
2925         /*
2926          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2927          * In those cases, all pages freed continuously can be expected to be in
2928          * the same cgroup and we have chance to coalesce uncharges.
2929          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2930          * because we want to do uncharge as soon as possible.
2931          */
2932
2933         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2934                 goto direct_uncharge;
2935
2936         if (nr_pages > 1)
2937                 goto direct_uncharge;
2938
2939         /*
2940          * In typical case, batch->memcg == mem. This means we can
2941          * merge a series of uncharges to an uncharge of res_counter.
2942          * If not, we uncharge res_counter ony by one.
2943          */
2944         if (batch->memcg != memcg)
2945                 goto direct_uncharge;
2946         /* remember freed charge and uncharge it later */
2947         batch->nr_pages++;
2948         if (uncharge_memsw)
2949                 batch->memsw_nr_pages++;
2950         return;
2951 direct_uncharge:
2952         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2953         if (uncharge_memsw)
2954                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2955         if (unlikely(batch->memcg != memcg))
2956                 memcg_oom_recover(memcg);
2957         return;
2958 }
2959
2960 /*
2961  * uncharge if !page_mapped(page)
2962  */
2963 static struct mem_cgroup *
2964 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2965 {
2966         struct mem_cgroup *memcg = NULL;
2967         unsigned int nr_pages = 1;
2968         struct page_cgroup *pc;
2969
2970         if (mem_cgroup_disabled())
2971                 return NULL;
2972
2973         if (PageSwapCache(page))
2974                 return NULL;
2975
2976         if (PageTransHuge(page)) {
2977                 nr_pages <<= compound_order(page);
2978                 VM_BUG_ON(!PageTransHuge(page));
2979         }
2980         /*
2981          * Check if our page_cgroup is valid
2982          */
2983         pc = lookup_page_cgroup(page);
2984         if (unlikely(!pc || !PageCgroupUsed(pc)))
2985                 return NULL;
2986
2987         lock_page_cgroup(pc);
2988
2989         memcg = pc->mem_cgroup;
2990
2991         if (!PageCgroupUsed(pc))
2992                 goto unlock_out;
2993
2994         switch (ctype) {
2995         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2996         case MEM_CGROUP_CHARGE_TYPE_DROP:
2997                 /* See mem_cgroup_prepare_migration() */
2998                 if (page_mapped(page) || PageCgroupMigration(pc))
2999                         goto unlock_out;
3000                 break;
3001         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3002                 if (!PageAnon(page)) {  /* Shared memory */
3003                         if (page->mapping && !page_is_file_cache(page))
3004                                 goto unlock_out;
3005                 } else if (page_mapped(page)) /* Anon */
3006                                 goto unlock_out;
3007                 break;
3008         default:
3009                 break;
3010         }
3011
3012         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3013
3014         ClearPageCgroupUsed(pc);
3015         /*
3016          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3017          * freed from LRU. This is safe because uncharged page is expected not
3018          * to be reused (freed soon). Exception is SwapCache, it's handled by
3019          * special functions.
3020          */
3021
3022         unlock_page_cgroup(pc);
3023         /*
3024          * even after unlock, we have memcg->res.usage here and this memcg
3025          * will never be freed.
3026          */
3027         memcg_check_events(memcg, page);
3028         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3029                 mem_cgroup_swap_statistics(memcg, true);
3030                 mem_cgroup_get(memcg);
3031         }
3032         if (!mem_cgroup_is_root(memcg))
3033                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3034
3035         return memcg;
3036
3037 unlock_out:
3038         unlock_page_cgroup(pc);
3039         return NULL;
3040 }
3041
3042 void mem_cgroup_uncharge_page(struct page *page)
3043 {
3044         /* early check. */
3045         if (page_mapped(page))
3046                 return;
3047         if (page->mapping && !PageAnon(page))
3048                 return;
3049         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3050 }
3051
3052 void mem_cgroup_uncharge_cache_page(struct page *page)
3053 {
3054         VM_BUG_ON(page_mapped(page));
3055         VM_BUG_ON(page->mapping);
3056         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3057 }
3058
3059 /*
3060  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3061  * In that cases, pages are freed continuously and we can expect pages
3062  * are in the same memcg. All these calls itself limits the number of
3063  * pages freed at once, then uncharge_start/end() is called properly.
3064  * This may be called prural(2) times in a context,
3065  */
3066
3067 void mem_cgroup_uncharge_start(void)
3068 {
3069         current->memcg_batch.do_batch++;
3070         /* We can do nest. */
3071         if (current->memcg_batch.do_batch == 1) {
3072                 current->memcg_batch.memcg = NULL;
3073                 current->memcg_batch.nr_pages = 0;
3074                 current->memcg_batch.memsw_nr_pages = 0;
3075         }
3076 }
3077
3078 void mem_cgroup_uncharge_end(void)
3079 {
3080         struct memcg_batch_info *batch = &current->memcg_batch;
3081
3082         if (!batch->do_batch)
3083                 return;
3084
3085         batch->do_batch--;
3086         if (batch->do_batch) /* If stacked, do nothing. */
3087                 return;
3088
3089         if (!batch->memcg)
3090                 return;
3091         /*
3092          * This "batch->memcg" is valid without any css_get/put etc...
3093          * bacause we hide charges behind us.
3094          */
3095         if (batch->nr_pages)
3096                 res_counter_uncharge(&batch->memcg->res,
3097                                      batch->nr_pages * PAGE_SIZE);
3098         if (batch->memsw_nr_pages)
3099                 res_counter_uncharge(&batch->memcg->memsw,
3100                                      batch->memsw_nr_pages * PAGE_SIZE);
3101         memcg_oom_recover(batch->memcg);
3102         /* forget this pointer (for sanity check) */
3103         batch->memcg = NULL;
3104 }
3105
3106 #ifdef CONFIG_SWAP
3107 /*
3108  * called after __delete_from_swap_cache() and drop "page" account.
3109  * memcg information is recorded to swap_cgroup of "ent"
3110  */
3111 void
3112 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3113 {
3114         struct mem_cgroup *memcg;
3115         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3116
3117         if (!swapout) /* this was a swap cache but the swap is unused ! */
3118                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3119
3120         memcg = __mem_cgroup_uncharge_common(page, ctype);
3121
3122         /*
3123          * record memcg information,  if swapout && memcg != NULL,
3124          * mem_cgroup_get() was called in uncharge().
3125          */
3126         if (do_swap_account && swapout && memcg)
3127                 swap_cgroup_record(ent, css_id(&memcg->css));
3128 }
3129 #endif
3130
3131 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3132 /*
3133  * called from swap_entry_free(). remove record in swap_cgroup and
3134  * uncharge "memsw" account.
3135  */
3136 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3137 {
3138         struct mem_cgroup *memcg;
3139         unsigned short id;
3140
3141         if (!do_swap_account)
3142                 return;
3143
3144         id = swap_cgroup_record(ent, 0);
3145         rcu_read_lock();
3146         memcg = mem_cgroup_lookup(id);
3147         if (memcg) {
3148                 /*
3149                  * We uncharge this because swap is freed.
3150                  * This memcg can be obsolete one. We avoid calling css_tryget
3151                  */
3152                 if (!mem_cgroup_is_root(memcg))
3153                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3154                 mem_cgroup_swap_statistics(memcg, false);
3155                 mem_cgroup_put(memcg);
3156         }
3157         rcu_read_unlock();
3158 }
3159
3160 /**
3161  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3162  * @entry: swap entry to be moved
3163  * @from:  mem_cgroup which the entry is moved from
3164  * @to:  mem_cgroup which the entry is moved to
3165  * @need_fixup: whether we should fixup res_counters and refcounts.
3166  *
3167  * It succeeds only when the swap_cgroup's record for this entry is the same
3168  * as the mem_cgroup's id of @from.
3169  *
3170  * Returns 0 on success, -EINVAL on failure.
3171  *
3172  * The caller must have charged to @to, IOW, called res_counter_charge() about
3173  * both res and memsw, and called css_get().
3174  */
3175 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3176                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3177 {
3178         unsigned short old_id, new_id;
3179
3180         old_id = css_id(&from->css);
3181         new_id = css_id(&to->css);
3182
3183         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3184                 mem_cgroup_swap_statistics(from, false);
3185                 mem_cgroup_swap_statistics(to, true);
3186                 /*
3187                  * This function is only called from task migration context now.
3188                  * It postpones res_counter and refcount handling till the end
3189                  * of task migration(mem_cgroup_clear_mc()) for performance
3190                  * improvement. But we cannot postpone mem_cgroup_get(to)
3191                  * because if the process that has been moved to @to does
3192                  * swap-in, the refcount of @to might be decreased to 0.
3193                  */
3194                 mem_cgroup_get(to);
3195                 if (need_fixup) {
3196                         if (!mem_cgroup_is_root(from))
3197                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3198                         mem_cgroup_put(from);
3199                         /*
3200                          * we charged both to->res and to->memsw, so we should
3201                          * uncharge to->res.
3202                          */
3203                         if (!mem_cgroup_is_root(to))
3204                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3205                 }
3206                 return 0;
3207         }
3208         return -EINVAL;
3209 }
3210 #else
3211 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3212                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3213 {
3214         return -EINVAL;
3215 }
3216 #endif
3217
3218 /*
3219  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3220  * page belongs to.
