]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memory.c
mm: use kbasename()
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  *
40  * 2012 - NUMA placement page faults (Andrea Arcangeli, Peter Zijlstra)
41  */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/writeback.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/kallsyms.h>
59 #include <linux/swapops.h>
60 #include <linux/elf.h>
61 #include <linux/gfp.h>
62 #include <linux/migrate.h>
63 #include <linux/string.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA config, growing page-frame for last_nid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 unsigned long num_physpages;
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(num_physpages);
98 EXPORT_SYMBOL(high_memory);
99
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108                                         1;
109 #else
110                                         2;
111 #endif
112
113 static int __init disable_randmaps(char *s)
114 {
115         randomize_va_space = 0;
116         return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194         if (!batch)
195                 return 0;
196
197         batch->next = NULL;
198         batch->nr   = 0;
199         batch->max  = MAX_GATHER_BATCH;
200
201         tlb->active->next = batch;
202         tlb->active = batch;
203
204         return 1;
205 }
206
207 /* tlb_gather_mmu
208  *      Called to initialize an (on-stack) mmu_gather structure for page-table
209  *      tear-down from @mm. The @fullmm argument is used when @mm is without
210  *      users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
213 {
214         tlb->mm = mm;
215
216         tlb->fullmm     = fullmm;
217         tlb->start      = -1UL;
218         tlb->end        = 0;
219         tlb->need_flush = 0;
220         tlb->fast_mode  = (num_possible_cpus() == 1);
221         tlb->local.next = NULL;
222         tlb->local.nr   = 0;
223         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
224         tlb->active     = &tlb->local;
225
226 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
227         tlb->batch = NULL;
228 #endif
229 }
230
231 void tlb_flush_mmu(struct mmu_gather *tlb)
232 {
233         struct mmu_gather_batch *batch;
234
235         if (!tlb->need_flush)
236                 return;
237         tlb->need_flush = 0;
238         tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240         tlb_table_flush(tlb);
241 #endif
242
243         if (tlb_fast_mode(tlb))
244                 return;
245
246         for (batch = &tlb->local; batch; batch = batch->next) {
247                 free_pages_and_swap_cache(batch->pages, batch->nr);
248                 batch->nr = 0;
249         }
250         tlb->active = &tlb->local;
251 }
252
253 /* tlb_finish_mmu
254  *      Called at the end of the shootdown operation to free up any resources
255  *      that were required.
256  */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259         struct mmu_gather_batch *batch, *next;
260
261         tlb->start = start;
262         tlb->end   = end;
263         tlb_flush_mmu(tlb);
264
265         /* keep the page table cache within bounds */
266         check_pgt_cache();
267
268         for (batch = tlb->local.next; batch; batch = next) {
269                 next = batch->next;
270                 free_pages((unsigned long)batch, 0);
271         }
272         tlb->local.next = NULL;
273 }
274
275 /* __tlb_remove_page
276  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277  *      handling the additional races in SMP caused by other CPUs caching valid
278  *      mappings in their TLBs. Returns the number of free page slots left.
279  *      When out of page slots we must call tlb_flush_mmu().
280  */
281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 {
283         struct mmu_gather_batch *batch;
284
285         VM_BUG_ON(!tlb->need_flush);
286
287         if (tlb_fast_mode(tlb)) {
288                 free_page_and_swap_cache(page);
289                 return 1; /* avoid calling tlb_flush_mmu() */
290         }
291
292         batch = tlb->active;
293         batch->pages[batch->nr++] = page;
294         if (batch->nr == batch->max) {
295                 if (!tlb_next_batch(tlb))
296                         return 0;
297                 batch = tlb->active;
298         }
299         VM_BUG_ON(batch->nr > batch->max);
300
301         return batch->max - batch->nr;
302 }
303
304 #endif /* HAVE_GENERIC_MMU_GATHER */
305
306 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
307
308 /*
309  * See the comment near struct mmu_table_batch.
310  */
311
312 static void tlb_remove_table_smp_sync(void *arg)
313 {
314         /* Simply deliver the interrupt */
315 }
316
317 static void tlb_remove_table_one(void *table)
318 {
319         /*
320          * This isn't an RCU grace period and hence the page-tables cannot be
321          * assumed to be actually RCU-freed.
322          *
323          * It is however sufficient for software page-table walkers that rely on
324          * IRQ disabling. See the comment near struct mmu_table_batch.
325          */
326         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
327         __tlb_remove_table(table);
328 }
329
330 static void tlb_remove_table_rcu(struct rcu_head *head)
331 {
332         struct mmu_table_batch *batch;
333         int i;
334
335         batch = container_of(head, struct mmu_table_batch, rcu);
336
337         for (i = 0; i < batch->nr; i++)
338                 __tlb_remove_table(batch->tables[i]);
339
340         free_page((unsigned long)batch);
341 }
342
343 void tlb_table_flush(struct mmu_gather *tlb)
344 {
345         struct mmu_table_batch **batch = &tlb->batch;
346
347         if (*batch) {
348                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
349                 *batch = NULL;
350         }
351 }
352
353 void tlb_remove_table(struct mmu_gather *tlb, void *table)
354 {
355         struct mmu_table_batch **batch = &tlb->batch;
356
357         tlb->need_flush = 1;
358
359         /*
360          * When there's less then two users of this mm there cannot be a
361          * concurrent page-table walk.
362          */
363         if (atomic_read(&tlb->mm->mm_users) < 2) {
364                 __tlb_remove_table(table);
365                 return;
366         }
367
368         if (*batch == NULL) {
369                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
370                 if (*batch == NULL) {
371                         tlb_remove_table_one(table);
372                         return;
373                 }
374                 (*batch)->nr = 0;
375         }
376         (*batch)->tables[(*batch)->nr++] = table;
377         if ((*batch)->nr == MAX_TABLE_BATCH)
378                 tlb_table_flush(tlb);
379 }
380
381 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
382
383 /*
384  * If a p?d_bad entry is found while walking page tables, report
385  * the error, before resetting entry to p?d_none.  Usually (but
386  * very seldom) called out from the p?d_none_or_clear_bad macros.
387  */
388
389 void pgd_clear_bad(pgd_t *pgd)
390 {
391         pgd_ERROR(*pgd);
392         pgd_clear(pgd);
393 }
394
395 void pud_clear_bad(pud_t *pud)
396 {
397         pud_ERROR(*pud);
398         pud_clear(pud);
399 }
400
401 void pmd_clear_bad(pmd_t *pmd)
402 {
403         pmd_ERROR(*pmd);
404         pmd_clear(pmd);
405 }
406
407 /*
408  * Note: this doesn't free the actual pages themselves. That
409  * has been handled earlier when unmapping all the memory regions.
410  */
411 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
412                            unsigned long addr)
413 {
414         pgtable_t token = pmd_pgtable(*pmd);
415         pmd_clear(pmd);
416         pte_free_tlb(tlb, token, addr);
417         tlb->mm->nr_ptes--;
418 }
419
420 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
421                                 unsigned long addr, unsigned long end,
422                                 unsigned long floor, unsigned long ceiling)
423 {
424         pmd_t *pmd;
425         unsigned long next;
426         unsigned long start;
427
428         start = addr;
429         pmd = pmd_offset(pud, addr);
430         do {
431                 next = pmd_addr_end(addr, end);
432                 if (pmd_none_or_clear_bad(pmd))
433                         continue;
434                 free_pte_range(tlb, pmd, addr);
435         } while (pmd++, addr = next, addr != end);
436
437         start &= PUD_MASK;
438         if (start < floor)
439                 return;
440         if (ceiling) {
441                 ceiling &= PUD_MASK;
442                 if (!ceiling)
443                         return;
444         }
445         if (end - 1 > ceiling - 1)
446                 return;
447
448         pmd = pmd_offset(pud, start);
449         pud_clear(pud);
450         pmd_free_tlb(tlb, pmd, start);
451 }
452
453 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
454                                 unsigned long addr, unsigned long end,
455                                 unsigned long floor, unsigned long ceiling)
456 {
457         pud_t *pud;
458         unsigned long next;
459         unsigned long start;
460
461         start = addr;
462         pud = pud_offset(pgd, addr);
463         do {
464                 next = pud_addr_end(addr, end);
465                 if (pud_none_or_clear_bad(pud))
466                         continue;
467                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
468         } while (pud++, addr = next, addr != end);
469
470         start &= PGDIR_MASK;
471         if (start < floor)
472                 return;
473         if (ceiling) {
474                 ceiling &= PGDIR_MASK;
475                 if (!ceiling)
476                         return;
477         }
478         if (end - 1 > ceiling - 1)
479                 return;
480
481         pud = pud_offset(pgd, start);
482         pgd_clear(pgd);
483         pud_free_tlb(tlb, pud, start);
484 }
485
486 /*
487  * This function frees user-level page tables of a process.
488  *
489  * Must be called with pagetable lock held.
490  */
491 void free_pgd_range(struct mmu_gather *tlb,
492                         unsigned long addr, unsigned long end,
493                         unsigned long floor, unsigned long ceiling)
494 {
495         pgd_t *pgd;
496         unsigned long next;
497
498         /*
499          * The next few lines have given us lots of grief...
500          *
501          * Why are we testing PMD* at this top level?  Because often
502          * there will be no work to do at all, and we'd prefer not to
503          * go all the way down to the bottom just to discover that.
504          *
505          * Why all these "- 1"s?  Because 0 represents both the bottom
506          * of the address space and the top of it (using -1 for the
507          * top wouldn't help much: the masks would do the wrong thing).
508          * The rule is that addr 0 and floor 0 refer to the bottom of
509          * the address space, but end 0 and ceiling 0 refer to the top
510          * Comparisons need to use "end - 1" and "ceiling - 1" (though
511          * that end 0 case should be mythical).
512          *
513          * Wherever addr is brought up or ceiling brought down, we must
514          * be careful to reject "the opposite 0" before it confuses the
515          * subsequent tests.  But what about where end is brought down
516          * by PMD_SIZE below? no, end can't go down to 0 there.
517          *
518          * Whereas we round start (addr) and ceiling down, by different
519          * masks at different levels, in order to test whether a table
520          * now has no other vmas using it, so can be freed, we don't
521          * bother to round floor or end up - the tests don't need that.
522          */
523
524         addr &= PMD_MASK;
525         if (addr < floor) {
526                 addr += PMD_SIZE;
527                 if (!addr)
528                         return;
529         }
530         if (ceiling) {
531                 ceiling &= PMD_MASK;
532                 if (!ceiling)
533                         return;
534         }
535         if (end - 1 > ceiling - 1)
536                 end -= PMD_SIZE;
537         if (addr > end - 1)
538                 return;
539
540         pgd = pgd_offset(tlb->mm, addr);
541         do {
542                 next = pgd_addr_end(addr, end);
543                 if (pgd_none_or_clear_bad(pgd))
544                         continue;
545                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
546         } while (pgd++, addr = next, addr != end);
547 }
548
549 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
550                 unsigned long floor, unsigned long ceiling)
551 {
552         while (vma) {
553                 struct vm_area_struct *next = vma->vm_next;
554                 unsigned long addr = vma->vm_start;
555
556                 /*
557                  * Hide vma from rmap and truncate_pagecache before freeing
558                  * pgtables
559                  */
560                 unlink_anon_vmas(vma);
561                 unlink_file_vma(vma);
562
563                 if (is_vm_hugetlb_page(vma)) {
564                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
565                                 floor, next? next->vm_start: ceiling);
566                 } else {
567                         /*
568                          * Optimization: gather nearby vmas into one call down
569                          */
570                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
571                                && !is_vm_hugetlb_page(next)) {
572                                 vma = next;
573                                 next = vma->vm_next;
574                                 unlink_anon_vmas(vma);
575                                 unlink_file_vma(vma);
576                         }
577                         free_pgd_range(tlb, addr, vma->vm_end,
578                                 floor, next? next->vm_start: ceiling);
579                 }
580                 vma = next;
581         }
582 }
583
584 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
585                 pmd_t *pmd, unsigned long address)
586 {
587         pgtable_t new = pte_alloc_one(mm, address);
588         int wait_split_huge_page;
589         if (!new)
590                 return -ENOMEM;
591
592         /*
593          * Ensure all pte setup (eg. pte page lock and page clearing) are
594          * visible before the pte is made visible to other CPUs by being
595          * put into page tables.
596          *
597          * The other side of the story is the pointer chasing in the page
598          * table walking code (when walking the page table without locking;
599          * ie. most of the time). Fortunately, these data accesses consist
600          * of a chain of data-dependent loads, meaning most CPUs (alpha
601          * being the notable exception) will already guarantee loads are
602          * seen in-order. See the alpha page table accessors for the
603          * smp_read_barrier_depends() barriers in page table walking code.
604          */
605         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
606
607         spin_lock(&mm->page_table_lock);
608         wait_split_huge_page = 0;
609         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
610                 mm->nr_ptes++;
611                 pmd_populate(mm, pmd, new);
612                 new = NULL;
613         } else if (unlikely(pmd_trans_splitting(*pmd)))
614                 wait_split_huge_page = 1;
615         spin_unlock(&mm->page_table_lock);
616         if (new)
617                 pte_free(mm, new);
618         if (wait_split_huge_page)
619                 wait_split_huge_page(vma->anon_vma, pmd);
620         return 0;
621 }
622
623 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
624 {
625         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
626         if (!new)
627                 return -ENOMEM;
628
629         smp_wmb(); /* See comment in __pte_alloc */
630
631         spin_lock(&init_mm.page_table_lock);
632         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
633                 pmd_populate_kernel(&init_mm, pmd, new);
634                 new = NULL;
635         } else
636                 VM_BUG_ON(pmd_trans_splitting(*pmd));
637         spin_unlock(&init_mm.page_table_lock);
638         if (new)
639                 pte_free_kernel(&init_mm, new);
640         return 0;
641 }
642
643 static inline void init_rss_vec(int *rss)
644 {
645         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
646 }
647
648 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
649 {
650         int i;
651
652         if (current->mm == mm)
653                 sync_mm_rss(mm);
654         for (i = 0; i < NR_MM_COUNTERS; i++)
655                 if (rss[i])
656                         add_mm_counter(mm, i, rss[i]);
657 }
658
659 /*
660  * This function is called to print an error when a bad pte
661  * is found. For example, we might have a PFN-mapped pte in
662  * a region that doesn't allow it.
663  *
664  * The calling function must still handle the error.
665  */
666 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
667                           pte_t pte, struct page *page)
668 {
669         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
670         pud_t *pud = pud_offset(pgd, addr);
671         pmd_t *pmd = pmd_offset(pud, addr);
672         struct address_space *mapping;
673         pgoff_t index;
674         static unsigned long resume;
675         static unsigned long nr_shown;
676         static unsigned long nr_unshown;
677
678         /*
679          * Allow a burst of 60 reports, then keep quiet for that minute;
680          * or allow a steady drip of one report per second.
681          */
682         if (nr_shown == 60) {
683                 if (time_before(jiffies, resume)) {
684                         nr_unshown++;
685                         return;
686                 }
687                 if (nr_unshown) {
688                         printk(KERN_ALERT
689                                 "BUG: Bad page map: %lu messages suppressed\n",
690                                 nr_unshown);
691                         nr_unshown = 0;
692                 }
693                 nr_shown = 0;
694         }
695         if (nr_shown++ == 0)
696                 resume = jiffies + 60 * HZ;
697
698         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
699         index = linear_page_index(vma, addr);
700
701         printk(KERN_ALERT
702                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
703                 current->comm,
704                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
705         if (page)
706                 dump_page(page);
707         printk(KERN_ALERT
708                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
709                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
710         /*
711          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
712          */
713         if (vma->vm_ops)
714                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
715                                 (unsigned long)vma->vm_ops->fault);
716         if (vma->vm_file && vma->vm_file->f_op)
717                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
718                                 (unsigned long)vma->vm_file->f_op->mmap);
719         dump_stack();
720         add_taint(TAINT_BAD_PAGE);
721 }
722
723 static inline bool is_cow_mapping(vm_flags_t flags)
724 {
725         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
726 }
727
728 #ifndef is_zero_pfn
729 static inline int is_zero_pfn(unsigned long pfn)
730 {
731         return pfn == zero_pfn;
732 }
733 #endif
734
735 #ifndef my_zero_pfn
736 static inline unsigned long my_zero_pfn(unsigned long addr)
737 {
738         return zero_pfn;
739 }
740 #endif
741
742 /*
743  * vm_normal_page -- This function gets the "struct page" associated with a pte.
744  *
745  * "Special" mappings do not wish to be associated with a "struct page" (either
746  * it doesn't exist, or it exists but they don't want to touch it). In this
747  * case, NULL is returned here. "Normal" mappings do have a struct page.
748  *
749  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
750  * pte bit, in which case this function is trivial. Secondly, an architecture
751  * may not have a spare pte bit, which requires a more complicated scheme,
752  * described below.
753  *
754  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
755  * special mapping (even if there are underlying and valid "struct pages").
756  * COWed pages of a VM_PFNMAP are always normal.
757  *
758  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
759  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
760  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
761  * mapping will always honor the rule
762  *
763  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
764  *
765  * And for normal mappings this is false.
766  *
767  * This restricts such mappings to be a linear translation from virtual address
768  * to pfn. To get around this restriction, we allow arbitrary mappings so long
769  * as the vma is not a COW mapping; in that case, we know that all ptes are
770  * special (because none can have been COWed).
771  *
772  *
773  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
774  *
775  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
776  * page" backing, however the difference is that _all_ pages with a struct
777  * page (that is, those where pfn_valid is true) are refcounted and considered
778  * normal pages by the VM. The disadvantage is that pages are refcounted
779  * (which can be slower and simply not an option for some PFNMAP users). The
780  * advantage is that we don't have to follow the strict linearity rule of
781  * PFNMAP mappings in order to support COWable mappings.
782  *
783  */
784 #ifdef __HAVE_ARCH_PTE_SPECIAL
785 # define HAVE_PTE_SPECIAL 1
786 #else
787 # define HAVE_PTE_SPECIAL 0
788 #endif
789 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
790                                 pte_t pte)
791 {
792         unsigned long pfn = pte_pfn(pte);
793
794         if (HAVE_PTE_SPECIAL) {
795                 if (likely(!pte_special(pte)))
796                         goto check_pfn;
797                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
798                         return NULL;
799                 if (!is_zero_pfn(pfn))
800                         print_bad_pte(vma, addr, pte, NULL);
801                 return NULL;
802         }
803
804         /* !HAVE_PTE_SPECIAL case follows: */
805
806         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
807                 if (vma->vm_flags & VM_MIXEDMAP) {
808                         if (!pfn_valid(pfn))
809                                 return NULL;
810                         goto out;
811                 } else {
812                         unsigned long off;
813                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
814                         if (pfn == vma->vm_pgoff + off)
815                                 return NULL;
816                         if (!is_cow_mapping(vma->vm_flags))
817                                 return NULL;
818                 }
819         }
820
821         if (is_zero_pfn(pfn))
822                 return NULL;
823 check_pfn:
824         if (unlikely(pfn > highest_memmap_pfn)) {
825                 print_bad_pte(vma, addr, pte, NULL);
826                 return NULL;
827         }
828
829         /*
830          * NOTE! We still have PageReserved() pages in the page tables.
831          * eg. VDSO mappings can cause them to exist.
832          */
833 out:
834         return pfn_to_page(pfn);
835 }
836
837 /*
838  * copy one vm_area from one task to the other. Assumes the page tables
839  * already present in the new task to be cleared in the whole range
840  * covered by this vma.
841  */
842
843 static inline unsigned long
844 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
846                 unsigned long addr, int *rss)
847 {
848         unsigned long vm_flags = vma->vm_flags;
849         pte_t pte = *src_pte;
850         struct page *page;
851
852         /* pte contains position in swap or file, so copy. */
853         if (unlikely(!pte_present(pte))) {
854                 if (!pte_file(pte)) {
855                         swp_entry_t entry = pte_to_swp_entry(pte);
856
857                         if (swap_duplicate(entry) < 0)
858                                 return entry.val;
859
860                         /* make sure dst_mm is on swapoff's mmlist. */
861                         if (unlikely(list_empty(&dst_mm->mmlist))) {
862                                 spin_lock(&mmlist_lock);
863                                 if (list_empty(&dst_mm->mmlist))
864                                         list_add(&dst_mm->mmlist,
865                                                  &src_mm->mmlist);
866                                 spin_unlock(&mmlist_lock);
867                         }
868                         if (likely(!non_swap_entry(entry)))
869                                 rss[MM_SWAPENTS]++;
870                         else if (is_migration_entry(entry)) {
871                                 page = migration_entry_to_page(entry);
872
873                                 if (PageAnon(page))
874                                         rss[MM_ANONPAGES]++;
875                                 else
876                                         rss[MM_FILEPAGES]++;
877
878                                 if (is_write_migration_entry(entry) &&
879                                     is_cow_mapping(vm_flags)) {
880                                         /*
881                                          * COW mappings require pages in both
882                                          * parent and child to be set to read.
883                                          */
884                                         make_migration_entry_read(&entry);
885                                         pte = swp_entry_to_pte(entry);
886                                         set_pte_at(src_mm, addr, src_pte, pte);
887                                 }
888                         }
889                 }
890                 goto out_set_pte;
891         }
892
893         /*
894          * If it's a COW mapping, write protect it both
895          * in the parent and the child
896          */
897         if (is_cow_mapping(vm_flags)) {
898                 ptep_set_wrprotect(src_mm, addr, src_pte);
899                 pte = pte_wrprotect(pte);
900         }
901
902         /*
903          * If it's a shared mapping, mark it clean in
904          * the child
905          */
906         if (vm_flags & VM_SHARED)
907                 pte = pte_mkclean(pte);
908         pte = pte_mkold(pte);
909
910         page = vm_normal_page(vma, addr, pte);
911         if (page) {
912                 get_page(page);
913                 page_dup_rmap(page);
914                 if (PageAnon(page))
915                         rss[MM_ANONPAGES]++;
916                 else
917                         rss[MM_FILEPAGES]++;
918         }
919
920 out_set_pte:
921         set_pte_at(dst_mm, addr, dst_pte, pte);
922         return 0;
923 }
924
925 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
926                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
927                    unsigned long addr, unsigned long end)
928 {
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935
936 again:
937         init_rss_vec(rss);
938
939         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
940         if (!dst_pte)
941                 return -ENOMEM;
942         src_pte = pte_offset_map(src_pmd, addr);
943         src_ptl = pte_lockptr(src_mm, src_pmd);
944         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
945         orig_src_pte = src_pte;
946         orig_dst_pte = dst_pte;
947         arch_enter_lazy_mmu_mode();
948
949         do {
950                 /*
951                  * We are holding two locks at this point - either of them
952                  * could generate latencies in another task on another CPU.
953                  */
954                 if (progress >= 32) {
955                         progress = 0;
956                         if (need_resched() ||
957                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
958                                 break;
959                 }
960                 if (pte_none(*src_pte)) {
961                         progress++;
962                         continue;
963                 }
964                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
965                                                         vma, addr, rss);
966                 if (entry.val)
967                         break;
968                 progress += 8;
969         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
970
971         arch_leave_lazy_mmu_mode();
972         spin_unlock(src_ptl);
973         pte_unmap(orig_src_pte);
974         add_mm_rss_vec(dst_mm, rss);
975         pte_unmap_unlock(orig_dst_pte, dst_ptl);
976         cond_resched();
977
978         if (entry.val) {
979                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
980                         return -ENOMEM;
981                 progress = 0;
982         }
983         if (addr != end)
984                 goto again;
985         return 0;
986 }
987
988 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
989                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
990                 unsigned long addr, unsigned long end)
991 {
992         pmd_t *src_pmd, *dst_pmd;
993         unsigned long next;
994
995         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
996         if (!dst_pmd)
997                 return -ENOMEM;
998         src_pmd = pmd_offset(src_pud, addr);
999         do {
1000                 next = pmd_addr_end(addr, end);
1001                 if (pmd_trans_huge(*src_pmd)) {
1002                         int err;
1003                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1004                         err = copy_huge_pmd(dst_mm, src_mm,
1005                                             dst_pmd, src_pmd, addr, vma);
1006                         if (err == -ENOMEM)
1007                                 return -ENOMEM;
1008                         if (!err)
1009                                 continue;
1010                         /* fall through */
1011                 }
1012                 if (pmd_none_or_clear_bad(src_pmd))
1013                         continue;
1014                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1015                                                 vma, addr, next))
1016                         return -ENOMEM;
1017         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1018         return 0;
1019 }
1020
1021 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1023                 unsigned long addr, unsigned long end)
1024 {
1025         pud_t *src_pud, *dst_pud;
1026         unsigned long next;
1027
1028         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1029         if (!dst_pud)
1030                 return -ENOMEM;
1031         src_pud = pud_offset(src_pgd, addr);
1032         do {
1033                 next = pud_addr_end(addr, end);
1034                 if (pud_none_or_clear_bad(src_pud))
1035                         continue;
1036                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1037                                                 vma, addr, next))
1038                         return -ENOMEM;
1039         } while (dst_pud++, src_pud++, addr = next, addr != end);
1040         return 0;
1041 }
1042
1043 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1044                 struct vm_area_struct *vma)
1045 {
1046         pgd_t *src_pgd, *dst_pgd;
1047         unsigned long next;
1048         unsigned long addr = vma->vm_start;
1049         unsigned long end = vma->vm_end;
1050         unsigned long mmun_start;       /* For mmu_notifiers */
1051         unsigned long mmun_end;         /* For mmu_notifiers */
1052         bool is_cow;
1053         int ret;
1054
1055         /*
1056          * Don't copy ptes where a page fault will fill them correctly.
1057          * Fork becomes much lighter when there are big shared or private
1058          * readonly mappings. The tradeoff is that copy_page_range is more
1059          * efficient than faulting.
1060          */
1061         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1062                                VM_PFNMAP | VM_MIXEDMAP))) {
1063                 if (!vma->anon_vma)
1064                         return 0;
1065         }
1066
1067         if (is_vm_hugetlb_page(vma))
1068                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1069
1070         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1071                 /*
1072                  * We do not free on error cases below as remove_vma
1073                  * gets called on error from higher level routine
1074                  */
1075                 ret = track_pfn_copy(vma);
1076                 if (ret)
1077                         return ret;
1078         }
1079
1080         /*
1081          * We need to invalidate the secondary MMU mappings only when
1082          * there could be a permission downgrade on the ptes of the
1083          * parent mm. And a permission downgrade will only happen if
1084          * is_cow_mapping() returns true.
1085          */
1086         is_cow = is_cow_mapping(vma->vm_flags);
1087         mmun_start = addr;
1088         mmun_end   = end;
1089         if (is_cow)
1090                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1091                                                     mmun_end);
1092
1093         ret = 0;
1094         dst_pgd = pgd_offset(dst_mm, addr);
1095         src_pgd = pgd_offset(src_mm, addr);
1096         do {
1097                 next = pgd_addr_end(addr, end);
1098                 if (pgd_none_or_clear_bad(src_pgd))
1099                         continue;
1100                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1101                                             vma, addr, next))) {
1102                         ret = -ENOMEM;
1103                         break;
1104                 }
1105         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1106
1107         if (is_cow)
1108                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1109         return ret;
1110 }
1111
1112 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1113                                 struct vm_area_struct *vma, pmd_t *pmd,
1114                                 unsigned long addr, unsigned long end,
1115                                 struct zap_details *details)
1116 {
1117         struct mm_struct *mm = tlb->mm;
1118         int force_flush = 0;
1119         int rss[NR_MM_COUNTERS];
1120         spinlock_t *ptl;
1121         pte_t *start_pte;
1122         pte_t *pte;
1123
1124 again:
1125         init_rss_vec(rss);
1126         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127         pte = start_pte;
1128         arch_enter_lazy_mmu_mode();
1129         do {
1130                 pte_t ptent = *pte;
1131                 if (pte_none(ptent)) {
1132                         continue;
1133                 }
1134
1135                 if (pte_present(ptent)) {
1136                         struct page *page;
1137
1138                         page = vm_normal_page(vma, addr, ptent);
1139                         if (unlikely(details) && page) {
1140                                 /*
1141                                  * unmap_shared_mapping_pages() wants to
1142                                  * invalidate cache without truncating:
1143                                  * unmap shared but keep private pages.
1144                                  */
1145                                 if (details->check_mapping &&
1146                                     details->check_mapping != page->mapping)
1147                                         continue;
1148                                 /*
1149                                  * Each page->index must be checked when
1150                                  * invalidating or truncating nonlinear.
1151                                  */
1152                                 if (details->nonlinear_vma &&
1153                                     (page->index < details->first_index ||
1154                                      page->index > details->last_index))
1155                                         continue;
1156                         }
1157                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1158                                                         tlb->fullmm);
1159                         tlb_remove_tlb_entry(tlb, pte, addr);
1160                         if (unlikely(!page))
1161                                 continue;
1162                         if (unlikely(details) && details->nonlinear_vma
1163                             && linear_page_index(details->nonlinear_vma,
1164                                                 addr) != page->index)
1165                                 set_pte_at(mm, addr, pte,
1166                                            pgoff_to_pte(page->index));
1167                         if (PageAnon(page))
1168                                 rss[MM_ANONPAGES]--;
1169                         else {
1170                                 if (pte_dirty(ptent))
1171                                         set_page_dirty(page);
1172                                 if (pte_young(ptent) &&
1173                                     likely(!VM_SequentialReadHint(vma)))
1174                                         mark_page_accessed(page);
1175                                 rss[MM_FILEPAGES]--;
1176                         }
1177                         page_remove_rmap(page);
1178                         if (unlikely(page_mapcount(page) < 0))
1179                                 print_bad_pte(vma, addr, ptent, page);
1180                         force_flush = !__tlb_remove_page(tlb, page);
1181                         if (force_flush)
1182                                 break;
1183                         continue;
1184                 }
1185                 /*
1186                  * If details->check_mapping, we leave swap entries;
1187                  * if details->nonlinear_vma, we leave file entries.
1188                  */
1189                 if (unlikely(details))
1190                         continue;
1191                 if (pte_file(ptent)) {
1192                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1193                                 print_bad_pte(vma, addr, ptent, NULL);
1194                 } else {
1195                         swp_entry_t entry = pte_to_swp_entry(ptent);
1196
1197                         if (!non_swap_entry(entry))
1198                                 rss[MM_SWAPENTS]--;
1199                         else if (is_migration_entry(entry)) {
1200                                 struct page *page;
1201
1202                                 page = migration_entry_to_page(entry);
1203
1204                                 if (PageAnon(page))
1205                                         rss[MM_ANONPAGES]--;
1206                                 else
1207                                         rss[MM_FILEPAGES]--;
1208                         }
1209                         if (unlikely(!free_swap_and_cache(entry)))
1210                                 print_bad_pte(vma, addr, ptent, NULL);
1211                 }
1212                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1213         } while (pte++, addr += PAGE_SIZE, addr != end);
1214
1215         add_mm_rss_vec(mm, rss);
1216         arch_leave_lazy_mmu_mode();
1217         pte_unmap_unlock(start_pte, ptl);
1218
1219         /*
1220          * mmu_gather ran out of room to batch pages, we break out of
1221          * the PTE lock to avoid doing the potential expensive TLB invalidate
1222          * and page-free while holding it.
1223          */
1224         if (force_flush) {
1225                 force_flush = 0;
1226
1227 #ifdef HAVE_GENERIC_MMU_GATHER
1228                 tlb->start = addr;
1229                 tlb->end = end;
1230 #endif
1231                 tlb_flush_mmu(tlb);
1232                 if (addr != end)
1233                         goto again;
1234         }
1235
1236         return addr;
1237 }
1238
1239 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1240                                 struct vm_area_struct *vma, pud_t *pud,
1241                                 unsigned long addr, unsigned long end,
1242                                 struct zap_details *details)
1243 {
1244         pmd_t *pmd;
1245         unsigned long next;
1246
1247         pmd = pmd_offset(pud, addr);
1248         do {
1249                 next = pmd_addr_end(addr, end);
1250                 if (pmd_trans_huge(*pmd)) {
1251                         if (next - addr != HPAGE_PMD_SIZE) {
1252 #ifdef CONFIG_DEBUG_VM
1253                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1254                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1255                                                 __func__, addr, end,
1256                                                 vma->vm_start,
1257                                                 vma->vm_end);
1258                                         BUG();
1259                                 }
1260 #endif
1261                                 split_huge_page_pmd(vma->vm_mm, pmd);
1262                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1263                                 goto next;
1264                         /* fall through */
1265                 }
1266                 /*
1267                  * Here there can be other concurrent MADV_DONTNEED or
1268                  * trans huge page faults running, and if the pmd is
1269                  * none or trans huge it can change under us. This is
1270                  * because MADV_DONTNEED holds the mmap_sem in read
1271                  * mode.
1272                  */
1273                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1274                         goto next;
1275                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1276 next:
1277                 cond_resched();
1278         } while (pmd++, addr = next, addr != end);
1279
1280         return addr;
1281 }
1282
1283 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1284                                 struct vm_area_struct *vma, pgd_t *pgd,
1285                                 unsigned long addr, unsigned long end,
1286                                 struct zap_details *details)
1287 {
1288         pud_t *pud;
1289         unsigned long next;
1290
1291         pud = pud_offset(pgd, addr);
1292         do {
1293                 next = pud_addr_end(addr, end);
1294                 if (pud_none_or_clear_bad(pud))
1295                         continue;
1296                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1297         } while (pud++, addr = next, addr != end);
1298
1299         return addr;
1300 }
1301
1302 static void unmap_page_range(struct mmu_gather *tlb,
1303                              struct vm_area_struct *vma,
1304                              unsigned long addr, unsigned long end,
1305                              struct zap_details *details)
1306 {
1307         pgd_t *pgd;
1308         unsigned long next;
1309
1310         if (details && !details->check_mapping && !details->nonlinear_vma)
1311                 details = NULL;
1312
1313         BUG_ON(addr >= end);
1314         mem_cgroup_uncharge_start();
1315         tlb_start_vma(tlb, vma);
1316         pgd = pgd_offset(vma->vm_mm, addr);
1317         do {
1318                 next = pgd_addr_end(addr, end);
1319                 if (pgd_none_or_clear_bad(pgd))
1320                         continue;
1321                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1322         } while (pgd++, addr = next, addr != end);
1323         tlb_end_vma(tlb, vma);
1324         mem_cgroup_uncharge_end();
1325 }
1326
1327
1328 static void unmap_single_vma(struct mmu_gather *tlb,
1329                 struct vm_area_struct *vma, unsigned long start_addr,
1330                 unsigned long end_addr,
1331                 struct zap_details *details)
1332 {
1333         unsigned long start = max(vma->vm_start, start_addr);
1334         unsigned long end;
1335
1336         if (start >= vma->vm_end)
1337                 return;
1338         end = min(vma->vm_end, end_addr);
1339         if (end <= vma->vm_start)
1340                 return;
1341
1342         if (vma->vm_file)
1343                 uprobe_munmap(vma, start, end);
1344
1345         if (unlikely(vma->vm_flags & VM_PFNMAP))
1346                 untrack_pfn(vma, 0, 0);
1347
1348         if (start != end) {
1349                 if (unlikely(is_vm_hugetlb_page(vma))) {
1350                         /*
1351                          * It is undesirable to test vma->vm_file as it
1352                          * should be non-null for valid hugetlb area.
1353                          * However, vm_file will be NULL in the error
1354                          * cleanup path of do_mmap_pgoff. When
1355                          * hugetlbfs ->mmap method fails,
1356                          * do_mmap_pgoff() nullifies vma->vm_file
1357                          * before calling this function to clean up.
1358                          * Since no pte has actually been setup, it is
1359                          * safe to do nothing in this case.
1360                          */
1361                         if (vma->vm_file) {
1362                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1363                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1364                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1365                         }
1366                 } else
1367                         unmap_page_range(tlb, vma, start, end, details);
1368         }
1369 }
1370
1371 /**
1372  * unmap_vmas - unmap a range of memory covered by a list of vma's
1373  * @tlb: address of the caller's struct mmu_gather
1374  * @vma: the starting vma
1375  * @start_addr: virtual address at which to start unmapping
1376  * @end_addr: virtual address at which to end unmapping
1377  *
1378  * Unmap all pages in the vma list.
1379  *
1380  * Only addresses between `start' and `end' will be unmapped.
1381  *
1382  * The VMA list must be sorted in ascending virtual address order.
1383  *
1384  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1385  * range after unmap_vmas() returns.  So the only responsibility here is to
1386  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1387  * drops the lock and schedules.
1388  */
1389 void unmap_vmas(struct mmu_gather *tlb,
1390                 struct vm_area_struct *vma, unsigned long start_addr,
1391                 unsigned long end_addr)
1392 {
1393         struct mm_struct *mm = vma->vm_mm;
1394
1395         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1396         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1397                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1398         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1399 }
1400
1401 /**
1402  * zap_page_range - remove user pages in a given range
1403  * @vma: vm_area_struct holding the applicable pages
1404  * @start: starting address of pages to zap
1405  * @size: number of bytes to zap
1406  * @details: details of nonlinear truncation or shared cache invalidation
1407  *
1408  * Caller must protect the VMA list
1409  */
1410 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1411                 unsigned long size, struct zap_details *details)
1412 {
1413         struct mm_struct *mm = vma->vm_mm;
1414         struct mmu_gather tlb;
1415         unsigned long end = start + size;
1416
1417         lru_add_drain();
1418         tlb_gather_mmu(&tlb, mm, 0);
1419         update_hiwater_rss(mm);
1420         mmu_notifier_invalidate_range_start(mm, start, end);
1421         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1422                 unmap_single_vma(&tlb, vma, start, end, details);
1423         mmu_notifier_invalidate_range_end(mm, start, end);
1424         tlb_finish_mmu(&tlb, start, end);
1425 }
1426
1427 /**
1428  * zap_page_range_single - remove user pages in a given range
1429  * @vma: vm_area_struct holding the applicable pages
1430  * @address: starting address of pages to zap
1431  * @size: number of bytes to zap
1432  * @details: details of nonlinear truncation or shared cache invalidation
1433  *
1434  * The range must fit into one VMA.
1435  */
1436 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1437                 unsigned long size, struct zap_details *details)
1438 {
1439         struct mm_struct *mm = vma->vm_mm;
1440         struct mmu_gather tlb;
1441         unsigned long end = address + size;
1442
1443         lru_add_drain();
1444         tlb_gather_mmu(&tlb, mm, 0);
1445         update_hiwater_rss(mm);
1446         mmu_notifier_invalidate_range_start(mm, address, end);
1447         unmap_single_vma(&tlb, vma, address, end, details);
1448         mmu_notifier_invalidate_range_end(mm, address, end);
1449         tlb_finish_mmu(&tlb, address, end);
1450 }
1451
1452 /**
1453  * zap_vma_ptes - remove ptes mapping the vma
1454  * @vma: vm_area_struct holding ptes to be zapped
1455  * @address: starting address of pages to zap
1456  * @size: number of bytes to zap
1457  *
1458  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1459  *
1460  * The entire address range must be fully contained within the vma.
1461  *
1462  * Returns 0 if successful.
1463  */
1464 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1465                 unsigned long size)
1466 {
1467         if (address < vma->vm_start || address + size > vma->vm_end ||
1468                         !(vma->vm_flags & VM_PFNMAP))
1469                 return -1;
1470         zap_page_range_single(vma, address, size, NULL);
1471         return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1474
1475 static bool pte_numa(struct vm_area_struct *vma, pte_t pte)
1476 {
1477         /*
1478          * For NUMA page faults, we use PROT_NONE ptes in VMAs with
1479          * "normal" vma->vm_page_prot protections.  Genuine PROT_NONE
1480          * VMAs should never get here, because the fault handling code
1481          * will notice that the VMA has no read or write permissions.
1482          *
1483          * This means we cannot get 'special' PROT_NONE faults from genuine
1484          * PROT_NONE maps, nor from PROT_WRITE file maps that do dirty
1485          * tracking.
1486          *
1487          * Neither case is really interesting for our current use though so we
1488          * don't care.
1489          */
1490         if (pte_same(pte, pte_modify(pte, vma->vm_page_prot)))
1491                 return false;
1492
1493         return pte_same(pte, pte_modify(pte, vma_prot_none(vma)));
1494 }
1495
1496 /**
1497  * follow_page - look up a page descriptor from a user-virtual address
1498  * @vma: vm_area_struct mapping @address
1499  * @address: virtual address to look up
1500  * @flags: flags modifying lookup behaviour
1501  *
1502  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1503  *
1504  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1505  * an error pointer if there is a mapping to something not represented
1506  * by a page descriptor (see also vm_normal_page()).
1507  */
1508 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1509                         unsigned int flags)
1510 {
1511         pgd_t *pgd;
1512         pud_t *pud;
1513         pmd_t *pmd;
1514         pte_t *ptep, pte;
1515         spinlock_t *ptl;
1516         struct page *page;
1517         struct mm_struct *mm = vma->vm_mm;
1518
1519         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1520         if (!IS_ERR(page)) {
1521                 BUG_ON(flags & FOLL_GET);
1522                 goto out;
1523         }
1524
1525         page = NULL;
1526         pgd = pgd_offset(mm, address);
1527         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1528                 goto no_page_table;
1529
1530         pud = pud_offset(pgd, address);
1531         if (pud_none(*pud))
1532                 goto no_page_table;
1533         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1534                 BUG_ON(flags & FOLL_GET);
1535                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1536                 goto out;
1537         }
1538         if (unlikely(pud_bad(*pud)))
1539                 goto no_page_table;
1540
1541         pmd = pmd_offset(pud, address);
1542         if (pmd_none(*pmd))
1543                 goto no_page_table;
1544         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1545                 BUG_ON(flags & FOLL_GET);
1546                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1547                 goto out;
1548         }
1549         if ((flags & FOLL_NUMA) && pmd_numa(vma, *pmd))
1550                 goto no_page_table;
1551         if (pmd_trans_huge(*pmd)) {
1552                 if (flags & FOLL_SPLIT) {
1553                         split_huge_page_pmd(mm, pmd);
1554                         goto split_fallthrough;
1555                 }
1556                 spin_lock(&mm->page_table_lock);
1557                 if (likely(pmd_trans_huge(*pmd))) {
1558                         if (unlikely(pmd_trans_splitting(*pmd))) {
1559                                 spin_unlock(&mm->page_table_lock);
1560                                 wait_split_huge_page(vma->anon_vma, pmd);
1561                         } else {
1562                                 page = follow_trans_huge_pmd(vma, address,
1563                                                              pmd, flags);
1564                                 spin_unlock(&mm->page_table_lock);
1565                                 goto out;
1566                         }
1567                 } else
1568                         spin_unlock(&mm->page_table_lock);
1569                 /* fall through */
1570         }
1571 split_fallthrough:
1572         if (unlikely(pmd_bad(*pmd)))
1573                 goto no_page_table;
1574
1575         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1576
1577         pte = *ptep;
1578         if (!pte_present(pte))
1579                 goto no_page;
1580         if ((flags & FOLL_NUMA) && pte_numa(vma, pte))
1581                 goto no_page;
1582         if ((flags & FOLL_WRITE) && !pte_write(pte))
1583                 goto unlock;
1584
1585         page = vm_normal_page(vma, address, pte);
1586         if (unlikely(!page)) {
1587                 if ((flags & FOLL_DUMP) ||
1588                     !is_zero_pfn(pte_pfn(pte)))
1589                         goto bad_page;
1590                 page = pte_page(pte);
1591         }
1592
1593         if (flags & FOLL_GET)
1594                 get_page_foll(page);
1595         if (flags & FOLL_TOUCH) {
1596                 if ((flags & FOLL_WRITE) &&
1597                     !pte_dirty(pte) && !PageDirty(page))
1598                         set_page_dirty(page);
1599                 /*
1600                  * pte_mkyoung() would be more correct here, but atomic care
1601                  * is needed to avoid losing the dirty bit: it is easier to use
1602                  * mark_page_accessed().
1603                  */
1604                 mark_page_accessed(page);
1605         }
1606         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1607                 /*
1608                  * The preliminary mapping check is mainly to avoid the
1609                  * pointless overhead of lock_page on the ZERO_PAGE
1610                  * which might bounce very badly if there is contention.
1611                  *
1612                  * If the page is already locked, we don't need to
1613                  * handle it now - vmscan will handle it later if and
1614                  * when it attempts to reclaim the page.
1615                  */
1616                 if (page->mapping && trylock_page(page)) {
1617                         lru_add_drain();  /* push cached pages to LRU */
1618                         /*
1619                          * Because we lock page here, and migration is
1620                          * blocked by the pte's page reference, and we
1621                          * know the page is still mapped, we don't even
1622                          * need to check for file-cache page truncation.
1623                          */
1624                         mlock_vma_page(page);
1625                         unlock_page(page);
1626                 }
1627         }
1628 unlock:
1629         pte_unmap_unlock(ptep, ptl);
1630 out:
1631         return page;
1632
1633 bad_page:
1634         pte_unmap_unlock(ptep, ptl);
1635         return ERR_PTR(-EFAULT);
1636
1637 no_page:
1638         pte_unmap_unlock(ptep, ptl);
1639         if (!pte_none(pte))
1640                 return page;
1641
1642 no_page_table:
1643         /*
1644          * When core dumping an enormous anonymous area that nobody
1645          * has touched so far, we don't want to allocate unnecessary pages or
1646          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1647          * then get_dump_page() will return NULL to leave a hole in the dump.
1648          * But we can only make this optimization where a hole would surely
1649          * be zero-filled if handle_mm_fault() actually did handle it.
1650          */
1651         if ((flags & FOLL_DUMP) &&
1652             (!vma->vm_ops || !vma->vm_ops->fault))
1653                 return ERR_PTR(-EFAULT);
1654         return page;
1655 }
1656
1657 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1658 {
1659         return stack_guard_page_start(vma, addr) ||
1660                stack_guard_page_end(vma, addr+PAGE_SIZE);
1661 }
1662
1663 /**
1664  * __get_user_pages() - pin user pages in memory
1665  * @tsk:        task_struct of target task
1666  * @mm:         mm_struct of target mm
1667  * @start:      starting user address
1668  * @nr_pages:   number of pages from start to pin
1669  * @gup_flags:  flags modifying pin behaviour
1670  * @pages:      array that receives pointers to the pages pinned.
1671  *              Should be at least nr_pages long. Or NULL, if caller
1672  *              only intends to ensure the pages are faulted in.
1673  * @vmas:       array of pointers to vmas corresponding to each page.
1674  *              Or NULL if the caller does not require them.
1675  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1676  *
1677  * Returns number of pages pinned. This may be fewer than the number
1678  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1679  * were pinned, returns -errno. Each page returned must be released
1680  * with a put_page() call when it is finished with. vmas will only
1681  * remain valid while mmap_sem is held.
1682  *
1683  * Must be called with mmap_sem held for read or write.
1684  *
1685  * __get_user_pages walks a process's page tables and takes a reference to
1686  * each struct page that each user address corresponds to at a given
1687  * instant. That is, it takes the page that would be accessed if a user
1688  * thread accesses the given user virtual address at that instant.
1689  *
1690  * This does not guarantee that the page exists in the user mappings when
1691  * __get_user_pages returns, and there may even be a completely different
1692  * page there in some cases (eg. if mmapped pagecache has been invalidated
1693  * and subsequently re faulted). However it does guarantee that the page
1694  * won't be freed completely. And mostly callers simply care that the page
1695  * contains data that was valid *at some point in time*. Typically, an IO
1696  * or similar operation cannot guarantee anything stronger anyway because
1697  * locks can't be held over the syscall boundary.
1698  *
1699  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1700  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1701  * appropriate) must be called after the page is finished with, and
1702  * before put_page is called.
1703  *
1704  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1705  * or mmap_sem contention, and if waiting is needed to pin all pages,
1706  * *@nonblocking will be set to 0.
1707  *
1708  * In most cases, get_user_pages or get_user_pages_fast should be used
1709  * instead of __get_user_pages. __get_user_pages should be used only if
1710  * you need some special @gup_flags.
1711  */
1712 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1713                      unsigned long start, int nr_pages, unsigned int gup_flags,
1714                      struct page **pages, struct vm_area_struct **vmas,
1715                      int *nonblocking)
1716 {
1717         int i;
1718         unsigned long vm_flags;
1719
1720         if (nr_pages <= 0)
1721                 return 0;
1722
1723         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1724
1725         /* 
1726          * Require read or write permissions.
1727          * If FOLL_FORCE is set, we only require the "MAY" flags.
1728          */
1729         vm_flags  = (gup_flags & FOLL_WRITE) ?
1730                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1731         vm_flags &= (gup_flags & FOLL_FORCE) ?
1732                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1733
1734         /*
1735          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1736          * would be called on PROT_NONE ranges. We must never invoke
1737          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1738          * page faults would unprotect the PROT_NONE ranges if
1739          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1740          * bitflag. So to avoid that, don't set FOLL_NUMA if
1741          * FOLL_FORCE is set.
1742          */
1743         if (!(gup_flags & FOLL_FORCE))
1744                 gup_flags |= FOLL_NUMA;
1745
1746         i = 0;
1747
1748         do {
1749                 struct vm_area_struct *vma;
1750
1751                 vma = find_extend_vma(mm, start);
1752                 if (!vma && in_gate_area(mm, start)) {
1753                         unsigned long pg = start & PAGE_MASK;
1754                         pgd_t *pgd;
1755                         pud_t *pud;
1756                         pmd_t *pmd;
1757                         pte_t *pte;
1758
1759                         /* user gate pages are read-only */
1760                         if (gup_flags & FOLL_WRITE)
1761                                 return i ? : -EFAULT;
1762                         if (pg > TASK_SIZE)
1763                                 pgd = pgd_offset_k(pg);
1764                         else
1765                                 pgd = pgd_offset_gate(mm, pg);
1766                         BUG_ON(pgd_none(*pgd));
1767                         pud = pud_offset(pgd, pg);
1768                         BUG_ON(pud_none(*pud));
1769                         pmd = pmd_offset(pud, pg);
1770                         if (pmd_none(*pmd))
1771                                 return i ? : -EFAULT;
1772                         VM_BUG_ON(pmd_trans_huge(*pmd));
1773                         pte = pte_offset_map(pmd, pg);
1774                         if (pte_none(*pte)) {
1775                                 pte_unmap(pte);
1776                                 return i ? : -EFAULT;
1777                         }
1778                         vma = get_gate_vma(mm);
1779                         if (pages) {
1780                                 struct page *page;
1781
1782                                 page = vm_normal_page(vma, start, *pte);
1783                                 if (!page) {
1784                                         if (!(gup_flags & FOLL_DUMP) &&
1785                                              is_zero_pfn(pte_pfn(*pte)))
1786                                                 page = pte_page(*pte);
1787                                         else {
1788                                                 pte_unmap(pte);
1789                                                 return i ? : -EFAULT;
1790                                         }
1791                                 }
1792                                 pages[i] = page;
1793                                 get_page(page);
1794                         }
1795                         pte_unmap(pte);
1796                         goto next_page;
1797                 }
1798
1799                 if (!vma ||
1800                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1801                     !(vm_flags & vma->vm_flags))
1802                         return i ? : -EFAULT;
1803
1804                 if (is_vm_hugetlb_page(vma)) {
1805                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1806                                         &start, &nr_pages, i, gup_flags);
1807                         continue;
1808                 }
1809
1810                 do {
1811                         struct page *page;
1812                         unsigned int foll_flags = gup_flags;
1813
1814                         /*
1815                          * If we have a pending SIGKILL, don't keep faulting
1816                          * pages and potentially allocating memory.
1817                          */
1818                         if (unlikely(fatal_signal_pending(current)))
1819                                 return i ? i : -ERESTARTSYS;
1820
1821                         cond_resched();
1822                         while (!(page = follow_page(vma, start, foll_flags))) {
1823                                 int ret;
1824                                 unsigned int fault_flags = 0;
1825
1826                                 /* For mlock, just skip the stack guard page. */
1827                                 if (foll_flags & FOLL_MLOCK) {
1828                                         if (stack_guard_page(vma, start))
1829                                                 goto next_page;
1830                                 }
1831                                 if (foll_flags & FOLL_WRITE)
1832                                         fault_flags |= FAULT_FLAG_WRITE;
1833                                 if (nonblocking)
1834                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1835                                 if (foll_flags & FOLL_NOWAIT)
1836                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1837
1838                                 ret = handle_mm_fault(mm, vma, start,
1839                                                         fault_flags);
1840
1841                                 if (ret & VM_FAULT_ERROR) {
1842                                         if (ret & VM_FAULT_OOM)
1843                                                 return i ? i : -ENOMEM;
1844                                         if (ret & (VM_FAULT_HWPOISON |
1845                                                    VM_FAULT_HWPOISON_LARGE)) {
1846                                                 if (i)
1847                                                         return i;
1848                                                 else if (gup_flags & FOLL_HWPOISON)
1849                                                         return -EHWPOISON;
1850                                                 else
1851                                                         return -EFAULT;
1852                                         }
1853                                         if (ret & VM_FAULT_SIGBUS)
1854                                                 return i ? i : -EFAULT;
1855                                         BUG();
1856                                 }
1857
1858                                 if (tsk) {
1859                                         if (ret & VM_FAULT_MAJOR)
1860                                                 tsk->maj_flt++;
1861                                         else
1862                                                 tsk->min_flt++;
1863                                 }
1864
1865                                 if (ret & VM_FAULT_RETRY) {
1866                                         if (nonblocking)
1867                                                 *nonblocking = 0;
1868                                         return i;
1869                                 }
1870
1871                                 /*
1872                                  * The VM_FAULT_WRITE bit tells us that
1873                                  * do_wp_page has broken COW when necessary,
1874                                  * even if maybe_mkwrite decided not to set
1875                                  * pte_write. We can thus safely do subsequent
1876                                  * page lookups as if they were reads. But only
1877                                  * do so when looping for pte_write is futile:
1878                                  * in some cases userspace may also be wanting
1879                                  * to write to the gotten user page, which a
1880                                  * read fault here might prevent (a readonly
1881                                  * page might get reCOWed by userspace write).
1882                                  */
1883                                 if ((ret & VM_FAULT_WRITE) &&
1884                                     !(vma->vm_flags & VM_WRITE))
1885                                         foll_flags &= ~FOLL_WRITE;
1886
1887                                 cond_resched();
1888                         }
1889                         if (IS_ERR(page))
1890                                 return i ? i : PTR_ERR(page);
1891                         if (pages) {
1892                                 pages[i] = page;
1893
1894                                 flush_anon_page(vma, page, start);
1895                                 flush_dcache_page(page);
1896                         }
1897 next_page:
1898                         if (vmas)
1899                                 vmas[i] = vma;
1900                         i++;
1901                         start += PAGE_SIZE;
1902                         nr_pages--;
1903                 } while (nr_pages && start < vma->vm_end);
1904         } while (nr_pages);
1905         return i;
1906 }
1907 EXPORT_SYMBOL(__get_user_pages);
1908
1909 /*
1910  * fixup_user_fault() - manually resolve a user page fault
1911  * @tsk:        the task_struct to use for page fault accounting, or
1912  *              NULL if faults are not to be recorded.
1913  * @mm:         mm_struct of target mm
1914  * @address:    user address
1915  * @fault_flags:flags to pass down to handle_mm_fault()
1916  *
1917  * This is meant to be called in the specific scenario where for locking reasons
1918  * we try to access user memory in atomic context (within a pagefault_disable()
1919  * section), this returns -EFAULT, and we want to resolve the user fault before
1920  * trying again.
1921  *
1922  * Typically this is meant to be used by the futex code.
1923  *
1924  * The main difference with get_user_pages() is that this function will
1925  * unconditionally call handle_mm_fault() which will in turn perform all the
1926  * necessary SW fixup of the dirty and young bits in the PTE, while
1927  * handle_mm_fault() only guarantees to update these in the struct page.
1928  *
1929  * This is important for some architectures where those bits also gate the
1930  * access permission to the page because they are maintained in software.  On
1931  * such architectures, gup() will not be enough to make a subsequent access
1932  * succeed.
1933  *
1934  * This should be called with the mm_sem held for read.
1935  */
1936 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1937                      unsigned long address, unsigned int fault_flags)
1938 {
1939         struct vm_area_struct *vma;
1940         int ret;
1941
1942         vma = find_extend_vma(mm, address);
1943         if (!vma || address < vma->vm_start)
1944                 return -EFAULT;
1945
1946         ret = handle_mm_fault(mm, vma, address, fault_flags);
1947         if (ret & VM_FAULT_ERROR) {
1948                 if (ret & VM_FAULT_OOM)
1949                         return -ENOMEM;
1950                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1951                         return -EHWPOISON;
1952                 if (ret & VM_FAULT_SIGBUS)
1953                         return -EFAULT;
1954                 BUG();
1955         }
1956         if (tsk) {
1957                 if (ret & VM_FAULT_MAJOR)
1958                         tsk->maj_flt++;
1959                 else
1960                         tsk->min_flt++;
1961         }
1962         return 0;
1963 }
1964
1965 /*
1966  * get_user_pages() - pin user pages in memory
1967  * @tsk:        the task_struct to use for page fault accounting, or
1968  *              NULL if faults are not to be recorded.
1969  * @mm:         mm_struct of target mm
1970  * @start:      starting user address
1971  * @nr_pages:   number of pages from start to pin
1972  * @write:      whether pages will be written to by the caller
1973  * @force:      whether to force write access even if user mapping is
1974  *              readonly. This will result in the page being COWed even
1975  *              in MAP_SHARED mappings. You do not want this.
1976  * @pages:      array that receives pointers to the pages pinned.
1977  *              Should be at least nr_pages long. Or NULL, if caller
1978  *              only intends to ensure the pages are faulted in.
1979  * @vmas:       array of pointers to vmas corresponding to each page.
1980  *              Or NULL if the caller does not require them.
1981  *
1982  * Returns number of pages pinned. This may be fewer than the number
1983  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1984  * were pinned, returns -errno. Each page returned must be released
1985  * with a put_page() call when it is finished with. vmas will only
1986  * remain valid while mmap_sem is held.
1987  *
1988  * Must be called with mmap_sem held for read or write.
1989  *
1990  * get_user_pages walks a process's page tables and takes a reference to
1991  * each struct page that each user address corresponds to at a given
1992  * instant. That is, it takes the page that would be accessed if a user
1993  * thread accesses the given user virtual address at that instant.
1994  *
1995  * This does not guarantee that the page exists in the user mappings when
1996  * get_user_pages returns, and there may even be a completely different
1997  * page there in some cases (eg. if mmapped pagecache has been invalidated
1998  * and subsequently re faulted). However it does guarantee that the page
1999  * won't be freed completely. And mostly callers simply care that the page
2000  * contains data that was valid *at some point in time*. Typically, an IO
2001  * or similar operation cannot guarantee anything stronger anyway because
2002  * locks can't be held over the syscall boundary.
2003  *
2004  * If write=0, the page must not be written to. If the page is written to,
2005  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2006  * after the page is finished with, and before put_page is called.
2007  *
2008  * get_user_pages is typically used for fewer-copy IO operations, to get a
2009  * handle on the memory by some means other than accesses via the user virtual
2010  * addresses. The pages may be submitted for DMA to devices or accessed via
2011  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2012  * use the correct cache flushing APIs.
2013  *
2014  * See also get_user_pages_fast, for performance critical applications.
2015  */
2016 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2017                 unsigned long start, int nr_pages, int write, int force,
2018                 struct page **pages, struct vm_area_struct **vmas)
2019 {
2020         int flags = FOLL_TOUCH;
2021
2022         if (pages)
2023                 flags |= FOLL_GET;
2024         if (write)
2025                 flags |= FOLL_WRITE;
2026         if (force)
2027                 flags |= FOLL_FORCE;
2028
2029         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2030                                 NULL);
2031 }
2032 EXPORT_SYMBOL(get_user_pages);
2033
2034 /**
2035  * get_dump_page() - pin user page in memory while writing it to core dump
2036  * @addr: user address
2037  *
2038  * Returns struct page pointer of user page pinned for dump,
2039  * to be freed afterwards by page_cache_release() or put_page().
2040  *
2041  * Returns NULL on any kind of failure - a hole must then be inserted into
2042  * the corefile, to preserve alignment with its headers; and also returns
2043  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2044  * allowing a hole to be left in the corefile to save diskspace.
2045  *
2046  * Called without mmap_sem, but after all other threads have been killed.
2047  */
2048 #ifdef CONFIG_ELF_CORE
2049 struct page *get_dump_page(unsigned long addr)
2050 {
2051         struct vm_area_struct *vma;
2052         struct page *page;
2053
2054         if (__get_user_pages(current, current->mm, addr, 1,
2055                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2056                              NULL) < 1)
2057                 return NULL;
2058         flush_cache_page(vma, addr, page_to_pfn(page));
2059         return page;
2060 }
2061 #endif /* CONFIG_ELF_CORE */
2062
2063 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2064                         spinlock_t **ptl)
2065 {
2066         pgd_t * pgd = pgd_offset(mm, addr);
2067         pud_t * pud = pud_alloc(mm, pgd, addr);
2068         if (pud) {
2069                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2070                 if (pmd) {
2071                         VM_BUG_ON(pmd_trans_huge(*pmd));
2072                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2073                 }
2074         }
2075         return NULL;
2076 }
2077
2078 /*
2079  * This is the old fallback for page remapping.
2080  *
2081  * For historical reasons, it only allows reserved pages. Only
2082  * old drivers should use this, and they needed to mark their
2083  * pages reserved for the old functions anyway.
2084  */
2085 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2086                         struct page *page, pgprot_t prot)
2087 {
2088         struct mm_struct *mm = vma->vm_mm;
2089         int retval;
2090         pte_t *pte;
2091         spinlock_t *ptl;
2092
2093         retval = -EINVAL;
2094         if (PageAnon(page))
2095                 goto out;
2096         retval = -ENOMEM;
2097         flush_dcache_page(page);
2098         pte = get_locked_pte(mm, addr, &ptl);
2099         if (!pte)
2100                 goto out;
2101         retval = -EBUSY;
2102         if (!pte_none(*pte))
2103                 goto out_unlock;
2104
2105         /* Ok, finally just insert the thing.. */
2106         get_page(page);
2107         inc_mm_counter_fast(mm, MM_FILEPAGES);
2108         page_add_file_rmap(page);
2109         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2110
2111         retval = 0;
2112         pte_unmap_unlock(pte, ptl);
2113         return retval;
2114 out_unlock:
2115         pte_unmap_unlock(pte, ptl);
2116 out:
2117         return retval;
2118 }
2119
2120 /**
2121  * vm_insert_page - insert single page into user vma
2122  * @vma: user vma to map to
2123  * @addr: target user address of this page
2124  * @page: source kernel page
2125  *
2126  * This allows drivers to insert individual pages they've allocated
2127  * into a user vma.
2128  *
2129  * The page has to be a nice clean _individual_ kernel allocation.
2130  * If you allocate a compound page, you need to have marked it as
2131  * such (__GFP_COMP), or manually just split the page up yourself
2132  * (see split_page()).
2133  *
2134  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2135  * took an arbitrary page protection parameter. This doesn't allow
2136  * that. Your vma protection will have to be set up correctly, which
2137  * means that if you want a shared writable mapping, you'd better
2138  * ask for a shared writable mapping!
2139  *
2140  * The page does not need to be reserved.
2141  *
2142  * Usually this function is called from f_op->mmap() handler
2143  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2144  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2145  * function from other places, for example from page-fault handler.
2146  */
2147 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2148                         struct page *page)
2149 {
2150         if (addr < vma->vm_start || addr >= vma->vm_end)
2151                 return -EFAULT;
2152         if (!page_count(page))
2153                 return -EINVAL;
2154         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2155                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2156                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2157                 vma->vm_flags |= VM_MIXEDMAP;
2158         }
2159         return insert_page(vma, addr, page, vma->vm_page_prot);
2160 }
2161 EXPORT_SYMBOL(vm_insert_page);
2162
2163 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2164                         unsigned long pfn, pgprot_t prot)
2165 {
2166         struct mm_struct *mm = vma->vm_mm;
2167         int retval;
2168         pte_t *pte, entry;
2169         spinlock_t *ptl;
2170
2171         retval = -ENOMEM;
2172         pte = get_locked_pte(mm, addr, &ptl);
2173         if (!pte)
2174                 goto out;
2175         retval = -EBUSY;
2176         if (!pte_none(*pte))
2177                 goto out_unlock;
2178
2179         /* Ok, finally just insert the thing.. */
2180         entry = pte_mkspecial(pfn_pte(pfn, prot));
2181         set_pte_at(mm, addr, pte, entry);
2182         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2183
2184         retval = 0;
2185 out_unlock:
2186         pte_unmap_unlock(pte, ptl);
2187 out:
2188         return retval;
2189 }
2190
2191 /**
2192  * vm_insert_pfn - insert single pfn into user vma
2193  * @vma: user vma to map to
2194  * @addr: target user address of this page
2195  * @pfn: source kernel pfn
2196  *
2197  * Similar to vm_insert_page, this allows drivers to insert individual pages
2198  * they've allocated into a user vma. Same comments apply.
2199  *
2200  * This function should only be called from a vm_ops->fault handler, and
2201  * in that case the handler should return NULL.
2202  *
2203  * vma cannot be a COW mapping.
2204  *
2205  * As this is called only for pages that do not currently exist, we
2206  * do not need to flush old virtual caches or the TLB.
2207  */
2208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2209                         unsigned long pfn)
2210 {
2211         int ret;
2212         pgprot_t pgprot = vma->vm_page_prot;
2213         /*
2214          * Technically, architectures with pte_special can avoid all these
2215          * restrictions (same for remap_pfn_range).  However we would like
2216          * consistency in testing and feature parity among all, so we should
2217          * try to keep these invariants in place for everybody.
2218          */
2219         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2220         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2221                                                 (VM_PFNMAP|VM_MIXEDMAP));
2222         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2223         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2224
2225         if (addr < vma->vm_start || addr >= vma->vm_end)
2226                 return -EFAULT;
2227         if (track_pfn_insert(vma, &pgprot, pfn))
2228                 return -EINVAL;
2229
2230         ret = insert_pfn(vma, addr, pfn, pgprot);
2231
2232         return ret;
2233 }
2234 EXPORT_SYMBOL(vm_insert_pfn);
2235
2236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2237                         unsigned long pfn)
2238 {
2239         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2240
2241         if (addr < vma->vm_start || addr >= vma->vm_end)
2242                 return -EFAULT;
2243
2244         /*
2245          * If we don't have pte special, then we have to use the pfn_valid()
2246          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2247          * refcount the page if pfn_valid is true (hence insert_page rather
2248          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2249          * without pte special, it would there be refcounted as a normal page.
2250          */
2251         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2252                 struct page *page;
2253
2254                 page = pfn_to_page(pfn);
2255                 return insert_page(vma, addr, page, vma->vm_page_prot);
2256         }
2257         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vm_insert_mixed);
2260
2261 /*
2262  * maps a range of physical memory into the requested pages. the old
2263  * mappings are removed. any references to nonexistent pages results
2264  * in null mappings (currently treated as "copy-on-access")
2265  */
2266 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2267                         unsigned long addr, unsigned long end,
2268                         unsigned long pfn, pgprot_t prot)
2269 {
2270         pte_t *pte;
2271         spinlock_t *ptl;
2272
2273         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2274         if (!pte)
2275                 return -ENOMEM;
2276         arch_enter_lazy_mmu_mode();
2277         do {
2278                 BUG_ON(!pte_none(*pte));
2279                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2280                 pfn++;
2281         } while (pte++, addr += PAGE_SIZE, addr != end);
2282         arch_leave_lazy_mmu_mode();
2283         pte_unmap_unlock(pte - 1, ptl);
2284         return 0;
2285 }
2286
2287 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2288                         unsigned long addr, unsigned long end,
2289                         unsigned long pfn, pgprot_t prot)
2290 {
2291         pmd_t *pmd;
2292         unsigned long next;
2293
2294         pfn -= addr >> PAGE_SHIFT;
2295         pmd = pmd_alloc(mm, pud, addr);
2296         if (!pmd)
2297                 return -ENOMEM;
2298         VM_BUG_ON(pmd_trans_huge(*pmd));
2299         do {
2300                 next = pmd_addr_end(addr, end);
2301                 if (remap_pte_range(mm, pmd, addr, next,
2302                                 pfn + (addr >> PAGE_SHIFT), prot))
2303                         return -ENOMEM;
2304         } while (pmd++, addr = next, addr != end);
2305         return 0;
2306 }
2307
2308 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2309                         unsigned long addr, unsigned long end,
2310                         unsigned long pfn, pgprot_t prot)
2311 {
2312         pud_t *pud;
2313         unsigned long next;
2314
2315         pfn -= addr >> PAGE_SHIFT;
2316         pud = pud_alloc(mm, pgd, addr);
2317         if (!pud)
2318                 return -ENOMEM;
2319         do {
2320                 next = pud_addr_end(addr, end);
2321                 if (remap_pmd_range(mm, pud, addr, next,
2322                                 pfn + (addr >> PAGE_SHIFT), prot))
2323                         return -ENOMEM;
2324         } while (pud++, addr = next, addr != end);
2325         return 0;
2326 }
2327
2328 /**
2329  * remap_pfn_range - remap kernel memory to userspace
2330  * @vma: user vma to map to
2331  * @addr: target user address to start at
2332  * @pfn: physical address of kernel memory
2333  * @size: size of map area
2334  * @prot: page protection flags for this mapping
2335  *
2336  *  Note: this is only safe if the mm semaphore is held when called.
2337  */
2338 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2339                     unsigned long pfn, unsigned long size, pgprot_t prot)
2340 {
2341         pgd_t *pgd;
2342         unsigned long next;
2343         unsigned long end = addr + PAGE_ALIGN(size);
2344         struct mm_struct *mm = vma->vm_mm;
2345         int err;
2346
2347         /*
2348          * Physically remapped pages are special. Tell the
2349          * rest of the world about it:
2350          *   VM_IO tells people not to look at these pages
2351          *      (accesses can have side effects).
2352          *   VM_PFNMAP tells the core MM that the base pages are just
2353          *      raw PFN mappings, and do not have a "struct page" associated
2354          *      with them.
2355          *   VM_DONTEXPAND
2356          *      Disable vma merging and expanding with mremap().
2357          *   VM_DONTDUMP
2358          *      Omit vma from core dump, even when VM_IO turned off.
2359          *
2360          * There's a horrible special case to handle copy-on-write
2361          * behaviour that some programs depend on. We mark the "original"
2362          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2363          * See vm_normal_page() for details.
2364          */
2365         if (is_cow_mapping(vma->vm_flags)) {
2366                 if (addr != vma->vm_start || end != vma->vm_end)
2367                         return -EINVAL;
2368                 vma->vm_pgoff = pfn;
2369         }
2370
2371         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2372         if (err)
2373                 return -EINVAL;
2374
2375         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2376
2377         BUG_ON(addr >= end);
2378         pfn -= addr >> PAGE_SHIFT;
2379         pgd = pgd_offset(mm, addr);
2380         flush_cache_range(vma, addr, end);
2381         do {
2382                 next = pgd_addr_end(addr, end);
2383                 err = remap_pud_range(mm, pgd, addr, next,
2384                                 pfn + (addr >> PAGE_SHIFT), prot);
2385                 if (err)
2386                         break;
2387         } while (pgd++, addr = next, addr != end);
2388
2389         if (err)
2390                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2391
2392         return err;
2393 }
2394 EXPORT_SYMBOL(remap_pfn_range);
2395
2396 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2397                                      unsigned long addr, unsigned long end,
2398                                      pte_fn_t fn, void *data)
2399 {
2400         pte_t *pte;
2401         int err;
2402         pgtable_t token;
2403         spinlock_t *uninitialized_var(ptl);
2404
2405         pte = (mm == &init_mm) ?
2406                 pte_alloc_kernel(pmd, addr) :
2407                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2408         if (!pte)
2409                 return -ENOMEM;
2410
2411         BUG_ON(pmd_huge(*pmd));
2412
2413         arch_enter_lazy_mmu_mode();
2414
2415         token = pmd_pgtable(*pmd);
2416
2417         do {
2418                 err = fn(pte++, token, addr, data);
2419                 if (err)
2420                         break;
2421         } while (addr += PAGE_SIZE, addr != end);
2422
2423         arch_leave_lazy_mmu_mode();
2424
2425         if (mm != &init_mm)
2426                 pte_unmap_unlock(pte-1, ptl);
2427         return err;
2428 }
2429
2430 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2431                                      unsigned long addr, unsigned long end,
2432                                      pte_fn_t fn, void *data)
2433 {
2434         pmd_t *pmd;
2435         unsigned long next;
2436         int err;
2437
2438         BUG_ON(pud_huge(*pud));
2439
2440         pmd = pmd_alloc(mm, pud, addr);
2441         if (!pmd)
2442                 return -ENOMEM;
2443         do {
2444                 next = pmd_addr_end(addr, end);
2445                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2446                 if (err)
2447                         break;
2448         } while (pmd++, addr = next, addr != end);
2449         return err;
2450 }
2451
2452 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2453                                      unsigned long addr, unsigned long end,
2454                                      pte_fn_t fn, void *data)
2455 {
2456         pud_t *pud;
2457         unsigned long next;
2458         int err;
2459
2460         pud = pud_alloc(mm, pgd, addr);
2461         if (!pud)
2462                 return -ENOMEM;
2463         do {
2464                 next = pud_addr_end(addr, end);
2465                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2466                 if (err)
2467                         break;
2468         } while (pud++, addr = next, addr != end);
2469         return err;
2470 }
2471
2472 /*
2473  * Scan a region of virtual memory, filling in page tables as necessary
2474  * and calling a provided function on each leaf page table.
2475  */
2476 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2477                         unsigned long size, pte_fn_t fn, void *data)
2478 {
2479         pgd_t *pgd;
2480         unsigned long next;
2481         unsigned long end = addr + size;
2482         int err;
2483
2484         BUG_ON(addr >= end);
2485         pgd = pgd_offset(mm, addr);
2486         do {
2487                 next = pgd_addr_end(addr, end);
2488                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2489                 if (err)
2490                         break;
2491         } while (pgd++, addr = next, addr != end);
2492
2493         return err;
2494 }
2495 EXPORT_SYMBOL_GPL(apply_to_page_range);
2496
2497 /*
2498  * handle_pte_fault chooses page fault handler according to an entry
2499  * which was read non-atomically.  Before making any commitment, on
2500  * those architectures or configurations (e.g. i386 with PAE) which
2501  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2502  * must check under lock before unmapping the pte and proceeding
2503  * (but do_wp_page is only called after already making such a check;
2504  * and do_anonymous_page can safely check later on).
2505  */
2506 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2507                                 pte_t *page_table, pte_t orig_pte)
2508 {
2509         int same = 1;
2510 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2511         if (sizeof(pte_t) > sizeof(unsigned long)) {
2512                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2513                 spin_lock(ptl);
2514                 same = pte_same(*page_table, orig_pte);
2515                 spin_unlock(ptl);
2516         }
2517 #endif
2518         pte_unmap(page_table);
2519         return same;
2520 }
2521
2522 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2523 {
2524         /*
2525          * If the source page was a PFN mapping, we don't have
2526          * a "struct page" for it. We do a best-effort copy by
2527          * just copying from the original user address. If that
2528          * fails, we just zero-fill it. Live with it.
2529          */
2530         if (unlikely(!src)) {
2531                 void *kaddr = kmap_atomic(dst);
2532                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2533
2534                 /*
2535                  * This really shouldn't fail, because the page is there
2536                  * in the page tables. But it might just be unreadable,
2537                  * in which case we just give up and fill the result with
2538                  * zeroes.
2539                  */
2540                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2541                         clear_page(kaddr);
2542                 kunmap_atomic(kaddr);
2543                 flush_dcache_page(dst);
2544         } else
2545                 copy_user_highpage(dst, src, va, vma);
2546 }
2547
2548 /*
2549  * This routine handles present pages, when users try to write
2550  * to a shared page. It is done by copying the page to a new address
2551  * and decrementing the shared-page counter for the old page.
2552  *
2553  * Note that this routine assumes that the protection checks have been
2554  * done by the caller (the low-level page fault routine in most cases).
2555  * Thus we can safely just mark it writable once we've done any necessary
2556  * COW.
2557  *
2558  * We also mark the page dirty at this point even though the page will
2559  * change only once the write actually happens. This avoids a few races,
2560  * and potentially makes it more efficient.
2561  *
2562  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563  * but allow concurrent faults), with pte both mapped and locked.
2564  * We return with mmap_sem still held, but pte unmapped and unlocked.
2565  */
2566 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2567                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2568                 spinlock_t *ptl, pte_t orig_pte)
2569         __releases(ptl)
2570 {
2571         struct page *old_page, *new_page = NULL;
2572         pte_t entry;
2573         int ret = 0;
2574         int page_mkwrite = 0;
2575         struct page *dirty_page = NULL;
2576         unsigned long mmun_start;       /* For mmu_notifiers */
2577         unsigned long mmun_end;         /* For mmu_notifiers */
2578         bool mmun_called = false;       /* For mmu_notifiers */
2579
2580         old_page = vm_normal_page(vma, address, orig_pte);
2581         if (!old_page) {
2582                 /*
2583                  * VM_MIXEDMAP !pfn_valid() case
2584                  *
2585                  * We should not cow pages in a shared writeable mapping.
2586                  * Just mark the pages writable as we can't do any dirty
2587                  * accounting on raw pfn maps.
2588                  */
2589                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2590                                      (VM_WRITE|VM_SHARED))
2591                         goto reuse;
2592                 goto gotten;
2593         }
2594
2595         /*
2596          * Take out anonymous pages first, anonymous shared vmas are
2597          * not dirty accountable.
2598          */
2599         if (PageAnon(old_page) && !PageKsm(old_page)) {
2600                 if (!trylock_page(old_page)) {
2601                         page_cache_get(old_page);
2602                         pte_unmap_unlock(page_table, ptl);
2603                         lock_page(old_page);
2604                         page_table = pte_offset_map_lock(mm, pmd, address,
2605                                                          &ptl);
2606                         if (!pte_same(*page_table, orig_pte)) {
2607                                 unlock_page(old_page);
2608                                 goto unlock;
2609                         }
2610                         page_cache_release(old_page);
2611                 }
2612                 if (reuse_swap_page(old_page)) {
2613                         /*
2614                          * The page is all ours.  Move it to our anon_vma so
2615                          * the rmap code will not search our parent or siblings.
2616                          * Protected against the rmap code by the page lock.
2617                          */
2618                         page_move_anon_rmap(old_page, vma, address);
2619                         unlock_page(old_page);
2620                         goto reuse;
2621                 }
2622                 unlock_page(old_page);
2623         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2624                                         (VM_WRITE|VM_SHARED))) {
2625                 /*
2626                  * Only catch write-faults on shared writable pages,
2627                  * read-only shared pages can get COWed by
2628                  * get_user_pages(.write=1, .force=1).
2629                  */
2630                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2631                         struct vm_fault vmf;
2632                         int tmp;
2633
2634                         vmf.virtual_address = (void __user *)(address &
2635                                                                 PAGE_MASK);
2636                         vmf.pgoff = old_page->index;
2637                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2638                         vmf.page = old_page;
2639
2640                         /*
2641                          * Notify the address space that the page is about to
2642                          * become writable so that it can prohibit this or wait
2643                          * for the page to get into an appropriate state.
2644                          *
2645                          * We do this without the lock held, so that it can
2646                          * sleep if it needs to.
2647                          */
2648                         page_cache_get(old_page);
2649                         pte_unmap_unlock(page_table, ptl);
2650
2651                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2652                         if (unlikely(tmp &
2653                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2654                                 ret = tmp;
2655                                 goto unwritable_page;
2656                         }
2657                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2658                                 lock_page(old_page);
2659                                 if (!old_page->mapping) {
2660                                         ret = 0; /* retry the fault */
2661                                         unlock_page(old_page);
2662                                         goto unwritable_page;
2663                                 }
2664                         } else
2665                                 VM_BUG_ON(!PageLocked(old_page));
2666
2667                         /*
2668                          * Since we dropped the lock we need to revalidate
2669                          * the PTE as someone else may have changed it.  If
2670                          * they did, we just return, as we can count on the
2671                          * MMU to tell us if they didn't also make it writable.
2672                          */
2673                         page_table = pte_offset_map_lock(mm, pmd, address,
2674                                                          &ptl);
2675                         if (!pte_same(*page_table, orig_pte)) {
2676                                 unlock_page(old_page);
2677                                 goto unlock;
2678                         }
2679
2680                         page_mkwrite = 1;
2681                 }
2682                 dirty_page = old_page;
2683                 get_page(dirty_page);
2684
2685 reuse:
2686                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2687                 entry = pte_mkyoung(orig_pte);
2688                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2689                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2690                         update_mmu_cache(vma, address, page_table);
2691                 pte_unmap_unlock(page_table, ptl);
2692                 ret |= VM_FAULT_WRITE;
2693
2694                 if (!dirty_page)
2695                         return ret;
2696
2697                 /*
2698                  * Yes, Virginia, this is actually required to prevent a race
2699                  * with clear_page_dirty_for_io() from clearing the page dirty
2700                  * bit after it clear all dirty ptes, but before a racing
2701                  * do_wp_page installs a dirty pte.
2702                  *
2703                  * __do_fault is protected similarly.
2704                  */
2705                 if (!page_mkwrite) {
2706                         wait_on_page_locked(dirty_page);
2707                         set_page_dirty_balance(dirty_page, page_mkwrite);
2708                         /* file_update_time outside page_lock */
2709                         if (vma->vm_file)
2710                                 file_update_time(vma->vm_file);
2711                 }
2712                 put_page(dirty_page);
2713                 if (page_mkwrite) {
2714                         struct address_space *mapping = dirty_page->mapping;
2715
2716                         set_page_dirty(dirty_page);
2717                         unlock_page(dirty_page);
2718                         page_cache_release(dirty_page);
2719                         if (mapping)    {
2720                                 /*
2721                                  * Some device drivers do not set page.mapping
2722                                  * but still dirty their pages
2723                                  */
2724                                 balance_dirty_pages_ratelimited(mapping);
2725                         }
2726                 }
2727
2728                 return ret;
2729         }
2730
2731         /*
2732          * Ok, we need to copy. Oh, well..
2733          */
2734         page_cache_get(old_page);
2735 gotten:
2736         pte_unmap_unlock(page_table, ptl);
2737
2738         if (unlikely(anon_vma_prepare(vma)))
2739                 goto oom;
2740
2741         if (is_zero_pfn(pte_pfn(orig_pte))) {
2742                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2743                 if (!new_page)
2744                         goto oom;
2745         } else {
2746                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2747                 if (!new_page)
2748                         goto oom;
2749                 cow_user_page(new_page, old_page, address, vma);
2750         }
2751         __SetPageUptodate(new_page);
2752
2753         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2754                 goto oom_free_new;
2755
2756         mmun_start  = address & PAGE_MASK;
2757         mmun_end    = (address & PAGE_MASK) + PAGE_SIZE;
2758         mmun_called = true;
2759         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2760
2761         /*
2762          * Re-check the pte - we dropped the lock
2763          */
2764         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2765         if (likely(pte_same(*page_table, orig_pte))) {
2766                 if (old_page) {
2767                         if (!PageAnon(old_page)) {
2768                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2769                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2770                         }
2771                 } else
2772                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2773                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2774                 entry = mk_pte(new_page, vma->vm_page_prot);
2775                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2776                 /*
2777                  * Clear the pte entry and flush it first, before updating the
2778                  * pte with the new entry. This will avoid a race condition
2779                  * seen in the presence of one thread doing SMC and another
2780                  * thread doing COW.
2781                  */
2782                 ptep_clear_flush(vma, address, page_table);
2783                 page_add_new_anon_rmap(new_page, vma, address);
2784                 /*
2785                  * We call the notify macro here because, when using secondary
2786                  * mmu page tables (such as kvm shadow page tables), we want the
2787                  * new page to be mapped directly into the secondary page table.
2788                  */
2789                 set_pte_at_notify(mm, address, page_table, entry);
2790                 update_mmu_cache(vma, address, page_table);
2791                 if (old_page) {
2792                         /*
2793                          * Only after switching the pte to the new page may
2794                          * we remove the mapcount here. Otherwise another
2795                          * process may come and find the rmap count decremented
2796                          * before the pte is switched to the new page, and
2797                          * "reuse" the old page writing into it while our pte
2798                          * here still points into it and can be read by other
2799                          * threads.
2800                          *
2801                          * The critical issue is to order this
2802                          * page_remove_rmap with the ptp_clear_flush above.
2803                          * Those stores are ordered by (if nothing else,)
2804                          * the barrier present in the atomic_add_negative
2805                          * in page_remove_rmap.
2806                          *
2807                          * Then the TLB flush in ptep_clear_flush ensures that
2808                          * no process can access the old page before the
2809                          * decremented mapcount is visible. And the old page
2810                          * cannot be reused until after the decremented
2811                          * mapcount is visible. So transitively, TLBs to
2812                          * old page will be flushed before it can be reused.
2813                          */
2814                         page_remove_rmap(old_page);
2815                 }
2816
2817                 /* Free the old page.. */
2818                 new_page = old_page;
2819                 ret |= VM_FAULT_WRITE;
2820         } else
2821                 mem_cgroup_uncharge_page(new_page);
2822
2823         if (new_page)
2824                 page_cache_release(new_page);
2825 unlock:
2826         pte_unmap_unlock(page_table, ptl);
2827         if (mmun_called)
2828                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2829         if (old_page) {
2830                 /*
2831                  * Don't let another task, with possibly unlocked vma,
2832                  * keep the mlocked page.
2833                  */
2834                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2835                         lock_page(old_page);    /* LRU manipulation */
2836                         munlock_vma_page(old_page);
2837                         unlock_page(old_page);
2838                 }
2839                 page_cache_release(old_page);
2840         }
2841         return ret;
2842 oom_free_new:
2843         page_cache_release(new_page);
2844 oom:
2845         if (old_page) {
2846                 if (page_mkwrite) {
2847                         unlock_page(old_page);
2848                         page_cache_release(old_page);
2849                 }
2850                 page_cache_release(old_page);
2851         }
2852         return VM_FAULT_OOM;
2853
2854 unwritable_page:
2855         page_cache_release(old_page);
2856         return ret;
2857 }
2858
2859 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2860                 unsigned long start_addr, unsigned long end_addr,
2861                 struct zap_details *details)
2862 {
2863         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2864 }
2865
2866 static inline void unmap_mapping_range_tree(struct rb_root *root,
2867                                             struct zap_details *details)
2868 {
2869         struct vm_area_struct *vma;
2870         pgoff_t vba, vea, zba, zea;
2871
2872         vma_interval_tree_foreach(vma, root,
2873                         details->first_index, details->last_index) {
2874
2875                 vba = vma->vm_pgoff;
2876                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2877                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2878                 zba = details->first_index;
2879                 if (zba < vba)
2880                         zba = vba;
2881                 zea = details->last_index;
2882                 if (zea > vea)
2883                         zea = vea;
2884
2885                 unmap_mapping_range_vma(vma,
2886                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2887                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2888                                 details);
2889         }
2890 }
2891
2892 static inline void unmap_mapping_range_list(struct list_head *head,
2893                                             struct zap_details *details)
2894 {
2895         struct vm_area_struct *vma;
2896
2897         /*
2898          * In nonlinear VMAs there is no correspondence between virtual address
2899          * offset and file offset.  So we must perform an exhaustive search
2900          * across *all* the pages in each nonlinear VMA, not just the pages
2901          * whose virtual address lies outside the file truncation point.
2902          */
2903         list_for_each_entry(vma, head, shared.nonlinear) {
2904                 details->nonlinear_vma = vma;
2905                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2906         }
2907 }
2908
2909 /**
2910  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2911  * @mapping: the address space containing mmaps to be unmapped.
2912  * @holebegin: byte in first page to unmap, relative to the start of
2913  * the underlying file.  This will be rounded down to a PAGE_SIZE
2914  * boundary.  Note that this is different from truncate_pagecache(), which
2915  * must keep the partial page.  In contrast, we must get rid of
2916  * partial pages.
2917  * @holelen: size of prospective hole in bytes.  This will be rounded
2918  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2919  * end of the file.
2920  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2921  * but 0 when invalidating pagecache, don't throw away private data.
2922  */
2923 void unmap_mapping_range(struct address_space *mapping,
2924                 loff_t const holebegin, loff_t const holelen, int even_cows)
2925 {
2926         struct zap_details details;
2927         pgoff_t hba = holebegin >> PAGE_SHIFT;
2928         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2929
2930         /* Check for overflow. */
2931         if (sizeof(holelen) > sizeof(hlen)) {
2932                 long long holeend =
2933                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2934                 if (holeend & ~(long long)ULONG_MAX)
2935                         hlen = ULONG_MAX - hba + 1;
2936         }
2937
2938         details.check_mapping = even_cows? NULL: mapping;
2939         details.nonlinear_vma = NULL;
2940         details.first_index = hba;
2941         details.last_index = hba + hlen - 1;
2942         if (details.last_index < details.first_index)
2943                 details.last_index = ULONG_MAX;
2944
2945
2946         mutex_lock(&mapping->i_mmap_mutex);
2947         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2948                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2949         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2950                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2951         mutex_unlock(&mapping->i_mmap_mutex);
2952 }
2953 EXPORT_SYMBOL(unmap_mapping_range);
2954
2955 /*
2956  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2957  * but allow concurrent faults), and pte mapped but not yet locked.
2958  * We return with mmap_sem still held, but pte unmapped and unlocked.
2959  */
2960 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2961                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2962                 unsigned int flags, pte_t orig_pte)
2963 {
2964         spinlock_t *ptl;
2965         struct page *page, *swapcache = NULL;
2966         swp_entry_t entry;
2967         pte_t pte;
2968         int locked;
2969         struct mem_cgroup *ptr;
2970         int exclusive = 0;
2971         int ret = 0;
2972
2973         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2974                 goto out;
2975
2976         entry = pte_to_swp_entry(orig_pte);
2977         if (unlikely(non_swap_entry(entry))) {
2978                 if (is_migration_entry(entry)) {
2979                         migration_entry_wait(mm, pmd, address);
2980                 } else if (is_hwpoison_entry(entry)) {
2981                         ret = VM_FAULT_HWPOISON;
2982                 } else {
2983                         print_bad_pte(vma, address, orig_pte, NULL);
2984                         ret = VM_FAULT_SIGBUS;
2985                 }
2986                 goto out;
2987         }
2988         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2989         page = lookup_swap_cache(entry);
2990         if (!page) {
2991                 page = swapin_readahead(entry,
2992                                         GFP_HIGHUSER_MOVABLE, vma, address);
2993                 if (!page) {
2994                         /*
2995                          * Back out if somebody else faulted in this pte
2996                          * while we released the pte lock.
2997                          */
2998                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2999                         if (likely(pte_same(*page_table, orig_pte)))
3000                                 ret = VM_FAULT_OOM;
3001                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3002                         goto unlock;
3003                 }
3004
3005                 /* Had to read the page from swap area: Major fault */
3006                 ret = VM_FAULT_MAJOR;
3007                 count_vm_event(PGMAJFAULT);
3008                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3009         } else if (PageHWPoison(page)) {
3010                 /*
3011                  * hwpoisoned dirty swapcache pages are kept for killing
3012                  * owner processes (which may be unknown at hwpoison time)
3013                  */
3014                 ret = VM_FAULT_HWPOISON;
3015                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3016                 goto out_release;
3017         } else if (!(flags & FAULT_FLAG_TRIED))
3018                 swap_cache_hit(vma);
3019
3020         locked = lock_page_or_retry(page, mm, flags);
3021
3022         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3023         if (!locked) {
3024                 ret |= VM_FAULT_RETRY;
3025                 goto out_release;
3026         }
3027
3028         /*
3029          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3030          * release the swapcache from under us.  The page pin, and pte_same
3031          * test below, are not enough to exclude that.  Even if it is still
3032          * swapcache, we need to check that the page's swap has not changed.
3033          */
3034         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3035                 goto out_page;
3036
3037         if (ksm_might_need_to_copy(page, vma, address)) {
3038                 swapcache = page;
3039                 page = ksm_does_need_to_copy(page, vma, address);
3040
3041                 if (unlikely(!page)) {
3042                         ret = VM_FAULT_OOM;
3043                         page = swapcache;
3044                         swapcache = NULL;
3045                         goto out_page;
3046                 }
3047         }
3048
3049         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3050                 ret = VM_FAULT_OOM;
3051                 goto out_page;
3052         }
3053
3054         /*
3055          * Back out if somebody else already faulted in this pte.
3056          */
3057         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3058         if (unlikely(!pte_same(*page_table, orig_pte)))
3059                 goto out_nomap;
3060
3061         if (unlikely(!PageUptodate(page))) {
3062                 ret = VM_FAULT_SIGBUS;
3063                 goto out_nomap;
3064         }
3065
3066         /*
3067          * The page isn't present yet, go ahead with the fault.
3068          *
3069          * Be careful about the sequence of operations here.
3070          * To get its accounting right, reuse_swap_page() must be called
3071          * while the page is counted on swap but not yet in mapcount i.e.
3072          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073          * must be called after the swap_free(), or it will never succeed.
3074          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3075          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3076          * in page->private. In this case, a record in swap_cgroup  is silently
3077          * discarded at swap_free().
3078          */
3079
3080         inc_mm_counter_fast(mm, MM_ANONPAGES);
3081         dec_mm_counter_fast(mm, MM_SWAPENTS);
3082         pte = mk_pte(page, vma->vm_page_prot);
3083         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3084                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3085                 flags &= ~FAULT_FLAG_WRITE;
3086                 ret |= VM_FAULT_WRITE;
3087                 exclusive = 1;
3088         }
3089         flush_icache_page(vma, page);
3090         set_pte_at(mm, address, page_table, pte);
3091         do_page_add_anon_rmap(page, vma, address, exclusive);
3092         /* It's better to call commit-charge after rmap is established */
3093         mem_cgroup_commit_charge_swapin(page, ptr);
3094
3095         swap_free(entry);
3096         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3097                 try_to_free_swap(page);
3098         unlock_page(page);
3099         if (swapcache) {
3100                 /*
3101                  * Hold the lock to avoid the swap entry to be reused
3102                  * until we take the PT lock for the pte_same() check
3103                  * (to avoid false positives from pte_same). For
3104                  * further safety release the lock after the swap_free
3105                  * so that the swap count won't change under a
3106                  * parallel locked swapcache.
3107                  */
3108                 unlock_page(swapcache);
3109                 page_cache_release(swapcache);
3110         }
3111
3112         if (flags & FAULT_FLAG_WRITE) {
3113                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3114                 if (ret & VM_FAULT_ERROR)
3115                         ret &= VM_FAULT_ERROR;
3116                 goto out;
3117         }
3118
3119         /* No need to invalidate - it was non-present before */
3120         update_mmu_cache(vma, address, page_table);
3121 unlock:
3122         pte_unmap_unlock(page_table, ptl);
3123 out:
3124         return ret;
3125 out_nomap:
3126         mem_cgroup_cancel_charge_swapin(ptr);
3127         pte_unmap_unlock(page_table, ptl);
3128 out_page:
3129         unlock_page(page);
3130 out_release:
3131         page_cache_release(page);
3132         if (swapcache) {
3133                 unlock_page(swapcache);
3134                 page_cache_release(swapcache);
3135         }
3136         return ret;
3137 }
3138
3139 /*
3140  * This is like a special single-page "expand_{down|up}wards()",
3141  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3142  * doesn't hit another vma.
3143  */
3144 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3145 {
3146         address &= PAGE_MASK;
3147         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3148                 struct vm_area_struct *prev = vma->vm_prev;
3149
3150                 /*
3151                  * Is there a mapping abutting this one below?
3152                  *
3153                  * That's only ok if it's the same stack mapping
3154                  * that has gotten split..
3155                  */
3156                 if (prev && prev->vm_end == address)
3157                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3158
3159                 expand_downwards(vma, address - PAGE_SIZE);
3160         }
3161         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3162                 struct vm_area_struct *next = vma->vm_next;
3163
3164                 /* As VM_GROWSDOWN but s/below/above/ */
3165                 if (next && next->vm_start == address + PAGE_SIZE)
3166                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3167
3168                 expand_upwards(vma, address + PAGE_SIZE);
3169         }
3170         return 0;
3171 }
3172
3173 /*
3174  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3175  * but allow concurrent faults), and pte mapped but not yet locked.
3176  * We return with mmap_sem still held, but pte unmapped and unlocked.
3177  */
3178 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3179                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3180                 unsigned int flags)
3181 {
3182         struct page *page;
3183         spinlock_t *ptl;
3184         pte_t entry;
3185
3186         pte_unmap(page_table);
3187
3188         /* Check if we need to add a guard page to the stack */
3189         if (check_stack_guard_page(vma, address) < 0)
3190                 return VM_FAULT_SIGBUS;
3191
3192         /* Use the zero-page for reads */
3193         if (!(flags & FAULT_FLAG_WRITE)) {
3194                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3195                                                 vma->vm_page_prot));
3196                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3197                 if (!pte_none(*page_table))
3198                         goto unlock;
3199                 goto setpte;
3200         }
3201
3202         /* Allocate our own private page. */
3203         if (unlikely(anon_vma_prepare(vma)))
3204                 goto oom;
3205         page = alloc_zeroed_user_highpage_movable(vma, address);
3206         if (!page)
3207                 goto oom;
3208         __SetPageUptodate(page);
3209
3210         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3211                 goto oom_free_page;
3212
3213         entry = mk_pte(page, vma->vm_page_prot);
3214         if (vma->vm_flags & VM_WRITE)
3215                 entry = pte_mkwrite(pte_mkdirty(entry));
3216
3217         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3218         if (!pte_none(*page_table))
3219                 goto release;
3220
3221         inc_mm_counter_fast(mm, MM_ANONPAGES);
3222         page_add_new_anon_rmap(page, vma, address);
3223 setpte:
3224         set_pte_at(mm, address, page_table, entry);
3225
3226         /* No need to invalidate - it was non-present before */
3227         update_mmu_cache(vma, address, page_table);
3228 unlock:
3229         pte_unmap_unlock(page_table, ptl);
3230         return 0;
3231 release:
3232         mem_cgroup_uncharge_page(page);
3233         page_cache_release(page);
3234         goto unlock;
3235 oom_free_page:
3236         page_cache_release(page);
3237 oom:
3238         return VM_FAULT_OOM;
3239 }
3240
3241 /*
3242  * __do_fault() tries to create a new page mapping. It aggressively
3243  * tries to share with existing pages, but makes a separate copy if
3244  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3245  * the next page fault.
3246  *
3247  * As this is called only for pages that do not currently exist, we
3248  * do not need to flush old virtual caches or the TLB.
3249  *
3250  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3251  * but allow concurrent faults), and pte neither mapped nor locked.
3252  * We return with mmap_sem still held, but pte unmapped and unlocked.
3253  */
3254 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3255                 unsigned long address, pmd_t *pmd,
3256                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3257 {
3258         pte_t *page_table;
3259         spinlock_t *ptl;
3260         struct page *page;
3261         struct page *cow_page;
3262         pte_t entry;
3263         int anon = 0;
3264         struct page *dirty_page = NULL;
3265         struct vm_fault vmf;
3266         int ret;
3267         int page_mkwrite = 0;
3268
3269         /*
3270          * If we do COW later, allocate page befor taking lock_page()
3271          * on the file cache page. This will reduce lock holding time.
3272          */
3273         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3274
3275                 if (unlikely(anon_vma_prepare(vma)))
3276                         return VM_FAULT_OOM;
3277
3278                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3279                 if (!cow_page)
3280                         return VM_FAULT_OOM;
3281
3282                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3283                         page_cache_release(cow_page);
3284                         return VM_FAULT_OOM;
3285                 }
3286         } else
3287                 cow_page = NULL;
3288
3289         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3290         vmf.pgoff = pgoff;
3291         vmf.flags = flags;
3292         vmf.page = NULL;
3293
3294         ret = vma->vm_ops->fault(vma, &vmf);
3295         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3296                             VM_FAULT_RETRY)))
3297                 goto uncharge_out;
3298
3299         if (unlikely(PageHWPoison(vmf.page))) {
3300                 if (ret & VM_FAULT_LOCKED)
3301                         unlock_page(vmf.page);
3302                 ret = VM_FAULT_HWPOISON;
3303                 goto uncharge_out;
3304         }
3305
3306         /*
3307          * For consistency in subsequent calls, make the faulted page always
3308          * locked.
3309          */
3310         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3311                 lock_page(vmf.page);
3312         else
3313                 VM_BUG_ON(!PageLocked(vmf.page));
3314
3315         /*
3316          * Should we do an early C-O-W break?
3317          */
3318         page = vmf.page;
3319         if (flags & FAULT_FLAG_WRITE) {
3320                 if (!(vma->vm_flags & VM_SHARED)) {
3321                         page = cow_page;
3322                         anon = 1;
3323                         copy_user_highpage(page, vmf.page, address, vma);
3324                         __SetPageUptodate(page);
3325                 } else {
3326                         /*
3327                          * If the page will be shareable, see if the backing
3328                          * address space wants to know that the page is about
3329                          * to become writable
3330                          */
3331                         if (vma->vm_ops->page_mkwrite) {
3332                                 int tmp;
3333
3334                                 unlock_page(page);
3335                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3336                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3337                                 if (unlikely(tmp &
3338                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3339                                         ret = tmp;
3340                                         goto unwritable_page;
3341                                 }
3342                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3343                                         lock_page(page);
3344                                         if (!page->mapping) {
3345                                                 ret = 0; /* retry the fault */
3346                                                 unlock_page(page);
3347                                                 goto unwritable_page;
3348                                         }
3349                                 } else
3350                                         VM_BUG_ON(!PageLocked(page));
3351                                 page_mkwrite = 1;
3352                         }
3353                 }
3354
3355         }
3356
3357         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3358
3359         /*
3360          * This silly early PAGE_DIRTY setting removes a race
3361          * due to the bad i386 page protection. But it's valid
3362          * for other architectures too.
3363          *
3364          * Note that if FAULT_FLAG_WRITE is set, we either now have
3365          * an exclusive copy of the page, or this is a shared mapping,
3366          * so we can make it writable and dirty to avoid having to
3367          * handle that later.
3368          */
3369         /* Only go through if we didn't race with anybody else... */
3370         if (likely(pte_same(*page_table, orig_pte))) {
3371                 flush_icache_page(vma, page);
3372                 entry = mk_pte(page, vma->vm_page_prot);
3373                 if (flags & FAULT_FLAG_WRITE)
3374                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3375                 if (anon) {
3376                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3377                         page_add_new_anon_rmap(page, vma, address);
3378                 } else {
3379                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3380                         page_add_file_rmap(page);
3381                         if (flags & FAULT_FLAG_WRITE) {
3382                                 dirty_page = page;
3383                                 get_page(dirty_page);
3384                         }
3385                 }
3386                 set_pte_at(mm, address, page_table, entry);
3387
3388                 /* no need to invalidate: a not-present page won't be cached */
3389                 update_mmu_cache(vma, address, page_table);
3390         } else {
3391                 if (cow_page)
3392                         mem_cgroup_uncharge_page(cow_page);
3393                 if (anon)
3394                         page_cache_release(page);
3395                 else
3396                         anon = 1; /* no anon but release faulted_page */
3397         }
3398
3399         pte_unmap_unlock(page_table, ptl);
3400
3401         if (dirty_page) {
3402                 struct address_space *mapping = page->mapping;
3403                 int dirtied = 0;
3404
3405                 if (set_page_dirty(dirty_page))
3406                         dirtied = 1;
3407                 unlock_page(dirty_page);
3408                 put_page(dirty_page);
3409                 if ((dirtied || page_mkwrite) && mapping) {
3410                         /*
3411                          * Some device drivers do not set page.mapping but still
3412                          * dirty their pages
3413                          */
3414                         balance_dirty_pages_ratelimited(mapping);
3415                 }
3416
3417                 /* file_update_time outside page_lock */
3418                 if (vma->vm_file && !page_mkwrite)
3419                         file_update_time(vma->vm_file);
3420         } else {
3421                 unlock_page(vmf.page);
3422                 if (anon)
3423                         page_cache_release(vmf.page);
3424         }
3425
3426         return ret;
3427
3428 unwritable_page:
3429         page_cache_release(page);
3430         return ret;
3431 uncharge_out:
3432         /* fs's fault handler get error */
3433         if (cow_page) {
3434                 mem_cgroup_uncharge_page(cow_page);
3435                 page_cache_release(cow_page);
3436         }
3437         return ret;
3438 }
3439
3440 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3441                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3442                 unsigned int flags, pte_t orig_pte)
3443 {
3444         pgoff_t pgoff = (((address & PAGE_MASK)
3445                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3446
3447         pte_unmap(page_table);
3448         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3449 }
3450
3451 /*
3452  * Fault of a previously existing named mapping. Repopulate the pte
3453  * from the encoded file_pte if possible. This enables swappable
3454  * nonlinear vmas.
3455  *
3456  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3457  * but allow concurrent faults), and pte mapped but not yet locked.
3458  * We return with mmap_sem still held, but pte unmapped and unlocked.
3459  */
3460 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3461                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3462                 unsigned int flags, pte_t orig_pte)
3463 {
3464         pgoff_t pgoff;
3465
3466         flags |= FAULT_FLAG_NONLINEAR;
3467
3468         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3469                 return 0;
3470
3471         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3472                 /*
3473                  * Page table corrupted: show pte and kill process.
3474                  */
3475                 print_bad_pte(vma, address, orig_pte, NULL);
3476                 return VM_FAULT_SIGBUS;
3477         }
3478
3479         pgoff = pte_to_pgoff(orig_pte);
3480         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3481 }
3482
3483 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3484                         unsigned long address, pte_t *ptep, pmd_t *pmd,
3485                         unsigned int flags, pte_t entry)
3486 {
3487         struct page *page = NULL;
3488         int node, page_nid = -1;
3489         spinlock_t *ptl;
3490
3491         ptl = pte_lockptr(mm, pmd);
3492         spin_lock(ptl);
3493         if (unlikely(!pte_same(*ptep, entry)))
3494                 goto out_unlock;
3495
3496         page = vm_normal_page(vma, address, entry);
3497         if (page) {
3498                 get_page(page);
3499                 page_nid = page_to_nid(page);
3500                 node = mpol_misplaced(page, vma, address);
3501                 if (node != -1)
3502                         goto migrate;
3503         }
3504
3505 out_pte_upgrade_unlock:
3506         flush_cache_page(vma, address, pte_pfn(entry));
3507
3508         ptep_modify_prot_start(mm, address, ptep);
3509         entry = pte_modify(entry, vma->vm_page_prot);
3510         ptep_modify_prot_commit(mm, address, ptep, entry);
3511
3512         /* No TLB flush needed because we upgraded the PTE */
3513
3514         update_mmu_cache(vma, address, ptep);
3515
3516 out_unlock:
3517         pte_unmap_unlock(ptep, ptl);
3518 out:
3519         if (page) {
3520                 task_numa_fault(page_nid, 1);
3521                 put_page(page);
3522         }
3523
3524         return 0;
3525
3526 migrate:
3527         pte_unmap_unlock(ptep, ptl);
3528
3529         if (!migrate_misplaced_page(page, node)) {
3530                 page_nid = node;
3531                 goto out;
3532         }
3533
3534         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3535         if (!pte_same(*ptep, entry)) {
3536                 put_page(page);
3537                 page = NULL;
3538                 goto out_unlock;
3539         }
3540
3541         goto out_pte_upgrade_unlock;
3542 }
3543
3544 /*
3545  * These routines also need to handle stuff like marking pages dirty
3546  * and/or accessed for architectures that don't do it in hardware (most
3547  * RISC architectures).  The early dirtying is also good on the i386.
3548  *
3549  * There is also a hook called "update_mmu_cache()" that architectures
3550  * with external mmu caches can use to update those (ie the Sparc or
3551  * PowerPC hashed page tables that act as extended TLBs).
3552  *
3553  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3554  * but allow concurrent faults), and pte mapped but not yet locked.
3555  * We return with mmap_sem still held, but pte unmapped and unlocked.
3556  */
3557 int handle_pte_fault(struct mm_struct *mm,
3558                      struct vm_area_struct *vma, unsigned long address,
3559                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3560 {
3561         pte_t entry;
3562         spinlock_t *ptl;
3563
3564         entry = ACCESS_ONCE(*pte);
3565         if (!pte_present(entry)) {
3566                 if (pte_none(entry)) {
3567                         if (vma->vm_ops) {
3568                                 if (likely(vma->vm_ops->fault))
3569                                         return do_linear_fault(mm, vma, address,
3570                                                 pte, pmd, flags, entry);
3571                         }
3572                         return do_anonymous_page(mm, vma, address,
3573                                                  pte, pmd, flags);
3574                 }
3575                 if (pte_file(entry))
3576                         return do_nonlinear_fault(mm, vma, address,
3577                                         pte, pmd, flags, entry);
3578                 return do_swap_page(mm, vma, address,
3579                                         pte, pmd, flags, entry);
3580         }
3581
3582         if (pte_numa(vma, entry))
3583                 return do_numa_page(mm, vma, address, pte, pmd, flags, entry);
3584
3585         ptl = pte_lockptr(mm, pmd);
3586         spin_lock(ptl);
3587         if (unlikely(!pte_same(*pte, entry)))
3588                 goto unlock;
3589         if (flags & FAULT_FLAG_WRITE) {
3590                 if (!pte_write(entry))
3591                         return do_wp_page(mm, vma, address,
3592                                         pte, pmd, ptl, entry);
3593                 entry = pte_mkdirty(entry);
3594         }
3595         entry = pte_mkyoung(entry);
3596         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3597                 update_mmu_cache(vma, address, pte);
3598         } else {
3599                 /*
3600                  * This is needed only for protection faults but the arch code
3601                  * is not yet telling us if this is a protection fault or not.
3602                  * This still avoids useless tlb flushes for .text page faults
3603                  * with threads.
3604                  */
3605                 if (flags & FAULT_FLAG_WRITE)
3606                         flush_tlb_fix_spurious_fault(vma, address);
3607         }
3608 unlock:
3609         pte_unmap_unlock(pte, ptl);
3610         return 0;
3611 }
3612
3613 /*
3614  * By the time we get here, we already hold the mm semaphore
3615  */
3616 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3617                 unsigned long address, unsigned int flags)
3618 {
3619         pgd_t *pgd;
3620         pud_t *pud;
3621         pmd_t *pmd;
3622         pte_t *pte;
3623
3624         __set_current_state(TASK_RUNNING);
3625
3626         count_vm_event(PGFAULT);
3627         mem_cgroup_count_vm_event(mm, PGFAULT);
3628
3629         /* do counter updates before entering really critical section. */
3630         check_sync_rss_stat(current);
3631
3632         if (unlikely(is_vm_hugetlb_page(vma)))
3633                 return hugetlb_fault(mm, vma, address, flags);
3634
3635 retry:
3636         pgd = pgd_offset(mm, address);
3637         pud = pud_alloc(mm, pgd, address);
3638         if (!pud)
3639                 return VM_FAULT_OOM;
3640         pmd = pmd_alloc(mm, pud, address);
3641         if (!pmd)
3642                 return VM_FAULT_OOM;
3643         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3644                 if (!vma->vm_ops)
3645                         return do_huge_pmd_anonymous_page(mm, vma, address,
3646                                                           pmd, flags);
3647         } else {
3648                 pmd_t orig_pmd = *pmd;
3649                 int ret = 0;
3650
3651                 barrier();
3652                 if (pmd_trans_huge(orig_pmd) && !pmd_trans_splitting(orig_pmd)) {
3653                         if (pmd_numa(vma, orig_pmd)) {
3654                                 do_huge_pmd_numa_page(mm, vma, address, pmd,
3655                                                       flags, orig_pmd);
3656                         }
3657
3658                         if ((flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) {
3659                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3660                                                           orig_pmd);
3661                                 /*
3662                                  * If COW results in an oom, the huge pmd will
3663                                  * have been split, so retry the fault on the
3664                                  * pte for a smaller charge.
3665                                  */
3666                                 if (unlikely(ret & VM_FAULT_OOM))
3667                                         goto retry;
3668                         }
3669
3670                         return ret;
3671                 }
3672         }
3673
3674
3675         /*
3676          * Use __pte_alloc instead of pte_alloc_map, because we can't
3677          * run pte_offset_map on the pmd, if an huge pmd could
3678          * materialize from under us from a different thread.
3679          */
3680         if (unlikely(pmd_none(*pmd)) &&
3681             unlikely(__pte_alloc(mm, vma, pmd, address)))
3682                 return VM_FAULT_OOM;
3683         /* if an huge pmd materialized from under us just retry later */
3684         if (unlikely(pmd_trans_huge(*pmd)))
3685                 return 0;
3686         /*
3687          * A regular pmd is established and it can't morph into a huge pmd
3688          * from under us anymore at this point because we hold the mmap_sem
3689          * read mode and khugepaged takes it in write mode. So now it's
3690          * safe to run pte_offset_map().
3691          */
3692         pte = pte_offset_map(pmd, address);
3693
3694         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3695 }
3696
3697 #ifndef __PAGETABLE_PUD_FOLDED
3698 /*
3699  * Allocate page upper directory.
3700  * We've already handled the fast-path in-line.
3701  */
3702 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3703 {
3704         pud_t *new = pud_alloc_one(mm, address);
3705         if (!new)
3706                 return -ENOMEM;
3707
3708         smp_wmb(); /* See comment in __pte_alloc */
3709
3710         spin_lock(&mm->page_table_lock);
3711         if (pgd_present(*pgd))          /* Another has populated it */
3712                 pud_free(mm, new);
3713         else
3714                 pgd_populate(mm, pgd, new);
3715         spin_unlock(&mm->page_table_lock);
3716         return 0;
3717 }
3718 #endif /* __PAGETABLE_PUD_FOLDED */
3719
3720 #ifndef __PAGETABLE_PMD_FOLDED
3721 /*
3722  * Allocate page middle directory.
3723  * We've already handled the fast-path in-line.
3724  */
3725 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3726 {
3727         pmd_t *new = pmd_alloc_one(mm, address);
3728         if (!new)
3729                 return -ENOMEM;
3730
3731         smp_wmb(); /* See comment in __pte_alloc */
3732
3733         spin_lock(&mm->page_table_lock);
3734 #ifndef __ARCH_HAS_4LEVEL_HACK
3735         if (pud_present(*pud))          /* Another has populated it */
3736                 pmd_free(mm, new);
3737         else
3738                 pud_populate(mm, pud, new);
3739 #else
3740         if (pgd_present(*pud))          /* Another has populated it */
3741                 pmd_free(mm, new);
3742         else
3743                 pgd_populate(mm, pud, new);
3744 #endif /* __ARCH_HAS_4LEVEL_HACK */
3745         spin_unlock(&mm->page_table_lock);
3746         return 0;
3747 }
3748 #endif /* __PAGETABLE_PMD_FOLDED */
3749
3750 int make_pages_present(unsigned long addr, unsigned long end)
3751 {
3752         int ret, len, write;
3753         struct vm_area_struct * vma;
3754
3755         vma = find_vma(current->mm, addr);
3756         if (!vma)
3757                 return -ENOMEM;
3758         /*
3759          * We want to touch writable mappings with a write fault in order
3760          * to break COW, except for shared mappings because these don't COW
3761          * and we would not want to dirty them for nothing.
3762          */
3763         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3764         BUG_ON(addr >= end);
3765         BUG_ON(end > vma->vm_end);
3766         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3767         ret = get_user_pages(current, current->mm, addr,
3768                         len, write, 0, NULL, NULL);
3769         if (ret < 0)
3770                 return ret;
3771         return ret == len ? 0 : -EFAULT;
3772 }
3773
3774 #if !defined(__HAVE_ARCH_GATE_AREA)
3775
3776 #if defined(AT_SYSINFO_EHDR)
3777 static struct vm_area_struct gate_vma;
3778
3779 static int __init gate_vma_init(void)
3780 {
3781         gate_vma.vm_mm = NULL;
3782         gate_vma.vm_start = FIXADDR_USER_START;
3783         gate_vma.vm_end = FIXADDR_USER_END;
3784         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3785         gate_vma.vm_page_prot = __P101;
3786
3787         return 0;
3788 }
3789 __initcall(gate_vma_init);
3790 #endif
3791
3792 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3793 {
3794 #ifdef AT_SYSINFO_EHDR
3795         return &gate_vma;
3796 #else
3797         return NULL;
3798 #endif
3799 }
3800
3801 int in_gate_area_no_mm(unsigned long addr)
3802 {
3803 #ifdef AT_SYSINFO_EHDR
3804         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3805                 return 1;
3806 #endif
3807         return 0;
3808 }
3809
3810 #endif  /* __HAVE_ARCH_GATE_AREA */
3811
3812 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3813                 pte_t **ptepp, spinlock_t **ptlp)
3814 {
3815         pgd_t *pgd;
3816         pud_t *pud;
3817         pmd_t *pmd;
3818         pte_t *ptep;
3819
3820         pgd = pgd_offset(mm, address);
3821         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3822                 goto out;
3823
3824         pud = pud_offset(pgd, address);
3825         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3826                 goto out;
3827
3828         pmd = pmd_offset(pud, address);
3829         VM_BUG_ON(pmd_trans_huge(*pmd));
3830         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3831                 goto out;
3832
3833         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3834         if (pmd_huge(*pmd))
3835                 goto out;
3836
3837         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3838         if (!ptep)
3839                 goto out;
3840         if (!pte_present(*ptep))
3841                 goto unlock;
3842         *ptepp = ptep;
3843         return 0;
3844 unlock:
3845         pte_unmap_unlock(ptep, *ptlp);
3846 out:
3847         return -EINVAL;
3848 }
3849
3850 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3851                              pte_t **ptepp, spinlock_t **ptlp)
3852 {
3853         int res;
3854
3855         /* (void) is needed to make gcc happy */
3856         (void) __cond_lock(*ptlp,
3857                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3858         return res;
3859 }
3860
3861 /**
3862  * follow_pfn - look up PFN at a user virtual address
3863  * @vma: memory mapping
3864  * @address: user virtual address
3865  * @pfn: location to store found PFN
3866  *
3867  * Only IO mappings and raw PFN mappings are allowed.
3868  *
3869  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3870  */
3871 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3872         unsigned long *pfn)
3873 {
3874         int ret = -EINVAL;
3875         spinlock_t *ptl;
3876         pte_t *ptep;
3877
3878         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3879                 return ret;
3880
3881         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3882         if (ret)
3883                 return ret;
3884         *pfn = pte_pfn(*ptep);
3885         pte_unmap_unlock(ptep, ptl);
3886         return 0;
3887 }
3888 EXPORT_SYMBOL(follow_pfn);
3889
3890 #ifdef CONFIG_HAVE_IOREMAP_PROT
3891 int follow_phys(struct vm_area_struct *vma,
3892                 unsigned long address, unsigned int flags,
3893                 unsigned long *prot, resource_size_t *phys)
3894 {
3895         int ret = -EINVAL;
3896         pte_t *ptep, pte;
3897         spinlock_t *ptl;
3898
3899         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3900                 goto out;
3901
3902         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3903                 goto out;
3904         pte = *ptep;
3905
3906         if ((flags & FOLL_WRITE) && !pte_write(pte))
3907                 goto unlock;
3908
3909         *prot = pgprot_val(pte_pgprot(pte));
3910         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3911
3912         ret = 0;
3913 unlock:
3914         pte_unmap_unlock(ptep, ptl);
3915 out:
3916         return ret;
3917 }
3918
3919 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3920                         void *buf, int len, int write)
3921 {
3922         resource_size_t phys_addr;
3923         unsigned long prot = 0;
3924         void __iomem *maddr;
3925         int offset = addr & (PAGE_SIZE-1);
3926
3927         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3928                 return -EINVAL;
3929
3930         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3931         if (write)
3932                 memcpy_toio(maddr + offset, buf, len);
3933         else
3934                 memcpy_fromio(buf, maddr + offset, len);
3935         iounmap(maddr);
3936
3937         return len;
3938 }
3939 #endif
3940
3941 /*
3942  * Access another process' address space as given in mm.  If non-NULL, use the
3943  * given task for page fault accounting.
3944  */
3945 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3946                 unsigned long addr, void *buf, int len, int write)
3947 {
3948         struct vm_area_struct *vma;
3949         void *old_buf = buf;
3950
3951         down_read(&mm->mmap_sem);
3952         /* ignore errors, just check how much was successfully transferred */
3953         while (len) {
3954                 int bytes, ret, offset;
3955                 void *maddr;
3956                 struct page *page = NULL;
3957
3958                 ret = get_user_pages(tsk, mm, addr, 1,
3959                                 write, 1, &page, &vma);
3960                 if (ret <= 0) {
3961                         /*
3962                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3963                          * we can access using slightly different code.
3964                          */
3965 #ifdef CONFIG_HAVE_IOREMAP_PROT
3966                         vma = find_vma(mm, addr);
3967                         if (!vma || vma->vm_start > addr)
3968                                 break;
3969                         if (vma->vm_ops && vma->vm_ops->access)
3970                                 ret = vma->vm_ops->access(vma, addr, buf,
3971                                                           len, write);
3972                         if (ret <= 0)
3973 #endif
3974                                 break;
3975                         bytes = ret;
3976                 } else {
3977                         bytes = len;
3978                         offset = addr & (PAGE_SIZE-1);
3979                         if (bytes > PAGE_SIZE-offset)
3980                                 bytes = PAGE_SIZE-offset;
3981
3982                         maddr = kmap(page);
3983                         if (write) {
3984                                 copy_to_user_page(vma, page, addr,
3985                                                   maddr + offset, buf, bytes);
3986                                 set_page_dirty_lock(page);
3987                         } else {
3988                                 copy_from_user_page(vma, page, addr,
3989                                                     buf, maddr + offset, bytes);
3990                         }
3991                         kunmap(page);
3992                         page_cache_release(page);
3993                 }
3994                 len -= bytes;
3995                 buf += bytes;
3996                 addr += bytes;
3997         }
3998         up_read(&mm->mmap_sem);
3999
4000         return buf - old_buf;
4001 }
4002
4003 /**
4004  * access_remote_vm - access another process' address space
4005  * @mm:         the mm_struct of the target address space
4006  * @addr:       start address to access
4007  * @buf:        source or destination buffer
4008  * @len:        number of bytes to transfer
4009  * @write:      whether the access is a write
4010  *
4011  * The caller must hold a reference on @mm.
4012  */
4013 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4014                 void *buf, int len, int write)
4015 {
4016         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4017 }
4018
4019 /*
4020  * Access another process' address space.
4021  * Source/target buffer must be kernel space,
4022  * Do not walk the page table directly, use get_user_pages
4023  */
4024 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4025                 void *buf, int len, int write)
4026 {
4027         struct mm_struct *mm;
4028         int ret;
4029
4030         mm = get_task_mm(tsk);
4031         if (!mm)
4032                 return 0;
4033
4034         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4035         mmput(mm);
4036
4037         return ret;
4038 }
4039
4040 /*
4041  * Print the name of a VMA.
4042  */
4043 void print_vma_addr(char *prefix, unsigned long ip)
4044 {
4045         struct mm_struct *mm = current->mm;
4046         struct vm_area_struct *vma;
4047
4048         /*
4049          * Do not print if we are in atomic
4050          * contexts (in exception stacks, etc.):
4051          */
4052         if (preempt_count())
4053                 return;
4054
4055         down_read(&mm->mmap_sem);
4056         vma = find_vma(mm, ip);
4057         if (vma && vma->vm_file) {
4058                 struct file *f = vma->vm_file;
4059                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4060                 if (buf) {
4061                         char *p;
4062
4063                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4064                         if (IS_ERR(p))
4065                                 p = "?";
4066                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4067                                         vma->vm_start,
4068                                         vma->vm_end - vma->vm_start);
4069                         free_page((unsigned long)buf);
4070                 }
4071         }
4072         up_read(&mm->mmap_sem);
4073 }
4074
4075 #ifdef CONFIG_PROVE_LOCKING
4076 void might_fault(void)
4077 {
4078         /*
4079          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4080          * holding the mmap_sem, this is safe because kernel memory doesn't
4081          * get paged out, therefore we'll never actually fault, and the
4082          * below annotations will generate false positives.
4083          */
4084         if (segment_eq(get_fs(), KERNEL_DS))
4085                 return;
4086
4087         might_sleep();
4088         /*
4089          * it would be nicer only to annotate paths which are not under
4090          * pagefault_disable, however that requires a larger audit and
4091          * providing helpers like get_user_atomic.
4092          */
4093         if (!in_atomic() && current->mm)
4094                 might_lock_read(&current->mm->mmap_sem);
4095 }
4096 EXPORT_SYMBOL(might_fault);
4097 #endif
4098
4099 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4100 static void clear_gigantic_page(struct page *page,
4101                                 unsigned long addr,
4102                                 unsigned int pages_per_huge_page)
4103 {
4104         int i;
4105         struct page *p = page;
4106
4107         might_sleep();
4108         for (i = 0; i < pages_per_huge_page;
4109              i++, p = mem_map_next(p, page, i)) {
4110                 cond_resched();
4111                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4112         }
4113 }
4114 void clear_huge_page(struct page *page,
4115                      unsigned long addr, unsigned int pages_per_huge_page)
4116 {
4117         int i;
4118
4119         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4120                 clear_gigantic_page(page, addr, pages_per_huge_page);
4121                 return;
4122         }
4123
4124         might_sleep();
4125         for (i = 0; i < pages_per_huge_page; i++) {
4126                 cond_resched();
4127                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4128         }
4129 }
4130
4131 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4132                                     unsigned long addr,
4133                                     struct vm_area_struct *vma,
4134                                     unsigned int pages_per_huge_page)
4135 {
4136         int i;
4137         struct page *dst_base = dst;
4138         struct page *src_base = src;
4139
4140         for (i = 0; i < pages_per_huge_page; ) {
4141                 cond_resched();
4142                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4143
4144                 i++;
4145                 dst = mem_map_next(dst, dst_base, i);
4146                 src = mem_map_next(src, src_base, i);
4147         }
4148 }
4149
4150 void copy_user_huge_page(struct page *dst, struct page *src,
4151                          unsigned long addr, struct vm_area_struct *vma,
4152                          unsigned int pages_per_huge_page)
4153 {
4154         int i;
4155
4156         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4157                 copy_user_gigantic_page(dst, src, addr, vma,
4158                                         pages_per_huge_page);
4159                 return;
4160         }
4161
4162         might_sleep();
4163         for (i = 0; i < pages_per_huge_page; i++) {
4164                 cond_resched();
4165                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4166         }
4167 }
4168 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */