]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memory.c
clk: imx: add kpp clock for i.MX6UL
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73
74 #include "internal.h"
75
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97
98 EXPORT_SYMBOL(high_memory);
99
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108                                         1;
109 #else
110                                         2;
111 #endif
112
113 static int __init disable_randmaps(char *s)
114 {
115         randomize_va_space = 0;
116         return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122
123 EXPORT_SYMBOL(zero_pfn);
124
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130         zero_pfn = page_to_pfn(ZERO_PAGE(0));
131         return 0;
132 }
133 core_initcall(init_zero_pfn);
134
135
136 #if defined(SPLIT_RSS_COUNTING)
137
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140         int i;
141
142         for (i = 0; i < NR_MM_COUNTERS; i++) {
143                 if (current->rss_stat.count[i]) {
144                         add_mm_counter(mm, i, current->rss_stat.count[i]);
145                         current->rss_stat.count[i] = 0;
146                 }
147         }
148         current->rss_stat.events = 0;
149 }
150
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153         struct task_struct *task = current;
154
155         if (likely(task->mm == mm))
156                 task->rss_stat.count[member] += val;
157         else
158                 add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH  (64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167         if (unlikely(task != current))
168                 return;
169         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170                 sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180
181 #endif /* SPLIT_RSS_COUNTING */
182
183 #ifdef HAVE_GENERIC_MMU_GATHER
184
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187         struct mmu_gather_batch *batch;
188
189         batch = tlb->active;
190         if (batch->next) {
191                 tlb->active = batch->next;
192                 return true;
193         }
194
195         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196                 return false;
197
198         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199         if (!batch)
200                 return false;
201
202         tlb->batch_count++;
203         batch->next = NULL;
204         batch->nr   = 0;
205         batch->max  = MAX_GATHER_BATCH;
206
207         tlb->active->next = batch;
208         tlb->active = batch;
209
210         return true;
211 }
212
213 /* tlb_gather_mmu
214  *      Called to initialize an (on-stack) mmu_gather structure for page-table
215  *      tear-down from @mm. The @fullmm argument is used when @mm is without
216  *      users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220         tlb->mm = mm;
221
222         /* Is it from 0 to ~0? */
223         tlb->fullmm     = !(start | (end+1));
224         tlb->need_flush_all = 0;
225         tlb->local.next = NULL;
226         tlb->local.nr   = 0;
227         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228         tlb->active     = &tlb->local;
229         tlb->batch_count = 0;
230
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232         tlb->batch = NULL;
233 #endif
234
235         __tlb_reset_range(tlb);
236 }
237
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240         if (!tlb->end)
241                 return;
242
243         tlb_flush(tlb);
244         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256                 free_pages_and_swap_cache(batch->pages, batch->nr);
257                 batch->nr = 0;
258         }
259         tlb->active = &tlb->local;
260 }
261
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264         tlb_flush_mmu_tlbonly(tlb);
265         tlb_flush_mmu_free(tlb);
266 }
267
268 /* tlb_finish_mmu
269  *      Called at the end of the shootdown operation to free up any resources
270  *      that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274         struct mmu_gather_batch *batch, *next;
275
276         tlb_flush_mmu(tlb);
277
278         /* keep the page table cache within bounds */
279         check_pgt_cache();
280
281         for (batch = tlb->local.next; batch; batch = next) {
282                 next = batch->next;
283                 free_pages((unsigned long)batch, 0);
284         }
285         tlb->local.next = NULL;
286 }
287
288 /* __tlb_remove_page
289  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *      handling the additional races in SMP caused by other CPUs caching valid
291  *      mappings in their TLBs. Returns the number of free page slots left.
292  *      When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296         struct mmu_gather_batch *batch;
297
298         VM_BUG_ON(!tlb->end);
299
300         batch = tlb->active;
301         batch->pages[batch->nr++] = page;
302         if (batch->nr == batch->max) {
303                 if (!tlb_next_batch(tlb))
304                         return 0;
305                 batch = tlb->active;
306         }
307         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308
309         return batch->max - batch->nr;
310 }
311
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322         /* Simply deliver the interrupt */
323 }
324
325 static void tlb_remove_table_one(void *table)
326 {
327         /*
328          * This isn't an RCU grace period and hence the page-tables cannot be
329          * assumed to be actually RCU-freed.
330          *
331          * It is however sufficient for software page-table walkers that rely on
332          * IRQ disabling. See the comment near struct mmu_table_batch.
333          */
334         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335         __tlb_remove_table(table);
336 }
337
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340         struct mmu_table_batch *batch;
341         int i;
342
343         batch = container_of(head, struct mmu_table_batch, rcu);
344
345         for (i = 0; i < batch->nr; i++)
346                 __tlb_remove_table(batch->tables[i]);
347
348         free_page((unsigned long)batch);
349 }
350
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353         struct mmu_table_batch **batch = &tlb->batch;
354
355         if (*batch) {
356                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357                 *batch = NULL;
358         }
359 }
360
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363         struct mmu_table_batch **batch = &tlb->batch;
364
365         /*
366          * When there's less then two users of this mm there cannot be a
367          * concurrent page-table walk.
368          */
369         if (atomic_read(&tlb->mm->mm_users) < 2) {
370                 __tlb_remove_table(table);
371                 return;
372         }
373
374         if (*batch == NULL) {
375                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376                 if (*batch == NULL) {
377                         tlb_remove_table_one(table);
378                         return;
379                 }
380                 (*batch)->nr = 0;
381         }
382         (*batch)->tables[(*batch)->nr++] = table;
383         if ((*batch)->nr == MAX_TABLE_BATCH)
384                 tlb_table_flush(tlb);
385 }
386
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394                            unsigned long addr)
395 {
396         pgtable_t token = pmd_pgtable(*pmd);
397         pmd_clear(pmd);
398         pte_free_tlb(tlb, token, addr);
399         atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403                                 unsigned long addr, unsigned long end,
404                                 unsigned long floor, unsigned long ceiling)
405 {
406         pmd_t *pmd;
407         unsigned long next;
408         unsigned long start;
409
410         start = addr;
411         pmd = pmd_offset(pud, addr);
412         do {
413                 next = pmd_addr_end(addr, end);
414                 if (pmd_none_or_clear_bad(pmd))
415                         continue;
416                 free_pte_range(tlb, pmd, addr);
417         } while (pmd++, addr = next, addr != end);
418
419         start &= PUD_MASK;
420         if (start < floor)
421                 return;
422         if (ceiling) {
423                 ceiling &= PUD_MASK;
424                 if (!ceiling)
425                         return;
426         }
427         if (end - 1 > ceiling - 1)
428                 return;
429
430         pmd = pmd_offset(pud, start);
431         pud_clear(pud);
432         pmd_free_tlb(tlb, pmd, start);
433         mm_dec_nr_pmds(tlb->mm);
434 }
435
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pud_t *pud;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pud = pud_offset(pgd, addr);
446         do {
447                 next = pud_addr_end(addr, end);
448                 if (pud_none_or_clear_bad(pud))
449                         continue;
450                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451         } while (pud++, addr = next, addr != end);
452
453         start &= PGDIR_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PGDIR_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pud = pud_offset(pgd, start);
465         pgd_clear(pgd);
466         pud_free_tlb(tlb, pud, start);
467 }
468
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473                         unsigned long addr, unsigned long end,
474                         unsigned long floor, unsigned long ceiling)
475 {
476         pgd_t *pgd;
477         unsigned long next;
478
479         /*
480          * The next few lines have given us lots of grief...
481          *
482          * Why are we testing PMD* at this top level?  Because often
483          * there will be no work to do at all, and we'd prefer not to
484          * go all the way down to the bottom just to discover that.
485          *
486          * Why all these "- 1"s?  Because 0 represents both the bottom
487          * of the address space and the top of it (using -1 for the
488          * top wouldn't help much: the masks would do the wrong thing).
489          * The rule is that addr 0 and floor 0 refer to the bottom of
490          * the address space, but end 0 and ceiling 0 refer to the top
491          * Comparisons need to use "end - 1" and "ceiling - 1" (though
492          * that end 0 case should be mythical).
493          *
494          * Wherever addr is brought up or ceiling brought down, we must
495          * be careful to reject "the opposite 0" before it confuses the
496          * subsequent tests.  But what about where end is brought down
497          * by PMD_SIZE below? no, end can't go down to 0 there.
498          *
499          * Whereas we round start (addr) and ceiling down, by different
500          * masks at different levels, in order to test whether a table
501          * now has no other vmas using it, so can be freed, we don't
502          * bother to round floor or end up - the tests don't need that.
503          */
504
505         addr &= PMD_MASK;
506         if (addr < floor) {
507                 addr += PMD_SIZE;
508                 if (!addr)
509                         return;
510         }
511         if (ceiling) {
512                 ceiling &= PMD_MASK;
513                 if (!ceiling)
514                         return;
515         }
516         if (end - 1 > ceiling - 1)
517                 end -= PMD_SIZE;
518         if (addr > end - 1)
519                 return;
520
521         pgd = pgd_offset(tlb->mm, addr);
522         do {
523                 next = pgd_addr_end(addr, end);
524                 if (pgd_none_or_clear_bad(pgd))
525                         continue;
526                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527         } while (pgd++, addr = next, addr != end);
528 }
529
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531                 unsigned long floor, unsigned long ceiling)
532 {
533         while (vma) {
534                 struct vm_area_struct *next = vma->vm_next;
535                 unsigned long addr = vma->vm_start;
536
537                 /*
538                  * Hide vma from rmap and truncate_pagecache before freeing
539                  * pgtables
540                  */
541                 unlink_anon_vmas(vma);
542                 unlink_file_vma(vma);
543
544                 if (is_vm_hugetlb_page(vma)) {
545                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 } else {
548                         /*
549                          * Optimization: gather nearby vmas into one call down
550                          */
551                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552                                && !is_vm_hugetlb_page(next)) {
553                                 vma = next;
554                                 next = vma->vm_next;
555                                 unlink_anon_vmas(vma);
556                                 unlink_file_vma(vma);
557                         }
558                         free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 }
561                 vma = next;
562         }
563 }
564
565 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566                 pmd_t *pmd, unsigned long address)
567 {
568         spinlock_t *ptl;
569         pgtable_t new = pte_alloc_one(mm, address);
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
590                 atomic_long_inc(&mm->nr_ptes);
591                 pmd_populate(mm, pmd, new);
592                 new = NULL;
593         }
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603         if (!new)
604                 return -ENOMEM;
605
606         smp_wmb(); /* See comment in __pte_alloc */
607
608         spin_lock(&init_mm.page_table_lock);
609         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
610                 pmd_populate_kernel(&init_mm, pmd, new);
611                 new = NULL;
612         }
613         spin_unlock(&init_mm.page_table_lock);
614         if (new)
615                 pte_free_kernel(&init_mm, new);
616         return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626         int i;
627
628         if (current->mm == mm)
629                 sync_mm_rss(mm);
630         for (i = 0; i < NR_MM_COUNTERS; i++)
631                 if (rss[i])
632                         add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643                           pte_t pte, struct page *page)
644 {
645         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646         pud_t *pud = pud_offset(pgd, addr);
647         pmd_t *pmd = pmd_offset(pud, addr);
648         struct address_space *mapping;
649         pgoff_t index;
650         static unsigned long resume;
651         static unsigned long nr_shown;
652         static unsigned long nr_unshown;
653
654         /*
655          * Allow a burst of 60 reports, then keep quiet for that minute;
656          * or allow a steady drip of one report per second.
657          */
658         if (nr_shown == 60) {
659                 if (time_before(jiffies, resume)) {
660                         nr_unshown++;
661                         return;
662                 }
663                 if (nr_unshown) {
664                         printk(KERN_ALERT
665                                 "BUG: Bad page map: %lu messages suppressed\n",
666                                 nr_unshown);
667                         nr_unshown = 0;
668                 }
669                 nr_shown = 0;
670         }
671         if (nr_shown++ == 0)
672                 resume = jiffies + 60 * HZ;
673
674         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675         index = linear_page_index(vma, addr);
676
677         printk(KERN_ALERT
678                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
679                 current->comm,
680                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
681         if (page)
682                 dump_page(page, "bad pte");
683         printk(KERN_ALERT
684                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
686         /*
687          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
688          */
689         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690                  vma->vm_file,
691                  vma->vm_ops ? vma->vm_ops->fault : NULL,
692                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693                  mapping ? mapping->a_ops->readpage : NULL);
694         dump_stack();
695         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 }
697
698 /*
699  * vm_normal_page -- This function gets the "struct page" associated with a pte.
700  *
701  * "Special" mappings do not wish to be associated with a "struct page" (either
702  * it doesn't exist, or it exists but they don't want to touch it). In this
703  * case, NULL is returned here. "Normal" mappings do have a struct page.
704  *
705  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706  * pte bit, in which case this function is trivial. Secondly, an architecture
707  * may not have a spare pte bit, which requires a more complicated scheme,
708  * described below.
709  *
710  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711  * special mapping (even if there are underlying and valid "struct pages").
712  * COWed pages of a VM_PFNMAP are always normal.
713  *
714  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
716  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717  * mapping will always honor the rule
718  *
719  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720  *
721  * And for normal mappings this is false.
722  *
723  * This restricts such mappings to be a linear translation from virtual address
724  * to pfn. To get around this restriction, we allow arbitrary mappings so long
725  * as the vma is not a COW mapping; in that case, we know that all ptes are
726  * special (because none can have been COWed).
727  *
728  *
729  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730  *
731  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732  * page" backing, however the difference is that _all_ pages with a struct
733  * page (that is, those where pfn_valid is true) are refcounted and considered
734  * normal pages by the VM. The disadvantage is that pages are refcounted
735  * (which can be slower and simply not an option for some PFNMAP users). The
736  * advantage is that we don't have to follow the strict linearity rule of
737  * PFNMAP mappings in order to support COWable mappings.
738  *
739  */
740 #ifdef __HAVE_ARCH_PTE_SPECIAL
741 # define HAVE_PTE_SPECIAL 1
742 #else
743 # define HAVE_PTE_SPECIAL 0
744 #endif
745 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746                                 pte_t pte)
747 {
748         unsigned long pfn = pte_pfn(pte);
749
750         if (HAVE_PTE_SPECIAL) {
751                 if (likely(!pte_special(pte)))
752                         goto check_pfn;
753                 if (vma->vm_ops && vma->vm_ops->find_special_page)
754                         return vma->vm_ops->find_special_page(vma, addr);
755                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756                         return NULL;
757                 if (!is_zero_pfn(pfn))
758                         print_bad_pte(vma, addr, pte, NULL);
759                 return NULL;
760         }
761
762         /* !HAVE_PTE_SPECIAL case follows: */
763
764         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765                 if (vma->vm_flags & VM_MIXEDMAP) {
766                         if (!pfn_valid(pfn))
767                                 return NULL;
768                         goto out;
769                 } else {
770                         unsigned long off;
771                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
772                         if (pfn == vma->vm_pgoff + off)
773                                 return NULL;
774                         if (!is_cow_mapping(vma->vm_flags))
775                                 return NULL;
776                 }
777         }
778
779         if (is_zero_pfn(pfn))
780                 return NULL;
781 check_pfn:
782         if (unlikely(pfn > highest_memmap_pfn)) {
783                 print_bad_pte(vma, addr, pte, NULL);
784                 return NULL;
785         }
786
787         /*
788          * NOTE! We still have PageReserved() pages in the page tables.
789          * eg. VDSO mappings can cause them to exist.
790          */
791 out:
792         return pfn_to_page(pfn);
793 }
794
795 /*
796  * copy one vm_area from one task to the other. Assumes the page tables
797  * already present in the new task to be cleared in the whole range
798  * covered by this vma.
799  */
800
801 static inline unsigned long
802 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
804                 unsigned long addr, int *rss)
805 {
806         unsigned long vm_flags = vma->vm_flags;
807         pte_t pte = *src_pte;
808         struct page *page;
809
810         /* pte contains position in swap or file, so copy. */
811         if (unlikely(!pte_present(pte))) {
812                 swp_entry_t entry = pte_to_swp_entry(pte);
813
814                 if (likely(!non_swap_entry(entry))) {
815                         if (swap_duplicate(entry) < 0)
816                                 return entry.val;
817
818                         /* make sure dst_mm is on swapoff's mmlist. */
819                         if (unlikely(list_empty(&dst_mm->mmlist))) {
820                                 spin_lock(&mmlist_lock);
821                                 if (list_empty(&dst_mm->mmlist))
822                                         list_add(&dst_mm->mmlist,
823                                                         &src_mm->mmlist);
824                                 spin_unlock(&mmlist_lock);
825                         }
826                         rss[MM_SWAPENTS]++;
827                 } else if (is_migration_entry(entry)) {
828                         page = migration_entry_to_page(entry);
829
830                         rss[mm_counter(page)]++;
831
832                         if (is_write_migration_entry(entry) &&
833                                         is_cow_mapping(vm_flags)) {
834                                 /*
835                                  * COW mappings require pages in both
836                                  * parent and child to be set to read.
837                                  */
838                                 make_migration_entry_read(&entry);
839                                 pte = swp_entry_to_pte(entry);
840                                 if (pte_swp_soft_dirty(*src_pte))
841                                         pte = pte_swp_mksoft_dirty(pte);
842                                 set_pte_at(src_mm, addr, src_pte, pte);
843                         }
844                 }
845                 goto out_set_pte;
846         }
847
848         /*
849          * If it's a COW mapping, write protect it both
850          * in the parent and the child
851          */
852         if (is_cow_mapping(vm_flags)) {
853                 ptep_set_wrprotect(src_mm, addr, src_pte);
854                 pte = pte_wrprotect(pte);
855         }
856
857         /*
858          * If it's a shared mapping, mark it clean in
859          * the child
860          */
861         if (vm_flags & VM_SHARED)
862                 pte = pte_mkclean(pte);
863         pte = pte_mkold(pte);
864
865         page = vm_normal_page(vma, addr, pte);
866         if (page) {
867                 get_page(page);
868                 page_dup_rmap(page, false);
869                 rss[mm_counter(page)]++;
870         }
871
872 out_set_pte:
873         set_pte_at(dst_mm, addr, dst_pte, pte);
874         return 0;
875 }
876
877 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879                    unsigned long addr, unsigned long end)
880 {
881         pte_t *orig_src_pte, *orig_dst_pte;
882         pte_t *src_pte, *dst_pte;
883         spinlock_t *src_ptl, *dst_ptl;
884         int progress = 0;
885         int rss[NR_MM_COUNTERS];
886         swp_entry_t entry = (swp_entry_t){0};
887
888 again:
889         init_rss_vec(rss);
890
891         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
892         if (!dst_pte)
893                 return -ENOMEM;
894         src_pte = pte_offset_map(src_pmd, addr);
895         src_ptl = pte_lockptr(src_mm, src_pmd);
896         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
897         orig_src_pte = src_pte;
898         orig_dst_pte = dst_pte;
899         arch_enter_lazy_mmu_mode();
900
901         do {
902                 /*
903                  * We are holding two locks at this point - either of them
904                  * could generate latencies in another task on another CPU.
905                  */
906                 if (progress >= 32) {
907                         progress = 0;
908                         if (need_resched() ||
909                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
910                                 break;
911                 }
912                 if (pte_none(*src_pte)) {
913                         progress++;
914                         continue;
915                 }
916                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917                                                         vma, addr, rss);
918                 if (entry.val)
919                         break;
920                 progress += 8;
921         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
922
923         arch_leave_lazy_mmu_mode();
924         spin_unlock(src_ptl);
925         pte_unmap(orig_src_pte);
926         add_mm_rss_vec(dst_mm, rss);
927         pte_unmap_unlock(orig_dst_pte, dst_ptl);
928         cond_resched();
929
930         if (entry.val) {
931                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932                         return -ENOMEM;
933                 progress = 0;
934         }
935         if (addr != end)
936                 goto again;
937         return 0;
938 }
939
940 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942                 unsigned long addr, unsigned long end)
943 {
944         pmd_t *src_pmd, *dst_pmd;
945         unsigned long next;
946
947         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948         if (!dst_pmd)
949                 return -ENOMEM;
950         src_pmd = pmd_offset(src_pud, addr);
951         do {
952                 next = pmd_addr_end(addr, end);
953                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
954                         int err;
955                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
956                         err = copy_huge_pmd(dst_mm, src_mm,
957                                             dst_pmd, src_pmd, addr, vma);
958                         if (err == -ENOMEM)
959                                 return -ENOMEM;
960                         if (!err)
961                                 continue;
962                         /* fall through */
963                 }
964                 if (pmd_none_or_clear_bad(src_pmd))
965                         continue;
966                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967                                                 vma, addr, next))
968                         return -ENOMEM;
969         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
970         return 0;
971 }
972
973 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975                 unsigned long addr, unsigned long end)
976 {
977         pud_t *src_pud, *dst_pud;
978         unsigned long next;
979
980         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981         if (!dst_pud)
982                 return -ENOMEM;
983         src_pud = pud_offset(src_pgd, addr);
984         do {
985                 next = pud_addr_end(addr, end);
986                 if (pud_none_or_clear_bad(src_pud))
987                         continue;
988                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989                                                 vma, addr, next))
990                         return -ENOMEM;
991         } while (dst_pud++, src_pud++, addr = next, addr != end);
992         return 0;
993 }
994
995 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996                 struct vm_area_struct *vma)
997 {
998         pgd_t *src_pgd, *dst_pgd;
999         unsigned long next;
1000         unsigned long addr = vma->vm_start;
1001         unsigned long end = vma->vm_end;
1002         unsigned long mmun_start;       /* For mmu_notifiers */
1003         unsigned long mmun_end;         /* For mmu_notifiers */
1004         bool is_cow;
1005         int ret;
1006
1007         /*
1008          * Don't copy ptes where a page fault will fill them correctly.
1009          * Fork becomes much lighter when there are big shared or private
1010          * readonly mappings. The tradeoff is that copy_page_range is more
1011          * efficient than faulting.
1012          */
1013         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014                         !vma->anon_vma)
1015                 return 0;
1016
1017         if (is_vm_hugetlb_page(vma))
1018                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1019
1020         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1021                 /*
1022                  * We do not free on error cases below as remove_vma
1023                  * gets called on error from higher level routine
1024                  */
1025                 ret = track_pfn_copy(vma);
1026                 if (ret)
1027                         return ret;
1028         }
1029
1030         /*
1031          * We need to invalidate the secondary MMU mappings only when
1032          * there could be a permission downgrade on the ptes of the
1033          * parent mm. And a permission downgrade will only happen if
1034          * is_cow_mapping() returns true.
1035          */
1036         is_cow = is_cow_mapping(vma->vm_flags);
1037         mmun_start = addr;
1038         mmun_end   = end;
1039         if (is_cow)
1040                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041                                                     mmun_end);
1042
1043         ret = 0;
1044         dst_pgd = pgd_offset(dst_mm, addr);
1045         src_pgd = pgd_offset(src_mm, addr);
1046         do {
1047                 next = pgd_addr_end(addr, end);
1048                 if (pgd_none_or_clear_bad(src_pgd))
1049                         continue;
1050                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051                                             vma, addr, next))) {
1052                         ret = -ENOMEM;
1053                         break;
1054                 }
1055         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1056
1057         if (is_cow)
1058                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1059         return ret;
1060 }
1061
1062 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1063                                 struct vm_area_struct *vma, pmd_t *pmd,
1064                                 unsigned long addr, unsigned long end,
1065                                 struct zap_details *details)
1066 {
1067         struct mm_struct *mm = tlb->mm;
1068         int force_flush = 0;
1069         int rss[NR_MM_COUNTERS];
1070         spinlock_t *ptl;
1071         pte_t *start_pte;
1072         pte_t *pte;
1073         swp_entry_t entry;
1074
1075 again:
1076         init_rss_vec(rss);
1077         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078         pte = start_pte;
1079         arch_enter_lazy_mmu_mode();
1080         do {
1081                 pte_t ptent = *pte;
1082                 if (pte_none(ptent)) {
1083                         continue;
1084                 }
1085
1086                 if (pte_present(ptent)) {
1087                         struct page *page;
1088
1089                         page = vm_normal_page(vma, addr, ptent);
1090                         if (unlikely(details) && page) {
1091                                 /*
1092                                  * unmap_shared_mapping_pages() wants to
1093                                  * invalidate cache without truncating:
1094                                  * unmap shared but keep private pages.
1095                                  */
1096                                 if (details->check_mapping &&
1097                                     details->check_mapping != page->mapping)
1098                                         continue;
1099                         }
1100                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1101                                                         tlb->fullmm);
1102                         tlb_remove_tlb_entry(tlb, pte, addr);
1103                         if (unlikely(!page))
1104                                 continue;
1105
1106                         if (!PageAnon(page)) {
1107                                 if (pte_dirty(ptent)) {
1108                                         /*
1109                                          * oom_reaper cannot tear down dirty
1110                                          * pages
1111                                          */
1112                                         if (unlikely(details && details->ignore_dirty))
1113                                                 continue;
1114                                         force_flush = 1;
1115                                         set_page_dirty(page);
1116                                 }
1117                                 if (pte_young(ptent) &&
1118                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1119                                         mark_page_accessed(page);
1120                         }
1121                         rss[mm_counter(page)]--;
1122                         page_remove_rmap(page, false);
1123                         if (unlikely(page_mapcount(page) < 0))
1124                                 print_bad_pte(vma, addr, ptent, page);
1125                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1126                                 force_flush = 1;
1127                                 addr += PAGE_SIZE;
1128                                 break;
1129                         }
1130                         continue;
1131                 }
1132                 /* only check swap_entries if explicitly asked for in details */
1133                 if (unlikely(details && !details->check_swap_entries))
1134                         continue;
1135
1136                 entry = pte_to_swp_entry(ptent);
1137                 if (!non_swap_entry(entry))
1138                         rss[MM_SWAPENTS]--;
1139                 else if (is_migration_entry(entry)) {
1140                         struct page *page;
1141
1142                         page = migration_entry_to_page(entry);
1143                         rss[mm_counter(page)]--;
1144                 }
1145                 if (unlikely(!free_swap_and_cache(entry)))
1146                         print_bad_pte(vma, addr, ptent, NULL);
1147                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1148         } while (pte++, addr += PAGE_SIZE, addr != end);
1149
1150         add_mm_rss_vec(mm, rss);
1151         arch_leave_lazy_mmu_mode();
1152
1153         /* Do the actual TLB flush before dropping ptl */
1154         if (force_flush)
1155                 tlb_flush_mmu_tlbonly(tlb);
1156         pte_unmap_unlock(start_pte, ptl);
1157
1158         /*
1159          * If we forced a TLB flush (either due to running out of
1160          * batch buffers or because we needed to flush dirty TLB
1161          * entries before releasing the ptl), free the batched
1162          * memory too. Restart if we didn't do everything.
1163          */
1164         if (force_flush) {
1165                 force_flush = 0;
1166                 tlb_flush_mmu_free(tlb);
1167
1168                 if (addr != end)
1169                         goto again;
1170         }
1171
1172         return addr;
1173 }
1174
1175 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1176                                 struct vm_area_struct *vma, pud_t *pud,
1177                                 unsigned long addr, unsigned long end,
1178                                 struct zap_details *details)
1179 {
1180         pmd_t *pmd;
1181         unsigned long next;
1182
1183         pmd = pmd_offset(pud, addr);
1184         do {
1185                 next = pmd_addr_end(addr, end);
1186                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1187                         if (next - addr != HPAGE_PMD_SIZE) {
1188 #ifdef CONFIG_DEBUG_VM
1189                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1190                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1191                                                 __func__, addr, end,
1192                                                 vma->vm_start,
1193                                                 vma->vm_end);
1194                                         BUG();
1195                                 }
1196 #endif
1197                                 split_huge_pmd(vma, pmd, addr);
1198                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1199                                 goto next;
1200                         /* fall through */
1201                 }
1202                 /*
1203                  * Here there can be other concurrent MADV_DONTNEED or
1204                  * trans huge page faults running, and if the pmd is
1205                  * none or trans huge it can change under us. This is
1206                  * because MADV_DONTNEED holds the mmap_sem in read
1207                  * mode.
1208                  */
1209                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1210                         goto next;
1211                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1212 next:
1213                 cond_resched();
1214         } while (pmd++, addr = next, addr != end);
1215
1216         return addr;
1217 }
1218
1219 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1220                                 struct vm_area_struct *vma, pgd_t *pgd,
1221                                 unsigned long addr, unsigned long end,
1222                                 struct zap_details *details)
1223 {
1224         pud_t *pud;
1225         unsigned long next;
1226
1227         pud = pud_offset(pgd, addr);
1228         do {
1229                 next = pud_addr_end(addr, end);
1230                 if (pud_none_or_clear_bad(pud))
1231                         continue;
1232                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1233         } while (pud++, addr = next, addr != end);
1234
1235         return addr;
1236 }
1237
1238 void unmap_page_range(struct mmu_gather *tlb,
1239                              struct vm_area_struct *vma,
1240                              unsigned long addr, unsigned long end,
1241                              struct zap_details *details)
1242 {
1243         pgd_t *pgd;
1244         unsigned long next;
1245
1246         BUG_ON(addr >= end);
1247         tlb_start_vma(tlb, vma);
1248         pgd = pgd_offset(vma->vm_mm, addr);
1249         do {
1250                 next = pgd_addr_end(addr, end);
1251                 if (pgd_none_or_clear_bad(pgd))
1252                         continue;
1253                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1254         } while (pgd++, addr = next, addr != end);
1255         tlb_end_vma(tlb, vma);
1256 }
1257
1258
1259 static void unmap_single_vma(struct mmu_gather *tlb,
1260                 struct vm_area_struct *vma, unsigned long start_addr,
1261                 unsigned long end_addr,
1262                 struct zap_details *details)
1263 {
1264         unsigned long start = max(vma->vm_start, start_addr);
1265         unsigned long end;
1266
1267         if (start >= vma->vm_end)
1268                 return;
1269         end = min(vma->vm_end, end_addr);
1270         if (end <= vma->vm_start)
1271                 return;
1272
1273         if (vma->vm_file)
1274                 uprobe_munmap(vma, start, end);
1275
1276         if (unlikely(vma->vm_flags & VM_PFNMAP))
1277                 untrack_pfn(vma, 0, 0);
1278
1279         if (start != end) {
1280                 if (unlikely(is_vm_hugetlb_page(vma))) {
1281                         /*
1282                          * It is undesirable to test vma->vm_file as it
1283                          * should be non-null for valid hugetlb area.
1284                          * However, vm_file will be NULL in the error
1285                          * cleanup path of mmap_region. When
1286                          * hugetlbfs ->mmap method fails,
1287                          * mmap_region() nullifies vma->vm_file
1288                          * before calling this function to clean up.
1289                          * Since no pte has actually been setup, it is
1290                          * safe to do nothing in this case.
1291                          */
1292                         if (vma->vm_file) {
1293                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1294                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1295                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1296                         }
1297                 } else
1298                         unmap_page_range(tlb, vma, start, end, details);
1299         }
1300 }
1301
1302 /**
1303  * unmap_vmas - unmap a range of memory covered by a list of vma's
1304  * @tlb: address of the caller's struct mmu_gather
1305  * @vma: the starting vma
1306  * @start_addr: virtual address at which to start unmapping
1307  * @end_addr: virtual address at which to end unmapping
1308  *
1309  * Unmap all pages in the vma list.
1310  *
1311  * Only addresses between `start' and `end' will be unmapped.
1312  *
1313  * The VMA list must be sorted in ascending virtual address order.
1314  *
1315  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1316  * range after unmap_vmas() returns.  So the only responsibility here is to
1317  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1318  * drops the lock and schedules.
1319  */
1320 void unmap_vmas(struct mmu_gather *tlb,
1321                 struct vm_area_struct *vma, unsigned long start_addr,
1322                 unsigned long end_addr)
1323 {
1324         struct mm_struct *mm = vma->vm_mm;
1325
1326         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1327         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1328                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1329         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1330 }
1331
1332 /**
1333  * zap_page_range - remove user pages in a given range
1334  * @vma: vm_area_struct holding the applicable pages
1335  * @start: starting address of pages to zap
1336  * @size: number of bytes to zap
1337  * @details: details of shared cache invalidation
1338  *
1339  * Caller must protect the VMA list
1340  */
1341 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1342                 unsigned long size, struct zap_details *details)
1343 {
1344         struct mm_struct *mm = vma->vm_mm;
1345         struct mmu_gather tlb;
1346         unsigned long end = start + size;
1347
1348         lru_add_drain();
1349         tlb_gather_mmu(&tlb, mm, start, end);
1350         update_hiwater_rss(mm);
1351         mmu_notifier_invalidate_range_start(mm, start, end);
1352         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1353                 unmap_single_vma(&tlb, vma, start, end, details);
1354         mmu_notifier_invalidate_range_end(mm, start, end);
1355         tlb_finish_mmu(&tlb, start, end);
1356 }
1357
1358 /**
1359  * zap_page_range_single - remove user pages in a given range
1360  * @vma: vm_area_struct holding the applicable pages
1361  * @address: starting address of pages to zap
1362  * @size: number of bytes to zap
1363  * @details: details of shared cache invalidation
1364  *
1365  * The range must fit into one VMA.
1366  */
1367 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1368                 unsigned long size, struct zap_details *details)
1369 {
1370         struct mm_struct *mm = vma->vm_mm;
1371         struct mmu_gather tlb;
1372         unsigned long end = address + size;
1373
1374         lru_add_drain();
1375         tlb_gather_mmu(&tlb, mm, address, end);
1376         update_hiwater_rss(mm);
1377         mmu_notifier_invalidate_range_start(mm, address, end);
1378         unmap_single_vma(&tlb, vma, address, end, details);
1379         mmu_notifier_invalidate_range_end(mm, address, end);
1380         tlb_finish_mmu(&tlb, address, end);
1381 }
1382
1383 /**
1384  * zap_vma_ptes - remove ptes mapping the vma
1385  * @vma: vm_area_struct holding ptes to be zapped
1386  * @address: starting address of pages to zap
1387  * @size: number of bytes to zap
1388  *
1389  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1390  *
1391  * The entire address range must be fully contained within the vma.
1392  *
1393  * Returns 0 if successful.
1394  */
1395 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1396                 unsigned long size)
1397 {
1398         if (address < vma->vm_start || address + size > vma->vm_end ||
1399                         !(vma->vm_flags & VM_PFNMAP))
1400                 return -1;
1401         zap_page_range_single(vma, address, size, NULL);
1402         return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1405
1406 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1407                         spinlock_t **ptl)
1408 {
1409         pgd_t * pgd = pgd_offset(mm, addr);
1410         pud_t * pud = pud_alloc(mm, pgd, addr);
1411         if (pud) {
1412                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1413                 if (pmd) {
1414                         VM_BUG_ON(pmd_trans_huge(*pmd));
1415                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1416                 }
1417         }
1418         return NULL;
1419 }
1420
1421 /*
1422  * This is the old fallback for page remapping.
1423  *
1424  * For historical reasons, it only allows reserved pages. Only
1425  * old drivers should use this, and they needed to mark their
1426  * pages reserved for the old functions anyway.
1427  */
1428 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1429                         struct page *page, pgprot_t prot)
1430 {
1431         struct mm_struct *mm = vma->vm_mm;
1432         int retval;
1433         pte_t *pte;
1434         spinlock_t *ptl;
1435
1436         retval = -EINVAL;
1437         if (PageAnon(page))
1438                 goto out;
1439         retval = -ENOMEM;
1440         flush_dcache_page(page);
1441         pte = get_locked_pte(mm, addr, &ptl);
1442         if (!pte)
1443                 goto out;
1444         retval = -EBUSY;
1445         if (!pte_none(*pte))
1446                 goto out_unlock;
1447
1448         /* Ok, finally just insert the thing.. */
1449         get_page(page);
1450         inc_mm_counter_fast(mm, mm_counter_file(page));
1451         page_add_file_rmap(page);
1452         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1453
1454         retval = 0;
1455         pte_unmap_unlock(pte, ptl);
1456         return retval;
1457 out_unlock:
1458         pte_unmap_unlock(pte, ptl);
1459 out:
1460         return retval;
1461 }
1462
1463 /**
1464  * vm_insert_page - insert single page into user vma
1465  * @vma: user vma to map to
1466  * @addr: target user address of this page
1467  * @page: source kernel page
1468  *
1469  * This allows drivers to insert individual pages they've allocated
1470  * into a user vma.
1471  *
1472  * The page has to be a nice clean _individual_ kernel allocation.
1473  * If you allocate a compound page, you need to have marked it as
1474  * such (__GFP_COMP), or manually just split the page up yourself
1475  * (see split_page()).
1476  *
1477  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1478  * took an arbitrary page protection parameter. This doesn't allow
1479  * that. Your vma protection will have to be set up correctly, which
1480  * means that if you want a shared writable mapping, you'd better
1481  * ask for a shared writable mapping!
1482  *
1483  * The page does not need to be reserved.
1484  *
1485  * Usually this function is called from f_op->mmap() handler
1486  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1487  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1488  * function from other places, for example from page-fault handler.
1489  */
1490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1491                         struct page *page)
1492 {
1493         if (addr < vma->vm_start || addr >= vma->vm_end)
1494                 return -EFAULT;
1495         if (!page_count(page))
1496                 return -EINVAL;
1497         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1498                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1499                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1500                 vma->vm_flags |= VM_MIXEDMAP;
1501         }
1502         return insert_page(vma, addr, page, vma->vm_page_prot);
1503 }
1504 EXPORT_SYMBOL(vm_insert_page);
1505
1506 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1507                         pfn_t pfn, pgprot_t prot)
1508 {
1509         struct mm_struct *mm = vma->vm_mm;
1510         int retval;
1511         pte_t *pte, entry;
1512         spinlock_t *ptl;
1513
1514         retval = -ENOMEM;
1515         pte = get_locked_pte(mm, addr, &ptl);
1516         if (!pte)
1517                 goto out;
1518         retval = -EBUSY;
1519         if (!pte_none(*pte))
1520                 goto out_unlock;
1521
1522         /* Ok, finally just insert the thing.. */
1523         if (pfn_t_devmap(pfn))
1524                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1525         else
1526                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1527         set_pte_at(mm, addr, pte, entry);
1528         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1529
1530         retval = 0;
1531 out_unlock:
1532         pte_unmap_unlock(pte, ptl);
1533 out:
1534         return retval;
1535 }
1536
1537 /**
1538  * vm_insert_pfn - insert single pfn into user vma
1539  * @vma: user vma to map to
1540  * @addr: target user address of this page
1541  * @pfn: source kernel pfn
1542  *
1543  * Similar to vm_insert_page, this allows drivers to insert individual pages
1544  * they've allocated into a user vma. Same comments apply.
1545  *
1546  * This function should only be called from a vm_ops->fault handler, and
1547  * in that case the handler should return NULL.
1548  *
1549  * vma cannot be a COW mapping.
1550  *
1551  * As this is called only for pages that do not currently exist, we
1552  * do not need to flush old virtual caches or the TLB.
1553  */
1554 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1555                         unsigned long pfn)
1556 {
1557         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1558 }
1559 EXPORT_SYMBOL(vm_insert_pfn);
1560
1561 /**
1562  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1563  * @vma: user vma to map to
1564  * @addr: target user address of this page
1565  * @pfn: source kernel pfn
1566  * @pgprot: pgprot flags for the inserted page
1567  *
1568  * This is exactly like vm_insert_pfn, except that it allows drivers to
1569  * to override pgprot on a per-page basis.
1570  *
1571  * This only makes sense for IO mappings, and it makes no sense for
1572  * cow mappings.  In general, using multiple vmas is preferable;
1573  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1574  * impractical.
1575  */
1576 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1577                         unsigned long pfn, pgprot_t pgprot)
1578 {
1579         int ret;
1580         /*
1581          * Technically, architectures with pte_special can avoid all these
1582          * restrictions (same for remap_pfn_range).  However we would like
1583          * consistency in testing and feature parity among all, so we should
1584          * try to keep these invariants in place for everybody.
1585          */
1586         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1587         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1588                                                 (VM_PFNMAP|VM_MIXEDMAP));
1589         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1590         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1591
1592         if (addr < vma->vm_start || addr >= vma->vm_end)
1593                 return -EFAULT;
1594         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1595                 return -EINVAL;
1596
1597         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1598
1599         return ret;
1600 }
1601 EXPORT_SYMBOL(vm_insert_pfn_prot);
1602
1603 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1604                         pfn_t pfn)
1605 {
1606         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1607
1608         if (addr < vma->vm_start || addr >= vma->vm_end)
1609                 return -EFAULT;
1610
1611         /*
1612          * If we don't have pte special, then we have to use the pfn_valid()
1613          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1614          * refcount the page if pfn_valid is true (hence insert_page rather
1615          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1616          * without pte special, it would there be refcounted as a normal page.
1617          */
1618         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1619                 struct page *page;
1620
1621                 /*
1622                  * At this point we are committed to insert_page()
1623                  * regardless of whether the caller specified flags that
1624                  * result in pfn_t_has_page() == false.
1625                  */
1626                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1627                 return insert_page(vma, addr, page, vma->vm_page_prot);
1628         }
1629         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1630 }
1631 EXPORT_SYMBOL(vm_insert_mixed);
1632
1633 /*
1634  * maps a range of physical memory into the requested pages. the old
1635  * mappings are removed. any references to nonexistent pages results
1636  * in null mappings (currently treated as "copy-on-access")
1637  */
1638 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1639                         unsigned long addr, unsigned long end,
1640                         unsigned long pfn, pgprot_t prot)
1641 {
1642         pte_t *pte;
1643         spinlock_t *ptl;
1644
1645         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1646         if (!pte)
1647                 return -ENOMEM;
1648         arch_enter_lazy_mmu_mode();
1649         do {
1650                 BUG_ON(!pte_none(*pte));
1651                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1652                 pfn++;
1653         } while (pte++, addr += PAGE_SIZE, addr != end);
1654         arch_leave_lazy_mmu_mode();
1655         pte_unmap_unlock(pte - 1, ptl);
1656         return 0;
1657 }
1658
1659 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1660                         unsigned long addr, unsigned long end,
1661                         unsigned long pfn, pgprot_t prot)
1662 {
1663         pmd_t *pmd;
1664         unsigned long next;
1665
1666         pfn -= addr >> PAGE_SHIFT;
1667         pmd = pmd_alloc(mm, pud, addr);
1668         if (!pmd)
1669                 return -ENOMEM;
1670         VM_BUG_ON(pmd_trans_huge(*pmd));
1671         do {
1672                 next = pmd_addr_end(addr, end);
1673                 if (remap_pte_range(mm, pmd, addr, next,
1674                                 pfn + (addr >> PAGE_SHIFT), prot))
1675                         return -ENOMEM;
1676         } while (pmd++, addr = next, addr != end);
1677         return 0;
1678 }
1679
1680 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1681                         unsigned long addr, unsigned long end,
1682                         unsigned long pfn, pgprot_t prot)
1683 {
1684         pud_t *pud;
1685         unsigned long next;
1686
1687         pfn -= addr >> PAGE_SHIFT;
1688         pud = pud_alloc(mm, pgd, addr);
1689         if (!pud)
1690                 return -ENOMEM;
1691         do {
1692                 next = pud_addr_end(addr, end);
1693                 if (remap_pmd_range(mm, pud, addr, next,
1694                                 pfn + (addr >> PAGE_SHIFT), prot))
1695                         return -ENOMEM;
1696         } while (pud++, addr = next, addr != end);
1697         return 0;
1698 }
1699
1700 /**
1701  * remap_pfn_range - remap kernel memory to userspace
1702  * @vma: user vma to map to
1703  * @addr: target user address to start at
1704  * @pfn: physical address of kernel memory
1705  * @size: size of map area
1706  * @prot: page protection flags for this mapping
1707  *
1708  *  Note: this is only safe if the mm semaphore is held when called.
1709  */
1710 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1711                     unsigned long pfn, unsigned long size, pgprot_t prot)
1712 {
1713         pgd_t *pgd;
1714         unsigned long next;
1715         unsigned long end = addr + PAGE_ALIGN(size);
1716         struct mm_struct *mm = vma->vm_mm;
1717         int err;
1718
1719         /*
1720          * Physically remapped pages are special. Tell the
1721          * rest of the world about it:
1722          *   VM_IO tells people not to look at these pages
1723          *      (accesses can have side effects).
1724          *   VM_PFNMAP tells the core MM that the base pages are just
1725          *      raw PFN mappings, and do not have a "struct page" associated
1726          *      with them.
1727          *   VM_DONTEXPAND
1728          *      Disable vma merging and expanding with mremap().
1729          *   VM_DONTDUMP
1730          *      Omit vma from core dump, even when VM_IO turned off.
1731          *
1732          * There's a horrible special case to handle copy-on-write
1733          * behaviour that some programs depend on. We mark the "original"
1734          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1735          * See vm_normal_page() for details.
1736          */
1737         if (is_cow_mapping(vma->vm_flags)) {
1738                 if (addr != vma->vm_start || end != vma->vm_end)
1739                         return -EINVAL;
1740                 vma->vm_pgoff = pfn;
1741         }
1742
1743         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1744         if (err)
1745                 return -EINVAL;
1746
1747         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1748
1749         BUG_ON(addr >= end);
1750         pfn -= addr >> PAGE_SHIFT;
1751         pgd = pgd_offset(mm, addr);
1752         flush_cache_range(vma, addr, end);
1753         do {
1754                 next = pgd_addr_end(addr, end);
1755                 err = remap_pud_range(mm, pgd, addr, next,
1756                                 pfn + (addr >> PAGE_SHIFT), prot);
1757                 if (err)
1758                         break;
1759         } while (pgd++, addr = next, addr != end);
1760
1761         if (err)
1762                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1763
1764         return err;
1765 }
1766 EXPORT_SYMBOL(remap_pfn_range);
1767
1768 /**
1769  * vm_iomap_memory - remap memory to userspace
1770  * @vma: user vma to map to
1771  * @start: start of area
1772  * @len: size of area
1773  *
1774  * This is a simplified io_remap_pfn_range() for common driver use. The
1775  * driver just needs to give us the physical memory range to be mapped,
1776  * we'll figure out the rest from the vma information.
1777  *
1778  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1779  * whatever write-combining details or similar.
1780  */
1781 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1782 {
1783         unsigned long vm_len, pfn, pages;
1784
1785         /* Check that the physical memory area passed in looks valid */
1786         if (start + len < start)
1787                 return -EINVAL;
1788         /*
1789          * You *really* shouldn't map things that aren't page-aligned,
1790          * but we've historically allowed it because IO memory might
1791          * just have smaller alignment.
1792          */
1793         len += start & ~PAGE_MASK;
1794         pfn = start >> PAGE_SHIFT;
1795         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1796         if (pfn + pages < pfn)
1797                 return -EINVAL;
1798
1799         /* We start the mapping 'vm_pgoff' pages into the area */
1800         if (vma->vm_pgoff > pages)
1801                 return -EINVAL;
1802         pfn += vma->vm_pgoff;
1803         pages -= vma->vm_pgoff;
1804
1805         /* Can we fit all of the mapping? */
1806         vm_len = vma->vm_end - vma->vm_start;
1807         if (vm_len >> PAGE_SHIFT > pages)
1808                 return -EINVAL;
1809
1810         /* Ok, let it rip */
1811         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1812 }
1813 EXPORT_SYMBOL(vm_iomap_memory);
1814
1815 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1816                                      unsigned long addr, unsigned long end,
1817                                      pte_fn_t fn, void *data)
1818 {
1819         pte_t *pte;
1820         int err;
1821         pgtable_t token;
1822         spinlock_t *uninitialized_var(ptl);
1823
1824         pte = (mm == &init_mm) ?
1825                 pte_alloc_kernel(pmd, addr) :
1826                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1827         if (!pte)
1828                 return -ENOMEM;
1829
1830         BUG_ON(pmd_huge(*pmd));
1831
1832         arch_enter_lazy_mmu_mode();
1833
1834         token = pmd_pgtable(*pmd);
1835
1836         do {
1837                 err = fn(pte++, token, addr, data);
1838                 if (err)
1839                         break;
1840         } while (addr += PAGE_SIZE, addr != end);
1841
1842         arch_leave_lazy_mmu_mode();
1843
1844         if (mm != &init_mm)
1845                 pte_unmap_unlock(pte-1, ptl);
1846         return err;
1847 }
1848
1849 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1850                                      unsigned long addr, unsigned long end,
1851                                      pte_fn_t fn, void *data)
1852 {
1853         pmd_t *pmd;
1854         unsigned long next;
1855         int err;
1856
1857         BUG_ON(pud_huge(*pud));
1858
1859         pmd = pmd_alloc(mm, pud, addr);
1860         if (!pmd)
1861                 return -ENOMEM;
1862         do {
1863                 next = pmd_addr_end(addr, end);
1864                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1865                 if (err)
1866                         break;
1867         } while (pmd++, addr = next, addr != end);
1868         return err;
1869 }
1870
1871 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1872                                      unsigned long addr, unsigned long end,
1873                                      pte_fn_t fn, void *data)
1874 {
1875         pud_t *pud;
1876         unsigned long next;
1877         int err;
1878
1879         pud = pud_alloc(mm, pgd, addr);
1880         if (!pud)
1881                 return -ENOMEM;
1882         do {
1883                 next = pud_addr_end(addr, end);
1884                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1885                 if (err)
1886                         break;
1887         } while (pud++, addr = next, addr != end);
1888         return err;
1889 }
1890
1891 /*
1892  * Scan a region of virtual memory, filling in page tables as necessary
1893  * and calling a provided function on each leaf page table.
1894  */
1895 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1896                         unsigned long size, pte_fn_t fn, void *data)
1897 {
1898         pgd_t *pgd;
1899         unsigned long next;
1900         unsigned long end = addr + size;
1901         int err;
1902
1903         if (WARN_ON(addr >= end))
1904                 return -EINVAL;
1905
1906         pgd = pgd_offset(mm, addr);
1907         do {
1908                 next = pgd_addr_end(addr, end);
1909                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1910                 if (err)
1911                         break;
1912         } while (pgd++, addr = next, addr != end);
1913
1914         return err;
1915 }
1916 EXPORT_SYMBOL_GPL(apply_to_page_range);
1917
1918 /*
1919  * handle_pte_fault chooses page fault handler according to an entry which was
1920  * read non-atomically.  Before making any commitment, on those architectures
1921  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1922  * parts, do_swap_page must check under lock before unmapping the pte and
1923  * proceeding (but do_wp_page is only called after already making such a check;
1924  * and do_anonymous_page can safely check later on).
1925  */
1926 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1927                                 pte_t *page_table, pte_t orig_pte)
1928 {
1929         int same = 1;
1930 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1931         if (sizeof(pte_t) > sizeof(unsigned long)) {
1932                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1933                 spin_lock(ptl);
1934                 same = pte_same(*page_table, orig_pte);
1935                 spin_unlock(ptl);
1936         }
1937 #endif
1938         pte_unmap(page_table);
1939         return same;
1940 }
1941
1942 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1943 {
1944         debug_dma_assert_idle(src);
1945
1946         /*
1947          * If the source page was a PFN mapping, we don't have
1948          * a "struct page" for it. We do a best-effort copy by
1949          * just copying from the original user address. If that
1950          * fails, we just zero-fill it. Live with it.
1951          */
1952         if (unlikely(!src)) {
1953                 void *kaddr = kmap_atomic(dst);
1954                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1955
1956                 /*
1957                  * This really shouldn't fail, because the page is there
1958                  * in the page tables. But it might just be unreadable,
1959                  * in which case we just give up and fill the result with
1960                  * zeroes.
1961                  */
1962                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1963                         clear_page(kaddr);
1964                 kunmap_atomic(kaddr);
1965                 flush_dcache_page(dst);
1966         } else
1967                 copy_user_highpage(dst, src, va, vma);
1968 }
1969
1970 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1971 {
1972         struct file *vm_file = vma->vm_file;
1973
1974         if (vm_file)
1975                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1976
1977         /*
1978          * Special mappings (e.g. VDSO) do not have any file so fake
1979          * a default GFP_KERNEL for them.
1980          */
1981         return GFP_KERNEL;
1982 }
1983
1984 /*
1985  * Notify the address space that the page is about to become writable so that
1986  * it can prohibit this or wait for the page to get into an appropriate state.
1987  *
1988  * We do this without the lock held, so that it can sleep if it needs to.
1989  */
1990 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1991                unsigned long address)
1992 {
1993         struct vm_fault vmf;
1994         int ret;
1995
1996         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1997         vmf.pgoff = page->index;
1998         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1999         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2000         vmf.page = page;
2001         vmf.cow_page = NULL;
2002
2003         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2004         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2005                 return ret;
2006         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2007                 lock_page(page);
2008                 if (!page->mapping) {
2009                         unlock_page(page);
2010                         return 0; /* retry */
2011                 }
2012                 ret |= VM_FAULT_LOCKED;
2013         } else
2014                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2015         return ret;
2016 }
2017
2018 /*
2019  * Handle write page faults for pages that can be reused in the current vma
2020  *
2021  * This can happen either due to the mapping being with the VM_SHARED flag,
2022  * or due to us being the last reference standing to the page. In either
2023  * case, all we need to do here is to mark the page as writable and update
2024  * any related book-keeping.
2025  */
2026 static inline int wp_page_reuse(struct mm_struct *mm,
2027                         struct vm_area_struct *vma, unsigned long address,
2028                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2029                         struct page *page, int page_mkwrite,
2030                         int dirty_shared)
2031         __releases(ptl)
2032 {
2033         pte_t entry;
2034         /*
2035          * Clear the pages cpupid information as the existing
2036          * information potentially belongs to a now completely
2037          * unrelated process.
2038          */
2039         if (page)
2040                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2041
2042         flush_cache_page(vma, address, pte_pfn(orig_pte));
2043         entry = pte_mkyoung(orig_pte);
2044         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2046                 update_mmu_cache(vma, address, page_table);
2047         pte_unmap_unlock(page_table, ptl);
2048
2049         if (dirty_shared) {
2050                 struct address_space *mapping;
2051                 int dirtied;
2052
2053                 if (!page_mkwrite)
2054                         lock_page(page);
2055
2056                 dirtied = set_page_dirty(page);
2057                 VM_BUG_ON_PAGE(PageAnon(page), page);
2058                 mapping = page->mapping;
2059                 unlock_page(page);
2060                 page_cache_release(page);
2061
2062                 if ((dirtied || page_mkwrite) && mapping) {
2063                         /*
2064                          * Some device drivers do not set page.mapping
2065                          * but still dirty their pages
2066                          */
2067                         balance_dirty_pages_ratelimited(mapping);
2068                 }
2069
2070                 if (!page_mkwrite)
2071                         file_update_time(vma->vm_file);
2072         }
2073
2074         return VM_FAULT_WRITE;
2075 }
2076
2077 /*
2078  * Handle the case of a page which we actually need to copy to a new page.
2079  *
2080  * Called with mmap_sem locked and the old page referenced, but
2081  * without the ptl held.
2082  *
2083  * High level logic flow:
2084  *
2085  * - Allocate a page, copy the content of the old page to the new one.
2086  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2087  * - Take the PTL. If the pte changed, bail out and release the allocated page
2088  * - If the pte is still the way we remember it, update the page table and all
2089  *   relevant references. This includes dropping the reference the page-table
2090  *   held to the old page, as well as updating the rmap.
2091  * - In any case, unlock the PTL and drop the reference we took to the old page.
2092  */
2093 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2094                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2095                         pte_t orig_pte, struct page *old_page)
2096 {
2097         struct page *new_page = NULL;
2098         spinlock_t *ptl = NULL;
2099         pte_t entry;
2100         int page_copied = 0;
2101         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2102         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2103         struct mem_cgroup *memcg;
2104
2105         if (unlikely(anon_vma_prepare(vma)))
2106                 goto oom;
2107
2108         if (is_zero_pfn(pte_pfn(orig_pte))) {
2109                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2110                 if (!new_page)
2111                         goto oom;
2112         } else {
2113                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2114                 if (!new_page)
2115                         goto oom;
2116                 cow_user_page(new_page, old_page, address, vma);
2117         }
2118
2119         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2120                 goto oom_free_new;
2121
2122         __SetPageUptodate(new_page);
2123
2124         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2125
2126         /*
2127          * Re-check the pte - we dropped the lock
2128          */
2129         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2130         if (likely(pte_same(*page_table, orig_pte))) {
2131                 if (old_page) {
2132                         if (!PageAnon(old_page)) {
2133                                 dec_mm_counter_fast(mm,
2134                                                 mm_counter_file(old_page));
2135                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2136                         }
2137                 } else {
2138                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2139                 }
2140                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2141                 entry = mk_pte(new_page, vma->vm_page_prot);
2142                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143                 /*
2144                  * Clear the pte entry and flush it first, before updating the
2145                  * pte with the new entry. This will avoid a race condition
2146                  * seen in the presence of one thread doing SMC and another
2147                  * thread doing COW.
2148                  */
2149                 ptep_clear_flush_notify(vma, address, page_table);
2150                 page_add_new_anon_rmap(new_page, vma, address, false);
2151                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2152                 lru_cache_add_active_or_unevictable(new_page, vma);
2153                 /*
2154                  * We call the notify macro here because, when using secondary
2155                  * mmu page tables (such as kvm shadow page tables), we want the
2156                  * new page to be mapped directly into the secondary page table.
2157                  */
2158                 set_pte_at_notify(mm, address, page_table, entry);
2159                 update_mmu_cache(vma, address, page_table);
2160                 if (old_page) {
2161                         /*
2162                          * Only after switching the pte to the new page may
2163                          * we remove the mapcount here. Otherwise another
2164                          * process may come and find the rmap count decremented
2165                          * before the pte is switched to the new page, and
2166                          * "reuse" the old page writing into it while our pte
2167                          * here still points into it and can be read by other
2168                          * threads.
2169                          *
2170                          * The critical issue is to order this
2171                          * page_remove_rmap with the ptp_clear_flush above.
2172                          * Those stores are ordered by (if nothing else,)
2173                          * the barrier present in the atomic_add_negative
2174                          * in page_remove_rmap.
2175                          *
2176                          * Then the TLB flush in ptep_clear_flush ensures that
2177                          * no process can access the old page before the
2178                          * decremented mapcount is visible. And the old page
2179                          * cannot be reused until after the decremented
2180                          * mapcount is visible. So transitively, TLBs to
2181                          * old page will be flushed before it can be reused.
2182                          */
2183                         page_remove_rmap(old_page, false);
2184                 }
2185
2186                 /* Free the old page.. */
2187                 new_page = old_page;
2188                 page_copied = 1;
2189         } else {
2190                 mem_cgroup_cancel_charge(new_page, memcg, false);
2191         }
2192
2193         if (new_page)
2194                 page_cache_release(new_page);
2195
2196         pte_unmap_unlock(page_table, ptl);
2197         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2198         if (old_page) {
2199                 /*
2200                  * Don't let another task, with possibly unlocked vma,
2201                  * keep the mlocked page.
2202                  */
2203                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2204                         lock_page(old_page);    /* LRU manipulation */
2205                         if (PageMlocked(old_page))
2206                                 munlock_vma_page(old_page);
2207                         unlock_page(old_page);
2208                 }
2209                 page_cache_release(old_page);
2210         }
2211         return page_copied ? VM_FAULT_WRITE : 0;
2212 oom_free_new:
2213         page_cache_release(new_page);
2214 oom:
2215         if (old_page)
2216                 page_cache_release(old_page);
2217         return VM_FAULT_OOM;
2218 }
2219
2220 /*
2221  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2222  * mapping
2223  */
2224 static int wp_pfn_shared(struct mm_struct *mm,
2225                         struct vm_area_struct *vma, unsigned long address,
2226                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2227                         pmd_t *pmd)
2228 {
2229         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2230                 struct vm_fault vmf = {
2231                         .page = NULL,
2232                         .pgoff = linear_page_index(vma, address),
2233                         .virtual_address = (void __user *)(address & PAGE_MASK),
2234                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2235                 };
2236                 int ret;
2237
2238                 pte_unmap_unlock(page_table, ptl);
2239                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2240                 if (ret & VM_FAULT_ERROR)
2241                         return ret;
2242                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2243                 /*
2244                  * We might have raced with another page fault while we
2245                  * released the pte_offset_map_lock.
2246                  */
2247                 if (!pte_same(*page_table, orig_pte)) {
2248                         pte_unmap_unlock(page_table, ptl);
2249                         return 0;
2250                 }
2251         }
2252         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2253                              NULL, 0, 0);
2254 }
2255
2256 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2257                           unsigned long address, pte_t *page_table,
2258                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2259                           struct page *old_page)
2260         __releases(ptl)
2261 {
2262         int page_mkwrite = 0;
2263
2264         page_cache_get(old_page);
2265
2266         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2267                 int tmp;
2268
2269                 pte_unmap_unlock(page_table, ptl);
2270                 tmp = do_page_mkwrite(vma, old_page, address);
2271                 if (unlikely(!tmp || (tmp &
2272                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2273                         page_cache_release(old_page);
2274                         return tmp;
2275                 }
2276                 /*
2277                  * Since we dropped the lock we need to revalidate
2278                  * the PTE as someone else may have changed it.  If
2279                  * they did, we just return, as we can count on the
2280                  * MMU to tell us if they didn't also make it writable.
2281                  */
2282                 page_table = pte_offset_map_lock(mm, pmd, address,
2283                                                  &ptl);
2284                 if (!pte_same(*page_table, orig_pte)) {
2285                         unlock_page(old_page);
2286                         pte_unmap_unlock(page_table, ptl);
2287                         page_cache_release(old_page);
2288                         return 0;
2289                 }
2290                 page_mkwrite = 1;
2291         }
2292
2293         return wp_page_reuse(mm, vma, address, page_table, ptl,
2294                              orig_pte, old_page, page_mkwrite, 1);
2295 }
2296
2297 /*
2298  * This routine handles present pages, when users try to write
2299  * to a shared page. It is done by copying the page to a new address
2300  * and decrementing the shared-page counter for the old page.
2301  *
2302  * Note that this routine assumes that the protection checks have been
2303  * done by the caller (the low-level page fault routine in most cases).
2304  * Thus we can safely just mark it writable once we've done any necessary
2305  * COW.
2306  *
2307  * We also mark the page dirty at this point even though the page will
2308  * change only once the write actually happens. This avoids a few races,
2309  * and potentially makes it more efficient.
2310  *
2311  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2312  * but allow concurrent faults), with pte both mapped and locked.
2313  * We return with mmap_sem still held, but pte unmapped and unlocked.
2314  */
2315 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2316                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2317                 spinlock_t *ptl, pte_t orig_pte)
2318         __releases(ptl)
2319 {
2320         struct page *old_page;
2321
2322         old_page = vm_normal_page(vma, address, orig_pte);
2323         if (!old_page) {
2324                 /*
2325                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2326                  * VM_PFNMAP VMA.
2327                  *
2328                  * We should not cow pages in a shared writeable mapping.
2329                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2330                  */
2331                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2332                                      (VM_WRITE|VM_SHARED))
2333                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2334                                              orig_pte, pmd);
2335
2336                 pte_unmap_unlock(page_table, ptl);
2337                 return wp_page_copy(mm, vma, address, page_table, pmd,
2338                                     orig_pte, old_page);
2339         }
2340
2341         /*
2342          * Take out anonymous pages first, anonymous shared vmas are
2343          * not dirty accountable.
2344          */
2345         if (PageAnon(old_page) && !PageKsm(old_page)) {
2346                 if (!trylock_page(old_page)) {
2347                         page_cache_get(old_page);
2348                         pte_unmap_unlock(page_table, ptl);
2349                         lock_page(old_page);
2350                         page_table = pte_offset_map_lock(mm, pmd, address,
2351                                                          &ptl);
2352                         if (!pte_same(*page_table, orig_pte)) {
2353                                 unlock_page(old_page);
2354                                 pte_unmap_unlock(page_table, ptl);
2355                                 page_cache_release(old_page);
2356                                 return 0;
2357                         }
2358                         page_cache_release(old_page);
2359                 }
2360                 if (reuse_swap_page(old_page)) {
2361                         /*
2362                          * The page is all ours.  Move it to our anon_vma so
2363                          * the rmap code will not search our parent or siblings.
2364                          * Protected against the rmap code by the page lock.
2365                          */
2366                         page_move_anon_rmap(old_page, vma, address);
2367                         unlock_page(old_page);
2368                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2369                                              orig_pte, old_page, 0, 0);
2370                 }
2371                 unlock_page(old_page);
2372         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2373                                         (VM_WRITE|VM_SHARED))) {
2374                 return wp_page_shared(mm, vma, address, page_table, pmd,
2375                                       ptl, orig_pte, old_page);
2376         }
2377
2378         /*
2379          * Ok, we need to copy. Oh, well..
2380          */
2381         page_cache_get(old_page);
2382
2383         pte_unmap_unlock(page_table, ptl);
2384         return wp_page_copy(mm, vma, address, page_table, pmd,
2385                             orig_pte, old_page);
2386 }
2387
2388 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2389                 unsigned long start_addr, unsigned long end_addr,
2390                 struct zap_details *details)
2391 {
2392         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2393 }
2394
2395 static inline void unmap_mapping_range_tree(struct rb_root *root,
2396                                             struct zap_details *details)
2397 {
2398         struct vm_area_struct *vma;
2399         pgoff_t vba, vea, zba, zea;
2400
2401         vma_interval_tree_foreach(vma, root,
2402                         details->first_index, details->last_index) {
2403
2404                 vba = vma->vm_pgoff;
2405                 vea = vba + vma_pages(vma) - 1;
2406                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2407                 zba = details->first_index;
2408                 if (zba < vba)
2409                         zba = vba;
2410                 zea = details->last_index;
2411                 if (zea > vea)
2412                         zea = vea;
2413
2414                 unmap_mapping_range_vma(vma,
2415                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2416                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2417                                 details);
2418         }
2419 }
2420
2421 /**
2422  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2423  * address_space corresponding to the specified page range in the underlying
2424  * file.
2425  *
2426  * @mapping: the address space containing mmaps to be unmapped.
2427  * @holebegin: byte in first page to unmap, relative to the start of
2428  * the underlying file.  This will be rounded down to a PAGE_SIZE
2429  * boundary.  Note that this is different from truncate_pagecache(), which
2430  * must keep the partial page.  In contrast, we must get rid of
2431  * partial pages.
2432  * @holelen: size of prospective hole in bytes.  This will be rounded
2433  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2434  * end of the file.
2435  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2436  * but 0 when invalidating pagecache, don't throw away private data.
2437  */
2438 void unmap_mapping_range(struct address_space *mapping,
2439                 loff_t const holebegin, loff_t const holelen, int even_cows)
2440 {
2441         struct zap_details details = { };
2442         pgoff_t hba = holebegin >> PAGE_SHIFT;
2443         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2444
2445         /* Check for overflow. */
2446         if (sizeof(holelen) > sizeof(hlen)) {
2447                 long long holeend =
2448                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2449                 if (holeend & ~(long long)ULONG_MAX)
2450                         hlen = ULONG_MAX - hba + 1;
2451         }
2452
2453         details.check_mapping = even_cows? NULL: mapping;
2454         details.first_index = hba;
2455         details.last_index = hba + hlen - 1;
2456         if (details.last_index < details.first_index)
2457                 details.last_index = ULONG_MAX;
2458
2459
2460         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2461         i_mmap_lock_write(mapping);
2462         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2463                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2464         i_mmap_unlock_write(mapping);
2465 }
2466 EXPORT_SYMBOL(unmap_mapping_range);
2467
2468 /*
2469  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2470  * but allow concurrent faults), and pte mapped but not yet locked.
2471  * We return with pte unmapped and unlocked.
2472  *
2473  * We return with the mmap_sem locked or unlocked in the same cases
2474  * as does filemap_fault().
2475  */
2476 int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2477                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2478                 unsigned int flags, pte_t orig_pte)
2479 {
2480         spinlock_t *ptl;
2481         struct page *page, *swapcache;
2482         struct mem_cgroup *memcg;
2483         swp_entry_t entry;
2484         pte_t pte;
2485         int locked;
2486         int exclusive = 0;
2487         int ret = 0;
2488
2489         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2490                 goto out;
2491
2492         entry = pte_to_swp_entry(orig_pte);
2493         if (unlikely(non_swap_entry(entry))) {
2494                 if (is_migration_entry(entry)) {
2495                         migration_entry_wait(mm, pmd, address);
2496                 } else if (is_hwpoison_entry(entry)) {
2497                         ret = VM_FAULT_HWPOISON;
2498                 } else {
2499                         print_bad_pte(vma, address, orig_pte, NULL);
2500                         ret = VM_FAULT_SIGBUS;
2501                 }
2502                 goto out;
2503         }
2504         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2505         page = lookup_swap_cache(entry);
2506         if (!page) {
2507                 page = swapin_readahead(entry,
2508                                         GFP_HIGHUSER_MOVABLE, vma, address);
2509                 if (!page) {
2510                         /*
2511                          * Back out if somebody else faulted in this pte
2512                          * while we released the pte lock.
2513                          */
2514                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2515                         if (likely(pte_same(*page_table, orig_pte)))
2516                                 ret = VM_FAULT_OOM;
2517                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2518                         goto unlock;
2519                 }
2520
2521                 /* Had to read the page from swap area: Major fault */
2522                 ret = VM_FAULT_MAJOR;
2523                 count_vm_event(PGMAJFAULT);
2524                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2525         } else if (PageHWPoison(page)) {
2526                 /*
2527                  * hwpoisoned dirty swapcache pages are kept for killing
2528                  * owner processes (which may be unknown at hwpoison time)
2529                  */
2530                 ret = VM_FAULT_HWPOISON;
2531                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2532                 swapcache = page;
2533                 goto out_release;
2534         }
2535
2536         swapcache = page;
2537         locked = lock_page_or_retry(page, mm, flags);
2538
2539         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2540         if (!locked) {
2541                 ret |= VM_FAULT_RETRY;
2542                 goto out_release;
2543         }
2544
2545         /*
2546          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2547          * release the swapcache from under us.  The page pin, and pte_same
2548          * test below, are not enough to exclude that.  Even if it is still
2549          * swapcache, we need to check that the page's swap has not changed.
2550          */
2551         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2552                 goto out_page;
2553
2554         page = ksm_might_need_to_copy(page, vma, address);
2555         if (unlikely(!page)) {
2556                 ret = VM_FAULT_OOM;
2557                 page = swapcache;
2558                 goto out_page;
2559         }
2560
2561         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2562                 ret = VM_FAULT_OOM;
2563                 goto out_page;
2564         }
2565
2566         /*
2567          * Back out if somebody else already faulted in this pte.
2568          */
2569         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2570         if (unlikely(!pte_same(*page_table, orig_pte)))
2571                 goto out_nomap;
2572
2573         if (unlikely(!PageUptodate(page))) {
2574                 ret = VM_FAULT_SIGBUS;
2575                 goto out_nomap;
2576         }
2577
2578         /*
2579          * The page isn't present yet, go ahead with the fault.
2580          *
2581          * Be careful about the sequence of operations here.
2582          * To get its accounting right, reuse_swap_page() must be called
2583          * while the page is counted on swap but not yet in mapcount i.e.
2584          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2585          * must be called after the swap_free(), or it will never succeed.
2586          */
2587
2588         inc_mm_counter_fast(mm, MM_ANONPAGES);
2589         dec_mm_counter_fast(mm, MM_SWAPENTS);
2590         pte = mk_pte(page, vma->vm_page_prot);
2591         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2592                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2593                 flags &= ~FAULT_FLAG_WRITE;
2594                 ret |= VM_FAULT_WRITE;
2595                 exclusive = RMAP_EXCLUSIVE;
2596         }
2597         flush_icache_page(vma, page);
2598         if (pte_swp_soft_dirty(orig_pte))
2599                 pte = pte_mksoft_dirty(pte);
2600         set_pte_at(mm, address, page_table, pte);
2601         if (page == swapcache) {
2602                 do_page_add_anon_rmap(page, vma, address, exclusive);
2603                 mem_cgroup_commit_charge(page, memcg, true, false);
2604         } else { /* ksm created a completely new copy */
2605                 page_add_new_anon_rmap(page, vma, address, false);
2606                 mem_cgroup_commit_charge(page, memcg, false, false);
2607                 lru_cache_add_active_or_unevictable(page, vma);
2608         }
2609
2610         swap_free(entry);
2611         if (mem_cgroup_swap_full(page) ||
2612             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2613                 try_to_free_swap(page);
2614         unlock_page(page);
2615         if (page != swapcache) {
2616                 /*
2617                  * Hold the lock to avoid the swap entry to be reused
2618                  * until we take the PT lock for the pte_same() check
2619                  * (to avoid false positives from pte_same). For
2620                  * further safety release the lock after the swap_free
2621                  * so that the swap count won't change under a
2622                  * parallel locked swapcache.
2623                  */
2624                 unlock_page(swapcache);
2625                 page_cache_release(swapcache);
2626         }
2627
2628         if (flags & FAULT_FLAG_WRITE) {
2629                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2630                 if (ret & VM_FAULT_ERROR)
2631                         ret &= VM_FAULT_ERROR;
2632                 goto out;
2633         }
2634
2635         /* No need to invalidate - it was non-present before */
2636         update_mmu_cache(vma, address, page_table);
2637 unlock:
2638         pte_unmap_unlock(page_table, ptl);
2639 out:
2640         return ret;
2641 out_nomap:
2642         mem_cgroup_cancel_charge(page, memcg, false);
2643         pte_unmap_unlock(page_table, ptl);
2644 out_page:
2645         unlock_page(page);
2646 out_release:
2647         page_cache_release(page);
2648         if (page != swapcache) {
2649                 unlock_page(swapcache);
2650                 page_cache_release(swapcache);
2651         }
2652         return ret;
2653 }
2654
2655 /*
2656  * This is like a special single-page "expand_{down|up}wards()",
2657  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2658  * doesn't hit another vma.
2659  */
2660 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2661 {
2662         address &= PAGE_MASK;
2663         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2664                 struct vm_area_struct *prev = vma->vm_prev;
2665
2666                 /*
2667                  * Is there a mapping abutting this one below?
2668                  *
2669                  * That's only ok if it's the same stack mapping
2670                  * that has gotten split..
2671                  */
2672                 if (prev && prev->vm_end == address)
2673                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2674
2675                 return expand_downwards(vma, address - PAGE_SIZE);
2676         }
2677         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2678                 struct vm_area_struct *next = vma->vm_next;
2679
2680                 /* As VM_GROWSDOWN but s/below/above/ */
2681                 if (next && next->vm_start == address + PAGE_SIZE)
2682                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2683
2684                 return expand_upwards(vma, address + PAGE_SIZE);
2685         }
2686         return 0;
2687 }
2688
2689 /*
2690  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2691  * but allow concurrent faults), and pte mapped but not yet locked.
2692  * We return with mmap_sem still held, but pte unmapped and unlocked.
2693  */
2694 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2695                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2696                 unsigned int flags)
2697 {
2698         struct mem_cgroup *memcg;
2699         struct page *page;
2700         spinlock_t *ptl;
2701         pte_t entry;
2702
2703         pte_unmap(page_table);
2704
2705         /* File mapping without ->vm_ops ? */
2706         if (vma->vm_flags & VM_SHARED)
2707                 return VM_FAULT_SIGBUS;
2708
2709         /* Check if we need to add a guard page to the stack */
2710         if (check_stack_guard_page(vma, address) < 0)
2711                 return VM_FAULT_SIGSEGV;
2712
2713         /* Use the zero-page for reads */
2714         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2715                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2716                                                 vma->vm_page_prot));
2717                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2718                 if (!pte_none(*page_table))
2719                         goto unlock;
2720                 /* Deliver the page fault to userland, check inside PT lock */
2721                 if (userfaultfd_missing(vma)) {
2722                         pte_unmap_unlock(page_table, ptl);
2723                         return handle_userfault(vma, address, flags,
2724                                                 VM_UFFD_MISSING);
2725                 }
2726                 goto setpte;
2727         }
2728
2729         /* Allocate our own private page. */
2730         if (unlikely(anon_vma_prepare(vma)))
2731                 goto oom;
2732         page = alloc_zeroed_user_highpage_movable(vma, address);
2733         if (!page)
2734                 goto oom;
2735
2736         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2737                 goto oom_free_page;
2738
2739         /*
2740          * The memory barrier inside __SetPageUptodate makes sure that
2741          * preceeding stores to the page contents become visible before
2742          * the set_pte_at() write.
2743          */
2744         __SetPageUptodate(page);
2745
2746         entry = mk_pte(page, vma->vm_page_prot);
2747         if (vma->vm_flags & VM_WRITE)
2748                 entry = pte_mkwrite(pte_mkdirty(entry));
2749
2750         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2751         if (!pte_none(*page_table))
2752                 goto release;
2753
2754         /* Deliver the page fault to userland, check inside PT lock */
2755         if (userfaultfd_missing(vma)) {
2756                 pte_unmap_unlock(page_table, ptl);
2757                 mem_cgroup_cancel_charge(page, memcg, false);
2758                 page_cache_release(page);
2759                 return handle_userfault(vma, address, flags,
2760                                         VM_UFFD_MISSING);
2761         }
2762
2763         inc_mm_counter_fast(mm, MM_ANONPAGES);
2764         page_add_new_anon_rmap(page, vma, address, false);
2765         mem_cgroup_commit_charge(page, memcg, false, false);
2766         lru_cache_add_active_or_unevictable(page, vma);
2767 setpte:
2768         set_pte_at(mm, address, page_table, entry);
2769
2770         /* No need to invalidate - it was non-present before */
2771         update_mmu_cache(vma, address, page_table);
2772 unlock:
2773         pte_unmap_unlock(page_table, ptl);
2774         return 0;
2775 release:
2776         mem_cgroup_cancel_charge(page, memcg, false);
2777         page_cache_release(page);
2778         goto unlock;
2779 oom_free_page:
2780         page_cache_release(page);
2781 oom:
2782         return VM_FAULT_OOM;
2783 }
2784
2785 /*
2786  * The mmap_sem must have been held on entry, and may have been
2787  * released depending on flags and vma->vm_ops->fault() return value.
2788  * See filemap_fault() and __lock_page_retry().
2789  */
2790 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2791                         pgoff_t pgoff, unsigned int flags,
2792                         struct page *cow_page, struct page **page)
2793 {
2794         struct vm_fault vmf;
2795         int ret;
2796
2797         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2798         vmf.pgoff = pgoff;
2799         vmf.flags = flags;
2800         vmf.page = NULL;
2801         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2802         vmf.cow_page = cow_page;
2803
2804         ret = vma->vm_ops->fault(vma, &vmf);
2805         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2806                 return ret;
2807         if (!vmf.page)
2808                 goto out;
2809
2810         if (unlikely(PageHWPoison(vmf.page))) {
2811                 if (ret & VM_FAULT_LOCKED)
2812                         unlock_page(vmf.page);
2813                 page_cache_release(vmf.page);
2814                 return VM_FAULT_HWPOISON;
2815         }
2816
2817         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2818                 lock_page(vmf.page);
2819         else
2820                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2821
2822  out:
2823         *page = vmf.page;
2824         return ret;
2825 }
2826
2827 /**
2828  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2829  *
2830  * @vma: virtual memory area
2831  * @address: user virtual address
2832  * @page: page to map
2833  * @pte: pointer to target page table entry
2834  * @write: true, if new entry is writable
2835  * @anon: true, if it's anonymous page
2836  *
2837  * Caller must hold page table lock relevant for @pte.
2838  *
2839  * Target users are page handler itself and implementations of
2840  * vm_ops->map_pages.
2841  */
2842 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2843                 struct page *page, pte_t *pte, bool write, bool anon)
2844 {
2845         pte_t entry;
2846
2847         flush_icache_page(vma, page);
2848         entry = mk_pte(page, vma->vm_page_prot);
2849         if (write)
2850                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2851         if (anon) {
2852                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2853                 page_add_new_anon_rmap(page, vma, address, false);
2854         } else {
2855                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2856                 page_add_file_rmap(page);
2857         }
2858         set_pte_at(vma->vm_mm, address, pte, entry);
2859
2860         /* no need to invalidate: a not-present page won't be cached */
2861         update_mmu_cache(vma, address, pte);
2862 }
2863
2864 static unsigned long fault_around_bytes __read_mostly =
2865         rounddown_pow_of_two(65536);
2866
2867 #ifdef CONFIG_DEBUG_FS
2868 static int fault_around_bytes_get(void *data, u64 *val)
2869 {
2870         *val = fault_around_bytes;
2871         return 0;
2872 }
2873
2874 /*
2875  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2876  * rounded down to nearest page order. It's what do_fault_around() expects to
2877  * see.
2878  */
2879 static int fault_around_bytes_set(void *data, u64 val)
2880 {
2881         if (val / PAGE_SIZE > PTRS_PER_PTE)
2882                 return -EINVAL;
2883         if (val > PAGE_SIZE)
2884                 fault_around_bytes = rounddown_pow_of_two(val);
2885         else
2886                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2887         return 0;
2888 }
2889 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2890                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2891
2892 static int __init fault_around_debugfs(void)
2893 {
2894         void *ret;
2895
2896         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2897                         &fault_around_bytes_fops);
2898         if (!ret)
2899                 pr_warn("Failed to create fault_around_bytes in debugfs");
2900         return 0;
2901 }
2902 late_initcall(fault_around_debugfs);
2903 #endif
2904
2905 /*
2906  * do_fault_around() tries to map few pages around the fault address. The hope
2907  * is that the pages will be needed soon and this will lower the number of
2908  * faults to handle.
2909  *
2910  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2911  * not ready to be mapped: not up-to-date, locked, etc.
2912  *
2913  * This function is called with the page table lock taken. In the split ptlock
2914  * case the page table lock only protects only those entries which belong to
2915  * the page table corresponding to the fault address.
2916  *
2917  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2918  * only once.
2919  *
2920  * fault_around_pages() defines how many pages we'll try to map.
2921  * do_fault_around() expects it to return a power of two less than or equal to
2922  * PTRS_PER_PTE.
2923  *
2924  * The virtual address of the area that we map is naturally aligned to the
2925  * fault_around_pages() value (and therefore to page order).  This way it's
2926  * easier to guarantee that we don't cross page table boundaries.
2927  */
2928 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2929                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2930 {
2931         unsigned long start_addr, nr_pages, mask;
2932         pgoff_t max_pgoff;
2933         struct vm_fault vmf;
2934         int off;
2935
2936         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2937         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2938
2939         start_addr = max(address & mask, vma->vm_start);
2940         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2941         pte -= off;
2942         pgoff -= off;
2943
2944         /*
2945          *  max_pgoff is either end of page table or end of vma
2946          *  or fault_around_pages() from pgoff, depending what is nearest.
2947          */
2948         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2949                 PTRS_PER_PTE - 1;
2950         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2951                         pgoff + nr_pages - 1);
2952
2953         /* Check if it makes any sense to call ->map_pages */
2954         while (!pte_none(*pte)) {
2955                 if (++pgoff > max_pgoff)
2956                         return;
2957                 start_addr += PAGE_SIZE;
2958                 if (start_addr >= vma->vm_end)
2959                         return;
2960                 pte++;
2961         }
2962
2963         vmf.virtual_address = (void __user *) start_addr;
2964         vmf.pte = pte;
2965         vmf.pgoff = pgoff;
2966         vmf.max_pgoff = max_pgoff;
2967         vmf.flags = flags;
2968         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2969         vma->vm_ops->map_pages(vma, &vmf);
2970 }
2971
2972 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2973                 unsigned long address, pmd_t *pmd,
2974                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2975 {
2976         struct page *fault_page;
2977         spinlock_t *ptl;
2978         pte_t *pte;
2979         int ret = 0;
2980
2981         /*
2982          * Let's call ->map_pages() first and use ->fault() as fallback
2983          * if page by the offset is not ready to be mapped (cold cache or
2984          * something).
2985          */
2986         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2987                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2988                 do_fault_around(vma, address, pte, pgoff, flags);
2989                 if (!pte_same(*pte, orig_pte))
2990                         goto unlock_out;
2991                 pte_unmap_unlock(pte, ptl);
2992         }
2993
2994         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2995         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2996                 return ret;
2997
2998         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2999         if (unlikely(!pte_same(*pte, orig_pte))) {
3000                 pte_unmap_unlock(pte, ptl);
3001                 unlock_page(fault_page);
3002                 page_cache_release(fault_page);
3003                 return ret;
3004         }
3005         do_set_pte(vma, address, fault_page, pte, false, false);
3006         unlock_page(fault_page);
3007 unlock_out:
3008         pte_unmap_unlock(pte, ptl);
3009         return ret;
3010 }
3011
3012 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3013                 unsigned long address, pmd_t *pmd,
3014                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3015 {
3016         struct page *fault_page, *new_page;
3017         struct mem_cgroup *memcg;
3018         spinlock_t *ptl;
3019         pte_t *pte;
3020         int ret;
3021
3022         if (unlikely(anon_vma_prepare(vma)))
3023                 return VM_FAULT_OOM;
3024
3025         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3026         if (!new_page)
3027                 return VM_FAULT_OOM;
3028
3029         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3030                 page_cache_release(new_page);
3031                 return VM_FAULT_OOM;
3032         }
3033
3034         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3035         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3036                 goto uncharge_out;
3037
3038         if (fault_page)
3039                 copy_user_highpage(new_page, fault_page, address, vma);
3040         __SetPageUptodate(new_page);
3041
3042         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3043         if (unlikely(!pte_same(*pte, orig_pte))) {
3044                 pte_unmap_unlock(pte, ptl);
3045                 if (fault_page) {
3046                         unlock_page(fault_page);
3047                         page_cache_release(fault_page);
3048                 } else {
3049                         /*
3050                          * The fault handler has no page to lock, so it holds
3051                          * i_mmap_lock for read to protect against truncate.
3052                          */
3053                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3054                 }
3055                 goto uncharge_out;
3056         }
3057         do_set_pte(vma, address, new_page, pte, true, true);
3058         mem_cgroup_commit_charge(new_page, memcg, false, false);
3059         lru_cache_add_active_or_unevictable(new_page, vma);
3060         pte_unmap_unlock(pte, ptl);
3061         if (fault_page) {
3062                 unlock_page(fault_page);
3063                 page_cache_release(fault_page);
3064         } else {
3065                 /*
3066                  * The fault handler has no page to lock, so it holds
3067                  * i_mmap_lock for read to protect against truncate.
3068                  */
3069                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3070         }
3071         return ret;
3072 uncharge_out:
3073         mem_cgroup_cancel_charge(new_page, memcg, false);
3074         page_cache_release(new_page);
3075         return ret;
3076 }
3077
3078 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3079                 unsigned long address, pmd_t *pmd,
3080                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3081 {
3082         struct page *fault_page;
3083         struct address_space *mapping;
3084         spinlock_t *ptl;
3085         pte_t *pte;
3086         int dirtied = 0;
3087         int ret, tmp;
3088
3089         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3090         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3091                 return ret;
3092
3093         /*
3094          * Check if the backing address space wants to know that the page is
3095          * about to become writable
3096          */
3097         if (vma->vm_ops->page_mkwrite) {
3098                 unlock_page(fault_page);
3099                 tmp = do_page_mkwrite(vma, fault_page, address);
3100                 if (unlikely(!tmp ||
3101                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3102                         page_cache_release(fault_page);
3103                         return tmp;
3104                 }
3105         }
3106
3107         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3108         if (unlikely(!pte_same(*pte, orig_pte))) {
3109                 pte_unmap_unlock(pte, ptl);
3110                 unlock_page(fault_page);
3111                 page_cache_release(fault_page);
3112                 return ret;
3113         }
3114         do_set_pte(vma, address, fault_page, pte, true, false);
3115         pte_unmap_unlock(pte, ptl);
3116
3117         if (set_page_dirty(fault_page))
3118                 dirtied = 1;
3119         /*
3120          * Take a local copy of the address_space - page.mapping may be zeroed
3121          * by truncate after unlock_page().   The address_space itself remains
3122          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3123          * release semantics to prevent the compiler from undoing this copying.
3124          */
3125         mapping = page_rmapping(fault_page);
3126         unlock_page(fault_page);
3127         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3128                 /*
3129                  * Some device drivers do not set page.mapping but still
3130                  * dirty their pages
3131                  */
3132                 balance_dirty_pages_ratelimited(mapping);
3133         }
3134
3135         if (!vma->vm_ops->page_mkwrite)
3136                 file_update_time(vma->vm_file);
3137
3138         return ret;
3139 }
3140
3141 /*
3142  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3143  * but allow concurrent faults).
3144  * The mmap_sem may have been released depending on flags and our
3145  * return value.  See filemap_fault() and __lock_page_or_retry().
3146  */
3147 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3148                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3149                 unsigned int flags, pte_t orig_pte)
3150 {
3151         pgoff_t pgoff = linear_page_index(vma, address);
3152
3153         pte_unmap(page_table);
3154         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3155         if (!vma->vm_ops->fault)
3156                 return VM_FAULT_SIGBUS;
3157         if (!(flags & FAULT_FLAG_WRITE))
3158                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3159                                 orig_pte);
3160         if (!(vma->vm_flags & VM_SHARED))
3161                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3162                                 orig_pte);
3163         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3164 }
3165
3166 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3167                                 unsigned long addr, int page_nid,
3168                                 int *flags)
3169 {
3170         get_page(page);
3171
3172         count_vm_numa_event(NUMA_HINT_FAULTS);
3173         if (page_nid == numa_node_id()) {
3174                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3175                 *flags |= TNF_FAULT_LOCAL;
3176         }
3177
3178         return mpol_misplaced(page, vma, addr);
3179 }
3180
3181 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3182                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3183 {
3184         struct page *page = NULL;
3185         spinlock_t *ptl;
3186         int page_nid = -1;
3187         int last_cpupid;
3188         int target_nid;
3189         bool migrated = false;
3190         bool was_writable = pte_write(pte);
3191         int flags = 0;
3192
3193         /* A PROT_NONE fault should not end up here */
3194         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3195
3196         /*
3197         * The "pte" at this point cannot be used safely without
3198         * validation through pte_unmap_same(). It's of NUMA type but
3199         * the pfn may be screwed if the read is non atomic.
3200         *
3201         * We can safely just do a "set_pte_at()", because the old
3202         * page table entry is not accessible, so there would be no
3203         * concurrent hardware modifications to the PTE.
3204         */
3205         ptl = pte_lockptr(mm, pmd);
3206         spin_lock(ptl);
3207         if (unlikely(!pte_same(*ptep, pte))) {
3208                 pte_unmap_unlock(ptep, ptl);
3209                 goto out;
3210         }
3211
3212         /* Make it present again */
3213         pte = pte_modify(pte, vma->vm_page_prot);
3214         pte = pte_mkyoung(pte);
3215         if (was_writable)
3216                 pte = pte_mkwrite(pte);
3217         set_pte_at(mm, addr, ptep, pte);
3218         update_mmu_cache(vma, addr, ptep);
3219
3220         page = vm_normal_page(vma, addr, pte);
3221         if (!page) {
3222                 pte_unmap_unlock(ptep, ptl);
3223                 return 0;
3224         }
3225
3226         /* TODO: handle PTE-mapped THP */
3227         if (PageCompound(page)) {
3228                 pte_unmap_unlock(ptep, ptl);
3229                 return 0;
3230         }
3231
3232         /*
3233          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3234          * much anyway since they can be in shared cache state. This misses
3235          * the case where a mapping is writable but the process never writes
3236          * to it but pte_write gets cleared during protection updates and
3237          * pte_dirty has unpredictable behaviour between PTE scan updates,
3238          * background writeback, dirty balancing and application behaviour.
3239          */
3240         if (!(vma->vm_flags & VM_WRITE))
3241                 flags |= TNF_NO_GROUP;
3242
3243         /*
3244          * Flag if the page is shared between multiple address spaces. This
3245          * is later used when determining whether to group tasks together
3246          */
3247         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3248                 flags |= TNF_SHARED;
3249
3250         last_cpupid = page_cpupid_last(page);
3251         page_nid = page_to_nid(page);
3252         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3253         pte_unmap_unlock(ptep, ptl);
3254         if (target_nid == -1) {
3255                 put_page(page);
3256                 goto out;
3257         }
3258
3259         /* Migrate to the requested node */
3260         migrated = migrate_misplaced_page(page, vma, target_nid);
3261         if (migrated) {
3262                 page_nid = target_nid;
3263                 flags |= TNF_MIGRATED;
3264         } else
3265                 flags |= TNF_MIGRATE_FAIL;
3266
3267 out:
3268         if (page_nid != -1)
3269                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3270         return 0;
3271 }
3272
3273 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3274                         unsigned long address, pmd_t *pmd, unsigned int flags)
3275 {
3276         if (vma_is_anonymous(vma))
3277                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3278         if (vma->vm_ops->pmd_fault)
3279                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3280         return VM_FAULT_FALLBACK;
3281 }
3282
3283 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3284                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3285                         unsigned int flags)
3286 {
3287         if (vma_is_anonymous(vma))
3288                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3289         if (vma->vm_ops->pmd_fault)
3290                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3291         return VM_FAULT_FALLBACK;
3292 }
3293
3294 /*
3295  * These routines also need to handle stuff like marking pages dirty
3296  * and/or accessed for architectures that don't do it in hardware (most
3297  * RISC architectures).  The early dirtying is also good on the i386.
3298  *
3299  * There is also a hook called "update_mmu_cache()" that architectures
3300  * with external mmu caches can use to update those (ie the Sparc or
3301  * PowerPC hashed page tables that act as extended TLBs).
3302  *
3303  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3304  * but allow concurrent faults), and pte mapped but not yet locked.
3305  * We return with pte unmapped and unlocked.
3306  *
3307  * The mmap_sem may have been released depending on flags and our
3308  * return value.  See filemap_fault() and __lock_page_or_retry().
3309  */
3310 static int handle_pte_fault(struct mm_struct *mm,
3311                      struct vm_area_struct *vma, unsigned long address,
3312                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3313 {
3314         pte_t entry;
3315         spinlock_t *ptl;
3316
3317         /*
3318          * some architectures can have larger ptes than wordsize,
3319          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3320          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3321          * The code below just needs a consistent view for the ifs and
3322          * we later double check anyway with the ptl lock held. So here
3323          * a barrier will do.
3324          */
3325         entry = *pte;
3326         barrier();
3327         if (!pte_present(entry)) {
3328                 if (pte_none(entry)) {
3329                         if (vma_is_anonymous(vma))
3330                                 return do_anonymous_page(mm, vma, address,
3331                                                          pte, pmd, flags);
3332                         else
3333                                 return do_fault(mm, vma, address, pte, pmd,
3334                                                 flags, entry);
3335                 }
3336                 return do_swap_page(mm, vma, address,
3337                                         pte, pmd, flags, entry);
3338         }
3339
3340         if (pte_protnone(entry))
3341                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3342
3343         ptl = pte_lockptr(mm, pmd);
3344         spin_lock(ptl);
3345         if (unlikely(!pte_same(*pte, entry)))
3346                 goto unlock;
3347         if (flags & FAULT_FLAG_WRITE) {
3348                 if (!pte_write(entry))
3349                         return do_wp_page(mm, vma, address,
3350                                         pte, pmd, ptl, entry);
3351                 entry = pte_mkdirty(entry);
3352         }
3353         entry = pte_mkyoung(entry);
3354         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3355                 update_mmu_cache(vma, address, pte);
3356         } else {
3357                 /*
3358                  * This is needed only for protection faults but the arch code
3359                  * is not yet telling us if this is a protection fault or not.
3360                  * This still avoids useless tlb flushes for .text page faults
3361                  * with threads.
3362                  */
3363                 if (flags & FAULT_FLAG_WRITE)
3364                         flush_tlb_fix_spurious_fault(vma, address);
3365         }
3366 unlock:
3367         pte_unmap_unlock(pte, ptl);
3368         return 0;
3369 }
3370
3371 /*
3372  * By the time we get here, we already hold the mm semaphore
3373  *
3374  * The mmap_sem may have been released depending on flags and our
3375  * return value.  See filemap_fault() and __lock_page_or_retry().
3376  */
3377 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3378                              unsigned long address, unsigned int flags)
3379 {
3380         pgd_t *pgd;
3381         pud_t *pud;
3382         pmd_t *pmd;
3383         pte_t *pte;
3384
3385         if (unlikely(is_vm_hugetlb_page(vma)))
3386                 return hugetlb_fault(mm, vma, address, flags);
3387
3388         pgd = pgd_offset(mm, address);
3389         pud = pud_alloc(mm, pgd, address);
3390         if (!pud)
3391                 return VM_FAULT_OOM;
3392         pmd = pmd_alloc(mm, pud, address);
3393         if (!pmd)
3394                 return VM_FAULT_OOM;
3395         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3396                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3397                 if (!(ret & VM_FAULT_FALLBACK))
3398                         return ret;
3399         } else {
3400                 pmd_t orig_pmd = *pmd;
3401                 int ret;
3402
3403                 barrier();
3404                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3405                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3406
3407                         if (pmd_protnone(orig_pmd))
3408                                 return do_huge_pmd_numa_page(mm, vma, address,
3409                                                              orig_pmd, pmd);
3410
3411                         if (dirty && !pmd_write(orig_pmd)) {
3412                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3413                                                         orig_pmd, flags);
3414                                 if (!(ret & VM_FAULT_FALLBACK))
3415                                         return ret;
3416                         } else {
3417                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3418                                                       orig_pmd, dirty);
3419                                 return 0;
3420                         }
3421                 }
3422         }
3423
3424         /*
3425          * Use __pte_alloc instead of pte_alloc_map, because we can't
3426          * run pte_offset_map on the pmd, if an huge pmd could
3427          * materialize from under us from a different thread.
3428          */
3429         if (unlikely(pmd_none(*pmd)) &&
3430             unlikely(__pte_alloc(mm, vma, pmd, address)))
3431                 return VM_FAULT_OOM;
3432         /* if an huge pmd materialized from under us just retry later */
3433         if (unlikely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
3434                 return 0;
3435         /*
3436          * A regular pmd is established and it can't morph into a huge pmd
3437          * from under us anymore at this point because we hold the mmap_sem
3438          * read mode and khugepaged takes it in write mode. So now it's
3439          * safe to run pte_offset_map().
3440          */
3441         pte = pte_offset_map(pmd, address);
3442
3443         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3444 }
3445
3446 /*
3447  * By the time we get here, we already hold the mm semaphore
3448  *
3449  * The mmap_sem may have been released depending on flags and our
3450  * return value.  See filemap_fault() and __lock_page_or_retry().
3451  */
3452 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3453                     unsigned long address, unsigned int flags)
3454 {
3455         int ret;
3456
3457         __set_current_state(TASK_RUNNING);
3458
3459         count_vm_event(PGFAULT);
3460         mem_cgroup_count_vm_event(mm, PGFAULT);
3461
3462         /* do counter updates before entering really critical section. */
3463         check_sync_rss_stat(current);
3464
3465         /*
3466          * Enable the memcg OOM handling for faults triggered in user
3467          * space.  Kernel faults are handled more gracefully.
3468          */
3469         if (flags & FAULT_FLAG_USER)
3470                 mem_cgroup_oom_enable();
3471
3472         ret = __handle_mm_fault(mm, vma, address, flags);
3473
3474         if (flags & FAULT_FLAG_USER) {
3475                 mem_cgroup_oom_disable();
3476                 /*
3477                  * The task may have entered a memcg OOM situation but
3478                  * if the allocation error was handled gracefully (no
3479                  * VM_FAULT_OOM), there is no need to kill anything.
3480                  * Just clean up the OOM state peacefully.
3481                  */
3482                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3483                         mem_cgroup_oom_synchronize(false);
3484         }
3485
3486         return ret;
3487 }
3488 EXPORT_SYMBOL_GPL(handle_mm_fault);
3489
3490 #ifndef __PAGETABLE_PUD_FOLDED
3491 /*
3492  * Allocate page upper directory.
3493  * We've already handled the fast-path in-line.
3494  */
3495 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3496 {
3497         pud_t *new = pud_alloc_one(mm, address);
3498         if (!new)
3499                 return -ENOMEM;
3500
3501         smp_wmb(); /* See comment in __pte_alloc */
3502
3503         spin_lock(&mm->page_table_lock);
3504         if (pgd_present(*pgd))          /* Another has populated it */
3505                 pud_free(mm, new);
3506         else
3507                 pgd_populate(mm, pgd, new);
3508         spin_unlock(&mm->page_table_lock);
3509         return 0;
3510 }
3511 #endif /* __PAGETABLE_PUD_FOLDED */
3512
3513 #ifndef __PAGETABLE_PMD_FOLDED
3514 /*
3515  * Allocate page middle directory.
3516  * We've already handled the fast-path in-line.
3517  */
3518 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3519 {
3520         pmd_t *new = pmd_alloc_one(mm, address);
3521         if (!new)
3522                 return -ENOMEM;
3523
3524         smp_wmb(); /* See comment in __pte_alloc */
3525
3526         spin_lock(&mm->page_table_lock);
3527 #ifndef __ARCH_HAS_4LEVEL_HACK
3528         if (!pud_present(*pud)) {
3529                 mm_inc_nr_pmds(mm);
3530                 pud_populate(mm, pud, new);
3531         } else  /* Another has populated it */
3532                 pmd_free(mm, new);
3533 #else
3534         if (!pgd_present(*pud)) {
3535                 mm_inc_nr_pmds(mm);
3536                 pgd_populate(mm, pud, new);
3537         } else /* Another has populated it */
3538                 pmd_free(mm, new);
3539 #endif /* __ARCH_HAS_4LEVEL_HACK */
3540         spin_unlock(&mm->page_table_lock);
3541         return 0;
3542 }
3543 #endif /* __PAGETABLE_PMD_FOLDED */
3544
3545 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3546                 pte_t **ptepp, spinlock_t **ptlp)
3547 {
3548         pgd_t *pgd;
3549         pud_t *pud;
3550         pmd_t *pmd;
3551         pte_t *ptep;
3552
3553         pgd = pgd_offset(mm, address);
3554         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3555                 goto out;
3556
3557         pud = pud_offset(pgd, address);
3558         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3559                 goto out;
3560
3561         pmd = pmd_offset(pud, address);
3562         VM_BUG_ON(pmd_trans_huge(*pmd));
3563         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3564                 goto out;
3565
3566         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3567         if (pmd_huge(*pmd))
3568                 goto out;
3569
3570         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3571         if (!ptep)
3572                 goto out;
3573         if (!pte_present(*ptep))
3574                 goto unlock;
3575         *ptepp = ptep;
3576         return 0;
3577 unlock:
3578         pte_unmap_unlock(ptep, *ptlp);
3579 out:
3580         return -EINVAL;
3581 }
3582
3583 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3584                              pte_t **ptepp, spinlock_t **ptlp)
3585 {
3586         int res;
3587
3588         /* (void) is needed to make gcc happy */
3589         (void) __cond_lock(*ptlp,
3590                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3591         return res;
3592 }
3593
3594 /**
3595  * follow_pfn - look up PFN at a user virtual address
3596  * @vma: memory mapping
3597  * @address: user virtual address
3598  * @pfn: location to store found PFN
3599  *
3600  * Only IO mappings and raw PFN mappings are allowed.
3601  *
3602  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3603  */
3604 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3605         unsigned long *pfn)
3606 {
3607         int ret = -EINVAL;
3608         spinlock_t *ptl;
3609         pte_t *ptep;
3610
3611         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3612                 return ret;
3613
3614         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3615         if (ret)
3616                 return ret;
3617         *pfn = pte_pfn(*ptep);
3618         pte_unmap_unlock(ptep, ptl);
3619         return 0;
3620 }
3621 EXPORT_SYMBOL(follow_pfn);
3622
3623 #ifdef CONFIG_HAVE_IOREMAP_PROT
3624 int follow_phys(struct vm_area_struct *vma,
3625                 unsigned long address, unsigned int flags,
3626                 unsigned long *prot, resource_size_t *phys)
3627 {
3628         int ret = -EINVAL;
3629         pte_t *ptep, pte;
3630         spinlock_t *ptl;
3631
3632         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3633                 goto out;
3634
3635         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3636                 goto out;
3637         pte = *ptep;
3638
3639         if ((flags & FOLL_WRITE) && !pte_write(pte))
3640                 goto unlock;
3641
3642         *prot = pgprot_val(pte_pgprot(pte));
3643         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3644
3645         ret = 0;
3646 unlock:
3647         pte_unmap_unlock(ptep, ptl);
3648 out:
3649         return ret;
3650 }
3651
3652 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3653                         void *buf, int len, int write)
3654 {
3655         resource_size_t phys_addr;
3656         unsigned long prot = 0;
3657         void __iomem *maddr;
3658         int offset = addr & (PAGE_SIZE-1);
3659
3660         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3661                 return -EINVAL;
3662
3663         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3664         if (write)
3665                 memcpy_toio(maddr + offset, buf, len);
3666         else
3667                 memcpy_fromio(buf, maddr + offset, len);
3668         iounmap(maddr);
3669
3670         return len;
3671 }
3672 EXPORT_SYMBOL_GPL(generic_access_phys);
3673 #endif
3674
3675 /*
3676  * Access another process' address space as given in mm.  If non-NULL, use the
3677  * given task for page fault accounting.
3678  */
3679 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3680                 unsigned long addr, void *buf, int len, int write)
3681 {
3682         struct vm_area_struct *vma;
3683         void *old_buf = buf;
3684
3685         down_read(&mm->mmap_sem);
3686         /* ignore errors, just check how much was successfully transferred */
3687         while (len) {
3688                 int bytes, ret, offset;
3689                 void *maddr;
3690                 struct page *page = NULL;
3691
3692                 ret = get_user_pages(tsk, mm, addr, 1,
3693                                 write, 1, &page, &vma);
3694                 if (ret <= 0) {
3695 #ifndef CONFIG_HAVE_IOREMAP_PROT
3696                         break;
3697 #else
3698                         /*
3699                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3700                          * we can access using slightly different code.
3701                          */
3702                         vma = find_vma(mm, addr);
3703                         if (!vma || vma->vm_start > addr)
3704                                 break;
3705                         if (vma->vm_ops && vma->vm_ops->access)
3706                                 ret = vma->vm_ops->access(vma, addr, buf,
3707                                                           len, write);
3708                         if (ret <= 0)
3709                                 break;
3710                         bytes = ret;
3711 #endif
3712                 } else {
3713                         bytes = len;
3714                         offset = addr & (PAGE_SIZE-1);
3715                         if (bytes > PAGE_SIZE-offset)
3716                                 bytes = PAGE_SIZE-offset;
3717
3718                         maddr = kmap(page);
3719                         if (write) {
3720                                 copy_to_user_page(vma, page, addr,
3721                                                   maddr + offset, buf, bytes);
3722                                 set_page_dirty_lock(page);
3723                         } else {
3724                                 copy_from_user_page(vma, page, addr,
3725                                                     buf, maddr + offset, bytes);
3726                         }
3727                         kunmap(page);
3728                         page_cache_release(page);
3729                 }
3730                 len -= bytes;
3731                 buf += bytes;
3732                 addr += bytes;
3733         }
3734         up_read(&mm->mmap_sem);
3735
3736         return buf - old_buf;
3737 }
3738
3739 /**
3740  * access_remote_vm - access another process' address space
3741  * @mm:         the mm_struct of the target address space
3742  * @addr:       start address to access
3743  * @buf:        source or destination buffer
3744  * @len:        number of bytes to transfer
3745  * @write:      whether the access is a write
3746  *
3747  * The caller must hold a reference on @mm.
3748  */
3749 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3750                 void *buf, int len, int write)
3751 {
3752         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3753 }
3754
3755 /*
3756  * Access another process' address space.
3757  * Source/target buffer must be kernel space,
3758  * Do not walk the page table directly, use get_user_pages
3759  */
3760 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3761                 void *buf, int len, int write)
3762 {
3763         struct mm_struct *mm;
3764         int ret;
3765
3766         mm = get_task_mm(tsk);
3767         if (!mm)
3768                 return 0;
3769
3770         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3771         mmput(mm);
3772
3773         return ret;
3774 }
3775
3776 /*
3777  * Print the name of a VMA.
3778  */
3779 void print_vma_addr(char *prefix, unsigned long ip)
3780 {
3781         struct mm_struct *mm = current->mm;
3782         struct vm_area_struct *vma;
3783
3784         /*
3785          * Do not print if we are in atomic
3786          * contexts (in exception stacks, etc.):
3787          */
3788         if (preempt_count())
3789                 return;
3790
3791         down_read(&mm->mmap_sem);
3792         vma = find_vma(mm, ip);
3793         if (vma && vma->vm_file) {
3794                 struct file *f = vma->vm_file;
3795                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3796                 if (buf) {
3797                         char *p;
3798
3799                         p = file_path(f, buf, PAGE_SIZE);
3800                         if (IS_ERR(p))
3801                                 p = "?";
3802                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3803                                         vma->vm_start,
3804                                         vma->vm_end - vma->vm_start);
3805                         free_page((unsigned long)buf);
3806                 }
3807         }
3808         up_read(&mm->mmap_sem);
3809 }
3810
3811 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3812 void __might_fault(const char *file, int line)
3813 {
3814         /*
3815          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3816          * holding the mmap_sem, this is safe because kernel memory doesn't
3817          * get paged out, therefore we'll never actually fault, and the
3818          * below annotations will generate false positives.
3819          */
3820         if (segment_eq(get_fs(), KERNEL_DS))
3821                 return;
3822         if (pagefault_disabled())
3823                 return;
3824         __might_sleep(file, line, 0);
3825 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3826         if (current->mm)
3827                 might_lock_read(&current->mm->mmap_sem);
3828 #endif
3829 }
3830 EXPORT_SYMBOL(__might_fault);
3831 #endif
3832
3833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3834 static void clear_gigantic_page(struct page *page,
3835                                 unsigned long addr,
3836                                 unsigned int pages_per_huge_page)
3837 {
3838         int i;
3839         struct page *p = page;
3840
3841         might_sleep();
3842         for (i = 0; i < pages_per_huge_page;
3843              i++, p = mem_map_next(p, page, i)) {
3844                 cond_resched();
3845                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3846         }
3847 }
3848 void clear_huge_page(struct page *page,
3849                      unsigned long addr, unsigned int pages_per_huge_page)
3850 {
3851         int i;
3852
3853         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3854                 clear_gigantic_page(page, addr, pages_per_huge_page);
3855                 return;
3856         }
3857
3858         might_sleep();
3859         for (i = 0; i < pages_per_huge_page; i++) {
3860                 cond_resched();
3861                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3862         }
3863 }
3864
3865 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3866                                     unsigned long addr,
3867                                     struct vm_area_struct *vma,
3868                                     unsigned int pages_per_huge_page)
3869 {
3870         int i;
3871         struct page *dst_base = dst;
3872         struct page *src_base = src;
3873
3874         for (i = 0; i < pages_per_huge_page; ) {
3875                 cond_resched();
3876                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3877
3878                 i++;
3879                 dst = mem_map_next(dst, dst_base, i);
3880                 src = mem_map_next(src, src_base, i);
3881         }
3882 }
3883
3884 void copy_user_huge_page(struct page *dst, struct page *src,
3885                          unsigned long addr, struct vm_area_struct *vma,
3886                          unsigned int pages_per_huge_page)
3887 {
3888         int i;
3889
3890         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3891                 copy_user_gigantic_page(dst, src, addr, vma,
3892                                         pages_per_huge_page);
3893                 return;
3894         }
3895
3896         might_sleep();
3897         for (i = 0; i < pages_per_huge_page; i++) {
3898                 cond_resched();
3899                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3900         }
3901 }
3902 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3903
3904 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3905
3906 static struct kmem_cache *page_ptl_cachep;
3907
3908 void __init ptlock_cache_init(void)
3909 {
3910         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3911                         SLAB_PANIC, NULL);
3912 }
3913
3914 bool ptlock_alloc(struct page *page)
3915 {
3916         spinlock_t *ptl;
3917
3918         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3919         if (!ptl)
3920                 return false;
3921         page->ptl = ptl;
3922         return true;
3923 }
3924
3925 void ptlock_free(struct page *page)
3926 {
3927         kmem_cache_free(page_ptl_cachep, page->ptl);
3928 }
3929 #endif