3221  */
3222 int mem_cgroup_prepare_migration(struct page *page,
3223         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3224 {
3225         struct mem_cgroup *memcg = NULL;
3226         struct page_cgroup *pc;
3227         enum charge_type ctype;
3228         int ret = 0;
3229
3230         *ptr = NULL;
3231
3232         VM_BUG_ON(PageTransHuge(page));
3233         if (mem_cgroup_disabled())
3234                 return 0;
3235
3236         pc = lookup_page_cgroup(page);
3237         lock_page_cgroup(pc);
3238         if (PageCgroupUsed(pc)) {
3239                 memcg = pc->mem_cgroup;
3240                 css_get(&memcg->css);
3241                 /*
3242                  * At migrating an anonymous page, its mapcount goes down
3243                  * to 0 and uncharge() will be called. But, even if it's fully
3244                  * unmapped, migration may fail and this page has to be
3245                  * charged again. We set MIGRATION flag here and delay uncharge
3246                  * until end_migration() is called
3247                  *
3248                  * Corner Case Thinking
3249                  * A)
3250                  * When the old page was mapped as Anon and it's unmap-and-freed
3251                  * while migration was ongoing.
3252                  * If unmap finds the old page, uncharge() of it will be delayed
3253                  * until end_migration(). If unmap finds a new page, it's
3254                  * uncharged when it make mapcount to be 1->0. If unmap code
3255                  * finds swap_migration_entry, the new page will not be mapped
3256                  * and end_migration() will find it(mapcount==0).
3257                  *
3258                  * B)
3259                  * When the old page was mapped but migraion fails, the kernel
3260                  * remaps it. A charge for it is kept by MIGRATION flag even
3261                  * if mapcount goes down to 0. We can do remap successfully
3262                  * without charging it again.
3263                  *
3264                  * C)
3265                  * The "old" page is under lock_page() until the end of
3266                  * migration, so, the old page itself will not be swapped-out.
3267                  * If the new page is swapped out before end_migraton, our
3268                  * hook to usual swap-out path will catch the event.
3269                  */
3270                 if (PageAnon(page))
3271                         SetPageCgroupMigration(pc);
3272         }
3273         unlock_page_cgroup(pc);
3274         /*
3275          * If the page is not charged at this point,
3276          * we return here.
3277          */
3278         if (!memcg)
3279                 return 0;
3280
3281         *ptr = memcg;
3282         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3283         css_put(&memcg->css);/* drop extra refcnt */
3284         if (ret || *ptr == NULL) {
3285                 if (PageAnon(page)) {
3286                         lock_page_cgroup(pc);
3287                         ClearPageCgroupMigration(pc);
3288                         unlock_page_cgroup(pc);
3289                         /*
3290                          * The old page may be fully unmapped while we kept it.
3291                          */
3292                         mem_cgroup_uncharge_page(page);
3293                 }
3294                 return -ENOMEM;
3295         }
3296         /*
3297          * We charge new page before it's used/mapped. So, even if unlock_page()
3298          * is called before end_migration, we can catch all events on this new
3299          * page. In the case new page is migrated but not remapped, new page's
3300          * mapcount will be finally 0 and we call uncharge in end_migration().
3301          */
3302         pc = lookup_page_cgroup(newpage);
3303         if (PageAnon(page))
3304                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3305         else if (page_is_file_cache(page))
3306                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3307         else
3308                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3309         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3310         return ret;
3311 }
3312
3313 /* remove redundant charge if migration failed*/
3314 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3315         struct page *oldpage, struct page *newpage, bool migration_ok)
3316 {
3317         struct page *used, *unused;
3318         struct page_cgroup *pc;
3319
3320         if (!memcg)
3321                 return;
3322         /* blocks rmdir() */
3323         cgroup_exclude_rmdir(&memcg->css);
3324         if (!migration_ok) {
3325                 used = oldpage;
3326                 unused = newpage;
3327         } else {
3328                 used = newpage;
3329                 unused = oldpage;
3330         }
3331         /*
3332          * We disallowed uncharge of pages under migration because mapcount
3333          * of the page goes down to zero, temporarly.
3334          * Clear the flag and check the page should be charged.
3335          */
3336         pc = lookup_page_cgroup(oldpage);
3337         lock_page_cgroup(pc);
3338         ClearPageCgroupMigration(pc);
3339         unlock_page_cgroup(pc);
3340
3341         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3342
3343         /*
3344          * If a page is a file cache, radix-tree replacement is very atomic
3345          * and we can skip this check. When it was an Anon page, its mapcount
3346          * goes down to 0. But because we added MIGRATION flage, it's not
3347          * uncharged yet. There are several case but page->mapcount check
3348          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3349          * check. (see prepare_charge() also)
3350          */
3351         if (PageAnon(used))
3352                 mem_cgroup_uncharge_page(used);
3353         /*
3354          * At migration, we may charge account against cgroup which has no
3355          * tasks.
3356          * So, rmdir()->pre_destroy() can be called while we do this charge.
3357          * In that case, we need to call pre_destroy() again. check it here.
3358          */
3359         cgroup_release_and_wakeup_rmdir(&memcg->css);
3360 }
3361
3362 #ifdef CONFIG_DEBUG_VM
3363 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3364 {
3365         struct page_cgroup *pc;
3366
3367         pc = lookup_page_cgroup(page);
3368         if (likely(pc) && PageCgroupUsed(pc))
3369                 return pc;
3370         return NULL;
3371 }
3372
3373 bool mem_cgroup_bad_page_check(struct page *page)
3374 {
3375         if (mem_cgroup_disabled())
3376                 return false;
3377
3378         return lookup_page_cgroup_used(page) != NULL;
3379 }
3380
3381 void mem_cgroup_print_bad_page(struct page *page)
3382 {
3383         struct page_cgroup *pc;
3384
3385         pc = lookup_page_cgroup_used(page);
3386         if (pc) {
3387                 int ret = -1;
3388                 char *path;
3389
3390                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3391                        pc, pc->flags, pc->mem_cgroup);
3392
3393                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3394                 if (path) {
3395                         rcu_read_lock();
3396                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3397                                                         path, PATH_MAX);
3398                         rcu_read_unlock();
3399                 }
3400
3401                 printk(KERN_CONT "(%s)\n",
3402                                 (ret < 0) ? "cannot get the path" : path);
3403                 kfree(path);
3404         }
3405 }
3406 #endif
3407
3408 static DEFINE_MUTEX(set_limit_mutex);
3409
3410 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3411                                 unsigned long long val)
3412 {
3413         int retry_count;
3414         u64 memswlimit, memlimit;
3415         int ret = 0;
3416         int children = mem_cgroup_count_children(memcg);
3417         u64 curusage, oldusage;
3418         int enlarge;
3419
3420         /*
3421          * For keeping hierarchical_reclaim simple, how long we should retry
3422          * is depends on callers. We set our retry-count to be function
3423          * of # of children which we should visit in this loop.
3424          */
3425         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3426
3427         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3428
3429         enlarge = 0;
3430         while (retry_count) {
3431                 if (signal_pending(current)) {
3432                         ret = -EINTR;
3433                         break;
3434                 }
3435                 /*
3436                  * Rather than hide all in some function, I do this in
3437                  * open coded manner. You see what this really does.
3438                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3439                  */
3440                 mutex_lock(&set_limit_mutex);
3441                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3442                 if (memswlimit < val) {
3443                         ret = -EINVAL;
3444                         mutex_unlock(&set_limit_mutex);
3445                         break;
3446                 }
3447
3448                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3449                 if (memlimit < val)
3450                         enlarge = 1;
3451
3452                 ret = res_counter_set_limit(&memcg->res, val);
3453                 if (!ret) {
3454                         if (memswlimit == val)
3455                                 memcg->memsw_is_minimum = true;
3456                         else
3457                                 memcg->memsw_is_minimum = false;
3458                 }
3459                 mutex_unlock(&set_limit_mutex);
3460
3461                 if (!ret)
3462                         break;
3463
3464                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3465                                                 MEM_CGROUP_RECLAIM_SHRINK,
3466                                                 NULL);
3467                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3468                 /* Usage is reduced ? */
3469                 if (curusage >= oldusage)
3470                         retry_count--;
3471                 else
3472                         oldusage = curusage;
3473         }
3474         if (!ret && enlarge)
3475                 memcg_oom_recover(memcg);
3476
3477         return ret;
3478 }
3479
3480 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3481                                         unsigned long long val)
3482 {
3483         int retry_count;
3484         u64 memlimit, memswlimit, oldusage, curusage;
3485         int children = mem_cgroup_count_children(memcg);
3486         int ret = -EBUSY;
3487         int enlarge = 0;
3488
3489         /* see mem_cgroup_resize_res_limit */
3490         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3491         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3492         while (retry_count) {
3493                 if (signal_pending(current)) {
3494                         ret = -EINTR;
3495                         break;
3496                 }
3497                 /*
3498                  * Rather than hide all in some function, I do this in
3499                  * open coded manner. You see what this really does.
3500                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3501                  */
3502                 mutex_lock(&set_limit_mutex);
3503                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3504                 if (memlimit > val) {
3505                         ret = -EINVAL;
3506                         mutex_unlock(&set_limit_mutex);
3507                         break;
3508                 }
3509                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3510                 if (memswlimit < val)
3511                         enlarge = 1;
3512                 ret = res_counter_set_limit(&memcg->memsw, val);
3513                 if (!ret) {
3514                         if (memlimit == val)
3515                                 memcg->memsw_is_minimum = true;
3516                         else
3517                                 memcg->memsw_is_minimum = false;
3518                 }
3519                 mutex_unlock(&set_limit_mutex);
3520
3521                 if (!ret)
3522                         break;
3523
3524                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3525                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3526                                                 MEM_CGROUP_RECLAIM_SHRINK,
3527                                                 NULL);
3528                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3529                 /* Usage is reduced ? */
3530                 if (curusage >= oldusage)
3531                         retry_count--;
3532                 else
3533                         oldusage = curusage;
3534         }
3535         if (!ret && enlarge)
3536                 memcg_oom_recover(memcg);
3537         return ret;
3538 }
3539
3540 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3541                                             gfp_t gfp_mask,
3542                                             unsigned long *total_scanned)
3543 {
3544         unsigned long nr_reclaimed = 0;
3545         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3546         unsigned long reclaimed;
3547         int loop = 0;
3548         struct mem_cgroup_tree_per_zone *mctz;
3549         unsigned long long excess;
3550         unsigned long nr_scanned;
3551
3552         if (order > 0)
3553                 return 0;
3554
3555         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3556         /*
3557          * This loop can run a while, specially if mem_cgroup's continuously
3558          * keep exceeding their soft limit and putting the system under
3559          * pressure
3560          */
3561         do {
3562                 if (next_mz)
3563                         mz = next_mz;
3564                 else
3565                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3566                 if (!mz)
3567                         break;
3568
3569                 nr_scanned = 0;
3570                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3571                                                 gfp_mask,
3572                                                 MEM_CGROUP_RECLAIM_SOFT,
3573                                                 &nr_scanned);
3574                 nr_reclaimed += reclaimed;
3575                 *total_scanned += nr_scanned;
3576                 spin_lock(&mctz->lock);
3577
3578                 /*
3579                  * If we failed to reclaim anything from this memory cgroup
3580                  * it is time to move on to the next cgroup
3581                  */
3582                 next_mz = NULL;
3583                 if (!reclaimed) {
3584                         do {
3585                                 /*
3586                                  * Loop until we find yet another one.
