]> git.karo-electronics.de Git - linux-beck.git/blob - mm/memory.c
Merge tag 'ofs-pull-tag-1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap...
[linux-beck.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74
75 #include "internal.h"
76
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89
90 /*
91  * A number of key systems in x86 including ioremap() rely on the assumption
92  * that high_memory defines the upper bound on direct map memory, then end
93  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
94  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95  * and ZONE_HIGHMEM.
96  */
97 void * high_memory;
98
99 EXPORT_SYMBOL(high_memory);
100
101 /*
102  * Randomize the address space (stacks, mmaps, brk, etc.).
103  *
104  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105  *   as ancient (libc5 based) binaries can segfault. )
106  */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109                                         1;
110 #else
111                                         2;
112 #endif
113
114 static int __init disable_randmaps(char *s)
115 {
116         randomize_va_space = 0;
117         return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123
124 EXPORT_SYMBOL(zero_pfn);
125
126 /*
127  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128  */
129 static int __init init_zero_pfn(void)
130 {
131         zero_pfn = page_to_pfn(ZERO_PAGE(0));
132         return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141         int i;
142
143         for (i = 0; i < NR_MM_COUNTERS; i++) {
144                 if (current->rss_stat.count[i]) {
145                         add_mm_counter(mm, i, current->rss_stat.count[i]);
146                         current->rss_stat.count[i] = 0;
147                 }
148         }
149         current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154         struct task_struct *task = current;
155
156         if (likely(task->mm == mm))
157                 task->rss_stat.count[member] += val;
158         else
159                 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH  (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168         if (unlikely(task != current))
169                 return;
170         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171                 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188         struct mmu_gather_batch *batch;
189
190         batch = tlb->active;
191         if (batch->next) {
192                 tlb->active = batch->next;
193                 return true;
194         }
195
196         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197                 return false;
198
199         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200         if (!batch)
201                 return false;
202
203         tlb->batch_count++;
204         batch->next = NULL;
205         batch->nr   = 0;
206         batch->max  = MAX_GATHER_BATCH;
207
208         tlb->active->next = batch;
209         tlb->active = batch;
210
211         return true;
212 }
213
214 /* tlb_gather_mmu
215  *      Called to initialize an (on-stack) mmu_gather structure for page-table
216  *      tear-down from @mm. The @fullmm argument is used when @mm is without
217  *      users and we're going to destroy the full address space (exit/execve).
218  */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221         tlb->mm = mm;
222
223         /* Is it from 0 to ~0? */
224         tlb->fullmm     = !(start | (end+1));
225         tlb->need_flush_all = 0;
226         tlb->local.next = NULL;
227         tlb->local.nr   = 0;
228         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229         tlb->active     = &tlb->local;
230         tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233         tlb->batch = NULL;
234 #endif
235
236         __tlb_reset_range(tlb);
237 }
238
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241         if (!tlb->end)
242                 return;
243
244         tlb_flush(tlb);
245         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247         tlb_table_flush(tlb);
248 #endif
249         __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254         struct mmu_gather_batch *batch;
255
256         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257                 free_pages_and_swap_cache(batch->pages, batch->nr);
258                 batch->nr = 0;
259         }
260         tlb->active = &tlb->local;
261 }
262
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265         tlb_flush_mmu_tlbonly(tlb);
266         tlb_flush_mmu_free(tlb);
267 }
268
269 /* tlb_finish_mmu
270  *      Called at the end of the shootdown operation to free up any resources
271  *      that were required.
272  */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275         struct mmu_gather_batch *batch, *next;
276
277         tlb_flush_mmu(tlb);
278
279         /* keep the page table cache within bounds */
280         check_pgt_cache();
281
282         for (batch = tlb->local.next; batch; batch = next) {
283                 next = batch->next;
284                 free_pages((unsigned long)batch, 0);
285         }
286         tlb->local.next = NULL;
287 }
288
289 /* __tlb_remove_page
290  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291  *      handling the additional races in SMP caused by other CPUs caching valid
292  *      mappings in their TLBs. Returns the number of free page slots left.
293  *      When out of page slots we must call tlb_flush_mmu().
294  */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297         struct mmu_gather_batch *batch;
298
299         VM_BUG_ON(!tlb->end);
300
301         batch = tlb->active;
302         batch->pages[batch->nr++] = page;
303         if (batch->nr == batch->max) {
304                 if (!tlb_next_batch(tlb))
305                         return 0;
306                 batch = tlb->active;
307         }
308         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309
310         return batch->max - batch->nr;
311 }
312
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317 /*
318  * See the comment near struct mmu_table_batch.
319  */
320
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323         /* Simply deliver the interrupt */
324 }
325
326 static void tlb_remove_table_one(void *table)
327 {
328         /*
329          * This isn't an RCU grace period and hence the page-tables cannot be
330          * assumed to be actually RCU-freed.
331          *
332          * It is however sufficient for software page-table walkers that rely on
333          * IRQ disabling. See the comment near struct mmu_table_batch.
334          */
335         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336         __tlb_remove_table(table);
337 }
338
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341         struct mmu_table_batch *batch;
342         int i;
343
344         batch = container_of(head, struct mmu_table_batch, rcu);
345
346         for (i = 0; i < batch->nr; i++)
347                 __tlb_remove_table(batch->tables[i]);
348
349         free_page((unsigned long)batch);
350 }
351
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354         struct mmu_table_batch **batch = &tlb->batch;
355
356         if (*batch) {
357                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358                 *batch = NULL;
359         }
360 }
361
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364         struct mmu_table_batch **batch = &tlb->batch;
365
366         /*
367          * When there's less then two users of this mm there cannot be a
368          * concurrent page-table walk.
369          */
370         if (atomic_read(&tlb->mm->mm_users) < 2) {
371                 __tlb_remove_table(table);
372                 return;
373         }
374
375         if (*batch == NULL) {
376                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377                 if (*batch == NULL) {
378                         tlb_remove_table_one(table);
379                         return;
380                 }
381                 (*batch)->nr = 0;
382         }
383         (*batch)->tables[(*batch)->nr++] = table;
384         if ((*batch)->nr == MAX_TABLE_BATCH)
385                 tlb_table_flush(tlb);
386 }
387
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389
390 /*
391  * Note: this doesn't free the actual pages themselves. That
392  * has been handled earlier when unmapping all the memory regions.
393  */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395                            unsigned long addr)
396 {
397         pgtable_t token = pmd_pgtable(*pmd);
398         pmd_clear(pmd);
399         pte_free_tlb(tlb, token, addr);
400         atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404                                 unsigned long addr, unsigned long end,
405                                 unsigned long floor, unsigned long ceiling)
406 {
407         pmd_t *pmd;
408         unsigned long next;
409         unsigned long start;
410
411         start = addr;
412         pmd = pmd_offset(pud, addr);
413         do {
414                 next = pmd_addr_end(addr, end);
415                 if (pmd_none_or_clear_bad(pmd))
416                         continue;
417                 free_pte_range(tlb, pmd, addr);
418         } while (pmd++, addr = next, addr != end);
419
420         start &= PUD_MASK;
421         if (start < floor)
422                 return;
423         if (ceiling) {
424                 ceiling &= PUD_MASK;
425                 if (!ceiling)
426                         return;
427         }
428         if (end - 1 > ceiling - 1)
429                 return;
430
431         pmd = pmd_offset(pud, start);
432         pud_clear(pud);
433         pmd_free_tlb(tlb, pmd, start);
434         mm_dec_nr_pmds(tlb->mm);
435 }
436
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438                                 unsigned long addr, unsigned long end,
439                                 unsigned long floor, unsigned long ceiling)
440 {
441         pud_t *pud;
442         unsigned long next;
443         unsigned long start;
444
445         start = addr;
446         pud = pud_offset(pgd, addr);
447         do {
448                 next = pud_addr_end(addr, end);
449                 if (pud_none_or_clear_bad(pud))
450                         continue;
451                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452         } while (pud++, addr = next, addr != end);
453
454         start &= PGDIR_MASK;
455         if (start < floor)
456                 return;
457         if (ceiling) {
458                 ceiling &= PGDIR_MASK;
459                 if (!ceiling)
460                         return;
461         }
462         if (end - 1 > ceiling - 1)
463                 return;
464
465         pud = pud_offset(pgd, start);
466         pgd_clear(pgd);
467         pud_free_tlb(tlb, pud, start);
468 }
469
470 /*
471  * This function frees user-level page tables of a process.
472  */
473 void free_pgd_range(struct mmu_gather *tlb,
474                         unsigned long addr, unsigned long end,
475                         unsigned long floor, unsigned long ceiling)
476 {
477         pgd_t *pgd;
478         unsigned long next;
479
480         /*
481          * The next few lines have given us lots of grief...
482          *
483          * Why are we testing PMD* at this top level?  Because often
484          * there will be no work to do at all, and we'd prefer not to
485          * go all the way down to the bottom just to discover that.
486          *
487          * Why all these "- 1"s?  Because 0 represents both the bottom
488          * of the address space and the top of it (using -1 for the
489          * top wouldn't help much: the masks would do the wrong thing).
490          * The rule is that addr 0 and floor 0 refer to the bottom of
491          * the address space, but end 0 and ceiling 0 refer to the top
492          * Comparisons need to use "end - 1" and "ceiling - 1" (though
493          * that end 0 case should be mythical).
494          *
495          * Wherever addr is brought up or ceiling brought down, we must
496          * be careful to reject "the opposite 0" before it confuses the
497          * subsequent tests.  But what about where end is brought down
498          * by PMD_SIZE below? no, end can't go down to 0 there.
499          *
500          * Whereas we round start (addr) and ceiling down, by different
501          * masks at different levels, in order to test whether a table
502          * now has no other vmas using it, so can be freed, we don't
503          * bother to round floor or end up - the tests don't need that.
504          */
505
506         addr &= PMD_MASK;
507         if (addr < floor) {
508                 addr += PMD_SIZE;
509                 if (!addr)
510                         return;
511         }
512         if (ceiling) {
513                 ceiling &= PMD_MASK;
514                 if (!ceiling)
515                         return;
516         }
517         if (end - 1 > ceiling - 1)
518                 end -= PMD_SIZE;
519         if (addr > end - 1)
520                 return;
521
522         pgd = pgd_offset(tlb->mm, addr);
523         do {
524                 next = pgd_addr_end(addr, end);
525                 if (pgd_none_or_clear_bad(pgd))
526                         continue;
527                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528         } while (pgd++, addr = next, addr != end);
529 }
530
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532                 unsigned long floor, unsigned long ceiling)
533 {
534         while (vma) {
535                 struct vm_area_struct *next = vma->vm_next;
536                 unsigned long addr = vma->vm_start;
537
538                 /*
539                  * Hide vma from rmap and truncate_pagecache before freeing
540                  * pgtables
541                  */
542                 unlink_anon_vmas(vma);
543                 unlink_file_vma(vma);
544
545                 if (is_vm_hugetlb_page(vma)) {
546                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547                                 floor, next? next->vm_start: ceiling);
548                 } else {
549                         /*
550                          * Optimization: gather nearby vmas into one call down
551                          */
552                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553                                && !is_vm_hugetlb_page(next)) {
554                                 vma = next;
555                                 next = vma->vm_next;
556                                 unlink_anon_vmas(vma);
557                                 unlink_file_vma(vma);
558                         }
559                         free_pgd_range(tlb, addr, vma->vm_end,
560                                 floor, next? next->vm_start: ceiling);
561                 }
562                 vma = next;
563         }
564 }
565
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568         spinlock_t *ptl;
569         pgtable_t new = pte_alloc_one(mm, address);
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
590                 atomic_long_inc(&mm->nr_ptes);
591                 pmd_populate(mm, pmd, new);
592                 new = NULL;
593         }
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603         if (!new)
604                 return -ENOMEM;
605
606         smp_wmb(); /* See comment in __pte_alloc */
607
608         spin_lock(&init_mm.page_table_lock);
609         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
610                 pmd_populate_kernel(&init_mm, pmd, new);
611                 new = NULL;
612         }
613         spin_unlock(&init_mm.page_table_lock);
614         if (new)
615                 pte_free_kernel(&init_mm, new);
616         return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626         int i;
627
628         if (current->mm == mm)
629                 sync_mm_rss(mm);
630         for (i = 0; i < NR_MM_COUNTERS; i++)
631                 if (rss[i])
632                         add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643                           pte_t pte, struct page *page)
644 {
645         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646         pud_t *pud = pud_offset(pgd, addr);
647         pmd_t *pmd = pmd_offset(pud, addr);
648         struct address_space *mapping;
649         pgoff_t index;
650         static unsigned long resume;
651         static unsigned long nr_shown;
652         static unsigned long nr_unshown;
653
654         /*
655          * Allow a burst of 60 reports, then keep quiet for that minute;
656          * or allow a steady drip of one report per second.
657          */
658         if (nr_shown == 60) {
659                 if (time_before(jiffies, resume)) {
660                         nr_unshown++;
661                         return;
662                 }
663                 if (nr_unshown) {
664                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665                                  nr_unshown);
666                         nr_unshown = 0;
667                 }
668                 nr_shown = 0;
669         }
670         if (nr_shown++ == 0)
671                 resume = jiffies + 60 * HZ;
672
673         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674         index = linear_page_index(vma, addr);
675
676         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
677                  current->comm,
678                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
679         if (page)
680                 dump_page(page, "bad pte");
681         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683         /*
684          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685          */
686         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687                  vma->vm_file,
688                  vma->vm_ops ? vma->vm_ops->fault : NULL,
689                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690                  mapping ? mapping->a_ops->readpage : NULL);
691         dump_stack();
692         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694
695 /*
696  * vm_normal_page -- This function gets the "struct page" associated with a pte.
697  *
698  * "Special" mappings do not wish to be associated with a "struct page" (either
699  * it doesn't exist, or it exists but they don't want to touch it). In this
700  * case, NULL is returned here. "Normal" mappings do have a struct page.
701  *
702  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703  * pte bit, in which case this function is trivial. Secondly, an architecture
704  * may not have a spare pte bit, which requires a more complicated scheme,
705  * described below.
706  *
707  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708  * special mapping (even if there are underlying and valid "struct pages").
709  * COWed pages of a VM_PFNMAP are always normal.
