]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memory.c
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/hugetlb.h>
45 #include <linux/mman.h>
46 #include <linux/swap.h>
47 #include <linux/highmem.h>
48 #include <linux/pagemap.h>
49 #include <linux/ksm.h>
50 #include <linux/rmap.h>
51 #include <linux/export.h>
52 #include <linux/delayacct.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70
71 #include "internal.h"
72
73 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
75 #endif
76
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94
95 EXPORT_SYMBOL(high_memory);
96
97 /*
98  * Randomize the address space (stacks, mmaps, brk, etc.).
99  *
100  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
101  *   as ancient (libc5 based) binaries can segfault. )
102  */
103 int randomize_va_space __read_mostly =
104 #ifdef CONFIG_COMPAT_BRK
105                                         1;
106 #else
107                                         2;
108 #endif
109
110 static int __init disable_randmaps(char *s)
111 {
112         randomize_va_space = 0;
113         return 1;
114 }
115 __setup("norandmaps", disable_randmaps);
116
117 unsigned long zero_pfn __read_mostly;
118 unsigned long highest_memmap_pfn __read_mostly;
119
120 /*
121  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122  */
123 static int __init init_zero_pfn(void)
124 {
125         zero_pfn = page_to_pfn(ZERO_PAGE(0));
126         return 0;
127 }
128 core_initcall(init_zero_pfn);
129
130
131 #if defined(SPLIT_RSS_COUNTING)
132
133 void sync_mm_rss(struct mm_struct *mm)
134 {
135         int i;
136
137         for (i = 0; i < NR_MM_COUNTERS; i++) {
138                 if (current->rss_stat.count[i]) {
139                         add_mm_counter(mm, i, current->rss_stat.count[i]);
140                         current->rss_stat.count[i] = 0;
141                 }
142         }
143         current->rss_stat.events = 0;
144 }
145
146 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147 {
148         struct task_struct *task = current;
149
150         if (likely(task->mm == mm))
151                 task->rss_stat.count[member] += val;
152         else
153                 add_mm_counter(mm, member, val);
154 }
155 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
156 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157
158 /* sync counter once per 64 page faults */
159 #define TASK_RSS_EVENTS_THRESH  (64)
160 static void check_sync_rss_stat(struct task_struct *task)
161 {
162         if (unlikely(task != current))
163                 return;
164         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
165                 sync_mm_rss(task->mm);
166 }
167 #else /* SPLIT_RSS_COUNTING */
168
169 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 }
175
176 #endif /* SPLIT_RSS_COUNTING */
177
178 #ifdef HAVE_GENERIC_MMU_GATHER
179
180 static int tlb_next_batch(struct mmu_gather *tlb)
181 {
182         struct mmu_gather_batch *batch;
183
184         batch = tlb->active;
185         if (batch->next) {
186                 tlb->active = batch->next;
187                 return 1;
188         }
189
190         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
191                 return 0;
192
193         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194         if (!batch)
195                 return 0;
196
197         tlb->batch_count++;
198         batch->next = NULL;
199         batch->nr   = 0;
200         batch->max  = MAX_GATHER_BATCH;
201
202         tlb->active->next = batch;
203         tlb->active = batch;
204
205         return 1;
206 }
207
208 /* tlb_gather_mmu
209  *      Called to initialize an (on-stack) mmu_gather structure for page-table
210  *      tear-down from @mm. The @fullmm argument is used when @mm is without
211  *      users and we're going to destroy the full address space (exit/execve).
212  */
213 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
214 {
215         tlb->mm = mm;
216
217         /* Is it from 0 to ~0? */
218         tlb->fullmm     = !(start | (end+1));
219         tlb->need_flush_all = 0;
220         tlb->start      = start;
221         tlb->end        = end;
222         tlb->need_flush = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232 }
233
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236         struct mmu_gather_batch *batch;
237
238         if (!tlb->need_flush)
239                 return;
240         tlb->need_flush = 0;
241         tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243         tlb_table_flush(tlb);
244 #endif
245
246         for (batch = &tlb->local; batch; batch = batch->next) {
247                 free_pages_and_swap_cache(batch->pages, batch->nr);
248                 batch->nr = 0;
249         }
250         tlb->active = &tlb->local;
251 }
252
253 /* tlb_finish_mmu
254  *      Called at the end of the shootdown operation to free up any resources
255  *      that were required.
256  */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259         struct mmu_gather_batch *batch, *next;
260
261         tlb_flush_mmu(tlb);
262
263         /* keep the page table cache within bounds */
264         check_pgt_cache();
265
266         for (batch = tlb->local.next; batch; batch = next) {
267                 next = batch->next;
268                 free_pages((unsigned long)batch, 0);
269         }
270         tlb->local.next = NULL;
271 }
272
273 /* __tlb_remove_page
274  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275  *      handling the additional races in SMP caused by other CPUs caching valid
276  *      mappings in their TLBs. Returns the number of free page slots left.
277  *      When out of page slots we must call tlb_flush_mmu().
278  */
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 {
281         struct mmu_gather_batch *batch;
282
283         VM_BUG_ON(!tlb->need_flush);
284
285         batch = tlb->active;
286         batch->pages[batch->nr++] = page;
287         if (batch->nr == batch->max) {
288                 if (!tlb_next_batch(tlb))
289                         return 0;
290                 batch = tlb->active;
291         }
292         VM_BUG_ON(batch->nr > batch->max);
293
294         return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302  * See the comment near struct mmu_table_batch.
303  */
304
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307         /* Simply deliver the interrupt */
308 }
309
310 static void tlb_remove_table_one(void *table)
311 {
312         /*
313          * This isn't an RCU grace period and hence the page-tables cannot be
314          * assumed to be actually RCU-freed.
315          *
316          * It is however sufficient for software page-table walkers that rely on
317          * IRQ disabling. See the comment near struct mmu_table_batch.
318          */
319         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320         __tlb_remove_table(table);
321 }
322
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325         struct mmu_table_batch *batch;
326         int i;
327
328         batch = container_of(head, struct mmu_table_batch, rcu);
329
330         for (i = 0; i < batch->nr; i++)
331                 __tlb_remove_table(batch->tables[i]);
332
333         free_page((unsigned long)batch);
334 }
335
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338         struct mmu_table_batch **batch = &tlb->batch;
339
340         if (*batch) {
341                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342                 *batch = NULL;
343         }
344 }
345
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348         struct mmu_table_batch **batch = &tlb->batch;
349
350         tlb->need_flush = 1;
351
352         /*
353          * When there's less then two users of this mm there cannot be a
354          * concurrent page-table walk.
355          */
356         if (atomic_read(&tlb->mm->mm_users) < 2) {
357                 __tlb_remove_table(table);
358                 return;
359         }
360
361         if (*batch == NULL) {
362                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363                 if (*batch == NULL) {
364                         tlb_remove_table_one(table);
365                         return;
366                 }
367                 (*batch)->nr = 0;
368         }
369         (*batch)->tables[(*batch)->nr++] = table;
370         if ((*batch)->nr == MAX_TABLE_BATCH)
371                 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377  * Note: this doesn't free the actual pages themselves. That
378  * has been handled earlier when unmapping all the memory regions.
379  */
380 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
381                            unsigned long addr)
382 {
383         pgtable_t token = pmd_pgtable(*pmd);
384         pmd_clear(pmd);
385         pte_free_tlb(tlb, token, addr);
386         tlb->mm->nr_ptes--;
387 }
388
389 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
390                                 unsigned long addr, unsigned long end,
391                                 unsigned long floor, unsigned long ceiling)
392 {
393         pmd_t *pmd;
394         unsigned long next;
395         unsigned long start;
396
397         start = addr;
398         pmd = pmd_offset(pud, addr);
399         do {
400                 next = pmd_addr_end(addr, end);
401                 if (pmd_none_or_clear_bad(pmd))
402                         continue;
403                 free_pte_range(tlb, pmd, addr);
404         } while (pmd++, addr = next, addr != end);
405
406         start &= PUD_MASK;
407         if (start < floor)
408                 return;
409         if (ceiling) {
410                 ceiling &= PUD_MASK;
411                 if (!ceiling)
412                         return;
413         }
414         if (end - 1 > ceiling - 1)
415                 return;
416
417         pmd = pmd_offset(pud, start);
418         pud_clear(pud);
419         pmd_free_tlb(tlb, pmd, start);
420 }
421
422 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
423                                 unsigned long addr, unsigned long end,
424                                 unsigned long floor, unsigned long ceiling)
425 {
426         pud_t *pud;
427         unsigned long next;
428         unsigned long start;
429
430         start = addr;
431         pud = pud_offset(pgd, addr);
432         do {
433                 next = pud_addr_end(addr, end);
434                 if (pud_none_or_clear_bad(pud))
435                         continue;
436                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
437         } while (pud++, addr = next, addr != end);
438
439         start &= PGDIR_MASK;
440         if (start < floor)
441                 return;
442         if (ceiling) {
443                 ceiling &= PGDIR_MASK;
444                 if (!ceiling)
445                         return;
446         }
447         if (end - 1 > ceiling - 1)
448                 return;
449
450         pud = pud_offset(pgd, start);
451         pgd_clear(pgd);
452         pud_free_tlb(tlb, pud, start);
453 }
454
455 /*
456  * This function frees user-level page tables of a process.
457  *
458  * Must be called with pagetable lock held.
459  */
460 void free_pgd_range(struct mmu_gather *tlb,
461                         unsigned long addr, unsigned long end,
462                         unsigned long floor, unsigned long ceiling)
463 {
464         pgd_t *pgd;
465         unsigned long next;
466
467         /*
468          * The next few lines have given us lots of grief...
469          *
470          * Why are we testing PMD* at this top level?  Because often
471          * there will be no work to do at all, and we'd prefer not to
472          * go all the way down to the bottom just to discover that.
473          *
474          * Why all these "- 1"s?  Because 0 represents both the bottom
475          * of the address space and the top of it (using -1 for the
476          * top wouldn't help much: the masks would do the wrong thing).
477          * The rule is that addr 0 and floor 0 refer to the bottom of
478          * the address space, but end 0 and ceiling 0 refer to the top
479          * Comparisons need to use "end - 1" and "ceiling - 1" (though
480          * that end 0 case should be mythical).
481          *
482          * Wherever addr is brought up or ceiling brought down, we must
483          * be careful to reject "the opposite 0" before it confuses the
484          * subsequent tests.  But what about where end is brought down
485          * by PMD_SIZE below? no, end can't go down to 0 there.
486          *
487          * Whereas we round start (addr) and ceiling down, by different
488          * masks at different levels, in order to test whether a table
489          * now has no other vmas using it, so can be freed, we don't
490          * bother to round floor or end up - the tests don't need that.
491          */
492
493         addr &= PMD_MASK;
494         if (addr < floor) {
495                 addr += PMD_SIZE;
496                 if (!addr)
497                         return;
498         }
499         if (ceiling) {
500                 ceiling &= PMD_MASK;
501                 if (!ceiling)
502                         return;
503         }
504         if (end - 1 > ceiling - 1)
505                 end -= PMD_SIZE;
506         if (addr > end - 1)
507                 return;
508
509         pgd = pgd_offset(tlb->mm, addr);
510         do {
511                 next = pgd_addr_end(addr, end);
512                 if (pgd_none_or_clear_bad(pgd))
513                         continue;
514                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
515         } while (pgd++, addr = next, addr != end);
516 }
517
518 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
519                 unsigned long floor, unsigned long ceiling)
520 {
521         while (vma) {
522                 struct vm_area_struct *next = vma->vm_next;
523                 unsigned long addr = vma->vm_start;
524
525                 /*
526                  * Hide vma from rmap and truncate_pagecache before freeing
527                  * pgtables
528                  */
529                 unlink_anon_vmas(vma);
530                 unlink_file_vma(vma);
531
532                 if (is_vm_hugetlb_page(vma)) {
533                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
534                                 floor, next? next->vm_start: ceiling);
535                 } else {
536                         /*
537                          * Optimization: gather nearby vmas into one call down
538                          */
539                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
540                                && !is_vm_hugetlb_page(next)) {
541                                 vma = next;
542                                 next = vma->vm_next;
543                                 unlink_anon_vmas(vma);
544                                 unlink_file_vma(vma);
545                         }
546                         free_pgd_range(tlb, addr, vma->vm_end,
547                                 floor, next? next->vm_start: ceiling);
548                 }
549                 vma = next;
550         }
551 }
552
553 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
554                 pmd_t *pmd, unsigned long address)
555 {
556         pgtable_t new = pte_alloc_one(mm, address);
557         int wait_split_huge_page;
558         if (!new)
559                 return -ENOMEM;
560
561         /*
562          * Ensure all pte setup (eg. pte page lock and page clearing) are
563          * visible before the pte is made visible to other CPUs by being
564          * put into page tables.
565          *
566          * The other side of the story is the pointer chasing in the page
567          * table walking code (when walking the page table without locking;
568          * ie. most of the time). Fortunately, these data accesses consist
569          * of a chain of data-dependent loads, meaning most CPUs (alpha
570          * being the notable exception) will already guarantee loads are
571          * seen in-order. See the alpha page table accessors for the
572          * smp_read_barrier_depends() barriers in page table walking code.
573          */
574         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
575
576         spin_lock(&mm->page_table_lock);
577         wait_split_huge_page = 0;
578         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
579                 mm->nr_ptes++;
580                 pmd_populate(mm, pmd, new);
581                 new = NULL;
582         } else if (unlikely(pmd_trans_splitting(*pmd)))
583                 wait_split_huge_page = 1;
584         spin_unlock(&mm->page_table_lock);
585         if (new)
586                 pte_free(mm, new);
587         if (wait_split_huge_page)
588                 wait_split_huge_page(vma->anon_vma, pmd);
589         return 0;
590 }
591
592 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
593 {
594         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
595         if (!new)
596                 return -ENOMEM;
597
598         smp_wmb(); /* See comment in __pte_alloc */
599
600         spin_lock(&init_mm.page_table_lock);
601         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
602                 pmd_populate_kernel(&init_mm, pmd, new);
603                 new = NULL;
604         } else
605                 VM_BUG_ON(pmd_trans_splitting(*pmd));
606         spin_unlock(&init_mm.page_table_lock);
607         if (new)
608                 pte_free_kernel(&init_mm, new);
609         return 0;
610 }
611
612 static inline void init_rss_vec(int *rss)
613 {
614         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
615 }
616
617 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
618 {
619         int i;
620
621         if (current->mm == mm)
622                 sync_mm_rss(mm);
623         for (i = 0; i < NR_MM_COUNTERS; i++)
624                 if (rss[i])
625                         add_mm_counter(mm, i, rss[i]);
626 }
627
628 /*
629  * This function is called to print an error when a bad pte
630  * is found. For example, we might have a PFN-mapped pte in
631  * a region that doesn't allow it.
632  *
633  * The calling function must still handle the error.
634  */
635 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
636                           pte_t pte, struct page *page)
637 {
638         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
639         pud_t *pud = pud_offset(pgd, addr);
640         pmd_t *pmd = pmd_offset(pud, addr);
641         struct address_space *mapping;
642         pgoff_t index;
643         static unsigned long resume;
644         static unsigned long nr_shown;
645         static unsigned long nr_unshown;
646
647         /*
648          * Allow a burst of 60 reports, then keep quiet for that minute;
649          * or allow a steady drip of one report per second.
650          */
651         if (nr_shown == 60) {
652                 if (time_before(jiffies, resume)) {
653                         nr_unshown++;
654                         return;
655                 }
656                 if (nr_unshown) {
657                         printk(KERN_ALERT
658                                 "BUG: Bad page map: %lu messages suppressed\n",
659                                 nr_unshown);
660                         nr_unshown = 0;
661                 }
662                 nr_shown = 0;
663         }
664         if (nr_shown++ == 0)
665                 resume = jiffies + 60 * HZ;
666
667         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
668         index = linear_page_index(vma, addr);
669
670         printk(KERN_ALERT
671                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
672                 current->comm,
673                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
674         if (page)
675                 dump_page(page);
676         printk(KERN_ALERT
677                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
679         /*
680          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
681          */
682         if (vma->vm_ops)
683                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
684                        vma->vm_ops->fault);
685         if (vma->vm_file && vma->vm_file->f_op)
686                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
687                        vma->vm_file->f_op->mmap);
688         dump_stack();
689         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
690 }
691
692 static inline bool is_cow_mapping(vm_flags_t flags)
693 {
694         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753                         return NULL;
754                 if (!is_zero_pfn(pfn))
755                         print_bad_pte(vma, addr, pte, NULL);
756                 return NULL;
757         }
758
759         /* !HAVE_PTE_SPECIAL case follows: */
760
761         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762                 if (vma->vm_flags & VM_MIXEDMAP) {
763                         if (!pfn_valid(pfn))
764                                 return NULL;
765                         goto out;
766                 } else {
767                         unsigned long off;
768                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
769                         if (pfn == vma->vm_pgoff + off)
770                                 return NULL;
771                         if (!is_cow_mapping(vma->vm_flags))
772                                 return NULL;
773                 }
774         }
775
776         if (is_zero_pfn(pfn))
777                 return NULL;
778 check_pfn:
779         if (unlikely(pfn > highest_memmap_pfn)) {
780                 print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /*
785          * NOTE! We still have PageReserved() pages in the page tables.