3587                                  *
3588                                  * By the time we get the soft_limit lock
3589                                  * again, someone might have aded the
3590                                  * group back on the RB tree. Iterate to
3591                                  * make sure we get a different mem.
3592                                  * mem_cgroup_largest_soft_limit_node returns
3593                                  * NULL if no other cgroup is present on
3594                                  * the tree
3595                                  */
3596                                 next_mz =
3597                                 __mem_cgroup_largest_soft_limit_node(mctz);
3598                                 if (next_mz == mz)
3599                                         css_put(&next_mz->mem->css);
3600                                 else /* next_mz == NULL or other memcg */
3601                                         break;
3602                         } while (1);
3603                 }
3604                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3605                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3606                 /*
3607                  * One school of thought says that we should not add
3608                  * back the node to the tree if reclaim returns 0.
3609                  * But our reclaim could return 0, simply because due
3610                  * to priority we are exposing a smaller subset of
3611                  * memory to reclaim from. Consider this as a longer
3612                  * term TODO.
3613                  */
3614                 /* If excess == 0, no tree ops */
3615                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3616                 spin_unlock(&mctz->lock);
3617                 css_put(&mz->mem->css);
3618                 loop++;
3619                 /*
3620                  * Could not reclaim anything and there are no more
3621                  * mem cgroups to try or we seem to be looping without
3622                  * reclaiming anything.
3623                  */
3624                 if (!nr_reclaimed &&
3625                         (next_mz == NULL ||
3626                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3627                         break;
3628         } while (!nr_reclaimed);
3629         if (next_mz)
3630                 css_put(&next_mz->mem->css);
3631         return nr_reclaimed;
3632 }
3633
3634 /*
3635  * This routine traverse page_cgroup in given list and drop them all.
3636  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3637  */
3638 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3639                                 int node, int zid, enum lru_list lru)
3640 {
3641         struct zone *zone;
3642         struct mem_cgroup_per_zone *mz;
3643         struct page_cgroup *pc, *busy;
3644         unsigned long flags, loop;
3645         struct list_head *list;
3646         int ret = 0;
3647
3648         zone = &NODE_DATA(node)->node_zones[zid];
3649         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3650         list = &mz->lists[lru];
3651
3652         loop = MEM_CGROUP_ZSTAT(mz, lru);
3653         /* give some margin against EBUSY etc...*/
3654         loop += 256;
3655         busy = NULL;
3656         while (loop--) {
3657                 struct page *page;
3658
3659                 ret = 0;
3660                 spin_lock_irqsave(&zone->lru_lock, flags);
3661                 if (list_empty(list)) {
3662                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3663                         break;
3664                 }
3665                 pc = list_entry(list->prev, struct page_cgroup, lru);
3666                 if (busy == pc) {
3667                         list_move(&pc->lru, list);
3668                         busy = NULL;
3669                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3670                         continue;
3671                 }
3672                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3673
3674                 page = lookup_cgroup_page(pc);
3675
3676                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3677                 if (ret == -ENOMEM)
3678                         break;
3679
3680                 if (ret == -EBUSY || ret == -EINVAL) {
3681                         /* found lock contention or "pc" is obsolete. */
3682                         busy = pc;
3683                         cond_resched();
3684                 } else
3685                         busy = NULL;
3686         }
3687
3688         if (!ret && !list_empty(list))
3689                 return -EBUSY;
3690         return ret;
3691 }
3692
3693 /*
3694  * make mem_cgroup's charge to be 0 if there is no task.
3695  * This enables deleting this mem_cgroup.
3696  */
3697 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3698 {
3699         int ret;
3700         int node, zid, shrink;
3701         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3702         struct cgroup *cgrp = memcg->css.cgroup;
3703
3704         css_get(&memcg->css);
3705
3706         shrink = 0;
3707         /* should free all ? */
3708         if (free_all)
3709                 goto try_to_free;
3710 move_account:
3711         do {
3712                 ret = -EBUSY;
3713                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3714                         goto out;
3715                 ret = -EINTR;
3716                 if (signal_pending(current))
3717                         goto out;
3718                 /* This is for making all *used* pages to be on LRU. */
3719                 lru_add_drain_all();
3720                 drain_all_stock_sync(memcg);
3721                 ret = 0;
3722                 mem_cgroup_start_move(memcg);
3723                 for_each_node_state(node, N_HIGH_MEMORY) {
3724                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3725                                 enum lru_list l;
3726                                 for_each_lru(l) {
3727                                         ret = mem_cgroup_force_empty_list(memcg,
3728                                                         node, zid, l);
3729                                         if (ret)
3730                                                 break;
3731                                 }
3732                         }
3733                         if (ret)
3734                                 break;
3735                 }
3736                 mem_cgroup_end_move(memcg);
3737                 memcg_oom_recover(memcg);
3738                 /* it seems parent cgroup doesn't have enough mem */
3739                 if (ret == -ENOMEM)
3740                         goto try_to_free;
3741                 cond_resched();
3742         /* "ret" should also be checked to ensure all lists are empty. */
3743         } while (memcg->res.usage > 0 || ret);
3744 out:
3745         css_put(&memcg->css);
3746         return ret;
3747
3748 try_to_free:
3749         /* returns EBUSY if there is a task or if we come here twice. */
3750         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3751                 ret = -EBUSY;
3752                 goto out;
3753         }
3754         /* we call try-to-free pages for make this cgroup empty */
3755         lru_add_drain_all();
3756         /* try to free all pages in this cgroup */
3757         shrink = 1;
3758         while (nr_retries && memcg->res.usage > 0) {
3759                 int progress;
3760
3761                 if (signal_pending(current)) {
3762                         ret = -EINTR;
3763                         goto out;
3764                 }
3765                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3766                                                 false);
3767                 if (!progress) {
3768                         nr_retries--;
3769                         /* maybe some writeback is necessary */
3770                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3771                 }
3772
3773         }
3774         lru_add_drain();
3775         /* try move_account...there may be some *locked* pages. */
3776         goto move_account;
3777 }
3778
3779 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3780 {
3781         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3782 }
3783
3784
3785 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3786 {
3787         return mem_cgroup_from_cont(cont)->use_hierarchy;
3788 }
3789
3790 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3791                                         u64 val)
3792 {
3793         int retval = 0;
3794         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3795         struct cgroup *parent = cont->parent;
3796         struct mem_cgroup *parent_memcg = NULL;
3797
3798         if (parent)
3799                 parent_memcg = mem_cgroup_from_cont(parent);
3800
3801         cgroup_lock();
3802         /*
3803          * If parent's use_hierarchy is set, we can't make any modifications
3804          * in the child subtrees. If it is unset, then the change can
3805          * occur, provided the current cgroup has no children.
3806          *
3807          * For the root cgroup, parent_mem is NULL, we allow value to be
3808          * set if there are no children.
3809          */
3810         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3811                                 (val == 1 || val == 0)) {
3812                 if (list_empty(&cont->children))
3813                         memcg->use_hierarchy = val;
3814                 else
3815                         retval = -EBUSY;
3816         } else
3817                 retval = -EINVAL;
3818         cgroup_unlock();
3819
3820         return retval;
3821 }
3822
3823
3824 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3825                                                enum mem_cgroup_stat_index idx)
3826 {
3827         struct mem_cgroup *iter;
3828         long val = 0;
3829
3830         /* Per-cpu values can be negative, use a signed accumulator */
3831         for_each_mem_cgroup_tree(iter, memcg)
3832                 val += mem_cgroup_read_stat(iter, idx);
3833
3834         if (val < 0) /* race ? */
3835                 val = 0;
3836         return val;
3837 }
3838
3839 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3840 {
3841         u64 val;
3842
3843         if (!mem_cgroup_is_root(memcg)) {
3844                 if (!swap)
3845                         return res_counter_read_u64(&memcg->res, RES_USAGE);
3846                 else
3847                         return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3848         }
3849
3850         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3851         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3852
3853         if (swap)
3854                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3855
3856         return val << PAGE_SHIFT;
3857 }
3858
3859 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3860 {
3861         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3862         u64 val;
3863         int type, name;
3864
3865         type = MEMFILE_TYPE(cft->private);
3866         name = MEMFILE_ATTR(cft->private);
3867         switch (type) {
3868         case _MEM:
3869                 if (name == RES_USAGE)
3870                         val = mem_cgroup_usage(memcg, false);
3871                 else
3872                         val = res_counter_read_u64(&memcg->res, name);
3873                 break;
3874         case _MEMSWAP:
3875                 if (name == RES_USAGE)
3876                         val = mem_cgroup_usage(memcg, true);
3877                 else
3878                         val = res_counter_read_u64(&memcg->memsw, name);
3879                 break;
3880         default:
3881                 BUG();
3882                 break;
3883         }
3884         return val;
3885 }
3886 /*
3887  * The user of this function is...
3888  * RES_LIMIT.
3889  */
3890 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3891                             const char *buffer)
3892 {
3893         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3894         int type, name;
3895         unsigned long long val;
3896         int ret;
3897
3898         type = MEMFILE_TYPE(cft->private);
3899         name = MEMFILE_ATTR(cft->private);
3900         switch (name) {
3901         case RES_LIMIT:
3902                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3903                         ret = -EINVAL;
3904                         break;
3905                 }
3906                 /* This function does all necessary parse...reuse it */
3907                 ret = res_counter_memparse_write_strategy(buffer, &val);
3908                 if (ret)
3909                         break;
3910                 if (type == _MEM)
3911                         ret = mem_cgroup_resize_limit(memcg, val);
3912                 else
3913                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3914                 break;
3915         case RES_SOFT_LIMIT:
3916                 ret = res_counter_memparse_write_strategy(buffer, &val);
3917                 if (ret)
3918                         break;
3919                 /*
3920                  * For memsw, soft limits are hard to implement in terms
3921                  * of semantics, for now, we support soft limits for
3922                  * control without swap
3923                  */
3924                 if (type == _MEM)
3925                         ret = res_counter_set_soft_limit(&memcg->res, val);
3926                 else
3927                         ret = -EINVAL;
3928                 break;
3929         default:
3930                 ret = -EINVAL; /* should be BUG() ? */
3931                 break;
3932         }
3933         return ret;
3934 }
3935
3936 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3937                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3938 {
3939         struct cgroup *cgroup;
3940         unsigned long long min_limit, min_memsw_limit, tmp;
3941
3942         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3943         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3944         cgroup = memcg->css.cgroup;
3945         if (!memcg->use_hierarchy)
3946                 goto out;
3947
3948         while (cgroup->parent) {
3949                 cgroup = cgroup->parent;
3950                 memcg = mem_cgroup_from_cont(cgroup);
3951                 if (!memcg->use_hierarchy)
3952                         break;
3953                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3954                 min_limit = min(min_limit, tmp);
3955                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3956                 min_memsw_limit = min(min_memsw_limit, tmp);
3957         }
3958 out:
3959         *mem_limit = min_limit;
3960         *memsw_limit = min_memsw_limit;
3961         return;
3962 }
3963
3964 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3965 {
3966         struct mem_cgroup *memcg;
3967         int type, name;
3968
3969         memcg = mem_cgroup_from_cont(cont);
3970         type = MEMFILE_TYPE(event);
3971         name = MEMFILE_ATTR(event);
3972         switch (name) {
3973         case RES_MAX_USAGE:
3974                 if (type == _MEM)
3975                         res_counter_reset_max(&memcg->res);
3976                 else
3977                         res_counter_reset_max(&memcg->memsw);
3978                 break;
3979         case RES_FAILCNT:
3980                 if (type == _MEM)
3981                         res_counter_reset_failcnt(&memcg->res);
3982                 else
3983                         res_counter_reset_failcnt(&memcg->memsw);
3984                 break;
3985         }
3986
3987         return 0;
3988 }
3989
3990 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3991                                         struct cftype *cft)
3992 {
3993         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3994 }
3995
3996 #ifdef CONFIG_MMU
3997 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998                                         struct cftype *cft, u64 val)
3999 {
4000         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4001
4002         if (val >= (1 << NR_MOVE_TYPE))
4003                 return -EINVAL;
4004         /*
4005          * We check this value several times in both in can_attach() and
4006          * attach(), so we need cgroup lock to prevent this value from being
4007          * inconsistent.
4008          */
4009         cgroup_lock();
4010         memcg->move_charge_at_immigrate = val;
4011         cgroup_unlock();
4012
4013         return 0;
4014 }
4015 #else
4016 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4017                                         struct cftype *cft, u64 val)
4018 {
4019         return -ENOSYS;
4020 }
4021 #endif
4022
4023
4024 /* For read statistics */
4025 enum {
4026         MCS_CACHE,
4027         MCS_RSS,
4028         MCS_FILE_MAPPED,
4029         MCS_PGPGIN,
4030         MCS_PGPGOUT,
4031         MCS_SWAP,
4032         MCS_PGFAULT,
4033         MCS_PGMAJFAULT,
4034         MCS_INACTIVE_ANON,
4035         MCS_ACTIVE_ANON,
4036         MCS_INACTIVE_FILE,
4037         MCS_ACTIVE_FILE,
4038         MCS_UNEVICTABLE,
4039         NR_MCS_STAT,
4040 };
4041
4042 struct mcs_total_stat {
4043         s64 stat[NR_MCS_STAT];
4044 };
4045
4046 struct {
4047         char *local_name;
4048         char *total_name;
4049 } memcg_stat_strings[NR_MCS_STAT] = {
4050         {"cache", "total_cache"},
4051         {"rss", "total_rss"},
4052         {"mapped_file", "total_mapped_file"},
4053         {"pgpgin", "total_pgpgin"},
4054         {"pgpgout", "total_pgpgout"},
4055         {"swap", "total_swap"},
4056         {"pgfault", "total_pgfault"},
4057         {"pgmajfault", "total_pgmajfault"},
4058         {"inactive_anon", "total_inactive_anon"},
4059         {"active_anon", "total_active_anon"},
4060         {"inactive_file", "total_inactive_file"},
4061         {"active_file", "total_active_file"},
4062         {"unevictable", "total_unevictable"}
4063 };
4064
4065
4066 static void
4067 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4068 {
4069         s64 val;
4070
4071         /* per cpu stat */
4072         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4073         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4074         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4075         s->stat[MCS_RSS] += val * PAGE_SIZE;
4076         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4077         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4078         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4079         s->stat[MCS_PGPGIN] += val;
4080         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4081         s->stat[MCS_PGPGOUT] += val;
4082         if (do_swap_account) {
4083                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4084                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4085         }
4086         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4087         s->stat[MCS_PGFAULT] += val;
4088         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4089         s->stat[MCS_PGMAJFAULT] += val;
4090
4091         /* per zone stat */
4092         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4093         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4094         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4095         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4096         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4097         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4098         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4099         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4100         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4101         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4102 }
4103
4104 static void
4105 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4106 {
4107         struct mem_cgroup *iter;
4108
4109         for_each_mem_cgroup_tree(iter, memcg)
4110                 mem_cgroup_get_local_stat(iter, s);
4111 }
4112
4113 #ifdef CONFIG_NUMA
4114 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4115 {
4116         int nid;
4117         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4118         unsigned long node_nr;
4119         struct cgroup *cont = m->private;
4120         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4121
4122         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4123         seq_printf(m, "total=%lu", total_nr);
4124         for_each_node_state(nid, N_HIGH_MEMORY) {
4125                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4126                 seq_printf(m, " N%d=%lu", nid, node_nr);
4127         }
4128         seq_putc(m, '\n');
4129
4130         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4131         seq_printf(m, "file=%lu", file_nr);
4132         for_each_node_state(nid, N_HIGH_MEMORY) {
4133                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4134                                 LRU_ALL_FILE);
4135                 seq_printf(m, " N%d=%lu", nid, node_nr);
4136         }
4137         seq_putc(m, '\n');
4138
4139         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4140         seq_printf(m, "anon=%lu", anon_nr);
4141         for_each_node_state(nid, N_HIGH_MEMORY) {
4142                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4143                                 LRU_ALL_ANON);
4144                 seq_printf(m, " N%d=%lu", nid, node_nr);
4145         }
4146         seq_putc(m, '\n');
4147
4148         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4149         seq_printf(m, "unevictable=%lu", unevictable_nr);
4150         for_each_node_state(nid, N_HIGH_MEMORY) {
4151                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4152                                 BIT(LRU_UNEVICTABLE));
4153                 seq_printf(m, " N%d=%lu", nid, node_nr);
4154         }
4155         seq_putc(m, '\n');
4156         return 0;
4157 }
4158 #endif /* CONFIG_NUMA */
4159
4160 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4161                                  struct cgroup_map_cb *cb)
4162 {
4163         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4164         struct mcs_total_stat mystat;
4165         int i;
4166
4167         memset(&mystat, 0, sizeof(mystat));
4168         mem_cgroup_get_local_stat(mem_cont, &mystat);
4169
4170
4171         for (i = 0; i < NR_MCS_STAT; i++) {
4172                 if (i == MCS_SWAP && !do_swap_account)
4173                         continue;
4174                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4175         }
4176
4177         /* Hierarchical information */
4178         {
4179                 unsigned long long limit, memsw_limit;
4180                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4181                 cb->fill(cb, "hierarchical_memory_limit", limit);
4182                 if (do_swap_account)
4183                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4184         }
4185
4186         memset(&mystat, 0, sizeof(mystat));
4187         mem_cgroup_get_total_stat(mem_cont, &mystat);
4188         for (i = 0; i < NR_MCS_STAT; i++) {
4189                 if (i == MCS_SWAP && !do_swap_account)
4190                         continue;
4191                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4192         }
4193
4194 #ifdef CONFIG_DEBUG_VM
4195         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4196
4197         {
4198                 int nid, zid;
4199                 struct mem_cgroup_per_zone *mz;
4200                 unsigned long recent_rotated[2] = {0, 0};
4201                 unsigned long recent_scanned[2] = {0, 0};
4202
4203                 for_each_online_node(nid)
4204                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4205                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4206
4207                                 recent_rotated[0] +=
4208                                         mz->reclaim_stat.recent_rotated[0];
4209                                 recent_rotated[1] +=
4210                                         mz->reclaim_stat.recent_rotated[1];
4211                                 recent_scanned[0] +=
4212                                         mz->reclaim_stat.recent_scanned[0];
4213                                 recent_scanned[1] +=
4214                                         mz->reclaim_stat.recent_scanned[1];
4215                         }
4216                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4217                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4218                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4219                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4220         }
4221 #endif
4222
4223         return 0;
4224 }
4225
4226 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4227 {
4228         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4229
4230         return mem_cgroup_swappiness(memcg);
4231 }
4232
4233 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4234                                        u64 val)
4235 {
4236         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4237         struct mem_cgroup *parent;
4238
4239         if (val > 100)
4240                 return -EINVAL;
4241
4242         if (cgrp->parent == NULL)
4243                 return -EINVAL;
4244
4245         parent = mem_cgroup_from_cont(cgrp->parent);
4246
4247         cgroup_lock();
4248
4249         /* If under hierarchy, only empty-root can set this value */
4250         if ((parent->use_hierarchy) ||
4251             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4252                 cgroup_unlock();
4253                 return -EINVAL;
4254         }
4255
4256         memcg->swappiness = val;
4257
4258         cgroup_unlock();
4259
4260         return 0;
4261 }
4262
4263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4264 {
4265         struct mem_cgroup_threshold_ary *t;
4266         u64 usage;
4267         int i;
4268
4269         rcu_read_lock();
4270         if (!swap)
4271                 t = rcu_dereference(memcg->thresholds.primary);
4272         else
4273                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4274
4275         if (!t)
4276                 goto unlock;
4277
4278         usage = mem_cgroup_usage(memcg, swap);
4279
4280         /*
4281          * current_threshold points to threshold just below usage.
4282          * If it's not true, a threshold was crossed after last
4283          * call of __mem_cgroup_threshold().
4284          */
4285         i = t->current_threshold;
4286
4287         /*
4288          * Iterate backward over array of thresholds starting from
4289          * current_threshold and check if a threshold is crossed.
4290          * If none of thresholds below usage is crossed, we read
4291          * only one element of the array here.
4292          */
4293         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4294                 eventfd_signal(t->entries[i].eventfd, 1);
4295
4296         /* i = current_threshold + 1 */
4297         i++;
4298
4299         /*
4300          * Iterate forward over array of thresholds starting from
4301          * current_threshold+1 and check if a threshold is crossed.
4302          * If none of thresholds above usage is crossed, we read
4303          * only one element of the array here.
4304          */
4305         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4306                 eventfd_signal(t->entries[i].eventfd, 1);
4307
4308         /* Update current_threshold */
4309         t->current_threshold = i - 1;
4310 unlock:
4311         rcu_read_unlock();
4312 }
4313
4314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4315 {
4316         while (memcg) {
4317                 __mem_cgroup_threshold(memcg, false);
4318                 if (do_swap_account)
4319                         __mem_cgroup_threshold(memcg, true);
4320
4321                 memcg = parent_mem_cgroup(memcg);
4322         }
4323 }
4324
4325 static int compare_thresholds(const void *a, const void *b)
4326 {
4327         const struct mem_cgroup_threshold *_a = a;
4328         const struct mem_cgroup_threshold *_b = b;
4329
4330         return _a->threshold - _b->threshold;
4331 }
4332
4333 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4334 {
4335         struct mem_cgroup_eventfd_list *ev;
4336
4337         list_for_each_entry(ev, &memcg->oom_notify, list)
4338                 eventfd_signal(ev->eventfd, 1);
4339         return 0;
4340 }
4341
4342 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4343 {
4344         struct mem_cgroup *iter;
4345
4346         for_each_mem_cgroup_tree(iter, memcg)
4347                 mem_cgroup_oom_notify_cb(iter);
4348 }
4349
4350 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4351         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4352 {
4353         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4354         struct mem_cgroup_thresholds *thresholds;
4355         struct mem_cgroup_threshold_ary *new;
4356         int type = MEMFILE_TYPE(cft->private);
4357         u64 threshold, usage;
4358         int i, size, ret;
4359
4360         ret = res_counter_memparse_write_strategy(args, &threshold);
4361         if (ret)
4362                 return ret;
4363
4364         mutex_lock(&memcg->thresholds_lock);
4365
4366         if (type == _MEM)
4367                 thresholds = &memcg->thresholds;
4368         else if (type == _MEMSWAP)
4369                 thresholds = &memcg->memsw_thresholds;
4370         else
4371                 BUG();
4372
4373         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4374
4375         /* Check if a threshold crossed before adding a new one */
4376         if (thresholds->primary)
4377                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4378
4379         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4380
4381         /* Allocate memory for new array of thresholds */
4382         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4383                         GFP_KERNEL);
4384         if (!new) {
4385                 ret = -ENOMEM;
4386                 goto unlock;
4387         }
4388         new->size = size;
4389
4390         /* Copy thresholds (if any) to new array */
4391         if (thresholds->primary) {
4392                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4393                                 sizeof(struct mem_cgroup_threshold));
4394         }
4395
4396         /* Add new threshold */
4397         new->entries[size - 1].eventfd = eventfd;
4398         new->entries[size - 1].threshold = threshold;
4399
4400         /* Sort thresholds. Registering of new threshold isn't time-critical */
4401         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4402                         compare_thresholds, NULL);
4403
4404         /* Find current threshold */
4405         new->current_threshold = -1;
4406         for (i = 0; i < size; i++) {
4407                 if (new->entries[i].threshold < usage) {
4408                         /*
4409                          * new->current_threshold will not be used until
4410                          * rcu_assign_pointer(), so it's safe to increment
4411                          * it here.
4412                          */
4413                         ++new->current_threshold;
4414                 }
4415         }
4416
4417         /* Free old spare buffer and save old primary buffer as spare */
4418         kfree(thresholds->spare);
4419         thresholds->spare = thresholds->primary;
4420
4421         rcu_assign_pointer(thresholds->primary, new);
4422
4423         /* To be sure that nobody uses thresholds */
4424         synchronize_rcu();
4425
4426 unlock:
4427         mutex_unlock(&memcg->thresholds_lock);
4428
4429         return ret;
4430 }
4431
4432 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4433         struct cftype *cft, struct eventfd_ctx *eventfd)
4434 {
4435         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4436         struct mem_cgroup_thresholds *thresholds;
4437         struct mem_cgroup_threshold_ary *new;
4438         int type = MEMFILE_TYPE(cft->private);
4439         u64 usage;
4440         int i, j, size;
4441
4442         mutex_lock(&memcg->thresholds_lock);
4443         if (type == _MEM)
4444                 thresholds = &memcg->thresholds;
4445         else if (type == _MEMSWAP)
4446                 thresholds = &memcg->memsw_thresholds;
4447         else
4448                 BUG();
4449
4450         /*
4451          * Something went wrong if we trying to unregister a threshold
4452          * if we don't have thresholds
4453          */
4454         BUG_ON(!thresholds);
4455
4456         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4457
4458         /* Check if a threshold crossed before removing */
4459         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4460
4461         /* Calculate new number of threshold */
4462         size = 0;
4463         for (i = 0; i < thresholds->primary->size; i++) {
4464                 if (thresholds->primary->entries[i].eventfd != eventfd)
4465                         size++;
4466         }
4467
4468         new = thresholds->spare;
4469
4470         /* Set thresholds array to NULL if we don't have thresholds */
4471         if (!size) {
4472                 kfree(new);
4473                 new = NULL;
4474                 goto swap_buffers;
4475         }
4476
4477         new->size = size;
4478
4479         /* Copy thresholds and find current threshold */
4480         new->current_threshold = -1;
4481         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4482                 if (thresholds->primary->entries[i].eventfd == eventfd)
4483                         continue;
4484
4485                 new->entries[j] = thresholds->primary->entries[i];
4486                 if (new->entries[j].threshold < usage) {
4487                         /*
4488                          * new->current_threshold will not be used
4489                          * until rcu_assign_pointer(), so it's safe to increment
4490                          * it here.
4491                          */
4492                         ++new->current_threshold;
4493                 }
4494                 j++;
4495         }
4496
4497 swap_buffers:
4498         /* Swap primary and spare array */
4499         thresholds->spare = thresholds->primary;
4500         rcu_assign_pointer(thresholds->primary, new);
4501
4502         /* To be sure that nobody uses thresholds */
4503         synchronize_rcu();
4504
4505         mutex_unlock(&memcg->thresholds_lock);
4506 }
4507
4508 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4509         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4510 {
4511         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4512         struct mem_cgroup_eventfd_list *event;
4513         int type = MEMFILE_TYPE(cft->private);
4514
4515         BUG_ON(type != _OOM_TYPE);
4516         event = kmalloc(sizeof(*event), GFP_KERNEL);
4517         if (!event)
4518                 return -ENOMEM;
4519
4520         spin_lock(&memcg_oom_lock);
4521
4522         event->eventfd = eventfd;
4523         list_add(&event->list, &memcg->oom_notify);
4524
4525         /* already in OOM ? */
4526         if (atomic_read(&memcg->under_oom))
4527                 eventfd_signal(eventfd, 1);
4528         spin_unlock(&memcg_oom_lock);
4529
4530         return 0;
4531 }
4532
4533 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4534         struct cftype *cft, struct eventfd_ctx *eventfd)
4535 {
4536         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4537         struct mem_cgroup_eventfd_list *ev, *tmp;
4538         int type = MEMFILE_TYPE(cft->private);
4539
4540         BUG_ON(type != _OOM_TYPE);
4541
4542         spin_lock(&memcg_oom_lock);
4543
4544         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4545                 if (ev->eventfd == eventfd) {
4546                         list_del(&ev->list);
4547                         kfree(ev);
4548                 }
4549         }
4550
4551         spin_unlock(&memcg_oom_lock);
4552 }
4553
4554 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4555         struct cftype *cft,  struct cgroup_map_cb *cb)
4556 {
4557         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4558
4559         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4560
4561         if (atomic_read(&memcg->under_oom))
4562                 cb->fill(cb, "under_oom", 1);
4563         else
4564                 cb->fill(cb, "under_oom", 0);
4565         return 0;
4566 }
4567
4568 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4569         struct cftype *cft, u64 val)
4570 {
4571         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4572         struct mem_cgroup *parent;
4573
4574         /* cannot set to root cgroup and only 0 and 1 are allowed */
4575         if (!cgrp->parent || !((val == 0) || (val == 1)))
4576                 return -EINVAL;
4577
4578         parent = mem_cgroup_from_cont(cgrp->parent);
4579
4580         cgroup_lock();
4581         /* oom-kill-disable is a flag for subhierarchy. */
4582         if ((parent->use_hierarchy) ||
4583             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4584                 cgroup_unlock();
4585                 return -EINVAL;
4586         }
4587         memcg->oom_kill_disable = val;
4588         if (!val)
4589                 memcg_oom_recover(memcg);
4590         cgroup_unlock();
4591         return 0;
4592 }
4593
4594 #ifdef CONFIG_NUMA
4595 static const struct file_operations mem_control_numa_stat_file_operations = {
4596         .read = seq_read,
4597         .llseek = seq_lseek,
4598         .release = single_release,
4599 };
4600
4601 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4602 {
4603         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4604
4605         file->f_op = &mem_control_numa_stat_file_operations;
4606         return single_open(file, mem_control_numa_stat_show, cont);
4607 }
4608 #endif /* CONFIG_NUMA */
4609
4610 static struct cftype mem_cgroup_files[] = {
4611         {
4612                 .name = "usage_in_bytes",
4613                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4614                 .read_u64 = mem_cgroup_read,
4615                 .register_event = mem_cgroup_usage_register_event,
4616                 .unregister_event = mem_cgroup_usage_unregister_event,
4617         },
4618         {
4619                 .name = "max_usage_in_bytes",
4620                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4621                 .trigger = mem_cgroup_reset,
4622                 .read_u64 = mem_cgroup_read,
4623         },
4624         {
4625                 .name = "limit_in_bytes",
4626                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4627                 .write_string = mem_cgroup_write,
4628                 .read_u64 = mem_cgroup_read,
4629         },
4630         {
4631                 .name = "soft_limit_in_bytes",
4632                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4633                 .write_string = mem_cgroup_write,
4634                 .read_u64 = mem_cgroup_read,
4635         },
4636         {
4637                 .name = "failcnt",
4638                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4639                 .trigger = mem_cgroup_reset,
4640                 .read_u64 = mem_cgroup_read,
4641         },
4642         {
4643                 .name = "stat",
4644                 .read_map = mem_control_stat_show,
4645         },
4646         {
4647                 .name = "force_empty",
4648                 .trigger = mem_cgroup_force_empty_write,
4649         },
4650         {
4651                 .name = "use_hierarchy",
4652                 .write_u64 = mem_cgroup_hierarchy_write,
4653                 .read_u64 = mem_cgroup_hierarchy_read,
4654         },
4655         {
4656                 .name = "swappiness",
4657                 .read_u64 = mem_cgroup_swappiness_read,
4658                 .write_u64 = mem_cgroup_swappiness_write,
4659         },
4660         {
4661                 .name = "move_charge_at_immigrate",
4662                 .read_u64 = mem_cgroup_move_charge_read,
4663                 .write_u64 = mem_cgroup_move_charge_write,
4664         },
4665         {
4666                 .name = "oom_control",
4667                 .read_map = mem_cgroup_oom_control_read,
4668                 .write_u64 = mem_cgroup_oom_control_write,
4669                 .register_event = mem_cgroup_oom_register_event,
4670                 .unregister_event = mem_cgroup_oom_unregister_event,
4671                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4672         },
4673 #ifdef CONFIG_NUMA
4674         {
4675                 .name = "numa_stat",
4676                 .open = mem_control_numa_stat_open,
4677                 .mode = S_IRUGO,
4678         },
4679 #endif
4680 };
4681
4682 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4683 static struct cftype memsw_cgroup_files[] = {
4684         {
4685                 .name = "memsw.usage_in_bytes",
4686                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4687                 .read_u64 = mem_cgroup_read,
4688                 .register_event = mem_cgroup_usage_register_event,
4689                 .unregister_event = mem_cgroup_usage_unregister_event,
4690         },
4691         {
4692                 .name = "memsw.max_usage_in_bytes",
4693                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4694                 .trigger = mem_cgroup_reset,
4695                 .read_u64 = mem_cgroup_read,
4696         },
4697         {
4698                 .name = "memsw.limit_in_bytes",
4699                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4700                 .write_string = mem_cgroup_write,
4701                 .read_u64 = mem_cgroup_read,
4702         },
4703         {
4704                 .name = "memsw.failcnt",
4705                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4706                 .trigger = mem_cgroup_reset,
4707                 .read_u64 = mem_cgroup_read,
4708         },
4709 };
4710
4711 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4712 {
4713         if (!do_swap_account)
4714                 return 0;
4715         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4716                                 ARRAY_SIZE(memsw_cgroup_files));
4717 };
4718 #else
4719 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4720 {
4721         return 0;
4722 }
4723 #endif
4724
4725 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4726 {
4727         struct mem_cgroup_per_node *pn;
4728         struct mem_cgroup_per_zone *mz;
4729         enum lru_list l;
4730         int zone, tmp = node;
4731         /*
4732          * This routine is called against possible nodes.
4733          * But it's BUG to call kmalloc() against offline node.
4734          *
4735          * TODO: this routine can waste much memory for nodes which will
4736          *       never be onlined. It's better to use memory hotplug callback
4737          *       function.
4738          */
4739         if (!node_state(node, N_NORMAL_MEMORY))
4740                 tmp = -1;
4741         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4742         if (!pn)
4743                 return 1;
4744
4745         memcg->info.nodeinfo[node] = pn;
4746         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4747                 mz = &pn->zoneinfo[zone];
4748                 for_each_lru(l)
4749                         INIT_LIST_HEAD(&mz->lists[l]);
4750                 mz->usage_in_excess = 0;
4751                 mz->on_tree = false;
4752                 mz->mem = memcg;
4753         }
4754         return 0;
4755 }
4756
4757 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4758 {
4759         kfree(memcg->info.nodeinfo[node]);
4760 }
4761
4762 static struct mem_cgroup *mem_cgroup_alloc(void)
4763 {
4764         struct mem_cgroup *mem;
4765         int size = sizeof(struct mem_cgroup);
4766
4767         /* Can be very big if MAX_NUMNODES is very big */
4768         if (size < PAGE_SIZE)
4769                 mem = kzalloc(size, GFP_KERNEL);
4770         else
4771                 mem = vzalloc(size);
4772
4773         if (!mem)
4774                 return NULL;
4775
4776         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777         if (!mem->stat)
4778                 goto out_free;
4779         spin_lock_init(&mem->pcp_counter_lock);
4780         return mem;
4781
4782 out_free:
4783         if (size < PAGE_SIZE)
4784                 kfree(mem);
4785         else
4786                 vfree(mem);
4787         return NULL;
4788 }
4789
4790 /*
4791  * At destroying mem_cgroup, references from swap_cgroup can remain.
4792  * (scanning all at force_empty is too costly...)
4793  *
4794  * Instead of clearing all references at force_empty, we remember
4795  * the number of reference from swap_cgroup and free mem_cgroup when
4796  * it goes down to 0.
4797  *
4798  * Removal of cgroup itself succeeds regardless of refs from swap.
4799  */
4800
4801 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4802 {
4803         int node;
4804
4805         mem_cgroup_remove_from_trees(memcg);
4806         free_css_id(&mem_cgroup_subsys, &memcg->css);
4807
4808         for_each_node_state(node, N_POSSIBLE)
4809                 free_mem_cgroup_per_zone_info(memcg, node);
4810
4811         free_percpu(memcg->stat);
4812         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4813                 kfree(memcg);
4814         else
4815                 vfree(memcg);
4816 }
4817
4818 static void mem_cgroup_get(struct mem_cgroup *memcg)
4819 {
4820         atomic_inc(&memcg->refcnt);
4821 }
4822
4823 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4824 {
4825         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4826                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4827                 __mem_cgroup_free(memcg);
4828                 if (parent)
4829                         mem_cgroup_put(parent);
4830         }
4831 }
4832
4833 static void mem_cgroup_put(struct mem_cgroup *memcg)
4834 {
4835         __mem_cgroup_put(memcg, 1);
4836 }
4837
4838 /*
4839  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4840  */
4841 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4842 {
4843         if (!memcg->res.parent)
4844                 return NULL;
4845         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4846 }
4847
4848 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4849 static void __init enable_swap_cgroup(void)
4850 {
4851         if (!mem_cgroup_disabled() && really_do_swap_account)
4852                 do_swap_account = 1;
4853 }
4854 #else
4855 static void __init enable_swap_cgroup(void)
4856 {
4857 }
4858 #endif
4859
4860 static int mem_cgroup_soft_limit_tree_init(void)
4861 {
4862         struct mem_cgroup_tree_per_node *rtpn;
4863         struct mem_cgroup_tree_per_zone *rtpz;
4864         int tmp, node, zone;
4865
4866         for_each_node_state(node, N_POSSIBLE) {
4867                 tmp = node;
4868                 if (!node_state(node, N_NORMAL_MEMORY))
4869                         tmp = -1;
4870                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4871                 if (!rtpn)
4872                         return 1;
4873
4874                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4875
4876                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4877                         rtpz = &rtpn->rb_tree_per_zone[zone];
4878                         rtpz->rb_root = RB_ROOT;
4879                         spin_lock_init(&rtpz->lock);
4880                 }
4881         }
4882         return 0;
4883 }
4884
4885 static struct cgroup_subsys_state * __ref
4886 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4887 {
4888         struct mem_cgroup *memcg, *parent;
4889         long error = -ENOMEM;
4890         int node;
4891
4892         memcg = mem_cgroup_alloc();
4893         if (!memcg)
4894                 return ERR_PTR(error);
4895
4896         for_each_node_state(node, N_POSSIBLE)
4897                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4898                         goto free_out;
4899
4900         /* root ? */
4901         if (cont->parent == NULL) {
4902                 int cpu;
4903                 enable_swap_cgroup();
4904                 parent = NULL;
4905                 root_mem_cgroup = memcg;
4906                 if (mem_cgroup_soft_limit_tree_init())
4907                         goto free_out;
4908                 for_each_possible_cpu(cpu) {
4909                         struct memcg_stock_pcp *stock =
4910                                                 &per_cpu(memcg_stock, cpu);
4911                         INIT_WORK(&stock->work, drain_local_stock);
4912                 }
4913                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4914         } else {
4915                 parent = mem_cgroup_from_cont(cont->parent);
4916                 memcg->use_hierarchy = parent->use_hierarchy;
4917                 memcg->oom_kill_disable = parent->oom_kill_disable;
4918         }
4919
4920         if (parent && parent->use_hierarchy) {
4921                 res_counter_init(&memcg->res, &parent->res);
4922                 res_counter_init(&memcg->memsw, &parent->memsw);
4923                 /*
4924                  * We increment refcnt of the parent to ensure that we can
4925                  * safely access it on res_counter_charge/uncharge.
4926                  * This refcnt will be decremented when freeing this
4927                  * mem_cgroup(see mem_cgroup_put).
4928                  */
4929                 mem_cgroup_get(parent);
4930         } else {
4931                 res_counter_init(&memcg->res, NULL);
4932                 res_counter_init(&memcg->memsw, NULL);
4933         }
4934         memcg->last_scanned_child = 0;
4935         memcg->last_scanned_node = MAX_NUMNODES;
4936         INIT_LIST_HEAD(&memcg->oom_notify);
4937
4938         if (parent)
4939                 memcg->swappiness = mem_cgroup_swappiness(parent);
4940         atomic_set(&memcg->refcnt, 1);
4941         memcg->move_charge_at_immigrate = 0;
4942         mutex_init(&memcg->thresholds_lock);
4943         return &memcg->css;
4944 free_out:
4945         __mem_cgroup_free(memcg);
4946         root_mem_cgroup = NULL;
4947         return ERR_PTR(error);
4948 }
4949
4950 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4951                                         struct cgroup *cont)
4952 {
4953         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4954
4955         return mem_cgroup_force_empty(memcg, false);
4956 }
4957
4958 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4959                                 struct cgroup *cont)
4960 {
4961         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962
4963         mem_cgroup_put(memcg);
4964 }
4965
4966 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4967                                 struct cgroup *cont)
4968 {
4969         int ret;
4970
4971         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4972                                 ARRAY_SIZE(mem_cgroup_files));
4973
4974         if (!ret)
4975                 ret = register_memsw_files(cont, ss);
4976         return ret;
4977 }
4978
4979 #ifdef CONFIG_MMU
4980 /* Handlers for move charge at task migration. */
4981 #define PRECHARGE_COUNT_AT_ONCE 256
4982 static int mem_cgroup_do_precharge(unsigned long count)
4983 {
4984         int ret = 0;
4985         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4986         struct mem_cgroup *memcg = mc.to;
4987
4988         if (mem_cgroup_is_root(memcg)) {
4989                 mc.precharge += count;
4990                 /* we don't need css_get for root */
4991                 return ret;
4992         }
4993         /* try to charge at once */
4994         if (count > 1) {
4995                 struct res_counter *dummy;
4996                 /*
4997                  * "memcg" cannot be under rmdir() because we've already checked
4998                  * by cgroup_lock_live_cgroup() that it is not removed and we
4999                  * are still under the same cgroup_mutex. So we can postpone
5000                  * css_get().
5001                  */
5002                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5003                         goto one_by_one;
5004                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5005                                                 PAGE_SIZE * count, &dummy)) {
5006                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5007                         goto one_by_one;
5008                 }
5009                 mc.precharge += count;
5010                 return ret;
5011         }
5012 one_by_one:
5013         /* fall back to one by one charge */
5014         while (count--) {
5015                 if (signal_pending(current)) {
5016                         ret = -EINTR;
5017                         break;
5018                 }
5019                 if (!batch_count--) {
5020                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5021                         cond_resched();
5022                 }
5023                 ret = __mem_cgroup_try_charge(NULL,
5024                                         GFP_KERNEL, 1, &memcg, false);
5025                 if (ret || !memcg)
5026                         /* mem_cgroup_clear_mc() will do uncharge later */
5027                         return -ENOMEM;
5028                 mc.precharge++;
5029         }
5030         return ret;
5031 }
5032
5033 /**
5034  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5035  * @vma: the vma the pte to be checked belongs
5036  * @addr: the address corresponding to the pte to be checked
5037  * @ptent: the pte to be checked
5038  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5039  *
5040  * Returns
5041  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5042  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5043  *     move charge. if @target is not NULL, the page is stored in target->page
5044  *     with extra refcnt got(Callers should handle it).
5045  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5046  *     target for charge migration. if @target is not NULL, the entry is stored
5047  *     in target->ent.
5048  *
5049  * Called with pte lock held.
5050  */
5051 union mc_target {
5052         struct page     *page;
5053         swp_entry_t     ent;
5054 };
5055
5056 enum mc_target_type {
5057         MC_TARGET_NONE, /* not used */
5058         MC_TARGET_PAGE,
5059         MC_TARGET_SWAP,
5060 };
5061
5062 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5063                                                 unsigned long addr, pte_t ptent)
5064 {
5065         struct page *page = vm_normal_page(vma, addr, ptent);
5066
5067         if (!page || !page_mapped(page))
5068                 return NULL;
5069         if (PageAnon(page)) {
5070                 /* we don't move shared anon */
5071                 if (!move_anon() || page_mapcount(page) > 2)
5072                         return NULL;
5073         } else if (!move_file())
5074                 /* we ignore mapcount for file pages */
5075                 return NULL;
5076         if (!get_page_unless_zero(page))
5077                 return NULL;
5078
5079         return page;
5080 }
5081
5082 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5083                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5084 {
5085         int usage_count;
5086         struct page *page = NULL;
5087         swp_entry_t ent = pte_to_swp_entry(ptent);
5088
5089         if (!move_anon() || non_swap_entry(ent))
5090                 return NULL;
5091         usage_count = mem_cgroup_count_swap_user(ent, &page);
5092         if (usage_count > 1) { /* we don't move shared anon */
5093                 if (page)
5094                         put_page(page);
5095                 return NULL;
5096         }
5097         if (do_swap_account)
5098                 entry->val = ent.val;
5099
5100         return page;
5101 }
5102
5103 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5104                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5105 {
5106         struct page *page = NULL;
5107         struct inode *inode;
5108         struct address_space *mapping;
5109         pgoff_t pgoff;
5110
5111         if (!vma->vm_file) /* anonymous vma */
5112                 return NULL;
5113         if (!move_file())
5114                 return NULL;
5115
5116         inode = vma->vm_file->f_path.dentry->d_inode;
5117         mapping = vma->vm_file->f_mapping;
5118         if (pte_none(ptent))
5119                 pgoff = linear_page_index(vma, addr);
5120         else /* pte_file(ptent) is true */
5121                 pgoff = pte_to_pgoff(ptent);
5122
5123         /* page is moved even if it's not RSS of this task(page-faulted). */
5124         page = find_get_page(mapping, pgoff);
5125
5126 #ifdef CONFIG_SWAP
5127         /* shmem/tmpfs may report page out on swap: account for that too. */
5128         if (radix_tree_exceptional_entry(page)) {
5129                 swp_entry_t swap = radix_to_swp_entry(page);
5130                 if (do_swap_account)
5131                         *entry = swap;
5132                 page = find_get_page(&swapper_space, swap.val);
5133         }
5134 #endif
5135         return page;
5136 }
5137
5138 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5139                 unsigned long addr, pte_t ptent, union mc_target *target)
5140 {
5141         struct page *page = NULL;
5142         struct page_cgroup *pc;
5143         int ret = 0;
5144         swp_entry_t ent = { .val = 0 };
5145
5146         if (pte_present(ptent))
5147                 page = mc_handle_present_pte(vma, addr, ptent);
5148         else if (is_swap_pte(ptent))
5149                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5150         else if (pte_none(ptent) || pte_file(ptent))
5151                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5152
5153         if (!page && !ent.val)
5154                 return 0;
5155         if (page) {
5156                 pc = lookup_page_cgroup(page);
5157                 /*
5158                  * Do only loose check w/o page_cgroup lock.
5159                  * mem_cgroup_move_account() checks the pc is valid or not under
5160                  * the lock.
5161                  */
5162                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5163                         ret = MC_TARGET_PAGE;
5164                         if (target)
5165                                 target->page = page;
5166                 }
5167                 if (!ret || !target)
5168                         put_page(page);
5169         }
5170         /* There is a swap entry and a page doesn't exist or isn't charged */
5171         if (ent.val && !ret &&
5172                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5173                 ret = MC_TARGET_SWAP;
5174                 if (target)
5175                         target->ent = ent;
5176         }
5177         return ret;
5178 }
5179
5180 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5181                                         unsigned long addr, unsigned long end,
5182                                         struct mm_walk *walk)
5183 {
5184         struct vm_area_struct *vma = walk->private;
5185         pte_t *pte;
5186         spinlock_t *ptl;
5187
5188         split_huge_page_pmd(walk->mm, pmd);
5189
5190         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5191         for (; addr != end; pte++, addr += PAGE_SIZE)
5192                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5193                         mc.precharge++; /* increment precharge temporarily */
5194         pte_unmap_unlock(pte - 1, ptl);
5195         cond_resched();
5196
5197         return 0;
5198 }
5199
5200 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5201 {
5202         unsigned long precharge;
5203         struct vm_area_struct *vma;
5204
5205         down_read(&mm->mmap_sem);
5206         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5207                 struct mm_walk mem_cgroup_count_precharge_walk = {
5208                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5209                         .mm = mm,
5210                         .private = vma,
5211                 };
5212                 if (is_vm_hugetlb_page(vma))
5213                         continue;
5214                 walk_page_range(vma->vm_start, vma->vm_end,
5215                                         &mem_cgroup_count_precharge_walk);
5216         }
5217         up_read(&mm->mmap_sem);
5218
5219         precharge = mc.precharge;
5220         mc.precharge = 0;
5221
5222         return precharge;
5223 }
5224
5225 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5226 {
5227         unsigned long precharge = mem_cgroup_count_precharge(mm);
5228
5229         VM_BUG_ON(mc.moving_task);
5230         mc.moving_task = current;
5231         return mem_cgroup_do_precharge(precharge);
5232 }
5233
5234 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5235 static void __mem_cgroup_clear_mc(void)
5236 {
5237         struct mem_cgroup *from = mc.from;
5238         struct mem_cgroup *to = mc.to;
5239
5240         /* we must uncharge all the leftover precharges from mc.to */
5241         if (mc.precharge) {
5242                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5243                 mc.precharge = 0;
5244         }
5245         /*
5246          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5247          * we must uncharge here.
5248          */
5249         if (mc.moved_charge) {
5250                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5251                 mc.moved_charge = 0;
5252         }
5253         /* we must fixup refcnts and charges */
5254         if (mc.moved_swap) {
5255                 /* uncharge swap account from the old cgroup */
5256                 if (!mem_cgroup_is_root(mc.from))
5257                         res_counter_uncharge(&mc.from->memsw,
5258                                                 PAGE_SIZE * mc.moved_swap);
5259                 __mem_cgroup_put(mc.from, mc.moved_swap);
5260
5261                 if (!mem_cgroup_is_root(mc.to)) {
5262                         /*
5263                          * we charged both to->res and to->memsw, so we should
5264                          * uncharge to->res.
5265                          */
5266                         res_counter_uncharge(&mc.to->res,
5267                                                 PAGE_SIZE * mc.moved_swap);
5268                 }
5269                 /* we've already done mem_cgroup_get(mc.to) */
5270                 mc.moved_swap = 0;
5271         }
5272         memcg_oom_recover(from);
5273         memcg_oom_recover(to);
5274         wake_up_all(&mc.waitq);
5275 }
5276
5277 static void mem_cgroup_clear_mc(void)
5278 {
5279         struct mem_cgroup *from = mc.from;
5280
5281         /*
5282          * we must clear moving_task before waking up waiters at the end of
5283          * task migration.
5284          */
5285         mc.moving_task = NULL;
5286         __mem_cgroup_clear_mc();
5287         spin_lock(&mc.lock);
5288         mc.from = NULL;
5289         mc.to = NULL;
5290         spin_unlock(&mc.lock);
5291         mem_cgroup_end_move(from);
5292 }
5293
5294 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5295                                 struct cgroup *cgroup,
5296                                 struct task_struct *p)
5297 {
5298         int ret = 0;
5299         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5300
5301         if (memcg->move_charge_at_immigrate) {
5302                 struct mm_struct *mm;
5303                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5304
5305                 VM_BUG_ON(from == memcg);
5306
5307                 mm = get_task_mm(p);
5308                 if (!mm)
5309                         return 0;
5310                 /* We move charges only when we move a owner of the mm */
5311                 if (mm->owner == p) {
5312                         VM_BUG_ON(mc.from);
5313                         VM_BUG_ON(mc.to);
5314                         VM_BUG_ON(mc.precharge);
5315                         VM_BUG_ON(mc.moved_charge);
5316                         VM_BUG_ON(mc.moved_swap);
5317                         mem_cgroup_start_move(from);
5318                         spin_lock(&mc.lock);
5319                         mc.from = from;
5320                         mc.to = memcg;
5321                         spin_unlock(&mc.lock);
5322                         /* We set mc.moving_task later */
5323
5324                         ret = mem_cgroup_precharge_mc(mm);
5325                         if (ret)
5326                                 mem_cgroup_clear_mc();
5327                 }
5328                 mmput(mm);
5329         }
5330         return ret;
5331 }
5332
5333 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5334                                 struct cgroup *cgroup,
5335                                 struct task_struct *p)
5336 {
5337         mem_cgroup_clear_mc();
5338 }
5339
5340 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5341                                 unsigned long addr, unsigned long end,
5342                                 struct mm_walk *walk)
5343 {
5344         int ret = 0;
5345         struct vm_area_struct *vma = walk->private;
5346         pte_t *pte;
5347         spinlock_t *ptl;
5348
5349         split_huge_page_pmd(walk->mm, pmd);
5350 retry:
5351         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5352         for (; addr != end; addr += PAGE_SIZE) {
5353                 pte_t ptent = *(pte++);
5354                 union mc_target target;
5355                 int type;
5356                 struct page *page;
5357                 struct page_cgroup *pc;
5358                 swp_entry_t ent;
5359
5360                 if (!mc.precharge)
5361                         break;
5362
5363                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5364                 switch (type) {
5365                 case MC_TARGET_PAGE:
5366                         page = target.page;
5367                         if (isolate_lru_page(page))
5368                                 goto put;
5369                         pc = lookup_page_cgroup(page);
5370                         if (!mem_cgroup_move_account(page, 1, pc,
5371                                                      mc.from, mc.to, false)) {
5372                                 mc.precharge--;
5373                                 /* we uncharge from mc.from later. */
5374                                 mc.moved_charge++;
5375                         }
5376                         putback_lru_page(page);
5377 put:                    /* is_target_pte_for_mc() gets the page */
5378                         put_page(page);
5379                         break;
5380                 case MC_TARGET_SWAP:
5381                         ent = target.ent;
5382                         if (!mem_cgroup_move_swap_account(ent,
5383                                                 mc.from, mc.to, false)) {
5384                                 mc.precharge--;
5385                                 /* we fixup refcnts and charges later. */
5386                                 mc.moved_swap++;
5387                         }
5388                         break;
5389                 default:
5390                         break;
5391                 }
5392         }
5393         pte_unmap_unlock(pte - 1, ptl);
5394         cond_resched();
5395
5396         if (addr != end) {
5397                 /*
5398                  * We have consumed all precharges we got in can_attach().
5399                  * We try charge one by one, but don't do any additional
5400                  * charges to mc.to if we have failed in charge once in attach()
5401                  * phase.
5402                  */
5403                 ret = mem_cgroup_do_precharge(1);
5404                 if (!ret)
5405                         goto retry;
5406         }
5407
5408         return ret;
5409 }
5410
5411 static void mem_cgroup_move_charge(struct mm_struct *mm)
5412 {
5413         struct vm_area_struct *vma;
5414
5415         lru_add_drain_all();
5416 retry:
5417         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5418                 /*
5419                  * Someone who are holding the mmap_sem might be waiting in
5420                  * waitq. So we cancel all extra charges, wake up all waiters,
5421                  * and retry. Because we cancel precharges, we might not be able
5422                  * to move enough charges, but moving charge is a best-effort
5423                  * feature anyway, so it wouldn't be a big problem.
5424                  */
5425                 __mem_cgroup_clear_mc();
5426                 cond_resched();
5427                 goto retry;
5428         }
5429         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5430                 int ret;
5431                 struct mm_walk mem_cgroup_move_charge_walk = {
5432                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5433                         .mm = mm,
5434                         .private = vma,
5435                 };
5436                 if (is_vm_hugetlb_page(vma))
5437                         continue;
5438                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5439                                                 &mem_cgroup_move_charge_walk);
5440                 if (ret)
5441                         /*
5442                          * means we have consumed all precharges and failed in
5443                          * doing additional charge. Just abandon here.
5444                          */
5445                         break;
5446         }
5447         up_read(&mm->mmap_sem);
5448 }
5449
5450 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5451                                 struct cgroup *cont,
5452                                 struct cgroup *old_cont,
5453                                 struct task_struct *p)
5454 {
5455         struct mm_struct *mm = get_task_mm(p);
5456
5457         if (mm) {
5458                 if (mc.to)
5459                         mem_cgroup_move_charge(mm);
5460                 put_swap_token(mm);
5461                 mmput(mm);
5462         }
5463         if (mc.to)
5464                 mem_cgroup_clear_mc();
5465 }
5466 #else   /* !CONFIG_MMU */
5467 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5468                                 struct cgroup *cgroup,
5469                                 struct task_struct *p)
5470 {
5471         return 0;
5472 }
5473 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5474                                 struct cgroup *cgroup,
5475                                 struct task_struct *p)
5476 {
5477 }
5478 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5479                                 struct cgroup *cont,
5480                                 struct cgroup *old_cont,
5481                                 struct task_struct *p)
5482 {
5483 }
5484 #endif
5485
5486 struct cgroup_subsys mem_cgroup_subsys = {
5487         .name = "memory",
5488         .subsys_id = mem_cgroup_subsys_id,
5489         .create = mem_cgroup_create,
5490         .pre_destroy = mem_cgroup_pre_destroy,
5491         .destroy = mem_cgroup_destroy,
5492         .populate = mem_cgroup_populate,
5493         .can_attach = mem_cgroup_can_attach,
5494         .cancel_attach = mem_cgroup_cancel_attach,
5495         .attach = mem_cgroup_move_task,
5496         .early_init = 0,
5497         .use_id = 1,
5498 };
5499
5500 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5501 static int __init enable_swap_account(char *s)
5502 {
5503         /* consider enabled if no parameter or 1 is given */
5504         if (!strcmp(s, "1"))
5505                 really_do_swap_account = 1;
5506         else if (!strcmp(s, "0"))
5507                 really_do_swap_account = 0;
5508         return 1;
5509 }
5510 __setup("swapaccount=", enable_swap_account);
5511
5512 #endif