]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memory.c
Merge branch 'numa/misc'
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  *
40  * 2012 - NUMA placement page faults (Andrea Arcangeli, Peter Zijlstra)
41  */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/writeback.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/kallsyms.h>
59 #include <linux/swapops.h>
60 #include <linux/elf.h>
61 #include <linux/gfp.h>
62 #include <linux/migrate.h>
63
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70
71 #include "internal.h"
72
73 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA config, growing page-frame for last_nid.
75 #endif
76
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85
86 unsigned long num_physpages;
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(num_physpages);
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 /*
123  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124  */
125 static int __init init_zero_pfn(void)
126 {
127         zero_pfn = page_to_pfn(ZERO_PAGE(0));
128         return 0;
129 }
130 core_initcall(init_zero_pfn);
131
132
133 #if defined(SPLIT_RSS_COUNTING)
134
135 void sync_mm_rss(struct mm_struct *mm)
136 {
137         int i;
138
139         for (i = 0; i < NR_MM_COUNTERS; i++) {
140                 if (current->rss_stat.count[i]) {
141                         add_mm_counter(mm, i, current->rss_stat.count[i]);
142                         current->rss_stat.count[i] = 0;
143                 }
144         }
145         current->rss_stat.events = 0;
146 }
147
148 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 {
150         struct task_struct *task = current;
151
152         if (likely(task->mm == mm))
153                 task->rss_stat.count[member] += val;
154         else
155                 add_mm_counter(mm, member, val);
156 }
157 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
158 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159
160 /* sync counter once per 64 page faults */
161 #define TASK_RSS_EVENTS_THRESH  (64)
162 static void check_sync_rss_stat(struct task_struct *task)
163 {
164         if (unlikely(task != current))
165                 return;
166         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
167                 sync_mm_rss(task->mm);
168 }
169 #else /* SPLIT_RSS_COUNTING */
170
171 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
172 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173
174 static void check_sync_rss_stat(struct task_struct *task)
175 {
176 }
177
178 #endif /* SPLIT_RSS_COUNTING */
179
180 #ifdef HAVE_GENERIC_MMU_GATHER
181
182 static int tlb_next_batch(struct mmu_gather *tlb)
183 {
184         struct mmu_gather_batch *batch;
185
186         batch = tlb->active;
187         if (batch->next) {
188                 tlb->active = batch->next;
189                 return 1;
190         }
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         batch->next = NULL;
197         batch->nr   = 0;
198         batch->max  = MAX_GATHER_BATCH;
199
200         tlb->active->next = batch;
201         tlb->active = batch;
202
203         return 1;
204 }
205
206 /* tlb_gather_mmu
207  *      Called to initialize an (on-stack) mmu_gather structure for page-table
208  *      tear-down from @mm. The @fullmm argument is used when @mm is without
209  *      users and we're going to destroy the full address space (exit/execve).
210  */
211 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
212 {
213         tlb->mm = mm;
214
215         tlb->fullmm     = fullmm;
216         tlb->start      = -1UL;
217         tlb->end        = 0;
218         tlb->need_flush = 0;
219         tlb->fast_mode  = (num_possible_cpus() == 1);
220         tlb->local.next = NULL;
221         tlb->local.nr   = 0;
222         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
223         tlb->active     = &tlb->local;
224
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226         tlb->batch = NULL;
227 #endif
228 }
229
230 void tlb_flush_mmu(struct mmu_gather *tlb)
231 {
232         struct mmu_gather_batch *batch;
233
234         if (!tlb->need_flush)
235                 return;
236         tlb->need_flush = 0;
237         tlb_flush(tlb);
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239         tlb_table_flush(tlb);
240 #endif
241
242         if (tlb_fast_mode(tlb))
243                 return;
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb->start = start;
261         tlb->end   = end;
262         tlb_flush_mmu(tlb);
263
264         /* keep the page table cache within bounds */
265         check_pgt_cache();
266
267         for (batch = tlb->local.next; batch; batch = next) {
268                 next = batch->next;
269                 free_pages((unsigned long)batch, 0);
270         }
271         tlb->local.next = NULL;
272 }
273
274 /* __tlb_remove_page
275  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *      handling the additional races in SMP caused by other CPUs caching valid
277  *      mappings in their TLBs. Returns the number of free page slots left.
278  *      When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282         struct mmu_gather_batch *batch;
283
284         VM_BUG_ON(!tlb->need_flush);
285
286         if (tlb_fast_mode(tlb)) {
287                 free_page_and_swap_cache(page);
288                 return 1; /* avoid calling tlb_flush_mmu() */
289         }
290
291         batch = tlb->active;
292         batch->pages[batch->nr++] = page;
293         if (batch->nr == batch->max) {
294                 if (!tlb_next_batch(tlb))
295                         return 0;
296                 batch = tlb->active;
297         }
298         VM_BUG_ON(batch->nr > batch->max);
299
300         return batch->max - batch->nr;
301 }
302
303 #endif /* HAVE_GENERIC_MMU_GATHER */
304
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
306
307 /*
308  * See the comment near struct mmu_table_batch.
309  */
310
311 static void tlb_remove_table_smp_sync(void *arg)
312 {
313         /* Simply deliver the interrupt */
314 }
315
316 static void tlb_remove_table_one(void *table)
317 {
318         /*
319          * This isn't an RCU grace period and hence the page-tables cannot be
320          * assumed to be actually RCU-freed.
321          *
322          * It is however sufficient for software page-table walkers that rely on
323          * IRQ disabling. See the comment near struct mmu_table_batch.
324          */
325         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326         __tlb_remove_table(table);
327 }
328
329 static void tlb_remove_table_rcu(struct rcu_head *head)
330 {
331         struct mmu_table_batch *batch;
332         int i;
333
334         batch = container_of(head, struct mmu_table_batch, rcu);
335
336         for (i = 0; i < batch->nr; i++)
337                 __tlb_remove_table(batch->tables[i]);
338
339         free_page((unsigned long)batch);
340 }
341
342 void tlb_table_flush(struct mmu_gather *tlb)
343 {
344         struct mmu_table_batch **batch = &tlb->batch;
345
346         if (*batch) {
347                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348                 *batch = NULL;
349         }
350 }
351
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
353 {
354         struct mmu_table_batch **batch = &tlb->batch;
355
356         tlb->need_flush = 1;
357
358         /*
359          * When there's less then two users of this mm there cannot be a
360          * concurrent page-table walk.
361          */
362         if (atomic_read(&tlb->mm->mm_users) < 2) {
363                 __tlb_remove_table(table);
364                 return;
365         }
366
367         if (*batch == NULL) {
368                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369                 if (*batch == NULL) {
370                         tlb_remove_table_one(table);
371                         return;
372                 }
373                 (*batch)->nr = 0;
374         }
375         (*batch)->tables[(*batch)->nr++] = table;
376         if ((*batch)->nr == MAX_TABLE_BATCH)
377                 tlb_table_flush(tlb);
378 }
379
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381
382 /*
383  * If a p?d_bad entry is found while walking page tables, report
384  * the error, before resetting entry to p?d_none.  Usually (but
385  * very seldom) called out from the p?d_none_or_clear_bad macros.
386  */
387
388 void pgd_clear_bad(pgd_t *pgd)
389 {
390         pgd_ERROR(*pgd);
391         pgd_clear(pgd);
392 }
393
394 void pud_clear_bad(pud_t *pud)
395 {
396         pud_ERROR(*pud);
397         pud_clear(pud);
398 }
399
400 void pmd_clear_bad(pmd_t *pmd)
401 {
402         pmd_ERROR(*pmd);
403         pmd_clear(pmd);
404 }
405
406 /*
407  * Note: this doesn't free the actual pages themselves. That
408  * has been handled earlier when unmapping all the memory regions.
409  */
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411                            unsigned long addr)
412 {
413         pgtable_t token = pmd_pgtable(*pmd);
414         pmd_clear(pmd);
415         pte_free_tlb(tlb, token, addr);
416         tlb->mm->nr_ptes--;
417 }
418
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420                                 unsigned long addr, unsigned long end,
421                                 unsigned long floor, unsigned long ceiling)
422 {
423         pmd_t *pmd;
424         unsigned long next;
425         unsigned long start;
426
427         start = addr;
428         pmd = pmd_offset(pud, addr);
429         do {
430                 next = pmd_addr_end(addr, end);
431                 if (pmd_none_or_clear_bad(pmd))
432                         continue;
433                 free_pte_range(tlb, pmd, addr);
434         } while (pmd++, addr = next, addr != end);
435
436         start &= PUD_MASK;
437         if (start < floor)
438                 return;
439         if (ceiling) {
440                 ceiling &= PUD_MASK;
441                 if (!ceiling)
442                         return;
443         }
444         if (end - 1 > ceiling - 1)
445                 return;
446
447         pmd = pmd_offset(pud, start);
448         pud_clear(pud);
449         pmd_free_tlb(tlb, pmd, start);
450 }
451
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453                                 unsigned long addr, unsigned long end,
454                                 unsigned long floor, unsigned long ceiling)
455 {
456         pud_t *pud;
457         unsigned long next;
458         unsigned long start;
459
460         start = addr;
461         pud = pud_offset(pgd, addr);
462         do {
463                 next = pud_addr_end(addr, end);
464                 if (pud_none_or_clear_bad(pud))
465                         continue;
466                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467         } while (pud++, addr = next, addr != end);
468
469         start &= PGDIR_MASK;
470         if (start < floor)
471                 return;
472         if (ceiling) {
473                 ceiling &= PGDIR_MASK;
474                 if (!ceiling)
475                         return;
476         }
477         if (end - 1 > ceiling - 1)
478                 return;
479
480         pud = pud_offset(pgd, start);
481         pgd_clear(pgd);
482         pud_free_tlb(tlb, pud, start);
483 }
484
485 /*
486  * This function frees user-level page tables of a process.
487  *
488  * Must be called with pagetable lock held.
489  */
490 void free_pgd_range(struct mmu_gather *tlb,
491                         unsigned long addr, unsigned long end,
492                         unsigned long floor, unsigned long ceiling)
493 {
494         pgd_t *pgd;
495         unsigned long next;
496
497         /*
498          * The next few lines have given us lots of grief...
499          *
500          * Why are we testing PMD* at this top level?  Because often
501          * there will be no work to do at all, and we'd prefer not to
502          * go all the way down to the bottom just to discover that.
503          *
504          * Why all these "- 1"s?  Because 0 represents both the bottom
505          * of the address space and the top of it (using -1 for the
506          * top wouldn't help much: the masks would do the wrong thing).
507          * The rule is that addr 0 and floor 0 refer to the bottom of
508          * the address space, but end 0 and ceiling 0 refer to the top
509          * Comparisons need to use "end - 1" and "ceiling - 1" (though
510          * that end 0 case should be mythical).
511          *
512          * Wherever addr is brought up or ceiling brought down, we must
513          * be careful to reject "the opposite 0" before it confuses the
514          * subsequent tests.  But what about where end is brought down
515          * by PMD_SIZE below? no, end can't go down to 0 there.
516          *
517          * Whereas we round start (addr) and ceiling down, by different
518          * masks at different levels, in order to test whether a table
519          * now has no other vmas using it, so can be freed, we don't
520          * bother to round floor or end up - the tests don't need that.
521          */
522
523         addr &= PMD_MASK;
524         if (addr < floor) {
525                 addr += PMD_SIZE;
526                 if (!addr)
527                         return;
528         }
529         if (ceiling) {
530                 ceiling &= PMD_MASK;
531                 if (!ceiling)
532                         return;
533         }
534         if (end - 1 > ceiling - 1)
535                 end -= PMD_SIZE;
536         if (addr > end - 1)
537                 return;
538
539         pgd = pgd_offset(tlb->mm, addr);
540         do {
541                 next = pgd_addr_end(addr, end);
542                 if (pgd_none_or_clear_bad(pgd))
543                         continue;
544                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545         } while (pgd++, addr = next, addr != end);
546 }
547
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549                 unsigned long floor, unsigned long ceiling)
550 {
551         while (vma) {
552                 struct vm_area_struct *next = vma->vm_next;
553                 unsigned long addr = vma->vm_start;
554
555                 /*
556                  * Hide vma from rmap and truncate_pagecache before freeing
557                  * pgtables
558                  */
559                 unlink_anon_vmas(vma);
560                 unlink_file_vma(vma);
561
562                 if (is_vm_hugetlb_page(vma)) {
563                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564                                 floor, next? next->vm_start: ceiling);
565                 } else {
566                         /*
567                          * Optimization: gather nearby vmas into one call down
568                          */
569                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570                                && !is_vm_hugetlb_page(next)) {
571                                 vma = next;
572                                 next = vma->vm_next;
573                                 unlink_anon_vmas(vma);
574                                 unlink_file_vma(vma);
575                         }
576                         free_pgd_range(tlb, addr, vma->vm_end,
577                                 floor, next? next->vm_start: ceiling);
578                 }
579                 vma = next;
580         }
581 }
582
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584                 pmd_t *pmd, unsigned long address)
585 {
586         pgtable_t new = pte_alloc_one(mm, address);
587         int wait_split_huge_page;
588         if (!new)
589                 return -ENOMEM;
590
591         /*
592          * Ensure all pte setup (eg. pte page lock and page clearing) are
593          * visible before the pte is made visible to other CPUs by being
594          * put into page tables.
595          *
596          * The other side of the story is the pointer chasing in the page
597          * table walking code (when walking the page table without locking;
598          * ie. most of the time). Fortunately, these data accesses consist
599          * of a chain of data-dependent loads, meaning most CPUs (alpha
600          * being the notable exception) will already guarantee loads are
601          * seen in-order. See the alpha page table accessors for the
602          * smp_read_barrier_depends() barriers in page table walking code.
603          */
604         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605
606         spin_lock(&mm->page_table_lock);
607         wait_split_huge_page = 0;
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 mm->nr_ptes++;
610                 pmd_populate(mm, pmd, new);
611                 new = NULL;
612         } else if (unlikely(pmd_trans_splitting(*pmd)))
613                 wait_split_huge_page = 1;
614         spin_unlock(&mm->page_table_lock);
615         if (new)
616                 pte_free(mm, new);
617         if (wait_split_huge_page)
618                 wait_split_huge_page(vma->anon_vma, pmd);
619         return 0;
620 }
621
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623 {
624         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625         if (!new)
626                 return -ENOMEM;
627
628         smp_wmb(); /* See comment in __pte_alloc */
629
630         spin_lock(&init_mm.page_table_lock);
631         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
632                 pmd_populate_kernel(&init_mm, pmd, new);
633                 new = NULL;
634         } else
635                 VM_BUG_ON(pmd_trans_splitting(*pmd));
636         spin_unlock(&init_mm.page_table_lock);
637         if (new)
638                 pte_free_kernel(&init_mm, new);
639         return 0;
640 }
641
642 static inline void init_rss_vec(int *rss)
643 {
644         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645 }
646
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648 {
649         int i;
650
651         if (current->mm == mm)
652                 sync_mm_rss(mm);
653         for (i = 0; i < NR_MM_COUNTERS; i++)
654                 if (rss[i])
655                         add_mm_counter(mm, i, rss[i]);
656 }
657
658 /*
659  * This function is called to print an error when a bad pte
660  * is found. For example, we might have a PFN-mapped pte in
661  * a region that doesn't allow it.
662  *
663  * The calling function must still handle the error.
664  */
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666                           pte_t pte, struct page *page)
667 {
668         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669         pud_t *pud = pud_offset(pgd, addr);
670         pmd_t *pmd = pmd_offset(pud, addr);
671         struct address_space *mapping;
672         pgoff_t index;
673         static unsigned long resume;
674         static unsigned long nr_shown;
675         static unsigned long nr_unshown;
676
677         /*
678          * Allow a burst of 60 reports, then keep quiet for that minute;
679          * or allow a steady drip of one report per second.