710  *
711  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714  * mapping will always honor the rule
715  *
716  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717  *
718  * And for normal mappings this is false.
719  *
720  * This restricts such mappings to be a linear translation from virtual address
721  * to pfn. To get around this restriction, we allow arbitrary mappings so long
722  * as the vma is not a COW mapping; in that case, we know that all ptes are
723  * special (because none can have been COWed).
724  *
725  *
726  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727  *
728  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729  * page" backing, however the difference is that _all_ pages with a struct
730  * page (that is, those where pfn_valid is true) are refcounted and considered
731  * normal pages by the VM. The disadvantage is that pages are refcounted
732  * (which can be slower and simply not an option for some PFNMAP users). The
733  * advantage is that we don't have to follow the strict linearity rule of
734  * PFNMAP mappings in order to support COWable mappings.
735  *
736  */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743                                 pte_t pte)
744 {
745         unsigned long pfn = pte_pfn(pte);
746
747         if (HAVE_PTE_SPECIAL) {
748                 if (likely(!pte_special(pte)))
749                         goto check_pfn;
750                 if (vma->vm_ops && vma->vm_ops->find_special_page)
751                         return vma->vm_ops->find_special_page(vma, addr);
752                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753                         return NULL;
754                 if (!is_zero_pfn(pfn))
755                         print_bad_pte(vma, addr, pte, NULL);
756                 return NULL;
757         }
758
759         /* !HAVE_PTE_SPECIAL case follows: */
760
761         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762                 if (vma->vm_flags & VM_MIXEDMAP) {
763                         if (!pfn_valid(pfn))
764                                 return NULL;
765                         goto out;
766                 } else {
767                         unsigned long off;
768                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
769                         if (pfn == vma->vm_pgoff + off)
770                                 return NULL;
771                         if (!is_cow_mapping(vma->vm_flags))
772                                 return NULL;
773                 }
774         }
775
776         if (is_zero_pfn(pfn))
777                 return NULL;
778 check_pfn:
779         if (unlikely(pfn > highest_memmap_pfn)) {
780                 print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /*
785          * NOTE! We still have PageReserved() pages in the page tables.
786          * eg. VDSO mappings can cause them to exist.
787          */
788 out:
789         return pfn_to_page(pfn);
790 }
791
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801                 unsigned long addr, int *rss)
802 {
803         unsigned long vm_flags = vma->vm_flags;
804         pte_t pte = *src_pte;
805         struct page *page;
806
807         /* pte contains position in swap or file, so copy. */
808         if (unlikely(!pte_present(pte))) {
809                 swp_entry_t entry = pte_to_swp_entry(pte);
810
811                 if (likely(!non_swap_entry(entry))) {
812                         if (swap_duplicate(entry) < 0)
813                                 return entry.val;
814
815                         /* make sure dst_mm is on swapoff's mmlist. */
816                         if (unlikely(list_empty(&dst_mm->mmlist))) {
817                                 spin_lock(&mmlist_lock);
818                                 if (list_empty(&dst_mm->mmlist))
819                                         list_add(&dst_mm->mmlist,
820                                                         &src_mm->mmlist);
821                                 spin_unlock(&mmlist_lock);
822                         }
823                         rss[MM_SWAPENTS]++;
824                 } else if (is_migration_entry(entry)) {
825                         page = migration_entry_to_page(entry);
826
827                         rss[mm_counter(page)]++;
828
829                         if (is_write_migration_entry(entry) &&
830                                         is_cow_mapping(vm_flags)) {
831                                 /*
832                                  * COW mappings require pages in both
833                                  * parent and child to be set to read.
834                                  */
835                                 make_migration_entry_read(&entry);
836                                 pte = swp_entry_to_pte(entry);
837                                 if (pte_swp_soft_dirty(*src_pte))
838                                         pte = pte_swp_mksoft_dirty(pte);
839                                 set_pte_at(src_mm, addr, src_pte, pte);
840                         }
841                 }
842                 goto out_set_pte;
843         }
844
845         /*
846          * If it's a COW mapping, write protect it both
847          * in the parent and the child
848          */
849         if (is_cow_mapping(vm_flags)) {
850                 ptep_set_wrprotect(src_mm, addr, src_pte);
851                 pte = pte_wrprotect(pte);
852         }
853
854         /*
855          * If it's a shared mapping, mark it clean in
856          * the child
857          */
858         if (vm_flags & VM_SHARED)
859                 pte = pte_mkclean(pte);
860         pte = pte_mkold(pte);
861
862         page = vm_normal_page(vma, addr, pte);
863         if (page) {
864                 get_page(page);
865                 page_dup_rmap(page, false);
866                 rss[mm_counter(page)]++;
867         }
868
869 out_set_pte:
870         set_pte_at(dst_mm, addr, dst_pte, pte);
871         return 0;
872 }
873
874 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
876                    unsigned long addr, unsigned long end)
877 {
878         pte_t *orig_src_pte, *orig_dst_pte;
879         pte_t *src_pte, *dst_pte;
880         spinlock_t *src_ptl, *dst_ptl;
881         int progress = 0;
882         int rss[NR_MM_COUNTERS];
883         swp_entry_t entry = (swp_entry_t){0};
884
885 again:
886         init_rss_vec(rss);
887
888         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
889         if (!dst_pte)
890                 return -ENOMEM;
891         src_pte = pte_offset_map(src_pmd, addr);
892         src_ptl = pte_lockptr(src_mm, src_pmd);
893         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
894         orig_src_pte = src_pte;
895         orig_dst_pte = dst_pte;
896         arch_enter_lazy_mmu_mode();
897
898         do {
899                 /*
900                  * We are holding two locks at this point - either of them
901                  * could generate latencies in another task on another CPU.
902                  */
903                 if (progress >= 32) {
904                         progress = 0;
905                         if (need_resched() ||
906                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
907                                 break;
908                 }
909                 if (pte_none(*src_pte)) {
910                         progress++;
911                         continue;
912                 }
913                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
914                                                         vma, addr, rss);
915                 if (entry.val)
916                         break;
917                 progress += 8;
918         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
919
920         arch_leave_lazy_mmu_mode();
921         spin_unlock(src_ptl);
922         pte_unmap(orig_src_pte);
923         add_mm_rss_vec(dst_mm, rss);
924         pte_unmap_unlock(orig_dst_pte, dst_ptl);
925         cond_resched();
926
927         if (entry.val) {
928                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
929                         return -ENOMEM;
930                 progress = 0;
931         }
932         if (addr != end)
933                 goto again;
934         return 0;
935 }
936
937 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
939                 unsigned long addr, unsigned long end)
940 {
941         pmd_t *src_pmd, *dst_pmd;
942         unsigned long next;
943
944         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
945         if (!dst_pmd)
946                 return -ENOMEM;
947         src_pmd = pmd_offset(src_pud, addr);
948         do {
949                 next = pmd_addr_end(addr, end);
950                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
951                         int err;
952                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
953                         err = copy_huge_pmd(dst_mm, src_mm,
954                                             dst_pmd, src_pmd, addr, vma);
955                         if (err == -ENOMEM)
956                                 return -ENOMEM;
957                         if (!err)
958                                 continue;
959                         /* fall through */
960                 }
961                 if (pmd_none_or_clear_bad(src_pmd))
962                         continue;
963                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
964                                                 vma, addr, next))
965                         return -ENOMEM;
966         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
967         return 0;
968 }
969
970 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
972                 unsigned long addr, unsigned long end)
973 {
974         pud_t *src_pud, *dst_pud;
975         unsigned long next;
976
977         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
978         if (!dst_pud)
979                 return -ENOMEM;
980         src_pud = pud_offset(src_pgd, addr);
981         do {
982                 next = pud_addr_end(addr, end);
983                 if (pud_none_or_clear_bad(src_pud))
984                         continue;
985                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
986                                                 vma, addr, next))
987                         return -ENOMEM;
988         } while (dst_pud++, src_pud++, addr = next, addr != end);
989         return 0;
990 }
991
992 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993                 struct vm_area_struct *vma)
994 {
995         pgd_t *src_pgd, *dst_pgd;
996         unsigned long next;
997         unsigned long addr = vma->vm_start;
998         unsigned long end = vma->vm_end;
999         unsigned long mmun_start;       /* For mmu_notifiers */
1000         unsigned long mmun_end;         /* For mmu_notifiers */
1001         bool is_cow;
1002         int ret;
1003
1004         /*
1005          * Don't copy ptes where a page fault will fill them correctly.
1006          * Fork becomes much lighter when there are big shared or private
1007          * readonly mappings. The tradeoff is that copy_page_range is more
1008          * efficient than faulting.
1009          */
1010         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1011                         !vma->anon_vma)
1012                 return 0;
1013
1014         if (is_vm_hugetlb_page(vma))
1015                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1016
1017         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1018                 /*
1019                  * We do not free on error cases below as remove_vma
1020                  * gets called on error from higher level routine
1021                  */
1022                 ret = track_pfn_copy(vma);
1023                 if (ret)
1024                         return ret;
1025         }
1026
1027         /*
1028          * We need to invalidate the secondary MMU mappings only when
1029          * there could be a permission downgrade on the ptes of the
1030          * parent mm. And a permission downgrade will only happen if
1031          * is_cow_mapping() returns true.
1032          */
1033         is_cow = is_cow_mapping(vma->vm_flags);
1034         mmun_start = addr;
1035         mmun_end   = end;
1036         if (is_cow)
1037                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1038                                                     mmun_end);
1039
1040         ret = 0;
1041         dst_pgd = pgd_offset(dst_mm, addr);
1042         src_pgd = pgd_offset(src_mm, addr);
1043         do {
1044                 next = pgd_addr_end(addr, end);
1045                 if (pgd_none_or_clear_bad(src_pgd))
1046                         continue;
1047                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1048                                             vma, addr, next))) {
1049                         ret = -ENOMEM;
1050                         break;
1051                 }
1052         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1053
1054         if (is_cow)
1055                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1056         return ret;
1057 }
1058
1059 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1060                                 struct vm_area_struct *vma, pmd_t *pmd,
1061                                 unsigned long addr, unsigned long end,
1062                                 struct zap_details *details)
1063 {
1064         struct mm_struct *mm = tlb->mm;
1065         int force_flush = 0;
1066         int rss[NR_MM_COUNTERS];
1067         spinlock_t *ptl;
1068         pte_t *start_pte;
1069         pte_t *pte;
1070         swp_entry_t entry;
1071
1072 again:
1073         init_rss_vec(rss);
1074         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1075         pte = start_pte;
1076         arch_enter_lazy_mmu_mode();
1077         do {
1078                 pte_t ptent = *pte;
1079                 if (pte_none(ptent)) {
1080                         continue;
1081                 }
1082
1083                 if (pte_present(ptent)) {
1084                         struct page *page;
1085
1086                         page = vm_normal_page(vma, addr, ptent);
1087                         if (unlikely(details) && page) {
1088                                 /*
1089                                  * unmap_shared_mapping_pages() wants to
1090                                  * invalidate cache without truncating:
1091                                  * unmap shared but keep private pages.
1092                                  */
1093                                 if (details->check_mapping &&
1094                                     details->check_mapping != page->mapping)
1095                                         continue;
1096                         }
1097                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1098                                                         tlb->fullmm);
1099                         tlb_remove_tlb_entry(tlb, pte, addr);
1100                         if (unlikely(!page))
1101                                 continue;
1102
1103                         if (!PageAnon(page)) {
1104                                 if (pte_dirty(ptent)) {
1105                                         /*
1106                                          * oom_reaper cannot tear down dirty
1107                                          * pages
1108                                          */
1109                                         if (unlikely(details && details->ignore_dirty))
1110                                                 continue;
1111                                         force_flush = 1;
1112                                         set_page_dirty(page);
1113                                 }
1114                                 if (pte_young(ptent) &&
1115                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1116                                         mark_page_accessed(page);
1117                         }
1118                         rss[mm_counter(page)]--;
1119                         page_remove_rmap(page, false);
1120                         if (unlikely(page_mapcount(page) < 0))
1121                                 print_bad_pte(vma, addr, ptent, page);
1122                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1123                                 force_flush = 1;
1124                                 addr += PAGE_SIZE;
1125                                 break;
1126                         }
1127                         continue;
1128                 }
1129                 /* only check swap_entries if explicitly asked for in details */
1130                 if (unlikely(details && !details->check_swap_entries))
1131                         continue;
1132
1133                 entry = pte_to_swp_entry(ptent);
1134                 if (!non_swap_entry(entry))
1135                         rss[MM_SWAPENTS]--;
1136                 else if (is_migration_entry(entry)) {
1137                         struct page *page;
1138
1139                         page = migration_entry_to_page(entry);
1140                         rss[mm_counter(page)]--;
1141                 }
1142                 if (unlikely(!free_swap_and_cache(entry)))
1143                         print_bad_pte(vma, addr, ptent, NULL);
1144                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1145         } while (pte++, addr += PAGE_SIZE, addr != end);
1146
1147         add_mm_rss_vec(mm, rss);
1148         arch_leave_lazy_mmu_mode();
1149
1150         /* Do the actual TLB flush before dropping ptl */
1151         if (force_flush)
1152                 tlb_flush_mmu_tlbonly(tlb);
1153         pte_unmap_unlock(start_pte, ptl);
1154
1155         /*
1156          * If we forced a TLB flush (either due to running out of
1157          * batch buffers or because we needed to flush dirty TLB
1158          * entries before releasing the ptl), free the batched
1159          * memory too. Restart if we didn't do everything.
1160          */
1161         if (force_flush) {
1162                 force_flush = 0;
1163                 tlb_flush_mmu_free(tlb);
1164
1165                 if (addr != end)
1166                         goto again;
1167         }
1168
1169         return addr;
1170 }
1171
1172 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1173                                 struct vm_area_struct *vma, pud_t *pud,
1174                                 unsigned long addr, unsigned long end,
1175                                 struct zap_details *details)
1176 {
1177         pmd_t *pmd;
1178         unsigned long next;
1179
1180         pmd = pmd_offset(pud, addr);
1181         do {
1182                 next = pmd_addr_end(addr, end);
1183                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1184                         if (next - addr != HPAGE_PMD_SIZE) {
1185 #ifdef CONFIG_DEBUG_VM
1186                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1187                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1188                                                 __func__, addr, end,
1189                                                 vma->vm_start,
1190                                                 vma->vm_end);
1191                                         BUG();
1192                                 }
1193 #endif
1194                                 split_huge_pmd(vma, pmd, addr);
1195                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1196                                 goto next;
1197                         /* fall through */
1198                 }
1199                 /*
1200                  * Here there can be other concurrent MADV_DONTNEED or
1201                  * trans huge page faults running, and if the pmd is
1202                  * none or trans huge it can change under us. This is
1203                  * because MADV_DONTNEED holds the mmap_sem in read
1204                  * mode.
1205                  */
1206                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1207                         goto next;
1208                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1209 next:
1210                 cond_resched();
1211         } while (pmd++, addr = next, addr != end);
1212
1213         return addr;
1214 }
1215
1216 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1217                                 struct vm_area_struct *vma, pgd_t *pgd,
1218                                 unsigned long addr, unsigned long end,
1219                                 struct zap_details *details)
1220 {
1221         pud_t *pud;
1222         unsigned long next;
1223
1224         pud = pud_offset(pgd, addr);
1225         do {
1226                 next = pud_addr_end(addr, end);
1227                 if (pud_none_or_clear_bad(pud))
1228                         continue;
1229                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1230         } while (pud++, addr = next, addr != end);
1231
1232         return addr;
1233 }
1234
1235 void unmap_page_range(struct mmu_gather *tlb,
1236                              struct vm_area_struct *vma,
1237                              unsigned long addr, unsigned long end,
1238                              struct zap_details *details)
1239 {
1240         pgd_t *pgd;
1241         unsigned long next;
1242
1243         BUG_ON(addr >= end);
1244         tlb_start_vma(tlb, vma);
1245         pgd = pgd_offset(vma->vm_mm, addr);
1246         do {
1247                 next = pgd_addr_end(addr, end);
1248                 if (pgd_none_or_clear_bad(pgd))
1249                         continue;
1250                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251         } while (pgd++, addr = next, addr != end);
1252         tlb_end_vma(tlb, vma);
1253 }
1254
1255
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257                 struct vm_area_struct *vma, unsigned long start_addr,
1258                 unsigned long end_addr,
1259                 struct zap_details *details)
1260 {
1261         unsigned long start = max(vma->vm_start, start_addr);
1262         unsigned long end;
1263
1264         if (start >= vma->vm_end)
1265                 return;
1266         end = min(vma->vm_end, end_addr);
1267         if (end <= vma->vm_start)
1268                 return;
1269
1270         if (vma->vm_file)
1271                 uprobe_munmap(vma, start, end);
1272
1273         if (unlikely(vma->vm_flags & VM_PFNMAP))
1274                 untrack_pfn(vma, 0, 0);
1275
1276         if (start != end) {
1277                 if (unlikely(is_vm_hugetlb_page(vma))) {
1278                         /*
1279                          * It is undesirable to test vma->vm_file as it
1280                          * should be non-null for valid hugetlb area.
1281                          * However, vm_file will be NULL in the error
1282                          * cleanup path of mmap_region. When
1283                          * hugetlbfs ->mmap method fails,
1284                          * mmap_region() nullifies vma->vm_file
1285                          * before calling this function to clean up.
1286                          * Since no pte has actually been setup, it is
1287                          * safe to do nothing in this case.
1288                          */
1289                         if (vma->vm_file) {
1290                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1291                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1293                         }
1294                 } else
1295                         unmap_page_range(tlb, vma, start, end, details);
1296         }
1297 }
1298
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  *
1306  * Unmap all pages in the vma list.
1307  *
1308  * Only addresses between `start' and `end' will be unmapped.
1309  *
1310  * The VMA list must be sorted in ascending virtual address order.
1311  *
1312  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313  * range after unmap_vmas() returns.  So the only responsibility here is to
1314  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315  * drops the lock and schedules.
1316  */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318                 struct vm_area_struct *vma, unsigned long start_addr,
1319                 unsigned long end_addr)
1320 {
1321         struct mm_struct *mm = vma->vm_mm;
1322
1323         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328
1329 /**
1330  * zap_page_range - remove user pages in a given range
1331  * @vma: vm_area_struct holding the applicable pages
1332  * @start: starting address of pages to zap
1333  * @size: number of bytes to zap
1334  * @details: details of shared cache invalidation
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339                 unsigned long size, struct zap_details *details)
1340 {
1341         struct mm_struct *mm = vma->vm_mm;
1342         struct mmu_gather tlb;
1343         unsigned long end = start + size;
1344
1345         lru_add_drain();
1346         tlb_gather_mmu(&tlb, mm, start, end);
1347         update_hiwater_rss(mm);
1348         mmu_notifier_invalidate_range_start(mm, start, end);
1349         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350                 unmap_single_vma(&tlb, vma, start, end, details);
1351         mmu_notifier_invalidate_range_end(mm, start, end);
1352         tlb_finish_mmu(&tlb, start, end);
1353 }
1354
1355 /**
1356  * zap_page_range_single - remove user pages in a given range
1357  * @vma: vm_area_struct holding the applicable pages
1358  * @address: starting address of pages to zap
1359  * @size: number of bytes to zap
1360  * @details: details of shared cache invalidation
1361  *
1362  * The range must fit into one VMA.
1363  */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365                 unsigned long size, struct zap_details *details)
1366 {
1367         struct mm_struct *mm = vma->vm_mm;
1368         struct mmu_gather tlb;
1369         unsigned long end = address + size;
1370
1371         lru_add_drain();
1372         tlb_gather_mmu(&tlb, mm, address, end);
1373         update_hiwater_rss(mm);
1374         mmu_notifier_invalidate_range_start(mm, address, end);
1375         unmap_single_vma(&tlb, vma, address, end, details);
1376         mmu_notifier_invalidate_range_end(mm, address, end);
1377         tlb_finish_mmu(&tlb, address, end);
1378 }
1379
1380 /**
1381  * zap_vma_ptes - remove ptes mapping the vma
1382  * @vma: vm_area_struct holding ptes to be zapped
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  *
1386  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387  *
1388  * The entire address range must be fully contained within the vma.
1389  *
1390  * Returns 0 if successful.
1391  */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393                 unsigned long size)
1394 {
1395         if (address < vma->vm_start || address + size > vma->vm_end ||
1396                         !(vma->vm_flags & VM_PFNMAP))
1397                 return -1;
1398         zap_page_range_single(vma, address, size, NULL);
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404                         spinlock_t **ptl)
1405 {
1406         pgd_t * pgd = pgd_offset(mm, addr);
1407         pud_t * pud = pud_alloc(mm, pgd, addr);
1408         if (pud) {
1409                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410                 if (pmd) {
1411                         VM_BUG_ON(pmd_trans_huge(*pmd));
1412                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413                 }
1414         }
1415         return NULL;
1416 }
1417
1418 /*
1419  * This is the old fallback for page remapping.
1420  *
1421  * For historical reasons, it only allows reserved pages. Only
1422  * old drivers should use this, and they needed to mark their
1423  * pages reserved for the old functions anyway.
1424  */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426                         struct page *page, pgprot_t prot)
1427 {
1428         struct mm_struct *mm = vma->vm_mm;
1429         int retval;
1430         pte_t *pte;
1431         spinlock_t *ptl;
1432
1433         retval = -EINVAL;
1434         if (PageAnon(page))
1435                 goto out;
1436         retval = -ENOMEM;
1437         flush_dcache_page(page);
1438         pte = get_locked_pte(mm, addr, &ptl);
1439         if (!pte)
1440                 goto out;
1441         retval = -EBUSY;
1442         if (!pte_none(*pte))
1443                 goto out_unlock;
1444
1445         /* Ok, finally just insert the thing.. */
1446         get_page(page);
1447         inc_mm_counter_fast(mm, mm_counter_file(page));
1448         page_add_file_rmap(page);
1449         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450
1451         retval = 0;
1452         pte_unmap_unlock(pte, ptl);
1453         return retval;
1454 out_unlock:
1455         pte_unmap_unlock(pte, ptl);
1456 out:
1457         return retval;
1458 }
1459
1460 /**
1461  * vm_insert_page - insert single page into user vma
1462  * @vma: user vma to map to
1463  * @addr: target user address of this page
1464  * @page: source kernel page
1465  *
1466  * This allows drivers to insert individual pages they've allocated
1467  * into a user vma.
1468  *
1469  * The page has to be a nice clean _individual_ kernel allocation.
1470  * If you allocate a compound page, you need to have marked it as
1471  * such (__GFP_COMP), or manually just split the page up yourself
1472  * (see split_page()).
1473  *
1474  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475  * took an arbitrary page protection parameter. This doesn't allow
1476  * that. Your vma protection will have to be set up correctly, which
1477  * means that if you want a shared writable mapping, you'd better
1478  * ask for a shared writable mapping!
1479  *
1480  * The page does not need to be reserved.
1481  *
1482  * Usually this function is called from f_op->mmap() handler
1483  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485  * function from other places, for example from page-fault handler.
1486  */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488                         struct page *page)
1489 {
1490         if (addr < vma->vm_start || addr >= vma->vm_end)
1491                 return -EFAULT;
1492         if (!page_count(page))
1493                 return -EINVAL;
1494         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1497                 vma->vm_flags |= VM_MIXEDMAP;
1498         }
1499         return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504                         pfn_t pfn, pgprot_t prot)
1505 {
1506         struct mm_struct *mm = vma->vm_mm;
1507         int retval;
1508         pte_t *pte, entry;
1509         spinlock_t *ptl;
1510
1511         retval = -ENOMEM;
1512         pte = get_locked_pte(mm, addr, &ptl);
1513         if (!pte)
1514                 goto out;
1515         retval = -EBUSY;
1516         if (!pte_none(*pte))
1517                 goto out_unlock;
1518
1519         /* Ok, finally just insert the thing.. */
1520         if (pfn_t_devmap(pfn))
1521                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522         else
1523                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524         set_pte_at(mm, addr, pte, entry);
1525         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526
1527         retval = 0;
1528 out_unlock:
1529         pte_unmap_unlock(pte, ptl);
1530 out:
1531         return retval;
1532 }
1533
1534 /**
1535  * vm_insert_pfn - insert single pfn into user vma
1536  * @vma: user vma to map to
1537  * @addr: target user address of this page
1538  * @pfn: source kernel pfn
1539  *
1540  * Similar to vm_insert_page, this allows drivers to insert individual pages
1541  * they've allocated into a user vma. Same comments apply.
1542  *
1543  * This function should only be called from a vm_ops->fault handler, and
1544  * in that case the handler should return NULL.
1545  *
1546  * vma cannot be a COW mapping.
1547  *
1548  * As this is called only for pages that do not currently exist, we
1549  * do not need to flush old virtual caches or the TLB.
1550  */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552                         unsigned long pfn)
1553 {
1554         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1555 }
1556 EXPORT_SYMBOL(vm_insert_pfn);
1557
1558 /**
1559  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1560  * @vma: user vma to map to
1561  * @addr: target user address of this page
1562  * @pfn: source kernel pfn
1563  * @pgprot: pgprot flags for the inserted page
1564  *
1565  * This is exactly like vm_insert_pfn, except that it allows drivers to
1566  * to override pgprot on a per-page basis.
1567  *
1568  * This only makes sense for IO mappings, and it makes no sense for
1569  * cow mappings.  In general, using multiple vmas is preferable;
1570  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1571  * impractical.
1572  */
1573 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1574                         unsigned long pfn, pgprot_t pgprot)
1575 {
1576         int ret;
1577         /*
1578          * Technically, architectures with pte_special can avoid all these
1579          * restrictions (same for remap_pfn_range).  However we would like
1580          * consistency in testing and feature parity among all, so we should
1581          * try to keep these invariants in place for everybody.
1582          */
1583         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1584         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1585                                                 (VM_PFNMAP|VM_MIXEDMAP));
1586         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1587         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1588
1589         if (addr < vma->vm_start || addr >= vma->vm_end)
1590                 return -EFAULT;
1591         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1592                 return -EINVAL;
1593
1594         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1595
1596         return ret;
1597 }
1598 EXPORT_SYMBOL(vm_insert_pfn_prot);
1599
1600 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1601                         pfn_t pfn)
1602 {
1603         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1604
1605         if (addr < vma->vm_start || addr >= vma->vm_end)
1606                 return -EFAULT;
1607
1608         /*
1609          * If we don't have pte special, then we have to use the pfn_valid()
1610          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1611          * refcount the page if pfn_valid is true (hence insert_page rather
1612          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1613          * without pte special, it would there be refcounted as a normal page.
1614          */
1615         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1616                 struct page *page;
1617
1618                 /*
1619                  * At this point we are committed to insert_page()
1620                  * regardless of whether the caller specified flags that
1621                  * result in pfn_t_has_page() == false.
1622                  */
1623                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1624                 return insert_page(vma, addr, page, vma->vm_page_prot);
1625         }
1626         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1627 }
1628 EXPORT_SYMBOL(vm_insert_mixed);
1629
1630 /*
1631  * maps a range of physical memory into the requested pages. the old
1632  * mappings are removed. any references to nonexistent pages results
1633  * in null mappings (currently treated as "copy-on-access")
1634  */
1635 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1636                         unsigned long addr, unsigned long end,
1637                         unsigned long pfn, pgprot_t prot)
1638 {
1639         pte_t *pte;
1640         spinlock_t *ptl;
1641
1642         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1643         if (!pte)
1644                 return -ENOMEM;
1645         arch_enter_lazy_mmu_mode();
1646         do {
1647                 BUG_ON(!pte_none(*pte));
1648                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1649                 pfn++;
1650         } while (pte++, addr += PAGE_SIZE, addr != end);
1651         arch_leave_lazy_mmu_mode();
1652         pte_unmap_unlock(pte - 1, ptl);
1653         return 0;
1654 }
1655
1656 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1657                         unsigned long addr, unsigned long end,
1658                         unsigned long pfn, pgprot_t prot)
1659 {
1660         pmd_t *pmd;
1661         unsigned long next;
1662
1663         pfn -= addr >> PAGE_SHIFT;
1664         pmd = pmd_alloc(mm, pud, addr);
1665         if (!pmd)
1666                 return -ENOMEM;
1667         VM_BUG_ON(pmd_trans_huge(*pmd));
1668         do {
1669                 next = pmd_addr_end(addr, end);
1670                 if (remap_pte_range(mm, pmd, addr, next,
1671                                 pfn + (addr >> PAGE_SHIFT), prot))
1672                         return -ENOMEM;
1673         } while (pmd++, addr = next, addr != end);
1674         return 0;
1675 }
1676
1677 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1678                         unsigned long addr, unsigned long end,
1679                         unsigned long pfn, pgprot_t prot)
1680 {
1681         pud_t *pud;
1682         unsigned long next;
1683
1684         pfn -= addr >> PAGE_SHIFT;
1685         pud = pud_alloc(mm, pgd, addr);
1686         if (!pud)
1687                 return -ENOMEM;
1688         do {
1689                 next = pud_addr_end(addr, end);
1690                 if (remap_pmd_range(mm, pud, addr, next,
1691                                 pfn + (addr >> PAGE_SHIFT), prot))
1692                         return -ENOMEM;
1693         } while (pud++, addr = next, addr != end);
1694         return 0;
1695 }
1696
1697 /**
1698  * remap_pfn_range - remap kernel memory to userspace
1699  * @vma: user vma to map to
1700  * @addr: target user address to start at
1701  * @pfn: physical address of kernel memory
1702  * @size: size of map area
1703  * @prot: page protection flags for this mapping
1704  *
1705  *  Note: this is only safe if the mm semaphore is held when called.
1706  */
1707 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1708                     unsigned long pfn, unsigned long size, pgprot_t prot)
1709 {
1710         pgd_t *pgd;
1711         unsigned long next;
1712         unsigned long end = addr + PAGE_ALIGN(size);
1713         struct mm_struct *mm = vma->vm_mm;
1714         int err;
1715
1716         /*
1717          * Physically remapped pages are special. Tell the
1718          * rest of the world about it:
1719          *   VM_IO tells people not to look at these pages
1720          *      (accesses can have side effects).
1721          *   VM_PFNMAP tells the core MM that the base pages are just
1722          *      raw PFN mappings, and do not have a "struct page" associated
1723          *      with them.
1724          *   VM_DONTEXPAND
1725          *      Disable vma merging and expanding with mremap().
1726          *   VM_DONTDUMP
1727          *      Omit vma from core dump, even when VM_IO turned off.
1728          *
1729          * There's a horrible special case to handle copy-on-write
1730          * behaviour that some programs depend on. We mark the "original"
1731          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1732          * See vm_normal_page() for details.
1733          */
1734         if (is_cow_mapping(vma->vm_flags)) {
1735                 if (addr != vma->vm_start || end != vma->vm_end)
1736                         return -EINVAL;
1737                 vma->vm_pgoff = pfn;
1738         }
1739
1740         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1741         if (err)
1742                 return -EINVAL;
1743
1744         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1745
1746         BUG_ON(addr >= end);
1747         pfn -= addr >> PAGE_SHIFT;
1748         pgd = pgd_offset(mm, addr);
1749         flush_cache_range(vma, addr, end);
1750         do {
1751                 next = pgd_addr_end(addr, end);
1752                 err = remap_pud_range(mm, pgd, addr, next,
1753                                 pfn + (addr >> PAGE_SHIFT), prot);
1754                 if (err)
1755                         break;
1756         } while (pgd++, addr = next, addr != end);
1757
1758         if (err)
1759                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1760
1761         return err;
1762 }
1763 EXPORT_SYMBOL(remap_pfn_range);
1764
1765 /**
1766  * vm_iomap_memory - remap memory to userspace
1767  * @vma: user vma to map to
1768  * @start: start of area
1769  * @len: size of area
1770  *
1771  * This is a simplified io_remap_pfn_range() for common driver use. The
1772  * driver just needs to give us the physical memory range to be mapped,
1773  * we'll figure out the rest from the vma information.
1774  *
1775  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1776  * whatever write-combining details or similar.
1777  */
1778 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1779 {
1780         unsigned long vm_len, pfn, pages;
1781
1782         /* Check that the physical memory area passed in looks valid */
1783         if (start + len < start)
1784                 return -EINVAL;
1785         /*
1786          * You *really* shouldn't map things that aren't page-aligned,
1787          * but we've historically allowed it because IO memory might
1788          * just have smaller alignment.
1789          */
1790         len += start & ~PAGE_MASK;
1791         pfn = start >> PAGE_SHIFT;
1792         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1793         if (pfn + pages < pfn)
1794                 return -EINVAL;
1795
1796         /* We start the mapping 'vm_pgoff' pages into the area */
1797         if (vma->vm_pgoff > pages)
1798                 return -EINVAL;
1799         pfn += vma->vm_pgoff;
1800         pages -= vma->vm_pgoff;
1801
1802         /* Can we fit all of the mapping? */
1803         vm_len = vma->vm_end - vma->vm_start;
1804         if (vm_len >> PAGE_SHIFT > pages)
1805                 return -EINVAL;
1806
1807         /* Ok, let it rip */
1808         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1809 }
1810 EXPORT_SYMBOL(vm_iomap_memory);
1811
1812 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1813                                      unsigned long addr, unsigned long end,
1814                                      pte_fn_t fn, void *data)
1815 {
1816         pte_t *pte;
1817         int err;
1818         pgtable_t token;
1819         spinlock_t *uninitialized_var(ptl);
1820
1821         pte = (mm == &init_mm) ?
1822                 pte_alloc_kernel(pmd, addr) :
1823                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1824         if (!pte)
1825                 return -ENOMEM;
1826
1827         BUG_ON(pmd_huge(*pmd));
1828
1829         arch_enter_lazy_mmu_mode();
1830
1831         token = pmd_pgtable(*pmd);
1832
1833         do {
1834                 err = fn(pte++, token, addr, data);
1835                 if (err)
1836                         break;
1837         } while (addr += PAGE_SIZE, addr != end);
1838
1839         arch_leave_lazy_mmu_mode();
1840
1841         if (mm != &init_mm)
1842                 pte_unmap_unlock(pte-1, ptl);
1843         return err;
1844 }
1845
1846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1847                                      unsigned long addr, unsigned long end,
1848                                      pte_fn_t fn, void *data)
1849 {
1850         pmd_t *pmd;
1851         unsigned long next;
1852         int err;
1853
1854         BUG_ON(pud_huge(*pud));
1855
1856         pmd = pmd_alloc(mm, pud, addr);
1857         if (!pmd)
1858                 return -ENOMEM;
1859         do {
1860                 next = pmd_addr_end(addr, end);
1861                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1862                 if (err)
1863                         break;
1864         } while (pmd++, addr = next, addr != end);
1865         return err;
1866 }
1867
1868 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1869                                      unsigned long addr, unsigned long end,
1870                                      pte_fn_t fn, void *data)
1871 {
1872         pud_t *pud;
1873         unsigned long next;
1874         int err;
1875
1876         pud = pud_alloc(mm, pgd, addr);
1877         if (!pud)
1878                 return -ENOMEM;
1879         do {
1880                 next = pud_addr_end(addr, end);
1881                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1882                 if (err)
1883                         break;
1884         } while (pud++, addr = next, addr != end);
1885         return err;
1886 }
1887
1888 /*
1889  * Scan a region of virtual memory, filling in page tables as necessary
1890  * and calling a provided function on each leaf page table.
1891  */
1892 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1893                         unsigned long size, pte_fn_t fn, void *data)
1894 {
1895         pgd_t *pgd;
1896         unsigned long next;
1897         unsigned long end = addr + size;
1898         int err;
1899
1900         if (WARN_ON(addr >= end))
1901                 return -EINVAL;
1902
1903         pgd = pgd_offset(mm, addr);
1904         do {
1905                 next = pgd_addr_end(addr, end);
1906                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1907                 if (err)
1908                         break;
1909         } while (pgd++, addr = next, addr != end);
1910
1911         return err;
1912 }
1913 EXPORT_SYMBOL_GPL(apply_to_page_range);
1914
1915 /*
1916  * handle_pte_fault chooses page fault handler according to an entry which was
1917  * read non-atomically.  Before making any commitment, on those architectures
1918  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1919  * parts, do_swap_page must check under lock before unmapping the pte and
1920  * proceeding (but do_wp_page is only called after already making such a check;
1921  * and do_anonymous_page can safely check later on).
1922  */
1923 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1924                                 pte_t *page_table, pte_t orig_pte)
1925 {
1926         int same = 1;
1927 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1928         if (sizeof(pte_t) > sizeof(unsigned long)) {
1929                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1930                 spin_lock(ptl);
1931                 same = pte_same(*page_table, orig_pte);
1932                 spin_unlock(ptl);
1933         }
1934 #endif
1935         pte_unmap(page_table);
1936         return same;
1937 }
1938
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941         debug_dma_assert_idle(src);
1942
1943         /*
1944          * If the source page was a PFN mapping, we don't have
1945          * a "struct page" for it. We do a best-effort copy by
1946          * just copying from the original user address. If that
1947          * fails, we just zero-fill it. Live with it.
1948          */
1949         if (unlikely(!src)) {
1950                 void *kaddr = kmap_atomic(dst);
1951                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1952
1953                 /*
1954                  * This really shouldn't fail, because the page is there
1955                  * in the page tables. But it might just be unreadable,
1956                  * in which case we just give up and fill the result with
1957                  * zeroes.
1958                  */
1959                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1960                         clear_page(kaddr);
1961                 kunmap_atomic(kaddr);
1962                 flush_dcache_page(dst);
1963         } else
1964                 copy_user_highpage(dst, src, va, vma);
1965 }
1966
1967 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1968 {
1969         struct file *vm_file = vma->vm_file;
1970
1971         if (vm_file)
1972                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1973
1974         /*
1975          * Special mappings (e.g. VDSO) do not have any file so fake
1976          * a default GFP_KERNEL for them.
1977          */
1978         return GFP_KERNEL;
1979 }
1980
1981 /*
1982  * Notify the address space that the page is about to become writable so that
1983  * it can prohibit this or wait for the page to get into an appropriate state.
1984  *
1985  * We do this without the lock held, so that it can sleep if it needs to.
1986  */
1987 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1988                unsigned long address)
1989 {
1990         struct vm_fault vmf;
1991         int ret;
1992
1993         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1994         vmf.pgoff = page->index;
1995         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1996         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1997         vmf.page = page;
1998         vmf.cow_page = NULL;
1999
2000         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2001         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2002                 return ret;
2003         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2004                 lock_page(page);
2005                 if (!page->mapping) {
2006                         unlock_page(page);
2007                         return 0; /* retry */
2008                 }
2009                 ret |= VM_FAULT_LOCKED;
2010         } else
2011                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2012         return ret;
2013 }
2014
2015 /*
2016  * Handle write page faults for pages that can be reused in the current vma
2017  *
2018  * This can happen either due to the mapping being with the VM_SHARED flag,
2019  * or due to us being the last reference standing to the page. In either
2020  * case, all we need to do here is to mark the page as writable and update
2021  * any related book-keeping.
2022  */
2023 static inline int wp_page_reuse(struct mm_struct *mm,
2024                         struct vm_area_struct *vma, unsigned long address,
2025                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2026                         struct page *page, int page_mkwrite,
2027                         int dirty_shared)
2028         __releases(ptl)
2029 {
2030         pte_t entry;
2031         /*
2032          * Clear the pages cpupid information as the existing
2033          * information potentially belongs to a now completely
2034          * unrelated process.
2035          */
2036         if (page)
2037                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2038
2039         flush_cache_page(vma, address, pte_pfn(orig_pte));
2040         entry = pte_mkyoung(orig_pte);
2041         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2042         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2043                 update_mmu_cache(vma, address, page_table);
2044         pte_unmap_unlock(page_table, ptl);
2045
2046         if (dirty_shared) {
2047                 struct address_space *mapping;
2048                 int dirtied;
2049
2050                 if (!page_mkwrite)
2051                         lock_page(page);
2052
2053                 dirtied = set_page_dirty(page);
2054                 VM_BUG_ON_PAGE(PageAnon(page), page);
2055                 mapping = page->mapping;
2056                 unlock_page(page);
2057                 page_cache_release(page);
2058
2059                 if ((dirtied || page_mkwrite) && mapping) {
2060                         /*
2061                          * Some device drivers do not set page.mapping
2062                          * but still dirty their pages
2063                          */
2064                         balance_dirty_pages_ratelimited(mapping);
2065                 }
2066
2067                 if (!page_mkwrite)
2068                         file_update_time(vma->vm_file);
2069         }
2070
2071         return VM_FAULT_WRITE;
2072 }
2073
2074 /*
2075  * Handle the case of a page which we actually need to copy to a new page.
2076  *
2077  * Called with mmap_sem locked and the old page referenced, but
2078  * without the ptl held.
2079  *
2080  * High level logic flow:
2081  *
2082  * - Allocate a page, copy the content of the old page to the new one.
2083  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2084  * - Take the PTL. If the pte changed, bail out and release the allocated page
2085  * - If the pte is still the way we remember it, update the page table and all
2086  *   relevant references. This includes dropping the reference the page-table
2087  *   held to the old page, as well as updating the rmap.
2088  * - In any case, unlock the PTL and drop the reference we took to the old page.
2089  */
2090 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2091                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2092                         pte_t orig_pte, struct page *old_page)
2093 {
2094         struct page *new_page = NULL;
2095         spinlock_t *ptl = NULL;
2096         pte_t entry;
2097         int page_copied = 0;
2098         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2099         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2100         struct mem_cgroup *memcg;
2101
2102         if (unlikely(anon_vma_prepare(vma)))
2103                 goto oom;
2104
2105         if (is_zero_pfn(pte_pfn(orig_pte))) {
2106                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2107                 if (!new_page)
2108                         goto oom;
2109         } else {
2110                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2111                 if (!new_page)
2112                         goto oom;
2113                 cow_user_page(new_page, old_page, address, vma);
2114         }
2115
2116         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2117                 goto oom_free_new;
2118
2119         __SetPageUptodate(new_page);
2120
2121         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2122
2123         /*
2124          * Re-check the pte - we dropped the lock
2125          */
2126         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2127         if (likely(pte_same(*page_table, orig_pte))) {
2128                 if (old_page) {
2129                         if (!PageAnon(old_page)) {
2130                                 dec_mm_counter_fast(mm,
2131                                                 mm_counter_file(old_page));
2132                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2133                         }
2134                 } else {
2135                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2136                 }
2137                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2138                 entry = mk_pte(new_page, vma->vm_page_prot);
2139                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2140                 /*
2141                  * Clear the pte entry and flush it first, before updating the
2142                  * pte with the new entry. This will avoid a race condition
2143                  * seen in the presence of one thread doing SMC and another
2144                  * thread doing COW.
2145                  */
2146                 ptep_clear_flush_notify(vma, address, page_table);
2147                 page_add_new_anon_rmap(new_page, vma, address, false);
2148                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2149                 lru_cache_add_active_or_unevictable(new_page, vma);
2150                 /*
2151                  * We call the notify macro here because, when using secondary
2152                  * mmu page tables (such as kvm shadow page tables), we want the
2153                  * new page to be mapped directly into the secondary page table.
2154                  */
2155                 set_pte_at_notify(mm, address, page_table, entry);
2156                 update_mmu_cache(vma, address, page_table);
2157                 if (old_page) {
2158                         /*
2159                          * Only after switching the pte to the new page may
2160                          * we remove the mapcount here. Otherwise another
2161                          * process may come and find the rmap count decremented
2162                          * before the pte is switched to the new page, and
2163                          * "reuse" the old page writing into it while our pte
2164                          * here still points into it and can be read by other
2165                          * threads.
2166                          *
2167                          * The critical issue is to order this
2168                          * page_remove_rmap with the ptp_clear_flush above.
2169                          * Those stores are ordered by (if nothing else,)
2170                          * the barrier present in the atomic_add_negative
2171                          * in page_remove_rmap.
2172                          *
2173                          * Then the TLB flush in ptep_clear_flush ensures that
2174                          * no process can access the old page before the
2175                          * decremented mapcount is visible. And the old page
2176                          * cannot be reused until after the decremented
2177                          * mapcount is visible. So transitively, TLBs to
2178                          * old page will be flushed before it can be reused.
2179                          */
2180                         page_remove_rmap(old_page, false);
2181                 }
2182
2183                 /* Free the old page.. */
2184                 new_page = old_page;
2185                 page_copied = 1;
2186         } else {
2187                 mem_cgroup_cancel_charge(new_page, memcg, false);
2188         }
2189
2190         if (new_page)
2191                 page_cache_release(new_page);
2192
2193         pte_unmap_unlock(page_table, ptl);
2194         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2195         if (old_page) {
2196                 /*
2197                  * Don't let another task, with possibly unlocked vma,
2198                  * keep the mlocked page.
2199                  */
2200                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2201                         lock_page(old_page);    /* LRU manipulation */
2202                         if (PageMlocked(old_page))
2203                                 munlock_vma_page(old_page);
2204                         unlock_page(old_page);
2205                 }
2206                 page_cache_release(old_page);
2207         }
2208         return page_copied ? VM_FAULT_WRITE : 0;
2209 oom_free_new:
2210         page_cache_release(new_page);
2211 oom:
2212         if (old_page)
2213                 page_cache_release(old_page);
2214         return VM_FAULT_OOM;
2215 }
2216
2217 /*
2218  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2219  * mapping
2220  */
2221 static int wp_pfn_shared(struct mm_struct *mm,
2222                         struct vm_area_struct *vma, unsigned long address,
2223                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2224                         pmd_t *pmd)
2225 {
2226         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2227                 struct vm_fault vmf = {
2228                         .page = NULL,
2229                         .pgoff = linear_page_index(vma, address),
2230                         .virtual_address = (void __user *)(address & PAGE_MASK),
2231                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2232                 };
2233                 int ret;
2234
2235                 pte_unmap_unlock(page_table, ptl);
2236                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2237                 if (ret & VM_FAULT_ERROR)
2238                         return ret;
2239                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2240                 /*
2241                  * We might have raced with another page fault while we
2242                  * released the pte_offset_map_lock.
2243                  */
2244                 if (!pte_same(*page_table, orig_pte)) {
2245                         pte_unmap_unlock(page_table, ptl);
2246                         return 0;
2247                 }
2248         }
2249         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2250                              NULL, 0, 0);
2251 }
2252
2253 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2254                           unsigned long address, pte_t *page_table,
2255                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2256                           struct page *old_page)
2257         __releases(ptl)
2258 {
2259         int page_mkwrite = 0;
2260
2261         page_cache_get(old_page);
2262
2263         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2264                 int tmp;
2265
2266                 pte_unmap_unlock(page_table, ptl);
2267                 tmp = do_page_mkwrite(vma, old_page, address);
2268                 if (unlikely(!tmp || (tmp &
2269                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2270                         page_cache_release(old_page);
2271                         return tmp;
2272                 }
2273                 /*
2274                  * Since we dropped the lock we need to revalidate
2275                  * the PTE as someone else may have changed it.  If
2276                  * they did, we just return, as we can count on the
2277                  * MMU to tell us if they didn't also make it writable.
2278                  */
2279                 page_table = pte_offset_map_lock(mm, pmd, address,
2280                                                  &ptl);
2281                 if (!pte_same(*page_table, orig_pte)) {
2282                         unlock_page(old_page);
2283                         pte_unmap_unlock(page_table, ptl);
2284                         page_cache_release(old_page);
2285                         return 0;
2286                 }
2287                 page_mkwrite = 1;
2288         }
2289
2290         return wp_page_reuse(mm, vma, address, page_table, ptl,
2291                              orig_pte, old_page, page_mkwrite, 1);
2292 }
2293
2294 /*
2295  * This routine handles present pages, when users try to write
2296  * to a shared page. It is done by copying the page to a new address
2297  * and decrementing the shared-page counter for the old page.
2298  *
2299  * Note that this routine assumes that the protection checks have been
2300  * done by the caller (the low-level page fault routine in most cases).
2301  * Thus we can safely just mark it writable once we've done any necessary
2302  * COW.
2303  *
2304  * We also mark the page dirty at this point even though the page will
2305  * change only once the write actually happens. This avoids a few races,
2306  * and potentially makes it more efficient.
2307  *
2308  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2309  * but allow concurrent faults), with pte both mapped and locked.
2310  * We return with mmap_sem still held, but pte unmapped and unlocked.
2311  */
2312 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2313                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2314                 spinlock_t *ptl, pte_t orig_pte)
2315         __releases(ptl)
2316 {
2317         struct page *old_page;
2318
2319         old_page = vm_normal_page(vma, address, orig_pte);
2320         if (!old_page) {
2321                 /*
2322                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2323                  * VM_PFNMAP VMA.
2324                  *
2325                  * We should not cow pages in a shared writeable mapping.
2326                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2327                  */
2328                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2329                                      (VM_WRITE|VM_SHARED))
2330                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2331                                              orig_pte, pmd);
2332
2333                 pte_unmap_unlock(page_table, ptl);
2334                 return wp_page_copy(mm, vma, address, page_table, pmd,
2335                                     orig_pte, old_page);
2336         }
2337
2338         /*
2339          * Take out anonymous pages first, anonymous shared vmas are
2340          * not dirty accountable.
2341          */
2342         if (PageAnon(old_page) && !PageKsm(old_page)) {
2343                 if (!trylock_page(old_page)) {
2344                         page_cache_get(old_page);
2345                         pte_unmap_unlock(page_table, ptl);
2346                         lock_page(old_page);
2347                         page_table = pte_offset_map_lock(mm, pmd, address,
2348                                                          &ptl);
2349                         if (!pte_same(*page_table, orig_pte)) {
2350                                 unlock_page(old_page);
2351                                 pte_unmap_unlock(page_table, ptl);
2352                                 page_cache_release(old_page);
2353                                 return 0;
2354                         }
2355                         page_cache_release(old_page);
2356                 }
2357                 if (reuse_swap_page(old_page)) {
2358                         /*
2359                          * The page is all ours.  Move it to our anon_vma so
2360                          * the rmap code will not search our parent or siblings.
2361                          * Protected against the rmap code by the page lock.
2362                          */
2363                         page_move_anon_rmap(old_page, vma, address);
2364                         unlock_page(old_page);
2365                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2366                                              orig_pte, old_page, 0, 0);
2367                 }
2368                 unlock_page(old_page);
2369         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2370                                         (VM_WRITE|VM_SHARED))) {
2371                 return wp_page_shared(mm, vma, address, page_table, pmd,
2372                                       ptl, orig_pte, old_page);
2373         }
2374
2375         /*
2376          * Ok, we need to copy. Oh, well..
2377          */
2378         page_cache_get(old_page);
2379
2380         pte_unmap_unlock(page_table, ptl);
2381         return wp_page_copy(mm, vma, address, page_table, pmd,
2382                             orig_pte, old_page);
2383 }
2384
2385 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2386                 unsigned long start_addr, unsigned long end_addr,
2387                 struct zap_details *details)
2388 {
2389         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2390 }
2391
2392 static inline void unmap_mapping_range_tree(struct rb_root *root,
2393                                             struct zap_details *details)
2394 {
2395         struct vm_area_struct *vma;
2396         pgoff_t vba, vea, zba, zea;
2397
2398         vma_interval_tree_foreach(vma, root,
2399                         details->first_index, details->last_index) {
2400
2401                 vba = vma->vm_pgoff;
2402                 vea = vba + vma_pages(vma) - 1;
2403                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2404                 zba = details->first_index;
2405                 if (zba < vba)
2406                         zba = vba;
2407                 zea = details->last_index;
2408                 if (zea > vea)
2409                         zea = vea;
2410
2411                 unmap_mapping_range_vma(vma,
2412                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2413                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2414                                 details);
2415         }
2416 }
2417
2418 /**
2419  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2420  * address_space corresponding to the specified page range in the underlying
2421  * file.
2422  *
2423  * @mapping: the address space containing mmaps to be unmapped.
2424  * @holebegin: byte in first page to unmap, relative to the start of
2425  * the underlying file.  This will be rounded down to a PAGE_SIZE
2426  * boundary.  Note that this is different from truncate_pagecache(), which
2427  * must keep the partial page.  In contrast, we must get rid of
2428  * partial pages.
2429  * @holelen: size of prospective hole in bytes.  This will be rounded
2430  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2431  * end of the file.
2432  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2433  * but 0 when invalidating pagecache, don't throw away private data.
2434  */
2435 void unmap_mapping_range(struct address_space *mapping,
2436                 loff_t const holebegin, loff_t const holelen, int even_cows)
2437 {
2438         struct zap_details details = { };
2439         pgoff_t hba = holebegin >> PAGE_SHIFT;
2440         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2441
2442         /* Check for overflow. */
2443         if (sizeof(holelen) > sizeof(hlen)) {
2444                 long long holeend =
2445                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2446                 if (holeend & ~(long long)ULONG_MAX)
2447                         hlen = ULONG_MAX - hba + 1;
2448         }
2449
2450         details.check_mapping = even_cows? NULL: mapping;
2451         details.first_index = hba;
2452         details.last_index = hba + hlen - 1;
2453         if (details.last_index < details.first_index)
2454                 details.last_index = ULONG_MAX;
2455
2456
2457         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2458         i_mmap_lock_write(mapping);
2459         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2460                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2461         i_mmap_unlock_write(mapping);
2462 }
2463 EXPORT_SYMBOL(unmap_mapping_range);
2464
2465 /*
2466  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2467  * but allow concurrent faults), and pte mapped but not yet locked.
2468  * We return with pte unmapped and unlocked.
2469  *
2470  * We return with the mmap_sem locked or unlocked in the same cases
2471  * as does filemap_fault().
2472  */
2473 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2474                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2475                 unsigned int flags, pte_t orig_pte)
2476 {
2477         spinlock_t *ptl;
2478         struct page *page, *swapcache;
2479         struct mem_cgroup *memcg;
2480         swp_entry_t entry;
2481         pte_t pte;
2482         int locked;
2483         int exclusive = 0;
2484         int ret = 0;
2485
2486         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2487                 goto out;
2488
2489         entry = pte_to_swp_entry(orig_pte);
2490         if (unlikely(non_swap_entry(entry))) {
2491                 if (is_migration_entry(entry)) {
2492                         migration_entry_wait(mm, pmd, address);
2493                 } else if (is_hwpoison_entry(entry)) {
2494                         ret = VM_FAULT_HWPOISON;
2495                 } else {
2496                         print_bad_pte(vma, address, orig_pte, NULL);
2497                         ret = VM_FAULT_SIGBUS;
2498                 }
2499                 goto out;
2500         }
2501         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2502         page = lookup_swap_cache(entry);
2503         if (!page) {
2504                 page = swapin_readahead(entry,
2505                                         GFP_HIGHUSER_MOVABLE, vma, address);
2506                 if (!page) {
2507                         /*
2508                          * Back out if somebody else faulted in this pte
2509                          * while we released the pte lock.
2510                          */
2511                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2512                         if (likely(pte_same(*page_table, orig_pte)))
2513                                 ret = VM_FAULT_OOM;
2514                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2515                         goto unlock;
2516                 }
2517
2518                 /* Had to read the page from swap area: Major fault */
2519                 ret = VM_FAULT_MAJOR;
2520                 count_vm_event(PGMAJFAULT);
2521                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2522         } else if (PageHWPoison(page)) {
2523                 /*
2524                  * hwpoisoned dirty swapcache pages are kept for killing
2525                  * owner processes (which may be unknown at hwpoison time)
2526                  */
2527                 ret = VM_FAULT_HWPOISON;
2528                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2529                 swapcache = page;
2530                 goto out_release;
2531         }
2532
2533         swapcache = page;
2534         locked = lock_page_or_retry(page, mm, flags);
2535
2536         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2537         if (!locked) {
2538                 ret |= VM_FAULT_RETRY;
2539                 goto out_release;
2540         }
2541
2542         /*
2543          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2544          * release the swapcache from under us.  The page pin, and pte_same
2545          * test below, are not enough to exclude that.  Even if it is still
2546          * swapcache, we need to check that the page's swap has not changed.
2547          */
2548         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2549                 goto out_page;
2550
2551         page = ksm_might_need_to_copy(page, vma, address);
2552         if (unlikely(!page)) {
2553                 ret = VM_FAULT_OOM;
2554                 page = swapcache;
2555                 goto out_page;
2556         }
2557
2558         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2559                 ret = VM_FAULT_OOM;
2560                 goto out_page;
2561         }
2562
2563         /*
2564          * Back out if somebody else already faulted in this pte.
2565          */
2566         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2567         if (unlikely(!pte_same(*page_table, orig_pte)))
2568                 goto out_nomap;
2569
2570         if (unlikely(!PageUptodate(page))) {
2571                 ret = VM_FAULT_SIGBUS;
2572                 goto out_nomap;
2573         }
2574
2575         /*
2576          * The page isn't present yet, go ahead with the fault.
2577          *
2578          * Be careful about the sequence of operations here.
2579          * To get its accounting right, reuse_swap_page() must be called
2580          * while the page is counted on swap but not yet in mapcount i.e.
2581          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2582          * must be called after the swap_free(), or it will never succeed.
2583          */
2584
2585         inc_mm_counter_fast(mm, MM_ANONPAGES);
2586         dec_mm_counter_fast(mm, MM_SWAPENTS);
2587         pte = mk_pte(page, vma->vm_page_prot);
2588         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2589                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2590                 flags &= ~FAULT_FLAG_WRITE;
2591                 ret |= VM_FAULT_WRITE;
2592                 exclusive = RMAP_EXCLUSIVE;
2593         }
2594         flush_icache_page(vma, page);
2595         if (pte_swp_soft_dirty(orig_pte))
2596                 pte = pte_mksoft_dirty(pte);
2597         set_pte_at(mm, address, page_table, pte);
2598         if (page == swapcache) {
2599                 do_page_add_anon_rmap(page, vma, address, exclusive);
2600                 mem_cgroup_commit_charge(page, memcg, true, false);
2601         } else { /* ksm created a completely new copy */
2602                 page_add_new_anon_rmap(page, vma, address, false);
2603                 mem_cgroup_commit_charge(page, memcg, false, false);
2604                 lru_cache_add_active_or_unevictable(page, vma);
2605         }
2606
2607         swap_free(entry);
2608         if (mem_cgroup_swap_full(page) ||
2609             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2610                 try_to_free_swap(page);
2611         unlock_page(page);
2612         if (page != swapcache) {
2613                 /*
2614                  * Hold the lock to avoid the swap entry to be reused
2615                  * until we take the PT lock for the pte_same() check
2616                  * (to avoid false positives from pte_same). For
2617                  * further safety release the lock after the swap_free
2618                  * so that the swap count won't change under a
2619                  * parallel locked swapcache.
2620                  */
2621                 unlock_page(swapcache);
2622                 page_cache_release(swapcache);
2623         }
2624
2625         if (flags & FAULT_FLAG_WRITE) {
2626                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2627                 if (ret & VM_FAULT_ERROR)
2628                         ret &= VM_FAULT_ERROR;
2629                 goto out;
2630         }
2631
2632         /* No need to invalidate - it was non-present before */
2633         update_mmu_cache(vma, address, page_table);
2634 unlock:
2635         pte_unmap_unlock(page_table, ptl);
2636 out:
2637         return ret;
2638 out_nomap:
2639         mem_cgroup_cancel_charge(page, memcg, false);
2640         pte_unmap_unlock(page_table, ptl);
2641 out_page:
2642         unlock_page(page);
2643 out_release:
2644         page_cache_release(page);
2645         if (page != swapcache) {
2646                 unlock_page(swapcache);
2647                 page_cache_release(swapcache);
2648         }
2649         return ret;
2650 }
2651
2652 /*
2653  * This is like a special single-page "expand_{down|up}wards()",
2654  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2655  * doesn't hit another vma.
2656  */
2657 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2658 {
2659         address &= PAGE_MASK;
2660         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2661                 struct vm_area_struct *prev = vma->vm_prev;
2662
2663                 /*
2664                  * Is there a mapping abutting this one below?
2665                  *
2666                  * That's only ok if it's the same stack mapping
2667                  * that has gotten split..
2668                  */
2669                 if (prev && prev->vm_end == address)
2670                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2671
2672                 return expand_downwards(vma, address - PAGE_SIZE);
2673         }
2674         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2675                 struct vm_area_struct *next = vma->vm_next;
2676
2677                 /* As VM_GROWSDOWN but s/below/above/ */
2678                 if (next && next->vm_start == address + PAGE_SIZE)
2679                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2680
2681                 return expand_upwards(vma, address + PAGE_SIZE);
2682         }
2683         return 0;
2684 }
2685
2686 /*
2687  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2688  * but allow concurrent faults), and pte mapped but not yet locked.
2689  * We return with mmap_sem still held, but pte unmapped and unlocked.
2690  */
2691 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2692                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2693                 unsigned int flags)
2694 {
2695         struct mem_cgroup *memcg;
2696         struct page *page;
2697         spinlock_t *ptl;
2698         pte_t entry;
2699
2700         pte_unmap(page_table);
2701
2702         /* File mapping without ->vm_ops ? */
2703         if (vma->vm_flags & VM_SHARED)
2704                 return VM_FAULT_SIGBUS;
2705
2706         /* Check if we need to add a guard page to the stack */
2707         if (check_stack_guard_page(vma, address) < 0)
2708                 return VM_FAULT_SIGSEGV;
2709
2710         /* Use the zero-page for reads */
2711         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2712                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2713                                                 vma->vm_page_prot));
2714                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2715                 if (!pte_none(*page_table))
2716                         goto unlock;
2717                 /* Deliver the page fault to userland, check inside PT lock */
2718                 if (userfaultfd_missing(vma)) {
2719                         pte_unmap_unlock(page_table, ptl);
2720                         return handle_userfault(vma, address, flags,
2721                                                 VM_UFFD_MISSING);
2722                 }
2723                 goto setpte;
2724         }
2725
2726         /* Allocate our own private page. */
2727         if (unlikely(anon_vma_prepare(vma)))
2728                 goto oom;
2729         page = alloc_zeroed_user_highpage_movable(vma, address);
2730         if (!page)
2731                 goto oom;
2732
2733         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2734                 goto oom_free_page;
2735
2736         /*
2737          * The memory barrier inside __SetPageUptodate makes sure that
2738          * preceeding stores to the page contents become visible before
2739          * the set_pte_at() write.
2740          */
2741         __SetPageUptodate(page);
2742
2743         entry = mk_pte(page, vma->vm_page_prot);
2744         if (vma->vm_flags & VM_WRITE)
2745                 entry = pte_mkwrite(pte_mkdirty(entry));
2746
2747         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2748         if (!pte_none(*page_table))
2749                 goto release;
2750
2751         /* Deliver the page fault to userland, check inside PT lock */
2752         if (userfaultfd_missing(vma)) {
2753                 pte_unmap_unlock(page_table, ptl);
2754                 mem_cgroup_cancel_charge(page, memcg, false);
2755                 page_cache_release(page);
2756                 return handle_userfault(vma, address, flags,
2757                                         VM_UFFD_MISSING);
2758         }
2759
2760         inc_mm_counter_fast(mm, MM_ANONPAGES);
2761         page_add_new_anon_rmap(page, vma, address, false);
2762         mem_cgroup_commit_charge(page, memcg, false, false);
2763         lru_cache_add_active_or_unevictable(page, vma);
2764 setpte:
2765         set_pte_at(mm, address, page_table, entry);
2766
2767         /* No need to invalidate - it was non-present before */
2768         update_mmu_cache(vma, address, page_table);
2769 unlock:
2770         pte_unmap_unlock(page_table, ptl);
2771         return 0;
2772 release:
2773         mem_cgroup_cancel_charge(page, memcg, false);
2774         page_cache_release(page);
2775         goto unlock;
2776 oom_free_page:
2777         page_cache_release(page);
2778 oom:
2779         return VM_FAULT_OOM;
2780 }
2781
2782 /*
2783  * The mmap_sem must have been held on entry, and may have been
2784  * released depending on flags and vma->vm_ops->fault() return value.
2785  * See filemap_fault() and __lock_page_retry().
2786  */
2787 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2788                         pgoff_t pgoff, unsigned int flags,
2789                         struct page *cow_page, struct page **page)
2790 {
2791         struct vm_fault vmf;
2792         int ret;
2793
2794         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2795         vmf.pgoff = pgoff;
2796         vmf.flags = flags;
2797         vmf.page = NULL;
2798         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2799         vmf.cow_page = cow_page;
2800
2801         ret = vma->vm_ops->fault(vma, &vmf);
2802         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2803                 return ret;
2804         if (!vmf.page)
2805                 goto out;
2806
2807         if (unlikely(PageHWPoison(vmf.page))) {
2808                 if (ret & VM_FAULT_LOCKED)
2809                         unlock_page(vmf.page);
2810                 page_cache_release(vmf.page);
2811                 return VM_FAULT_HWPOISON;
2812         }
2813
2814         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2815                 lock_page(vmf.page);
2816         else
2817                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2818
2819  out:
2820         *page = vmf.page;
2821         return ret;
2822 }
2823
2824 /**
2825  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2826  *
2827  * @vma: virtual memory area
2828  * @address: user virtual address
2829  * @page: page to map
2830  * @pte: pointer to target page table entry
2831  * @write: true, if new entry is writable
2832  * @anon: true, if it's anonymous page
2833  *
2834  * Caller must hold page table lock relevant for @pte.
2835  *
2836  * Target users are page handler itself and implementations of
2837  * vm_ops->map_pages.
2838  */
2839 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2840                 struct page *page, pte_t *pte, bool write, bool anon)
2841 {
2842         pte_t entry;
2843
2844         flush_icache_page(vma, page);
2845         entry = mk_pte(page, vma->vm_page_prot);
2846         if (write)
2847                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2848         if (anon) {
2849                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2850                 page_add_new_anon_rmap(page, vma, address, false);
2851         } else {
2852                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2853                 page_add_file_rmap(page);
2854         }
2855         set_pte_at(vma->vm_mm, address, pte, entry);
2856
2857         /* no need to invalidate: a not-present page won't be cached */
2858         update_mmu_cache(vma, address, pte);
2859 }
2860
2861 static unsigned long fault_around_bytes __read_mostly =
2862         rounddown_pow_of_two(65536);
2863
2864 #ifdef CONFIG_DEBUG_FS
2865 static int fault_around_bytes_get(void *data, u64 *val)
2866 {
2867         *val = fault_around_bytes;
2868         return 0;
2869 }
2870
2871 /*
2872  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2873  * rounded down to nearest page order. It's what do_fault_around() expects to
2874  * see.
2875  */
2876 static int fault_around_bytes_set(void *data, u64 val)
2877 {
2878         if (val / PAGE_SIZE > PTRS_PER_PTE)
2879                 return -EINVAL;
2880         if (val > PAGE_SIZE)
2881                 fault_around_bytes = rounddown_pow_of_two(val);
2882         else
2883                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2884         return 0;
2885 }
2886 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2887                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2888
2889 static int __init fault_around_debugfs(void)
2890 {
2891         void *ret;
2892
2893         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2894                         &fault_around_bytes_fops);
2895         if (!ret)
2896                 pr_warn("Failed to create fault_around_bytes in debugfs");
2897         return 0;
2898 }
2899 late_initcall(fault_around_debugfs);
2900 #endif
2901
2902 /*
2903  * do_fault_around() tries to map few pages around the fault address. The hope
2904  * is that the pages will be needed soon and this will lower the number of
2905  * faults to handle.
2906  *
2907  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2908  * not ready to be mapped: not up-to-date, locked, etc.
2909  *
2910  * This function is called with the page table lock taken. In the split ptlock
2911  * case the page table lock only protects only those entries which belong to
2912  * the page table corresponding to the fault address.
2913  *
2914  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2915  * only once.
2916  *
2917  * fault_around_pages() defines how many pages we'll try to map.
2918  * do_fault_around() expects it to return a power of two less than or equal to
2919  * PTRS_PER_PTE.
2920  *
2921  * The virtual address of the area that we map is naturally aligned to the
2922  * fault_around_pages() value (and therefore to page order).  This way it's
2923  * easier to guarantee that we don't cross page table boundaries.
2924  */
2925 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2926                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2927 {
2928         unsigned long start_addr, nr_pages, mask;
2929         pgoff_t max_pgoff;
2930         struct vm_fault vmf;
2931         int off;
2932
2933         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2934         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2935
2936         start_addr = max(address & mask, vma->vm_start);
2937         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2938         pte -= off;
2939         pgoff -= off;
2940
2941         /*
2942          *  max_pgoff is either end of page table or end of vma
2943          *  or fault_around_pages() from pgoff, depending what is nearest.
2944          */
2945         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2946                 PTRS_PER_PTE - 1;
2947         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2948                         pgoff + nr_pages - 1);
2949
2950         /* Check if it makes any sense to call ->map_pages */
2951         while (!pte_none(*pte)) {
2952                 if (++pgoff > max_pgoff)
2953                         return;
2954                 start_addr += PAGE_SIZE;
2955                 if (start_addr >= vma->vm_end)
2956                         return;
2957                 pte++;
2958         }
2959
2960         vmf.virtual_address = (void __user *) start_addr;
2961         vmf.pte = pte;
2962         vmf.pgoff = pgoff;
2963         vmf.max_pgoff = max_pgoff;
2964         vmf.flags = flags;
2965         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2966         vma->vm_ops->map_pages(vma, &vmf);
2967 }
2968
2969 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2970                 unsigned long address, pmd_t *pmd,
2971                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2972 {
2973         struct page *fault_page;
2974         spinlock_t *ptl;
2975         pte_t *pte;
2976         int ret = 0;
2977
2978         /*
2979          * Let's call ->map_pages() first and use ->fault() as fallback
2980          * if page by the offset is not ready to be mapped (cold cache or
2981          * something).
2982          */
2983         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2984                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2985                 do_fault_around(vma, address, pte, pgoff, flags);
2986                 if (!pte_same(*pte, orig_pte))
2987                         goto unlock_out;
2988                 pte_unmap_unlock(pte, ptl);
2989         }
2990
2991         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2992         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2993                 return ret;
2994
2995         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2996         if (unlikely(!pte_same(*pte, orig_pte))) {
2997                 pte_unmap_unlock(pte, ptl);
2998                 unlock_page(fault_page);
2999                 page_cache_release(fault_page);
3000                 return ret;
3001         }
3002         do_set_pte(vma, address, fault_page, pte, false, false);
3003         unlock_page(fault_page);
3004 unlock_out:
3005         pte_unmap_unlock(pte, ptl);
3006         return ret;
3007 }
3008
3009 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3010                 unsigned long address, pmd_t *pmd,
3011                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3012 {
3013         struct page *fault_page, *new_page;
3014         struct mem_cgroup *memcg;
3015         spinlock_t *ptl;
3016         pte_t *pte;
3017         int ret;
3018
3019         if (unlikely(anon_vma_prepare(vma)))
3020                 return VM_FAULT_OOM;
3021
3022         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3023         if (!new_page)
3024                 return VM_FAULT_OOM;
3025
3026         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3027                 page_cache_release(new_page);
3028                 return VM_FAULT_OOM;
3029         }
3030
3031         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3032         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3033                 goto uncharge_out;
3034
3035         if (fault_page)
3036                 copy_user_highpage(new_page, fault_page, address, vma);
3037         __SetPageUptodate(new_page);
3038
3039         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3040         if (unlikely(!pte_same(*pte, orig_pte))) {
3041                 pte_unmap_unlock(pte, ptl);
3042                 if (fault_page) {
3043                         unlock_page(fault_page);
3044                         page_cache_release(fault_page);
3045                 } else {
3046                         /*
3047                          * The fault handler has no page to lock, so it holds
3048                          * i_mmap_lock for read to protect against truncate.
3049                          */
3050                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3051                 }
3052                 goto uncharge_out;
3053         }
3054         do_set_pte(vma, address, new_page, pte, true, true);
3055         mem_cgroup_commit_charge(new_page, memcg, false, false);
3056         lru_cache_add_active_or_unevictable(new_page, vma);
3057         pte_unmap_unlock(pte, ptl);
3058         if (fault_page) {
3059                 unlock_page(fault_page);
3060                 page_cache_release(fault_page);
3061         } else {
3062                 /*
3063                  * The fault handler has no page to lock, so it holds
3064                  * i_mmap_lock for read to protect against truncate.
3065                  */
3066                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3067         }
3068         return ret;
3069 uncharge_out:
3070         mem_cgroup_cancel_charge(new_page, memcg, false);
3071         page_cache_release(new_page);
3072         return ret;
3073 }
3074
3075 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3076                 unsigned long address, pmd_t *pmd,
3077                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3078 {
3079         struct page *fault_page;
3080         struct address_space *mapping;
3081         spinlock_t *ptl;
3082         pte_t *pte;
3083         int dirtied = 0;
3084         int ret, tmp;
3085
3086         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3087         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3088                 return ret;
3089
3090         /*
3091          * Check if the backing address space wants to know that the page is
3092          * about to become writable
3093          */
3094         if (vma->vm_ops->page_mkwrite) {
3095                 unlock_page(fault_page);
3096                 tmp = do_page_mkwrite(vma, fault_page, address);
3097                 if (unlikely(!tmp ||
3098                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3099                         page_cache_release(fault_page);
3100                         return tmp;
3101                 }
3102         }
3103
3104         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3105         if (unlikely(!pte_same(*pte, orig_pte))) {
3106                 pte_unmap_unlock(pte, ptl);
3107                 unlock_page(fault_page);
3108                 page_cache_release(fault_page);
3109                 return ret;
3110         }
3111         do_set_pte(vma, address, fault_page, pte, true, false);
3112         pte_unmap_unlock(pte, ptl);
3113
3114         if (set_page_dirty(fault_page))
3115                 dirtied = 1;
3116         /*
3117          * Take a local copy of the address_space - page.mapping may be zeroed
3118          * by truncate after unlock_page().   The address_space itself remains
3119          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3120          * release semantics to prevent the compiler from undoing this copying.
3121          */
3122         mapping = page_rmapping(fault_page);
3123         unlock_page(fault_page);
3124         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3125                 /*
3126                  * Some device drivers do not set page.mapping but still
3127                  * dirty their pages
3128                  */
3129                 balance_dirty_pages_ratelimited(mapping);
3130         }
3131
3132         if (!vma->vm_ops->page_mkwrite)
3133                 file_update_time(vma->vm_file);
3134
3135         return ret;
3136 }
3137
3138 /*
3139  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3140  * but allow concurrent faults).
3141  * The mmap_sem may have been released depending on flags and our
3142  * return value.  See filemap_fault() and __lock_page_or_retry().
3143  */
3144 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3145                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3146                 unsigned int flags, pte_t orig_pte)
3147 {
3148         pgoff_t pgoff = linear_page_index(vma, address);
3149
3150         pte_unmap(page_table);
3151         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3152         if (!vma->vm_ops->fault)
3153                 return VM_FAULT_SIGBUS;
3154         if (!(flags & FAULT_FLAG_WRITE))
3155                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3156                                 orig_pte);
3157         if (!(vma->vm_flags & VM_SHARED))
3158                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3159                                 orig_pte);
3160         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3161 }
3162
3163 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3164                                 unsigned long addr, int page_nid,
3165                                 int *flags)
3166 {
3167         get_page(page);
3168
3169         count_vm_numa_event(NUMA_HINT_FAULTS);
3170         if (page_nid == numa_node_id()) {
3171                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3172                 *flags |= TNF_FAULT_LOCAL;
3173         }
3174
3175         return mpol_misplaced(page, vma, addr);
3176 }
3177
3178 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3179                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3180 {
3181         struct page *page = NULL;
3182         spinlock_t *ptl;
3183         int page_nid = -1;
3184         int last_cpupid;
3185         int target_nid;
3186         bool migrated = false;
3187         bool was_writable = pte_write(pte);
3188         int flags = 0;
3189
3190         /* A PROT_NONE fault should not end up here */
3191         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3192
3193         /*
3194         * The "pte" at this point cannot be used safely without
3195         * validation through pte_unmap_same(). It's of NUMA type but
3196         * the pfn may be screwed if the read is non atomic.
3197         *
3198         * We can safely just do a "set_pte_at()", because the old
3199         * page table entry is not accessible, so there would be no
3200         * concurrent hardware modifications to the PTE.
3201         */
3202         ptl = pte_lockptr(mm, pmd);
3203         spin_lock(ptl);
3204         if (unlikely(!pte_same(*ptep, pte))) {
3205                 pte_unmap_unlock(ptep, ptl);
3206                 goto out;
3207         }
3208
3209         /* Make it present again */
3210         pte = pte_modify(pte, vma->vm_page_prot);
3211         pte = pte_mkyoung(pte);
3212         if (was_writable)
3213                 pte = pte_mkwrite(pte);
3214         set_pte_at(mm, addr, ptep, pte);
3215         update_mmu_cache(vma, addr, ptep);
3216
3217         page = vm_normal_page(vma, addr, pte);
3218         if (!page) {
3219                 pte_unmap_unlock(ptep, ptl);
3220                 return 0;
3221         }
3222
3223         /* TODO: handle PTE-mapped THP */
3224         if (PageCompound(page)) {
3225                 pte_unmap_unlock(ptep, ptl);
3226                 return 0;
3227         }
3228
3229         /*
3230          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3231          * much anyway since they can be in shared cache state. This misses
3232          * the case where a mapping is writable but the process never writes
3233          * to it but pte_write gets cleared during protection updates and
3234          * pte_dirty has unpredictable behaviour between PTE scan updates,
3235          * background writeback, dirty balancing and application behaviour.
3236          */
3237         if (!(vma->vm_flags & VM_WRITE))
3238                 flags |= TNF_NO_GROUP;
3239
3240         /*
3241          * Flag if the page is shared between multiple address spaces. This
3242          * is later used when determining whether to group tasks together
3243          */
3244         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3245                 flags |= TNF_SHARED;
3246
3247         last_cpupid = page_cpupid_last(page);
3248         page_nid = page_to_nid(page);
3249         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3250         pte_unmap_unlock(ptep, ptl);
3251         if (target_nid == -1) {
3252                 put_page(page);
3253                 goto out;
3254         }
3255
3256         /* Migrate to the requested node */
3257         migrated = migrate_misplaced_page(page, vma, target_nid);
3258         if (migrated) {
3259                 page_nid = target_nid;
3260                 flags |= TNF_MIGRATED;
3261         } else
3262                 flags |= TNF_MIGRATE_FAIL;
3263
3264 out:
3265         if (page_nid != -1)
3266                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3267         return 0;
3268 }
3269
3270 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3271                         unsigned long address, pmd_t *pmd, unsigned int flags)
3272 {
3273         if (vma_is_anonymous(vma))
3274                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3275         if (vma->vm_ops->pmd_fault)
3276                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3277         return VM_FAULT_FALLBACK;
3278 }
3279
3280 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3281                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3282                         unsigned int flags)
3283 {
3284         if (vma_is_anonymous(vma))
3285                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3286         if (vma->vm_ops->pmd_fault)
3287                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3288         return VM_FAULT_FALLBACK;
3289 }
3290
3291 /*
3292  * These routines also need to handle stuff like marking pages dirty
3293  * and/or accessed for architectures that don't do it in hardware (most
3294  * RISC architectures).  The early dirtying is also good on the i386.
3295  *
3296  * There is also a hook called "update_mmu_cache()" that architectures
3297  * with external mmu caches can use to update those (ie the Sparc or
3298  * PowerPC hashed page tables that act as extended TLBs).
3299  *
3300  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3301  * but allow concurrent faults), and pte mapped but not yet locked.
3302  * We return with pte unmapped and unlocked.
3303  *
3304  * The mmap_sem may have been released depending on flags and our
3305  * return value.  See filemap_fault() and __lock_page_or_retry().
3306  */
3307 static int handle_pte_fault(struct mm_struct *mm,
3308                      struct vm_area_struct *vma, unsigned long address,
3309                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3310 {
3311         pte_t entry;
3312         spinlock_t *ptl;
3313
3314         /*
3315          * some architectures can have larger ptes than wordsize,
3316          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3317          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3318          * The code below just needs a consistent view for the ifs and
3319          * we later double check anyway with the ptl lock held. So here
3320          * a barrier will do.
3321          */
3322         entry = *pte;
3323         barrier();
3324         if (!pte_present(entry)) {
3325                 if (pte_none(entry)) {
3326                         if (vma_is_anonymous(vma))
3327                                 return do_anonymous_page(mm, vma, address,
3328                                                          pte, pmd, flags);
3329                         else
3330                                 return do_fault(mm, vma, address, pte, pmd,
3331                                                 flags, entry);
3332                 }
3333                 return do_swap_page(mm, vma, address,
3334                                         pte, pmd, flags, entry);
3335         }
3336
3337         if (pte_protnone(entry))
3338                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3339
3340         ptl = pte_lockptr(mm, pmd);
3341         spin_lock(ptl);
3342         if (unlikely(!pte_same(*pte, entry)))
3343                 goto unlock;
3344         if (flags & FAULT_FLAG_WRITE) {
3345                 if (!pte_write(entry))
3346                         return do_wp_page(mm, vma, address,
3347                                         pte, pmd, ptl, entry);
3348                 entry = pte_mkdirty(entry);
3349         }
3350         entry = pte_mkyoung(entry);
3351         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3352                 update_mmu_cache(vma, address, pte);
3353         } else {
3354                 /*
3355                  * This is needed only for protection faults but the arch code
3356                  * is not yet telling us if this is a protection fault or not.
3357                  * This still avoids useless tlb flushes for .text page faults
3358                  * with threads.
3359                  */
3360                 if (flags & FAULT_FLAG_WRITE)
3361                         flush_tlb_fix_spurious_fault(vma, address);
3362         }
3363 unlock:
3364         pte_unmap_unlock(pte, ptl);
3365         return 0;
3366 }
3367
3368 /*
3369  * By the time we get here, we already hold the mm semaphore
3370  *
3371  * The mmap_sem may have been released depending on flags and our
3372  * return value.  See filemap_fault() and __lock_page_or_retry().
3373  */
3374 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3375                              unsigned long address, unsigned int flags)
3376 {
3377         pgd_t *pgd;
3378         pud_t *pud;
3379         pmd_t *pmd;
3380         pte_t *pte;
3381
3382         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3383                                             flags & FAULT_FLAG_INSTRUCTION,
3384                                             flags & FAULT_FLAG_REMOTE))
3385                 return VM_FAULT_SIGSEGV;
3386
3387         if (unlikely(is_vm_hugetlb_page(vma)))
3388                 return hugetlb_fault(mm, vma, address, flags);
3389
3390         pgd = pgd_offset(mm, address);
3391         pud = pud_alloc(mm, pgd, address);
3392         if (!pud)
3393                 return VM_FAULT_OOM;
3394         pmd = pmd_alloc(mm, pud, address);
3395         if (!pmd)
3396                 return VM_FAULT_OOM;
3397         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3398                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3399                 if (!(ret & VM_FAULT_FALLBACK))
3400                         return ret;
3401         } else {
3402                 pmd_t orig_pmd = *pmd;
3403                 int ret;
3404
3405                 barrier();
3406                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3407                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3408
3409                         if (pmd_protnone(orig_pmd))
3410                                 return do_huge_pmd_numa_page(mm, vma, address,
3411                                                              orig_pmd, pmd);
3412
3413                         if (dirty && !pmd_write(orig_pmd)) {
3414                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3415                                                         orig_pmd, flags);
3416                                 if (!(ret & VM_FAULT_FALLBACK))
3417                                         return ret;
3418                         } else {
3419                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3420                                                       orig_pmd, dirty);
3421                                 return 0;
3422                         }
3423                 }
3424         }
3425
3426         /*
3427          * Use pte_alloc() instead of pte_alloc_map, because we can't
3428          * run pte_offset_map on the pmd, if an huge pmd could
3429          * materialize from under us from a different thread.
3430          */
3431         if (unlikely(pte_alloc(mm, pmd, address)))
3432                 return VM_FAULT_OOM;
3433         /*
3434          * If a huge pmd materialized under us just retry later.  Use
3435          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3436          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3437          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3438          * in a different thread of this mm, in turn leading to a misleading
3439          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3440          * regular pmd that we can walk with pte_offset_map() and we can do that
3441          * through an atomic read in C, which is what pmd_trans_unstable()
3442          * provides.
3443          */
3444         if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3445                 return 0;
3446         /*
3447          * A regular pmd is established and it can't morph into a huge pmd
3448          * from under us anymore at this point because we hold the mmap_sem
3449          * read mode and khugepaged takes it in write mode. So now it's
3450          * safe to run pte_offset_map().
3451          */
3452         pte = pte_offset_map(pmd, address);
3453
3454         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3455 }
3456
3457 /*
3458  * By the time we get here, we already hold the mm semaphore
3459  *
3460  * The mmap_sem may have been released depending on flags and our
3461  * return value.  See filemap_fault() and __lock_page_or_retry().
3462  */
3463 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3464                     unsigned long address, unsigned int flags)
3465 {
3466         int ret;
3467
3468         __set_current_state(TASK_RUNNING);
3469
3470         count_vm_event(PGFAULT);
3471         mem_cgroup_count_vm_event(mm, PGFAULT);
3472
3473         /* do counter updates before entering really critical section. */
3474         check_sync_rss_stat(current);
3475
3476         /*
3477          * Enable the memcg OOM handling for faults triggered in user
3478          * space.  Kernel faults are handled more gracefully.
3479          */
3480         if (flags & FAULT_FLAG_USER)
3481                 mem_cgroup_oom_enable();
3482
3483         ret = __handle_mm_fault(mm, vma, address, flags);
3484
3485         if (flags & FAULT_FLAG_USER) {
3486                 mem_cgroup_oom_disable();
3487                 /*
3488                  * The task may have entered a memcg OOM situation but
3489                  * if the allocation error was handled gracefully (no
3490                  * VM_FAULT_OOM), there is no need to kill anything.
3491                  * Just clean up the OOM state peacefully.
3492                  */
3493                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3494                         mem_cgroup_oom_synchronize(false);
3495         }
3496
3497         return ret;
3498 }
3499 EXPORT_SYMBOL_GPL(handle_mm_fault);
3500
3501 #ifndef __PAGETABLE_PUD_FOLDED
3502 /*
3503  * Allocate page upper directory.
3504  * We've already handled the fast-path in-line.
3505  */
3506 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3507 {
3508         pud_t *new = pud_alloc_one(mm, address);
3509         if (!new)
3510                 return -ENOMEM;
3511
3512         smp_wmb(); /* See comment in __pte_alloc */
3513
3514         spin_lock(&mm->page_table_lock);
3515         if (pgd_present(*pgd))          /* Another has populated it */
3516                 pud_free(mm, new);
3517         else
3518                 pgd_populate(mm, pgd, new);
3519         spin_unlock(&mm->page_table_lock);
3520         return 0;
3521 }
3522 #endif /* __PAGETABLE_PUD_FOLDED */
3523
3524 #ifndef __PAGETABLE_PMD_FOLDED
3525 /*
3526  * Allocate page middle directory.
3527  * We've already handled the fast-path in-line.
3528  */
3529 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3530 {
3531         pmd_t *new = pmd_alloc_one(mm, address);
3532         if (!new)
3533                 return -ENOMEM;
3534
3535         smp_wmb(); /* See comment in __pte_alloc */
3536
3537         spin_lock(&mm->page_table_lock);
3538 #ifndef __ARCH_HAS_4LEVEL_HACK
3539         if (!pud_present(*pud)) {
3540                 mm_inc_nr_pmds(mm);
3541                 pud_populate(mm, pud, new);
3542         } else  /* Another has populated it */
3543                 pmd_free(mm, new);
3544 #else
3545         if (!pgd_present(*pud)) {
3546                 mm_inc_nr_pmds(mm);
3547                 pgd_populate(mm, pud, new);
3548         } else /* Another has populated it */
3549                 pmd_free(mm, new);
3550 #endif /* __ARCH_HAS_4LEVEL_HACK */
3551         spin_unlock(&mm->page_table_lock);
3552         return 0;
3553 }
3554 #endif /* __PAGETABLE_PMD_FOLDED */
3555
3556 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3557                 pte_t **ptepp, spinlock_t **ptlp)
3558 {
3559         pgd_t *pgd;
3560         pud_t *pud;
3561         pmd_t *pmd;
3562         pte_t *ptep;
3563
3564         pgd = pgd_offset(mm, address);
3565         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3566                 goto out;
3567
3568         pud = pud_offset(pgd, address);
3569         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3570                 goto out;
3571
3572         pmd = pmd_offset(pud, address);
3573         VM_BUG_ON(pmd_trans_huge(*pmd));
3574         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3575                 goto out;
3576
3577         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3578         if (pmd_huge(*pmd))
3579                 goto out;
3580
3581         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3582         if (!ptep)
3583                 goto out;
3584         if (!pte_present(*ptep))
3585                 goto unlock;
3586         *ptepp = ptep;
3587         return 0;
3588 unlock:
3589         pte_unmap_unlock(ptep, *ptlp);
3590 out:
3591         return -EINVAL;
3592 }
3593
3594 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3595                              pte_t **ptepp, spinlock_t **ptlp)
3596 {
3597         int res;
3598
3599         /* (void) is needed to make gcc happy */
3600         (void) __cond_lock(*ptlp,
3601                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3602         return res;
3603 }
3604
3605 /**
3606  * follow_pfn - look up PFN at a user virtual address
3607  * @vma: memory mapping
3608  * @address: user virtual address
3609  * @pfn: location to store found PFN
3610  *
3611  * Only IO mappings and raw PFN mappings are allowed.
3612  *
3613  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3614  */
3615 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3616         unsigned long *pfn)
3617 {
3618         int ret = -EINVAL;
3619         spinlock_t *ptl;
3620         pte_t *ptep;
3621
3622         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3623                 return ret;
3624
3625         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3626         if (ret)
3627                 return ret;
3628         *pfn = pte_pfn(*ptep);
3629         pte_unmap_unlock(ptep, ptl);
3630         return 0;
3631 }
3632 EXPORT_SYMBOL(follow_pfn);
3633
3634 #ifdef CONFIG_HAVE_IOREMAP_PROT
3635 int follow_phys(struct vm_area_struct *vma,
3636                 unsigned long address, unsigned int flags,
3637                 unsigned long *prot, resource_size_t *phys)
3638 {
3639         int ret = -EINVAL;
3640         pte_t *ptep, pte;
3641         spinlock_t *ptl;
3642
3643         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3644                 goto out;
3645
3646         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3647                 goto out;
3648         pte = *ptep;
3649
3650         if ((flags & FOLL_WRITE) && !pte_write(pte))
3651                 goto unlock;
3652
3653         *prot = pgprot_val(pte_pgprot(pte));
3654         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3655
3656         ret = 0;
3657 unlock:
3658         pte_unmap_unlock(ptep, ptl);
3659 out:
3660         return ret;
3661 }
3662
3663 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3664                         void *buf, int len, int write)
3665 {
3666         resource_size_t phys_addr;
3667         unsigned long prot = 0;
3668         void __iomem *maddr;
3669         int offset = addr & (PAGE_SIZE-1);
3670
3671         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3672                 return -EINVAL;
3673
3674         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3675         if (write)
3676                 memcpy_toio(maddr + offset, buf, len);
3677         else
3678                 memcpy_fromio(buf, maddr + offset, len);
3679         iounmap(maddr);
3680
3681         return len;
3682 }
3683 EXPORT_SYMBOL_GPL(generic_access_phys);
3684 #endif
3685
3686 /*
3687  * Access another process' address space as given in mm.  If non-NULL, use the
3688  * given task for page fault accounting.
3689  */
3690 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3691                 unsigned long addr, void *buf, int len, int write)
3692 {
3693         struct vm_area_struct *vma;
3694         void *old_buf = buf;
3695
3696         down_read(&mm->mmap_sem);
3697         /* ignore errors, just check how much was successfully transferred */
3698         while (len) {
3699                 int bytes, ret, offset;
3700                 void *maddr;
3701                 struct page *page = NULL;
3702
3703                 ret = get_user_pages_remote(tsk, mm, addr, 1,
3704                                 write, 1, &page, &vma);
3705                 if (ret <= 0) {
3706 #ifndef CONFIG_HAVE_IOREMAP_PROT
3707                         break;
3708 #else
3709                         /*
3710                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3711                          * we can access using slightly different code.
3712                          */
3713                         vma = find_vma(mm, addr);
3714                         if (!vma || vma->vm_start > addr)
3715                                 break;
3716                         if (vma->vm_ops && vma->vm_ops->access)
3717                                 ret = vma->vm_ops->access(vma, addr, buf,
3718                                                           len, write);
3719                         if (ret <= 0)
3720                                 break;
3721                         bytes = ret;
3722 #endif
3723                 } else {
3724                         bytes = len;
3725                         offset = addr & (PAGE_SIZE-1);
3726                         if (bytes > PAGE_SIZE-offset)
3727                                 bytes = PAGE_SIZE-offset;
3728
3729                         maddr = kmap(page);
3730                         if (write) {
3731                                 copy_to_user_page(vma, page, addr,
3732                                                   maddr + offset, buf, bytes);
3733                                 set_page_dirty_lock(page);
3734                         } else {
3735                                 copy_from_user_page(vma, page, addr,
3736                                                     buf, maddr + offset, bytes);
3737                         }
3738                         kunmap(page);
3739                         page_cache_release(page);
3740                 }
3741                 len -= bytes;
3742                 buf += bytes;
3743                 addr += bytes;
3744         }
3745         up_read(&mm->mmap_sem);
3746
3747         return buf - old_buf;
3748 }
3749
3750 /**
3751  * access_remote_vm - access another process' address space
3752  * @mm:         the mm_struct of the target address space
3753  * @addr:       start address to access
3754  * @buf:        source or destination buffer
3755  * @len:        number of bytes to transfer
3756  * @write:      whether the access is a write
3757  *
3758  * The caller must hold a reference on @mm.
3759  */
3760 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3761                 void *buf, int len, int write)
3762 {
3763         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3764 }
3765
3766 /*
3767  * Access another process' address space.
3768  * Source/target buffer must be kernel space,
3769  * Do not walk the page table directly, use get_user_pages
3770  */
3771 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3772                 void *buf, int len, int write)
3773 {
3774         struct mm_struct *mm;
3775         int ret;
3776
3777         mm = get_task_mm(tsk);
3778         if (!mm)
3779                 return 0;
3780
3781         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3782         mmput(mm);
3783
3784         return ret;
3785 }
3786
3787 /*
3788  * Print the name of a VMA.
3789  */
3790 void print_vma_addr(char *prefix, unsigned long ip)
3791 {
3792         struct mm_struct *mm = current->mm;
3793         struct vm_area_struct *vma;
3794
3795         /*
3796          * Do not print if we are in atomic
3797          * contexts (in exception stacks, etc.):
3798          */
3799         if (preempt_count())
3800                 return;
3801
3802         down_read(&mm->mmap_sem);
3803         vma = find_vma(mm, ip);
3804         if (vma && vma->vm_file) {
3805                 struct file *f = vma->vm_file;
3806                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3807                 if (buf) {
3808                         char *p;
3809
3810                         p = file_path(f, buf, PAGE_SIZE);
3811                         if (IS_ERR(p))
3812                                 p = "?";
3813                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3814                                         vma->vm_start,
3815                                         vma->vm_end - vma->vm_start);
3816                         free_page((unsigned long)buf);
3817                 }
3818         }
3819         up_read(&mm->mmap_sem);
3820 }
3821
3822 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3823 void __might_fault(const char *file, int line)
3824 {
3825         /*
3826          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3827          * holding the mmap_sem, this is safe because kernel memory doesn't
3828          * get paged out, therefore we'll never actually fault, and the
3829          * below annotations will generate false positives.
3830          */
3831         if (segment_eq(get_fs(), KERNEL_DS))
3832                 return;
3833         if (pagefault_disabled())
3834                 return;
3835         __might_sleep(file, line, 0);
3836 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3837         if (current->mm)
3838                 might_lock_read(&current->mm->mmap_sem);
3839 #endif
3840 }
3841 EXPORT_SYMBOL(__might_fault);
3842 #endif
3843
3844 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3845 static void clear_gigantic_page(struct page *page,
3846                                 unsigned long addr,
3847                                 unsigned int pages_per_huge_page)
3848 {
3849         int i;
3850         struct page *p = page;
3851
3852         might_sleep();
3853         for (i = 0; i < pages_per_huge_page;
3854              i++, p = mem_map_next(p, page, i)) {
3855                 cond_resched();
3856                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3857         }
3858 }
3859 void clear_huge_page(struct page *page,
3860                      unsigned long addr, unsigned int pages_per_huge_page)
3861 {
3862         int i;
3863
3864         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3865                 clear_gigantic_page(page, addr, pages_per_huge_page);
3866                 return;
3867         }
3868
3869         might_sleep();
3870         for (i = 0; i < pages_per_huge_page; i++) {
3871                 cond_resched();
3872                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3873         }
3874 }
3875
3876 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3877                                     unsigned long addr,
3878                                     struct vm_area_struct *vma,
3879                                     unsigned int pages_per_huge_page)
3880 {
3881         int i;
3882         struct page *dst_base = dst;
3883         struct page *src_base = src;
3884
3885         for (i = 0; i < pages_per_huge_page; ) {
3886                 cond_resched();
3887                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3888
3889                 i++;
3890                 dst = mem_map_next(dst, dst_base, i);
3891                 src = mem_map_next(src, src_base, i);
3892         }
3893 }
3894
3895 void copy_user_huge_page(struct page *dst, struct page *src,
3896                          unsigned long addr, struct vm_area_struct *vma,
3897                          unsigned int pages_per_huge_page)
3898 {
3899         int i;
3900
3901         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3902                 copy_user_gigantic_page(dst, src, addr, vma,
3903                                         pages_per_huge_page);
3904                 return;
3905         }
3906
3907         might_sleep();
3908         for (i = 0; i < pages_per_huge_page; i++) {
3909                 cond_resched();
3910                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3911         }
3912 }
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3914
3915 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3916
3917 static struct kmem_cache *page_ptl_cachep;
3918
3919 void __init ptlock_cache_init(void)
3920 {
3921         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3922                         SLAB_PANIC, NULL);
3923 }
3924
3925 bool ptlock_alloc(struct page *page)
3926 {
3927         spinlock_t *ptl;
3928
3929         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3930         if (!ptl)
3931                 return false;
3932         page->ptl = ptl;
3933         return true;
3934 }
3935
3936 void ptlock_free(struct page *page)
3937 {
3938         kmem_cache_free(page_ptl_cachep, page->ptl);
3939 }
3940 #endif