786          * eg. VDSO mappings can cause them to exist.
787          */
788 out:
789         return pfn_to_page(pfn);
790 }
791
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801                 unsigned long addr, int *rss)
802 {
803         unsigned long vm_flags = vma->vm_flags;
804         pte_t pte = *src_pte;
805         struct page *page;
806
807         /* pte contains position in swap or file, so copy. */
808         if (unlikely(!pte_present(pte))) {
809                 if (!pte_file(pte)) {
810                         swp_entry_t entry = pte_to_swp_entry(pte);
811
812                         if (swap_duplicate(entry) < 0)
813                                 return entry.val;
814
815                         /* make sure dst_mm is on swapoff's mmlist. */
816                         if (unlikely(list_empty(&dst_mm->mmlist))) {
817                                 spin_lock(&mmlist_lock);
818                                 if (list_empty(&dst_mm->mmlist))
819                                         list_add(&dst_mm->mmlist,
820                                                  &src_mm->mmlist);
821                                 spin_unlock(&mmlist_lock);
822                         }
823                         if (likely(!non_swap_entry(entry)))
824                                 rss[MM_SWAPENTS]++;
825                         else if (is_migration_entry(entry)) {
826                                 page = migration_entry_to_page(entry);
827
828                                 if (PageAnon(page))
829                                         rss[MM_ANONPAGES]++;
830                                 else
831                                         rss[MM_FILEPAGES]++;
832
833                                 if (is_write_migration_entry(entry) &&
834                                     is_cow_mapping(vm_flags)) {
835                                         /*
836                                          * COW mappings require pages in both
837                                          * parent and child to be set to read.
838                                          */
839                                         make_migration_entry_read(&entry);
840                                         pte = swp_entry_to_pte(entry);
841                                         set_pte_at(src_mm, addr, src_pte, pte);
842                                 }
843                         }
844                 }
845                 goto out_set_pte;
846         }
847
848         /*
849          * If it's a COW mapping, write protect it both
850          * in the parent and the child
851          */
852         if (is_cow_mapping(vm_flags)) {
853                 ptep_set_wrprotect(src_mm, addr, src_pte);
854                 pte = pte_wrprotect(pte);
855         }
856
857         /*
858          * If it's a shared mapping, mark it clean in
859          * the child
860          */
861         if (vm_flags & VM_SHARED)
862                 pte = pte_mkclean(pte);
863         pte = pte_mkold(pte);
864
865         page = vm_normal_page(vma, addr, pte);
866         if (page) {
867                 get_page(page);
868                 page_dup_rmap(page);
869                 if (PageAnon(page))
870                         rss[MM_ANONPAGES]++;
871                 else
872                         rss[MM_FILEPAGES]++;
873         }
874
875 out_set_pte:
876         set_pte_at(dst_mm, addr, dst_pte, pte);
877         return 0;
878 }
879
880 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
882                    unsigned long addr, unsigned long end)
883 {
884         pte_t *orig_src_pte, *orig_dst_pte;
885         pte_t *src_pte, *dst_pte;
886         spinlock_t *src_ptl, *dst_ptl;
887         int progress = 0;
888         int rss[NR_MM_COUNTERS];
889         swp_entry_t entry = (swp_entry_t){0};
890
891 again:
892         init_rss_vec(rss);
893
894         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
895         if (!dst_pte)
896                 return -ENOMEM;
897         src_pte = pte_offset_map(src_pmd, addr);
898         src_ptl = pte_lockptr(src_mm, src_pmd);
899         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
900         orig_src_pte = src_pte;
901         orig_dst_pte = dst_pte;
902         arch_enter_lazy_mmu_mode();
903
904         do {
905                 /*
906                  * We are holding two locks at this point - either of them
907                  * could generate latencies in another task on another CPU.
908                  */
909                 if (progress >= 32) {
910                         progress = 0;
911                         if (need_resched() ||
912                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
913                                 break;
914                 }
915                 if (pte_none(*src_pte)) {
916                         progress++;
917                         continue;
918                 }
919                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
920                                                         vma, addr, rss);
921                 if (entry.val)
922                         break;
923                 progress += 8;
924         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
925
926         arch_leave_lazy_mmu_mode();
927         spin_unlock(src_ptl);
928         pte_unmap(orig_src_pte);
929         add_mm_rss_vec(dst_mm, rss);
930         pte_unmap_unlock(orig_dst_pte, dst_ptl);
931         cond_resched();
932
933         if (entry.val) {
934                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
935                         return -ENOMEM;
936                 progress = 0;
937         }
938         if (addr != end)
939                 goto again;
940         return 0;
941 }
942
943 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
945                 unsigned long addr, unsigned long end)
946 {
947         pmd_t *src_pmd, *dst_pmd;
948         unsigned long next;
949
950         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
951         if (!dst_pmd)
952                 return -ENOMEM;
953         src_pmd = pmd_offset(src_pud, addr);
954         do {
955                 next = pmd_addr_end(addr, end);
956                 if (pmd_trans_huge(*src_pmd)) {
957                         int err;
958                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
959                         err = copy_huge_pmd(dst_mm, src_mm,
960                                             dst_pmd, src_pmd, addr, vma);
961                         if (err == -ENOMEM)
962                                 return -ENOMEM;
963                         if (!err)
964                                 continue;
965                         /* fall through */
966                 }
967                 if (pmd_none_or_clear_bad(src_pmd))
968                         continue;
969                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
970                                                 vma, addr, next))
971                         return -ENOMEM;
972         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
973         return 0;
974 }
975
976 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
978                 unsigned long addr, unsigned long end)
979 {
980         pud_t *src_pud, *dst_pud;
981         unsigned long next;
982
983         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
984         if (!dst_pud)
985                 return -ENOMEM;
986         src_pud = pud_offset(src_pgd, addr);
987         do {
988                 next = pud_addr_end(addr, end);
989                 if (pud_none_or_clear_bad(src_pud))
990                         continue;
991                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
992                                                 vma, addr, next))
993                         return -ENOMEM;
994         } while (dst_pud++, src_pud++, addr = next, addr != end);
995         return 0;
996 }
997
998 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999                 struct vm_area_struct *vma)
1000 {
1001         pgd_t *src_pgd, *dst_pgd;
1002         unsigned long next;
1003         unsigned long addr = vma->vm_start;
1004         unsigned long end = vma->vm_end;
1005         unsigned long mmun_start;       /* For mmu_notifiers */
1006         unsigned long mmun_end;         /* For mmu_notifiers */
1007         bool is_cow;
1008         int ret;
1009
1010         /*
1011          * Don't copy ptes where a page fault will fill them correctly.
1012          * Fork becomes much lighter when there are big shared or private
1013          * readonly mappings. The tradeoff is that copy_page_range is more
1014          * efficient than faulting.
1015          */
1016         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1017                                VM_PFNMAP | VM_MIXEDMAP))) {
1018                 if (!vma->anon_vma)
1019                         return 0;
1020         }
1021
1022         if (is_vm_hugetlb_page(vma))
1023                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024
1025         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026                 /*
1027                  * We do not free on error cases below as remove_vma
1028                  * gets called on error from higher level routine
1029                  */
1030                 ret = track_pfn_copy(vma);
1031                 if (ret)
1032                         return ret;
1033         }
1034
1035         /*
1036          * We need to invalidate the secondary MMU mappings only when
1037          * there could be a permission downgrade on the ptes of the
1038          * parent mm. And a permission downgrade will only happen if
1039          * is_cow_mapping() returns true.
1040          */
1041         is_cow = is_cow_mapping(vma->vm_flags);
1042         mmun_start = addr;
1043         mmun_end   = end;
1044         if (is_cow)
1045                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046                                                     mmun_end);
1047
1048         ret = 0;
1049         dst_pgd = pgd_offset(dst_mm, addr);
1050         src_pgd = pgd_offset(src_mm, addr);
1051         do {
1052                 next = pgd_addr_end(addr, end);
1053                 if (pgd_none_or_clear_bad(src_pgd))
1054                         continue;
1055                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056                                             vma, addr, next))) {
1057                         ret = -ENOMEM;
1058                         break;
1059                 }
1060         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1061
1062         if (is_cow)
1063                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1064         return ret;
1065 }
1066
1067 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1068                                 struct vm_area_struct *vma, pmd_t *pmd,
1069                                 unsigned long addr, unsigned long end,
1070                                 struct zap_details *details)
1071 {
1072         struct mm_struct *mm = tlb->mm;
1073         int force_flush = 0;
1074         int rss[NR_MM_COUNTERS];
1075         spinlock_t *ptl;
1076         pte_t *start_pte;
1077         pte_t *pte;
1078
1079 again:
1080         init_rss_vec(rss);
1081         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1082         pte = start_pte;
1083         arch_enter_lazy_mmu_mode();
1084         do {
1085                 pte_t ptent = *pte;
1086                 if (pte_none(ptent)) {
1087                         continue;
1088                 }
1089
1090                 if (pte_present(ptent)) {
1091                         struct page *page;
1092
1093                         page = vm_normal_page(vma, addr, ptent);
1094                         if (unlikely(details) && page) {
1095                                 /*
1096                                  * unmap_shared_mapping_pages() wants to
1097                                  * invalidate cache without truncating:
1098                                  * unmap shared but keep private pages.
1099                                  */
1100                                 if (details->check_mapping &&
1101                                     details->check_mapping != page->mapping)
1102                                         continue;
1103                                 /*
1104                                  * Each page->index must be checked when
1105                                  * invalidating or truncating nonlinear.
1106                                  */
1107                                 if (details->nonlinear_vma &&
1108                                     (page->index < details->first_index ||
1109                                      page->index > details->last_index))
1110                                         continue;
1111                         }
1112                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1113                                                         tlb->fullmm);
1114                         tlb_remove_tlb_entry(tlb, pte, addr);
1115                         if (unlikely(!page))
1116                                 continue;
1117                         if (unlikely(details) && details->nonlinear_vma
1118                             && linear_page_index(details->nonlinear_vma,
1119                                                 addr) != page->index) {
1120                                 pte_t ptfile = pgoff_to_pte(page->index);
1121                                 if (pte_soft_dirty(ptent))
1122                                         pte_file_mksoft_dirty(ptfile);
1123                                 set_pte_at(mm, addr, pte, ptfile);
1124                         }
1125                         if (PageAnon(page))
1126                                 rss[MM_ANONPAGES]--;
1127                         else {
1128                                 if (pte_dirty(ptent))
1129                                         set_page_dirty(page);
1130                                 if (pte_young(ptent) &&
1131                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1132                                         mark_page_accessed(page);
1133                                 rss[MM_FILEPAGES]--;
1134                         }
1135                         page_remove_rmap(page);
1136                         if (unlikely(page_mapcount(page) < 0))
1137                                 print_bad_pte(vma, addr, ptent, page);
1138                         force_flush = !__tlb_remove_page(tlb, page);
1139                         if (force_flush)
1140                                 break;
1141                         continue;
1142                 }
1143                 /*
1144                  * If details->check_mapping, we leave swap entries;
1145                  * if details->nonlinear_vma, we leave file entries.
1146                  */
1147                 if (unlikely(details))
1148                         continue;
1149                 if (pte_file(ptent)) {
1150                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1151                                 print_bad_pte(vma, addr, ptent, NULL);
1152                 } else {
1153                         swp_entry_t entry = pte_to_swp_entry(ptent);
1154
1155                         if (!non_swap_entry(entry))
1156                                 rss[MM_SWAPENTS]--;
1157                         else if (is_migration_entry(entry)) {
1158                                 struct page *page;
1159
1160                                 page = migration_entry_to_page(entry);
1161
1162                                 if (PageAnon(page))
1163                                         rss[MM_ANONPAGES]--;
1164                                 else
1165                                         rss[MM_FILEPAGES]--;
1166                         }
1167                         if (unlikely(!free_swap_and_cache(entry)))
1168                                 print_bad_pte(vma, addr, ptent, NULL);
1169                 }
1170                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1171         } while (pte++, addr += PAGE_SIZE, addr != end);
1172
1173         add_mm_rss_vec(mm, rss);
1174         arch_leave_lazy_mmu_mode();
1175         pte_unmap_unlock(start_pte, ptl);
1176
1177         /*
1178          * mmu_gather ran out of room to batch pages, we break out of
1179          * the PTE lock to avoid doing the potential expensive TLB invalidate
1180          * and page-free while holding it.
1181          */
1182         if (force_flush) {
1183                 unsigned long old_end;
1184
1185                 force_flush = 0;
1186
1187                 /*
1188                  * Flush the TLB just for the previous segment,
1189                  * then update the range to be the remaining
1190                  * TLB range.
1191                  */
1192                 old_end = tlb->end;
1193                 tlb->end = addr;
1194
1195                 tlb_flush_mmu(tlb);
1196
1197                 tlb->start = addr;
1198                 tlb->end = old_end;
1199
1200                 if (addr != end)
1201                         goto again;
1202         }
1203
1204         return addr;
1205 }
1206
1207 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1208                                 struct vm_area_struct *vma, pud_t *pud,
1209                                 unsigned long addr, unsigned long end,
1210                                 struct zap_details *details)
1211 {
1212         pmd_t *pmd;
1213         unsigned long next;
1214
1215         pmd = pmd_offset(pud, addr);
1216         do {
1217                 next = pmd_addr_end(addr, end);
1218                 if (pmd_trans_huge(*pmd)) {
1219                         if (next - addr != HPAGE_PMD_SIZE) {
1220 #ifdef CONFIG_DEBUG_VM
1221                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1222                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1223                                                 __func__, addr, end,
1224                                                 vma->vm_start,
1225                                                 vma->vm_end);
1226                                         BUG();
1227                                 }
1228 #endif
1229                                 split_huge_page_pmd(vma, addr, pmd);
1230                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231                                 goto next;
1232                         /* fall through */
1233                 }
1234                 /*
1235                  * Here there can be other concurrent MADV_DONTNEED or
1236                  * trans huge page faults running, and if the pmd is
1237                  * none or trans huge it can change under us. This is
1238                  * because MADV_DONTNEED holds the mmap_sem in read
1239                  * mode.
1240                  */
1241                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242                         goto next;
1243                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245                 cond_resched();
1246         } while (pmd++, addr = next, addr != end);
1247
1248         return addr;
1249 }
1250
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252                                 struct vm_area_struct *vma, pgd_t *pgd,
1253                                 unsigned long addr, unsigned long end,
1254                                 struct zap_details *details)
1255 {
1256         pud_t *pud;
1257         unsigned long next;
1258
1259         pud = pud_offset(pgd, addr);
1260         do {
1261                 next = pud_addr_end(addr, end);
1262                 if (pud_none_or_clear_bad(pud))
1263                         continue;
1264                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265         } while (pud++, addr = next, addr != end);
1266
1267         return addr;
1268 }
1269
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271                              struct vm_area_struct *vma,
1272                              unsigned long addr, unsigned long end,
1273                              struct zap_details *details)
1274 {
1275         pgd_t *pgd;
1276         unsigned long next;
1277
1278         if (details && !details->check_mapping && !details->nonlinear_vma)
1279                 details = NULL;
1280
1281         BUG_ON(addr >= end);
1282         mem_cgroup_uncharge_start();
1283         tlb_start_vma(tlb, vma);
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290         } while (pgd++, addr = next, addr != end);
1291         tlb_end_vma(tlb, vma);
1292         mem_cgroup_uncharge_end();
1293 }
1294
1295
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297                 struct vm_area_struct *vma, unsigned long start_addr,
1298                 unsigned long end_addr,
1299                 struct zap_details *details)
1300 {
1301         unsigned long start = max(vma->vm_start, start_addr);
1302         unsigned long end;
1303
1304         if (start >= vma->vm_end)
1305                 return;
1306         end = min(vma->vm_end, end_addr);
1307         if (end <= vma->vm_start)
1308                 return;
1309
1310         if (vma->vm_file)
1311                 uprobe_munmap(vma, start, end);
1312
1313         if (unlikely(vma->vm_flags & VM_PFNMAP))
1314                 untrack_pfn(vma, 0, 0);
1315
1316         if (start != end) {
1317                 if (unlikely(is_vm_hugetlb_page(vma))) {
1318                         /*
1319                          * It is undesirable to test vma->vm_file as it
1320                          * should be non-null for valid hugetlb area.
1321                          * However, vm_file will be NULL in the error
1322                          * cleanup path of do_mmap_pgoff. When
1323                          * hugetlbfs ->mmap method fails,
1324                          * do_mmap_pgoff() nullifies vma->vm_file
1325                          * before calling this function to clean up.
1326                          * Since no pte has actually been setup, it is
1327                          * safe to do nothing in this case.
1328                          */
1329                         if (vma->vm_file) {
1330                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1331                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1333                         }
1334                 } else
1335                         unmap_page_range(tlb, vma, start, end, details);
1336         }
1337 }
1338
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  *
1346  * Unmap all pages in the vma list.
1347  *
1348  * Only addresses between `start' and `end' will be unmapped.
1349  *
1350  * The VMA list must be sorted in ascending virtual address order.
1351  *
1352  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353  * range after unmap_vmas() returns.  So the only responsibility here is to
1354  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355  * drops the lock and schedules.
1356  */
1357 void unmap_vmas(struct mmu_gather *tlb,
1358                 struct vm_area_struct *vma, unsigned long start_addr,
1359                 unsigned long end_addr)
1360 {
1361         struct mm_struct *mm = vma->vm_mm;
1362
1363         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1367 }
1368
1369 /**
1370  * zap_page_range - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @start: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of nonlinear truncation or shared cache invalidation
1375  *
1376  * Caller must protect the VMA list
1377  */
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379                 unsigned long size, struct zap_details *details)
1380 {
1381         struct mm_struct *mm = vma->vm_mm;
1382         struct mmu_gather tlb;
1383         unsigned long end = start + size;
1384
1385         lru_add_drain();
1386         tlb_gather_mmu(&tlb, mm, start, end);
1387         update_hiwater_rss(mm);
1388         mmu_notifier_invalidate_range_start(mm, start, end);
1389         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390                 unmap_single_vma(&tlb, vma, start, end, details);
1391         mmu_notifier_invalidate_range_end(mm, start, end);
1392         tlb_finish_mmu(&tlb, start, end);
1393 }
1394
1395 /**
1396  * zap_page_range_single - remove user pages in a given range
1397  * @vma: vm_area_struct holding the applicable pages
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  * @details: details of nonlinear truncation or shared cache invalidation
1401  *
1402  * The range must fit into one VMA.
1403  */
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405                 unsigned long size, struct zap_details *details)
1406 {
1407         struct mm_struct *mm = vma->vm_mm;
1408         struct mmu_gather tlb;
1409         unsigned long end = address + size;
1410
1411         lru_add_drain();
1412         tlb_gather_mmu(&tlb, mm, address, end);
1413         update_hiwater_rss(mm);
1414         mmu_notifier_invalidate_range_start(mm, address, end);
1415         unmap_single_vma(&tlb, vma, address, end, details);
1416         mmu_notifier_invalidate_range_end(mm, address, end);
1417         tlb_finish_mmu(&tlb, address, end);
1418 }
1419
1420 /**
1421  * zap_vma_ptes - remove ptes mapping the vma
1422  * @vma: vm_area_struct holding ptes to be zapped
1423  * @address: starting address of pages to zap
1424  * @size: number of bytes to zap
1425  *
1426  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427  *
1428  * The entire address range must be fully contained within the vma.
1429  *
1430  * Returns 0 if successful.
1431  */
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433                 unsigned long size)
1434 {
1435         if (address < vma->vm_start || address + size > vma->vm_end ||
1436                         !(vma->vm_flags & VM_PFNMAP))
1437                 return -1;
1438         zap_page_range_single(vma, address, size, NULL);
1439         return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442
1443 /**
1444  * follow_page_mask - look up a page descriptor from a user-virtual address
1445  * @vma: vm_area_struct mapping @address
1446  * @address: virtual address to look up
1447  * @flags: flags modifying lookup behaviour
1448  * @page_mask: on output, *page_mask is set according to the size of the page
1449  *
1450  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1451  *
1452  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1453  * an error pointer if there is a mapping to something not represented
1454  * by a page descriptor (see also vm_normal_page()).
1455  */
1456 struct page *follow_page_mask(struct vm_area_struct *vma,
1457                               unsigned long address, unsigned int flags,
1458                               unsigned int *page_mask)
1459 {
1460         pgd_t *pgd;
1461         pud_t *pud;
1462         pmd_t *pmd;
1463         pte_t *ptep, pte;
1464         spinlock_t *ptl;
1465         struct page *page;
1466         struct mm_struct *mm = vma->vm_mm;
1467
1468         *page_mask = 0;
1469
1470         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1471         if (!IS_ERR(page)) {
1472                 BUG_ON(flags & FOLL_GET);
1473                 goto out;
1474         }
1475
1476         page = NULL;
1477         pgd = pgd_offset(mm, address);
1478         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1479                 goto no_page_table;
1480
1481         pud = pud_offset(pgd, address);
1482         if (pud_none(*pud))
1483                 goto no_page_table;
1484         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1485                 if (flags & FOLL_GET)
1486                         goto out;
1487                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488                 goto out;
1489         }
1490         if (unlikely(pud_bad(*pud)))
1491                 goto no_page_table;
1492
1493         pmd = pmd_offset(pud, address);
1494         if (pmd_none(*pmd))
1495                 goto no_page_table;
1496         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1498                 if (flags & FOLL_GET) {
1499                         /*
1500                          * Refcount on tail pages are not well-defined and
1501                          * shouldn't be taken. The caller should handle a NULL
1502                          * return when trying to follow tail pages.
1503                          */
1504                         if (PageHead(page))
1505                                 get_page(page);
1506                         else {
1507                                 page = NULL;
1508                                 goto out;
1509                         }
1510                 }
1511                 goto out;
1512         }
1513         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514                 goto no_page_table;
1515         if (pmd_trans_huge(*pmd)) {
1516                 if (flags & FOLL_SPLIT) {
1517                         split_huge_page_pmd(vma, address, pmd);
1518                         goto split_fallthrough;
1519                 }
1520                 spin_lock(&mm->page_table_lock);
1521                 if (likely(pmd_trans_huge(*pmd))) {
1522                         if (unlikely(pmd_trans_splitting(*pmd))) {
1523                                 spin_unlock(&mm->page_table_lock);
1524                                 wait_split_huge_page(vma->anon_vma, pmd);
1525                         } else {
1526                                 page = follow_trans_huge_pmd(vma, address,
1527                                                              pmd, flags);
1528                                 spin_unlock(&mm->page_table_lock);
1529                                 *page_mask = HPAGE_PMD_NR - 1;
1530                                 goto out;
1531                         }
1532                 } else
1533                         spin_unlock(&mm->page_table_lock);
1534                 /* fall through */
1535         }
1536 split_fallthrough:
1537         if (unlikely(pmd_bad(*pmd)))
1538                 goto no_page_table;
1539
1540         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1541
1542         pte = *ptep;
1543         if (!pte_present(pte)) {
1544                 swp_entry_t entry;
1545                 /*
1546                  * KSM's break_ksm() relies upon recognizing a ksm page
1547                  * even while it is being migrated, so for that case we
1548                  * need migration_entry_wait().
1549                  */
1550                 if (likely(!(flags & FOLL_MIGRATION)))
1551                         goto no_page;
1552                 if (pte_none(pte) || pte_file(pte))
1553                         goto no_page;
1554                 entry = pte_to_swp_entry(pte);
1555                 if (!is_migration_entry(entry))
1556                         goto no_page;
1557                 pte_unmap_unlock(ptep, ptl);
1558                 migration_entry_wait(mm, pmd, address);
1559                 goto split_fallthrough;
1560         }
1561         if ((flags & FOLL_NUMA) && pte_numa(pte))
1562                 goto no_page;
1563         if ((flags & FOLL_WRITE) && !pte_write(pte))
1564                 goto unlock;
1565
1566         page = vm_normal_page(vma, address, pte);
1567         if (unlikely(!page)) {
1568                 if ((flags & FOLL_DUMP) ||
1569                     !is_zero_pfn(pte_pfn(pte)))
1570                         goto bad_page;
1571                 page = pte_page(pte);
1572         }
1573
1574         if (flags & FOLL_GET)
1575                 get_page_foll(page);
1576         if (flags & FOLL_TOUCH) {
1577                 if ((flags & FOLL_WRITE) &&
1578                     !pte_dirty(pte) && !PageDirty(page))
1579                         set_page_dirty(page);
1580                 /*
1581                  * pte_mkyoung() would be more correct here, but atomic care
1582                  * is needed to avoid losing the dirty bit: it is easier to use
1583                  * mark_page_accessed().
1584                  */
1585                 mark_page_accessed(page);
1586         }
1587         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1588                 /*
1589                  * The preliminary mapping check is mainly to avoid the
1590                  * pointless overhead of lock_page on the ZERO_PAGE
1591                  * which might bounce very badly if there is contention.
1592                  *
1593                  * If the page is already locked, we don't need to
1594                  * handle it now - vmscan will handle it later if and
1595                  * when it attempts to reclaim the page.
1596                  */
1597                 if (page->mapping && trylock_page(page)) {
1598                         lru_add_drain();  /* push cached pages to LRU */
1599                         /*
1600                          * Because we lock page here, and migration is
1601                          * blocked by the pte's page reference, and we
1602                          * know the page is still mapped, we don't even
1603                          * need to check for file-cache page truncation.
1604                          */
1605                         mlock_vma_page(page);
1606                         unlock_page(page);
1607                 }
1608         }
1609 unlock:
1610         pte_unmap_unlock(ptep, ptl);
1611 out:
1612         return page;
1613
1614 bad_page:
1615         pte_unmap_unlock(ptep, ptl);
1616         return ERR_PTR(-EFAULT);
1617
1618 no_page:
1619         pte_unmap_unlock(ptep, ptl);
1620         if (!pte_none(pte))
1621                 return page;
1622
1623 no_page_table:
1624         /*
1625          * When core dumping an enormous anonymous area that nobody
1626          * has touched so far, we don't want to allocate unnecessary pages or
1627          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1628          * then get_dump_page() will return NULL to leave a hole in the dump.
1629          * But we can only make this optimization where a hole would surely
1630          * be zero-filled if handle_mm_fault() actually did handle it.
1631          */
1632         if ((flags & FOLL_DUMP) &&
1633             (!vma->vm_ops || !vma->vm_ops->fault))
1634                 return ERR_PTR(-EFAULT);
1635         return page;
1636 }
1637
1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1639 {
1640         return stack_guard_page_start(vma, addr) ||
1641                stack_guard_page_end(vma, addr+PAGE_SIZE);
1642 }
1643
1644 /**
1645  * __get_user_pages() - pin user pages in memory
1646  * @tsk:        task_struct of target task
1647  * @mm:         mm_struct of target mm
1648  * @start:      starting user address
1649  * @nr_pages:   number of pages from start to pin
1650  * @gup_flags:  flags modifying pin behaviour
1651  * @pages:      array that receives pointers to the pages pinned.
1652  *              Should be at least nr_pages long. Or NULL, if caller
1653  *              only intends to ensure the pages are faulted in.
1654  * @vmas:       array of pointers to vmas corresponding to each page.
1655  *              Or NULL if the caller does not require them.
1656  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1657  *
1658  * Returns number of pages pinned. This may be fewer than the number
1659  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1660  * were pinned, returns -errno. Each page returned must be released
1661  * with a put_page() call when it is finished with. vmas will only
1662  * remain valid while mmap_sem is held.
1663  *
1664  * Must be called with mmap_sem held for read or write.
1665  *
1666  * __get_user_pages walks a process's page tables and takes a reference to
1667  * each struct page that each user address corresponds to at a given
1668  * instant. That is, it takes the page that would be accessed if a user
1669  * thread accesses the given user virtual address at that instant.
1670  *
1671  * This does not guarantee that the page exists in the user mappings when
1672  * __get_user_pages returns, and there may even be a completely different
1673  * page there in some cases (eg. if mmapped pagecache has been invalidated
1674  * and subsequently re faulted). However it does guarantee that the page
1675  * won't be freed completely. And mostly callers simply care that the page
1676  * contains data that was valid *at some point in time*. Typically, an IO
1677  * or similar operation cannot guarantee anything stronger anyway because
1678  * locks can't be held over the syscall boundary.
1679  *
1680  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1681  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1682  * appropriate) must be called after the page is finished with, and
1683  * before put_page is called.
1684  *
1685  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1686  * or mmap_sem contention, and if waiting is needed to pin all pages,
1687  * *@nonblocking will be set to 0.
1688  *
1689  * In most cases, get_user_pages or get_user_pages_fast should be used
1690  * instead of __get_user_pages. __get_user_pages should be used only if
1691  * you need some special @gup_flags.
1692  */
1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1694                 unsigned long start, unsigned long nr_pages,
1695                 unsigned int gup_flags, struct page **pages,
1696                 struct vm_area_struct **vmas, int *nonblocking)
1697 {
1698         long i;
1699         unsigned long vm_flags;
1700         unsigned int page_mask;
1701
1702         if (!nr_pages)
1703                 return 0;
1704
1705         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1706
1707         /* 
1708          * Require read or write permissions.
1709          * If FOLL_FORCE is set, we only require the "MAY" flags.
1710          */
1711         vm_flags  = (gup_flags & FOLL_WRITE) ?
1712                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1713         vm_flags &= (gup_flags & FOLL_FORCE) ?
1714                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1715
1716         /*
1717          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1718          * would be called on PROT_NONE ranges. We must never invoke
1719          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1720          * page faults would unprotect the PROT_NONE ranges if
1721          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1722          * bitflag. So to avoid that, don't set FOLL_NUMA if
1723          * FOLL_FORCE is set.
1724          */
1725         if (!(gup_flags & FOLL_FORCE))
1726                 gup_flags |= FOLL_NUMA;
1727
1728         i = 0;
1729
1730         do {
1731                 struct vm_area_struct *vma;
1732
1733                 vma = find_extend_vma(mm, start);
1734                 if (!vma && in_gate_area(mm, start)) {
1735                         unsigned long pg = start & PAGE_MASK;
1736                         pgd_t *pgd;
1737                         pud_t *pud;
1738                         pmd_t *pmd;
1739                         pte_t *pte;
1740
1741                         /* user gate pages are read-only */
1742                         if (gup_flags & FOLL_WRITE)
1743                                 return i ? : -EFAULT;
1744                         if (pg > TASK_SIZE)
1745                                 pgd = pgd_offset_k(pg);
1746                         else
1747                                 pgd = pgd_offset_gate(mm, pg);
1748                         BUG_ON(pgd_none(*pgd));
1749                         pud = pud_offset(pgd, pg);
1750                         BUG_ON(pud_none(*pud));
1751                         pmd = pmd_offset(pud, pg);
1752                         if (pmd_none(*pmd))
1753                                 return i ? : -EFAULT;
1754                         VM_BUG_ON(pmd_trans_huge(*pmd));
1755                         pte = pte_offset_map(pmd, pg);
1756                         if (pte_none(*pte)) {
1757                                 pte_unmap(pte);
1758                                 return i ? : -EFAULT;
1759                         }
1760                         vma = get_gate_vma(mm);
1761                         if (pages) {
1762                                 struct page *page;
1763
1764                                 page = vm_normal_page(vma, start, *pte);
1765                                 if (!page) {
1766                                         if (!(gup_flags & FOLL_DUMP) &&
1767                                              is_zero_pfn(pte_pfn(*pte)))
1768                                                 page = pte_page(*pte);
1769                                         else {
1770                                                 pte_unmap(pte);
1771                                                 return i ? : -EFAULT;
1772                                         }
1773                                 }
1774                                 pages[i] = page;
1775                                 get_page(page);
1776                         }
1777                         pte_unmap(pte);
1778                         page_mask = 0;
1779                         goto next_page;
1780                 }
1781
1782                 if (!vma ||
1783                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1784                     !(vm_flags & vma->vm_flags))
1785                         return i ? : -EFAULT;
1786
1787                 if (is_vm_hugetlb_page(vma)) {
1788                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1789                                         &start, &nr_pages, i, gup_flags);
1790                         continue;
1791                 }
1792
1793                 do {
1794                         struct page *page;
1795                         unsigned int foll_flags = gup_flags;
1796                         unsigned int page_increm;
1797
1798                         /*
1799                          * If we have a pending SIGKILL, don't keep faulting
1800                          * pages and potentially allocating memory.
1801                          */
1802                         if (unlikely(fatal_signal_pending(current)))
1803                                 return i ? i : -ERESTARTSYS;
1804
1805                         cond_resched();
1806                         while (!(page = follow_page_mask(vma, start,
1807                                                 foll_flags, &page_mask))) {
1808                                 int ret;
1809                                 unsigned int fault_flags = 0;
1810
1811                                 /* For mlock, just skip the stack guard page. */
1812                                 if (foll_flags & FOLL_MLOCK) {
1813                                         if (stack_guard_page(vma, start))
1814                                                 goto next_page;
1815                                 }
1816                                 if (foll_flags & FOLL_WRITE)
1817                                         fault_flags |= FAULT_FLAG_WRITE;
1818                                 if (nonblocking)
1819                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1820                                 if (foll_flags & FOLL_NOWAIT)
1821                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1822
1823                                 ret = handle_mm_fault(mm, vma, start,
1824                                                         fault_flags);
1825
1826                                 if (ret & VM_FAULT_ERROR) {
1827                                         if (ret & VM_FAULT_OOM)
1828                                                 return i ? i : -ENOMEM;
1829                                         if (ret & (VM_FAULT_HWPOISON |
1830                                                    VM_FAULT_HWPOISON_LARGE)) {
1831                                                 if (i)
1832                                                         return i;
1833                                                 else if (gup_flags & FOLL_HWPOISON)
1834                                                         return -EHWPOISON;
1835                                                 else
1836                                                         return -EFAULT;
1837                                         }
1838                                         if (ret & VM_FAULT_SIGBUS)
1839                                                 return i ? i : -EFAULT;
1840                                         BUG();
1841                                 }
1842
1843                                 if (tsk) {
1844                                         if (ret & VM_FAULT_MAJOR)
1845                                                 tsk->maj_flt++;
1846                                         else
1847                                                 tsk->min_flt++;
1848                                 }
1849
1850                                 if (ret & VM_FAULT_RETRY) {
1851                                         if (nonblocking)
1852                                                 *nonblocking = 0;
1853                                         return i;
1854                                 }
1855
1856                                 /*
1857                                  * The VM_FAULT_WRITE bit tells us that
1858                                  * do_wp_page has broken COW when necessary,
1859                                  * even if maybe_mkwrite decided not to set
1860                                  * pte_write. We can thus safely do subsequent
1861                                  * page lookups as if they were reads. But only
1862                                  * do so when looping for pte_write is futile:
1863                                  * in some cases userspace may also be wanting
1864                                  * to write to the gotten user page, which a
1865                                  * read fault here might prevent (a readonly
1866                                  * page might get reCOWed by userspace write).
1867                                  */
1868                                 if ((ret & VM_FAULT_WRITE) &&
1869                                     !(vma->vm_flags & VM_WRITE))
1870                                         foll_flags &= ~FOLL_WRITE;
1871
1872                                 cond_resched();
1873                         }
1874                         if (IS_ERR(page))
1875                                 return i ? i : PTR_ERR(page);
1876                         if (pages) {
1877                                 pages[i] = page;
1878
1879                                 flush_anon_page(vma, page, start);
1880                                 flush_dcache_page(page);
1881                                 page_mask = 0;
1882                         }
1883 next_page:
1884                         if (vmas) {
1885                                 vmas[i] = vma;
1886                                 page_mask = 0;
1887                         }
1888                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1889                         if (page_increm > nr_pages)
1890                                 page_increm = nr_pages;
1891                         i += page_increm;
1892                         start += page_increm * PAGE_SIZE;
1893                         nr_pages -= page_increm;
1894                 } while (nr_pages && start < vma->vm_end);
1895         } while (nr_pages);
1896         return i;
1897 }
1898 EXPORT_SYMBOL(__get_user_pages);
1899
1900 /*
1901  * fixup_user_fault() - manually resolve a user page fault
1902  * @tsk:        the task_struct to use for page fault accounting, or
1903  *              NULL if faults are not to be recorded.
1904  * @mm:         mm_struct of target mm
1905  * @address:    user address
1906  * @fault_flags:flags to pass down to handle_mm_fault()
1907  *
1908  * This is meant to be called in the specific scenario where for locking reasons
1909  * we try to access user memory in atomic context (within a pagefault_disable()
1910  * section), this returns -EFAULT, and we want to resolve the user fault before
1911  * trying again.
1912  *
1913  * Typically this is meant to be used by the futex code.
1914  *
1915  * The main difference with get_user_pages() is that this function will
1916  * unconditionally call handle_mm_fault() which will in turn perform all the
1917  * necessary SW fixup of the dirty and young bits in the PTE, while
1918  * handle_mm_fault() only guarantees to update these in the struct page.
1919  *
1920  * This is important for some architectures where those bits also gate the
1921  * access permission to the page because they are maintained in software.  On
1922  * such architectures, gup() will not be enough to make a subsequent access
1923  * succeed.
1924  *
1925  * This should be called with the mm_sem held for read.
1926  */
1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1928                      unsigned long address, unsigned int fault_flags)
1929 {
1930         struct vm_area_struct *vma;
1931         int ret;
1932
1933         vma = find_extend_vma(mm, address);
1934         if (!vma || address < vma->vm_start)
1935                 return -EFAULT;
1936
1937         ret = handle_mm_fault(mm, vma, address, fault_flags);
1938         if (ret & VM_FAULT_ERROR) {
1939                 if (ret & VM_FAULT_OOM)
1940                         return -ENOMEM;
1941                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1942                         return -EHWPOISON;
1943                 if (ret & VM_FAULT_SIGBUS)
1944                         return -EFAULT;
1945                 BUG();
1946         }
1947         if (tsk) {
1948                 if (ret & VM_FAULT_MAJOR)
1949                         tsk->maj_flt++;
1950                 else
1951                         tsk->min_flt++;
1952         }
1953         return 0;
1954 }
1955
1956 /*
1957  * get_user_pages() - pin user pages in memory
1958  * @tsk:        the task_struct to use for page fault accounting, or
1959  *              NULL if faults are not to be recorded.
1960  * @mm:         mm_struct of target mm
1961  * @start:      starting user address
1962  * @nr_pages:   number of pages from start to pin
1963  * @write:      whether pages will be written to by the caller
1964  * @force:      whether to force write access even if user mapping is
1965  *              readonly. This will result in the page being COWed even
1966  *              in MAP_SHARED mappings. You do not want this.
1967  * @pages:      array that receives pointers to the pages pinned.
1968  *              Should be at least nr_pages long. Or NULL, if caller
1969  *              only intends to ensure the pages are faulted in.
1970  * @vmas:       array of pointers to vmas corresponding to each page.
1971  *              Or NULL if the caller does not require them.
1972  *
1973  * Returns number of pages pinned. This may be fewer than the number
1974  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1975  * were pinned, returns -errno. Each page returned must be released
1976  * with a put_page() call when it is finished with. vmas will only
1977  * remain valid while mmap_sem is held.
1978  *
1979  * Must be called with mmap_sem held for read or write.
1980  *
1981  * get_user_pages walks a process's page tables and takes a reference to
1982  * each struct page that each user address corresponds to at a given
1983  * instant. That is, it takes the page that would be accessed if a user
1984  * thread accesses the given user virtual address at that instant.
1985  *
1986  * This does not guarantee that the page exists in the user mappings when
1987  * get_user_pages returns, and there may even be a completely different
1988  * page there in some cases (eg. if mmapped pagecache has been invalidated
1989  * and subsequently re faulted). However it does guarantee that the page
1990  * won't be freed completely. And mostly callers simply care that the page
1991  * contains data that was valid *at some point in time*. Typically, an IO
1992  * or similar operation cannot guarantee anything stronger anyway because
1993  * locks can't be held over the syscall boundary.
1994  *
1995  * If write=0, the page must not be written to. If the page is written to,
1996  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1997  * after the page is finished with, and before put_page is called.
1998  *
1999  * get_user_pages is typically used for fewer-copy IO operations, to get a
2000  * handle on the memory by some means other than accesses via the user virtual
2001  * addresses. The pages may be submitted for DMA to devices or accessed via
2002  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2003  * use the correct cache flushing APIs.
2004  *
2005  * See also get_user_pages_fast, for performance critical applications.
2006  */
2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2008                 unsigned long start, unsigned long nr_pages, int write,
2009                 int force, struct page **pages, struct vm_area_struct **vmas)
2010 {
2011         int flags = FOLL_TOUCH;
2012
2013         if (pages)
2014                 flags |= FOLL_GET;
2015         if (write)
2016                 flags |= FOLL_WRITE;
2017         if (force)
2018                 flags |= FOLL_FORCE;
2019
2020         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2021                                 NULL);
2022 }
2023 EXPORT_SYMBOL(get_user_pages);
2024
2025 /**
2026  * get_dump_page() - pin user page in memory while writing it to core dump
2027  * @addr: user address
2028  *
2029  * Returns struct page pointer of user page pinned for dump,
2030  * to be freed afterwards by page_cache_release() or put_page().
2031  *
2032  * Returns NULL on any kind of failure - a hole must then be inserted into
2033  * the corefile, to preserve alignment with its headers; and also returns
2034  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2035  * allowing a hole to be left in the corefile to save diskspace.
2036  *
2037  * Called without mmap_sem, but after all other threads have been killed.
2038  */
2039 #ifdef CONFIG_ELF_CORE
2040 struct page *get_dump_page(unsigned long addr)
2041 {
2042         struct vm_area_struct *vma;
2043         struct page *page;
2044
2045         if (__get_user_pages(current, current->mm, addr, 1,
2046                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2047                              NULL) < 1)
2048                 return NULL;
2049         flush_cache_page(vma, addr, page_to_pfn(page));
2050         return page;
2051 }
2052 #endif /* CONFIG_ELF_CORE */
2053
2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2055                         spinlock_t **ptl)
2056 {
2057         pgd_t * pgd = pgd_offset(mm, addr);
2058         pud_t * pud = pud_alloc(mm, pgd, addr);
2059         if (pud) {
2060                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2061                 if (pmd) {
2062                         VM_BUG_ON(pmd_trans_huge(*pmd));
2063                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2064                 }
2065         }
2066         return NULL;
2067 }
2068
2069 /*
2070  * This is the old fallback for page remapping.
2071  *
2072  * For historical reasons, it only allows reserved pages. Only
2073  * old drivers should use this, and they needed to mark their
2074  * pages reserved for the old functions anyway.
2075  */
2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2077                         struct page *page, pgprot_t prot)
2078 {
2079         struct mm_struct *mm = vma->vm_mm;
2080         int retval;
2081         pte_t *pte;
2082         spinlock_t *ptl;
2083
2084         retval = -EINVAL;
2085         if (PageAnon(page))
2086                 goto out;
2087         retval = -ENOMEM;
2088         flush_dcache_page(page);
2089         pte = get_locked_pte(mm, addr, &ptl);
2090         if (!pte)
2091                 goto out;
2092         retval = -EBUSY;
2093         if (!pte_none(*pte))
2094                 goto out_unlock;
2095
2096         /* Ok, finally just insert the thing.. */
2097         get_page(page);
2098         inc_mm_counter_fast(mm, MM_FILEPAGES);
2099         page_add_file_rmap(page);
2100         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2101
2102         retval = 0;
2103         pte_unmap_unlock(pte, ptl);
2104         return retval;
2105 out_unlock:
2106         pte_unmap_unlock(pte, ptl);
2107 out:
2108         return retval;
2109 }
2110
2111 /**
2112  * vm_insert_page - insert single page into user vma
2113  * @vma: user vma to map to
2114  * @addr: target user address of this page
2115  * @page: source kernel page
2116  *
2117  * This allows drivers to insert individual pages they've allocated
2118  * into a user vma.
2119  *
2120  * The page has to be a nice clean _individual_ kernel allocation.
2121  * If you allocate a compound page, you need to have marked it as
2122  * such (__GFP_COMP), or manually just split the page up yourself
2123  * (see split_page()).
2124  *
2125  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2126  * took an arbitrary page protection parameter. This doesn't allow
2127  * that. Your vma protection will have to be set up correctly, which
2128  * means that if you want a shared writable mapping, you'd better
2129  * ask for a shared writable mapping!
2130  *
2131  * The page does not need to be reserved.
2132  *
2133  * Usually this function is called from f_op->mmap() handler
2134  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2135  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2136  * function from other places, for example from page-fault handler.
2137  */
2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2139                         struct page *page)
2140 {
2141         if (addr < vma->vm_start || addr >= vma->vm_end)
2142                 return -EFAULT;
2143         if (!page_count(page))
2144                 return -EINVAL;
2145         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2146                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2147                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2148                 vma->vm_flags |= VM_MIXEDMAP;
2149         }
2150         return insert_page(vma, addr, page, vma->vm_page_prot);
2151 }
2152 EXPORT_SYMBOL(vm_insert_page);
2153
2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155                         unsigned long pfn, pgprot_t prot)
2156 {
2157         struct mm_struct *mm = vma->vm_mm;
2158         int retval;
2159         pte_t *pte, entry;
2160         spinlock_t *ptl;
2161
2162         retval = -ENOMEM;
2163         pte = get_locked_pte(mm, addr, &ptl);
2164         if (!pte)
2165                 goto out;
2166         retval = -EBUSY;
2167         if (!pte_none(*pte))
2168                 goto out_unlock;
2169
2170         /* Ok, finally just insert the thing.. */
2171         entry = pte_mkspecial(pfn_pte(pfn, prot));
2172         set_pte_at(mm, addr, pte, entry);
2173         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2174
2175         retval = 0;
2176 out_unlock:
2177         pte_unmap_unlock(pte, ptl);
2178 out:
2179         return retval;
2180 }
2181
2182 /**
2183  * vm_insert_pfn - insert single pfn into user vma
2184  * @vma: user vma to map to
2185  * @addr: target user address of this page
2186  * @pfn: source kernel pfn
2187  *
2188  * Similar to vm_insert_page, this allows drivers to insert individual pages
2189  * they've allocated into a user vma. Same comments apply.
2190  *
2191  * This function should only be called from a vm_ops->fault handler, and
2192  * in that case the handler should return NULL.
2193  *
2194  * vma cannot be a COW mapping.
2195  *
2196  * As this is called only for pages that do not currently exist, we
2197  * do not need to flush old virtual caches or the TLB.
2198  */
2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200                         unsigned long pfn)
2201 {
2202         int ret;
2203         pgprot_t pgprot = vma->vm_page_prot;
2204         /*
2205          * Technically, architectures with pte_special can avoid all these
2206          * restrictions (same for remap_pfn_range).  However we would like
2207          * consistency in testing and feature parity among all, so we should
2208          * try to keep these invariants in place for everybody.
2209          */
2210         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212                                                 (VM_PFNMAP|VM_MIXEDMAP));
2213         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215
2216         if (addr < vma->vm_start || addr >= vma->vm_end)
2217                 return -EFAULT;
2218         if (track_pfn_insert(vma, &pgprot, pfn))
2219                 return -EINVAL;
2220
2221         ret = insert_pfn(vma, addr, pfn, pgprot);
2222
2223         return ret;
2224 }
2225 EXPORT_SYMBOL(vm_insert_pfn);
2226
2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2228                         unsigned long pfn)
2229 {
2230         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2231
2232         if (addr < vma->vm_start || addr >= vma->vm_end)
2233                 return -EFAULT;
2234
2235         /*
2236          * If we don't have pte special, then we have to use the pfn_valid()
2237          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2238          * refcount the page if pfn_valid is true (hence insert_page rather
2239          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2240          * without pte special, it would there be refcounted as a normal page.
2241          */
2242         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2243                 struct page *page;
2244
2245                 page = pfn_to_page(pfn);
2246                 return insert_page(vma, addr, page, vma->vm_page_prot);
2247         }
2248         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2249 }
2250 EXPORT_SYMBOL(vm_insert_mixed);
2251
2252 /*
2253  * maps a range of physical memory into the requested pages. the old
2254  * mappings are removed. any references to nonexistent pages results
2255  * in null mappings (currently treated as "copy-on-access")
2256  */
2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2258                         unsigned long addr, unsigned long end,
2259                         unsigned long pfn, pgprot_t prot)
2260 {
2261         pte_t *pte;
2262         spinlock_t *ptl;
2263
2264         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2265         if (!pte)
2266                 return -ENOMEM;
2267         arch_enter_lazy_mmu_mode();
2268         do {
2269                 BUG_ON(!pte_none(*pte));
2270                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2271                 pfn++;
2272         } while (pte++, addr += PAGE_SIZE, addr != end);
2273         arch_leave_lazy_mmu_mode();
2274         pte_unmap_unlock(pte - 1, ptl);
2275         return 0;
2276 }
2277
2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2279                         unsigned long addr, unsigned long end,
2280                         unsigned long pfn, pgprot_t prot)
2281 {
2282         pmd_t *pmd;
2283         unsigned long next;
2284
2285         pfn -= addr >> PAGE_SHIFT;
2286         pmd = pmd_alloc(mm, pud, addr);
2287         if (!pmd)
2288                 return -ENOMEM;
2289         VM_BUG_ON(pmd_trans_huge(*pmd));
2290         do {
2291                 next = pmd_addr_end(addr, end);
2292                 if (remap_pte_range(mm, pmd, addr, next,
2293                                 pfn + (addr >> PAGE_SHIFT), prot))
2294                         return -ENOMEM;
2295         } while (pmd++, addr = next, addr != end);
2296         return 0;
2297 }
2298
2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2300                         unsigned long addr, unsigned long end,
2301                         unsigned long pfn, pgprot_t prot)
2302 {
2303         pud_t *pud;
2304         unsigned long next;
2305
2306         pfn -= addr >> PAGE_SHIFT;
2307         pud = pud_alloc(mm, pgd, addr);
2308         if (!pud)
2309                 return -ENOMEM;
2310         do {
2311                 next = pud_addr_end(addr, end);
2312                 if (remap_pmd_range(mm, pud, addr, next,
2313                                 pfn + (addr >> PAGE_SHIFT), prot))
2314                         return -ENOMEM;
2315         } while (pud++, addr = next, addr != end);
2316         return 0;
2317 }
2318
2319 /**
2320  * remap_pfn_range - remap kernel memory to userspace
2321  * @vma: user vma to map to
2322  * @addr: target user address to start at
2323  * @pfn: physical address of kernel memory
2324  * @size: size of map area
2325  * @prot: page protection flags for this mapping
2326  *
2327  *  Note: this is only safe if the mm semaphore is held when called.
2328  */
2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2330                     unsigned long pfn, unsigned long size, pgprot_t prot)
2331 {
2332         pgd_t *pgd;
2333         unsigned long next;
2334         unsigned long end = addr + PAGE_ALIGN(size);
2335         struct mm_struct *mm = vma->vm_mm;
2336         int err;
2337
2338         /*
2339          * Physically remapped pages are special. Tell the
2340          * rest of the world about it:
2341          *   VM_IO tells people not to look at these pages
2342          *      (accesses can have side effects).
2343          *   VM_PFNMAP tells the core MM that the base pages are just
2344          *      raw PFN mappings, and do not have a "struct page" associated
2345          *      with them.
2346          *   VM_DONTEXPAND
2347          *      Disable vma merging and expanding with mremap().
2348          *   VM_DONTDUMP
2349          *      Omit vma from core dump, even when VM_IO turned off.
2350          *
2351          * There's a horrible special case to handle copy-on-write
2352          * behaviour that some programs depend on. We mark the "original"
2353          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2354          * See vm_normal_page() for details.
2355          */
2356         if (is_cow_mapping(vma->vm_flags)) {
2357                 if (addr != vma->vm_start || end != vma->vm_end)
2358                         return -EINVAL;
2359                 vma->vm_pgoff = pfn;
2360         }
2361
2362         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2363         if (err)
2364                 return -EINVAL;
2365
2366         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2367
2368         BUG_ON(addr >= end);
2369         pfn -= addr >> PAGE_SHIFT;
2370         pgd = pgd_offset(mm, addr);
2371         flush_cache_range(vma, addr, end);
2372         do {
2373                 next = pgd_addr_end(addr, end);
2374                 err = remap_pud_range(mm, pgd, addr, next,
2375                                 pfn + (addr >> PAGE_SHIFT), prot);
2376                 if (err)
2377                         break;
2378         } while (pgd++, addr = next, addr != end);
2379
2380         if (err)
2381                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2382
2383         return err;
2384 }
2385 EXPORT_SYMBOL(remap_pfn_range);
2386
2387 /**
2388  * vm_iomap_memory - remap memory to userspace
2389  * @vma: user vma to map to
2390  * @start: start of area
2391  * @len: size of area
2392  *
2393  * This is a simplified io_remap_pfn_range() for common driver use. The
2394  * driver just needs to give us the physical memory range to be mapped,
2395  * we'll figure out the rest from the vma information.
2396  *
2397  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2398  * whatever write-combining details or similar.
2399  */
2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2401 {
2402         unsigned long vm_len, pfn, pages;
2403
2404         /* Check that the physical memory area passed in looks valid */
2405         if (start + len < start)
2406                 return -EINVAL;
2407         /*
2408          * You *really* shouldn't map things that aren't page-aligned,
2409          * but we've historically allowed it because IO memory might
2410          * just have smaller alignment.
2411          */
2412         len += start & ~PAGE_MASK;
2413         pfn = start >> PAGE_SHIFT;
2414         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2415         if (pfn + pages < pfn)
2416                 return -EINVAL;
2417
2418         /* We start the mapping 'vm_pgoff' pages into the area */
2419         if (vma->vm_pgoff > pages)
2420                 return -EINVAL;
2421         pfn += vma->vm_pgoff;
2422         pages -= vma->vm_pgoff;
2423
2424         /* Can we fit all of the mapping? */
2425         vm_len = vma->vm_end - vma->vm_start;
2426         if (vm_len >> PAGE_SHIFT > pages)
2427                 return -EINVAL;
2428
2429         /* Ok, let it rip */
2430         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2431 }
2432 EXPORT_SYMBOL(vm_iomap_memory);
2433
2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2435                                      unsigned long addr, unsigned long end,
2436                                      pte_fn_t fn, void *data)
2437 {
2438         pte_t *pte;
2439         int err;
2440         pgtable_t token;
2441         spinlock_t *uninitialized_var(ptl);
2442
2443         pte = (mm == &init_mm) ?
2444                 pte_alloc_kernel(pmd, addr) :
2445                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2446         if (!pte)
2447                 return -ENOMEM;
2448
2449         BUG_ON(pmd_huge(*pmd));
2450
2451         arch_enter_lazy_mmu_mode();
2452
2453         token = pmd_pgtable(*pmd);
2454
2455         do {
2456                 err = fn(pte++, token, addr, data);
2457                 if (err)
2458                         break;
2459         } while (addr += PAGE_SIZE, addr != end);
2460
2461         arch_leave_lazy_mmu_mode();
2462
2463         if (mm != &init_mm)
2464                 pte_unmap_unlock(pte-1, ptl);
2465         return err;
2466 }
2467
2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2469                                      unsigned long addr, unsigned long end,
2470                                      pte_fn_t fn, void *data)
2471 {
2472         pmd_t *pmd;
2473         unsigned long next;
2474         int err;
2475
2476         BUG_ON(pud_huge(*pud));
2477
2478         pmd = pmd_alloc(mm, pud, addr);
2479         if (!pmd)
2480                 return -ENOMEM;
2481         do {
2482                 next = pmd_addr_end(addr, end);
2483                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2484                 if (err)
2485                         break;
2486         } while (pmd++, addr = next, addr != end);
2487         return err;
2488 }
2489
2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2491                                      unsigned long addr, unsigned long end,
2492                                      pte_fn_t fn, void *data)
2493 {
2494         pud_t *pud;
2495         unsigned long next;
2496         int err;
2497
2498         pud = pud_alloc(mm, pgd, addr);
2499         if (!pud)
2500                 return -ENOMEM;
2501         do {
2502                 next = pud_addr_end(addr, end);
2503                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2504                 if (err)
2505                         break;
2506         } while (pud++, addr = next, addr != end);
2507         return err;
2508 }
2509
2510 /*
2511  * Scan a region of virtual memory, filling in page tables as necessary
2512  * and calling a provided function on each leaf page table.
2513  */
2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2515                         unsigned long size, pte_fn_t fn, void *data)
2516 {
2517         pgd_t *pgd;
2518         unsigned long next;
2519         unsigned long end = addr + size;
2520         int err;
2521
2522         BUG_ON(addr >= end);
2523         pgd = pgd_offset(mm, addr);
2524         do {
2525                 next = pgd_addr_end(addr, end);
2526                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2527                 if (err)
2528                         break;
2529         } while (pgd++, addr = next, addr != end);
2530
2531         return err;
2532 }
2533 EXPORT_SYMBOL_GPL(apply_to_page_range);
2534
2535 /*
2536  * handle_pte_fault chooses page fault handler according to an entry
2537  * which was read non-atomically.  Before making any commitment, on
2538  * those architectures or configurations (e.g. i386 with PAE) which
2539  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2540  * must check under lock before unmapping the pte and proceeding
2541  * (but do_wp_page is only called after already making such a check;
2542  * and do_anonymous_page can safely check later on).
2543  */
2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2545                                 pte_t *page_table, pte_t orig_pte)
2546 {
2547         int same = 1;
2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2549         if (sizeof(pte_t) > sizeof(unsigned long)) {
2550                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2551                 spin_lock(ptl);
2552                 same = pte_same(*page_table, orig_pte);
2553                 spin_unlock(ptl);
2554         }
2555 #endif
2556         pte_unmap(page_table);
2557         return same;
2558 }
2559
2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2561 {
2562         /*
2563          * If the source page was a PFN mapping, we don't have
2564          * a "struct page" for it. We do a best-effort copy by
2565          * just copying from the original user address. If that
2566          * fails, we just zero-fill it. Live with it.
2567          */
2568         if (unlikely(!src)) {
2569                 void *kaddr = kmap_atomic(dst);
2570                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2571
2572                 /*
2573                  * This really shouldn't fail, because the page is there
2574                  * in the page tables. But it might just be unreadable,
2575                  * in which case we just give up and fill the result with
2576                  * zeroes.
2577                  */
2578                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2579                         clear_page(kaddr);
2580                 kunmap_atomic(kaddr);
2581                 flush_dcache_page(dst);
2582         } else
2583                 copy_user_highpage(dst, src, va, vma);
2584 }
2585
2586 /*
2587  * This routine handles present pages, when users try to write
2588  * to a shared page. It is done by copying the page to a new address
2589  * and decrementing the shared-page counter for the old page.
2590  *
2591  * Note that this routine assumes that the protection checks have been
2592  * done by the caller (the low-level page fault routine in most cases).
2593  * Thus we can safely just mark it writable once we've done any necessary
2594  * COW.
2595  *
2596  * We also mark the page dirty at this point even though the page will
2597  * change only once the write actually happens. This avoids a few races,
2598  * and potentially makes it more efficient.
2599  *
2600  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601  * but allow concurrent faults), with pte both mapped and locked.
2602  * We return with mmap_sem still held, but pte unmapped and unlocked.
2603  */
2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2605                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2606                 spinlock_t *ptl, pte_t orig_pte)
2607         __releases(ptl)
2608 {
2609         struct page *old_page, *new_page = NULL;
2610         pte_t entry;
2611         int ret = 0;
2612         int page_mkwrite = 0;
2613         struct page *dirty_page = NULL;
2614         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2615         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2616
2617         old_page = vm_normal_page(vma, address, orig_pte);
2618         if (!old_page) {
2619                 /*
2620                  * VM_MIXEDMAP !pfn_valid() case
2621                  *
2622                  * We should not cow pages in a shared writeable mapping.
2623                  * Just mark the pages writable as we can't do any dirty
2624                  * accounting on raw pfn maps.
2625                  */
2626                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2627                                      (VM_WRITE|VM_SHARED))
2628                         goto reuse;
2629                 goto gotten;
2630         }
2631
2632         /*
2633          * Take out anonymous pages first, anonymous shared vmas are
2634          * not dirty accountable.
2635          */
2636         if (PageAnon(old_page) && !PageKsm(old_page)) {
2637                 if (!trylock_page(old_page)) {
2638                         page_cache_get(old_page);
2639                         pte_unmap_unlock(page_table, ptl);
2640                         lock_page(old_page);
2641                         page_table = pte_offset_map_lock(mm, pmd, address,
2642                                                          &ptl);
2643                         if (!pte_same(*page_table, orig_pte)) {
2644                                 unlock_page(old_page);
2645                                 goto unlock;
2646                         }
2647                         page_cache_release(old_page);
2648                 }
2649                 if (reuse_swap_page(old_page)) {
2650                         /*
2651                          * The page is all ours.  Move it to our anon_vma so
2652                          * the rmap code will not search our parent or siblings.
2653                          * Protected against the rmap code by the page lock.
2654                          */
2655                         page_move_anon_rmap(old_page, vma, address);
2656                         unlock_page(old_page);
2657                         goto reuse;
2658                 }
2659                 unlock_page(old_page);
2660         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2661                                         (VM_WRITE|VM_SHARED))) {
2662                 /*
2663                  * Only catch write-faults on shared writable pages,
2664                  * read-only shared pages can get COWed by
2665                  * get_user_pages(.write=1, .force=1).
2666                  */
2667                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2668                         struct vm_fault vmf;
2669                         int tmp;
2670
2671                         vmf.virtual_address = (void __user *)(address &
2672                                                                 PAGE_MASK);
2673                         vmf.pgoff = old_page->index;
2674                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2675                         vmf.page = old_page;
2676
2677                         /*
2678                          * Notify the address space that the page is about to
2679                          * become writable so that it can prohibit this or wait
2680                          * for the page to get into an appropriate state.
2681                          *
2682                          * We do this without the lock held, so that it can
2683                          * sleep if it needs to.
2684                          */
2685                         page_cache_get(old_page);
2686                         pte_unmap_unlock(page_table, ptl);
2687
2688                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2689                         if (unlikely(tmp &
2690                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2691                                 ret = tmp;
2692                                 goto unwritable_page;
2693                         }
2694                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2695                                 lock_page(old_page);
2696                                 if (!old_page->mapping) {
2697                                         ret = 0; /* retry the fault */
2698                                         unlock_page(old_page);
2699                                         goto unwritable_page;
2700                                 }
2701                         } else
2702                                 VM_BUG_ON(!PageLocked(old_page));
2703
2704                         /*
2705                          * Since we dropped the lock we need to revalidate
2706                          * the PTE as someone else may have changed it.  If
2707                          * they did, we just return, as we can count on the
2708                          * MMU to tell us if they didn't also make it writable.
2709                          */
2710                         page_table = pte_offset_map_lock(mm, pmd, address,
2711                                                          &ptl);
2712                         if (!pte_same(*page_table, orig_pte)) {
2713                                 unlock_page(old_page);
2714                                 goto unlock;
2715                         }
2716
2717                         page_mkwrite = 1;
2718                 }
2719                 dirty_page = old_page;
2720                 get_page(dirty_page);
2721
2722 reuse:
2723                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2724                 entry = pte_mkyoung(orig_pte);
2725                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2726                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2727                         update_mmu_cache(vma, address, page_table);
2728                 pte_unmap_unlock(page_table, ptl);
2729                 ret |= VM_FAULT_WRITE;
2730
2731                 if (!dirty_page)
2732                         return ret;
2733
2734                 /*
2735                  * Yes, Virginia, this is actually required to prevent a race
2736                  * with clear_page_dirty_for_io() from clearing the page dirty
2737                  * bit after it clear all dirty ptes, but before a racing
2738                  * do_wp_page installs a dirty pte.
2739                  *
2740                  * __do_fault is protected similarly.
2741                  */
2742                 if (!page_mkwrite) {
2743                         wait_on_page_locked(dirty_page);
2744                         set_page_dirty_balance(dirty_page, page_mkwrite);
2745                         /* file_update_time outside page_lock */
2746                         if (vma->vm_file)
2747                                 file_update_time(vma->vm_file);
2748                 }
2749                 put_page(dirty_page);
2750                 if (page_mkwrite) {
2751                         struct address_space *mapping = dirty_page->mapping;
2752
2753                         set_page_dirty(dirty_page);
2754                         unlock_page(dirty_page);
2755                         page_cache_release(dirty_page);
2756                         if (mapping)    {
2757                                 /*
2758                                  * Some device drivers do not set page.mapping
2759                                  * but still dirty their pages
2760                                  */
2761                                 balance_dirty_pages_ratelimited(mapping);
2762                         }
2763                 }
2764
2765                 return ret;
2766         }
2767
2768         /*
2769          * Ok, we need to copy. Oh, well..
2770          */
2771         page_cache_get(old_page);
2772 gotten:
2773         pte_unmap_unlock(page_table, ptl);
2774
2775         if (unlikely(anon_vma_prepare(vma)))
2776                 goto oom;
2777
2778         if (is_zero_pfn(pte_pfn(orig_pte))) {
2779                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2780                 if (!new_page)
2781                         goto oom;
2782         } else {
2783                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2784                 if (!new_page)
2785                         goto oom;
2786                 cow_user_page(new_page, old_page, address, vma);
2787         }
2788         __SetPageUptodate(new_page);
2789
2790         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2791                 goto oom_free_new;
2792
2793         mmun_start  = address & PAGE_MASK;
2794         mmun_end    = mmun_start + PAGE_SIZE;
2795         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2796
2797         /*
2798          * Re-check the pte - we dropped the lock
2799          */
2800         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2801         if (likely(pte_same(*page_table, orig_pte))) {
2802                 if (old_page) {
2803                         if (!PageAnon(old_page)) {
2804                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2805                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2806                         }
2807                 } else
2808                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2809                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2810                 entry = mk_pte(new_page, vma->vm_page_prot);
2811                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812                 /*
2813                  * Clear the pte entry and flush it first, before updating the
2814                  * pte with the new entry. This will avoid a race condition
2815                  * seen in the presence of one thread doing SMC and another
2816                  * thread doing COW.
2817                  */
2818                 ptep_clear_flush(vma, address, page_table);
2819                 page_add_new_anon_rmap(new_page, vma, address);
2820                 /*
2821                  * We call the notify macro here because, when using secondary
2822                  * mmu page tables (such as kvm shadow page tables), we want the
2823                  * new page to be mapped directly into the secondary page table.
2824                  */
2825                 set_pte_at_notify(mm, address, page_table, entry);
2826                 update_mmu_cache(vma, address, page_table);
2827                 if (old_page) {
2828                         /*
2829                          * Only after switching the pte to the new page may
2830                          * we remove the mapcount here. Otherwise another
2831                          * process may come and find the rmap count decremented
2832                          * before the pte is switched to the new page, and
2833                          * "reuse" the old page writing into it while our pte
2834                          * here still points into it and can be read by other
2835                          * threads.
2836                          *
2837                          * The critical issue is to order this
2838                          * page_remove_rmap with the ptp_clear_flush above.
2839                          * Those stores are ordered by (if nothing else,)
2840                          * the barrier present in the atomic_add_negative
2841                          * in page_remove_rmap.
2842                          *
2843                          * Then the TLB flush in ptep_clear_flush ensures that
2844                          * no process can access the old page before the
2845                          * decremented mapcount is visible. And the old page
2846                          * cannot be reused until after the decremented
2847                          * mapcount is visible. So transitively, TLBs to
2848                          * old page will be flushed before it can be reused.
2849                          */
2850                         page_remove_rmap(old_page);
2851                 }
2852
2853                 /* Free the old page.. */
2854                 new_page = old_page;
2855                 ret |= VM_FAULT_WRITE;
2856         } else
2857                 mem_cgroup_uncharge_page(new_page);
2858
2859         if (new_page)
2860                 page_cache_release(new_page);
2861 unlock:
2862         pte_unmap_unlock(page_table, ptl);
2863         if (mmun_end > mmun_start)
2864                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2865         if (old_page) {
2866                 /*
2867                  * Don't let another task, with possibly unlocked vma,
2868                  * keep the mlocked page.
2869                  */
2870                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2871                         lock_page(old_page);    /* LRU manipulation */
2872                         munlock_vma_page(old_page);
2873                         unlock_page(old_page);
2874                 }
2875                 page_cache_release(old_page);
2876         }
2877         return ret;
2878 oom_free_new:
2879         page_cache_release(new_page);
2880 oom:
2881         if (old_page)
2882                 page_cache_release(old_page);
2883         return VM_FAULT_OOM;
2884
2885 unwritable_page:
2886         page_cache_release(old_page);
2887         return ret;
2888 }
2889
2890 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2891                 unsigned long start_addr, unsigned long end_addr,
2892                 struct zap_details *details)
2893 {
2894         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2895 }
2896
2897 static inline void unmap_mapping_range_tree(struct rb_root *root,
2898                                             struct zap_details *details)
2899 {
2900         struct vm_area_struct *vma;
2901         pgoff_t vba, vea, zba, zea;
2902
2903         vma_interval_tree_foreach(vma, root,
2904                         details->first_index, details->last_index) {
2905
2906                 vba = vma->vm_pgoff;
2907                 vea = vba + vma_pages(vma) - 1;
2908                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2909                 zba = details->first_index;
2910                 if (zba < vba)
2911                         zba = vba;
2912                 zea = details->last_index;
2913                 if (zea > vea)
2914                         zea = vea;
2915
2916                 unmap_mapping_range_vma(vma,
2917                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2918                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2919                                 details);
2920         }
2921 }
2922
2923 static inline void unmap_mapping_range_list(struct list_head *head,
2924                                             struct zap_details *details)
2925 {
2926         struct vm_area_struct *vma;
2927
2928         /*
2929          * In nonlinear VMAs there is no correspondence between virtual address
2930          * offset and file offset.  So we must perform an exhaustive search
2931          * across *all* the pages in each nonlinear VMA, not just the pages
2932          * whose virtual address lies outside the file truncation point.
2933          */
2934         list_for_each_entry(vma, head, shared.nonlinear) {
2935                 details->nonlinear_vma = vma;
2936                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2937         }
2938 }
2939
2940 /**
2941  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2942  * @mapping: the address space containing mmaps to be unmapped.
2943  * @holebegin: byte in first page to unmap, relative to the start of
2944  * the underlying file.  This will be rounded down to a PAGE_SIZE
2945  * boundary.  Note that this is different from truncate_pagecache(), which
2946  * must keep the partial page.  In contrast, we must get rid of
2947  * partial pages.
2948  * @holelen: size of prospective hole in bytes.  This will be rounded
2949  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2950  * end of the file.
2951  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2952  * but 0 when invalidating pagecache, don't throw away private data.
2953  */
2954 void unmap_mapping_range(struct address_space *mapping,
2955                 loff_t const holebegin, loff_t const holelen, int even_cows)
2956 {
2957         struct zap_details details;
2958         pgoff_t hba = holebegin >> PAGE_SHIFT;
2959         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2960
2961         /* Check for overflow. */
2962         if (sizeof(holelen) > sizeof(hlen)) {
2963                 long long holeend =
2964                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2965                 if (holeend & ~(long long)ULONG_MAX)
2966                         hlen = ULONG_MAX - hba + 1;
2967         }
2968
2969         details.check_mapping = even_cows? NULL: mapping;
2970         details.nonlinear_vma = NULL;
2971         details.first_index = hba;
2972         details.last_index = hba + hlen - 1;
2973         if (details.last_index < details.first_index)
2974                 details.last_index = ULONG_MAX;
2975
2976
2977         mutex_lock(&mapping->i_mmap_mutex);
2978         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2979                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2980         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2981                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2982         mutex_unlock(&mapping->i_mmap_mutex);
2983 }
2984 EXPORT_SYMBOL(unmap_mapping_range);
2985
2986 /*
2987  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2988  * but allow concurrent faults), and pte mapped but not yet locked.
2989  * We return with mmap_sem still held, but pte unmapped and unlocked.
2990  */
2991 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2993                 unsigned int flags, pte_t orig_pte)
2994 {
2995         spinlock_t *ptl;
2996         struct page *page, *swapcache;
2997         swp_entry_t entry;
2998         pte_t pte;
2999         int locked;
3000         struct mem_cgroup *ptr;
3001         int exclusive = 0;
3002         int ret = 0;
3003
3004         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3005                 goto out;
3006
3007         entry = pte_to_swp_entry(orig_pte);
3008         if (unlikely(non_swap_entry(entry))) {
3009                 if (is_migration_entry(entry)) {
3010                         migration_entry_wait(mm, pmd, address);
3011                 } else if (is_hwpoison_entry(entry)) {
3012                         ret = VM_FAULT_HWPOISON;
3013                 } else {
3014                         print_bad_pte(vma, address, orig_pte, NULL);
3015                         ret = VM_FAULT_SIGBUS;
3016                 }
3017                 goto out;
3018         }
3019         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3020         page = lookup_swap_cache(entry);
3021         if (!page) {
3022                 page = swapin_readahead(entry,
3023                                         GFP_HIGHUSER_MOVABLE, vma, address);
3024                 if (!page) {
3025                         /*
3026                          * Back out if somebody else faulted in this pte
3027                          * while we released the pte lock.
3028                          */
3029                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3030                         if (likely(pte_same(*page_table, orig_pte)))
3031                                 ret = VM_FAULT_OOM;
3032                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3033                         goto unlock;
3034                 }
3035
3036                 /* Had to read the page from swap area: Major fault */
3037                 ret = VM_FAULT_MAJOR;
3038                 count_vm_event(PGMAJFAULT);
3039                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3040         } else if (PageHWPoison(page)) {
3041                 /*
3042                  * hwpoisoned dirty swapcache pages are kept for killing
3043                  * owner processes (which may be unknown at hwpoison time)
3044                  */
3045                 ret = VM_FAULT_HWPOISON;
3046                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3047                 swapcache = page;
3048                 goto out_release;
3049         }
3050
3051         swapcache = page;
3052         locked = lock_page_or_retry(page, mm, flags);
3053
3054         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3055         if (!locked) {
3056                 ret |= VM_FAULT_RETRY;
3057                 goto out_release;
3058         }
3059
3060         /*
3061          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3062          * release the swapcache from under us.  The page pin, and pte_same
3063          * test below, are not enough to exclude that.  Even if it is still
3064          * swapcache, we need to check that the page's swap has not changed.
3065          */
3066         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3067                 goto out_page;
3068
3069         page = ksm_might_need_to_copy(page, vma, address);
3070         if (unlikely(!page)) {
3071                 ret = VM_FAULT_OOM;
3072                 page = swapcache;
3073                 goto out_page;
3074         }
3075
3076         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3077                 ret = VM_FAULT_OOM;
3078                 goto out_page;
3079         }
3080
3081         /*
3082          * Back out if somebody else already faulted in this pte.
3083          */
3084         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3085         if (unlikely(!pte_same(*page_table, orig_pte)))
3086                 goto out_nomap;
3087
3088         if (unlikely(!PageUptodate(page))) {
3089                 ret = VM_FAULT_SIGBUS;
3090                 goto out_nomap;
3091         }
3092
3093         /*
3094          * The page isn't present yet, go ahead with the fault.
3095          *
3096          * Be careful about the sequence of operations here.
3097          * To get its accounting right, reuse_swap_page() must be called
3098          * while the page is counted on swap but not yet in mapcount i.e.
3099          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3100          * must be called after the swap_free(), or it will never succeed.
3101          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3102          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3103          * in page->private. In this case, a record in swap_cgroup  is silently
3104          * discarded at swap_free().
3105          */
3106
3107         inc_mm_counter_fast(mm, MM_ANONPAGES);
3108         dec_mm_counter_fast(mm, MM_SWAPENTS);
3109         pte = mk_pte(page, vma->vm_page_prot);
3110         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3111                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3112                 flags &= ~FAULT_FLAG_WRITE;
3113                 ret |= VM_FAULT_WRITE;
3114                 exclusive = 1;
3115         }
3116         flush_icache_page(vma, page);
3117         if (pte_swp_soft_dirty(orig_pte))
3118                 pte = pte_mksoft_dirty(pte);
3119         set_pte_at(mm, address, page_table, pte);
3120         if (page == swapcache)
3121                 do_page_add_anon_rmap(page, vma, address, exclusive);
3122         else /* ksm created a completely new copy */
3123                 page_add_new_anon_rmap(page, vma, address);
3124         /* It's better to call commit-charge after rmap is established */
3125         mem_cgroup_commit_charge_swapin(page, ptr);
3126
3127         swap_free(entry);
3128         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3129                 try_to_free_swap(page);
3130         unlock_page(page);
3131         if (page != swapcache) {
3132                 /*
3133                  * Hold the lock to avoid the swap entry to be reused
3134                  * until we take the PT lock for the pte_same() check
3135                  * (to avoid false positives from pte_same). For
3136                  * further safety release the lock after the swap_free
3137                  * so that the swap count won't change under a
3138                  * parallel locked swapcache.
3139                  */
3140                 unlock_page(swapcache);
3141                 page_cache_release(swapcache);
3142         }
3143
3144         if (flags & FAULT_FLAG_WRITE) {
3145                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3146                 if (ret & VM_FAULT_ERROR)
3147                         ret &= VM_FAULT_ERROR;
3148                 goto out;
3149         }
3150
3151         /* No need to invalidate - it was non-present before */
3152         update_mmu_cache(vma, address, page_table);
3153 unlock:
3154         pte_unmap_unlock(page_table, ptl);
3155 out:
3156         return ret;
3157 out_nomap:
3158         mem_cgroup_cancel_charge_swapin(ptr);
3159         pte_unmap_unlock(page_table, ptl);
3160 out_page:
3161         unlock_page(page);
3162 out_release:
3163         page_cache_release(page);
3164         if (page != swapcache) {
3165                 unlock_page(swapcache);
3166                 page_cache_release(swapcache);
3167         }
3168         return ret;
3169 }
3170
3171 /*
3172  * This is like a special single-page "expand_{down|up}wards()",
3173  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3174  * doesn't hit another vma.
3175  */
3176 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3177 {
3178         address &= PAGE_MASK;
3179         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3180                 struct vm_area_struct *prev = vma->vm_prev;
3181
3182                 /*
3183                  * Is there a mapping abutting this one below?
3184                  *
3185                  * That's only ok if it's the same stack mapping
3186                  * that has gotten split..
3187                  */
3188                 if (prev && prev->vm_end == address)
3189                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3190
3191                 expand_downwards(vma, address - PAGE_SIZE);
3192         }
3193         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3194                 struct vm_area_struct *next = vma->vm_next;
3195
3196                 /* As VM_GROWSDOWN but s/below/above/ */
3197                 if (next && next->vm_start == address + PAGE_SIZE)
3198                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3199
3200                 expand_upwards(vma, address + PAGE_SIZE);
3201         }
3202         return 0;
3203 }
3204
3205 /*
3206  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3207  * but allow concurrent faults), and pte mapped but not yet locked.
3208  * We return with mmap_sem still held, but pte unmapped and unlocked.
3209  */
3210 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3211                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3212                 unsigned int flags)
3213 {
3214         struct page *page;
3215         spinlock_t *ptl;
3216         pte_t entry;
3217
3218         pte_unmap(page_table);
3219
3220         /* Check if we need to add a guard page to the stack */
3221         if (check_stack_guard_page(vma, address) < 0)
3222                 return VM_FAULT_SIGBUS;
3223
3224         /* Use the zero-page for reads */
3225         if (!(flags & FAULT_FLAG_WRITE)) {
3226                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3227                                                 vma->vm_page_prot));
3228                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3229                 if (!pte_none(*page_table))
3230                         goto unlock;
3231                 goto setpte;
3232         }
3233
3234         /* Allocate our own private page. */
3235         if (unlikely(anon_vma_prepare(vma)))
3236                 goto oom;
3237         page = alloc_zeroed_user_highpage_movable(vma, address);
3238         if (!page)
3239                 goto oom;
3240         /*
3241          * The memory barrier inside __SetPageUptodate makes sure that
3242          * preceeding stores to the page contents become visible before
3243          * the set_pte_at() write.
3244          */
3245         __SetPageUptodate(page);
3246
3247         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3248                 goto oom_free_page;
3249
3250         entry = mk_pte(page, vma->vm_page_prot);
3251         if (vma->vm_flags & VM_WRITE)
3252                 entry = pte_mkwrite(pte_mkdirty(entry));
3253
3254         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3255         if (!pte_none(*page_table))
3256                 goto release;
3257
3258         inc_mm_counter_fast(mm, MM_ANONPAGES);
3259         page_add_new_anon_rmap(page, vma, address);
3260 setpte:
3261         set_pte_at(mm, address, page_table, entry);
3262
3263         /* No need to invalidate - it was non-present before */
3264         update_mmu_cache(vma, address, page_table);
3265 unlock:
3266         pte_unmap_unlock(page_table, ptl);
3267         return 0;
3268 release:
3269         mem_cgroup_uncharge_page(page);
3270         page_cache_release(page);
3271         goto unlock;
3272 oom_free_page:
3273         page_cache_release(page);
3274 oom:
3275         return VM_FAULT_OOM;
3276 }
3277
3278 /*
3279  * __do_fault() tries to create a new page mapping. It aggressively
3280  * tries to share with existing pages, but makes a separate copy if
3281  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3282  * the next page fault.
3283  *
3284  * As this is called only for pages that do not currently exist, we
3285  * do not need to flush old virtual caches or the TLB.
3286  *
3287  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3288  * but allow concurrent faults), and pte neither mapped nor locked.
3289  * We return with mmap_sem still held, but pte unmapped and unlocked.
3290  */
3291 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3292                 unsigned long address, pmd_t *pmd,
3293                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3294 {
3295         pte_t *page_table;
3296         spinlock_t *ptl;
3297         struct page *page;
3298         struct page *cow_page;
3299         pte_t entry;
3300         int anon = 0;
3301         struct page *dirty_page = NULL;
3302         struct vm_fault vmf;
3303         int ret;
3304         int page_mkwrite = 0;
3305
3306         /*
3307          * If we do COW later, allocate page befor taking lock_page()
3308          * on the file cache page. This will reduce lock holding time.
3309          */
3310         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3311
3312                 if (unlikely(anon_vma_prepare(vma)))
3313                         return VM_FAULT_OOM;
3314
3315                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3316                 if (!cow_page)
3317                         return VM_FAULT_OOM;
3318
3319                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3320                         page_cache_release(cow_page);
3321                         return VM_FAULT_OOM;
3322                 }
3323         } else
3324                 cow_page = NULL;
3325
3326         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3327         vmf.pgoff = pgoff;
3328         vmf.flags = flags;
3329         vmf.page = NULL;
3330
3331         ret = vma->vm_ops->fault(vma, &vmf);
3332         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3333                             VM_FAULT_RETRY)))
3334                 goto uncharge_out;
3335
3336         if (unlikely(PageHWPoison(vmf.page))) {
3337                 if (ret & VM_FAULT_LOCKED)
3338                         unlock_page(vmf.page);
3339                 ret = VM_FAULT_HWPOISON;
3340                 goto uncharge_out;
3341         }
3342
3343         /*
3344          * For consistency in subsequent calls, make the faulted page always
3345          * locked.
3346          */
3347         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3348                 lock_page(vmf.page);
3349         else
3350                 VM_BUG_ON(!PageLocked(vmf.page));
3351
3352         /*
3353          * Should we do an early C-O-W break?
3354          */
3355         page = vmf.page;
3356         if (flags & FAULT_FLAG_WRITE) {
3357                 if (!(vma->vm_flags & VM_SHARED)) {
3358                         page = cow_page;
3359                         anon = 1;
3360                         copy_user_highpage(page, vmf.page, address, vma);
3361                         __SetPageUptodate(page);
3362                 } else {
3363                         /*
3364                          * If the page will be shareable, see if the backing
3365                          * address space wants to know that the page is about
3366                          * to become writable
3367                          */
3368                         if (vma->vm_ops->page_mkwrite) {
3369                                 int tmp;
3370
3371                                 unlock_page(page);
3372                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3373                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3374                                 if (unlikely(tmp &
3375                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3376                                         ret = tmp;
3377                                         goto unwritable_page;
3378                                 }
3379                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3380                                         lock_page(page);
3381                                         if (!page->mapping) {
3382                                                 ret = 0; /* retry the fault */
3383                                                 unlock_page(page);
3384                                                 goto unwritable_page;
3385                                         }
3386                                 } else
3387                                         VM_BUG_ON(!PageLocked(page));
3388                                 page_mkwrite = 1;
3389                         }
3390                 }
3391
3392         }
3393
3394         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3395
3396         /*
3397          * This silly early PAGE_DIRTY setting removes a race
3398          * due to the bad i386 page protection. But it's valid
3399          * for other architectures too.
3400          *
3401          * Note that if FAULT_FLAG_WRITE is set, we either now have
3402          * an exclusive copy of the page, or this is a shared mapping,
3403          * so we can make it writable and dirty to avoid having to
3404          * handle that later.
3405          */
3406         /* Only go through if we didn't race with anybody else... */
3407         if (likely(pte_same(*page_table, orig_pte))) {
3408                 flush_icache_page(vma, page);
3409                 entry = mk_pte(page, vma->vm_page_prot);
3410                 if (flags & FAULT_FLAG_WRITE)
3411                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3412                 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3413                         pte_mksoft_dirty(entry);
3414                 if (anon) {
3415                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3416                         page_add_new_anon_rmap(page, vma, address);
3417                 } else {
3418                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3419                         page_add_file_rmap(page);
3420                         if (flags & FAULT_FLAG_WRITE) {
3421                                 dirty_page = page;
3422                                 get_page(dirty_page);
3423                         }
3424                 }
3425                 set_pte_at(mm, address, page_table, entry);
3426
3427                 /* no need to invalidate: a not-present page won't be cached */
3428                 update_mmu_cache(vma, address, page_table);
3429         } else {
3430                 if (cow_page)
3431                         mem_cgroup_uncharge_page(cow_page);
3432                 if (anon)
3433                         page_cache_release(page);
3434                 else
3435                         anon = 1; /* no anon but release faulted_page */
3436         }
3437
3438         pte_unmap_unlock(page_table, ptl);
3439
3440         if (dirty_page) {
3441                 struct address_space *mapping = page->mapping;
3442                 int dirtied = 0;
3443
3444                 if (set_page_dirty(dirty_page))
3445                         dirtied = 1;
3446                 unlock_page(dirty_page);
3447                 put_page(dirty_page);
3448                 if ((dirtied || page_mkwrite) && mapping) {
3449                         /*
3450                          * Some device drivers do not set page.mapping but still
3451                          * dirty their pages
3452                          */
3453                         balance_dirty_pages_ratelimited(mapping);
3454                 }
3455
3456                 /* file_update_time outside page_lock */
3457                 if (vma->vm_file && !page_mkwrite)
3458                         file_update_time(vma->vm_file);
3459         } else {
3460                 unlock_page(vmf.page);
3461                 if (anon)
3462                         page_cache_release(vmf.page);
3463         }
3464
3465         return ret;
3466
3467 unwritable_page:
3468         page_cache_release(page);
3469         return ret;
3470 uncharge_out:
3471         /* fs's fault handler get error */
3472         if (cow_page) {
3473                 mem_cgroup_uncharge_page(cow_page);
3474                 page_cache_release(cow_page);
3475         }
3476         return ret;
3477 }
3478
3479 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3480                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3481                 unsigned int flags, pte_t orig_pte)
3482 {
3483         pgoff_t pgoff = (((address & PAGE_MASK)
3484                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3485
3486         pte_unmap(page_table);
3487         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3488 }
3489
3490 /*
3491  * Fault of a previously existing named mapping. Repopulate the pte
3492  * from the encoded file_pte if possible. This enables swappable
3493  * nonlinear vmas.
3494  *
3495  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3496  * but allow concurrent faults), and pte mapped but not yet locked.
3497  * We return with mmap_sem still held, but pte unmapped and unlocked.
3498  */
3499 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3500                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3501                 unsigned int flags, pte_t orig_pte)
3502 {
3503         pgoff_t pgoff;
3504
3505         flags |= FAULT_FLAG_NONLINEAR;
3506
3507         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3508                 return 0;
3509
3510         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3511                 /*
3512                  * Page table corrupted: show pte and kill process.
3513                  */
3514                 print_bad_pte(vma, address, orig_pte, NULL);
3515                 return VM_FAULT_SIGBUS;
3516         }
3517
3518         pgoff = pte_to_pgoff(orig_pte);
3519         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3520 }
3521
3522 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3523                                 unsigned long addr, int current_nid)
3524 {
3525         get_page(page);
3526
3527         count_vm_numa_event(NUMA_HINT_FAULTS);
3528         if (current_nid == numa_node_id())
3529                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3530
3531         return mpol_misplaced(page, vma, addr);
3532 }
3533
3534 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3535                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3536 {
3537         struct page *page = NULL;
3538         spinlock_t *ptl;
3539         int current_nid = -1;
3540         int target_nid;
3541         bool migrated = false;
3542
3543         /*
3544         * The "pte" at this point cannot be used safely without
3545         * validation through pte_unmap_same(). It's of NUMA type but
3546         * the pfn may be screwed if the read is non atomic.
3547         *
3548         * ptep_modify_prot_start is not called as this is clearing
3549         * the _PAGE_NUMA bit and it is not really expected that there
3550         * would be concurrent hardware modifications to the PTE.
3551         */
3552         ptl = pte_lockptr(mm, pmd);
3553         spin_lock(ptl);
3554         if (unlikely(!pte_same(*ptep, pte))) {
3555                 pte_unmap_unlock(ptep, ptl);
3556                 goto out;
3557         }
3558
3559         pte = pte_mknonnuma(pte);
3560         set_pte_at(mm, addr, ptep, pte);
3561         update_mmu_cache(vma, addr, ptep);
3562
3563         page = vm_normal_page(vma, addr, pte);
3564         if (!page) {
3565                 pte_unmap_unlock(ptep, ptl);
3566                 return 0;
3567         }
3568
3569         current_nid = page_to_nid(page);
3570         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3571         pte_unmap_unlock(ptep, ptl);
3572         if (target_nid == -1) {
3573                 /*
3574                  * Account for the fault against the current node if it not
3575                  * being replaced regardless of where the page is located.
3576                  */
3577                 current_nid = numa_node_id();
3578                 put_page(page);
3579                 goto out;
3580         }
3581
3582         /* Migrate to the requested node */
3583         migrated = migrate_misplaced_page(page, target_nid);
3584         if (migrated)
3585                 current_nid = target_nid;
3586
3587 out:
3588         if (current_nid != -1)
3589                 task_numa_fault(current_nid, 1, migrated);
3590         return 0;
3591 }
3592
3593 /* NUMA hinting page fault entry point for regular pmds */
3594 #ifdef CONFIG_NUMA_BALANCING
3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3596                      unsigned long addr, pmd_t *pmdp)
3597 {
3598         pmd_t pmd;
3599         pte_t *pte, *orig_pte;
3600         unsigned long _addr = addr & PMD_MASK;
3601         unsigned long offset;
3602         spinlock_t *ptl;
3603         bool numa = false;
3604         int local_nid = numa_node_id();
3605
3606         spin_lock(&mm->page_table_lock);
3607         pmd = *pmdp;
3608         if (pmd_numa(pmd)) {
3609                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3610                 numa = true;
3611         }
3612         spin_unlock(&mm->page_table_lock);
3613
3614         if (!numa)
3615                 return 0;
3616
3617         /* we're in a page fault so some vma must be in the range */
3618         BUG_ON(!vma);
3619         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3620         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3621         VM_BUG_ON(offset >= PMD_SIZE);
3622         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3623         pte += offset >> PAGE_SHIFT;
3624         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3625                 pte_t pteval = *pte;
3626                 struct page *page;
3627                 int curr_nid = local_nid;
3628                 int target_nid;
3629                 bool migrated;
3630                 if (!pte_present(pteval))
3631                         continue;
3632                 if (!pte_numa(pteval))
3633                         continue;
3634                 if (addr >= vma->vm_end) {
3635                         vma = find_vma(mm, addr);
3636                         /* there's a pte present so there must be a vma */
3637                         BUG_ON(!vma);
3638                         BUG_ON(addr < vma->vm_start);
3639                 }
3640                 if (pte_numa(pteval)) {
3641                         pteval = pte_mknonnuma(pteval);
3642                         set_pte_at(mm, addr, pte, pteval);
3643                 }
3644                 page = vm_normal_page(vma, addr, pteval);
3645                 if (unlikely(!page))
3646                         continue;
3647                 /* only check non-shared pages */
3648                 if (unlikely(page_mapcount(page) != 1))
3649                         continue;
3650
3651                 /*
3652                  * Note that the NUMA fault is later accounted to either
3653                  * the node that is currently running or where the page is
3654                  * migrated to.
3655                  */
3656                 curr_nid = local_nid;
3657                 target_nid = numa_migrate_prep(page, vma, addr,
3658                                                page_to_nid(page));
3659                 if (target_nid == -1) {
3660                         put_page(page);
3661                         continue;
3662                 }
3663
3664                 /* Migrate to the requested node */
3665                 pte_unmap_unlock(pte, ptl);
3666                 migrated = migrate_misplaced_page(page, target_nid);
3667                 if (migrated)
3668                         curr_nid = target_nid;
3669                 task_numa_fault(curr_nid, 1, migrated);
3670
3671                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3672         }
3673         pte_unmap_unlock(orig_pte, ptl);
3674
3675         return 0;
3676 }
3677 #else
3678 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3679                      unsigned long addr, pmd_t *pmdp)
3680 {
3681         BUG();
3682         return 0;
3683 }
3684 #endif /* CONFIG_NUMA_BALANCING */
3685
3686 /*
3687  * These routines also need to handle stuff like marking pages dirty
3688  * and/or accessed for architectures that don't do it in hardware (most
3689  * RISC architectures).  The early dirtying is also good on the i386.
3690  *
3691  * There is also a hook called "update_mmu_cache()" that architectures
3692  * with external mmu caches can use to update those (ie the Sparc or
3693  * PowerPC hashed page tables that act as extended TLBs).
3694  *
3695  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3696  * but allow concurrent faults), and pte mapped but not yet locked.
3697  * We return with mmap_sem still held, but pte unmapped and unlocked.
3698  */
3699 static int handle_pte_fault(struct mm_struct *mm,
3700                      struct vm_area_struct *vma, unsigned long address,
3701                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3702 {
3703         pte_t entry;
3704         spinlock_t *ptl;
3705
3706         entry = *pte;
3707         if (!pte_present(entry)) {
3708                 if (pte_none(entry)) {
3709                         if (vma->vm_ops) {
3710                                 if (likely(vma->vm_ops->fault))
3711                                         return do_linear_fault(mm, vma, address,
3712                                                 pte, pmd, flags, entry);
3713                         }
3714                         return do_anonymous_page(mm, vma, address,
3715                                                  pte, pmd, flags);
3716                 }
3717                 if (pte_file(entry))
3718                         return do_nonlinear_fault(mm, vma, address,
3719                                         pte, pmd, flags, entry);
3720                 return do_swap_page(mm, vma, address,
3721                                         pte, pmd, flags, entry);
3722         }
3723
3724         if (pte_numa(entry))
3725                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3726
3727         ptl = pte_lockptr(mm, pmd);
3728         spin_lock(ptl);
3729         if (unlikely(!pte_same(*pte, entry)))
3730                 goto unlock;
3731         if (flags & FAULT_FLAG_WRITE) {
3732                 if (!pte_write(entry))
3733                         return do_wp_page(mm, vma, address,
3734                                         pte, pmd, ptl, entry);
3735                 entry = pte_mkdirty(entry);
3736         }
3737         entry = pte_mkyoung(entry);
3738         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3739                 update_mmu_cache(vma, address, pte);
3740         } else {
3741                 /*
3742                  * This is needed only for protection faults but the arch code
3743                  * is not yet telling us if this is a protection fault or not.
3744                  * This still avoids useless tlb flushes for .text page faults
3745                  * with threads.
3746                  */
3747                 if (flags & FAULT_FLAG_WRITE)
3748                         flush_tlb_fix_spurious_fault(vma, address);
3749         }
3750 unlock:
3751         pte_unmap_unlock(pte, ptl);
3752         return 0;
3753 }
3754
3755 /*
3756  * By the time we get here, we already hold the mm semaphore
3757  */
3758 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3759                              unsigned long address, unsigned int flags)
3760 {
3761         pgd_t *pgd;
3762         pud_t *pud;
3763         pmd_t *pmd;
3764         pte_t *pte;
3765
3766         if (unlikely(is_vm_hugetlb_page(vma)))
3767                 return hugetlb_fault(mm, vma, address, flags);
3768
3769 retry:
3770         pgd = pgd_offset(mm, address);
3771         pud = pud_alloc(mm, pgd, address);
3772         if (!pud)
3773                 return VM_FAULT_OOM;
3774         pmd = pmd_alloc(mm, pud, address);
3775         if (!pmd)
3776                 return VM_FAULT_OOM;
3777         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3778                 int ret = VM_FAULT_FALLBACK;
3779                 if (!vma->vm_ops)
3780                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3781                                         pmd, flags);
3782                 if (!(ret & VM_FAULT_FALLBACK))
3783                         return ret;
3784         } else {
3785                 pmd_t orig_pmd = *pmd;
3786                 int ret;
3787
3788                 barrier();
3789                 if (pmd_trans_huge(orig_pmd)) {
3790                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3791
3792                         /*
3793                          * If the pmd is splitting, return and retry the
3794                          * the fault.  Alternative: wait until the split
3795                          * is done, and goto retry.
3796                          */
3797                         if (pmd_trans_splitting(orig_pmd))
3798                                 return 0;
3799
3800                         if (pmd_numa(orig_pmd))
3801                                 return do_huge_pmd_numa_page(mm, vma, address,
3802                                                              orig_pmd, pmd);
3803
3804                         if (dirty && !pmd_write(orig_pmd)) {
3805                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3806                                                           orig_pmd);
3807                                 /*
3808                                  * If COW results in an oom, the huge pmd will
3809                                  * have been split, so retry the fault on the
3810                                  * pte for a smaller charge.
3811                                  */
3812                                 if (unlikely(ret & VM_FAULT_OOM))
3813                                         goto retry;
3814                                 return ret;
3815                         } else {
3816                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3817                                                       orig_pmd, dirty);
3818                         }
3819
3820                         return 0;
3821                 }
3822         }
3823
3824         if (pmd_numa(*pmd))
3825                 return do_pmd_numa_page(mm, vma, address, pmd);
3826
3827         /*
3828          * Use __pte_alloc instead of pte_alloc_map, because we can't
3829          * run pte_offset_map on the pmd, if an huge pmd could
3830          * materialize from under us from a different thread.
3831          */
3832         if (unlikely(pmd_none(*pmd)) &&
3833             unlikely(__pte_alloc(mm, vma, pmd, address)))
3834                 return VM_FAULT_OOM;
3835         /* if an huge pmd materialized from under us just retry later */
3836         if (unlikely(pmd_trans_huge(*pmd)))
3837                 return 0;
3838         /*
3839          * A regular pmd is established and it can't morph into a huge pmd
3840          * from under us anymore at this point because we hold the mmap_sem
3841          * read mode and khugepaged takes it in write mode. So now it's
3842          * safe to run pte_offset_map().
3843          */
3844         pte = pte_offset_map(pmd, address);
3845
3846         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3847 }
3848
3849 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3850                     unsigned long address, unsigned int flags)
3851 {
3852         int ret;
3853
3854         __set_current_state(TASK_RUNNING);
3855
3856         count_vm_event(PGFAULT);
3857         mem_cgroup_count_vm_event(mm, PGFAULT);
3858
3859         /* do counter updates before entering really critical section. */
3860         check_sync_rss_stat(current);
3861
3862         /*
3863          * Enable the memcg OOM handling for faults triggered in user
3864          * space.  Kernel faults are handled more gracefully.
3865          */
3866         if (flags & FAULT_FLAG_USER)
3867                 mem_cgroup_enable_oom();
3868
3869         ret = __handle_mm_fault(mm, vma, address, flags);
3870
3871         if (flags & FAULT_FLAG_USER)
3872                 mem_cgroup_disable_oom();
3873
3874         if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)))
3875                 mem_cgroup_oom_synchronize();
3876
3877         return ret;
3878 }
3879
3880 #ifndef __PAGETABLE_PUD_FOLDED
3881 /*
3882  * Allocate page upper directory.
3883  * We've already handled the fast-path in-line.
3884  */
3885 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3886 {
3887         pud_t *new = pud_alloc_one(mm, address);
3888         if (!new)
3889                 return -ENOMEM;
3890
3891         smp_wmb(); /* See comment in __pte_alloc */
3892
3893         spin_lock(&mm->page_table_lock);
3894         if (pgd_present(*pgd))          /* Another has populated it */
3895                 pud_free(mm, new);
3896         else
3897                 pgd_populate(mm, pgd, new);
3898         spin_unlock(&mm->page_table_lock);
3899         return 0;
3900 }
3901 #endif /* __PAGETABLE_PUD_FOLDED */
3902
3903 #ifndef __PAGETABLE_PMD_FOLDED
3904 /*
3905  * Allocate page middle directory.
3906  * We've already handled the fast-path in-line.
3907  */
3908 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3909 {
3910         pmd_t *new = pmd_alloc_one(mm, address);
3911         if (!new)
3912                 return -ENOMEM;
3913
3914         smp_wmb(); /* See comment in __pte_alloc */
3915
3916         spin_lock(&mm->page_table_lock);
3917 #ifndef __ARCH_HAS_4LEVEL_HACK
3918         if (pud_present(*pud))          /* Another has populated it */
3919                 pmd_free(mm, new);
3920         else
3921                 pud_populate(mm, pud, new);
3922 #else
3923         if (pgd_present(*pud))          /* Another has populated it */
3924                 pmd_free(mm, new);
3925         else
3926                 pgd_populate(mm, pud, new);
3927 #endif /* __ARCH_HAS_4LEVEL_HACK */
3928         spin_unlock(&mm->page_table_lock);
3929         return 0;
3930 }
3931 #endif /* __PAGETABLE_PMD_FOLDED */
3932
3933 #if !defined(__HAVE_ARCH_GATE_AREA)
3934
3935 #if defined(AT_SYSINFO_EHDR)
3936 static struct vm_area_struct gate_vma;
3937
3938 static int __init gate_vma_init(void)
3939 {
3940         gate_vma.vm_mm = NULL;
3941         gate_vma.vm_start = FIXADDR_USER_START;
3942         gate_vma.vm_end = FIXADDR_USER_END;
3943         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3944         gate_vma.vm_page_prot = __P101;
3945
3946         return 0;
3947 }
3948 __initcall(gate_vma_init);
3949 #endif
3950
3951 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3952 {
3953 #ifdef AT_SYSINFO_EHDR
3954         return &gate_vma;
3955 #else
3956         return NULL;
3957 #endif
3958 }
3959
3960 int in_gate_area_no_mm(unsigned long addr)
3961 {
3962 #ifdef AT_SYSINFO_EHDR
3963         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3964                 return 1;
3965 #endif
3966         return 0;
3967 }
3968
3969 #endif  /* __HAVE_ARCH_GATE_AREA */
3970
3971 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3972                 pte_t **ptepp, spinlock_t **ptlp)
3973 {
3974         pgd_t *pgd;
3975         pud_t *pud;
3976         pmd_t *pmd;
3977         pte_t *ptep;
3978
3979         pgd = pgd_offset(mm, address);
3980         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3981                 goto out;
3982
3983         pud = pud_offset(pgd, address);
3984         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3985                 goto out;
3986
3987         pmd = pmd_offset(pud, address);
3988         VM_BUG_ON(pmd_trans_huge(*pmd));
3989         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3990                 goto out;
3991
3992         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3993         if (pmd_huge(*pmd))
3994                 goto out;
3995
3996         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3997         if (!ptep)
3998                 goto out;
3999         if (!pte_present(*ptep))
4000                 goto unlock;
4001         *ptepp = ptep;
4002         return 0;
4003 unlock:
4004         pte_unmap_unlock(ptep, *ptlp);
4005 out:
4006         return -EINVAL;
4007 }
4008
4009 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4010                              pte_t **ptepp, spinlock_t **ptlp)
4011 {
4012         int res;
4013
4014         /* (void) is needed to make gcc happy */
4015         (void) __cond_lock(*ptlp,
4016                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4017         return res;
4018 }
4019
4020 /**
4021  * follow_pfn - look up PFN at a user virtual address
4022  * @vma: memory mapping
4023  * @address: user virtual address
4024  * @pfn: location to store found PFN
4025  *
4026  * Only IO mappings and raw PFN mappings are allowed.
4027  *
4028  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4029  */
4030 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4031         unsigned long *pfn)
4032 {
4033         int ret = -EINVAL;
4034         spinlock_t *ptl;
4035         pte_t *ptep;
4036
4037         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4038                 return ret;
4039
4040         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4041         if (ret)
4042                 return ret;
4043         *pfn = pte_pfn(*ptep);
4044         pte_unmap_unlock(ptep, ptl);
4045         return 0;
4046 }
4047 EXPORT_SYMBOL(follow_pfn);
4048
4049 #ifdef CONFIG_HAVE_IOREMAP_PROT
4050 int follow_phys(struct vm_area_struct *vma,
4051                 unsigned long address, unsigned int flags,
4052                 unsigned long *prot, resource_size_t *phys)
4053 {
4054         int ret = -EINVAL;
4055         pte_t *ptep, pte;
4056         spinlock_t *ptl;
4057
4058         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4059                 goto out;
4060
4061         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4062                 goto out;
4063         pte = *ptep;
4064
4065         if ((flags & FOLL_WRITE) && !pte_write(pte))
4066                 goto unlock;
4067
4068         *prot = pgprot_val(pte_pgprot(pte));
4069         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4070
4071         ret = 0;
4072 unlock:
4073         pte_unmap_unlock(ptep, ptl);
4074 out:
4075         return ret;
4076 }
4077
4078 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4079                         void *buf, int len, int write)
4080 {
4081         resource_size_t phys_addr;
4082         unsigned long prot = 0;
4083         void __iomem *maddr;
4084         int offset = addr & (PAGE_SIZE-1);
4085
4086         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4087                 return -EINVAL;
4088
4089         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4090         if (write)
4091                 memcpy_toio(maddr + offset, buf, len);
4092         else
4093                 memcpy_fromio(buf, maddr + offset, len);
4094         iounmap(maddr);
4095
4096         return len;
4097 }
4098 EXPORT_SYMBOL_GPL(generic_access_phys);
4099 #endif
4100
4101 /*
4102  * Access another process' address space as given in mm.  If non-NULL, use the
4103  * given task for page fault accounting.
4104  */
4105 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4106                 unsigned long addr, void *buf, int len, int write)
4107 {
4108         struct vm_area_struct *vma;
4109         void *old_buf = buf;
4110
4111         down_read(&mm->mmap_sem);
4112         /* ignore errors, just check how much was successfully transferred */
4113         while (len) {
4114                 int bytes, ret, offset;
4115                 void *maddr;
4116                 struct page *page = NULL;
4117
4118                 ret = get_user_pages(tsk, mm, addr, 1,
4119                                 write, 1, &page, &vma);
4120                 if (ret <= 0) {
4121                         /*
4122                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4123                          * we can access using slightly different code.
4124                          */
4125 #ifdef CONFIG_HAVE_IOREMAP_PROT
4126                         vma = find_vma(mm, addr);
4127                         if (!vma || vma->vm_start > addr)
4128                                 break;
4129                         if (vma->vm_ops && vma->vm_ops->access)
4130                                 ret = vma->vm_ops->access(vma, addr, buf,
4131                                                           len, write);
4132                         if (ret <= 0)
4133 #endif
4134                                 break;
4135                         bytes = ret;
4136                 } else {
4137                         bytes = len;
4138                         offset = addr & (PAGE_SIZE-1);
4139                         if (bytes > PAGE_SIZE-offset)
4140                                 bytes = PAGE_SIZE-offset;
4141
4142                         maddr = kmap(page);
4143                         if (write) {
4144                                 copy_to_user_page(vma, page, addr,
4145                                                   maddr + offset, buf, bytes);
4146                                 set_page_dirty_lock(page);
4147                         } else {
4148                                 copy_from_user_page(vma, page, addr,
4149                                                     buf, maddr + offset, bytes);
4150                         }
4151                         kunmap(page);
4152                         page_cache_release(page);
4153                 }
4154                 len -= bytes;
4155                 buf += bytes;
4156                 addr += bytes;
4157         }
4158         up_read(&mm->mmap_sem);
4159
4160         return buf - old_buf;
4161 }
4162
4163 /**
4164  * access_remote_vm - access another process' address space
4165  * @mm:         the mm_struct of the target address space
4166  * @addr:       start address to access
4167  * @buf:        source or destination buffer
4168  * @len:        number of bytes to transfer
4169  * @write:      whether the access is a write
4170  *
4171  * The caller must hold a reference on @mm.
4172  */
4173 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4174                 void *buf, int len, int write)
4175 {
4176         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4177 }
4178
4179 /*
4180  * Access another process' address space.
4181  * Source/target buffer must be kernel space,
4182  * Do not walk the page table directly, use get_user_pages
4183  */
4184 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4185                 void *buf, int len, int write)
4186 {
4187         struct mm_struct *mm;
4188         int ret;
4189
4190         mm = get_task_mm(tsk);
4191         if (!mm)
4192                 return 0;
4193
4194         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4195         mmput(mm);
4196
4197         return ret;
4198 }
4199
4200 /*
4201  * Print the name of a VMA.
4202  */
4203 void print_vma_addr(char *prefix, unsigned long ip)
4204 {
4205         struct mm_struct *mm = current->mm;
4206         struct vm_area_struct *vma;
4207
4208         /*
4209          * Do not print if we are in atomic
4210          * contexts (in exception stacks, etc.):
4211          */
4212         if (preempt_count())
4213                 return;
4214
4215         down_read(&mm->mmap_sem);
4216         vma = find_vma(mm, ip);
4217         if (vma && vma->vm_file) {
4218                 struct file *f = vma->vm_file;
4219                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4220                 if (buf) {
4221                         char *p;
4222
4223                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4224                         if (IS_ERR(p))
4225                                 p = "?";
4226                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4227                                         vma->vm_start,
4228                                         vma->vm_end - vma->vm_start);
4229                         free_page((unsigned long)buf);
4230                 }
4231         }
4232         up_read(&mm->mmap_sem);
4233 }
4234
4235 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4236 void might_fault(void)
4237 {
4238         /*
4239          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4240          * holding the mmap_sem, this is safe because kernel memory doesn't
4241          * get paged out, therefore we'll never actually fault, and the
4242          * below annotations will generate false positives.
4243          */
4244         if (segment_eq(get_fs(), KERNEL_DS))
4245                 return;
4246
4247         /*
4248          * it would be nicer only to annotate paths which are not under
4249          * pagefault_disable, however that requires a larger audit and
4250          * providing helpers like get_user_atomic.
4251          */
4252         if (in_atomic())
4253                 return;
4254
4255         __might_sleep(__FILE__, __LINE__, 0);
4256
4257         if (current->mm)
4258                 might_lock_read(&current->mm->mmap_sem);
4259 }
4260 EXPORT_SYMBOL(might_fault);
4261 #endif
4262
4263 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4264 static void clear_gigantic_page(struct page *page,
4265                                 unsigned long addr,
4266                                 unsigned int pages_per_huge_page)
4267 {
4268         int i;
4269         struct page *p = page;
4270
4271         might_sleep();
4272         for (i = 0; i < pages_per_huge_page;
4273              i++, p = mem_map_next(p, page, i)) {
4274                 cond_resched();
4275                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4276         }
4277 }
4278 void clear_huge_page(struct page *page,
4279                      unsigned long addr, unsigned int pages_per_huge_page)
4280 {
4281         int i;
4282
4283         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4284                 clear_gigantic_page(page, addr, pages_per_huge_page);
4285                 return;
4286         }
4287
4288         might_sleep();
4289         for (i = 0; i < pages_per_huge_page; i++) {
4290                 cond_resched();
4291                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4292         }
4293 }
4294
4295 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4296                                     unsigned long addr,
4297                                     struct vm_area_struct *vma,
4298                                     unsigned int pages_per_huge_page)
4299 {
4300         int i;
4301         struct page *dst_base = dst;
4302         struct page *src_base = src;
4303
4304         for (i = 0; i < pages_per_huge_page; ) {
4305                 cond_resched();
4306                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4307
4308                 i++;
4309                 dst = mem_map_next(dst, dst_base, i);
4310                 src = mem_map_next(src, src_base, i);
4311         }
4312 }
4313
4314 void copy_user_huge_page(struct page *dst, struct page *src,
4315                          unsigned long addr, struct vm_area_struct *vma,
4316                          unsigned int pages_per_huge_page)
4317 {
4318         int i;
4319
4320         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4321                 copy_user_gigantic_page(dst, src, addr, vma,
4322                                         pages_per_huge_page);
4323                 return;
4324         }
4325
4326         might_sleep();
4327         for (i = 0; i < pages_per_huge_page; i++) {
4328                 cond_resched();
4329                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4330         }
4331 }
4332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */