]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/memory.c
db68af8e0bc41ccc4fcf40b1b8c936a8f506a543
[mv-sheeva.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97                                         1;
98 #else
99                                         2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104         randomize_va_space = 0;
105         return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118         pgd_ERROR(*pgd);
119         pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124         pud_ERROR(*pud);
125         pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130         pmd_ERROR(*pmd);
131         pmd_clear(pmd);
132 }
133
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140         pgtable_t token = pmd_pgtable(*pmd);
141         pmd_clear(pmd);
142         pte_free_tlb(tlb, token);
143         tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147                                 unsigned long addr, unsigned long end,
148                                 unsigned long floor, unsigned long ceiling)
149 {
150         pmd_t *pmd;
151         unsigned long next;
152         unsigned long start;
153
154         start = addr;
155         pmd = pmd_offset(pud, addr);
156         do {
157                 next = pmd_addr_end(addr, end);
158                 if (pmd_none_or_clear_bad(pmd))
159                         continue;
160                 free_pte_range(tlb, pmd);
161         } while (pmd++, addr = next, addr != end);
162
163         start &= PUD_MASK;
164         if (start < floor)
165                 return;
166         if (ceiling) {
167                 ceiling &= PUD_MASK;
168                 if (!ceiling)
169                         return;
170         }
171         if (end - 1 > ceiling - 1)
172                 return;
173
174         pmd = pmd_offset(pud, start);
175         pud_clear(pud);
176         pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180                                 unsigned long addr, unsigned long end,
181                                 unsigned long floor, unsigned long ceiling)
182 {
183         pud_t *pud;
184         unsigned long next;
185         unsigned long start;
186
187         start = addr;
188         pud = pud_offset(pgd, addr);
189         do {
190                 next = pud_addr_end(addr, end);
191                 if (pud_none_or_clear_bad(pud))
192                         continue;
193                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194         } while (pud++, addr = next, addr != end);
195
196         start &= PGDIR_MASK;
197         if (start < floor)
198                 return;
199         if (ceiling) {
200                 ceiling &= PGDIR_MASK;
201                 if (!ceiling)
202                         return;
203         }
204         if (end - 1 > ceiling - 1)
205                 return;
206
207         pud = pud_offset(pgd, start);
208         pgd_clear(pgd);
209         pud_free_tlb(tlb, pud);
210 }
211
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218                         unsigned long addr, unsigned long end,
219                         unsigned long floor, unsigned long ceiling)
220 {
221         pgd_t *pgd;
222         unsigned long next;
223         unsigned long start;
224
225         /*
226          * The next few lines have given us lots of grief...
227          *
228          * Why are we testing PMD* at this top level?  Because often
229          * there will be no work to do at all, and we'd prefer not to
230          * go all the way down to the bottom just to discover that.
231          *
232          * Why all these "- 1"s?  Because 0 represents both the bottom
233          * of the address space and the top of it (using -1 for the
234          * top wouldn't help much: the masks would do the wrong thing).
235          * The rule is that addr 0 and floor 0 refer to the bottom of
236          * the address space, but end 0 and ceiling 0 refer to the top
237          * Comparisons need to use "end - 1" and "ceiling - 1" (though
238          * that end 0 case should be mythical).
239          *
240          * Wherever addr is brought up or ceiling brought down, we must
241          * be careful to reject "the opposite 0" before it confuses the
242          * subsequent tests.  But what about where end is brought down
243          * by PMD_SIZE below? no, end can't go down to 0 there.
244          *
245          * Whereas we round start (addr) and ceiling down, by different
246          * masks at different levels, in order to test whether a table
247          * now has no other vmas using it, so can be freed, we don't
248          * bother to round floor or end up - the tests don't need that.
249          */
250
251         addr &= PMD_MASK;
252         if (addr < floor) {
253                 addr += PMD_SIZE;
254                 if (!addr)
255                         return;
256         }
257         if (ceiling) {
258                 ceiling &= PMD_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 end -= PMD_SIZE;
264         if (addr > end - 1)
265                 return;
266
267         start = addr;
268         pgd = pgd_offset(tlb->mm, addr);
269         do {
270                 next = pgd_addr_end(addr, end);
271                 if (pgd_none_or_clear_bad(pgd))
272                         continue;
273                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274         } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278                 unsigned long floor, unsigned long ceiling)
279 {
280         while (vma) {
281                 struct vm_area_struct *next = vma->vm_next;
282                 unsigned long addr = vma->vm_start;
283
284                 /*
285                  * Hide vma from rmap and vmtruncate before freeing pgtables
286                  */
287                 anon_vma_unlink(vma);
288                 unlink_file_vma(vma);
289
290                 if (is_vm_hugetlb_page(vma)) {
291                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292                                 floor, next? next->vm_start: ceiling);
293                 } else {
294                         /*
295                          * Optimization: gather nearby vmas into one call down
296                          */
297                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298                                && !is_vm_hugetlb_page(next)) {
299                                 vma = next;
300                                 next = vma->vm_next;
301                                 anon_vma_unlink(vma);
302                                 unlink_file_vma(vma);
303                         }
304                         free_pgd_range(tlb, addr, vma->vm_end,
305                                 floor, next? next->vm_start: ceiling);
306                 }
307                 vma = next;
308         }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313         pgtable_t new = pte_alloc_one(mm, address);
314         if (!new)
315                 return -ENOMEM;
316
317         /*
318          * Ensure all pte setup (eg. pte page lock and page clearing) are
319          * visible before the pte is made visible to other CPUs by being
320          * put into page tables.
321          *
322          * The other side of the story is the pointer chasing in the page
323          * table walking code (when walking the page table without locking;
324          * ie. most of the time). Fortunately, these data accesses consist
325          * of a chain of data-dependent loads, meaning most CPUs (alpha
326          * being the notable exception) will already guarantee loads are
327          * seen in-order. See the alpha page table accessors for the
328          * smp_read_barrier_depends() barriers in page table walking code.
329          */
330         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332         spin_lock(&mm->page_table_lock);
333         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
334                 mm->nr_ptes++;
335                 pmd_populate(mm, pmd, new);
336                 new = NULL;
337         }
338         spin_unlock(&mm->page_table_lock);
339         if (new)
340                 pte_free(mm, new);
341         return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347         if (!new)
348                 return -ENOMEM;
349
350         smp_wmb(); /* See comment in __pte_alloc */
351
352         spin_lock(&init_mm.page_table_lock);
353         if (!pmd_present(*pmd)) {       /* Has another populated it ? */
354                 pmd_populate_kernel(&init_mm, pmd, new);
355                 new = NULL;
356         }
357         spin_unlock(&init_mm.page_table_lock);
358         if (new)
359                 pte_free_kernel(&init_mm, new);
360         return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365         if (file_rss)
366                 add_mm_counter(mm, file_rss, file_rss);
367         if (anon_rss)
368                 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379                           pte_t pte, struct page *page)
380 {
381         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382         pud_t *pud = pud_offset(pgd, addr);
383         pmd_t *pmd = pmd_offset(pud, addr);
384         struct address_space *mapping;
385         pgoff_t index;
386         static unsigned long resume;
387         static unsigned long nr_shown;
388         static unsigned long nr_unshown;
389
390         /*
391          * Allow a burst of 60 reports, then keep quiet for that minute;
392          * or allow a steady drip of one report per second.
393          */
394         if (nr_shown == 60) {
395                 if (time_before(jiffies, resume)) {
396                         nr_unshown++;
397                         return;
398                 }
399                 if (nr_unshown) {
400                         printk(KERN_ALERT
401                                 "BUG: Bad page map: %lu messages suppressed\n",
402                                 nr_unshown);
403                         nr_unshown = 0;
404                 }
405                 nr_shown = 0;
406         }
407         if (nr_shown++ == 0)
408                 resume = jiffies + 60 * HZ;
409
410         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411         index = linear_page_index(vma, addr);
412
413         printk(KERN_ALERT
414                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
415                 current->comm,
416                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
417         if (page) {
418                 printk(KERN_ALERT
419                 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420                 page, (void *)page->flags, page_count(page),
421                 page_mapcount(page), page->mapping, page->index);
422         }
423         printk(KERN_ALERT
424                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426         /*
427          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428          */
429         if (vma->vm_ops)
430                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431                                 (unsigned long)vma->vm_ops->fault);
432         if (vma->vm_file && vma->vm_file->f_op)
433                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434                                 (unsigned long)vma->vm_file->f_op->mmap);
435         dump_stack();
436         add_taint(TAINT_BAD_PAGE);
437 }
438
439 static inline int is_cow_mapping(unsigned int flags)
440 {
441         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442 }
443
444 /*
445  * vm_normal_page -- This function gets the "struct page" associated with a pte.
446  *
447  * "Special" mappings do not wish to be associated with a "struct page" (either
448  * it doesn't exist, or it exists but they don't want to touch it). In this
449  * case, NULL is returned here. "Normal" mappings do have a struct page.
450  *
451  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452  * pte bit, in which case this function is trivial. Secondly, an architecture
453  * may not have a spare pte bit, which requires a more complicated scheme,
454  * described below.
455  *
456  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457  * special mapping (even if there are underlying and valid "struct pages").
458  * COWed pages of a VM_PFNMAP are always normal.
459  *
460  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463  * mapping will always honor the rule
464  *
465  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466  *
467  * And for normal mappings this is false.
468  *
469  * This restricts such mappings to be a linear translation from virtual address
470  * to pfn. To get around this restriction, we allow arbitrary mappings so long
471  * as the vma is not a COW mapping; in that case, we know that all ptes are
472  * special (because none can have been COWed).
473  *
474  *
475  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476  *
477  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478  * page" backing, however the difference is that _all_ pages with a struct
479  * page (that is, those where pfn_valid is true) are refcounted and considered
480  * normal pages by the VM. The disadvantage is that pages are refcounted
481  * (which can be slower and simply not an option for some PFNMAP users). The
482  * advantage is that we don't have to follow the strict linearity rule of
483  * PFNMAP mappings in order to support COWable mappings.
484  *
485  */
486 #ifdef __HAVE_ARCH_PTE_SPECIAL
487 # define HAVE_PTE_SPECIAL 1
488 #else
489 # define HAVE_PTE_SPECIAL 0
490 #endif
491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492                                 pte_t pte)
493 {
494         unsigned long pfn = pte_pfn(pte);
495
496         if (HAVE_PTE_SPECIAL) {
497                 if (likely(!pte_special(pte)))
498                         goto check_pfn;
499                 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500                         print_bad_pte(vma, addr, pte, NULL);
501                 return NULL;
502         }
503
504         /* !HAVE_PTE_SPECIAL case follows: */
505
506         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507                 if (vma->vm_flags & VM_MIXEDMAP) {
508                         if (!pfn_valid(pfn))
509                                 return NULL;
510                         goto out;
511                 } else {
512                         unsigned long off;
513                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
514                         if (pfn == vma->vm_pgoff + off)
515                                 return NULL;
516                         if (!is_cow_mapping(vma->vm_flags))
517                                 return NULL;
518                 }
519         }
520
521 check_pfn:
522         if (unlikely(pfn > highest_memmap_pfn)) {
523                 print_bad_pte(vma, addr, pte, NULL);
524                 return NULL;
525         }
526
527         /*
528          * NOTE! We still have PageReserved() pages in the page tables.
529          * eg. VDSO mappings can cause them to exist.
530          */
531 out:
532         return pfn_to_page(pfn);
533 }
534
535 /*
536  * copy one vm_area from one task to the other. Assumes the page tables
537  * already present in the new task to be cleared in the whole range
538  * covered by this vma.
539  */
540
541 static inline void
542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544                 unsigned long addr, int *rss)
545 {
546         unsigned long vm_flags = vma->vm_flags;
547         pte_t pte = *src_pte;
548         struct page *page;
549
550         /* pte contains position in swap or file, so copy. */
551         if (unlikely(!pte_present(pte))) {
552                 if (!pte_file(pte)) {
553                         swp_entry_t entry = pte_to_swp_entry(pte);
554
555                         swap_duplicate(entry);
556                         /* make sure dst_mm is on swapoff's mmlist. */
557                         if (unlikely(list_empty(&dst_mm->mmlist))) {
558                                 spin_lock(&mmlist_lock);
559                                 if (list_empty(&dst_mm->mmlist))
560                                         list_add(&dst_mm->mmlist,
561                                                  &src_mm->mmlist);
562                                 spin_unlock(&mmlist_lock);
563                         }
564                         if (is_write_migration_entry(entry) &&
565                                         is_cow_mapping(vm_flags)) {
566                                 /*
567                                  * COW mappings require pages in both parent
568                                  * and child to be set to read.
569                                  */
570                                 make_migration_entry_read(&entry);
571                                 pte = swp_entry_to_pte(entry);
572                                 set_pte_at(src_mm, addr, src_pte, pte);
573                         }
574                 }
575                 goto out_set_pte;
576         }
577
578         /*
579          * If it's a COW mapping, write protect it both
580          * in the parent and the child
581          */
582         if (is_cow_mapping(vm_flags)) {
583                 ptep_set_wrprotect(src_mm, addr, src_pte);
584                 pte = pte_wrprotect(pte);
585         }
586
587         /*
588          * If it's a shared mapping, mark it clean in
589          * the child
590          */
591         if (vm_flags & VM_SHARED)
592                 pte = pte_mkclean(pte);
593         pte = pte_mkold(pte);
594
595         page = vm_normal_page(vma, addr, pte);
596         if (page) {
597                 get_page(page);
598                 page_dup_rmap(page, vma, addr);
599                 rss[!!PageAnon(page)]++;
600         }
601
602 out_set_pte:
603         set_pte_at(dst_mm, addr, dst_pte, pte);
604 }
605
606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608                 unsigned long addr, unsigned long end)
609 {
610         pte_t *src_pte, *dst_pte;
611         spinlock_t *src_ptl, *dst_ptl;
612         int progress = 0;
613         int rss[2];
614
615 again:
616         rss[1] = rss[0] = 0;
617         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618         if (!dst_pte)
619                 return -ENOMEM;
620         src_pte = pte_offset_map_nested(src_pmd, addr);
621         src_ptl = pte_lockptr(src_mm, src_pmd);
622         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623         arch_enter_lazy_mmu_mode();
624
625         do {
626                 /*
627                  * We are holding two locks at this point - either of them
628                  * could generate latencies in another task on another CPU.
629                  */
630                 if (progress >= 32) {
631                         progress = 0;
632                         if (need_resched() ||
633                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634                                 break;
635                 }
636                 if (pte_none(*src_pte)) {
637                         progress++;
638                         continue;
639                 }
640                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641                 progress += 8;
642         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643
644         arch_leave_lazy_mmu_mode();
645         spin_unlock(src_ptl);
646         pte_unmap_nested(src_pte - 1);
647         add_mm_rss(dst_mm, rss[0], rss[1]);
648         pte_unmap_unlock(dst_pte - 1, dst_ptl);
649         cond_resched();
650         if (addr != end)
651                 goto again;
652         return 0;
653 }
654
655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657                 unsigned long addr, unsigned long end)
658 {
659         pmd_t *src_pmd, *dst_pmd;
660         unsigned long next;
661
662         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663         if (!dst_pmd)
664                 return -ENOMEM;
665         src_pmd = pmd_offset(src_pud, addr);
666         do {
667                 next = pmd_addr_end(addr, end);
668                 if (pmd_none_or_clear_bad(src_pmd))
669                         continue;
670                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671                                                 vma, addr, next))
672                         return -ENOMEM;
673         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
674         return 0;
675 }
676
677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679                 unsigned long addr, unsigned long end)
680 {
681         pud_t *src_pud, *dst_pud;
682         unsigned long next;
683
684         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685         if (!dst_pud)
686                 return -ENOMEM;
687         src_pud = pud_offset(src_pgd, addr);
688         do {
689                 next = pud_addr_end(addr, end);
690                 if (pud_none_or_clear_bad(src_pud))
691                         continue;
692                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693                                                 vma, addr, next))
694                         return -ENOMEM;
695         } while (dst_pud++, src_pud++, addr = next, addr != end);
696         return 0;
697 }
698
699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 struct vm_area_struct *vma)
701 {
702         pgd_t *src_pgd, *dst_pgd;
703         unsigned long next;
704         unsigned long addr = vma->vm_start;
705         unsigned long end = vma->vm_end;
706         int ret;
707
708         /*
709          * Don't copy ptes where a page fault will fill them correctly.
710          * Fork becomes much lighter when there are big shared or private
711          * readonly mappings. The tradeoff is that copy_page_range is more
712          * efficient than faulting.
713          */
714         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715                 if (!vma->anon_vma)
716                         return 0;
717         }
718
719         if (is_vm_hugetlb_page(vma))
720                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721
722         if (unlikely(is_pfn_mapping(vma))) {
723                 /*
724                  * We do not free on error cases below as remove_vma
725                  * gets called on error from higher level routine
726                  */
727                 ret = track_pfn_vma_copy(vma);
728                 if (ret)
729                         return ret;
730         }
731
732         /*
733          * We need to invalidate the secondary MMU mappings only when
734          * there could be a permission downgrade on the ptes of the
735          * parent mm. And a permission downgrade will only happen if
736          * is_cow_mapping() returns true.
737          */
738         if (is_cow_mapping(vma->vm_flags))
739                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
740
741         ret = 0;
742         dst_pgd = pgd_offset(dst_mm, addr);
743         src_pgd = pgd_offset(src_mm, addr);
744         do {
745                 next = pgd_addr_end(addr, end);
746                 if (pgd_none_or_clear_bad(src_pgd))
747                         continue;
748                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749                                             vma, addr, next))) {
750                         ret = -ENOMEM;
751                         break;
752                 }
753         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
754
755         if (is_cow_mapping(vma->vm_flags))
756                 mmu_notifier_invalidate_range_end(src_mm,
757                                                   vma->vm_start, end);
758         return ret;
759 }
760
761 static unsigned long zap_pte_range(struct mmu_gather *tlb,
762                                 struct vm_area_struct *vma, pmd_t *pmd,
763                                 unsigned long addr, unsigned long end,
764                                 long *zap_work, struct zap_details *details)
765 {
766         struct mm_struct *mm = tlb->mm;
767         pte_t *pte;
768         spinlock_t *ptl;
769         int file_rss = 0;
770         int anon_rss = 0;
771
772         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773         arch_enter_lazy_mmu_mode();
774         do {
775                 pte_t ptent = *pte;
776                 if (pte_none(ptent)) {
777                         (*zap_work)--;
778                         continue;
779                 }
780
781                 (*zap_work) -= PAGE_SIZE;
782
783                 if (pte_present(ptent)) {
784                         struct page *page;
785
786                         page = vm_normal_page(vma, addr, ptent);
787                         if (unlikely(details) && page) {
788                                 /*
789                                  * unmap_shared_mapping_pages() wants to
790                                  * invalidate cache without truncating:
791                                  * unmap shared but keep private pages.
792                                  */
793                                 if (details->check_mapping &&
794                                     details->check_mapping != page->mapping)
795                                         continue;
796                                 /*
797                                  * Each page->index must be checked when
798                                  * invalidating or truncating nonlinear.
799                                  */
800                                 if (details->nonlinear_vma &&
801                                     (page->index < details->first_index ||
802                                      page->index > details->last_index))
803                                         continue;
804                         }
805                         ptent = ptep_get_and_clear_full(mm, addr, pte,
806                                                         tlb->fullmm);
807                         tlb_remove_tlb_entry(tlb, pte, addr);
808                         if (unlikely(!page))
809                                 continue;
810                         if (unlikely(details) && details->nonlinear_vma
811                             && linear_page_index(details->nonlinear_vma,
812                                                 addr) != page->index)
813                                 set_pte_at(mm, addr, pte,
814                                            pgoff_to_pte(page->index));
815                         if (PageAnon(page))
816                                 anon_rss--;
817                         else {
818                                 if (pte_dirty(ptent))
819                                         set_page_dirty(page);
820                                 if (pte_young(ptent) &&
821                                     likely(!VM_SequentialReadHint(vma)))
822                                         mark_page_accessed(page);
823                                 file_rss--;
824                         }
825                         page_remove_rmap(page);
826                         if (unlikely(page_mapcount(page) < 0))
827                                 print_bad_pte(vma, addr, ptent, page);
828                         tlb_remove_page(tlb, page);
829                         continue;
830                 }
831                 /*
832                  * If details->check_mapping, we leave swap entries;
833                  * if details->nonlinear_vma, we leave file entries.
834                  */
835                 if (unlikely(details))
836                         continue;
837                 if (pte_file(ptent)) {
838                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839                                 print_bad_pte(vma, addr, ptent, NULL);
840                 } else if
841                   (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842                         print_bad_pte(vma, addr, ptent, NULL);
843                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845
846         add_mm_rss(mm, file_rss, anon_rss);
847         arch_leave_lazy_mmu_mode();
848         pte_unmap_unlock(pte - 1, ptl);
849
850         return addr;
851 }
852
853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854                                 struct vm_area_struct *vma, pud_t *pud,
855                                 unsigned long addr, unsigned long end,
856                                 long *zap_work, struct zap_details *details)
857 {
858         pmd_t *pmd;
859         unsigned long next;
860
861         pmd = pmd_offset(pud, addr);
862         do {
863                 next = pmd_addr_end(addr, end);
864                 if (pmd_none_or_clear_bad(pmd)) {
865                         (*zap_work)--;
866                         continue;
867                 }
868                 next = zap_pte_range(tlb, vma, pmd, addr, next,
869                                                 zap_work, details);
870         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
871
872         return addr;
873 }
874
875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876                                 struct vm_area_struct *vma, pgd_t *pgd,
877                                 unsigned long addr, unsigned long end,
878                                 long *zap_work, struct zap_details *details)
879 {
880         pud_t *pud;
881         unsigned long next;
882
883         pud = pud_offset(pgd, addr);
884         do {
885                 next = pud_addr_end(addr, end);
886                 if (pud_none_or_clear_bad(pud)) {
887                         (*zap_work)--;
888                         continue;
889                 }
890                 next = zap_pmd_range(tlb, vma, pud, addr, next,
891                                                 zap_work, details);
892         } while (pud++, addr = next, (addr != end && *zap_work > 0));
893
894         return addr;
895 }
896
897 static unsigned long unmap_page_range(struct mmu_gather *tlb,
898                                 struct vm_area_struct *vma,
899                                 unsigned long addr, unsigned long end,
900                                 long *zap_work, struct zap_details *details)
901 {
902         pgd_t *pgd;
903         unsigned long next;
904
905         if (details && !details->check_mapping && !details->nonlinear_vma)
906                 details = NULL;
907
908         BUG_ON(addr >= end);
909         tlb_start_vma(tlb, vma);
910         pgd = pgd_offset(vma->vm_mm, addr);
911         do {
912                 next = pgd_addr_end(addr, end);
913                 if (pgd_none_or_clear_bad(pgd)) {
914                         (*zap_work)--;
915                         continue;
916                 }
917                 next = zap_pud_range(tlb, vma, pgd, addr, next,
918                                                 zap_work, details);
919         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
920         tlb_end_vma(tlb, vma);
921
922         return addr;
923 }
924
925 #ifdef CONFIG_PREEMPT
926 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
927 #else
928 /* No preempt: go for improved straight-line efficiency */
929 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
930 #endif
931
932 /**
933  * unmap_vmas - unmap a range of memory covered by a list of vma's
934  * @tlbp: address of the caller's struct mmu_gather
935  * @vma: the starting vma
936  * @start_addr: virtual address at which to start unmapping
937  * @end_addr: virtual address at which to end unmapping
938  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939  * @details: details of nonlinear truncation or shared cache invalidation
940  *
941  * Returns the end address of the unmapping (restart addr if interrupted).
942  *
943  * Unmap all pages in the vma list.
944  *
945  * We aim to not hold locks for too long (for scheduling latency reasons).
946  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
947  * return the ending mmu_gather to the caller.
948  *
949  * Only addresses between `start' and `end' will be unmapped.
950  *
951  * The VMA list must be sorted in ascending virtual address order.
952  *
953  * unmap_vmas() assumes that the caller will flush the whole unmapped address
954  * range after unmap_vmas() returns.  So the only responsibility here is to
955  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956  * drops the lock and schedules.
957  */
958 unsigned long unmap_vmas(struct mmu_gather **tlbp,
959                 struct vm_area_struct *vma, unsigned long start_addr,
960                 unsigned long end_addr, unsigned long *nr_accounted,
961                 struct zap_details *details)
962 {
963         long zap_work = ZAP_BLOCK_SIZE;
964         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
965         int tlb_start_valid = 0;
966         unsigned long start = start_addr;
967         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968         int fullmm = (*tlbp)->fullmm;
969         struct mm_struct *mm = vma->vm_mm;
970
971         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973                 unsigned long end;
974
975                 start = max(vma->vm_start, start_addr);
976                 if (start >= vma->vm_end)
977                         continue;
978                 end = min(vma->vm_end, end_addr);
979                 if (end <= vma->vm_start)
980                         continue;
981
982                 if (vma->vm_flags & VM_ACCOUNT)
983                         *nr_accounted += (end - start) >> PAGE_SHIFT;
984
985                 if (unlikely(is_pfn_mapping(vma)))
986                         untrack_pfn_vma(vma, 0, 0);
987
988                 while (start != end) {
989                         if (!tlb_start_valid) {
990                                 tlb_start = start;
991                                 tlb_start_valid = 1;
992                         }
993
994                         if (unlikely(is_vm_hugetlb_page(vma))) {
995                                 /*
996                                  * It is undesirable to test vma->vm_file as it
997                                  * should be non-null for valid hugetlb area.
998                                  * However, vm_file will be NULL in the error
999                                  * cleanup path of do_mmap_pgoff. When
1000                                  * hugetlbfs ->mmap method fails,
1001                                  * do_mmap_pgoff() nullifies vma->vm_file
1002                                  * before calling this function to clean up.
1003                                  * Since no pte has actually been setup, it is
1004                                  * safe to do nothing in this case.
1005                                  */
1006                                 if (vma->vm_file) {
1007                                         unmap_hugepage_range(vma, start, end, NULL);
1008                                         zap_work -= (end - start) /
1009                                         pages_per_huge_page(hstate_vma(vma));
1010                                 }
1011
1012                                 start = end;
1013                         } else
1014                                 start = unmap_page_range(*tlbp, vma,
1015                                                 start, end, &zap_work, details);
1016
1017                         if (zap_work > 0) {
1018                                 BUG_ON(start != end);
1019                                 break;
1020                         }
1021
1022                         tlb_finish_mmu(*tlbp, tlb_start, start);
1023
1024                         if (need_resched() ||
1025                                 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026                                 if (i_mmap_lock) {
1027                                         *tlbp = NULL;
1028                                         goto out;
1029                                 }
1030                                 cond_resched();
1031                         }
1032
1033                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034                         tlb_start_valid = 0;
1035                         zap_work = ZAP_BLOCK_SIZE;
1036                 }
1037         }
1038 out:
1039         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040         return start;   /* which is now the end (or restart) address */
1041 }
1042
1043 /**
1044  * zap_page_range - remove user pages in a given range
1045  * @vma: vm_area_struct holding the applicable pages
1046  * @address: starting address of pages to zap
1047  * @size: number of bytes to zap
1048  * @details: details of nonlinear truncation or shared cache invalidation
1049  */
1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051                 unsigned long size, struct zap_details *details)
1052 {
1053         struct mm_struct *mm = vma->vm_mm;
1054         struct mmu_gather *tlb;
1055         unsigned long end = address + size;
1056         unsigned long nr_accounted = 0;
1057
1058         lru_add_drain();
1059         tlb = tlb_gather_mmu(mm, 0);
1060         update_hiwater_rss(mm);
1061         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062         if (tlb)
1063                 tlb_finish_mmu(tlb, address, end);
1064         return end;
1065 }
1066
1067 /**
1068  * zap_vma_ptes - remove ptes mapping the vma
1069  * @vma: vm_area_struct holding ptes to be zapped
1070  * @address: starting address of pages to zap
1071  * @size: number of bytes to zap
1072  *
1073  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074  *
1075  * The entire address range must be fully contained within the vma.
1076  *
1077  * Returns 0 if successful.
1078  */
1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080                 unsigned long size)
1081 {
1082         if (address < vma->vm_start || address + size > vma->vm_end ||
1083                         !(vma->vm_flags & VM_PFNMAP))
1084                 return -1;
1085         zap_page_range(vma, address, size, NULL);
1086         return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089
1090 /*
1091  * Do a quick page-table lookup for a single page.
1092  */
1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094                         unsigned int flags)
1095 {
1096         pgd_t *pgd;
1097         pud_t *pud;
1098         pmd_t *pmd;
1099         pte_t *ptep, pte;
1100         spinlock_t *ptl;
1101         struct page *page;
1102         struct mm_struct *mm = vma->vm_mm;
1103
1104         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105         if (!IS_ERR(page)) {
1106                 BUG_ON(flags & FOLL_GET);
1107                 goto out;
1108         }
1109
1110         page = NULL;
1111         pgd = pgd_offset(mm, address);
1112         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113                 goto no_page_table;
1114
1115         pud = pud_offset(pgd, address);
1116         if (pud_none(*pud))
1117                 goto no_page_table;
1118         if (pud_huge(*pud)) {
1119                 BUG_ON(flags & FOLL_GET);
1120                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121                 goto out;
1122         }
1123         if (unlikely(pud_bad(*pud)))
1124                 goto no_page_table;
1125
1126         pmd = pmd_offset(pud, address);
1127         if (pmd_none(*pmd))
1128                 goto no_page_table;
1129         if (pmd_huge(*pmd)) {
1130                 BUG_ON(flags & FOLL_GET);
1131                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132                 goto out;
1133         }
1134         if (unlikely(pmd_bad(*pmd)))
1135                 goto no_page_table;
1136
1137         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138
1139         pte = *ptep;
1140         if (!pte_present(pte))
1141                 goto no_page;
1142         if ((flags & FOLL_WRITE) && !pte_write(pte))
1143                 goto unlock;
1144         page = vm_normal_page(vma, address, pte);
1145         if (unlikely(!page))
1146                 goto bad_page;
1147
1148         if (flags & FOLL_GET)
1149                 get_page(page);
1150         if (flags & FOLL_TOUCH) {
1151                 if ((flags & FOLL_WRITE) &&
1152                     !pte_dirty(pte) && !PageDirty(page))
1153                         set_page_dirty(page);
1154                 mark_page_accessed(page);
1155         }
1156 unlock:
1157         pte_unmap_unlock(ptep, ptl);
1158 out:
1159         return page;
1160
1161 bad_page:
1162         pte_unmap_unlock(ptep, ptl);
1163         return ERR_PTR(-EFAULT);
1164
1165 no_page:
1166         pte_unmap_unlock(ptep, ptl);
1167         if (!pte_none(pte))
1168                 return page;
1169         /* Fall through to ZERO_PAGE handling */
1170 no_page_table:
1171         /*
1172          * When core dumping an enormous anonymous area that nobody
1173          * has touched so far, we don't want to allocate page tables.
1174          */
1175         if (flags & FOLL_ANON) {
1176                 page = ZERO_PAGE(0);
1177                 if (flags & FOLL_GET)
1178                         get_page(page);
1179                 BUG_ON(flags & FOLL_WRITE);
1180         }
1181         return page;
1182 }
1183
1184 /* Can we do the FOLL_ANON optimization? */
1185 static inline int use_zero_page(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * We don't want to optimize FOLL_ANON for make_pages_present()
1189          * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1190          * we want to get the page from the page tables to make sure
1191          * that we serialize and update with any other user of that
1192          * mapping.
1193          */
1194         if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1195                 return 0;
1196         /*
1197          * And if we have a fault routine, it's not an anonymous region.
1198          */
1199         return !vma->vm_ops || !vma->vm_ops->fault;
1200 }
1201
1202
1203
1204 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1205                      unsigned long start, int len, int flags,
1206                 struct page **pages, struct vm_area_struct **vmas)
1207 {
1208         int i;
1209         unsigned int vm_flags = 0;
1210         int write = !!(flags & GUP_FLAGS_WRITE);
1211         int force = !!(flags & GUP_FLAGS_FORCE);
1212         int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1213
1214         if (len <= 0)
1215                 return 0;
1216         /* 
1217          * Require read or write permissions.
1218          * If 'force' is set, we only require the "MAY" flags.
1219          */
1220         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1221         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1222         i = 0;
1223
1224         do {
1225                 struct vm_area_struct *vma;
1226                 unsigned int foll_flags;
1227
1228                 vma = find_extend_vma(mm, start);
1229                 if (!vma && in_gate_area(tsk, start)) {
1230                         unsigned long pg = start & PAGE_MASK;
1231                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1232                         pgd_t *pgd;
1233                         pud_t *pud;
1234                         pmd_t *pmd;
1235                         pte_t *pte;
1236
1237                         /* user gate pages are read-only */
1238                         if (!ignore && write)
1239                                 return i ? : -EFAULT;
1240                         if (pg > TASK_SIZE)
1241                                 pgd = pgd_offset_k(pg);
1242                         else
1243                                 pgd = pgd_offset_gate(mm, pg);
1244                         BUG_ON(pgd_none(*pgd));
1245                         pud = pud_offset(pgd, pg);
1246                         BUG_ON(pud_none(*pud));
1247                         pmd = pmd_offset(pud, pg);
1248                         if (pmd_none(*pmd))
1249                                 return i ? : -EFAULT;
1250                         pte = pte_offset_map(pmd, pg);
1251                         if (pte_none(*pte)) {
1252                                 pte_unmap(pte);
1253                                 return i ? : -EFAULT;
1254                         }
1255                         if (pages) {
1256                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1257                                 pages[i] = page;
1258                                 if (page)
1259                                         get_page(page);
1260                         }
1261                         pte_unmap(pte);
1262                         if (vmas)
1263                                 vmas[i] = gate_vma;
1264                         i++;
1265                         start += PAGE_SIZE;
1266                         len--;
1267                         continue;
1268                 }
1269
1270                 if (!vma ||
1271                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1272                     (!ignore && !(vm_flags & vma->vm_flags)))
1273                         return i ? : -EFAULT;
1274
1275                 if (is_vm_hugetlb_page(vma)) {
1276                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1277                                                 &start, &len, i, write);
1278                         continue;
1279                 }
1280
1281                 foll_flags = FOLL_TOUCH;
1282                 if (pages)
1283                         foll_flags |= FOLL_GET;
1284                 if (!write && use_zero_page(vma))
1285                         foll_flags |= FOLL_ANON;
1286
1287                 do {
1288                         struct page *page;
1289
1290                         /*
1291                          * If tsk is ooming, cut off its access to large memory
1292                          * allocations. It has a pending SIGKILL, but it can't
1293                          * be processed until returning to user space.
1294                          */
1295                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1296                                 return i ? i : -ENOMEM;
1297
1298                         if (write)
1299                                 foll_flags |= FOLL_WRITE;
1300
1301                         cond_resched();
1302                         while (!(page = follow_page(vma, start, foll_flags))) {
1303                                 int ret;
1304                                 ret = handle_mm_fault(mm, vma, start,
1305                                                 foll_flags & FOLL_WRITE);
1306                                 if (ret & VM_FAULT_ERROR) {
1307                                         if (ret & VM_FAULT_OOM)
1308                                                 return i ? i : -ENOMEM;
1309                                         else if (ret & VM_FAULT_SIGBUS)
1310                                                 return i ? i : -EFAULT;
1311                                         BUG();
1312                                 }
1313                                 if (ret & VM_FAULT_MAJOR)
1314                                         tsk->maj_flt++;
1315                                 else
1316                                         tsk->min_flt++;
1317
1318                                 /*
1319                                  * The VM_FAULT_WRITE bit tells us that
1320                                  * do_wp_page has broken COW when necessary,
1321                                  * even if maybe_mkwrite decided not to set
1322                                  * pte_write. We can thus safely do subsequent
1323                                  * page lookups as if they were reads. But only
1324                                  * do so when looping for pte_write is futile:
1325                                  * in some cases userspace may also be wanting
1326                                  * to write to the gotten user page, which a
1327                                  * read fault here might prevent (a readonly
1328                                  * page might get reCOWed by userspace write).
1329                                  */
1330                                 if ((ret & VM_FAULT_WRITE) &&
1331                                     !(vma->vm_flags & VM_WRITE))
1332                                         foll_flags &= ~FOLL_WRITE;
1333
1334                                 cond_resched();
1335                         }
1336                         if (IS_ERR(page))
1337                                 return i ? i : PTR_ERR(page);
1338                         if (pages) {
1339                                 pages[i] = page;
1340
1341                                 flush_anon_page(vma, page, start);
1342                                 flush_dcache_page(page);
1343                         }
1344                         if (vmas)
1345                                 vmas[i] = vma;
1346                         i++;
1347                         start += PAGE_SIZE;
1348                         len--;
1349                 } while (len && start < vma->vm_end);
1350         } while (len);
1351         return i;
1352 }
1353
1354 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1355                 unsigned long start, int len, int write, int force,
1356                 struct page **pages, struct vm_area_struct **vmas)
1357 {
1358         int flags = 0;
1359
1360         if (write)
1361                 flags |= GUP_FLAGS_WRITE;
1362         if (force)
1363                 flags |= GUP_FLAGS_FORCE;
1364
1365         return __get_user_pages(tsk, mm,
1366                                 start, len, flags,
1367                                 pages, vmas);
1368 }
1369
1370 EXPORT_SYMBOL(get_user_pages);
1371
1372 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1373                         spinlock_t **ptl)
1374 {
1375         pgd_t * pgd = pgd_offset(mm, addr);
1376         pud_t * pud = pud_alloc(mm, pgd, addr);
1377         if (pud) {
1378                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1379                 if (pmd)
1380                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1381         }
1382         return NULL;
1383 }
1384
1385 /*
1386  * This is the old fallback for page remapping.
1387  *
1388  * For historical reasons, it only allows reserved pages. Only
1389  * old drivers should use this, and they needed to mark their
1390  * pages reserved for the old functions anyway.
1391  */
1392 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1393                         struct page *page, pgprot_t prot)
1394 {
1395         struct mm_struct *mm = vma->vm_mm;
1396         int retval;
1397         pte_t *pte;
1398         spinlock_t *ptl;
1399
1400         retval = -EINVAL;
1401         if (PageAnon(page))
1402                 goto out;
1403         retval = -ENOMEM;
1404         flush_dcache_page(page);
1405         pte = get_locked_pte(mm, addr, &ptl);
1406         if (!pte)
1407                 goto out;
1408         retval = -EBUSY;
1409         if (!pte_none(*pte))
1410                 goto out_unlock;
1411
1412         /* Ok, finally just insert the thing.. */
1413         get_page(page);
1414         inc_mm_counter(mm, file_rss);
1415         page_add_file_rmap(page);
1416         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1417
1418         retval = 0;
1419         pte_unmap_unlock(pte, ptl);
1420         return retval;
1421 out_unlock:
1422         pte_unmap_unlock(pte, ptl);
1423 out:
1424         return retval;
1425 }
1426
1427 /**
1428  * vm_insert_page - insert single page into user vma
1429  * @vma: user vma to map to
1430  * @addr: target user address of this page
1431  * @page: source kernel page
1432  *
1433  * This allows drivers to insert individual pages they've allocated
1434  * into a user vma.
1435  *
1436  * The page has to be a nice clean _individual_ kernel allocation.
1437  * If you allocate a compound page, you need to have marked it as
1438  * such (__GFP_COMP), or manually just split the page up yourself
1439  * (see split_page()).
1440  *
1441  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1442  * took an arbitrary page protection parameter. This doesn't allow
1443  * that. Your vma protection will have to be set up correctly, which
1444  * means that if you want a shared writable mapping, you'd better
1445  * ask for a shared writable mapping!
1446  *
1447  * The page does not need to be reserved.
1448  */
1449 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1450                         struct page *page)
1451 {
1452         if (addr < vma->vm_start || addr >= vma->vm_end)
1453                 return -EFAULT;
1454         if (!page_count(page))
1455                 return -EINVAL;
1456         vma->vm_flags |= VM_INSERTPAGE;
1457         return insert_page(vma, addr, page, vma->vm_page_prot);
1458 }
1459 EXPORT_SYMBOL(vm_insert_page);
1460
1461 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1462                         unsigned long pfn, pgprot_t prot)
1463 {
1464         struct mm_struct *mm = vma->vm_mm;
1465         int retval;
1466         pte_t *pte, entry;
1467         spinlock_t *ptl;
1468
1469         retval = -ENOMEM;
1470         pte = get_locked_pte(mm, addr, &ptl);
1471         if (!pte)
1472                 goto out;
1473         retval = -EBUSY;
1474         if (!pte_none(*pte))
1475                 goto out_unlock;
1476
1477         /* Ok, finally just insert the thing.. */
1478         entry = pte_mkspecial(pfn_pte(pfn, prot));
1479         set_pte_at(mm, addr, pte, entry);
1480         update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1481
1482         retval = 0;
1483 out_unlock:
1484         pte_unmap_unlock(pte, ptl);
1485 out:
1486         return retval;
1487 }
1488
1489 /**
1490  * vm_insert_pfn - insert single pfn into user vma
1491  * @vma: user vma to map to
1492  * @addr: target user address of this page
1493  * @pfn: source kernel pfn
1494  *
1495  * Similar to vm_inert_page, this allows drivers to insert individual pages
1496  * they've allocated into a user vma. Same comments apply.
1497  *
1498  * This function should only be called from a vm_ops->fault handler, and
1499  * in that case the handler should return NULL.
1500  *
1501  * vma cannot be a COW mapping.
1502  *
1503  * As this is called only for pages that do not currently exist, we
1504  * do not need to flush old virtual caches or the TLB.
1505  */
1506 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1507                         unsigned long pfn)
1508 {
1509         int ret;
1510         /*
1511          * Technically, architectures with pte_special can avoid all these
1512          * restrictions (same for remap_pfn_range).  However we would like
1513          * consistency in testing and feature parity among all, so we should
1514          * try to keep these invariants in place for everybody.
1515          */
1516         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1517         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1518                                                 (VM_PFNMAP|VM_MIXEDMAP));
1519         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1520         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1521
1522         if (addr < vma->vm_start || addr >= vma->vm_end)
1523                 return -EFAULT;
1524         if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1525                 return -EINVAL;
1526
1527         ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1528
1529         if (ret)
1530                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1531
1532         return ret;
1533 }
1534 EXPORT_SYMBOL(vm_insert_pfn);
1535
1536 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1537                         unsigned long pfn)
1538 {
1539         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1540
1541         if (addr < vma->vm_start || addr >= vma->vm_end)
1542                 return -EFAULT;
1543
1544         /*
1545          * If we don't have pte special, then we have to use the pfn_valid()
1546          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1547          * refcount the page if pfn_valid is true (hence insert_page rather
1548          * than insert_pfn).
1549          */
1550         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1551                 struct page *page;
1552
1553                 page = pfn_to_page(pfn);
1554                 return insert_page(vma, addr, page, vma->vm_page_prot);
1555         }
1556         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1557 }
1558 EXPORT_SYMBOL(vm_insert_mixed);
1559
1560 /*
1561  * maps a range of physical memory into the requested pages. the old
1562  * mappings are removed. any references to nonexistent pages results
1563  * in null mappings (currently treated as "copy-on-access")
1564  */
1565 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1566                         unsigned long addr, unsigned long end,
1567                         unsigned long pfn, pgprot_t prot)
1568 {
1569         pte_t *pte;
1570         spinlock_t *ptl;
1571
1572         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1573         if (!pte)
1574                 return -ENOMEM;
1575         arch_enter_lazy_mmu_mode();
1576         do {
1577                 BUG_ON(!pte_none(*pte));
1578                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1579                 pfn++;
1580         } while (pte++, addr += PAGE_SIZE, addr != end);
1581         arch_leave_lazy_mmu_mode();
1582         pte_unmap_unlock(pte - 1, ptl);
1583         return 0;
1584 }
1585
1586 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1587                         unsigned long addr, unsigned long end,
1588                         unsigned long pfn, pgprot_t prot)
1589 {
1590         pmd_t *pmd;
1591         unsigned long next;
1592
1593         pfn -= addr >> PAGE_SHIFT;
1594         pmd = pmd_alloc(mm, pud, addr);
1595         if (!pmd)
1596                 return -ENOMEM;
1597         do {
1598                 next = pmd_addr_end(addr, end);
1599                 if (remap_pte_range(mm, pmd, addr, next,
1600                                 pfn + (addr >> PAGE_SHIFT), prot))
1601                         return -ENOMEM;
1602         } while (pmd++, addr = next, addr != end);
1603         return 0;
1604 }
1605
1606 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1607                         unsigned long addr, unsigned long end,
1608                         unsigned long pfn, pgprot_t prot)
1609 {
1610         pud_t *pud;
1611         unsigned long next;
1612
1613         pfn -= addr >> PAGE_SHIFT;
1614         pud = pud_alloc(mm, pgd, addr);
1615         if (!pud)
1616                 return -ENOMEM;
1617         do {
1618                 next = pud_addr_end(addr, end);
1619                 if (remap_pmd_range(mm, pud, addr, next,
1620                                 pfn + (addr >> PAGE_SHIFT), prot))
1621                         return -ENOMEM;
1622         } while (pud++, addr = next, addr != end);
1623         return 0;
1624 }
1625
1626 /**
1627  * remap_pfn_range - remap kernel memory to userspace
1628  * @vma: user vma to map to
1629  * @addr: target user address to start at
1630  * @pfn: physical address of kernel memory
1631  * @size: size of map area
1632  * @prot: page protection flags for this mapping
1633  *
1634  *  Note: this is only safe if the mm semaphore is held when called.
1635  */
1636 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1637                     unsigned long pfn, unsigned long size, pgprot_t prot)
1638 {
1639         pgd_t *pgd;
1640         unsigned long next;
1641         unsigned long end = addr + PAGE_ALIGN(size);
1642         struct mm_struct *mm = vma->vm_mm;
1643         int err;
1644
1645         /*
1646          * Physically remapped pages are special. Tell the
1647          * rest of the world about it:
1648          *   VM_IO tells people not to look at these pages
1649          *      (accesses can have side effects).
1650          *   VM_RESERVED is specified all over the place, because
1651          *      in 2.4 it kept swapout's vma scan off this vma; but
1652          *      in 2.6 the LRU scan won't even find its pages, so this
1653          *      flag means no more than count its pages in reserved_vm,
1654          *      and omit it from core dump, even when VM_IO turned off.
1655          *   VM_PFNMAP tells the core MM that the base pages are just
1656          *      raw PFN mappings, and do not have a "struct page" associated
1657          *      with them.
1658          *
1659          * There's a horrible special case to handle copy-on-write
1660          * behaviour that some programs depend on. We mark the "original"
1661          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1662          */
1663         if (addr == vma->vm_start && end == vma->vm_end)
1664                 vma->vm_pgoff = pfn;
1665         else if (is_cow_mapping(vma->vm_flags))
1666                 return -EINVAL;
1667
1668         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1669
1670         err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1671         if (err)
1672                 return -EINVAL;
1673
1674         BUG_ON(addr >= end);
1675         pfn -= addr >> PAGE_SHIFT;
1676         pgd = pgd_offset(mm, addr);
1677         flush_cache_range(vma, addr, end);
1678         do {
1679                 next = pgd_addr_end(addr, end);
1680                 err = remap_pud_range(mm, pgd, addr, next,
1681                                 pfn + (addr >> PAGE_SHIFT), prot);
1682                 if (err)
1683                         break;
1684         } while (pgd++, addr = next, addr != end);
1685
1686         if (err)
1687                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1688
1689         return err;
1690 }
1691 EXPORT_SYMBOL(remap_pfn_range);
1692
1693 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1694                                      unsigned long addr, unsigned long end,
1695                                      pte_fn_t fn, void *data)
1696 {
1697         pte_t *pte;
1698         int err;
1699         pgtable_t token;
1700         spinlock_t *uninitialized_var(ptl);
1701
1702         pte = (mm == &init_mm) ?
1703                 pte_alloc_kernel(pmd, addr) :
1704                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1705         if (!pte)
1706                 return -ENOMEM;
1707
1708         BUG_ON(pmd_huge(*pmd));
1709
1710         arch_enter_lazy_mmu_mode();
1711
1712         token = pmd_pgtable(*pmd);
1713
1714         do {
1715                 err = fn(pte, token, addr, data);
1716                 if (err)
1717                         break;
1718         } while (pte++, addr += PAGE_SIZE, addr != end);
1719
1720         arch_leave_lazy_mmu_mode();
1721
1722         if (mm != &init_mm)
1723                 pte_unmap_unlock(pte-1, ptl);
1724         return err;
1725 }
1726
1727 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1728                                      unsigned long addr, unsigned long end,
1729                                      pte_fn_t fn, void *data)
1730 {
1731         pmd_t *pmd;
1732         unsigned long next;
1733         int err;
1734
1735         BUG_ON(pud_huge(*pud));
1736
1737         pmd = pmd_alloc(mm, pud, addr);
1738         if (!pmd)
1739                 return -ENOMEM;
1740         do {
1741                 next = pmd_addr_end(addr, end);
1742                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1743                 if (err)
1744                         break;
1745         } while (pmd++, addr = next, addr != end);
1746         return err;
1747 }
1748
1749 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1750                                      unsigned long addr, unsigned long end,
1751                                      pte_fn_t fn, void *data)
1752 {
1753         pud_t *pud;
1754         unsigned long next;
1755         int err;
1756
1757         pud = pud_alloc(mm, pgd, addr);
1758         if (!pud)
1759                 return -ENOMEM;
1760         do {
1761                 next = pud_addr_end(addr, end);
1762                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1763                 if (err)
1764                         break;
1765         } while (pud++, addr = next, addr != end);
1766         return err;
1767 }
1768
1769 /*
1770  * Scan a region of virtual memory, filling in page tables as necessary
1771  * and calling a provided function on each leaf page table.
1772  */
1773 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1774                         unsigned long size, pte_fn_t fn, void *data)
1775 {
1776         pgd_t *pgd;
1777         unsigned long next;
1778         unsigned long start = addr, end = addr + size;
1779         int err;
1780
1781         BUG_ON(addr >= end);
1782         mmu_notifier_invalidate_range_start(mm, start, end);
1783         pgd = pgd_offset(mm, addr);
1784         do {
1785                 next = pgd_addr_end(addr, end);
1786                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1787                 if (err)
1788                         break;
1789         } while (pgd++, addr = next, addr != end);
1790         mmu_notifier_invalidate_range_end(mm, start, end);
1791         return err;
1792 }
1793 EXPORT_SYMBOL_GPL(apply_to_page_range);
1794
1795 /*
1796  * handle_pte_fault chooses page fault handler according to an entry
1797  * which was read non-atomically.  Before making any commitment, on
1798  * those architectures or configurations (e.g. i386 with PAE) which
1799  * might give a mix of unmatched parts, do_swap_page and do_file_page
1800  * must check under lock before unmapping the pte and proceeding
1801  * (but do_wp_page is only called after already making such a check;
1802  * and do_anonymous_page and do_no_page can safely check later on).
1803  */
1804 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1805                                 pte_t *page_table, pte_t orig_pte)
1806 {
1807         int same = 1;
1808 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1809         if (sizeof(pte_t) > sizeof(unsigned long)) {
1810                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1811                 spin_lock(ptl);
1812                 same = pte_same(*page_table, orig_pte);
1813                 spin_unlock(ptl);
1814         }
1815 #endif
1816         pte_unmap(page_table);
1817         return same;
1818 }
1819
1820 /*
1821  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1822  * servicing faults for write access.  In the normal case, do always want
1823  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1824  * that do not have writing enabled, when used by access_process_vm.
1825  */
1826 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1827 {
1828         if (likely(vma->vm_flags & VM_WRITE))
1829                 pte = pte_mkwrite(pte);
1830         return pte;
1831 }
1832
1833 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1834 {
1835         /*
1836          * If the source page was a PFN mapping, we don't have
1837          * a "struct page" for it. We do a best-effort copy by
1838          * just copying from the original user address. If that
1839          * fails, we just zero-fill it. Live with it.
1840          */
1841         if (unlikely(!src)) {
1842                 void *kaddr = kmap_atomic(dst, KM_USER0);
1843                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1844
1845                 /*
1846                  * This really shouldn't fail, because the page is there
1847                  * in the page tables. But it might just be unreadable,
1848                  * in which case we just give up and fill the result with
1849                  * zeroes.
1850                  */
1851                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1852                         memset(kaddr, 0, PAGE_SIZE);
1853                 kunmap_atomic(kaddr, KM_USER0);
1854                 flush_dcache_page(dst);
1855         } else
1856                 copy_user_highpage(dst, src, va, vma);
1857 }
1858
1859 /*
1860  * This routine handles present pages, when users try to write
1861  * to a shared page. It is done by copying the page to a new address
1862  * and decrementing the shared-page counter for the old page.
1863  *
1864  * Note that this routine assumes that the protection checks have been
1865  * done by the caller (the low-level page fault routine in most cases).
1866  * Thus we can safely just mark it writable once we've done any necessary
1867  * COW.
1868  *
1869  * We also mark the page dirty at this point even though the page will
1870  * change only once the write actually happens. This avoids a few races,
1871  * and potentially makes it more efficient.
1872  *
1873  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1874  * but allow concurrent faults), with pte both mapped and locked.
1875  * We return with mmap_sem still held, but pte unmapped and unlocked.
1876  */
1877 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1878                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1879                 spinlock_t *ptl, pte_t orig_pte)
1880 {
1881         struct page *old_page, *new_page;
1882         pte_t entry;
1883         int reuse = 0, ret = 0;
1884         int page_mkwrite = 0;
1885         struct page *dirty_page = NULL;
1886
1887         old_page = vm_normal_page(vma, address, orig_pte);
1888         if (!old_page) {
1889                 /*
1890                  * VM_MIXEDMAP !pfn_valid() case
1891                  *
1892                  * We should not cow pages in a shared writeable mapping.
1893                  * Just mark the pages writable as we can't do any dirty
1894                  * accounting on raw pfn maps.
1895                  */
1896                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1897                                      (VM_WRITE|VM_SHARED))
1898                         goto reuse;
1899                 goto gotten;
1900         }
1901
1902         /*
1903          * Take out anonymous pages first, anonymous shared vmas are
1904          * not dirty accountable.
1905          */
1906         if (PageAnon(old_page)) {
1907                 if (!trylock_page(old_page)) {
1908                         page_cache_get(old_page);
1909                         pte_unmap_unlock(page_table, ptl);
1910                         lock_page(old_page);
1911                         page_table = pte_offset_map_lock(mm, pmd, address,
1912                                                          &ptl);
1913                         if (!pte_same(*page_table, orig_pte)) {
1914                                 unlock_page(old_page);
1915                                 page_cache_release(old_page);
1916                                 goto unlock;
1917                         }
1918                         page_cache_release(old_page);
1919                 }
1920                 reuse = reuse_swap_page(old_page);
1921                 unlock_page(old_page);
1922         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1923                                         (VM_WRITE|VM_SHARED))) {
1924                 /*
1925                  * Only catch write-faults on shared writable pages,
1926                  * read-only shared pages can get COWed by
1927                  * get_user_pages(.write=1, .force=1).
1928                  */
1929                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1930                         /*
1931                          * Notify the address space that the page is about to
1932                          * become writable so that it can prohibit this or wait
1933                          * for the page to get into an appropriate state.
1934                          *
1935                          * We do this without the lock held, so that it can
1936                          * sleep if it needs to.
1937                          */
1938                         page_cache_get(old_page);
1939                         pte_unmap_unlock(page_table, ptl);
1940
1941                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1942                                 goto unwritable_page;
1943
1944                         /*
1945                          * Since we dropped the lock we need to revalidate
1946                          * the PTE as someone else may have changed it.  If
1947                          * they did, we just return, as we can count on the
1948                          * MMU to tell us if they didn't also make it writable.
1949                          */
1950                         page_table = pte_offset_map_lock(mm, pmd, address,
1951                                                          &ptl);
1952                         page_cache_release(old_page);
1953                         if (!pte_same(*page_table, orig_pte))
1954                                 goto unlock;
1955
1956                         page_mkwrite = 1;
1957                 }
1958                 dirty_page = old_page;
1959                 get_page(dirty_page);
1960                 reuse = 1;
1961         }
1962
1963         if (reuse) {
1964 reuse:
1965                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1966                 entry = pte_mkyoung(orig_pte);
1967                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1968                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1969                         update_mmu_cache(vma, address, entry);
1970                 ret |= VM_FAULT_WRITE;
1971                 goto unlock;
1972         }
1973
1974         /*
1975          * Ok, we need to copy. Oh, well..
1976          */
1977         page_cache_get(old_page);
1978 gotten:
1979         pte_unmap_unlock(page_table, ptl);
1980
1981         if (unlikely(anon_vma_prepare(vma)))
1982                 goto oom;
1983         VM_BUG_ON(old_page == ZERO_PAGE(0));
1984         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1985         if (!new_page)
1986                 goto oom;
1987         /*
1988          * Don't let another task, with possibly unlocked vma,
1989          * keep the mlocked page.
1990          */
1991         if (vma->vm_flags & VM_LOCKED) {
1992                 lock_page(old_page);    /* for LRU manipulation */
1993                 clear_page_mlock(old_page);
1994                 unlock_page(old_page);
1995         }
1996         cow_user_page(new_page, old_page, address, vma);
1997         __SetPageUptodate(new_page);
1998
1999         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2000                 goto oom_free_new;
2001
2002         /*
2003          * Re-check the pte - we dropped the lock
2004          */
2005         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2006         if (likely(pte_same(*page_table, orig_pte))) {
2007                 if (old_page) {
2008                         if (!PageAnon(old_page)) {
2009                                 dec_mm_counter(mm, file_rss);
2010                                 inc_mm_counter(mm, anon_rss);
2011                         }
2012                 } else
2013                         inc_mm_counter(mm, anon_rss);
2014                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2015                 entry = mk_pte(new_page, vma->vm_page_prot);
2016                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2017                 /*
2018                  * Clear the pte entry and flush it first, before updating the
2019                  * pte with the new entry. This will avoid a race condition
2020                  * seen in the presence of one thread doing SMC and another
2021                  * thread doing COW.
2022                  */
2023                 ptep_clear_flush_notify(vma, address, page_table);
2024                 page_add_new_anon_rmap(new_page, vma, address);
2025                 set_pte_at(mm, address, page_table, entry);
2026                 update_mmu_cache(vma, address, entry);
2027                 if (old_page) {
2028                         /*
2029                          * Only after switching the pte to the new page may
2030                          * we remove the mapcount here. Otherwise another
2031                          * process may come and find the rmap count decremented
2032                          * before the pte is switched to the new page, and
2033                          * "reuse" the old page writing into it while our pte
2034                          * here still points into it and can be read by other
2035                          * threads.
2036                          *
2037                          * The critical issue is to order this
2038                          * page_remove_rmap with the ptp_clear_flush above.
2039                          * Those stores are ordered by (if nothing else,)
2040                          * the barrier present in the atomic_add_negative
2041                          * in page_remove_rmap.
2042                          *
2043                          * Then the TLB flush in ptep_clear_flush ensures that
2044                          * no process can access the old page before the
2045                          * decremented mapcount is visible. And the old page
2046                          * cannot be reused until after the decremented
2047                          * mapcount is visible. So transitively, TLBs to
2048                          * old page will be flushed before it can be reused.
2049                          */
2050                         page_remove_rmap(old_page);
2051                 }
2052
2053                 /* Free the old page.. */
2054                 new_page = old_page;
2055                 ret |= VM_FAULT_WRITE;
2056         } else
2057                 mem_cgroup_uncharge_page(new_page);
2058
2059         if (new_page)
2060                 page_cache_release(new_page);
2061         if (old_page)
2062                 page_cache_release(old_page);
2063 unlock:
2064         pte_unmap_unlock(page_table, ptl);
2065         if (dirty_page) {
2066                 if (vma->vm_file)
2067                         file_update_time(vma->vm_file);
2068
2069                 /*
2070                  * Yes, Virginia, this is actually required to prevent a race
2071                  * with clear_page_dirty_for_io() from clearing the page dirty
2072                  * bit after it clear all dirty ptes, but before a racing
2073                  * do_wp_page installs a dirty pte.
2074                  *
2075                  * do_no_page is protected similarly.
2076                  */
2077                 wait_on_page_locked(dirty_page);
2078                 set_page_dirty_balance(dirty_page, page_mkwrite);
2079                 put_page(dirty_page);
2080         }
2081         return ret;
2082 oom_free_new:
2083         page_cache_release(new_page);
2084 oom:
2085         if (old_page)
2086                 page_cache_release(old_page);
2087         return VM_FAULT_OOM;
2088
2089 unwritable_page:
2090         page_cache_release(old_page);
2091         return VM_FAULT_SIGBUS;
2092 }
2093
2094 /*
2095  * Helper functions for unmap_mapping_range().
2096  *
2097  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2098  *
2099  * We have to restart searching the prio_tree whenever we drop the lock,
2100  * since the iterator is only valid while the lock is held, and anyway
2101  * a later vma might be split and reinserted earlier while lock dropped.
2102  *
2103  * The list of nonlinear vmas could be handled more efficiently, using
2104  * a placeholder, but handle it in the same way until a need is shown.
2105  * It is important to search the prio_tree before nonlinear list: a vma
2106  * may become nonlinear and be shifted from prio_tree to nonlinear list
2107  * while the lock is dropped; but never shifted from list to prio_tree.
2108  *
2109  * In order to make forward progress despite restarting the search,
2110  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2111  * quickly skip it next time around.  Since the prio_tree search only
2112  * shows us those vmas affected by unmapping the range in question, we
2113  * can't efficiently keep all vmas in step with mapping->truncate_count:
2114  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2115  * mapping->truncate_count and vma->vm_truncate_count are protected by
2116  * i_mmap_lock.
2117  *
2118  * In order to make forward progress despite repeatedly restarting some
2119  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2120  * and restart from that address when we reach that vma again.  It might
2121  * have been split or merged, shrunk or extended, but never shifted: so
2122  * restart_addr remains valid so long as it remains in the vma's range.
2123  * unmap_mapping_range forces truncate_count to leap over page-aligned
2124  * values so we can save vma's restart_addr in its truncate_count field.
2125  */
2126 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2127
2128 static void reset_vma_truncate_counts(struct address_space *mapping)
2129 {
2130         struct vm_area_struct *vma;
2131         struct prio_tree_iter iter;
2132
2133         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2134                 vma->vm_truncate_count = 0;
2135         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2136                 vma->vm_truncate_count = 0;
2137 }
2138
2139 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2140                 unsigned long start_addr, unsigned long end_addr,
2141                 struct zap_details *details)
2142 {
2143         unsigned long restart_addr;
2144         int need_break;
2145
2146         /*
2147          * files that support invalidating or truncating portions of the
2148          * file from under mmaped areas must have their ->fault function
2149          * return a locked page (and set VM_FAULT_LOCKED in the return).
2150          * This provides synchronisation against concurrent unmapping here.
2151          */
2152
2153 again:
2154         restart_addr = vma->vm_truncate_count;
2155         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2156                 start_addr = restart_addr;
2157                 if (start_addr >= end_addr) {
2158                         /* Top of vma has been split off since last time */
2159                         vma->vm_truncate_count = details->truncate_count;
2160                         return 0;
2161                 }
2162         }
2163
2164         restart_addr = zap_page_range(vma, start_addr,
2165                                         end_addr - start_addr, details);
2166         need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2167
2168         if (restart_addr >= end_addr) {
2169                 /* We have now completed this vma: mark it so */
2170                 vma->vm_truncate_count = details->truncate_count;
2171                 if (!need_break)
2172                         return 0;
2173         } else {
2174                 /* Note restart_addr in vma's truncate_count field */
2175                 vma->vm_truncate_count = restart_addr;
2176                 if (!need_break)
2177                         goto again;
2178         }
2179
2180         spin_unlock(details->i_mmap_lock);
2181         cond_resched();
2182         spin_lock(details->i_mmap_lock);
2183         return -EINTR;
2184 }
2185
2186 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2187                                             struct zap_details *details)
2188 {
2189         struct vm_area_struct *vma;
2190         struct prio_tree_iter iter;
2191         pgoff_t vba, vea, zba, zea;
2192
2193 restart:
2194         vma_prio_tree_foreach(vma, &iter, root,
2195                         details->first_index, details->last_index) {
2196                 /* Skip quickly over those we have already dealt with */
2197                 if (vma->vm_truncate_count == details->truncate_count)
2198                         continue;
2199
2200                 vba = vma->vm_pgoff;
2201                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2202                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2203                 zba = details->first_index;
2204                 if (zba < vba)
2205                         zba = vba;
2206                 zea = details->last_index;
2207                 if (zea > vea)
2208                         zea = vea;
2209
2210                 if (unmap_mapping_range_vma(vma,
2211                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2212                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2213                                 details) < 0)
2214                         goto restart;
2215         }
2216 }
2217
2218 static inline void unmap_mapping_range_list(struct list_head *head,
2219                                             struct zap_details *details)
2220 {
2221         struct vm_area_struct *vma;
2222
2223         /*
2224          * In nonlinear VMAs there is no correspondence between virtual address
2225          * offset and file offset.  So we must perform an exhaustive search
2226          * across *all* the pages in each nonlinear VMA, not just the pages
2227          * whose virtual address lies outside the file truncation point.
2228          */
2229 restart:
2230         list_for_each_entry(vma, head, shared.vm_set.list) {
2231                 /* Skip quickly over those we have already dealt with */
2232                 if (vma->vm_truncate_count == details->truncate_count)
2233                         continue;
2234                 details->nonlinear_vma = vma;
2235                 if (unmap_mapping_range_vma(vma, vma->vm_start,
2236                                         vma->vm_end, details) < 0)
2237                         goto restart;
2238         }
2239 }
2240
2241 /**
2242  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2243  * @mapping: the address space containing mmaps to be unmapped.
2244  * @holebegin: byte in first page to unmap, relative to the start of
2245  * the underlying file.  This will be rounded down to a PAGE_SIZE
2246  * boundary.  Note that this is different from vmtruncate(), which
2247  * must keep the partial page.  In contrast, we must get rid of
2248  * partial pages.
2249  * @holelen: size of prospective hole in bytes.  This will be rounded
2250  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2251  * end of the file.
2252  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2253  * but 0 when invalidating pagecache, don't throw away private data.
2254  */
2255 void unmap_mapping_range(struct address_space *mapping,
2256                 loff_t const holebegin, loff_t const holelen, int even_cows)
2257 {
2258         struct zap_details details;
2259         pgoff_t hba = holebegin >> PAGE_SHIFT;
2260         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2261
2262         /* Check for overflow. */
2263         if (sizeof(holelen) > sizeof(hlen)) {
2264                 long long holeend =
2265                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2266                 if (holeend & ~(long long)ULONG_MAX)
2267                         hlen = ULONG_MAX - hba + 1;
2268         }
2269
2270         details.check_mapping = even_cows? NULL: mapping;
2271         details.nonlinear_vma = NULL;
2272         details.first_index = hba;
2273         details.last_index = hba + hlen - 1;
2274         if (details.last_index < details.first_index)
2275                 details.last_index = ULONG_MAX;
2276         details.i_mmap_lock = &mapping->i_mmap_lock;
2277
2278         spin_lock(&mapping->i_mmap_lock);
2279
2280         /* Protect against endless unmapping loops */
2281         mapping->truncate_count++;
2282         if (unlikely(is_restart_addr(mapping->truncate_count))) {
2283                 if (mapping->truncate_count == 0)
2284                         reset_vma_truncate_counts(mapping);
2285                 mapping->truncate_count++;
2286         }
2287         details.truncate_count = mapping->truncate_count;
2288
2289         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2290                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2291         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2292                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2293         spin_unlock(&mapping->i_mmap_lock);
2294 }
2295 EXPORT_SYMBOL(unmap_mapping_range);
2296
2297 /**
2298  * vmtruncate - unmap mappings "freed" by truncate() syscall
2299  * @inode: inode of the file used
2300  * @offset: file offset to start truncating
2301  *
2302  * NOTE! We have to be ready to update the memory sharing
2303  * between the file and the memory map for a potential last
2304  * incomplete page.  Ugly, but necessary.
2305  */
2306 int vmtruncate(struct inode * inode, loff_t offset)
2307 {
2308         if (inode->i_size < offset) {
2309                 unsigned long limit;
2310
2311                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2312                 if (limit != RLIM_INFINITY && offset > limit)
2313                         goto out_sig;
2314                 if (offset > inode->i_sb->s_maxbytes)
2315                         goto out_big;
2316                 i_size_write(inode, offset);
2317         } else {
2318                 struct address_space *mapping = inode->i_mapping;
2319
2320                 /*
2321                  * truncation of in-use swapfiles is disallowed - it would
2322                  * cause subsequent swapout to scribble on the now-freed
2323                  * blocks.
2324                  */
2325                 if (IS_SWAPFILE(inode))
2326                         return -ETXTBSY;
2327                 i_size_write(inode, offset);
2328
2329                 /*
2330                  * unmap_mapping_range is called twice, first simply for
2331                  * efficiency so that truncate_inode_pages does fewer
2332                  * single-page unmaps.  However after this first call, and
2333                  * before truncate_inode_pages finishes, it is possible for
2334                  * private pages to be COWed, which remain after
2335                  * truncate_inode_pages finishes, hence the second
2336                  * unmap_mapping_range call must be made for correctness.
2337                  */
2338                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2339                 truncate_inode_pages(mapping, offset);
2340                 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2341         }
2342
2343         if (inode->i_op->truncate)
2344                 inode->i_op->truncate(inode);
2345         return 0;
2346
2347 out_sig:
2348         send_sig(SIGXFSZ, current, 0);
2349 out_big:
2350         return -EFBIG;
2351 }
2352 EXPORT_SYMBOL(vmtruncate);
2353
2354 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2355 {
2356         struct address_space *mapping = inode->i_mapping;
2357
2358         /*
2359          * If the underlying filesystem is not going to provide
2360          * a way to truncate a range of blocks (punch a hole) -
2361          * we should return failure right now.
2362          */
2363         if (!inode->i_op->truncate_range)
2364                 return -ENOSYS;
2365
2366         mutex_lock(&inode->i_mutex);
2367         down_write(&inode->i_alloc_sem);
2368         unmap_mapping_range(mapping, offset, (end - offset), 1);
2369         truncate_inode_pages_range(mapping, offset, end);
2370         unmap_mapping_range(mapping, offset, (end - offset), 1);
2371         inode->i_op->truncate_range(inode, offset, end);
2372         up_write(&inode->i_alloc_sem);
2373         mutex_unlock(&inode->i_mutex);
2374
2375         return 0;
2376 }
2377
2378 /*
2379  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2380  * but allow concurrent faults), and pte mapped but not yet locked.
2381  * We return with mmap_sem still held, but pte unmapped and unlocked.
2382  */
2383 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2384                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2385                 int write_access, pte_t orig_pte)
2386 {
2387         spinlock_t *ptl;
2388         struct page *page;
2389         swp_entry_t entry;
2390         pte_t pte;
2391         int ret = 0;
2392
2393         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2394                 goto out;
2395
2396         entry = pte_to_swp_entry(orig_pte);
2397         if (is_migration_entry(entry)) {
2398                 migration_entry_wait(mm, pmd, address);
2399                 goto out;
2400         }
2401         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2402         page = lookup_swap_cache(entry);
2403         if (!page) {
2404                 grab_swap_token(); /* Contend for token _before_ read-in */
2405                 page = swapin_readahead(entry,
2406                                         GFP_HIGHUSER_MOVABLE, vma, address);
2407                 if (!page) {
2408                         /*
2409                          * Back out if somebody else faulted in this pte
2410                          * while we released the pte lock.
2411                          */
2412                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2413                         if (likely(pte_same(*page_table, orig_pte)))
2414                                 ret = VM_FAULT_OOM;
2415                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2416                         goto unlock;
2417                 }
2418
2419                 /* Had to read the page from swap area: Major fault */
2420                 ret = VM_FAULT_MAJOR;
2421                 count_vm_event(PGMAJFAULT);
2422         }
2423
2424         mark_page_accessed(page);
2425
2426         lock_page(page);
2427         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2428
2429         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2430                 ret = VM_FAULT_OOM;
2431                 unlock_page(page);
2432                 goto out;
2433         }
2434
2435         /*
2436          * Back out if somebody else already faulted in this pte.
2437          */
2438         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2439         if (unlikely(!pte_same(*page_table, orig_pte)))
2440                 goto out_nomap;
2441
2442         if (unlikely(!PageUptodate(page))) {
2443                 ret = VM_FAULT_SIGBUS;
2444                 goto out_nomap;
2445         }
2446
2447         /* The page isn't present yet, go ahead with the fault. */
2448
2449         inc_mm_counter(mm, anon_rss);
2450         pte = mk_pte(page, vma->vm_page_prot);
2451         if (write_access && reuse_swap_page(page)) {
2452                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2453                 write_access = 0;
2454         }
2455
2456         flush_icache_page(vma, page);
2457         set_pte_at(mm, address, page_table, pte);
2458         page_add_anon_rmap(page, vma, address);
2459
2460         swap_free(entry);
2461         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2462                 try_to_free_swap(page);
2463         unlock_page(page);
2464
2465         if (write_access) {
2466                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2467                 if (ret & VM_FAULT_ERROR)
2468                         ret &= VM_FAULT_ERROR;
2469                 goto out;
2470         }
2471
2472         /* No need to invalidate - it was non-present before */
2473         update_mmu_cache(vma, address, pte);
2474 unlock:
2475         pte_unmap_unlock(page_table, ptl);
2476 out:
2477         return ret;
2478 out_nomap:
2479         mem_cgroup_uncharge_page(page);
2480         pte_unmap_unlock(page_table, ptl);
2481         unlock_page(page);
2482         page_cache_release(page);
2483         return ret;
2484 }
2485
2486 /*
2487  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2488  * but allow concurrent faults), and pte mapped but not yet locked.
2489  * We return with mmap_sem still held, but pte unmapped and unlocked.
2490  */
2491 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2492                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2493                 int write_access)
2494 {
2495         struct page *page;
2496         spinlock_t *ptl;
2497         pte_t entry;
2498
2499         /* Allocate our own private page. */
2500         pte_unmap(page_table);
2501
2502         if (unlikely(anon_vma_prepare(vma)))
2503                 goto oom;
2504         page = alloc_zeroed_user_highpage_movable(vma, address);
2505         if (!page)
2506                 goto oom;
2507         __SetPageUptodate(page);
2508
2509         if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2510                 goto oom_free_page;
2511
2512         entry = mk_pte(page, vma->vm_page_prot);
2513         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2514
2515         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2516         if (!pte_none(*page_table))
2517                 goto release;
2518         inc_mm_counter(mm, anon_rss);
2519         page_add_new_anon_rmap(page, vma, address);
2520         set_pte_at(mm, address, page_table, entry);
2521
2522         /* No need to invalidate - it was non-present before */
2523         update_mmu_cache(vma, address, entry);
2524 unlock:
2525         pte_unmap_unlock(page_table, ptl);
2526         return 0;
2527 release:
2528         mem_cgroup_uncharge_page(page);
2529         page_cache_release(page);
2530         goto unlock;
2531 oom_free_page:
2532         page_cache_release(page);
2533 oom:
2534         return VM_FAULT_OOM;
2535 }
2536
2537 /*
2538  * __do_fault() tries to create a new page mapping. It aggressively
2539  * tries to share with existing pages, but makes a separate copy if
2540  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2541  * the next page fault.
2542  *
2543  * As this is called only for pages that do not currently exist, we
2544  * do not need to flush old virtual caches or the TLB.
2545  *
2546  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2547  * but allow concurrent faults), and pte neither mapped nor locked.
2548  * We return with mmap_sem still held, but pte unmapped and unlocked.
2549  */
2550 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2551                 unsigned long address, pmd_t *pmd,
2552                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2553 {
2554         pte_t *page_table;
2555         spinlock_t *ptl;
2556         struct page *page;
2557         pte_t entry;
2558         int anon = 0;
2559         int charged = 0;
2560         struct page *dirty_page = NULL;
2561         struct vm_fault vmf;
2562         int ret;
2563         int page_mkwrite = 0;
2564
2565         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2566         vmf.pgoff = pgoff;
2567         vmf.flags = flags;
2568         vmf.page = NULL;
2569
2570         ret = vma->vm_ops->fault(vma, &vmf);
2571         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2572                 return ret;
2573
2574         /*
2575          * For consistency in subsequent calls, make the faulted page always
2576          * locked.
2577          */
2578         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2579                 lock_page(vmf.page);
2580         else
2581                 VM_BUG_ON(!PageLocked(vmf.page));
2582
2583         /*
2584          * Should we do an early C-O-W break?
2585          */
2586         page = vmf.page;
2587         if (flags & FAULT_FLAG_WRITE) {
2588                 if (!(vma->vm_flags & VM_SHARED)) {
2589                         anon = 1;
2590                         if (unlikely(anon_vma_prepare(vma))) {
2591                                 ret = VM_FAULT_OOM;
2592                                 goto out;
2593                         }
2594                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2595                                                 vma, address);
2596                         if (!page) {
2597                                 ret = VM_FAULT_OOM;
2598                                 goto out;
2599                         }
2600                         if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2601                                 ret = VM_FAULT_OOM;
2602                                 page_cache_release(page);
2603                                 goto out;
2604                         }
2605                         charged = 1;
2606                         /*
2607                          * Don't let another task, with possibly unlocked vma,
2608                          * keep the mlocked page.
2609                          */
2610                         if (vma->vm_flags & VM_LOCKED)
2611                                 clear_page_mlock(vmf.page);
2612                         copy_user_highpage(page, vmf.page, address, vma);
2613                         __SetPageUptodate(page);
2614                 } else {
2615                         /*
2616                          * If the page will be shareable, see if the backing
2617                          * address space wants to know that the page is about
2618                          * to become writable
2619                          */
2620                         if (vma->vm_ops->page_mkwrite) {
2621                                 unlock_page(page);
2622                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2623                                         ret = VM_FAULT_SIGBUS;
2624                                         anon = 1; /* no anon but release vmf.page */
2625                                         goto out_unlocked;
2626                                 }
2627                                 lock_page(page);
2628                                 /*
2629                                  * XXX: this is not quite right (racy vs
2630                                  * invalidate) to unlock and relock the page
2631                                  * like this, however a better fix requires
2632                                  * reworking page_mkwrite locking API, which
2633                                  * is better done later.
2634                                  */
2635                                 if (!page->mapping) {
2636                                         ret = 0;
2637                                         anon = 1; /* no anon but release vmf.page */
2638                                         goto out;
2639                                 }
2640                                 page_mkwrite = 1;
2641                         }
2642                 }
2643
2644         }
2645
2646         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2647
2648         /*
2649          * This silly early PAGE_DIRTY setting removes a race
2650          * due to the bad i386 page protection. But it's valid
2651          * for other architectures too.
2652          *
2653          * Note that if write_access is true, we either now have
2654          * an exclusive copy of the page, or this is a shared mapping,
2655          * so we can make it writable and dirty to avoid having to
2656          * handle that later.
2657          */
2658         /* Only go through if we didn't race with anybody else... */
2659         if (likely(pte_same(*page_table, orig_pte))) {
2660                 flush_icache_page(vma, page);
2661                 entry = mk_pte(page, vma->vm_page_prot);
2662                 if (flags & FAULT_FLAG_WRITE)
2663                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2664                 if (anon) {
2665                         inc_mm_counter(mm, anon_rss);
2666                         page_add_new_anon_rmap(page, vma, address);
2667                 } else {
2668                         inc_mm_counter(mm, file_rss);
2669                         page_add_file_rmap(page);
2670                         if (flags & FAULT_FLAG_WRITE) {
2671                                 dirty_page = page;
2672                                 get_page(dirty_page);
2673                         }
2674                 }
2675                 set_pte_at(mm, address, page_table, entry);
2676
2677                 /* no need to invalidate: a not-present page won't be cached */
2678                 update_mmu_cache(vma, address, entry);
2679         } else {
2680                 if (charged)
2681                         mem_cgroup_uncharge_page(page);
2682                 if (anon)
2683                         page_cache_release(page);
2684                 else
2685                         anon = 1; /* no anon but release faulted_page */
2686         }
2687
2688         pte_unmap_unlock(page_table, ptl);
2689
2690 out:
2691         unlock_page(vmf.page);
2692 out_unlocked:
2693         if (anon)
2694                 page_cache_release(vmf.page);
2695         else if (dirty_page) {
2696                 if (vma->vm_file)
2697                         file_update_time(vma->vm_file);
2698
2699                 set_page_dirty_balance(dirty_page, page_mkwrite);
2700                 put_page(dirty_page);
2701         }
2702
2703         return ret;
2704 }
2705
2706 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2707                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2708                 int write_access, pte_t orig_pte)
2709 {
2710         pgoff_t pgoff = (((address & PAGE_MASK)
2711                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2712         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2713
2714         pte_unmap(page_table);
2715         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2716 }
2717
2718 /*
2719  * Fault of a previously existing named mapping. Repopulate the pte
2720  * from the encoded file_pte if possible. This enables swappable
2721  * nonlinear vmas.
2722  *
2723  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2724  * but allow concurrent faults), and pte mapped but not yet locked.
2725  * We return with mmap_sem still held, but pte unmapped and unlocked.
2726  */
2727 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2728                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2729                 int write_access, pte_t orig_pte)
2730 {
2731         unsigned int flags = FAULT_FLAG_NONLINEAR |
2732                                 (write_access ? FAULT_FLAG_WRITE : 0);
2733         pgoff_t pgoff;
2734
2735         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2736                 return 0;
2737
2738         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2739                 /*
2740                  * Page table corrupted: show pte and kill process.
2741                  */
2742                 print_bad_pte(vma, address, orig_pte, NULL);
2743                 return VM_FAULT_OOM;
2744         }
2745
2746         pgoff = pte_to_pgoff(orig_pte);
2747         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2748 }
2749
2750 /*
2751  * These routines also need to handle stuff like marking pages dirty
2752  * and/or accessed for architectures that don't do it in hardware (most
2753  * RISC architectures).  The early dirtying is also good on the i386.
2754  *
2755  * There is also a hook called "update_mmu_cache()" that architectures
2756  * with external mmu caches can use to update those (ie the Sparc or
2757  * PowerPC hashed page tables that act as extended TLBs).
2758  *
2759  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2760  * but allow concurrent faults), and pte mapped but not yet locked.
2761  * We return with mmap_sem still held, but pte unmapped and unlocked.
2762  */
2763 static inline int handle_pte_fault(struct mm_struct *mm,
2764                 struct vm_area_struct *vma, unsigned long address,
2765                 pte_t *pte, pmd_t *pmd, int write_access)
2766 {
2767         pte_t entry;
2768         spinlock_t *ptl;
2769
2770         entry = *pte;
2771         if (!pte_present(entry)) {
2772                 if (pte_none(entry)) {
2773                         if (vma->vm_ops) {
2774                                 if (likely(vma->vm_ops->fault))
2775                                         return do_linear_fault(mm, vma, address,
2776                                                 pte, pmd, write_access, entry);
2777                         }
2778                         return do_anonymous_page(mm, vma, address,
2779                                                  pte, pmd, write_access);
2780                 }
2781                 if (pte_file(entry))
2782                         return do_nonlinear_fault(mm, vma, address,
2783                                         pte, pmd, write_access, entry);
2784                 return do_swap_page(mm, vma, address,
2785                                         pte, pmd, write_access, entry);
2786         }
2787
2788         ptl = pte_lockptr(mm, pmd);
2789         spin_lock(ptl);
2790         if (unlikely(!pte_same(*pte, entry)))
2791                 goto unlock;
2792         if (write_access) {
2793                 if (!pte_write(entry))
2794                         return do_wp_page(mm, vma, address,
2795                                         pte, pmd, ptl, entry);
2796                 entry = pte_mkdirty(entry);
2797         }
2798         entry = pte_mkyoung(entry);
2799         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2800                 update_mmu_cache(vma, address, entry);
2801         } else {
2802                 /*
2803                  * This is needed only for protection faults but the arch code
2804                  * is not yet telling us if this is a protection fault or not.
2805                  * This still avoids useless tlb flushes for .text page faults
2806                  * with threads.
2807                  */
2808                 if (write_access)
2809                         flush_tlb_page(vma, address);
2810         }
2811 unlock:
2812         pte_unmap_unlock(pte, ptl);
2813         return 0;
2814 }
2815
2816 /*
2817  * By the time we get here, we already hold the mm semaphore
2818  */
2819 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2820                 unsigned long address, int write_access)
2821 {
2822         pgd_t *pgd;
2823         pud_t *pud;
2824         pmd_t *pmd;
2825         pte_t *pte;
2826
2827         __set_current_state(TASK_RUNNING);
2828
2829         count_vm_event(PGFAULT);
2830
2831         if (unlikely(is_vm_hugetlb_page(vma)))
2832                 return hugetlb_fault(mm, vma, address, write_access);
2833
2834         pgd = pgd_offset(mm, address);
2835         pud = pud_alloc(mm, pgd, address);
2836         if (!pud)
2837                 return VM_FAULT_OOM;
2838         pmd = pmd_alloc(mm, pud, address);
2839         if (!pmd)
2840                 return VM_FAULT_OOM;
2841         pte = pte_alloc_map(mm, pmd, address);
2842         if (!pte)
2843                 return VM_FAULT_OOM;
2844
2845         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2846 }
2847
2848 #ifndef __PAGETABLE_PUD_FOLDED
2849 /*
2850  * Allocate page upper directory.
2851  * We've already handled the fast-path in-line.
2852  */
2853 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2854 {
2855         pud_t *new = pud_alloc_one(mm, address);
2856         if (!new)
2857                 return -ENOMEM;
2858
2859         smp_wmb(); /* See comment in __pte_alloc */
2860
2861         spin_lock(&mm->page_table_lock);
2862         if (pgd_present(*pgd))          /* Another has populated it */
2863                 pud_free(mm, new);
2864         else
2865                 pgd_populate(mm, pgd, new);
2866         spin_unlock(&mm->page_table_lock);
2867         return 0;
2868 }
2869 #endif /* __PAGETABLE_PUD_FOLDED */
2870
2871 #ifndef __PAGETABLE_PMD_FOLDED
2872 /*
2873  * Allocate page middle directory.
2874  * We've already handled the fast-path in-line.
2875  */
2876 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2877 {
2878         pmd_t *new = pmd_alloc_one(mm, address);
2879         if (!new)
2880                 return -ENOMEM;
2881
2882         smp_wmb(); /* See comment in __pte_alloc */
2883
2884         spin_lock(&mm->page_table_lock);
2885 #ifndef __ARCH_HAS_4LEVEL_HACK
2886         if (pud_present(*pud))          /* Another has populated it */
2887                 pmd_free(mm, new);
2888         else
2889                 pud_populate(mm, pud, new);
2890 #else
2891         if (pgd_present(*pud))          /* Another has populated it */
2892                 pmd_free(mm, new);
2893         else
2894                 pgd_populate(mm, pud, new);
2895 #endif /* __ARCH_HAS_4LEVEL_HACK */
2896         spin_unlock(&mm->page_table_lock);
2897         return 0;
2898 }
2899 #endif /* __PAGETABLE_PMD_FOLDED */
2900
2901 int make_pages_present(unsigned long addr, unsigned long end)
2902 {
2903         int ret, len, write;
2904         struct vm_area_struct * vma;
2905
2906         vma = find_vma(current->mm, addr);
2907         if (!vma)
2908                 return -ENOMEM;
2909         write = (vma->vm_flags & VM_WRITE) != 0;
2910         BUG_ON(addr >= end);
2911         BUG_ON(end > vma->vm_end);
2912         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2913         ret = get_user_pages(current, current->mm, addr,
2914                         len, write, 0, NULL, NULL);
2915         if (ret < 0)
2916                 return ret;
2917         return ret == len ? 0 : -EFAULT;
2918 }
2919
2920 #if !defined(__HAVE_ARCH_GATE_AREA)
2921
2922 #if defined(AT_SYSINFO_EHDR)
2923 static struct vm_area_struct gate_vma;
2924
2925 static int __init gate_vma_init(void)
2926 {
2927         gate_vma.vm_mm = NULL;
2928         gate_vma.vm_start = FIXADDR_USER_START;
2929         gate_vma.vm_end = FIXADDR_USER_END;
2930         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2931         gate_vma.vm_page_prot = __P101;
2932         /*
2933          * Make sure the vDSO gets into every core dump.
2934          * Dumping its contents makes post-mortem fully interpretable later
2935          * without matching up the same kernel and hardware config to see
2936          * what PC values meant.
2937          */
2938         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2939         return 0;
2940 }
2941 __initcall(gate_vma_init);
2942 #endif
2943
2944 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2945 {
2946 #ifdef AT_SYSINFO_EHDR
2947         return &gate_vma;
2948 #else
2949         return NULL;
2950 #endif
2951 }
2952
2953 int in_gate_area_no_task(unsigned long addr)
2954 {
2955 #ifdef AT_SYSINFO_EHDR
2956         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2957                 return 1;
2958 #endif
2959         return 0;
2960 }
2961
2962 #endif  /* __HAVE_ARCH_GATE_AREA */
2963
2964 #ifdef CONFIG_HAVE_IOREMAP_PROT
2965 int follow_phys(struct vm_area_struct *vma,
2966                 unsigned long address, unsigned int flags,
2967                 unsigned long *prot, resource_size_t *phys)
2968 {
2969         pgd_t *pgd;
2970         pud_t *pud;
2971         pmd_t *pmd;
2972         pte_t *ptep, pte;
2973         spinlock_t *ptl;
2974         resource_size_t phys_addr = 0;
2975         struct mm_struct *mm = vma->vm_mm;
2976         int ret = -EINVAL;
2977
2978         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2979                 goto out;
2980
2981         pgd = pgd_offset(mm, address);
2982         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2983                 goto out;
2984
2985         pud = pud_offset(pgd, address);
2986         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2987                 goto out;
2988
2989         pmd = pmd_offset(pud, address);
2990         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2991                 goto out;
2992
2993         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2994         if (pmd_huge(*pmd))
2995                 goto out;
2996
2997         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2998         if (!ptep)
2999                 goto out;
3000
3001         pte = *ptep;
3002         if (!pte_present(pte))
3003                 goto unlock;
3004         if ((flags & FOLL_WRITE) && !pte_write(pte))
3005                 goto unlock;
3006         phys_addr = pte_pfn(pte);
3007         phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3008
3009         *prot = pgprot_val(pte_pgprot(pte));
3010         *phys = phys_addr;
3011         ret = 0;
3012
3013 unlock:
3014         pte_unmap_unlock(ptep, ptl);
3015 out:
3016         return ret;
3017 }
3018
3019 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3020                         void *buf, int len, int write)
3021 {
3022         resource_size_t phys_addr;
3023         unsigned long prot = 0;
3024         void __iomem *maddr;
3025         int offset = addr & (PAGE_SIZE-1);
3026
3027         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3028                 return -EINVAL;
3029
3030         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3031         if (write)
3032                 memcpy_toio(maddr + offset, buf, len);
3033         else
3034                 memcpy_fromio(buf, maddr + offset, len);
3035         iounmap(maddr);
3036
3037         return len;
3038 }
3039 #endif
3040
3041 /*
3042  * Access another process' address space.
3043  * Source/target buffer must be kernel space,
3044  * Do not walk the page table directly, use get_user_pages
3045  */
3046 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3047 {
3048         struct mm_struct *mm;
3049         struct vm_area_struct *vma;
3050         void *old_buf = buf;
3051
3052         mm = get_task_mm(tsk);
3053         if (!mm)
3054                 return 0;
3055
3056         down_read(&mm->mmap_sem);
3057         /* ignore errors, just check how much was successfully transferred */
3058         while (len) {
3059                 int bytes, ret, offset;
3060                 void *maddr;
3061                 struct page *page = NULL;
3062
3063                 ret = get_user_pages(tsk, mm, addr, 1,
3064                                 write, 1, &page, &vma);
3065                 if (ret <= 0) {
3066                         /*
3067                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3068                          * we can access using slightly different code.
3069                          */
3070 #ifdef CONFIG_HAVE_IOREMAP_PROT
3071                         vma = find_vma(mm, addr);
3072                         if (!vma)
3073                                 break;
3074                         if (vma->vm_ops && vma->vm_ops->access)
3075                                 ret = vma->vm_ops->access(vma, addr, buf,
3076                                                           len, write);
3077                         if (ret <= 0)
3078 #endif
3079                                 break;
3080                         bytes = ret;
3081                 } else {
3082                         bytes = len;
3083                         offset = addr & (PAGE_SIZE-1);
3084                         if (bytes > PAGE_SIZE-offset)
3085                                 bytes = PAGE_SIZE-offset;
3086
3087                         maddr = kmap(page);
3088                         if (write) {
3089                                 copy_to_user_page(vma, page, addr,
3090                                                   maddr + offset, buf, bytes);
3091                                 set_page_dirty_lock(page);
3092                         } else {
3093                                 copy_from_user_page(vma, page, addr,
3094                                                     buf, maddr + offset, bytes);
3095                         }
3096                         kunmap(page);
3097                         page_cache_release(page);
3098                 }
3099                 len -= bytes;
3100                 buf += bytes;
3101                 addr += bytes;
3102         }
3103         up_read(&mm->mmap_sem);
3104         mmput(mm);
3105
3106         return buf - old_buf;
3107 }
3108
3109 /*
3110  * Print the name of a VMA.
3111  */
3112 void print_vma_addr(char *prefix, unsigned long ip)
3113 {
3114         struct mm_struct *mm = current->mm;
3115         struct vm_area_struct *vma;
3116
3117         /*
3118          * Do not print if we are in atomic
3119          * contexts (in exception stacks, etc.):
3120          */
3121         if (preempt_count())
3122                 return;
3123
3124         down_read(&mm->mmap_sem);
3125         vma = find_vma(mm, ip);
3126         if (vma && vma->vm_file) {
3127                 struct file *f = vma->vm_file;
3128                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3129                 if (buf) {
3130                         char *p, *s;
3131
3132                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3133                         if (IS_ERR(p))
3134                                 p = "?";
3135                         s = strrchr(p, '/');
3136                         if (s)
3137                                 p = s+1;
3138                         printk("%s%s[%lx+%lx]", prefix, p,
3139                                         vma->vm_start,
3140                                         vma->vm_end - vma->vm_start);
3141                         free_page((unsigned long)buf);
3142                 }
3143         }
3144         up_read(&current->mm->mmap_sem);
3145 }
3146
3147 #ifdef CONFIG_PROVE_LOCKING
3148 void might_fault(void)
3149 {
3150         might_sleep();
3151         /*
3152          * it would be nicer only to annotate paths which are not under
3153          * pagefault_disable, however that requires a larger audit and
3154          * providing helpers like get_user_atomic.
3155          */
3156         if (!in_atomic() && current->mm)
3157                 might_lock_read(&current->mm->mmap_sem);
3158 }
3159 EXPORT_SYMBOL(might_fault);
3160 #endif