680          */
681         if (nr_shown == 60) {
682                 if (time_before(jiffies, resume)) {
683                         nr_unshown++;
684                         return;
685                 }
686                 if (nr_unshown) {
687                         printk(KERN_ALERT
688                                 "BUG: Bad page map: %lu messages suppressed\n",
689                                 nr_unshown);
690                         nr_unshown = 0;
691                 }
692                 nr_shown = 0;
693         }
694         if (nr_shown++ == 0)
695                 resume = jiffies + 60 * HZ;
696
697         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698         index = linear_page_index(vma, addr);
699
700         printk(KERN_ALERT
701                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
702                 current->comm,
703                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704         if (page)
705                 dump_page(page);
706         printk(KERN_ALERT
707                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709         /*
710          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711          */
712         if (vma->vm_ops)
713                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
714                                 (unsigned long)vma->vm_ops->fault);
715         if (vma->vm_file && vma->vm_file->f_op)
716                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
717                                 (unsigned long)vma->vm_file->f_op->mmap);
718         dump_stack();
719         add_taint(TAINT_BAD_PAGE);
720 }
721
722 static inline bool is_cow_mapping(vm_flags_t flags)
723 {
724         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725 }
726
727 #ifndef is_zero_pfn
728 static inline int is_zero_pfn(unsigned long pfn)
729 {
730         return pfn == zero_pfn;
731 }
732 #endif
733
734 #ifndef my_zero_pfn
735 static inline unsigned long my_zero_pfn(unsigned long addr)
736 {
737         return zero_pfn;
738 }
739 #endif
740
741 /*
742  * vm_normal_page -- This function gets the "struct page" associated with a pte.
743  *
744  * "Special" mappings do not wish to be associated with a "struct page" (either
745  * it doesn't exist, or it exists but they don't want to touch it). In this
746  * case, NULL is returned here. "Normal" mappings do have a struct page.
747  *
748  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
749  * pte bit, in which case this function is trivial. Secondly, an architecture
750  * may not have a spare pte bit, which requires a more complicated scheme,
751  * described below.
752  *
753  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
754  * special mapping (even if there are underlying and valid "struct pages").
755  * COWed pages of a VM_PFNMAP are always normal.
756  *
757  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
758  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
759  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
760  * mapping will always honor the rule
761  *
762  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
763  *
764  * And for normal mappings this is false.
765  *
766  * This restricts such mappings to be a linear translation from virtual address
767  * to pfn. To get around this restriction, we allow arbitrary mappings so long
768  * as the vma is not a COW mapping; in that case, we know that all ptes are
769  * special (because none can have been COWed).
770  *
771  *
772  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
773  *
774  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
775  * page" backing, however the difference is that _all_ pages with a struct
776  * page (that is, those where pfn_valid is true) are refcounted and considered
777  * normal pages by the VM. The disadvantage is that pages are refcounted
778  * (which can be slower and simply not an option for some PFNMAP users). The
779  * advantage is that we don't have to follow the strict linearity rule of
780  * PFNMAP mappings in order to support COWable mappings.
781  *
782  */
783 #ifdef __HAVE_ARCH_PTE_SPECIAL
784 # define HAVE_PTE_SPECIAL 1
785 #else
786 # define HAVE_PTE_SPECIAL 0
787 #endif
788 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
789                                 pte_t pte)
790 {
791         unsigned long pfn = pte_pfn(pte);
792
793         if (HAVE_PTE_SPECIAL) {
794                 if (likely(!pte_special(pte)))
795                         goto check_pfn;
796                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
797                         return NULL;
798                 if (!is_zero_pfn(pfn))
799                         print_bad_pte(vma, addr, pte, NULL);
800                 return NULL;
801         }
802
803         /* !HAVE_PTE_SPECIAL case follows: */
804
805         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
806                 if (vma->vm_flags & VM_MIXEDMAP) {
807                         if (!pfn_valid(pfn))
808                                 return NULL;
809                         goto out;
810                 } else {
811                         unsigned long off;
812                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
813                         if (pfn == vma->vm_pgoff + off)
814                                 return NULL;
815                         if (!is_cow_mapping(vma->vm_flags))
816                                 return NULL;
817                 }
818         }
819
820         if (is_zero_pfn(pfn))
821                 return NULL;
822 check_pfn:
823         if (unlikely(pfn > highest_memmap_pfn)) {
824                 print_bad_pte(vma, addr, pte, NULL);
825                 return NULL;
826         }
827
828         /*
829          * NOTE! We still have PageReserved() pages in the page tables.
830          * eg. VDSO mappings can cause them to exist.
831          */
832 out:
833         return pfn_to_page(pfn);
834 }
835
836 /*
837  * copy one vm_area from one task to the other. Assumes the page tables
838  * already present in the new task to be cleared in the whole range
839  * covered by this vma.
840  */
841
842 static inline unsigned long
843 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
844                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
845                 unsigned long addr, int *rss)
846 {
847         unsigned long vm_flags = vma->vm_flags;
848         pte_t pte = *src_pte;
849         struct page *page;
850
851         /* pte contains position in swap or file, so copy. */
852         if (unlikely(!pte_present(pte))) {
853                 if (!pte_file(pte)) {
854                         swp_entry_t entry = pte_to_swp_entry(pte);
855
856                         if (swap_duplicate(entry) < 0)
857                                 return entry.val;
858
859                         /* make sure dst_mm is on swapoff's mmlist. */
860                         if (unlikely(list_empty(&dst_mm->mmlist))) {
861                                 spin_lock(&mmlist_lock);
862                                 if (list_empty(&dst_mm->mmlist))
863                                         list_add(&dst_mm->mmlist,
864                                                  &src_mm->mmlist);
865                                 spin_unlock(&mmlist_lock);
866                         }
867                         if (likely(!non_swap_entry(entry)))
868                                 rss[MM_SWAPENTS]++;
869                         else if (is_migration_entry(entry)) {
870                                 page = migration_entry_to_page(entry);
871
872                                 if (PageAnon(page))
873                                         rss[MM_ANONPAGES]++;
874                                 else
875                                         rss[MM_FILEPAGES]++;
876
877                                 if (is_write_migration_entry(entry) &&
878                                     is_cow_mapping(vm_flags)) {
879                                         /*
880                                          * COW mappings require pages in both
881                                          * parent and child to be set to read.
882                                          */
883                                         make_migration_entry_read(&entry);
884                                         pte = swp_entry_to_pte(entry);
885                                         set_pte_at(src_mm, addr, src_pte, pte);
886                                 }
887                         }
888                 }
889                 goto out_set_pte;
890         }
891
892         /*
893          * If it's a COW mapping, write protect it both
894          * in the parent and the child
895          */
896         if (is_cow_mapping(vm_flags)) {
897                 ptep_set_wrprotect(src_mm, addr, src_pte);
898                 pte = pte_wrprotect(pte);
899         }
900
901         /*
902          * If it's a shared mapping, mark it clean in
903          * the child
904          */
905         if (vm_flags & VM_SHARED)
906                 pte = pte_mkclean(pte);
907         pte = pte_mkold(pte);
908
909         page = vm_normal_page(vma, addr, pte);
910         if (page) {
911                 get_page(page);
912                 page_dup_rmap(page);
913                 if (PageAnon(page))
914                         rss[MM_ANONPAGES]++;
915                 else
916                         rss[MM_FILEPAGES]++;
917         }
918
919 out_set_pte:
920         set_pte_at(dst_mm, addr, dst_pte, pte);
921         return 0;
922 }
923
924 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
926                    unsigned long addr, unsigned long end)
927 {
928         pte_t *orig_src_pte, *orig_dst_pte;
929         pte_t *src_pte, *dst_pte;
930         spinlock_t *src_ptl, *dst_ptl;
931         int progress = 0;
932         int rss[NR_MM_COUNTERS];
933         swp_entry_t entry = (swp_entry_t){0};
934
935 again:
936         init_rss_vec(rss);
937
938         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
939         if (!dst_pte)
940                 return -ENOMEM;
941         src_pte = pte_offset_map(src_pmd, addr);
942         src_ptl = pte_lockptr(src_mm, src_pmd);
943         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
944         orig_src_pte = src_pte;
945         orig_dst_pte = dst_pte;
946         arch_enter_lazy_mmu_mode();
947
948         do {
949                 /*
950                  * We are holding two locks at this point - either of them
951                  * could generate latencies in another task on another CPU.
952                  */
953                 if (progress >= 32) {
954                         progress = 0;
955                         if (need_resched() ||
956                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
957                                 break;
958                 }
959                 if (pte_none(*src_pte)) {
960                         progress++;
961                         continue;
962                 }
963                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
964                                                         vma, addr, rss);
965                 if (entry.val)
966                         break;
967                 progress += 8;
968         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
969
970         arch_leave_lazy_mmu_mode();
971         spin_unlock(src_ptl);
972         pte_unmap(orig_src_pte);
973         add_mm_rss_vec(dst_mm, rss);
974         pte_unmap_unlock(orig_dst_pte, dst_ptl);
975         cond_resched();
976
977         if (entry.val) {
978                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
979                         return -ENOMEM;
980                 progress = 0;
981         }
982         if (addr != end)
983                 goto again;
984         return 0;
985 }
986
987 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
988                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
989                 unsigned long addr, unsigned long end)
990 {
991         pmd_t *src_pmd, *dst_pmd;
992         unsigned long next;
993
994         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
995         if (!dst_pmd)
996                 return -ENOMEM;
997         src_pmd = pmd_offset(src_pud, addr);
998         do {
999                 next = pmd_addr_end(addr, end);
1000                 if (pmd_trans_huge(*src_pmd)) {
1001                         int err;
1002                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1003                         err = copy_huge_pmd(dst_mm, src_mm,
1004                                             dst_pmd, src_pmd, addr, vma);
1005                         if (err == -ENOMEM)
1006                                 return -ENOMEM;
1007                         if (!err)
1008                                 continue;
1009                         /* fall through */
1010                 }
1011                 if (pmd_none_or_clear_bad(src_pmd))
1012                         continue;
1013                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1014                                                 vma, addr, next))
1015                         return -ENOMEM;
1016         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1017         return 0;
1018 }
1019
1020 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1022                 unsigned long addr, unsigned long end)
1023 {
1024         pud_t *src_pud, *dst_pud;
1025         unsigned long next;
1026
1027         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1028         if (!dst_pud)
1029                 return -ENOMEM;
1030         src_pud = pud_offset(src_pgd, addr);
1031         do {
1032                 next = pud_addr_end(addr, end);
1033                 if (pud_none_or_clear_bad(src_pud))
1034                         continue;
1035                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1036                                                 vma, addr, next))
1037                         return -ENOMEM;
1038         } while (dst_pud++, src_pud++, addr = next, addr != end);
1039         return 0;
1040 }
1041
1042 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1043                 struct vm_area_struct *vma)
1044 {
1045         pgd_t *src_pgd, *dst_pgd;
1046         unsigned long next;
1047         unsigned long addr = vma->vm_start;
1048         unsigned long end = vma->vm_end;
1049         unsigned long mmun_start;       /* For mmu_notifiers */
1050         unsigned long mmun_end;         /* For mmu_notifiers */
1051         bool is_cow;
1052         int ret;
1053
1054         /*
1055          * Don't copy ptes where a page fault will fill them correctly.
1056          * Fork becomes much lighter when there are big shared or private
1057          * readonly mappings. The tradeoff is that copy_page_range is more
1058          * efficient than faulting.
1059          */
1060         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1061                                VM_PFNMAP | VM_MIXEDMAP))) {
1062                 if (!vma->anon_vma)
1063                         return 0;
1064         }
1065
1066         if (is_vm_hugetlb_page(vma))
1067                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
1069         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070                 /*
1071                  * We do not free on error cases below as remove_vma
1072                  * gets called on error from higher level routine
1073                  */
1074                 ret = track_pfn_copy(vma);
1075                 if (ret)
1076                         return ret;
1077         }
1078
1079         /*
1080          * We need to invalidate the secondary MMU mappings only when
1081          * there could be a permission downgrade on the ptes of the
1082          * parent mm. And a permission downgrade will only happen if
1083          * is_cow_mapping() returns true.
1084          */
1085         is_cow = is_cow_mapping(vma->vm_flags);
1086         mmun_start = addr;
1087         mmun_end   = end;
1088         if (is_cow)
1089                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090                                                     mmun_end);
1091
1092         ret = 0;
1093         dst_pgd = pgd_offset(dst_mm, addr);
1094         src_pgd = pgd_offset(src_mm, addr);
1095         do {
1096                 next = pgd_addr_end(addr, end);
1097                 if (pgd_none_or_clear_bad(src_pgd))
1098                         continue;
1099                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100                                             vma, addr, next))) {
1101                         ret = -ENOMEM;
1102                         break;
1103                 }
1104         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106         if (is_cow)
1107                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1108         return ret;
1109 }
1110
1111 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112                                 struct vm_area_struct *vma, pmd_t *pmd,
1113                                 unsigned long addr, unsigned long end,
1114                                 struct zap_details *details)
1115 {
1116         struct mm_struct *mm = tlb->mm;
1117         int force_flush = 0;
1118         int rss[NR_MM_COUNTERS];
1119         spinlock_t *ptl;
1120         pte_t *start_pte;
1121         pte_t *pte;
1122
1123 again:
1124         init_rss_vec(rss);
1125         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1126         pte = start_pte;
1127         arch_enter_lazy_mmu_mode();
1128         do {
1129                 pte_t ptent = *pte;
1130                 if (pte_none(ptent)) {
1131                         continue;
1132                 }
1133
1134                 if (pte_present(ptent)) {
1135                         struct page *page;
1136
1137                         page = vm_normal_page(vma, addr, ptent);
1138                         if (unlikely(details) && page) {
1139                                 /*
1140                                  * unmap_shared_mapping_pages() wants to
1141                                  * invalidate cache without truncating:
1142                                  * unmap shared but keep private pages.
1143                                  */
1144                                 if (details->check_mapping &&
1145                                     details->check_mapping != page->mapping)
1146                                         continue;
1147                                 /*
1148                                  * Each page->index must be checked when
1149                                  * invalidating or truncating nonlinear.
1150                                  */
1151                                 if (details->nonlinear_vma &&
1152                                     (page->index < details->first_index ||
1153                                      page->index > details->last_index))
1154                                         continue;
1155                         }
1156                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1157                                                         tlb->fullmm);
1158                         tlb_remove_tlb_entry(tlb, pte, addr);
1159                         if (unlikely(!page))
1160                                 continue;
1161                         if (unlikely(details) && details->nonlinear_vma
1162                             && linear_page_index(details->nonlinear_vma,
1163                                                 addr) != page->index)
1164                                 set_pte_at(mm, addr, pte,
1165                                            pgoff_to_pte(page->index));
1166                         if (PageAnon(page))
1167                                 rss[MM_ANONPAGES]--;
1168                         else {
1169                                 if (pte_dirty(ptent))
1170                                         set_page_dirty(page);
1171                                 if (pte_young(ptent) &&
1172                                     likely(!VM_SequentialReadHint(vma)))
1173                                         mark_page_accessed(page);
1174                                 rss[MM_FILEPAGES]--;
1175                         }
1176                         page_remove_rmap(page);
1177                         if (unlikely(page_mapcount(page) < 0))
1178                                 print_bad_pte(vma, addr, ptent, page);
1179                         force_flush = !__tlb_remove_page(tlb, page);
1180                         if (force_flush)
1181                                 break;
1182                         continue;
1183                 }
1184                 /*
1185                  * If details->check_mapping, we leave swap entries;
1186                  * if details->nonlinear_vma, we leave file entries.
1187                  */
1188                 if (unlikely(details))
1189                         continue;
1190                 if (pte_file(ptent)) {
1191                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1192                                 print_bad_pte(vma, addr, ptent, NULL);
1193                 } else {
1194                         swp_entry_t entry = pte_to_swp_entry(ptent);
1195
1196                         if (!non_swap_entry(entry))
1197                                 rss[MM_SWAPENTS]--;
1198                         else if (is_migration_entry(entry)) {
1199                                 struct page *page;
1200
1201                                 page = migration_entry_to_page(entry);
1202
1203                                 if (PageAnon(page))
1204                                         rss[MM_ANONPAGES]--;
1205                                 else
1206                                         rss[MM_FILEPAGES]--;
1207                         }
1208                         if (unlikely(!free_swap_and_cache(entry)))
1209                                 print_bad_pte(vma, addr, ptent, NULL);
1210                 }
1211                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1212         } while (pte++, addr += PAGE_SIZE, addr != end);
1213
1214         add_mm_rss_vec(mm, rss);
1215         arch_leave_lazy_mmu_mode();
1216         pte_unmap_unlock(start_pte, ptl);
1217
1218         /*
1219          * mmu_gather ran out of room to batch pages, we break out of
1220          * the PTE lock to avoid doing the potential expensive TLB invalidate
1221          * and page-free while holding it.
1222          */
1223         if (force_flush) {
1224                 force_flush = 0;
1225
1226 #ifdef HAVE_GENERIC_MMU_GATHER
1227                 tlb->start = addr;
1228                 tlb->end = end;
1229 #endif
1230                 tlb_flush_mmu(tlb);
1231                 if (addr != end)
1232                         goto again;
1233         }
1234
1235         return addr;
1236 }
1237
1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1239                                 struct vm_area_struct *vma, pud_t *pud,
1240                                 unsigned long addr, unsigned long end,
1241                                 struct zap_details *details)
1242 {
1243         pmd_t *pmd;
1244         unsigned long next;
1245
1246         pmd = pmd_offset(pud, addr);
1247         do {
1248                 next = pmd_addr_end(addr, end);
1249                 if (pmd_trans_huge(*pmd)) {
1250                         if (next - addr != HPAGE_PMD_SIZE) {
1251 #ifdef CONFIG_DEBUG_VM
1252                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1253                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1254                                                 __func__, addr, end,
1255                                                 vma->vm_start,
1256                                                 vma->vm_end);
1257                                         BUG();
1258                                 }
1259 #endif
1260                                 split_huge_page_pmd(vma->vm_mm, pmd);
1261                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1262                                 goto next;
1263                         /* fall through */
1264                 }
1265                 /*
1266                  * Here there can be other concurrent MADV_DONTNEED or
1267                  * trans huge page faults running, and if the pmd is
1268                  * none or trans huge it can change under us. This is
1269                  * because MADV_DONTNEED holds the mmap_sem in read
1270                  * mode.
1271                  */
1272                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1273                         goto next;
1274                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1275 next:
1276                 cond_resched();
1277         } while (pmd++, addr = next, addr != end);
1278
1279         return addr;
1280 }
1281
1282 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1283                                 struct vm_area_struct *vma, pgd_t *pgd,
1284                                 unsigned long addr, unsigned long end,
1285                                 struct zap_details *details)
1286 {
1287         pud_t *pud;
1288         unsigned long next;
1289
1290         pud = pud_offset(pgd, addr);
1291         do {
1292                 next = pud_addr_end(addr, end);
1293                 if (pud_none_or_clear_bad(pud))
1294                         continue;
1295                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1296         } while (pud++, addr = next, addr != end);
1297
1298         return addr;
1299 }
1300
1301 static void unmap_page_range(struct mmu_gather *tlb,
1302                              struct vm_area_struct *vma,
1303                              unsigned long addr, unsigned long end,
1304                              struct zap_details *details)
1305 {
1306         pgd_t *pgd;
1307         unsigned long next;
1308
1309         if (details && !details->check_mapping && !details->nonlinear_vma)
1310                 details = NULL;
1311
1312         BUG_ON(addr >= end);
1313         mem_cgroup_uncharge_start();
1314         tlb_start_vma(tlb, vma);
1315         pgd = pgd_offset(vma->vm_mm, addr);
1316         do {
1317                 next = pgd_addr_end(addr, end);
1318                 if (pgd_none_or_clear_bad(pgd))
1319                         continue;
1320                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1321         } while (pgd++, addr = next, addr != end);
1322         tlb_end_vma(tlb, vma);
1323         mem_cgroup_uncharge_end();
1324 }
1325
1326
1327 static void unmap_single_vma(struct mmu_gather *tlb,
1328                 struct vm_area_struct *vma, unsigned long start_addr,
1329                 unsigned long end_addr,
1330                 struct zap_details *details)
1331 {
1332         unsigned long start = max(vma->vm_start, start_addr);
1333         unsigned long end;
1334
1335         if (start >= vma->vm_end)
1336                 return;
1337         end = min(vma->vm_end, end_addr);
1338         if (end <= vma->vm_start)
1339                 return;
1340
1341         if (vma->vm_file)
1342                 uprobe_munmap(vma, start, end);
1343
1344         if (unlikely(vma->vm_flags & VM_PFNMAP))
1345                 untrack_pfn(vma, 0, 0);
1346
1347         if (start != end) {
1348                 if (unlikely(is_vm_hugetlb_page(vma))) {
1349                         /*
1350                          * It is undesirable to test vma->vm_file as it
1351                          * should be non-null for valid hugetlb area.
1352                          * However, vm_file will be NULL in the error
1353                          * cleanup path of do_mmap_pgoff. When
1354                          * hugetlbfs ->mmap method fails,
1355                          * do_mmap_pgoff() nullifies vma->vm_file
1356                          * before calling this function to clean up.
1357                          * Since no pte has actually been setup, it is
1358                          * safe to do nothing in this case.
1359                          */
1360                         if (vma->vm_file) {
1361                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1362                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1363                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1364                         }
1365                 } else
1366                         unmap_page_range(tlb, vma, start, end, details);
1367         }
1368 }
1369
1370 /**
1371  * unmap_vmas - unmap a range of memory covered by a list of vma's
1372  * @tlb: address of the caller's struct mmu_gather
1373  * @vma: the starting vma
1374  * @start_addr: virtual address at which to start unmapping
1375  * @end_addr: virtual address at which to end unmapping
1376  *
1377  * Unmap all pages in the vma list.
1378  *
1379  * Only addresses between `start' and `end' will be unmapped.
1380  *
1381  * The VMA list must be sorted in ascending virtual address order.
1382  *
1383  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1384  * range after unmap_vmas() returns.  So the only responsibility here is to
1385  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1386  * drops the lock and schedules.
1387  */
1388 void unmap_vmas(struct mmu_gather *tlb,
1389                 struct vm_area_struct *vma, unsigned long start_addr,
1390                 unsigned long end_addr)
1391 {
1392         struct mm_struct *mm = vma->vm_mm;
1393
1394         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1395         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1396                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1397         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1398 }
1399
1400 /**
1401  * zap_page_range - remove user pages in a given range
1402  * @vma: vm_area_struct holding the applicable pages
1403  * @start: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  * @details: details of nonlinear truncation or shared cache invalidation
1406  *
1407  * Caller must protect the VMA list
1408  */
1409 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1410                 unsigned long size, struct zap_details *details)
1411 {
1412         struct mm_struct *mm = vma->vm_mm;
1413         struct mmu_gather tlb;
1414         unsigned long end = start + size;
1415
1416         lru_add_drain();
1417         tlb_gather_mmu(&tlb, mm, 0);
1418         update_hiwater_rss(mm);
1419         mmu_notifier_invalidate_range_start(mm, start, end);
1420         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1421                 unmap_single_vma(&tlb, vma, start, end, details);
1422         mmu_notifier_invalidate_range_end(mm, start, end);
1423         tlb_finish_mmu(&tlb, start, end);
1424 }
1425
1426 /**
1427  * zap_page_range_single - remove user pages in a given range
1428  * @vma: vm_area_struct holding the applicable pages
1429  * @address: starting address of pages to zap
1430  * @size: number of bytes to zap
1431  * @details: details of nonlinear truncation or shared cache invalidation
1432  *
1433  * The range must fit into one VMA.
1434  */
1435 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1436                 unsigned long size, struct zap_details *details)
1437 {
1438         struct mm_struct *mm = vma->vm_mm;
1439         struct mmu_gather tlb;
1440         unsigned long end = address + size;
1441
1442         lru_add_drain();
1443         tlb_gather_mmu(&tlb, mm, 0);
1444         update_hiwater_rss(mm);
1445         mmu_notifier_invalidate_range_start(mm, address, end);
1446         unmap_single_vma(&tlb, vma, address, end, details);
1447         mmu_notifier_invalidate_range_end(mm, address, end);
1448         tlb_finish_mmu(&tlb, address, end);
1449 }
1450
1451 /**
1452  * zap_vma_ptes - remove ptes mapping the vma
1453  * @vma: vm_area_struct holding ptes to be zapped
1454  * @address: starting address of pages to zap
1455  * @size: number of bytes to zap
1456  *
1457  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1458  *
1459  * The entire address range must be fully contained within the vma.
1460  *
1461  * Returns 0 if successful.
1462  */
1463 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1464                 unsigned long size)
1465 {
1466         if (address < vma->vm_start || address + size > vma->vm_end ||
1467                         !(vma->vm_flags & VM_PFNMAP))
1468                 return -1;
1469         zap_page_range_single(vma, address, size, NULL);
1470         return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1473
1474 /**
1475  * follow_page - look up a page descriptor from a user-virtual address
1476  * @vma: vm_area_struct mapping @address
1477  * @address: virtual address to look up
1478  * @flags: flags modifying lookup behaviour
1479  *
1480  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1481  *
1482  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1483  * an error pointer if there is a mapping to something not represented
1484  * by a page descriptor (see also vm_normal_page()).
1485  */
1486 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1487                         unsigned int flags)
1488 {
1489         pgd_t *pgd;
1490         pud_t *pud;
1491         pmd_t *pmd;
1492         pte_t *ptep, pte;
1493         spinlock_t *ptl;
1494         struct page *page;
1495         struct mm_struct *mm = vma->vm_mm;
1496
1497         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1498         if (!IS_ERR(page)) {
1499                 BUG_ON(flags & FOLL_GET);
1500                 goto out;
1501         }
1502
1503         page = NULL;
1504         pgd = pgd_offset(mm, address);
1505         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1506                 goto no_page_table;
1507
1508         pud = pud_offset(pgd, address);
1509         if (pud_none(*pud))
1510                 goto no_page_table;
1511         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1512                 BUG_ON(flags & FOLL_GET);
1513                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1514                 goto out;
1515         }
1516         if (unlikely(pud_bad(*pud)))
1517                 goto no_page_table;
1518
1519         pmd = pmd_offset(pud, address);
1520         if (pmd_none(*pmd))
1521                 goto no_page_table;
1522         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1523                 BUG_ON(flags & FOLL_GET);
1524                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1525                 goto out;
1526         }
1527         if (pmd_trans_huge(*pmd)) {
1528                 if (flags & FOLL_SPLIT) {
1529                         split_huge_page_pmd(mm, pmd);
1530                         goto split_fallthrough;
1531                 }
1532                 spin_lock(&mm->page_table_lock);
1533                 if (likely(pmd_trans_huge(*pmd))) {
1534                         if (unlikely(pmd_trans_splitting(*pmd))) {
1535                                 spin_unlock(&mm->page_table_lock);
1536                                 wait_split_huge_page(vma->anon_vma, pmd);
1537                         } else {
1538                                 page = follow_trans_huge_pmd(vma, address,
1539                                                              pmd, flags);
1540                                 spin_unlock(&mm->page_table_lock);
1541                                 goto out;
1542                         }
1543                 } else
1544                         spin_unlock(&mm->page_table_lock);
1545                 /* fall through */
1546         }
1547 split_fallthrough:
1548         if (unlikely(pmd_bad(*pmd)))
1549                 goto no_page_table;
1550
1551         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1552
1553         pte = *ptep;
1554         if (!pte_present(pte))
1555                 goto no_page;
1556         if ((flags & FOLL_WRITE) && !pte_write(pte))
1557                 goto unlock;
1558
1559         page = vm_normal_page(vma, address, pte);
1560         if (unlikely(!page)) {
1561                 if ((flags & FOLL_DUMP) ||
1562                     !is_zero_pfn(pte_pfn(pte)))
1563                         goto bad_page;
1564                 page = pte_page(pte);
1565         }
1566
1567         if (flags & FOLL_GET)
1568                 get_page_foll(page);
1569         if (flags & FOLL_TOUCH) {
1570                 if ((flags & FOLL_WRITE) &&
1571                     !pte_dirty(pte) && !PageDirty(page))
1572                         set_page_dirty(page);
1573                 /*
1574                  * pte_mkyoung() would be more correct here, but atomic care
1575                  * is needed to avoid losing the dirty bit: it is easier to use
1576                  * mark_page_accessed().
1577                  */
1578                 mark_page_accessed(page);
1579         }
1580         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1581                 /*
1582                  * The preliminary mapping check is mainly to avoid the
1583                  * pointless overhead of lock_page on the ZERO_PAGE
1584                  * which might bounce very badly if there is contention.
1585                  *
1586                  * If the page is already locked, we don't need to
1587                  * handle it now - vmscan will handle it later if and
1588                  * when it attempts to reclaim the page.
1589                  */
1590                 if (page->mapping && trylock_page(page)) {
1591                         lru_add_drain();  /* push cached pages to LRU */
1592                         /*
1593                          * Because we lock page here, and migration is
1594                          * blocked by the pte's page reference, and we
1595                          * know the page is still mapped, we don't even
1596                          * need to check for file-cache page truncation.
1597                          */
1598                         mlock_vma_page(page);
1599                         unlock_page(page);
1600                 }
1601         }
1602 unlock:
1603         pte_unmap_unlock(ptep, ptl);
1604 out:
1605         return page;
1606
1607 bad_page:
1608         pte_unmap_unlock(ptep, ptl);
1609         return ERR_PTR(-EFAULT);
1610
1611 no_page:
1612         pte_unmap_unlock(ptep, ptl);
1613         if (!pte_none(pte))
1614                 return page;
1615
1616 no_page_table:
1617         /*
1618          * When core dumping an enormous anonymous area that nobody
1619          * has touched so far, we don't want to allocate unnecessary pages or
1620          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1621          * then get_dump_page() will return NULL to leave a hole in the dump.
1622          * But we can only make this optimization where a hole would surely
1623          * be zero-filled if handle_mm_fault() actually did handle it.
1624          */
1625         if ((flags & FOLL_DUMP) &&
1626             (!vma->vm_ops || !vma->vm_ops->fault))
1627                 return ERR_PTR(-EFAULT);
1628         return page;
1629 }
1630
1631 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1632 {
1633         return stack_guard_page_start(vma, addr) ||
1634                stack_guard_page_end(vma, addr+PAGE_SIZE);
1635 }
1636
1637 /**
1638  * __get_user_pages() - pin user pages in memory
1639  * @tsk:        task_struct of target task
1640  * @mm:         mm_struct of target mm
1641  * @start:      starting user address
1642  * @nr_pages:   number of pages from start to pin
1643  * @gup_flags:  flags modifying pin behaviour
1644  * @pages:      array that receives pointers to the pages pinned.
1645  *              Should be at least nr_pages long. Or NULL, if caller
1646  *              only intends to ensure the pages are faulted in.
1647  * @vmas:       array of pointers to vmas corresponding to each page.
1648  *              Or NULL if the caller does not require them.
1649  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1650  *
1651  * Returns number of pages pinned. This may be fewer than the number
1652  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1653  * were pinned, returns -errno. Each page returned must be released
1654  * with a put_page() call when it is finished with. vmas will only
1655  * remain valid while mmap_sem is held.
1656  *
1657  * Must be called with mmap_sem held for read or write.
1658  *
1659  * __get_user_pages walks a process's page tables and takes a reference to
1660  * each struct page that each user address corresponds to at a given
1661  * instant. That is, it takes the page that would be accessed if a user
1662  * thread accesses the given user virtual address at that instant.
1663  *
1664  * This does not guarantee that the page exists in the user mappings when
1665  * __get_user_pages returns, and there may even be a completely different
1666  * page there in some cases (eg. if mmapped pagecache has been invalidated
1667  * and subsequently re faulted). However it does guarantee that the page
1668  * won't be freed completely. And mostly callers simply care that the page
1669  * contains data that was valid *at some point in time*. Typically, an IO
1670  * or similar operation cannot guarantee anything stronger anyway because
1671  * locks can't be held over the syscall boundary.
1672  *
1673  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1674  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1675  * appropriate) must be called after the page is finished with, and
1676  * before put_page is called.
1677  *
1678  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1679  * or mmap_sem contention, and if waiting is needed to pin all pages,
1680  * *@nonblocking will be set to 0.
1681  *
1682  * In most cases, get_user_pages or get_user_pages_fast should be used
1683  * instead of __get_user_pages. __get_user_pages should be used only if
1684  * you need some special @gup_flags.
1685  */
1686 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1687                      unsigned long start, int nr_pages, unsigned int gup_flags,
1688                      struct page **pages, struct vm_area_struct **vmas,
1689                      int *nonblocking)
1690 {
1691         int i;
1692         unsigned long vm_flags;
1693
1694         if (nr_pages <= 0)
1695                 return 0;
1696
1697         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1698
1699         /* 
1700          * Require read or write permissions.
1701          * If FOLL_FORCE is set, we only require the "MAY" flags.
1702          */
1703         vm_flags  = (gup_flags & FOLL_WRITE) ?
1704                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1705         vm_flags &= (gup_flags & FOLL_FORCE) ?
1706                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1707         i = 0;
1708
1709         do {
1710                 struct vm_area_struct *vma;
1711
1712                 vma = find_extend_vma(mm, start);
1713                 if (!vma && in_gate_area(mm, start)) {
1714                         unsigned long pg = start & PAGE_MASK;
1715                         pgd_t *pgd;
1716                         pud_t *pud;
1717                         pmd_t *pmd;
1718                         pte_t *pte;
1719
1720                         /* user gate pages are read-only */
1721                         if (gup_flags & FOLL_WRITE)
1722                                 return i ? : -EFAULT;
1723                         if (pg > TASK_SIZE)
1724                                 pgd = pgd_offset_k(pg);
1725                         else
1726                                 pgd = pgd_offset_gate(mm, pg);
1727                         BUG_ON(pgd_none(*pgd));
1728                         pud = pud_offset(pgd, pg);
1729                         BUG_ON(pud_none(*pud));
1730                         pmd = pmd_offset(pud, pg);
1731                         if (pmd_none(*pmd))
1732                                 return i ? : -EFAULT;
1733                         VM_BUG_ON(pmd_trans_huge(*pmd));
1734                         pte = pte_offset_map(pmd, pg);
1735                         if (pte_none(*pte)) {
1736                                 pte_unmap(pte);
1737                                 return i ? : -EFAULT;
1738                         }
1739                         vma = get_gate_vma(mm);
1740                         if (pages) {
1741                                 struct page *page;
1742
1743                                 page = vm_normal_page(vma, start, *pte);
1744                                 if (!page) {
1745                                         if (!(gup_flags & FOLL_DUMP) &&
1746                                              is_zero_pfn(pte_pfn(*pte)))
1747                                                 page = pte_page(*pte);
1748                                         else {
1749                                                 pte_unmap(pte);
1750                                                 return i ? : -EFAULT;
1751                                         }
1752                                 }
1753                                 pages[i] = page;
1754                                 get_page(page);
1755                         }
1756                         pte_unmap(pte);
1757                         goto next_page;
1758                 }
1759
1760                 if (!vma ||
1761                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1762                     !(vm_flags & vma->vm_flags))
1763                         return i ? : -EFAULT;
1764
1765                 if (is_vm_hugetlb_page(vma)) {
1766                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1767                                         &start, &nr_pages, i, gup_flags);
1768                         continue;
1769                 }
1770
1771                 do {
1772                         struct page *page;
1773                         unsigned int foll_flags = gup_flags;
1774
1775                         /*
1776                          * If we have a pending SIGKILL, don't keep faulting
1777                          * pages and potentially allocating memory.
1778                          */
1779                         if (unlikely(fatal_signal_pending(current)))
1780                                 return i ? i : -ERESTARTSYS;
1781
1782                         cond_resched();
1783                         while (!(page = follow_page(vma, start, foll_flags))) {
1784                                 int ret;
1785                                 unsigned int fault_flags = 0;
1786
1787                                 /* For mlock, just skip the stack guard page. */
1788                                 if (foll_flags & FOLL_MLOCK) {
1789                                         if (stack_guard_page(vma, start))
1790                                                 goto next_page;
1791                                 }
1792                                 if (foll_flags & FOLL_WRITE)
1793                                         fault_flags |= FAULT_FLAG_WRITE;
1794                                 if (nonblocking)
1795                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1796                                 if (foll_flags & FOLL_NOWAIT)
1797                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1798
1799                                 ret = handle_mm_fault(mm, vma, start,
1800                                                         fault_flags);
1801
1802                                 if (ret & VM_FAULT_ERROR) {
1803                                         if (ret & VM_FAULT_OOM)
1804                                                 return i ? i : -ENOMEM;
1805                                         if (ret & (VM_FAULT_HWPOISON |
1806                                                    VM_FAULT_HWPOISON_LARGE)) {
1807                                                 if (i)
1808                                                         return i;
1809                                                 else if (gup_flags & FOLL_HWPOISON)
1810                                                         return -EHWPOISON;
1811                                                 else
1812                                                         return -EFAULT;
1813                                         }
1814                                         if (ret & VM_FAULT_SIGBUS)
1815                                                 return i ? i : -EFAULT;
1816                                         BUG();
1817                                 }
1818
1819                                 if (tsk) {
1820                                         if (ret & VM_FAULT_MAJOR)
1821                                                 tsk->maj_flt++;
1822                                         else
1823                                                 tsk->min_flt++;
1824                                 }
1825
1826                                 if (ret & VM_FAULT_RETRY) {
1827                                         if (nonblocking)
1828                                                 *nonblocking = 0;
1829                                         return i;
1830                                 }
1831
1832                                 /*
1833                                  * The VM_FAULT_WRITE bit tells us that
1834                                  * do_wp_page has broken COW when necessary,
1835                                  * even if maybe_mkwrite decided not to set
1836                                  * pte_write. We can thus safely do subsequent
1837                                  * page lookups as if they were reads. But only
1838                                  * do so when looping for pte_write is futile:
1839                                  * in some cases userspace may also be wanting
1840                                  * to write to the gotten user page, which a
1841                                  * read fault here might prevent (a readonly
1842                                  * page might get reCOWed by userspace write).
1843                                  */
1844                                 if ((ret & VM_FAULT_WRITE) &&
1845                                     !(vma->vm_flags & VM_WRITE))
1846                                         foll_flags &= ~FOLL_WRITE;
1847
1848                                 cond_resched();
1849                         }
1850                         if (IS_ERR(page))
1851                                 return i ? i : PTR_ERR(page);
1852                         if (pages) {
1853                                 pages[i] = page;
1854
1855                                 flush_anon_page(vma, page, start);
1856                                 flush_dcache_page(page);
1857                         }
1858 next_page:
1859                         if (vmas)
1860                                 vmas[i] = vma;
1861                         i++;
1862                         start += PAGE_SIZE;
1863                         nr_pages--;
1864                 } while (nr_pages && start < vma->vm_end);
1865         } while (nr_pages);
1866         return i;
1867 }
1868 EXPORT_SYMBOL(__get_user_pages);
1869
1870 /*
1871  * fixup_user_fault() - manually resolve a user page fault
1872  * @tsk:        the task_struct to use for page fault accounting, or
1873  *              NULL if faults are not to be recorded.
1874  * @mm:         mm_struct of target mm
1875  * @address:    user address
1876  * @fault_flags:flags to pass down to handle_mm_fault()
1877  *
1878  * This is meant to be called in the specific scenario where for locking reasons
1879  * we try to access user memory in atomic context (within a pagefault_disable()
1880  * section), this returns -EFAULT, and we want to resolve the user fault before
1881  * trying again.
1882  *
1883  * Typically this is meant to be used by the futex code.
1884  *
1885  * The main difference with get_user_pages() is that this function will
1886  * unconditionally call handle_mm_fault() which will in turn perform all the
1887  * necessary SW fixup of the dirty and young bits in the PTE, while
1888  * handle_mm_fault() only guarantees to update these in the struct page.
1889  *
1890  * This is important for some architectures where those bits also gate the
1891  * access permission to the page because they are maintained in software.  On
1892  * such architectures, gup() will not be enough to make a subsequent access
1893  * succeed.
1894  *
1895  * This should be called with the mm_sem held for read.
1896  */
1897 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1898                      unsigned long address, unsigned int fault_flags)
1899 {
1900         struct vm_area_struct *vma;
1901         int ret;
1902
1903         vma = find_extend_vma(mm, address);
1904         if (!vma || address < vma->vm_start)
1905                 return -EFAULT;
1906
1907         ret = handle_mm_fault(mm, vma, address, fault_flags);
1908         if (ret & VM_FAULT_ERROR) {
1909                 if (ret & VM_FAULT_OOM)
1910                         return -ENOMEM;
1911                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1912                         return -EHWPOISON;
1913                 if (ret & VM_FAULT_SIGBUS)
1914                         return -EFAULT;
1915                 BUG();
1916         }
1917         if (tsk) {
1918                 if (ret & VM_FAULT_MAJOR)
1919                         tsk->maj_flt++;
1920                 else
1921                         tsk->min_flt++;
1922         }
1923         return 0;
1924 }
1925
1926 /*
1927  * get_user_pages() - pin user pages in memory
1928  * @tsk:        the task_struct to use for page fault accounting, or
1929  *              NULL if faults are not to be recorded.
1930  * @mm:         mm_struct of target mm
1931  * @start:      starting user address
1932  * @nr_pages:   number of pages from start to pin
1933  * @write:      whether pages will be written to by the caller
1934  * @force:      whether to force write access even if user mapping is
1935  *              readonly. This will result in the page being COWed even
1936  *              in MAP_SHARED mappings. You do not want this.
1937  * @pages:      array that receives pointers to the pages pinned.
1938  *              Should be at least nr_pages long. Or NULL, if caller
1939  *              only intends to ensure the pages are faulted in.
1940  * @vmas:       array of pointers to vmas corresponding to each page.
1941  *              Or NULL if the caller does not require them.
1942  *
1943  * Returns number of pages pinned. This may be fewer than the number
1944  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1945  * were pinned, returns -errno. Each page returned must be released
1946  * with a put_page() call when it is finished with. vmas will only
1947  * remain valid while mmap_sem is held.
1948  *
1949  * Must be called with mmap_sem held for read or write.
1950  *
1951  * get_user_pages walks a process's page tables and takes a reference to
1952  * each struct page that each user address corresponds to at a given
1953  * instant. That is, it takes the page that would be accessed if a user
1954  * thread accesses the given user virtual address at that instant.
1955  *
1956  * This does not guarantee that the page exists in the user mappings when
1957  * get_user_pages returns, and there may even be a completely different
1958  * page there in some cases (eg. if mmapped pagecache has been invalidated
1959  * and subsequently re faulted). However it does guarantee that the page
1960  * won't be freed completely. And mostly callers simply care that the page
1961  * contains data that was valid *at some point in time*. Typically, an IO
1962  * or similar operation cannot guarantee anything stronger anyway because
1963  * locks can't be held over the syscall boundary.
1964  *
1965  * If write=0, the page must not be written to. If the page is written to,
1966  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1967  * after the page is finished with, and before put_page is called.
1968  *
1969  * get_user_pages is typically used for fewer-copy IO operations, to get a
1970  * handle on the memory by some means other than accesses via the user virtual
1971  * addresses. The pages may be submitted for DMA to devices or accessed via
1972  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1973  * use the correct cache flushing APIs.
1974  *
1975  * See also get_user_pages_fast, for performance critical applications.
1976  */
1977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1978                 unsigned long start, int nr_pages, int write, int force,
1979                 struct page **pages, struct vm_area_struct **vmas)
1980 {
1981         int flags = FOLL_TOUCH;
1982
1983         if (pages)
1984                 flags |= FOLL_GET;
1985         if (write)
1986                 flags |= FOLL_WRITE;
1987         if (force)
1988                 flags |= FOLL_FORCE;
1989
1990         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1991                                 NULL);
1992 }
1993 EXPORT_SYMBOL(get_user_pages);
1994
1995 /**
1996  * get_dump_page() - pin user page in memory while writing it to core dump
1997  * @addr: user address
1998  *
1999  * Returns struct page pointer of user page pinned for dump,
2000  * to be freed afterwards by page_cache_release() or put_page().
2001  *
2002  * Returns NULL on any kind of failure - a hole must then be inserted into
2003  * the corefile, to preserve alignment with its headers; and also returns
2004  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2005  * allowing a hole to be left in the corefile to save diskspace.
2006  *
2007  * Called without mmap_sem, but after all other threads have been killed.
2008  */
2009 #ifdef CONFIG_ELF_CORE
2010 struct page *get_dump_page(unsigned long addr)
2011 {
2012         struct vm_area_struct *vma;
2013         struct page *page;
2014
2015         if (__get_user_pages(current, current->mm, addr, 1,
2016                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2017                              NULL) < 1)
2018                 return NULL;
2019         flush_cache_page(vma, addr, page_to_pfn(page));
2020         return page;
2021 }
2022 #endif /* CONFIG_ELF_CORE */
2023
2024 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2025                         spinlock_t **ptl)
2026 {
2027         pgd_t * pgd = pgd_offset(mm, addr);
2028         pud_t * pud = pud_alloc(mm, pgd, addr);
2029         if (pud) {
2030                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2031                 if (pmd) {
2032                         VM_BUG_ON(pmd_trans_huge(*pmd));
2033                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2034                 }
2035         }
2036         return NULL;
2037 }
2038
2039 /*
2040  * This is the old fallback for page remapping.
2041  *
2042  * For historical reasons, it only allows reserved pages. Only
2043  * old drivers should use this, and they needed to mark their
2044  * pages reserved for the old functions anyway.
2045  */
2046 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2047                         struct page *page, pgprot_t prot)
2048 {
2049         struct mm_struct *mm = vma->vm_mm;
2050         int retval;
2051         pte_t *pte;
2052         spinlock_t *ptl;
2053
2054         retval = -EINVAL;
2055         if (PageAnon(page))
2056                 goto out;
2057         retval = -ENOMEM;
2058         flush_dcache_page(page);
2059         pte = get_locked_pte(mm, addr, &ptl);
2060         if (!pte)
2061                 goto out;
2062         retval = -EBUSY;
2063         if (!pte_none(*pte))
2064                 goto out_unlock;
2065
2066         /* Ok, finally just insert the thing.. */
2067         get_page(page);
2068         inc_mm_counter_fast(mm, MM_FILEPAGES);
2069         page_add_file_rmap(page);
2070         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2071
2072         retval = 0;
2073         pte_unmap_unlock(pte, ptl);
2074         return retval;
2075 out_unlock:
2076         pte_unmap_unlock(pte, ptl);
2077 out:
2078         return retval;
2079 }
2080
2081 /**
2082  * vm_insert_page - insert single page into user vma
2083  * @vma: user vma to map to
2084  * @addr: target user address of this page
2085  * @page: source kernel page
2086  *
2087  * This allows drivers to insert individual pages they've allocated
2088  * into a user vma.
2089  *
2090  * The page has to be a nice clean _individual_ kernel allocation.
2091  * If you allocate a compound page, you need to have marked it as
2092  * such (__GFP_COMP), or manually just split the page up yourself
2093  * (see split_page()).
2094  *
2095  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2096  * took an arbitrary page protection parameter. This doesn't allow
2097  * that. Your vma protection will have to be set up correctly, which
2098  * means that if you want a shared writable mapping, you'd better
2099  * ask for a shared writable mapping!
2100  *
2101  * The page does not need to be reserved.
2102  *
2103  * Usually this function is called from f_op->mmap() handler
2104  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2105  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2106  * function from other places, for example from page-fault handler.
2107  */
2108 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2109                         struct page *page)
2110 {
2111         if (addr < vma->vm_start || addr >= vma->vm_end)
2112                 return -EFAULT;
2113         if (!page_count(page))
2114                 return -EINVAL;
2115         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2116                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2117                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2118                 vma->vm_flags |= VM_MIXEDMAP;
2119         }
2120         return insert_page(vma, addr, page, vma->vm_page_prot);
2121 }
2122 EXPORT_SYMBOL(vm_insert_page);
2123
2124 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2125                         unsigned long pfn, pgprot_t prot)
2126 {
2127         struct mm_struct *mm = vma->vm_mm;
2128         int retval;
2129         pte_t *pte, entry;
2130         spinlock_t *ptl;
2131
2132         retval = -ENOMEM;
2133         pte = get_locked_pte(mm, addr, &ptl);
2134         if (!pte)
2135                 goto out;
2136         retval = -EBUSY;
2137         if (!pte_none(*pte))
2138                 goto out_unlock;
2139
2140         /* Ok, finally just insert the thing.. */
2141         entry = pte_mkspecial(pfn_pte(pfn, prot));
2142         set_pte_at(mm, addr, pte, entry);
2143         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2144
2145         retval = 0;
2146 out_unlock:
2147         pte_unmap_unlock(pte, ptl);
2148 out:
2149         return retval;
2150 }
2151
2152 /**
2153  * vm_insert_pfn - insert single pfn into user vma
2154  * @vma: user vma to map to
2155  * @addr: target user address of this page
2156  * @pfn: source kernel pfn
2157  *
2158  * Similar to vm_insert_page, this allows drivers to insert individual pages
2159  * they've allocated into a user vma. Same comments apply.
2160  *
2161  * This function should only be called from a vm_ops->fault handler, and
2162  * in that case the handler should return NULL.
2163  *
2164  * vma cannot be a COW mapping.
2165  *
2166  * As this is called only for pages that do not currently exist, we
2167  * do not need to flush old virtual caches or the TLB.
2168  */
2169 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2170                         unsigned long pfn)
2171 {
2172         int ret;
2173         pgprot_t pgprot = vma->vm_page_prot;
2174         /*
2175          * Technically, architectures with pte_special can avoid all these
2176          * restrictions (same for remap_pfn_range).  However we would like
2177          * consistency in testing and feature parity among all, so we should
2178          * try to keep these invariants in place for everybody.
2179          */
2180         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2181         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2182                                                 (VM_PFNMAP|VM_MIXEDMAP));
2183         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2184         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2185
2186         if (addr < vma->vm_start || addr >= vma->vm_end)
2187                 return -EFAULT;
2188         if (track_pfn_insert(vma, &pgprot, pfn))
2189                 return -EINVAL;
2190
2191         ret = insert_pfn(vma, addr, pfn, pgprot);
2192
2193         return ret;
2194 }
2195 EXPORT_SYMBOL(vm_insert_pfn);
2196
2197 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2198                         unsigned long pfn)
2199 {
2200         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2201
2202         if (addr < vma->vm_start || addr >= vma->vm_end)
2203                 return -EFAULT;
2204
2205         /*
2206          * If we don't have pte special, then we have to use the pfn_valid()
2207          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208          * refcount the page if pfn_valid is true (hence insert_page rather
2209          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2210          * without pte special, it would there be refcounted as a normal page.
2211          */
2212         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2213                 struct page *page;
2214
2215                 page = pfn_to_page(pfn);
2216                 return insert_page(vma, addr, page, vma->vm_page_prot);
2217         }
2218         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2219 }
2220 EXPORT_SYMBOL(vm_insert_mixed);
2221
2222 /*
2223  * maps a range of physical memory into the requested pages. the old
2224  * mappings are removed. any references to nonexistent pages results
2225  * in null mappings (currently treated as "copy-on-access")
2226  */
2227 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2228                         unsigned long addr, unsigned long end,
2229                         unsigned long pfn, pgprot_t prot)
2230 {
2231         pte_t *pte;
2232         spinlock_t *ptl;
2233
2234         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2235         if (!pte)
2236                 return -ENOMEM;
2237         arch_enter_lazy_mmu_mode();
2238         do {
2239                 BUG_ON(!pte_none(*pte));
2240                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2241                 pfn++;
2242         } while (pte++, addr += PAGE_SIZE, addr != end);
2243         arch_leave_lazy_mmu_mode();
2244         pte_unmap_unlock(pte - 1, ptl);
2245         return 0;
2246 }
2247
2248 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2249                         unsigned long addr, unsigned long end,
2250                         unsigned long pfn, pgprot_t prot)
2251 {
2252         pmd_t *pmd;
2253         unsigned long next;
2254
2255         pfn -= addr >> PAGE_SHIFT;
2256         pmd = pmd_alloc(mm, pud, addr);
2257         if (!pmd)
2258                 return -ENOMEM;
2259         VM_BUG_ON(pmd_trans_huge(*pmd));
2260         do {
2261                 next = pmd_addr_end(addr, end);
2262                 if (remap_pte_range(mm, pmd, addr, next,
2263                                 pfn + (addr >> PAGE_SHIFT), prot))
2264                         return -ENOMEM;
2265         } while (pmd++, addr = next, addr != end);
2266         return 0;
2267 }
2268
2269 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2270                         unsigned long addr, unsigned long end,
2271                         unsigned long pfn, pgprot_t prot)
2272 {
2273         pud_t *pud;
2274         unsigned long next;
2275
2276         pfn -= addr >> PAGE_SHIFT;
2277         pud = pud_alloc(mm, pgd, addr);
2278         if (!pud)
2279                 return -ENOMEM;
2280         do {
2281                 next = pud_addr_end(addr, end);
2282                 if (remap_pmd_range(mm, pud, addr, next,
2283                                 pfn + (addr >> PAGE_SHIFT), prot))
2284                         return -ENOMEM;
2285         } while (pud++, addr = next, addr != end);
2286         return 0;
2287 }
2288
2289 /**
2290  * remap_pfn_range - remap kernel memory to userspace
2291  * @vma: user vma to map to
2292  * @addr: target user address to start at
2293  * @pfn: physical address of kernel memory
2294  * @size: size of map area
2295  * @prot: page protection flags for this mapping
2296  *
2297  *  Note: this is only safe if the mm semaphore is held when called.
2298  */
2299 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2300                     unsigned long pfn, unsigned long size, pgprot_t prot)
2301 {
2302         pgd_t *pgd;
2303         unsigned long next;
2304         unsigned long end = addr + PAGE_ALIGN(size);
2305         struct mm_struct *mm = vma->vm_mm;
2306         int err;
2307
2308         /*
2309          * Physically remapped pages are special. Tell the
2310          * rest of the world about it:
2311          *   VM_IO tells people not to look at these pages
2312          *      (accesses can have side effects).
2313          *   VM_PFNMAP tells the core MM that the base pages are just
2314          *      raw PFN mappings, and do not have a "struct page" associated
2315          *      with them.
2316          *   VM_DONTEXPAND
2317          *      Disable vma merging and expanding with mremap().
2318          *   VM_DONTDUMP
2319          *      Omit vma from core dump, even when VM_IO turned off.
2320          *
2321          * There's a horrible special case to handle copy-on-write
2322          * behaviour that some programs depend on. We mark the "original"
2323          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2324          * See vm_normal_page() for details.
2325          */
2326         if (is_cow_mapping(vma->vm_flags)) {
2327                 if (addr != vma->vm_start || end != vma->vm_end)
2328                         return -EINVAL;
2329                 vma->vm_pgoff = pfn;
2330         }
2331
2332         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2333         if (err)
2334                 return -EINVAL;
2335
2336         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2337
2338         BUG_ON(addr >= end);
2339         pfn -= addr >> PAGE_SHIFT;
2340         pgd = pgd_offset(mm, addr);
2341         flush_cache_range(vma, addr, end);
2342         do {
2343                 next = pgd_addr_end(addr, end);
2344                 err = remap_pud_range(mm, pgd, addr, next,
2345                                 pfn + (addr >> PAGE_SHIFT), prot);
2346                 if (err)
2347                         break;
2348         } while (pgd++, addr = next, addr != end);
2349
2350         if (err)
2351                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2352
2353         return err;
2354 }
2355 EXPORT_SYMBOL(remap_pfn_range);
2356
2357 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2358                                      unsigned long addr, unsigned long end,
2359                                      pte_fn_t fn, void *data)
2360 {
2361         pte_t *pte;
2362         int err;
2363         pgtable_t token;
2364         spinlock_t *uninitialized_var(ptl);
2365
2366         pte = (mm == &init_mm) ?
2367                 pte_alloc_kernel(pmd, addr) :
2368                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2369         if (!pte)
2370                 return -ENOMEM;
2371
2372         BUG_ON(pmd_huge(*pmd));
2373
2374         arch_enter_lazy_mmu_mode();
2375
2376         token = pmd_pgtable(*pmd);
2377
2378         do {
2379                 err = fn(pte++, token, addr, data);
2380                 if (err)
2381                         break;
2382         } while (addr += PAGE_SIZE, addr != end);
2383
2384         arch_leave_lazy_mmu_mode();
2385
2386         if (mm != &init_mm)
2387                 pte_unmap_unlock(pte-1, ptl);
2388         return err;
2389 }
2390
2391 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2392                                      unsigned long addr, unsigned long end,
2393                                      pte_fn_t fn, void *data)
2394 {
2395         pmd_t *pmd;
2396         unsigned long next;
2397         int err;
2398
2399         BUG_ON(pud_huge(*pud));
2400
2401         pmd = pmd_alloc(mm, pud, addr);
2402         if (!pmd)
2403                 return -ENOMEM;
2404         do {
2405                 next = pmd_addr_end(addr, end);
2406                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2407                 if (err)
2408                         break;
2409         } while (pmd++, addr = next, addr != end);
2410         return err;
2411 }
2412
2413 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2414                                      unsigned long addr, unsigned long end,
2415                                      pte_fn_t fn, void *data)
2416 {
2417         pud_t *pud;
2418         unsigned long next;
2419         int err;
2420
2421         pud = pud_alloc(mm, pgd, addr);
2422         if (!pud)
2423                 return -ENOMEM;
2424         do {
2425                 next = pud_addr_end(addr, end);
2426                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2427                 if (err)
2428                         break;
2429         } while (pud++, addr = next, addr != end);
2430         return err;
2431 }
2432
2433 /*
2434  * Scan a region of virtual memory, filling in page tables as necessary
2435  * and calling a provided function on each leaf page table.
2436  */
2437 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2438                         unsigned long size, pte_fn_t fn, void *data)
2439 {
2440         pgd_t *pgd;
2441         unsigned long next;
2442         unsigned long end = addr + size;
2443         int err;
2444
2445         BUG_ON(addr >= end);
2446         pgd = pgd_offset(mm, addr);
2447         do {
2448                 next = pgd_addr_end(addr, end);
2449                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2450                 if (err)
2451                         break;
2452         } while (pgd++, addr = next, addr != end);
2453
2454         return err;
2455 }
2456 EXPORT_SYMBOL_GPL(apply_to_page_range);
2457
2458 /*
2459  * handle_pte_fault chooses page fault handler according to an entry
2460  * which was read non-atomically.  Before making any commitment, on
2461  * those architectures or configurations (e.g. i386 with PAE) which
2462  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2463  * must check under lock before unmapping the pte and proceeding
2464  * (but do_wp_page is only called after already making such a check;
2465  * and do_anonymous_page can safely check later on).
2466  */
2467 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2468                                 pte_t *page_table, pte_t orig_pte)
2469 {
2470         int same = 1;
2471 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2472         if (sizeof(pte_t) > sizeof(unsigned long)) {
2473                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2474                 spin_lock(ptl);
2475                 same = pte_same(*page_table, orig_pte);
2476                 spin_unlock(ptl);
2477         }
2478 #endif
2479         pte_unmap(page_table);
2480         return same;
2481 }
2482
2483 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2484 {
2485         /*
2486          * If the source page was a PFN mapping, we don't have
2487          * a "struct page" for it. We do a best-effort copy by
2488          * just copying from the original user address. If that
2489          * fails, we just zero-fill it. Live with it.
2490          */
2491         if (unlikely(!src)) {
2492                 void *kaddr = kmap_atomic(dst);
2493                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2494
2495                 /*
2496                  * This really shouldn't fail, because the page is there
2497                  * in the page tables. But it might just be unreadable,
2498                  * in which case we just give up and fill the result with
2499                  * zeroes.
2500                  */
2501                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2502                         clear_page(kaddr);
2503                 kunmap_atomic(kaddr);
2504                 flush_dcache_page(dst);
2505         } else
2506                 copy_user_highpage(dst, src, va, vma);
2507 }
2508
2509 /*
2510  * This routine handles present pages, when users try to write
2511  * to a shared page. It is done by copying the page to a new address
2512  * and decrementing the shared-page counter for the old page.
2513  *
2514  * Note that this routine assumes that the protection checks have been
2515  * done by the caller (the low-level page fault routine in most cases).
2516  * Thus we can safely just mark it writable once we've done any necessary
2517  * COW.
2518  *
2519  * We also mark the page dirty at this point even though the page will
2520  * change only once the write actually happens. This avoids a few races,
2521  * and potentially makes it more efficient.
2522  *
2523  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2524  * but allow concurrent faults), with pte both mapped and locked.
2525  * We return with mmap_sem still held, but pte unmapped and unlocked.
2526  */
2527 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2528                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2529                 spinlock_t *ptl, pte_t orig_pte)
2530         __releases(ptl)
2531 {
2532         struct page *old_page, *new_page = NULL;
2533         pte_t entry;
2534         int ret = 0;
2535         int page_mkwrite = 0;
2536         struct page *dirty_page = NULL;
2537         unsigned long mmun_start;       /* For mmu_notifiers */
2538         unsigned long mmun_end;         /* For mmu_notifiers */
2539         bool mmun_called = false;       /* For mmu_notifiers */
2540
2541         old_page = vm_normal_page(vma, address, orig_pte);
2542         if (!old_page) {
2543                 /*
2544                  * VM_MIXEDMAP !pfn_valid() case
2545                  *
2546                  * We should not cow pages in a shared writeable mapping.
2547                  * Just mark the pages writable as we can't do any dirty
2548                  * accounting on raw pfn maps.
2549                  */
2550                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2551                                      (VM_WRITE|VM_SHARED))
2552                         goto reuse;
2553                 goto gotten;
2554         }
2555
2556         /*
2557          * Take out anonymous pages first, anonymous shared vmas are
2558          * not dirty accountable.
2559          */
2560         if (PageAnon(old_page) && !PageKsm(old_page)) {
2561                 if (!trylock_page(old_page)) {
2562                         page_cache_get(old_page);
2563                         pte_unmap_unlock(page_table, ptl);
2564                         lock_page(old_page);
2565                         page_table = pte_offset_map_lock(mm, pmd, address,
2566                                                          &ptl);
2567                         if (!pte_same(*page_table, orig_pte)) {
2568                                 unlock_page(old_page);
2569                                 goto unlock;
2570                         }
2571                         page_cache_release(old_page);
2572                 }
2573                 if (reuse_swap_page(old_page)) {
2574                         /*
2575                          * The page is all ours.  Move it to our anon_vma so
2576                          * the rmap code will not search our parent or siblings.
2577                          * Protected against the rmap code by the page lock.
2578                          */
2579                         page_move_anon_rmap(old_page, vma, address);
2580                         unlock_page(old_page);
2581                         goto reuse;
2582                 }
2583                 unlock_page(old_page);
2584         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2585                                         (VM_WRITE|VM_SHARED))) {
2586                 /*
2587                  * Only catch write-faults on shared writable pages,
2588                  * read-only shared pages can get COWed by
2589                  * get_user_pages(.write=1, .force=1).
2590                  */
2591                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2592                         struct vm_fault vmf;
2593                         int tmp;
2594
2595                         vmf.virtual_address = (void __user *)(address &
2596                                                                 PAGE_MASK);
2597                         vmf.pgoff = old_page->index;
2598                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2599                         vmf.page = old_page;
2600
2601                         /*
2602                          * Notify the address space that the page is about to
2603                          * become writable so that it can prohibit this or wait
2604                          * for the page to get into an appropriate state.
2605                          *
2606                          * We do this without the lock held, so that it can
2607                          * sleep if it needs to.
2608                          */
2609                         page_cache_get(old_page);
2610                         pte_unmap_unlock(page_table, ptl);
2611
2612                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2613                         if (unlikely(tmp &
2614                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2615                                 ret = tmp;
2616                                 goto unwritable_page;
2617                         }
2618                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2619                                 lock_page(old_page);
2620                                 if (!old_page->mapping) {
2621                                         ret = 0; /* retry the fault */
2622                                         unlock_page(old_page);
2623                                         goto unwritable_page;
2624                                 }
2625                         } else
2626                                 VM_BUG_ON(!PageLocked(old_page));
2627
2628                         /*
2629                          * Since we dropped the lock we need to revalidate
2630                          * the PTE as someone else may have changed it.  If
2631                          * they did, we just return, as we can count on the
2632                          * MMU to tell us if they didn't also make it writable.
2633                          */
2634                         page_table = pte_offset_map_lock(mm, pmd, address,
2635                                                          &ptl);
2636                         if (!pte_same(*page_table, orig_pte)) {
2637                                 unlock_page(old_page);
2638                                 goto unlock;
2639                         }
2640
2641                         page_mkwrite = 1;
2642                 }
2643                 dirty_page = old_page;
2644                 get_page(dirty_page);
2645
2646 reuse:
2647                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2648                 entry = pte_mkyoung(orig_pte);
2649                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2650                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2651                         update_mmu_cache(vma, address, page_table);
2652                 pte_unmap_unlock(page_table, ptl);
2653                 ret |= VM_FAULT_WRITE;
2654
2655                 if (!dirty_page)
2656                         return ret;
2657
2658                 /*
2659                  * Yes, Virginia, this is actually required to prevent a race
2660                  * with clear_page_dirty_for_io() from clearing the page dirty
2661                  * bit after it clear all dirty ptes, but before a racing
2662                  * do_wp_page installs a dirty pte.
2663                  *
2664                  * __do_fault is protected similarly.
2665                  */
2666                 if (!page_mkwrite) {
2667                         wait_on_page_locked(dirty_page);
2668                         set_page_dirty_balance(dirty_page, page_mkwrite);
2669                         /* file_update_time outside page_lock */
2670                         if (vma->vm_file)
2671                                 file_update_time(vma->vm_file);
2672                 }
2673                 put_page(dirty_page);
2674                 if (page_mkwrite) {
2675                         struct address_space *mapping = dirty_page->mapping;
2676
2677                         set_page_dirty(dirty_page);
2678                         unlock_page(dirty_page);
2679                         page_cache_release(dirty_page);
2680                         if (mapping)    {
2681                                 /*
2682                                  * Some device drivers do not set page.mapping
2683                                  * but still dirty their pages
2684                                  */
2685                                 balance_dirty_pages_ratelimited(mapping);
2686                         }
2687                 }
2688
2689                 return ret;
2690         }
2691
2692         /*
2693          * Ok, we need to copy. Oh, well..
2694          */
2695         page_cache_get(old_page);
2696 gotten:
2697         pte_unmap_unlock(page_table, ptl);
2698
2699         if (unlikely(anon_vma_prepare(vma)))
2700                 goto oom;
2701
2702         if (is_zero_pfn(pte_pfn(orig_pte))) {
2703                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2704                 if (!new_page)
2705                         goto oom;
2706         } else {
2707                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2708                 if (!new_page)
2709                         goto oom;
2710                 cow_user_page(new_page, old_page, address, vma);
2711         }
2712         __SetPageUptodate(new_page);
2713
2714         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2715                 goto oom_free_new;
2716
2717         mmun_start  = address & PAGE_MASK;
2718         mmun_end    = (address & PAGE_MASK) + PAGE_SIZE;
2719         mmun_called = true;
2720         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2721
2722         /*
2723          * Re-check the pte - we dropped the lock
2724          */
2725         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2726         if (likely(pte_same(*page_table, orig_pte))) {
2727                 if (old_page) {
2728                         if (!PageAnon(old_page)) {
2729                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2730                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2731                         }
2732                 } else
2733                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2734                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2735                 entry = mk_pte(new_page, vma->vm_page_prot);
2736                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2737                 /*
2738                  * Clear the pte entry and flush it first, before updating the
2739                  * pte with the new entry. This will avoid a race condition
2740                  * seen in the presence of one thread doing SMC and another
2741                  * thread doing COW.
2742                  */
2743                 ptep_clear_flush(vma, address, page_table);
2744                 page_add_new_anon_rmap(new_page, vma, address);
2745                 /*
2746                  * We call the notify macro here because, when using secondary
2747                  * mmu page tables (such as kvm shadow page tables), we want the
2748                  * new page to be mapped directly into the secondary page table.
2749                  */
2750                 set_pte_at_notify(mm, address, page_table, entry);
2751                 update_mmu_cache(vma, address, page_table);
2752                 if (old_page) {
2753                         /*
2754                          * Only after switching the pte to the new page may
2755                          * we remove the mapcount here. Otherwise another
2756                          * process may come and find the rmap count decremented
2757                          * before the pte is switched to the new page, and
2758                          * "reuse" the old page writing into it while our pte
2759                          * here still points into it and can be read by other
2760                          * threads.
2761                          *
2762                          * The critical issue is to order this
2763                          * page_remove_rmap with the ptp_clear_flush above.
2764                          * Those stores are ordered by (if nothing else,)
2765                          * the barrier present in the atomic_add_negative
2766                          * in page_remove_rmap.
2767                          *
2768                          * Then the TLB flush in ptep_clear_flush ensures that
2769                          * no process can access the old page before the
2770                          * decremented mapcount is visible. And the old page
2771                          * cannot be reused until after the decremented
2772                          * mapcount is visible. So transitively, TLBs to
2773                          * old page will be flushed before it can be reused.
2774                          */
2775                         page_remove_rmap(old_page);
2776                 }
2777
2778                 /* Free the old page.. */
2779                 new_page = old_page;
2780                 ret |= VM_FAULT_WRITE;
2781         } else
2782                 mem_cgroup_uncharge_page(new_page);
2783
2784         if (new_page)
2785                 page_cache_release(new_page);
2786 unlock:
2787         pte_unmap_unlock(page_table, ptl);
2788         if (mmun_called)
2789                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2790         if (old_page) {
2791                 /*
2792                  * Don't let another task, with possibly unlocked vma,
2793                  * keep the mlocked page.
2794                  */
2795                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2796                         lock_page(old_page);    /* LRU manipulation */
2797                         munlock_vma_page(old_page);
2798                         unlock_page(old_page);
2799                 }
2800                 page_cache_release(old_page);
2801         }
2802         return ret;
2803 oom_free_new:
2804         page_cache_release(new_page);
2805 oom:
2806         if (old_page) {
2807                 if (page_mkwrite) {
2808                         unlock_page(old_page);
2809                         page_cache_release(old_page);
2810                 }
2811                 page_cache_release(old_page);
2812         }
2813         return VM_FAULT_OOM;
2814
2815 unwritable_page:
2816         page_cache_release(old_page);
2817         return ret;
2818 }
2819
2820 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2821                 unsigned long start_addr, unsigned long end_addr,
2822                 struct zap_details *details)
2823 {
2824         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2825 }
2826
2827 static inline void unmap_mapping_range_tree(struct rb_root *root,
2828                                             struct zap_details *details)
2829 {
2830         struct vm_area_struct *vma;
2831         pgoff_t vba, vea, zba, zea;
2832
2833         vma_interval_tree_foreach(vma, root,
2834                         details->first_index, details->last_index) {
2835
2836                 vba = vma->vm_pgoff;
2837                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2838                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2839                 zba = details->first_index;
2840                 if (zba < vba)
2841                         zba = vba;
2842                 zea = details->last_index;
2843                 if (zea > vea)
2844                         zea = vea;
2845
2846                 unmap_mapping_range_vma(vma,
2847                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2848                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2849                                 details);
2850         }
2851 }
2852
2853 static inline void unmap_mapping_range_list(struct list_head *head,
2854                                             struct zap_details *details)
2855 {
2856         struct vm_area_struct *vma;
2857
2858         /*
2859          * In nonlinear VMAs there is no correspondence between virtual address
2860          * offset and file offset.  So we must perform an exhaustive search
2861          * across *all* the pages in each nonlinear VMA, not just the pages
2862          * whose virtual address lies outside the file truncation point.
2863          */
2864         list_for_each_entry(vma, head, shared.nonlinear) {
2865                 details->nonlinear_vma = vma;
2866                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2867         }
2868 }
2869
2870 /**
2871  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2872  * @mapping: the address space containing mmaps to be unmapped.
2873  * @holebegin: byte in first page to unmap, relative to the start of
2874  * the underlying file.  This will be rounded down to a PAGE_SIZE
2875  * boundary.  Note that this is different from truncate_pagecache(), which
2876  * must keep the partial page.  In contrast, we must get rid of
2877  * partial pages.
2878  * @holelen: size of prospective hole in bytes.  This will be rounded
2879  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2880  * end of the file.
2881  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2882  * but 0 when invalidating pagecache, don't throw away private data.
2883  */
2884 void unmap_mapping_range(struct address_space *mapping,
2885                 loff_t const holebegin, loff_t const holelen, int even_cows)
2886 {
2887         struct zap_details details;
2888         pgoff_t hba = holebegin >> PAGE_SHIFT;
2889         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2890
2891         /* Check for overflow. */
2892         if (sizeof(holelen) > sizeof(hlen)) {
2893                 long long holeend =
2894                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2895                 if (holeend & ~(long long)ULONG_MAX)
2896                         hlen = ULONG_MAX - hba + 1;
2897         }
2898
2899         details.check_mapping = even_cows? NULL: mapping;
2900         details.nonlinear_vma = NULL;
2901         details.first_index = hba;
2902         details.last_index = hba + hlen - 1;
2903         if (details.last_index < details.first_index)
2904                 details.last_index = ULONG_MAX;
2905
2906
2907         mutex_lock(&mapping->i_mmap_mutex);
2908         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2909                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2910         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2911                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2912         mutex_unlock(&mapping->i_mmap_mutex);
2913 }
2914 EXPORT_SYMBOL(unmap_mapping_range);
2915
2916 /*
2917  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2918  * but allow concurrent faults), and pte mapped but not yet locked.
2919  * We return with mmap_sem still held, but pte unmapped and unlocked.
2920  */
2921 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2922                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2923                 unsigned int flags, pte_t orig_pte)
2924 {
2925         spinlock_t *ptl;
2926         struct page *page, *swapcache = NULL;
2927         swp_entry_t entry;
2928         pte_t pte;
2929         int locked;
2930         struct mem_cgroup *ptr;
2931         int exclusive = 0;
2932         int ret = 0;
2933
2934         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2935                 goto out;
2936
2937         entry = pte_to_swp_entry(orig_pte);
2938         if (unlikely(non_swap_entry(entry))) {
2939                 if (is_migration_entry(entry)) {
2940                         migration_entry_wait(mm, pmd, address);
2941                 } else if (is_hwpoison_entry(entry)) {
2942                         ret = VM_FAULT_HWPOISON;
2943                 } else {
2944                         print_bad_pte(vma, address, orig_pte, NULL);
2945                         ret = VM_FAULT_SIGBUS;
2946                 }
2947                 goto out;
2948         }
2949         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2950         page = lookup_swap_cache(entry);
2951         if (!page) {
2952                 page = swapin_readahead(entry,
2953                                         GFP_HIGHUSER_MOVABLE, vma, address);
2954                 if (!page) {
2955                         /*
2956                          * Back out if somebody else faulted in this pte
2957                          * while we released the pte lock.
2958                          */
2959                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2960                         if (likely(pte_same(*page_table, orig_pte)))
2961                                 ret = VM_FAULT_OOM;
2962                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2963                         goto unlock;
2964                 }
2965
2966                 /* Had to read the page from swap area: Major fault */
2967                 ret = VM_FAULT_MAJOR;
2968                 count_vm_event(PGMAJFAULT);
2969                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2970         } else if (PageHWPoison(page)) {
2971                 /*
2972                  * hwpoisoned dirty swapcache pages are kept for killing
2973                  * owner processes (which may be unknown at hwpoison time)
2974                  */
2975                 ret = VM_FAULT_HWPOISON;
2976                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2977                 goto out_release;
2978         }
2979
2980         locked = lock_page_or_retry(page, mm, flags);
2981
2982         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2983         if (!locked) {
2984                 ret |= VM_FAULT_RETRY;
2985                 goto out_release;
2986         }
2987
2988         /*
2989          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2990          * release the swapcache from under us.  The page pin, and pte_same
2991          * test below, are not enough to exclude that.  Even if it is still
2992          * swapcache, we need to check that the page's swap has not changed.
2993          */
2994         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2995                 goto out_page;
2996
2997         if (ksm_might_need_to_copy(page, vma, address)) {
2998                 swapcache = page;
2999                 page = ksm_does_need_to_copy(page, vma, address);
3000
3001                 if (unlikely(!page)) {
3002                         ret = VM_FAULT_OOM;
3003                         page = swapcache;
3004                         swapcache = NULL;
3005                         goto out_page;
3006                 }
3007         }
3008
3009         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3010                 ret = VM_FAULT_OOM;
3011                 goto out_page;
3012         }
3013
3014         /*
3015          * Back out if somebody else already faulted in this pte.
3016          */
3017         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3018         if (unlikely(!pte_same(*page_table, orig_pte)))
3019                 goto out_nomap;
3020
3021         if (unlikely(!PageUptodate(page))) {
3022                 ret = VM_FAULT_SIGBUS;
3023                 goto out_nomap;
3024         }
3025
3026         /*
3027          * The page isn't present yet, go ahead with the fault.
3028          *
3029          * Be careful about the sequence of operations here.
3030          * To get its accounting right, reuse_swap_page() must be called
3031          * while the page is counted on swap but not yet in mapcount i.e.
3032          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3033          * must be called after the swap_free(), or it will never succeed.
3034          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3035          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3036          * in page->private. In this case, a record in swap_cgroup  is silently
3037          * discarded at swap_free().
3038          */
3039
3040         inc_mm_counter_fast(mm, MM_ANONPAGES);
3041         dec_mm_counter_fast(mm, MM_SWAPENTS);
3042         pte = mk_pte(page, vma->vm_page_prot);
3043         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3044                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3045                 flags &= ~FAULT_FLAG_WRITE;
3046                 ret |= VM_FAULT_WRITE;
3047                 exclusive = 1;
3048         }
3049         flush_icache_page(vma, page);
3050         set_pte_at(mm, address, page_table, pte);
3051         do_page_add_anon_rmap(page, vma, address, exclusive);
3052         /* It's better to call commit-charge after rmap is established */
3053         mem_cgroup_commit_charge_swapin(page, ptr);
3054
3055         swap_free(entry);
3056         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3057                 try_to_free_swap(page);
3058         unlock_page(page);
3059         if (swapcache) {
3060                 /*
3061                  * Hold the lock to avoid the swap entry to be reused
3062                  * until we take the PT lock for the pte_same() check
3063                  * (to avoid false positives from pte_same). For
3064                  * further safety release the lock after the swap_free
3065                  * so that the swap count won't change under a
3066                  * parallel locked swapcache.
3067                  */
3068                 unlock_page(swapcache);
3069                 page_cache_release(swapcache);
3070         }
3071
3072         if (flags & FAULT_FLAG_WRITE) {
3073                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3074                 if (ret & VM_FAULT_ERROR)
3075                         ret &= VM_FAULT_ERROR;
3076                 goto out;
3077         }
3078
3079         /* No need to invalidate - it was non-present before */
3080         update_mmu_cache(vma, address, page_table);
3081 unlock:
3082         pte_unmap_unlock(page_table, ptl);
3083 out:
3084         return ret;
3085 out_nomap:
3086         mem_cgroup_cancel_charge_swapin(ptr);
3087         pte_unmap_unlock(page_table, ptl);
3088 out_page:
3089         unlock_page(page);
3090 out_release:
3091         page_cache_release(page);
3092         if (swapcache) {
3093                 unlock_page(swapcache);
3094                 page_cache_release(swapcache);
3095         }
3096         return ret;
3097 }
3098
3099 /*
3100  * This is like a special single-page "expand_{down|up}wards()",
3101  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3102  * doesn't hit another vma.
3103  */
3104 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3105 {
3106         address &= PAGE_MASK;
3107         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3108                 struct vm_area_struct *prev = vma->vm_prev;
3109
3110                 /*
3111                  * Is there a mapping abutting this one below?
3112                  *
3113                  * That's only ok if it's the same stack mapping
3114                  * that has gotten split..
3115                  */
3116                 if (prev && prev->vm_end == address)
3117                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3118
3119                 expand_downwards(vma, address - PAGE_SIZE);
3120         }
3121         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3122                 struct vm_area_struct *next = vma->vm_next;
3123
3124                 /* As VM_GROWSDOWN but s/below/above/ */
3125                 if (next && next->vm_start == address + PAGE_SIZE)
3126                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3127
3128                 expand_upwards(vma, address + PAGE_SIZE);
3129         }
3130         return 0;
3131 }
3132
3133 /*
3134  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3135  * but allow concurrent faults), and pte mapped but not yet locked.
3136  * We return with mmap_sem still held, but pte unmapped and unlocked.
3137  */
3138 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3139                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3140                 unsigned int flags)
3141 {
3142         struct page *page;
3143         spinlock_t *ptl;
3144         pte_t entry;
3145
3146         pte_unmap(page_table);
3147
3148         /* Check if we need to add a guard page to the stack */
3149         if (check_stack_guard_page(vma, address) < 0)
3150                 return VM_FAULT_SIGBUS;
3151
3152         /* Use the zero-page for reads */
3153         if (!(flags & FAULT_FLAG_WRITE)) {
3154                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3155                                                 vma->vm_page_prot));
3156                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3157                 if (!pte_none(*page_table))
3158                         goto unlock;
3159                 goto setpte;
3160         }
3161
3162         /* Allocate our own private page. */
3163         if (unlikely(anon_vma_prepare(vma)))
3164                 goto oom;
3165         page = alloc_zeroed_user_highpage_movable(vma, address);
3166         if (!page)
3167                 goto oom;
3168         __SetPageUptodate(page);
3169
3170         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3171                 goto oom_free_page;
3172
3173         entry = mk_pte(page, vma->vm_page_prot);
3174         if (vma->vm_flags & VM_WRITE)
3175                 entry = pte_mkwrite(pte_mkdirty(entry));
3176
3177         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3178         if (!pte_none(*page_table))
3179                 goto release;
3180
3181         inc_mm_counter_fast(mm, MM_ANONPAGES);
3182         page_add_new_anon_rmap(page, vma, address);
3183 setpte:
3184         set_pte_at(mm, address, page_table, entry);
3185
3186         /* No need to invalidate - it was non-present before */
3187         update_mmu_cache(vma, address, page_table);
3188 unlock:
3189         pte_unmap_unlock(page_table, ptl);
3190         return 0;
3191 release:
3192         mem_cgroup_uncharge_page(page);
3193         page_cache_release(page);
3194         goto unlock;
3195 oom_free_page:
3196         page_cache_release(page);
3197 oom:
3198         return VM_FAULT_OOM;
3199 }
3200
3201 /*
3202  * __do_fault() tries to create a new page mapping. It aggressively
3203  * tries to share with existing pages, but makes a separate copy if
3204  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3205  * the next page fault.
3206  *
3207  * As this is called only for pages that do not currently exist, we
3208  * do not need to flush old virtual caches or the TLB.
3209  *
3210  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3211  * but allow concurrent faults), and pte neither mapped nor locked.
3212  * We return with mmap_sem still held, but pte unmapped and unlocked.
3213  */
3214 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3215                 unsigned long address, pmd_t *pmd,
3216                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3217 {
3218         pte_t *page_table;
3219         spinlock_t *ptl;
3220         struct page *page;
3221         struct page *cow_page;
3222         pte_t entry;
3223         int anon = 0;
3224         struct page *dirty_page = NULL;
3225         struct vm_fault vmf;
3226         int ret;
3227         int page_mkwrite = 0;
3228
3229         /*
3230          * If we do COW later, allocate page befor taking lock_page()
3231          * on the file cache page. This will reduce lock holding time.
3232          */
3233         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3234
3235                 if (unlikely(anon_vma_prepare(vma)))
3236                         return VM_FAULT_OOM;
3237
3238                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3239                 if (!cow_page)
3240                         return VM_FAULT_OOM;
3241
3242                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3243                         page_cache_release(cow_page);
3244                         return VM_FAULT_OOM;
3245                 }
3246         } else
3247                 cow_page = NULL;
3248
3249         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3250         vmf.pgoff = pgoff;
3251         vmf.flags = flags;
3252         vmf.page = NULL;
3253
3254         ret = vma->vm_ops->fault(vma, &vmf);
3255         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3256                             VM_FAULT_RETRY)))
3257                 goto uncharge_out;
3258
3259         if (unlikely(PageHWPoison(vmf.page))) {
3260                 if (ret & VM_FAULT_LOCKED)
3261                         unlock_page(vmf.page);
3262                 ret = VM_FAULT_HWPOISON;
3263                 goto uncharge_out;
3264         }
3265
3266         /*
3267          * For consistency in subsequent calls, make the faulted page always
3268          * locked.
3269          */
3270         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3271                 lock_page(vmf.page);
3272         else
3273                 VM_BUG_ON(!PageLocked(vmf.page));
3274
3275         /*
3276          * Should we do an early C-O-W break?
3277          */
3278         page = vmf.page;
3279         if (flags & FAULT_FLAG_WRITE) {
3280                 if (!(vma->vm_flags & VM_SHARED)) {
3281                         page = cow_page;
3282                         anon = 1;
3283                         copy_user_highpage(page, vmf.page, address, vma);
3284                         __SetPageUptodate(page);
3285                 } else {
3286                         /*
3287                          * If the page will be shareable, see if the backing
3288                          * address space wants to know that the page is about
3289                          * to become writable
3290                          */
3291                         if (vma->vm_ops->page_mkwrite) {
3292                                 int tmp;
3293
3294                                 unlock_page(page);
3295                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3296                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3297                                 if (unlikely(tmp &
3298                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299                                         ret = tmp;
3300                                         goto unwritable_page;
3301                                 }
3302                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3303                                         lock_page(page);
3304                                         if (!page->mapping) {
3305                                                 ret = 0; /* retry the fault */
3306                                                 unlock_page(page);
3307                                                 goto unwritable_page;
3308                                         }
3309                                 } else
3310                                         VM_BUG_ON(!PageLocked(page));
3311                                 page_mkwrite = 1;
3312                         }
3313                 }
3314
3315         }
3316
3317         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3318
3319         /*
3320          * This silly early PAGE_DIRTY setting removes a race
3321          * due to the bad i386 page protection. But it's valid
3322          * for other architectures too.
3323          *
3324          * Note that if FAULT_FLAG_WRITE is set, we either now have
3325          * an exclusive copy of the page, or this is a shared mapping,
3326          * so we can make it writable and dirty to avoid having to
3327          * handle that later.
3328          */
3329         /* Only go through if we didn't race with anybody else... */
3330         if (likely(pte_same(*page_table, orig_pte))) {
3331                 flush_icache_page(vma, page);
3332                 entry = mk_pte(page, vma->vm_page_prot);
3333                 if (flags & FAULT_FLAG_WRITE)
3334                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3335                 if (anon) {
3336                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3337                         page_add_new_anon_rmap(page, vma, address);
3338                 } else {
3339                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3340                         page_add_file_rmap(page);
3341                         if (flags & FAULT_FLAG_WRITE) {
3342                                 dirty_page = page;
3343                                 get_page(dirty_page);
3344                         }
3345                 }
3346                 set_pte_at(mm, address, page_table, entry);
3347
3348                 /* no need to invalidate: a not-present page won't be cached */
3349                 update_mmu_cache(vma, address, page_table);
3350         } else {
3351                 if (cow_page)
3352                         mem_cgroup_uncharge_page(cow_page);
3353                 if (anon)
3354                         page_cache_release(page);
3355                 else
3356                         anon = 1; /* no anon but release faulted_page */
3357         }
3358
3359         pte_unmap_unlock(page_table, ptl);
3360
3361         if (dirty_page) {
3362                 struct address_space *mapping = page->mapping;
3363                 int dirtied = 0;
3364
3365                 if (set_page_dirty(dirty_page))
3366                         dirtied = 1;
3367                 unlock_page(dirty_page);
3368                 put_page(dirty_page);
3369                 if ((dirtied || page_mkwrite) && mapping) {
3370                         /*
3371                          * Some device drivers do not set page.mapping but still
3372                          * dirty their pages
3373                          */
3374                         balance_dirty_pages_ratelimited(mapping);
3375                 }
3376
3377                 /* file_update_time outside page_lock */
3378                 if (vma->vm_file && !page_mkwrite)
3379                         file_update_time(vma->vm_file);
3380         } else {
3381                 unlock_page(vmf.page);
3382                 if (anon)
3383                         page_cache_release(vmf.page);
3384         }
3385
3386         return ret;
3387
3388 unwritable_page:
3389         page_cache_release(page);
3390         return ret;
3391 uncharge_out:
3392         /* fs's fault handler get error */
3393         if (cow_page) {
3394                 mem_cgroup_uncharge_page(cow_page);
3395                 page_cache_release(cow_page);
3396         }
3397         return ret;
3398 }
3399
3400 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3401                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3402                 unsigned int flags, pte_t orig_pte)
3403 {
3404         pgoff_t pgoff = (((address & PAGE_MASK)
3405                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3406
3407         pte_unmap(page_table);
3408         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3409 }
3410
3411 /*
3412  * Fault of a previously existing named mapping. Repopulate the pte
3413  * from the encoded file_pte if possible. This enables swappable
3414  * nonlinear vmas.
3415  *
3416  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3417  * but allow concurrent faults), and pte mapped but not yet locked.
3418  * We return with mmap_sem still held, but pte unmapped and unlocked.
3419  */
3420 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3421                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3422                 unsigned int flags, pte_t orig_pte)
3423 {
3424         pgoff_t pgoff;
3425
3426         flags |= FAULT_FLAG_NONLINEAR;
3427
3428         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3429                 return 0;
3430
3431         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3432                 /*
3433                  * Page table corrupted: show pte and kill process.
3434                  */
3435                 print_bad_pte(vma, address, orig_pte, NULL);
3436                 return VM_FAULT_SIGBUS;
3437         }
3438
3439         pgoff = pte_to_pgoff(orig_pte);
3440         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3441 }
3442
3443 static bool pte_prot_none(struct vm_area_struct *vma, pte_t pte)
3444 {
3445         /*
3446          * If we have the normal vma->vm_page_prot protections we're not a
3447          * 'special' PROT_NONE page.
3448          *
3449          * This means we cannot get 'special' PROT_NONE faults from genuine
3450          * PROT_NONE maps, nor from PROT_WRITE file maps that do dirty
3451          * tracking.
3452          *
3453          * Neither case is really interesting for our current use though so we
3454          * don't care.
3455          */
3456         if (pte_same(pte, pte_modify(pte, vma->vm_page_prot)))
3457                 return false;
3458
3459         return pte_same(pte, pte_modify(pte, vma_prot_none(vma)));
3460 }
3461
3462 static int do_prot_none(struct mm_struct *mm, struct vm_area_struct *vma,
3463                         unsigned long address, pte_t *ptep, pmd_t *pmd,
3464                         unsigned int flags, pte_t entry)
3465 {
3466         struct page *page = NULL;
3467         int node, page_nid = -1;
3468         spinlock_t *ptl;
3469
3470         ptl = pte_lockptr(mm, pmd);
3471         spin_lock(ptl);
3472         if (unlikely(!pte_same(*ptep, entry)))
3473                 goto unlock;
3474
3475         page = vm_normal_page(vma, address, entry);
3476         if (page) {
3477                 get_page(page);
3478                 page_nid = page_to_nid(page);
3479                 node = mpol_misplaced(page, vma, address);
3480                 if (node != -1)
3481                         goto migrate;
3482         }
3483
3484 fixup:
3485         flush_cache_page(vma, address, pte_pfn(entry));
3486
3487         ptep_modify_prot_start(mm, address, ptep);
3488         entry = pte_modify(entry, vma->vm_page_prot);
3489         ptep_modify_prot_commit(mm, address, ptep, entry);
3490
3491         update_mmu_cache(vma, address, ptep);
3492
3493 unlock:
3494         pte_unmap_unlock(ptep, ptl);
3495 out:
3496         if (page) {
3497                 task_numa_fault(page_nid, 1);
3498                 put_page(page);
3499         }
3500
3501         return 0;
3502
3503 migrate:
3504         pte_unmap_unlock(ptep, ptl);
3505
3506         if (!migrate_misplaced_page(page, node)) {
3507                 page_nid = node;
3508                 goto out;
3509         }
3510
3511         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3512         if (!pte_same(*ptep, entry)) {
3513                 put_page(page);
3514                 page = NULL;
3515                 goto unlock;
3516         }
3517
3518         goto fixup;
3519 }
3520
3521 /*
3522  * These routines also need to handle stuff like marking pages dirty
3523  * and/or accessed for architectures that don't do it in hardware (most
3524  * RISC architectures).  The early dirtying is also good on the i386.
3525  *
3526  * There is also a hook called "update_mmu_cache()" that architectures
3527  * with external mmu caches can use to update those (ie the Sparc or
3528  * PowerPC hashed page tables that act as extended TLBs).
3529  *
3530  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3531  * but allow concurrent faults), and pte mapped but not yet locked.
3532  * We return with mmap_sem still held, but pte unmapped and unlocked.
3533  */
3534 int handle_pte_fault(struct mm_struct *mm,
3535                      struct vm_area_struct *vma, unsigned long address,
3536                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3537 {
3538         pte_t entry;
3539         spinlock_t *ptl;
3540
3541         entry = ACCESS_ONCE(*pte);
3542         if (!pte_present(entry)) {
3543                 if (pte_none(entry)) {
3544                         if (vma->vm_ops) {
3545                                 if (likely(vma->vm_ops->fault))
3546                                         return do_linear_fault(mm, vma, address,
3547                                                 pte, pmd, flags, entry);
3548                         }
3549                         return do_anonymous_page(mm, vma, address,
3550                                                  pte, pmd, flags);
3551                 }
3552                 if (pte_file(entry))
3553                         return do_nonlinear_fault(mm, vma, address,
3554                                         pte, pmd, flags, entry);
3555                 return do_swap_page(mm, vma, address,
3556                                         pte, pmd, flags, entry);
3557         }
3558
3559         if (pte_prot_none(vma, entry))
3560                 return do_prot_none(mm, vma, address, pte, pmd, flags, entry);
3561
3562         ptl = pte_lockptr(mm, pmd);
3563         spin_lock(ptl);
3564         if (unlikely(!pte_same(*pte, entry)))
3565                 goto unlock;
3566         if (flags & FAULT_FLAG_WRITE) {
3567                 if (!pte_write(entry))
3568                         return do_wp_page(mm, vma, address,
3569                                         pte, pmd, ptl, entry);
3570                 entry = pte_mkdirty(entry);
3571         }
3572         entry = pte_mkyoung(entry);
3573         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3574                 update_mmu_cache(vma, address, pte);
3575         } else {
3576                 /*
3577                  * This is needed only for protection faults but the arch code
3578                  * is not yet telling us if this is a protection fault or not.
3579                  * This still avoids useless tlb flushes for .text page faults
3580                  * with threads.
3581                  */
3582                 if (flags & FAULT_FLAG_WRITE)
3583                         flush_tlb_fix_spurious_fault(vma, address);
3584         }
3585 unlock:
3586         pte_unmap_unlock(pte, ptl);
3587         return 0;
3588 }
3589
3590 /*
3591  * By the time we get here, we already hold the mm semaphore
3592  */
3593 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3594                 unsigned long address, unsigned int flags)
3595 {
3596         pgd_t *pgd;
3597         pud_t *pud;
3598         pmd_t *pmd;
3599         pte_t *pte;
3600
3601         __set_current_state(TASK_RUNNING);
3602
3603         count_vm_event(PGFAULT);
3604         mem_cgroup_count_vm_event(mm, PGFAULT);
3605
3606         /* do counter updates before entering really critical section. */
3607         check_sync_rss_stat(current);
3608
3609         if (unlikely(is_vm_hugetlb_page(vma)))
3610                 return hugetlb_fault(mm, vma, address, flags);
3611
3612 retry:
3613         pgd = pgd_offset(mm, address);
3614         pud = pud_alloc(mm, pgd, address);
3615         if (!pud)
3616                 return VM_FAULT_OOM;
3617         pmd = pmd_alloc(mm, pud, address);
3618         if (!pmd)
3619                 return VM_FAULT_OOM;
3620         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3621                 if (!vma->vm_ops)
3622                         return do_huge_pmd_anonymous_page(mm, vma, address,
3623                                                           pmd, flags);
3624         } else {
3625                 pmd_t orig_pmd = *pmd;
3626                 int ret = 0;
3627
3628                 barrier();
3629                 if (pmd_trans_huge(orig_pmd) && !pmd_trans_splitting(orig_pmd)) {
3630                         if (pmd_prot_none(vma, orig_pmd)) {
3631                                 do_huge_pmd_prot_none(mm, vma, address, pmd,
3632                                                       flags, orig_pmd);
3633                         }
3634
3635                         if ((flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) {
3636                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3637                                                           orig_pmd);
3638                                 /*
3639                                  * If COW results in an oom, the huge pmd will
3640                                  * have been split, so retry the fault on the
3641                                  * pte for a smaller charge.
3642                                  */
3643                                 if (unlikely(ret & VM_FAULT_OOM))
3644                                         goto retry;
3645                         }
3646
3647                         return ret;
3648                 }
3649         }
3650
3651
3652         /*
3653          * Use __pte_alloc instead of pte_alloc_map, because we can't
3654          * run pte_offset_map on the pmd, if an huge pmd could
3655          * materialize from under us from a different thread.
3656          */
3657         if (unlikely(pmd_none(*pmd)) &&
3658             unlikely(__pte_alloc(mm, vma, pmd, address)))
3659                 return VM_FAULT_OOM;
3660         /* if an huge pmd materialized from under us just retry later */
3661         if (unlikely(pmd_trans_huge(*pmd)))
3662                 return 0;
3663         /*
3664          * A regular pmd is established and it can't morph into a huge pmd
3665          * from under us anymore at this point because we hold the mmap_sem
3666          * read mode and khugepaged takes it in write mode. So now it's
3667          * safe to run pte_offset_map().
3668          */
3669         pte = pte_offset_map(pmd, address);
3670
3671         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3672 }
3673
3674 #ifndef __PAGETABLE_PUD_FOLDED
3675 /*
3676  * Allocate page upper directory.
3677  * We've already handled the fast-path in-line.
3678  */
3679 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3680 {
3681         pud_t *new = pud_alloc_one(mm, address);
3682         if (!new)
3683                 return -ENOMEM;
3684
3685         smp_wmb(); /* See comment in __pte_alloc */
3686
3687         spin_lock(&mm->page_table_lock);
3688         if (pgd_present(*pgd))          /* Another has populated it */
3689                 pud_free(mm, new);
3690         else
3691                 pgd_populate(mm, pgd, new);
3692         spin_unlock(&mm->page_table_lock);
3693         return 0;
3694 }
3695 #endif /* __PAGETABLE_PUD_FOLDED */
3696
3697 #ifndef __PAGETABLE_PMD_FOLDED
3698 /*
3699  * Allocate page middle directory.
3700  * We've already handled the fast-path in-line.
3701  */
3702 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3703 {
3704         pmd_t *new = pmd_alloc_one(mm, address);
3705         if (!new)
3706                 return -ENOMEM;
3707
3708         smp_wmb(); /* See comment in __pte_alloc */
3709
3710         spin_lock(&mm->page_table_lock);
3711 #ifndef __ARCH_HAS_4LEVEL_HACK
3712         if (pud_present(*pud))          /* Another has populated it */
3713                 pmd_free(mm, new);
3714         else
3715                 pud_populate(mm, pud, new);
3716 #else
3717         if (pgd_present(*pud))          /* Another has populated it */
3718                 pmd_free(mm, new);
3719         else
3720                 pgd_populate(mm, pud, new);
3721 #endif /* __ARCH_HAS_4LEVEL_HACK */
3722         spin_unlock(&mm->page_table_lock);
3723         return 0;
3724 }
3725 #endif /* __PAGETABLE_PMD_FOLDED */
3726
3727 int make_pages_present(unsigned long addr, unsigned long end)
3728 {
3729         int ret, len, write;
3730         struct vm_area_struct * vma;
3731
3732         vma = find_vma(current->mm, addr);
3733         if (!vma)
3734                 return -ENOMEM;
3735         /*
3736          * We want to touch writable mappings with a write fault in order
3737          * to break COW, except for shared mappings because these don't COW
3738          * and we would not want to dirty them for nothing.
3739          */
3740         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3741         BUG_ON(addr >= end);
3742         BUG_ON(end > vma->vm_end);
3743         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3744         ret = get_user_pages(current, current->mm, addr,
3745                         len, write, 0, NULL, NULL);
3746         if (ret < 0)
3747                 return ret;
3748         return ret == len ? 0 : -EFAULT;
3749 }
3750
3751 #if !defined(__HAVE_ARCH_GATE_AREA)
3752
3753 #if defined(AT_SYSINFO_EHDR)
3754 static struct vm_area_struct gate_vma;
3755
3756 static int __init gate_vma_init(void)
3757 {
3758         gate_vma.vm_mm = NULL;
3759         gate_vma.vm_start = FIXADDR_USER_START;
3760         gate_vma.vm_end = FIXADDR_USER_END;
3761         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3762         gate_vma.vm_page_prot = __P101;
3763
3764         return 0;
3765 }
3766 __initcall(gate_vma_init);
3767 #endif
3768
3769 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3770 {
3771 #ifdef AT_SYSINFO_EHDR
3772         return &gate_vma;
3773 #else
3774         return NULL;
3775 #endif
3776 }
3777
3778 int in_gate_area_no_mm(unsigned long addr)
3779 {
3780 #ifdef AT_SYSINFO_EHDR
3781         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3782                 return 1;
3783 #endif
3784         return 0;
3785 }
3786
3787 #endif  /* __HAVE_ARCH_GATE_AREA */
3788
3789 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3790                 pte_t **ptepp, spinlock_t **ptlp)
3791 {
3792         pgd_t *pgd;
3793         pud_t *pud;
3794         pmd_t *pmd;
3795         pte_t *ptep;
3796
3797         pgd = pgd_offset(mm, address);
3798         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3799                 goto out;
3800
3801         pud = pud_offset(pgd, address);
3802         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3803                 goto out;
3804
3805         pmd = pmd_offset(pud, address);
3806         VM_BUG_ON(pmd_trans_huge(*pmd));
3807         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3808                 goto out;
3809
3810         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3811         if (pmd_huge(*pmd))
3812                 goto out;
3813
3814         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3815         if (!ptep)
3816                 goto out;
3817         if (!pte_present(*ptep))
3818                 goto unlock;
3819         *ptepp = ptep;
3820         return 0;
3821 unlock:
3822         pte_unmap_unlock(ptep, *ptlp);
3823 out:
3824         return -EINVAL;
3825 }
3826
3827 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3828                              pte_t **ptepp, spinlock_t **ptlp)
3829 {
3830         int res;
3831
3832         /* (void) is needed to make gcc happy */
3833         (void) __cond_lock(*ptlp,
3834                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3835         return res;
3836 }
3837
3838 /**
3839  * follow_pfn - look up PFN at a user virtual address
3840  * @vma: memory mapping
3841  * @address: user virtual address
3842  * @pfn: location to store found PFN
3843  *
3844  * Only IO mappings and raw PFN mappings are allowed.
3845  *
3846  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3847  */
3848 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3849         unsigned long *pfn)
3850 {
3851         int ret = -EINVAL;
3852         spinlock_t *ptl;
3853         pte_t *ptep;
3854
3855         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3856                 return ret;
3857
3858         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3859         if (ret)
3860                 return ret;
3861         *pfn = pte_pfn(*ptep);
3862         pte_unmap_unlock(ptep, ptl);
3863         return 0;
3864 }
3865 EXPORT_SYMBOL(follow_pfn);
3866
3867 #ifdef CONFIG_HAVE_IOREMAP_PROT
3868 int follow_phys(struct vm_area_struct *vma,
3869                 unsigned long address, unsigned int flags,
3870                 unsigned long *prot, resource_size_t *phys)
3871 {
3872         int ret = -EINVAL;
3873         pte_t *ptep, pte;
3874         spinlock_t *ptl;
3875
3876         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3877                 goto out;
3878
3879         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3880                 goto out;
3881         pte = *ptep;
3882
3883         if ((flags & FOLL_WRITE) && !pte_write(pte))
3884                 goto unlock;
3885
3886         *prot = pgprot_val(pte_pgprot(pte));
3887         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3888
3889         ret = 0;
3890 unlock:
3891         pte_unmap_unlock(ptep, ptl);
3892 out:
3893         return ret;
3894 }
3895
3896 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3897                         void *buf, int len, int write)
3898 {
3899         resource_size_t phys_addr;
3900         unsigned long prot = 0;
3901         void __iomem *maddr;
3902         int offset = addr & (PAGE_SIZE-1);
3903
3904         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3905                 return -EINVAL;
3906
3907         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3908         if (write)
3909                 memcpy_toio(maddr + offset, buf, len);
3910         else
3911                 memcpy_fromio(buf, maddr + offset, len);
3912         iounmap(maddr);
3913
3914         return len;
3915 }
3916 #endif
3917
3918 /*
3919  * Access another process' address space as given in mm.  If non-NULL, use the
3920  * given task for page fault accounting.
3921  */
3922 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3923                 unsigned long addr, void *buf, int len, int write)
3924 {
3925         struct vm_area_struct *vma;
3926         void *old_buf = buf;
3927
3928         down_read(&mm->mmap_sem);
3929         /* ignore errors, just check how much was successfully transferred */
3930         while (len) {
3931                 int bytes, ret, offset;
3932                 void *maddr;
3933                 struct page *page = NULL;
3934
3935                 ret = get_user_pages(tsk, mm, addr, 1,
3936                                 write, 1, &page, &vma);
3937                 if (ret <= 0) {
3938                         /*
3939                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3940                          * we can access using slightly different code.
3941                          */
3942 #ifdef CONFIG_HAVE_IOREMAP_PROT
3943                         vma = find_vma(mm, addr);
3944                         if (!vma || vma->vm_start > addr)
3945                                 break;
3946                         if (vma->vm_ops && vma->vm_ops->access)
3947                                 ret = vma->vm_ops->access(vma, addr, buf,
3948                                                           len, write);
3949                         if (ret <= 0)
3950 #endif
3951                                 break;
3952                         bytes = ret;
3953                 } else {
3954                         bytes = len;
3955                         offset = addr & (PAGE_SIZE-1);
3956                         if (bytes > PAGE_SIZE-offset)
3957                                 bytes = PAGE_SIZE-offset;
3958
3959                         maddr = kmap(page);
3960                         if (write) {
3961                                 copy_to_user_page(vma, page, addr,
3962                                                   maddr + offset, buf, bytes);
3963                                 set_page_dirty_lock(page);
3964                         } else {
3965                                 copy_from_user_page(vma, page, addr,
3966                                                     buf, maddr + offset, bytes);
3967                         }
3968                         kunmap(page);
3969                         page_cache_release(page);
3970                 }
3971                 len -= bytes;
3972                 buf += bytes;
3973                 addr += bytes;
3974         }
3975         up_read(&mm->mmap_sem);
3976
3977         return buf - old_buf;
3978 }
3979
3980 /**
3981  * access_remote_vm - access another process' address space
3982  * @mm:         the mm_struct of the target address space
3983  * @addr:       start address to access
3984  * @buf:        source or destination buffer
3985  * @len:        number of bytes to transfer
3986  * @write:      whether the access is a write
3987  *
3988  * The caller must hold a reference on @mm.
3989  */
3990 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3991                 void *buf, int len, int write)
3992 {
3993         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3994 }
3995
3996 /*
3997  * Access another process' address space.
3998  * Source/target buffer must be kernel space,
3999  * Do not walk the page table directly, use get_user_pages
4000  */
4001 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4002                 void *buf, int len, int write)
4003 {
4004         struct mm_struct *mm;
4005         int ret;
4006
4007         mm = get_task_mm(tsk);
4008         if (!mm)
4009                 return 0;
4010
4011         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4012         mmput(mm);
4013
4014         return ret;
4015 }
4016
4017 /*
4018  * Print the name of a VMA.
4019  */
4020 void print_vma_addr(char *prefix, unsigned long ip)
4021 {
4022         struct mm_struct *mm = current->mm;
4023         struct vm_area_struct *vma;
4024
4025         /*
4026          * Do not print if we are in atomic
4027          * contexts (in exception stacks, etc.):
4028          */
4029         if (preempt_count())
4030                 return;
4031
4032         down_read(&mm->mmap_sem);
4033         vma = find_vma(mm, ip);
4034         if (vma && vma->vm_file) {
4035                 struct file *f = vma->vm_file;
4036                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4037                 if (buf) {
4038                         char *p, *s;
4039
4040                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4041                         if (IS_ERR(p))
4042                                 p = "?";
4043                         s = strrchr(p, '/');
4044                         if (s)
4045                                 p = s+1;
4046                         printk("%s%s[%lx+%lx]", prefix, p,
4047                                         vma->vm_start,
4048                                         vma->vm_end - vma->vm_start);
4049                         free_page((unsigned long)buf);
4050                 }
4051         }
4052         up_read(&mm->mmap_sem);
4053 }
4054
4055 #ifdef CONFIG_PROVE_LOCKING
4056 void might_fault(void)
4057 {
4058         /*
4059          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4060          * holding the mmap_sem, this is safe because kernel memory doesn't
4061          * get paged out, therefore we'll never actually fault, and the
4062          * below annotations will generate false positives.
4063          */
4064         if (segment_eq(get_fs(), KERNEL_DS))
4065                 return;
4066
4067         might_sleep();
4068         /*
4069          * it would be nicer only to annotate paths which are not under
4070          * pagefault_disable, however that requires a larger audit and
4071          * providing helpers like get_user_atomic.
4072          */
4073         if (!in_atomic() && current->mm)
4074                 might_lock_read(&current->mm->mmap_sem);
4075 }
4076 EXPORT_SYMBOL(might_fault);
4077 #endif
4078
4079 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4080 static void clear_gigantic_page(struct page *page,
4081                                 unsigned long addr,
4082                                 unsigned int pages_per_huge_page)
4083 {
4084         int i;
4085         struct page *p = page;
4086
4087         might_sleep();
4088         for (i = 0; i < pages_per_huge_page;
4089              i++, p = mem_map_next(p, page, i)) {
4090                 cond_resched();
4091                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4092         }
4093 }
4094 void clear_huge_page(struct page *page,
4095                      unsigned long addr, unsigned int pages_per_huge_page)
4096 {
4097         int i;
4098
4099         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4100                 clear_gigantic_page(page, addr, pages_per_huge_page);
4101                 return;
4102         }
4103
4104         might_sleep();
4105         for (i = 0; i < pages_per_huge_page; i++) {
4106                 cond_resched();
4107                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4108         }
4109 }
4110
4111 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4112                                     unsigned long addr,
4113                                     struct vm_area_struct *vma,
4114                                     unsigned int pages_per_huge_page)
4115 {
4116         int i;
4117         struct page *dst_base = dst;
4118         struct page *src_base = src;
4119
4120         for (i = 0; i < pages_per_huge_page; ) {
4121                 cond_resched();
4122                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4123
4124                 i++;
4125                 dst = mem_map_next(dst, dst_base, i);
4126                 src = mem_map_next(src, src_base, i);
4127         }
4128 }
4129
4130 void copy_user_huge_page(struct page *dst, struct page *src,
4131                          unsigned long addr, struct vm_area_struct *vma,
4132                          unsigned int pages_per_huge_page)
4133 {
4134         int i;
4135
4136         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4137                 copy_user_gigantic_page(dst, src, addr, vma,
4138                                         pages_per_huge_page);
4139                 return;
4140         }
4141
4142         might_sleep();
4143         for (i = 0; i < pages_per_huge_page; i++) {
4144                 cond_resched();
4145                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4146         }
4147 }
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */