]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/memory.c
mm: rework mapcount accounting to enable 4k mapping of THPs
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         /*
365          * When there's less then two users of this mm there cannot be a
366          * concurrent page-table walk.
367          */
368         if (atomic_read(&tlb->mm->mm_users) < 2) {
369                 __tlb_remove_table(table);
370                 return;
371         }
372
373         if (*batch == NULL) {
374                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375                 if (*batch == NULL) {
376                         tlb_remove_table_one(table);
377                         return;
378                 }
379                 (*batch)->nr = 0;
380         }
381         (*batch)->tables[(*batch)->nr++] = table;
382         if ((*batch)->nr == MAX_TABLE_BATCH)
383                 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393                            unsigned long addr)
394 {
395         pgtable_t token = pmd_pgtable(*pmd);
396         pmd_clear(pmd);
397         pte_free_tlb(tlb, token, addr);
398         atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402                                 unsigned long addr, unsigned long end,
403                                 unsigned long floor, unsigned long ceiling)
404 {
405         pmd_t *pmd;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         pmd = pmd_offset(pud, addr);
411         do {
412                 next = pmd_addr_end(addr, end);
413                 if (pmd_none_or_clear_bad(pmd))
414                         continue;
415                 free_pte_range(tlb, pmd, addr);
416         } while (pmd++, addr = next, addr != end);
417
418         start &= PUD_MASK;
419         if (start < floor)
420                 return;
421         if (ceiling) {
422                 ceiling &= PUD_MASK;
423                 if (!ceiling)
424                         return;
425         }
426         if (end - 1 > ceiling - 1)
427                 return;
428
429         pmd = pmd_offset(pud, start);
430         pud_clear(pud);
431         pmd_free_tlb(tlb, pmd, start);
432         mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         if (!new)
570                 return -ENOMEM;
571
572         /*
573          * Ensure all pte setup (eg. pte page lock and page clearing) are
574          * visible before the pte is made visible to other CPUs by being
575          * put into page tables.
576          *
577          * The other side of the story is the pointer chasing in the page
578          * table walking code (when walking the page table without locking;
579          * ie. most of the time). Fortunately, these data accesses consist
580          * of a chain of data-dependent loads, meaning most CPUs (alpha
581          * being the notable exception) will already guarantee loads are
582          * seen in-order. See the alpha page table accessors for the
583          * smp_read_barrier_depends() barriers in page table walking code.
584          */
585         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587         ptl = pmd_lock(mm, pmd);
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         }
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         return 0;
597 }
598
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602         if (!new)
603                 return -ENOMEM;
604
605         smp_wmb(); /* See comment in __pte_alloc */
606
607         spin_lock(&init_mm.page_table_lock);
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 pmd_populate_kernel(&init_mm, pmd, new);
610                 new = NULL;
611         }
612         spin_unlock(&init_mm.page_table_lock);
613         if (new)
614                 pte_free_kernel(&init_mm, new);
615         return 0;
616 }
617
618 static inline void init_rss_vec(int *rss)
619 {
620         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625         int i;
626
627         if (current->mm == mm)
628                 sync_mm_rss(mm);
629         for (i = 0; i < NR_MM_COUNTERS; i++)
630                 if (rss[i])
631                         add_mm_counter(mm, i, rss[i]);
632 }
633
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642                           pte_t pte, struct page *page)
643 {
644         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645         pud_t *pud = pud_offset(pgd, addr);
646         pmd_t *pmd = pmd_offset(pud, addr);
647         struct address_space *mapping;
648         pgoff_t index;
649         static unsigned long resume;
650         static unsigned long nr_shown;
651         static unsigned long nr_unshown;
652
653         /*
654          * Allow a burst of 60 reports, then keep quiet for that minute;
655          * or allow a steady drip of one report per second.
656          */
657         if (nr_shown == 60) {
658                 if (time_before(jiffies, resume)) {
659                         nr_unshown++;
660                         return;
661                 }
662                 if (nr_unshown) {
663                         printk(KERN_ALERT
664                                 "BUG: Bad page map: %lu messages suppressed\n",
665                                 nr_unshown);
666                         nr_unshown = 0;
667                 }
668                 nr_shown = 0;
669         }
670         if (nr_shown++ == 0)
671                 resume = jiffies + 60 * HZ;
672
673         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674         index = linear_page_index(vma, addr);
675
676         printk(KERN_ALERT
677                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678                 current->comm,
679                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680         if (page)
681                 dump_page(page, "bad pte");
682         printk(KERN_ALERT
683                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685         /*
686          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687          */
688         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689                  vma->vm_file,
690                  vma->vm_ops ? vma->vm_ops->fault : NULL,
691                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692                  mapping ? mapping->a_ops->readpage : NULL);
693         dump_stack();
694         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_ops && vma->vm_ops->find_special_page)
753                         return vma->vm_ops->find_special_page(vma, addr);
754                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755                         return NULL;
756                 if (!is_zero_pfn(pfn))
757                         print_bad_pte(vma, addr, pte, NULL);
758                 return NULL;
759         }
760
761         /* !HAVE_PTE_SPECIAL case follows: */
762
763         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764                 if (vma->vm_flags & VM_MIXEDMAP) {
765                         if (!pfn_valid(pfn))
766                                 return NULL;
767                         goto out;
768                 } else {
769                         unsigned long off;
770                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
771                         if (pfn == vma->vm_pgoff + off)
772                                 return NULL;
773                         if (!is_cow_mapping(vma->vm_flags))
774                                 return NULL;
775                 }
776         }
777
778         if (is_zero_pfn(pfn))
779                 return NULL;
780 check_pfn:
781         if (unlikely(pfn > highest_memmap_pfn)) {
782                 print_bad_pte(vma, addr, pte, NULL);
783                 return NULL;
784         }
785
786         /*
787          * NOTE! We still have PageReserved() pages in the page tables.
788          * eg. VDSO mappings can cause them to exist.
789          */
790 out:
791         return pfn_to_page(pfn);
792 }
793
794 /*
795  * copy one vm_area from one task to the other. Assumes the page tables
796  * already present in the new task to be cleared in the whole range
797  * covered by this vma.
798  */
799
800 static inline unsigned long
801 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
802                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
803                 unsigned long addr, int *rss)
804 {
805         unsigned long vm_flags = vma->vm_flags;
806         pte_t pte = *src_pte;
807         struct page *page;
808
809         /* pte contains position in swap or file, so copy. */
810         if (unlikely(!pte_present(pte))) {
811                 swp_entry_t entry = pte_to_swp_entry(pte);
812
813                 if (likely(!non_swap_entry(entry))) {
814                         if (swap_duplicate(entry) < 0)
815                                 return entry.val;
816
817                         /* make sure dst_mm is on swapoff's mmlist. */
818                         if (unlikely(list_empty(&dst_mm->mmlist))) {
819                                 spin_lock(&mmlist_lock);
820                                 if (list_empty(&dst_mm->mmlist))
821                                         list_add(&dst_mm->mmlist,
822                                                         &src_mm->mmlist);
823                                 spin_unlock(&mmlist_lock);
824                         }
825                         rss[MM_SWAPENTS]++;
826                 } else if (is_migration_entry(entry)) {
827                         page = migration_entry_to_page(entry);
828
829                         rss[mm_counter(page)]++;
830
831                         if (is_write_migration_entry(entry) &&
832                                         is_cow_mapping(vm_flags)) {
833                                 /*
834                                  * COW mappings require pages in both
835                                  * parent and child to be set to read.
836                                  */
837                                 make_migration_entry_read(&entry);
838                                 pte = swp_entry_to_pte(entry);
839                                 if (pte_swp_soft_dirty(*src_pte))
840                                         pte = pte_swp_mksoft_dirty(pte);
841                                 set_pte_at(src_mm, addr, src_pte, pte);
842                         }
843                 }
844                 goto out_set_pte;
845         }
846
847         /*
848          * If it's a COW mapping, write protect it both
849          * in the parent and the child
850          */
851         if (is_cow_mapping(vm_flags)) {
852                 ptep_set_wrprotect(src_mm, addr, src_pte);
853                 pte = pte_wrprotect(pte);
854         }
855
856         /*
857          * If it's a shared mapping, mark it clean in
858          * the child
859          */
860         if (vm_flags & VM_SHARED)
861                 pte = pte_mkclean(pte);
862         pte = pte_mkold(pte);
863
864         page = vm_normal_page(vma, addr, pte);
865         if (page) {
866                 get_page(page);
867                 page_dup_rmap(page, false);
868                 rss[mm_counter(page)]++;
869         }
870
871 out_set_pte:
872         set_pte_at(dst_mm, addr, dst_pte, pte);
873         return 0;
874 }
875
876 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
878                    unsigned long addr, unsigned long end)
879 {
880         pte_t *orig_src_pte, *orig_dst_pte;
881         pte_t *src_pte, *dst_pte;
882         spinlock_t *src_ptl, *dst_ptl;
883         int progress = 0;
884         int rss[NR_MM_COUNTERS];
885         swp_entry_t entry = (swp_entry_t){0};
886
887 again:
888         init_rss_vec(rss);
889
890         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
891         if (!dst_pte)
892                 return -ENOMEM;
893         src_pte = pte_offset_map(src_pmd, addr);
894         src_ptl = pte_lockptr(src_mm, src_pmd);
895         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
896         orig_src_pte = src_pte;
897         orig_dst_pte = dst_pte;
898         arch_enter_lazy_mmu_mode();
899
900         do {
901                 /*
902                  * We are holding two locks at this point - either of them
903                  * could generate latencies in another task on another CPU.
904                  */
905                 if (progress >= 32) {
906                         progress = 0;
907                         if (need_resched() ||
908                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
909                                 break;
910                 }
911                 if (pte_none(*src_pte)) {
912                         progress++;
913                         continue;
914                 }
915                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
916                                                         vma, addr, rss);
917                 if (entry.val)
918                         break;
919                 progress += 8;
920         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
921
922         arch_leave_lazy_mmu_mode();
923         spin_unlock(src_ptl);
924         pte_unmap(orig_src_pte);
925         add_mm_rss_vec(dst_mm, rss);
926         pte_unmap_unlock(orig_dst_pte, dst_ptl);
927         cond_resched();
928
929         if (entry.val) {
930                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
931                         return -ENOMEM;
932                 progress = 0;
933         }
934         if (addr != end)
935                 goto again;
936         return 0;
937 }
938
939 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
940                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
941                 unsigned long addr, unsigned long end)
942 {
943         pmd_t *src_pmd, *dst_pmd;
944         unsigned long next;
945
946         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
947         if (!dst_pmd)
948                 return -ENOMEM;
949         src_pmd = pmd_offset(src_pud, addr);
950         do {
951                 next = pmd_addr_end(addr, end);
952                 if (pmd_trans_huge(*src_pmd)) {
953                         int err;
954                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
955                         err = copy_huge_pmd(dst_mm, src_mm,
956                                             dst_pmd, src_pmd, addr, vma);
957                         if (err == -ENOMEM)
958                                 return -ENOMEM;
959                         if (!err)
960                                 continue;
961                         /* fall through */
962                 }
963                 if (pmd_none_or_clear_bad(src_pmd))
964                         continue;
965                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
966                                                 vma, addr, next))
967                         return -ENOMEM;
968         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
969         return 0;
970 }
971
972 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
974                 unsigned long addr, unsigned long end)
975 {
976         pud_t *src_pud, *dst_pud;
977         unsigned long next;
978
979         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
980         if (!dst_pud)
981                 return -ENOMEM;
982         src_pud = pud_offset(src_pgd, addr);
983         do {
984                 next = pud_addr_end(addr, end);
985                 if (pud_none_or_clear_bad(src_pud))
986                         continue;
987                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
988                                                 vma, addr, next))
989                         return -ENOMEM;
990         } while (dst_pud++, src_pud++, addr = next, addr != end);
991         return 0;
992 }
993
994 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
995                 struct vm_area_struct *vma)
996 {
997         pgd_t *src_pgd, *dst_pgd;
998         unsigned long next;
999         unsigned long addr = vma->vm_start;
1000         unsigned long end = vma->vm_end;
1001         unsigned long mmun_start;       /* For mmu_notifiers */
1002         unsigned long mmun_end;         /* For mmu_notifiers */
1003         bool is_cow;
1004         int ret;
1005
1006         /*
1007          * Don't copy ptes where a page fault will fill them correctly.
1008          * Fork becomes much lighter when there are big shared or private
1009          * readonly mappings. The tradeoff is that copy_page_range is more
1010          * efficient than faulting.
1011          */
1012         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1013                         !vma->anon_vma)
1014                 return 0;
1015
1016         if (is_vm_hugetlb_page(vma))
1017                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1018
1019         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1020                 /*
1021                  * We do not free on error cases below as remove_vma
1022                  * gets called on error from higher level routine
1023                  */
1024                 ret = track_pfn_copy(vma);
1025                 if (ret)
1026                         return ret;
1027         }
1028
1029         /*
1030          * We need to invalidate the secondary MMU mappings only when
1031          * there could be a permission downgrade on the ptes of the
1032          * parent mm. And a permission downgrade will only happen if
1033          * is_cow_mapping() returns true.
1034          */
1035         is_cow = is_cow_mapping(vma->vm_flags);
1036         mmun_start = addr;
1037         mmun_end   = end;
1038         if (is_cow)
1039                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1040                                                     mmun_end);
1041
1042         ret = 0;
1043         dst_pgd = pgd_offset(dst_mm, addr);
1044         src_pgd = pgd_offset(src_mm, addr);
1045         do {
1046                 next = pgd_addr_end(addr, end);
1047                 if (pgd_none_or_clear_bad(src_pgd))
1048                         continue;
1049                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1050                                             vma, addr, next))) {
1051                         ret = -ENOMEM;
1052                         break;
1053                 }
1054         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1055
1056         if (is_cow)
1057                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1058         return ret;
1059 }
1060
1061 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1062                                 struct vm_area_struct *vma, pmd_t *pmd,
1063                                 unsigned long addr, unsigned long end,
1064                                 struct zap_details *details)
1065 {
1066         struct mm_struct *mm = tlb->mm;
1067         int force_flush = 0;
1068         int rss[NR_MM_COUNTERS];
1069         spinlock_t *ptl;
1070         pte_t *start_pte;
1071         pte_t *pte;
1072         swp_entry_t entry;
1073
1074 again:
1075         init_rss_vec(rss);
1076         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1077         pte = start_pte;
1078         arch_enter_lazy_mmu_mode();
1079         do {
1080                 pte_t ptent = *pte;
1081                 if (pte_none(ptent)) {
1082                         continue;
1083                 }
1084
1085                 if (pte_present(ptent)) {
1086                         struct page *page;
1087
1088                         page = vm_normal_page(vma, addr, ptent);
1089                         if (unlikely(details) && page) {
1090                                 /*
1091                                  * unmap_shared_mapping_pages() wants to
1092                                  * invalidate cache without truncating:
1093                                  * unmap shared but keep private pages.
1094                                  */
1095                                 if (details->check_mapping &&
1096                                     details->check_mapping != page->mapping)
1097                                         continue;
1098                         }
1099                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1100                                                         tlb->fullmm);
1101                         tlb_remove_tlb_entry(tlb, pte, addr);
1102                         if (unlikely(!page))
1103                                 continue;
1104
1105                         if (!PageAnon(page)) {
1106                                 if (pte_dirty(ptent)) {
1107                                         force_flush = 1;
1108                                         set_page_dirty(page);
1109                                 }
1110                                 if (pte_young(ptent) &&
1111                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1112                                         mark_page_accessed(page);
1113                         }
1114                         rss[mm_counter(page)]--;
1115                         page_remove_rmap(page, false);
1116                         if (unlikely(page_mapcount(page) < 0))
1117                                 print_bad_pte(vma, addr, ptent, page);
1118                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1119                                 force_flush = 1;
1120                                 addr += PAGE_SIZE;
1121                                 break;
1122                         }
1123                         continue;
1124                 }
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 entry = pte_to_swp_entry(ptent);
1130                 if (!non_swap_entry(entry))
1131                         rss[MM_SWAPENTS]--;
1132                 else if (is_migration_entry(entry)) {
1133                         struct page *page;
1134
1135                         page = migration_entry_to_page(entry);
1136                         rss[mm_counter(page)]--;
1137                 }
1138                 if (unlikely(!free_swap_and_cache(entry)))
1139                         print_bad_pte(vma, addr, ptent, NULL);
1140                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143         add_mm_rss_vec(mm, rss);
1144         arch_leave_lazy_mmu_mode();
1145
1146         /* Do the actual TLB flush before dropping ptl */
1147         if (force_flush)
1148                 tlb_flush_mmu_tlbonly(tlb);
1149         pte_unmap_unlock(start_pte, ptl);
1150
1151         /*
1152          * If we forced a TLB flush (either due to running out of
1153          * batch buffers or because we needed to flush dirty TLB
1154          * entries before releasing the ptl), free the batched
1155          * memory too. Restart if we didn't do everything.
1156          */
1157         if (force_flush) {
1158                 force_flush = 0;
1159                 tlb_flush_mmu_free(tlb);
1160
1161                 if (addr != end)
1162                         goto again;
1163         }
1164
1165         return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                 struct vm_area_struct *vma, pud_t *pud,
1170                                 unsigned long addr, unsigned long end,
1171                                 struct zap_details *details)
1172 {
1173         pmd_t *pmd;
1174         unsigned long next;
1175
1176         pmd = pmd_offset(pud, addr);
1177         do {
1178                 next = pmd_addr_end(addr, end);
1179                 if (pmd_trans_huge(*pmd)) {
1180                         if (next - addr != HPAGE_PMD_SIZE) {
1181 #ifdef CONFIG_DEBUG_VM
1182                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1183                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1184                                                 __func__, addr, end,
1185                                                 vma->vm_start,
1186                                                 vma->vm_end);
1187                                         BUG();
1188                                 }
1189 #endif
1190                                 split_huge_pmd(vma, pmd, addr);
1191                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1192                                 goto next;
1193                         /* fall through */
1194                 }
1195                 /*
1196                  * Here there can be other concurrent MADV_DONTNEED or
1197                  * trans huge page faults running, and if the pmd is
1198                  * none or trans huge it can change under us. This is
1199                  * because MADV_DONTNEED holds the mmap_sem in read
1200                  * mode.
1201                  */
1202                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1203                         goto next;
1204                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1205 next:
1206                 cond_resched();
1207         } while (pmd++, addr = next, addr != end);
1208
1209         return addr;
1210 }
1211
1212 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1213                                 struct vm_area_struct *vma, pgd_t *pgd,
1214                                 unsigned long addr, unsigned long end,
1215                                 struct zap_details *details)
1216 {
1217         pud_t *pud;
1218         unsigned long next;
1219
1220         pud = pud_offset(pgd, addr);
1221         do {
1222                 next = pud_addr_end(addr, end);
1223                 if (pud_none_or_clear_bad(pud))
1224                         continue;
1225                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226         } while (pud++, addr = next, addr != end);
1227
1228         return addr;
1229 }
1230
1231 static void unmap_page_range(struct mmu_gather *tlb,
1232                              struct vm_area_struct *vma,
1233                              unsigned long addr, unsigned long end,
1234                              struct zap_details *details)
1235 {
1236         pgd_t *pgd;
1237         unsigned long next;
1238
1239         if (details && !details->check_mapping)
1240                 details = NULL;
1241
1242         BUG_ON(addr >= end);
1243         tlb_start_vma(tlb, vma);
1244         pgd = pgd_offset(vma->vm_mm, addr);
1245         do {
1246                 next = pgd_addr_end(addr, end);
1247                 if (pgd_none_or_clear_bad(pgd))
1248                         continue;
1249                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1250         } while (pgd++, addr = next, addr != end);
1251         tlb_end_vma(tlb, vma);
1252 }
1253
1254
1255 static void unmap_single_vma(struct mmu_gather *tlb,
1256                 struct vm_area_struct *vma, unsigned long start_addr,
1257                 unsigned long end_addr,
1258                 struct zap_details *details)
1259 {
1260         unsigned long start = max(vma->vm_start, start_addr);
1261         unsigned long end;
1262
1263         if (start >= vma->vm_end)
1264                 return;
1265         end = min(vma->vm_end, end_addr);
1266         if (end <= vma->vm_start)
1267                 return;
1268
1269         if (vma->vm_file)
1270                 uprobe_munmap(vma, start, end);
1271
1272         if (unlikely(vma->vm_flags & VM_PFNMAP))
1273                 untrack_pfn(vma, 0, 0);
1274
1275         if (start != end) {
1276                 if (unlikely(is_vm_hugetlb_page(vma))) {
1277                         /*
1278                          * It is undesirable to test vma->vm_file as it
1279                          * should be non-null for valid hugetlb area.
1280                          * However, vm_file will be NULL in the error
1281                          * cleanup path of mmap_region. When
1282                          * hugetlbfs ->mmap method fails,
1283                          * mmap_region() nullifies vma->vm_file
1284                          * before calling this function to clean up.
1285                          * Since no pte has actually been setup, it is
1286                          * safe to do nothing in this case.
1287                          */
1288                         if (vma->vm_file) {
1289                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1290                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1292                         }
1293                 } else
1294                         unmap_page_range(tlb, vma, start, end, details);
1295         }
1296 }
1297
1298 /**
1299  * unmap_vmas - unmap a range of memory covered by a list of vma's
1300  * @tlb: address of the caller's struct mmu_gather
1301  * @vma: the starting vma
1302  * @start_addr: virtual address at which to start unmapping
1303  * @end_addr: virtual address at which to end unmapping
1304  *
1305  * Unmap all pages in the vma list.
1306  *
1307  * Only addresses between `start' and `end' will be unmapped.
1308  *
1309  * The VMA list must be sorted in ascending virtual address order.
1310  *
1311  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312  * range after unmap_vmas() returns.  So the only responsibility here is to
1313  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314  * drops the lock and schedules.
1315  */
1316 void unmap_vmas(struct mmu_gather *tlb,
1317                 struct vm_area_struct *vma, unsigned long start_addr,
1318                 unsigned long end_addr)
1319 {
1320         struct mm_struct *mm = vma->vm_mm;
1321
1322         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1323         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1324                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1325         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1326 }
1327
1328 /**
1329  * zap_page_range - remove user pages in a given range
1330  * @vma: vm_area_struct holding the applicable pages
1331  * @start: starting address of pages to zap
1332  * @size: number of bytes to zap
1333  * @details: details of shared cache invalidation
1334  *
1335  * Caller must protect the VMA list
1336  */
1337 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1338                 unsigned long size, struct zap_details *details)
1339 {
1340         struct mm_struct *mm = vma->vm_mm;
1341         struct mmu_gather tlb;
1342         unsigned long end = start + size;
1343
1344         lru_add_drain();
1345         tlb_gather_mmu(&tlb, mm, start, end);
1346         update_hiwater_rss(mm);
1347         mmu_notifier_invalidate_range_start(mm, start, end);
1348         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1349                 unmap_single_vma(&tlb, vma, start, end, details);
1350         mmu_notifier_invalidate_range_end(mm, start, end);
1351         tlb_finish_mmu(&tlb, start, end);
1352 }
1353
1354 /**
1355  * zap_page_range_single - remove user pages in a given range
1356  * @vma: vm_area_struct holding the applicable pages
1357  * @address: starting address of pages to zap
1358  * @size: number of bytes to zap
1359  * @details: details of shared cache invalidation
1360  *
1361  * The range must fit into one VMA.
1362  */
1363 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1364                 unsigned long size, struct zap_details *details)
1365 {
1366         struct mm_struct *mm = vma->vm_mm;
1367         struct mmu_gather tlb;
1368         unsigned long end = address + size;
1369
1370         lru_add_drain();
1371         tlb_gather_mmu(&tlb, mm, address, end);
1372         update_hiwater_rss(mm);
1373         mmu_notifier_invalidate_range_start(mm, address, end);
1374         unmap_single_vma(&tlb, vma, address, end, details);
1375         mmu_notifier_invalidate_range_end(mm, address, end);
1376         tlb_finish_mmu(&tlb, address, end);
1377 }
1378
1379 /**
1380  * zap_vma_ptes - remove ptes mapping the vma
1381  * @vma: vm_area_struct holding ptes to be zapped
1382  * @address: starting address of pages to zap
1383  * @size: number of bytes to zap
1384  *
1385  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1386  *
1387  * The entire address range must be fully contained within the vma.
1388  *
1389  * Returns 0 if successful.
1390  */
1391 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1392                 unsigned long size)
1393 {
1394         if (address < vma->vm_start || address + size > vma->vm_end ||
1395                         !(vma->vm_flags & VM_PFNMAP))
1396                 return -1;
1397         zap_page_range_single(vma, address, size, NULL);
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1401
1402 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1403                         spinlock_t **ptl)
1404 {
1405         pgd_t * pgd = pgd_offset(mm, addr);
1406         pud_t * pud = pud_alloc(mm, pgd, addr);
1407         if (pud) {
1408                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1409                 if (pmd) {
1410                         VM_BUG_ON(pmd_trans_huge(*pmd));
1411                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1412                 }
1413         }
1414         return NULL;
1415 }
1416
1417 /*
1418  * This is the old fallback for page remapping.
1419  *
1420  * For historical reasons, it only allows reserved pages. Only
1421  * old drivers should use this, and they needed to mark their
1422  * pages reserved for the old functions anyway.
1423  */
1424 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1425                         struct page *page, pgprot_t prot)
1426 {
1427         struct mm_struct *mm = vma->vm_mm;
1428         int retval;
1429         pte_t *pte;
1430         spinlock_t *ptl;
1431
1432         retval = -EINVAL;
1433         if (PageAnon(page))
1434                 goto out;
1435         retval = -ENOMEM;
1436         flush_dcache_page(page);
1437         pte = get_locked_pte(mm, addr, &ptl);
1438         if (!pte)
1439                 goto out;
1440         retval = -EBUSY;
1441         if (!pte_none(*pte))
1442                 goto out_unlock;
1443
1444         /* Ok, finally just insert the thing.. */
1445         get_page(page);
1446         inc_mm_counter_fast(mm, mm_counter_file(page));
1447         page_add_file_rmap(page);
1448         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1449
1450         retval = 0;
1451         pte_unmap_unlock(pte, ptl);
1452         return retval;
1453 out_unlock:
1454         pte_unmap_unlock(pte, ptl);
1455 out:
1456         return retval;
1457 }
1458
1459 /**
1460  * vm_insert_page - insert single page into user vma
1461  * @vma: user vma to map to
1462  * @addr: target user address of this page
1463  * @page: source kernel page
1464  *
1465  * This allows drivers to insert individual pages they've allocated
1466  * into a user vma.
1467  *
1468  * The page has to be a nice clean _individual_ kernel allocation.
1469  * If you allocate a compound page, you need to have marked it as
1470  * such (__GFP_COMP), or manually just split the page up yourself
1471  * (see split_page()).
1472  *
1473  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1474  * took an arbitrary page protection parameter. This doesn't allow
1475  * that. Your vma protection will have to be set up correctly, which
1476  * means that if you want a shared writable mapping, you'd better
1477  * ask for a shared writable mapping!
1478  *
1479  * The page does not need to be reserved.
1480  *
1481  * Usually this function is called from f_op->mmap() handler
1482  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1483  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1484  * function from other places, for example from page-fault handler.
1485  */
1486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1487                         struct page *page)
1488 {
1489         if (addr < vma->vm_start || addr >= vma->vm_end)
1490                 return -EFAULT;
1491         if (!page_count(page))
1492                 return -EINVAL;
1493         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1494                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1495                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1496                 vma->vm_flags |= VM_MIXEDMAP;
1497         }
1498         return insert_page(vma, addr, page, vma->vm_page_prot);
1499 }
1500 EXPORT_SYMBOL(vm_insert_page);
1501
1502 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503                         unsigned long pfn, pgprot_t prot)
1504 {
1505         struct mm_struct *mm = vma->vm_mm;
1506         int retval;
1507         pte_t *pte, entry;
1508         spinlock_t *ptl;
1509
1510         retval = -ENOMEM;
1511         pte = get_locked_pte(mm, addr, &ptl);
1512         if (!pte)
1513                 goto out;
1514         retval = -EBUSY;
1515         if (!pte_none(*pte))
1516                 goto out_unlock;
1517
1518         /* Ok, finally just insert the thing.. */
1519         entry = pte_mkspecial(pfn_pte(pfn, prot));
1520         set_pte_at(mm, addr, pte, entry);
1521         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1522
1523         retval = 0;
1524 out_unlock:
1525         pte_unmap_unlock(pte, ptl);
1526 out:
1527         return retval;
1528 }
1529
1530 /**
1531  * vm_insert_pfn - insert single pfn into user vma
1532  * @vma: user vma to map to
1533  * @addr: target user address of this page
1534  * @pfn: source kernel pfn
1535  *
1536  * Similar to vm_insert_page, this allows drivers to insert individual pages
1537  * they've allocated into a user vma. Same comments apply.
1538  *
1539  * This function should only be called from a vm_ops->fault handler, and
1540  * in that case the handler should return NULL.
1541  *
1542  * vma cannot be a COW mapping.
1543  *
1544  * As this is called only for pages that do not currently exist, we
1545  * do not need to flush old virtual caches or the TLB.
1546  */
1547 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1548                         unsigned long pfn)
1549 {
1550         int ret;
1551         pgprot_t pgprot = vma->vm_page_prot;
1552         /*
1553          * Technically, architectures with pte_special can avoid all these
1554          * restrictions (same for remap_pfn_range).  However we would like
1555          * consistency in testing and feature parity among all, so we should
1556          * try to keep these invariants in place for everybody.
1557          */
1558         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1559         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1560                                                 (VM_PFNMAP|VM_MIXEDMAP));
1561         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1562         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1563
1564         if (addr < vma->vm_start || addr >= vma->vm_end)
1565                 return -EFAULT;
1566         if (track_pfn_insert(vma, &pgprot, pfn))
1567                 return -EINVAL;
1568
1569         ret = insert_pfn(vma, addr, pfn, pgprot);
1570
1571         return ret;
1572 }
1573 EXPORT_SYMBOL(vm_insert_pfn);
1574
1575 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1576                         unsigned long pfn)
1577 {
1578         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1579
1580         if (addr < vma->vm_start || addr >= vma->vm_end)
1581                 return -EFAULT;
1582
1583         /*
1584          * If we don't have pte special, then we have to use the pfn_valid()
1585          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1586          * refcount the page if pfn_valid is true (hence insert_page rather
1587          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1588          * without pte special, it would there be refcounted as a normal page.
1589          */
1590         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1591                 struct page *page;
1592
1593                 page = pfn_to_page(pfn);
1594                 return insert_page(vma, addr, page, vma->vm_page_prot);
1595         }
1596         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1597 }
1598 EXPORT_SYMBOL(vm_insert_mixed);
1599
1600 /*
1601  * maps a range of physical memory into the requested pages. the old
1602  * mappings are removed. any references to nonexistent pages results
1603  * in null mappings (currently treated as "copy-on-access")
1604  */
1605 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1606                         unsigned long addr, unsigned long end,
1607                         unsigned long pfn, pgprot_t prot)
1608 {
1609         pte_t *pte;
1610         spinlock_t *ptl;
1611
1612         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1613         if (!pte)
1614                 return -ENOMEM;
1615         arch_enter_lazy_mmu_mode();
1616         do {
1617                 BUG_ON(!pte_none(*pte));
1618                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1619                 pfn++;
1620         } while (pte++, addr += PAGE_SIZE, addr != end);
1621         arch_leave_lazy_mmu_mode();
1622         pte_unmap_unlock(pte - 1, ptl);
1623         return 0;
1624 }
1625
1626 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1627                         unsigned long addr, unsigned long end,
1628                         unsigned long pfn, pgprot_t prot)
1629 {
1630         pmd_t *pmd;
1631         unsigned long next;
1632
1633         pfn -= addr >> PAGE_SHIFT;
1634         pmd = pmd_alloc(mm, pud, addr);
1635         if (!pmd)
1636                 return -ENOMEM;
1637         VM_BUG_ON(pmd_trans_huge(*pmd));
1638         do {
1639                 next = pmd_addr_end(addr, end);
1640                 if (remap_pte_range(mm, pmd, addr, next,
1641                                 pfn + (addr >> PAGE_SHIFT), prot))
1642                         return -ENOMEM;
1643         } while (pmd++, addr = next, addr != end);
1644         return 0;
1645 }
1646
1647 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1648                         unsigned long addr, unsigned long end,
1649                         unsigned long pfn, pgprot_t prot)
1650 {
1651         pud_t *pud;
1652         unsigned long next;
1653
1654         pfn -= addr >> PAGE_SHIFT;
1655         pud = pud_alloc(mm, pgd, addr);
1656         if (!pud)
1657                 return -ENOMEM;
1658         do {
1659                 next = pud_addr_end(addr, end);
1660                 if (remap_pmd_range(mm, pud, addr, next,
1661                                 pfn + (addr >> PAGE_SHIFT), prot))
1662                         return -ENOMEM;
1663         } while (pud++, addr = next, addr != end);
1664         return 0;
1665 }
1666
1667 /**
1668  * remap_pfn_range - remap kernel memory to userspace
1669  * @vma: user vma to map to
1670  * @addr: target user address to start at
1671  * @pfn: physical address of kernel memory
1672  * @size: size of map area
1673  * @prot: page protection flags for this mapping
1674  *
1675  *  Note: this is only safe if the mm semaphore is held when called.
1676  */
1677 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1678                     unsigned long pfn, unsigned long size, pgprot_t prot)
1679 {
1680         pgd_t *pgd;
1681         unsigned long next;
1682         unsigned long end = addr + PAGE_ALIGN(size);
1683         struct mm_struct *mm = vma->vm_mm;
1684         int err;
1685
1686         /*
1687          * Physically remapped pages are special. Tell the
1688          * rest of the world about it:
1689          *   VM_IO tells people not to look at these pages
1690          *      (accesses can have side effects).
1691          *   VM_PFNMAP tells the core MM that the base pages are just
1692          *      raw PFN mappings, and do not have a "struct page" associated
1693          *      with them.
1694          *   VM_DONTEXPAND
1695          *      Disable vma merging and expanding with mremap().
1696          *   VM_DONTDUMP
1697          *      Omit vma from core dump, even when VM_IO turned off.
1698          *
1699          * There's a horrible special case to handle copy-on-write
1700          * behaviour that some programs depend on. We mark the "original"
1701          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1702          * See vm_normal_page() for details.
1703          */
1704         if (is_cow_mapping(vma->vm_flags)) {
1705                 if (addr != vma->vm_start || end != vma->vm_end)
1706                         return -EINVAL;
1707                 vma->vm_pgoff = pfn;
1708         }
1709
1710         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1711         if (err)
1712                 return -EINVAL;
1713
1714         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1715
1716         BUG_ON(addr >= end);
1717         pfn -= addr >> PAGE_SHIFT;
1718         pgd = pgd_offset(mm, addr);
1719         flush_cache_range(vma, addr, end);
1720         do {
1721                 next = pgd_addr_end(addr, end);
1722                 err = remap_pud_range(mm, pgd, addr, next,
1723                                 pfn + (addr >> PAGE_SHIFT), prot);
1724                 if (err)
1725                         break;
1726         } while (pgd++, addr = next, addr != end);
1727
1728         if (err)
1729                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1730
1731         return err;
1732 }
1733 EXPORT_SYMBOL(remap_pfn_range);
1734
1735 /**
1736  * vm_iomap_memory - remap memory to userspace
1737  * @vma: user vma to map to
1738  * @start: start of area
1739  * @len: size of area
1740  *
1741  * This is a simplified io_remap_pfn_range() for common driver use. The
1742  * driver just needs to give us the physical memory range to be mapped,
1743  * we'll figure out the rest from the vma information.
1744  *
1745  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1746  * whatever write-combining details or similar.
1747  */
1748 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1749 {
1750         unsigned long vm_len, pfn, pages;
1751
1752         /* Check that the physical memory area passed in looks valid */
1753         if (start + len < start)
1754                 return -EINVAL;
1755         /*
1756          * You *really* shouldn't map things that aren't page-aligned,
1757          * but we've historically allowed it because IO memory might
1758          * just have smaller alignment.
1759          */
1760         len += start & ~PAGE_MASK;
1761         pfn = start >> PAGE_SHIFT;
1762         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1763         if (pfn + pages < pfn)
1764                 return -EINVAL;
1765
1766         /* We start the mapping 'vm_pgoff' pages into the area */
1767         if (vma->vm_pgoff > pages)
1768                 return -EINVAL;
1769         pfn += vma->vm_pgoff;
1770         pages -= vma->vm_pgoff;
1771
1772         /* Can we fit all of the mapping? */
1773         vm_len = vma->vm_end - vma->vm_start;
1774         if (vm_len >> PAGE_SHIFT > pages)
1775                 return -EINVAL;
1776
1777         /* Ok, let it rip */
1778         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1779 }
1780 EXPORT_SYMBOL(vm_iomap_memory);
1781
1782 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1783                                      unsigned long addr, unsigned long end,
1784                                      pte_fn_t fn, void *data)
1785 {
1786         pte_t *pte;
1787         int err;
1788         pgtable_t token;
1789         spinlock_t *uninitialized_var(ptl);
1790
1791         pte = (mm == &init_mm) ?
1792                 pte_alloc_kernel(pmd, addr) :
1793                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1794         if (!pte)
1795                 return -ENOMEM;
1796
1797         BUG_ON(pmd_huge(*pmd));
1798
1799         arch_enter_lazy_mmu_mode();
1800
1801         token = pmd_pgtable(*pmd);
1802
1803         do {
1804                 err = fn(pte++, token, addr, data);
1805                 if (err)
1806                         break;
1807         } while (addr += PAGE_SIZE, addr != end);
1808
1809         arch_leave_lazy_mmu_mode();
1810
1811         if (mm != &init_mm)
1812                 pte_unmap_unlock(pte-1, ptl);
1813         return err;
1814 }
1815
1816 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1817                                      unsigned long addr, unsigned long end,
1818                                      pte_fn_t fn, void *data)
1819 {
1820         pmd_t *pmd;
1821         unsigned long next;
1822         int err;
1823
1824         BUG_ON(pud_huge(*pud));
1825
1826         pmd = pmd_alloc(mm, pud, addr);
1827         if (!pmd)
1828                 return -ENOMEM;
1829         do {
1830                 next = pmd_addr_end(addr, end);
1831                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1832                 if (err)
1833                         break;
1834         } while (pmd++, addr = next, addr != end);
1835         return err;
1836 }
1837
1838 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1839                                      unsigned long addr, unsigned long end,
1840                                      pte_fn_t fn, void *data)
1841 {
1842         pud_t *pud;
1843         unsigned long next;
1844         int err;
1845
1846         pud = pud_alloc(mm, pgd, addr);
1847         if (!pud)
1848                 return -ENOMEM;
1849         do {
1850                 next = pud_addr_end(addr, end);
1851                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1852                 if (err)
1853                         break;
1854         } while (pud++, addr = next, addr != end);
1855         return err;
1856 }
1857
1858 /*
1859  * Scan a region of virtual memory, filling in page tables as necessary
1860  * and calling a provided function on each leaf page table.
1861  */
1862 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1863                         unsigned long size, pte_fn_t fn, void *data)
1864 {
1865         pgd_t *pgd;
1866         unsigned long next;
1867         unsigned long end = addr + size;
1868         int err;
1869
1870         BUG_ON(addr >= end);
1871         pgd = pgd_offset(mm, addr);
1872         do {
1873                 next = pgd_addr_end(addr, end);
1874                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1875                 if (err)
1876                         break;
1877         } while (pgd++, addr = next, addr != end);
1878
1879         return err;
1880 }
1881 EXPORT_SYMBOL_GPL(apply_to_page_range);
1882
1883 /*
1884  * handle_pte_fault chooses page fault handler according to an entry which was
1885  * read non-atomically.  Before making any commitment, on those architectures
1886  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1887  * parts, do_swap_page must check under lock before unmapping the pte and
1888  * proceeding (but do_wp_page is only called after already making such a check;
1889  * and do_anonymous_page can safely check later on).
1890  */
1891 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1892                                 pte_t *page_table, pte_t orig_pte)
1893 {
1894         int same = 1;
1895 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1896         if (sizeof(pte_t) > sizeof(unsigned long)) {
1897                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1898                 spin_lock(ptl);
1899                 same = pte_same(*page_table, orig_pte);
1900                 spin_unlock(ptl);
1901         }
1902 #endif
1903         pte_unmap(page_table);
1904         return same;
1905 }
1906
1907 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1908 {
1909         debug_dma_assert_idle(src);
1910
1911         /*
1912          * If the source page was a PFN mapping, we don't have
1913          * a "struct page" for it. We do a best-effort copy by
1914          * just copying from the original user address. If that
1915          * fails, we just zero-fill it. Live with it.
1916          */
1917         if (unlikely(!src)) {
1918                 void *kaddr = kmap_atomic(dst);
1919                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1920
1921                 /*
1922                  * This really shouldn't fail, because the page is there
1923                  * in the page tables. But it might just be unreadable,
1924                  * in which case we just give up and fill the result with
1925                  * zeroes.
1926                  */
1927                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1928                         clear_page(kaddr);
1929                 kunmap_atomic(kaddr);
1930                 flush_dcache_page(dst);
1931         } else
1932                 copy_user_highpage(dst, src, va, vma);
1933 }
1934
1935 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1936 {
1937         struct file *vm_file = vma->vm_file;
1938
1939         if (vm_file)
1940                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1941
1942         /*
1943          * Special mappings (e.g. VDSO) do not have any file so fake
1944          * a default GFP_KERNEL for them.
1945          */
1946         return GFP_KERNEL;
1947 }
1948
1949 /*
1950  * Notify the address space that the page is about to become writable so that
1951  * it can prohibit this or wait for the page to get into an appropriate state.
1952  *
1953  * We do this without the lock held, so that it can sleep if it needs to.
1954  */
1955 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1956                unsigned long address)
1957 {
1958         struct vm_fault vmf;
1959         int ret;
1960
1961         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1962         vmf.pgoff = page->index;
1963         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1964         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1965         vmf.page = page;
1966         vmf.cow_page = NULL;
1967
1968         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1969         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1970                 return ret;
1971         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1972                 lock_page(page);
1973                 if (!page->mapping) {
1974                         unlock_page(page);
1975                         return 0; /* retry */
1976                 }
1977                 ret |= VM_FAULT_LOCKED;
1978         } else
1979                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1980         return ret;
1981 }
1982
1983 /*
1984  * Handle write page faults for pages that can be reused in the current vma
1985  *
1986  * This can happen either due to the mapping being with the VM_SHARED flag,
1987  * or due to us being the last reference standing to the page. In either
1988  * case, all we need to do here is to mark the page as writable and update
1989  * any related book-keeping.
1990  */
1991 static inline int wp_page_reuse(struct mm_struct *mm,
1992                         struct vm_area_struct *vma, unsigned long address,
1993                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1994                         struct page *page, int page_mkwrite,
1995                         int dirty_shared)
1996         __releases(ptl)
1997 {
1998         pte_t entry;
1999         /*
2000          * Clear the pages cpupid information as the existing
2001          * information potentially belongs to a now completely
2002          * unrelated process.
2003          */
2004         if (page)
2005                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2006
2007         flush_cache_page(vma, address, pte_pfn(orig_pte));
2008         entry = pte_mkyoung(orig_pte);
2009         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2010         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2011                 update_mmu_cache(vma, address, page_table);
2012         pte_unmap_unlock(page_table, ptl);
2013
2014         if (dirty_shared) {
2015                 struct address_space *mapping;
2016                 int dirtied;
2017
2018                 if (!page_mkwrite)
2019                         lock_page(page);
2020
2021                 dirtied = set_page_dirty(page);
2022                 VM_BUG_ON_PAGE(PageAnon(page), page);
2023                 mapping = page->mapping;
2024                 unlock_page(page);
2025                 page_cache_release(page);
2026
2027                 if ((dirtied || page_mkwrite) && mapping) {
2028                         /*
2029                          * Some device drivers do not set page.mapping
2030                          * but still dirty their pages
2031                          */
2032                         balance_dirty_pages_ratelimited(mapping);
2033                 }
2034
2035                 if (!page_mkwrite)
2036                         file_update_time(vma->vm_file);
2037         }
2038
2039         return VM_FAULT_WRITE;
2040 }
2041
2042 /*
2043  * Handle the case of a page which we actually need to copy to a new page.
2044  *
2045  * Called with mmap_sem locked and the old page referenced, but
2046  * without the ptl held.
2047  *
2048  * High level logic flow:
2049  *
2050  * - Allocate a page, copy the content of the old page to the new one.
2051  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2052  * - Take the PTL. If the pte changed, bail out and release the allocated page
2053  * - If the pte is still the way we remember it, update the page table and all
2054  *   relevant references. This includes dropping the reference the page-table
2055  *   held to the old page, as well as updating the rmap.
2056  * - In any case, unlock the PTL and drop the reference we took to the old page.
2057  */
2058 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2059                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2060                         pte_t orig_pte, struct page *old_page)
2061 {
2062         struct page *new_page = NULL;
2063         spinlock_t *ptl = NULL;
2064         pte_t entry;
2065         int page_copied = 0;
2066         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2067         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2068         struct mem_cgroup *memcg;
2069
2070         if (unlikely(anon_vma_prepare(vma)))
2071                 goto oom;
2072
2073         if (is_zero_pfn(pte_pfn(orig_pte))) {
2074                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2075                 if (!new_page)
2076                         goto oom;
2077         } else {
2078                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2079                 if (!new_page)
2080                         goto oom;
2081                 cow_user_page(new_page, old_page, address, vma);
2082         }
2083
2084         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2085                 goto oom_free_new;
2086
2087         __SetPageUptodate(new_page);
2088
2089         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2090
2091         /*
2092          * Re-check the pte - we dropped the lock
2093          */
2094         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095         if (likely(pte_same(*page_table, orig_pte))) {
2096                 if (old_page) {
2097                         if (!PageAnon(old_page)) {
2098                                 dec_mm_counter_fast(mm,
2099                                                 mm_counter_file(old_page));
2100                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2101                         }
2102                 } else {
2103                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2104                 }
2105                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2106                 entry = mk_pte(new_page, vma->vm_page_prot);
2107                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108                 /*
2109                  * Clear the pte entry and flush it first, before updating the
2110                  * pte with the new entry. This will avoid a race condition
2111                  * seen in the presence of one thread doing SMC and another
2112                  * thread doing COW.
2113                  */
2114                 ptep_clear_flush_notify(vma, address, page_table);
2115                 page_add_new_anon_rmap(new_page, vma, address, false);
2116                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2117                 lru_cache_add_active_or_unevictable(new_page, vma);
2118                 /*
2119                  * We call the notify macro here because, when using secondary
2120                  * mmu page tables (such as kvm shadow page tables), we want the
2121                  * new page to be mapped directly into the secondary page table.
2122                  */
2123                 set_pte_at_notify(mm, address, page_table, entry);
2124                 update_mmu_cache(vma, address, page_table);
2125                 if (old_page) {
2126                         /*
2127                          * Only after switching the pte to the new page may
2128                          * we remove the mapcount here. Otherwise another
2129                          * process may come and find the rmap count decremented
2130                          * before the pte is switched to the new page, and
2131                          * "reuse" the old page writing into it while our pte
2132                          * here still points into it and can be read by other
2133                          * threads.
2134                          *
2135                          * The critical issue is to order this
2136                          * page_remove_rmap with the ptp_clear_flush above.
2137                          * Those stores are ordered by (if nothing else,)
2138                          * the barrier present in the atomic_add_negative
2139                          * in page_remove_rmap.
2140                          *
2141                          * Then the TLB flush in ptep_clear_flush ensures that
2142                          * no process can access the old page before the
2143                          * decremented mapcount is visible. And the old page
2144                          * cannot be reused until after the decremented
2145                          * mapcount is visible. So transitively, TLBs to
2146                          * old page will be flushed before it can be reused.
2147                          */
2148                         page_remove_rmap(old_page, false);
2149                 }
2150
2151                 /* Free the old page.. */
2152                 new_page = old_page;
2153                 page_copied = 1;
2154         } else {
2155                 mem_cgroup_cancel_charge(new_page, memcg, false);
2156         }
2157
2158         if (new_page)
2159                 page_cache_release(new_page);
2160
2161         pte_unmap_unlock(page_table, ptl);
2162         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2163         /* THP pages are never mlocked */
2164         if (old_page && !PageTransCompound(old_page)) {
2165                 /*
2166                  * Don't let another task, with possibly unlocked vma,
2167                  * keep the mlocked page.
2168                  */
2169                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2170                         lock_page(old_page);    /* LRU manipulation */
2171                         munlock_vma_page(old_page);
2172                         unlock_page(old_page);
2173                 }
2174                 page_cache_release(old_page);
2175         }
2176         return page_copied ? VM_FAULT_WRITE : 0;
2177 oom_free_new:
2178         page_cache_release(new_page);
2179 oom:
2180         if (old_page)
2181                 page_cache_release(old_page);
2182         return VM_FAULT_OOM;
2183 }
2184
2185 /*
2186  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2187  * mapping
2188  */
2189 static int wp_pfn_shared(struct mm_struct *mm,
2190                         struct vm_area_struct *vma, unsigned long address,
2191                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2192                         pmd_t *pmd)
2193 {
2194         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2195                 struct vm_fault vmf = {
2196                         .page = NULL,
2197                         .pgoff = linear_page_index(vma, address),
2198                         .virtual_address = (void __user *)(address & PAGE_MASK),
2199                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2200                 };
2201                 int ret;
2202
2203                 pte_unmap_unlock(page_table, ptl);
2204                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2205                 if (ret & VM_FAULT_ERROR)
2206                         return ret;
2207                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2208                 /*
2209                  * We might have raced with another page fault while we
2210                  * released the pte_offset_map_lock.
2211                  */
2212                 if (!pte_same(*page_table, orig_pte)) {
2213                         pte_unmap_unlock(page_table, ptl);
2214                         return 0;
2215                 }
2216         }
2217         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2218                              NULL, 0, 0);
2219 }
2220
2221 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2222                           unsigned long address, pte_t *page_table,
2223                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2224                           struct page *old_page)
2225         __releases(ptl)
2226 {
2227         int page_mkwrite = 0;
2228
2229         page_cache_get(old_page);
2230
2231         /*
2232          * Only catch write-faults on shared writable pages,
2233          * read-only shared pages can get COWed by
2234          * get_user_pages(.write=1, .force=1).
2235          */
2236         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2237                 int tmp;
2238
2239                 pte_unmap_unlock(page_table, ptl);
2240                 tmp = do_page_mkwrite(vma, old_page, address);
2241                 if (unlikely(!tmp || (tmp &
2242                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2243                         page_cache_release(old_page);
2244                         return tmp;
2245                 }
2246                 /*
2247                  * Since we dropped the lock we need to revalidate
2248                  * the PTE as someone else may have changed it.  If
2249                  * they did, we just return, as we can count on the
2250                  * MMU to tell us if they didn't also make it writable.
2251                  */
2252                 page_table = pte_offset_map_lock(mm, pmd, address,
2253                                                  &ptl);
2254                 if (!pte_same(*page_table, orig_pte)) {
2255                         unlock_page(old_page);
2256                         pte_unmap_unlock(page_table, ptl);
2257                         page_cache_release(old_page);
2258                         return 0;
2259                 }
2260                 page_mkwrite = 1;
2261         }
2262
2263         return wp_page_reuse(mm, vma, address, page_table, ptl,
2264                              orig_pte, old_page, page_mkwrite, 1);
2265 }
2266
2267 /*
2268  * This routine handles present pages, when users try to write
2269  * to a shared page. It is done by copying the page to a new address
2270  * and decrementing the shared-page counter for the old page.
2271  *
2272  * Note that this routine assumes that the protection checks have been
2273  * done by the caller (the low-level page fault routine in most cases).
2274  * Thus we can safely just mark it writable once we've done any necessary
2275  * COW.
2276  *
2277  * We also mark the page dirty at this point even though the page will
2278  * change only once the write actually happens. This avoids a few races,
2279  * and potentially makes it more efficient.
2280  *
2281  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2282  * but allow concurrent faults), with pte both mapped and locked.
2283  * We return with mmap_sem still held, but pte unmapped and unlocked.
2284  */
2285 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2286                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2287                 spinlock_t *ptl, pte_t orig_pte)
2288         __releases(ptl)
2289 {
2290         struct page *old_page;
2291
2292         old_page = vm_normal_page(vma, address, orig_pte);
2293         if (!old_page) {
2294                 /*
2295                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2296                  * VM_PFNMAP VMA.
2297                  *
2298                  * We should not cow pages in a shared writeable mapping.
2299                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2300                  */
2301                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2302                                      (VM_WRITE|VM_SHARED))
2303                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2304                                              orig_pte, pmd);
2305
2306                 pte_unmap_unlock(page_table, ptl);
2307                 return wp_page_copy(mm, vma, address, page_table, pmd,
2308                                     orig_pte, old_page);
2309         }
2310
2311         /*
2312          * Take out anonymous pages first, anonymous shared vmas are
2313          * not dirty accountable.
2314          */
2315         if (PageAnon(old_page) && !PageKsm(old_page)) {
2316                 if (!trylock_page(old_page)) {
2317                         page_cache_get(old_page);
2318                         pte_unmap_unlock(page_table, ptl);
2319                         lock_page(old_page);
2320                         page_table = pte_offset_map_lock(mm, pmd, address,
2321                                                          &ptl);
2322                         if (!pte_same(*page_table, orig_pte)) {
2323                                 unlock_page(old_page);
2324                                 pte_unmap_unlock(page_table, ptl);
2325                                 page_cache_release(old_page);
2326                                 return 0;
2327                         }
2328                         page_cache_release(old_page);
2329                 }
2330                 if (reuse_swap_page(old_page)) {
2331                         /*
2332                          * The page is all ours.  Move it to our anon_vma so
2333                          * the rmap code will not search our parent or siblings.
2334                          * Protected against the rmap code by the page lock.
2335                          */
2336                         page_move_anon_rmap(old_page, vma, address);
2337                         unlock_page(old_page);
2338                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2339                                              orig_pte, old_page, 0, 0);
2340                 }
2341                 unlock_page(old_page);
2342         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2343                                         (VM_WRITE|VM_SHARED))) {
2344                 return wp_page_shared(mm, vma, address, page_table, pmd,
2345                                       ptl, orig_pte, old_page);
2346         }
2347
2348         /*
2349          * Ok, we need to copy. Oh, well..
2350          */
2351         page_cache_get(old_page);
2352
2353         pte_unmap_unlock(page_table, ptl);
2354         return wp_page_copy(mm, vma, address, page_table, pmd,
2355                             orig_pte, old_page);
2356 }
2357
2358 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2359                 unsigned long start_addr, unsigned long end_addr,
2360                 struct zap_details *details)
2361 {
2362         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2363 }
2364
2365 static inline void unmap_mapping_range_tree(struct rb_root *root,
2366                                             struct zap_details *details)
2367 {
2368         struct vm_area_struct *vma;
2369         pgoff_t vba, vea, zba, zea;
2370
2371         vma_interval_tree_foreach(vma, root,
2372                         details->first_index, details->last_index) {
2373
2374                 vba = vma->vm_pgoff;
2375                 vea = vba + vma_pages(vma) - 1;
2376                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2377                 zba = details->first_index;
2378                 if (zba < vba)
2379                         zba = vba;
2380                 zea = details->last_index;
2381                 if (zea > vea)
2382                         zea = vea;
2383
2384                 unmap_mapping_range_vma(vma,
2385                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2386                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2387                                 details);
2388         }
2389 }
2390
2391 /**
2392  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2393  * address_space corresponding to the specified page range in the underlying
2394  * file.
2395  *
2396  * @mapping: the address space containing mmaps to be unmapped.
2397  * @holebegin: byte in first page to unmap, relative to the start of
2398  * the underlying file.  This will be rounded down to a PAGE_SIZE
2399  * boundary.  Note that this is different from truncate_pagecache(), which
2400  * must keep the partial page.  In contrast, we must get rid of
2401  * partial pages.
2402  * @holelen: size of prospective hole in bytes.  This will be rounded
2403  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2404  * end of the file.
2405  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2406  * but 0 when invalidating pagecache, don't throw away private data.
2407  */
2408 void unmap_mapping_range(struct address_space *mapping,
2409                 loff_t const holebegin, loff_t const holelen, int even_cows)
2410 {
2411         struct zap_details details;
2412         pgoff_t hba = holebegin >> PAGE_SHIFT;
2413         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2414
2415         /* Check for overflow. */
2416         if (sizeof(holelen) > sizeof(hlen)) {
2417                 long long holeend =
2418                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2419                 if (holeend & ~(long long)ULONG_MAX)
2420                         hlen = ULONG_MAX - hba + 1;
2421         }
2422
2423         details.check_mapping = even_cows? NULL: mapping;
2424         details.first_index = hba;
2425         details.last_index = hba + hlen - 1;
2426         if (details.last_index < details.first_index)
2427                 details.last_index = ULONG_MAX;
2428
2429
2430         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2431         i_mmap_lock_write(mapping);
2432         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2433                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2434         i_mmap_unlock_write(mapping);
2435 }
2436 EXPORT_SYMBOL(unmap_mapping_range);
2437
2438 /*
2439  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2440  * but allow concurrent faults), and pte mapped but not yet locked.
2441  * We return with pte unmapped and unlocked.
2442  *
2443  * We return with the mmap_sem locked or unlocked in the same cases
2444  * as does filemap_fault().
2445  */
2446 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2447                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2448                 unsigned int flags, pte_t orig_pte)
2449 {
2450         spinlock_t *ptl;
2451         struct page *page, *swapcache;
2452         struct mem_cgroup *memcg;
2453         swp_entry_t entry;
2454         pte_t pte;
2455         int locked;
2456         int exclusive = 0;
2457         int ret = 0;
2458
2459         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2460                 goto out;
2461
2462         entry = pte_to_swp_entry(orig_pte);
2463         if (unlikely(non_swap_entry(entry))) {
2464                 if (is_migration_entry(entry)) {
2465                         migration_entry_wait(mm, pmd, address);
2466                 } else if (is_hwpoison_entry(entry)) {
2467                         ret = VM_FAULT_HWPOISON;
2468                 } else {
2469                         print_bad_pte(vma, address, orig_pte, NULL);
2470                         ret = VM_FAULT_SIGBUS;
2471                 }
2472                 goto out;
2473         }
2474         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2475         page = lookup_swap_cache(entry);
2476         if (!page) {
2477                 page = swapin_readahead(entry,
2478                                         GFP_HIGHUSER_MOVABLE, vma, address);
2479                 if (!page) {
2480                         /*
2481                          * Back out if somebody else faulted in this pte
2482                          * while we released the pte lock.
2483                          */
2484                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2485                         if (likely(pte_same(*page_table, orig_pte)))
2486                                 ret = VM_FAULT_OOM;
2487                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2488                         goto unlock;
2489                 }
2490
2491                 /* Had to read the page from swap area: Major fault */
2492                 ret = VM_FAULT_MAJOR;
2493                 count_vm_event(PGMAJFAULT);
2494                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2495         } else if (PageHWPoison(page)) {
2496                 /*
2497                  * hwpoisoned dirty swapcache pages are kept for killing
2498                  * owner processes (which may be unknown at hwpoison time)
2499                  */
2500                 ret = VM_FAULT_HWPOISON;
2501                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2502                 swapcache = page;
2503                 goto out_release;
2504         }
2505
2506         swapcache = page;
2507         locked = lock_page_or_retry(page, mm, flags);
2508
2509         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2510         if (!locked) {
2511                 ret |= VM_FAULT_RETRY;
2512                 goto out_release;
2513         }
2514
2515         /*
2516          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2517          * release the swapcache from under us.  The page pin, and pte_same
2518          * test below, are not enough to exclude that.  Even if it is still
2519          * swapcache, we need to check that the page's swap has not changed.
2520          */
2521         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2522                 goto out_page;
2523
2524         page = ksm_might_need_to_copy(page, vma, address);
2525         if (unlikely(!page)) {
2526                 ret = VM_FAULT_OOM;
2527                 page = swapcache;
2528                 goto out_page;
2529         }
2530
2531         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2532                 ret = VM_FAULT_OOM;
2533                 goto out_page;
2534         }
2535
2536         /*
2537          * Back out if somebody else already faulted in this pte.
2538          */
2539         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2540         if (unlikely(!pte_same(*page_table, orig_pte)))
2541                 goto out_nomap;
2542
2543         if (unlikely(!PageUptodate(page))) {
2544                 ret = VM_FAULT_SIGBUS;
2545                 goto out_nomap;
2546         }
2547
2548         /*
2549          * The page isn't present yet, go ahead with the fault.
2550          *
2551          * Be careful about the sequence of operations here.
2552          * To get its accounting right, reuse_swap_page() must be called
2553          * while the page is counted on swap but not yet in mapcount i.e.
2554          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2555          * must be called after the swap_free(), or it will never succeed.
2556          */
2557
2558         inc_mm_counter_fast(mm, MM_ANONPAGES);
2559         dec_mm_counter_fast(mm, MM_SWAPENTS);
2560         pte = mk_pte(page, vma->vm_page_prot);
2561         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2562                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2563                 flags &= ~FAULT_FLAG_WRITE;
2564                 ret |= VM_FAULT_WRITE;
2565                 exclusive = RMAP_EXCLUSIVE;
2566         }
2567         flush_icache_page(vma, page);
2568         if (pte_swp_soft_dirty(orig_pte))
2569                 pte = pte_mksoft_dirty(pte);
2570         set_pte_at(mm, address, page_table, pte);
2571         if (page == swapcache) {
2572                 do_page_add_anon_rmap(page, vma, address, exclusive);
2573                 mem_cgroup_commit_charge(page, memcg, true, false);
2574         } else { /* ksm created a completely new copy */
2575                 page_add_new_anon_rmap(page, vma, address, false);
2576                 mem_cgroup_commit_charge(page, memcg, false, false);
2577                 lru_cache_add_active_or_unevictable(page, vma);
2578         }
2579
2580         swap_free(entry);
2581         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2582                 try_to_free_swap(page);
2583         unlock_page(page);
2584         if (page != swapcache) {
2585                 /*
2586                  * Hold the lock to avoid the swap entry to be reused
2587                  * until we take the PT lock for the pte_same() check
2588                  * (to avoid false positives from pte_same). For
2589                  * further safety release the lock after the swap_free
2590                  * so that the swap count won't change under a
2591                  * parallel locked swapcache.
2592                  */
2593                 unlock_page(swapcache);
2594                 page_cache_release(swapcache);
2595         }
2596
2597         if (flags & FAULT_FLAG_WRITE) {
2598                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2599                 if (ret & VM_FAULT_ERROR)
2600                         ret &= VM_FAULT_ERROR;
2601                 goto out;
2602         }
2603
2604         /* No need to invalidate - it was non-present before */
2605         update_mmu_cache(vma, address, page_table);
2606 unlock:
2607         pte_unmap_unlock(page_table, ptl);
2608 out:
2609         return ret;
2610 out_nomap:
2611         mem_cgroup_cancel_charge(page, memcg, false);
2612         pte_unmap_unlock(page_table, ptl);
2613 out_page:
2614         unlock_page(page);
2615 out_release:
2616         page_cache_release(page);
2617         if (page != swapcache) {
2618                 unlock_page(swapcache);
2619                 page_cache_release(swapcache);
2620         }
2621         return ret;
2622 }
2623
2624 /*
2625  * This is like a special single-page "expand_{down|up}wards()",
2626  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2627  * doesn't hit another vma.
2628  */
2629 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2630 {
2631         address &= PAGE_MASK;
2632         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2633                 struct vm_area_struct *prev = vma->vm_prev;
2634
2635                 /*
2636                  * Is there a mapping abutting this one below?
2637                  *
2638                  * That's only ok if it's the same stack mapping
2639                  * that has gotten split..
2640                  */
2641                 if (prev && prev->vm_end == address)
2642                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2643
2644                 return expand_downwards(vma, address - PAGE_SIZE);
2645         }
2646         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2647                 struct vm_area_struct *next = vma->vm_next;
2648
2649                 /* As VM_GROWSDOWN but s/below/above/ */
2650                 if (next && next->vm_start == address + PAGE_SIZE)
2651                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2652
2653                 return expand_upwards(vma, address + PAGE_SIZE);
2654         }
2655         return 0;
2656 }
2657
2658 /*
2659  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2660  * but allow concurrent faults), and pte mapped but not yet locked.
2661  * We return with mmap_sem still held, but pte unmapped and unlocked.
2662  */
2663 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2664                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2665                 unsigned int flags)
2666 {
2667         struct mem_cgroup *memcg;
2668         struct page *page;
2669         spinlock_t *ptl;
2670         pte_t entry;
2671
2672         pte_unmap(page_table);
2673
2674         /* File mapping without ->vm_ops ? */
2675         if (vma->vm_flags & VM_SHARED)
2676                 return VM_FAULT_SIGBUS;
2677
2678         /* Check if we need to add a guard page to the stack */
2679         if (check_stack_guard_page(vma, address) < 0)
2680                 return VM_FAULT_SIGSEGV;
2681
2682         /* Use the zero-page for reads */
2683         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2684                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2685                                                 vma->vm_page_prot));
2686                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2687                 if (!pte_none(*page_table))
2688                         goto unlock;
2689                 /* Deliver the page fault to userland, check inside PT lock */
2690                 if (userfaultfd_missing(vma)) {
2691                         pte_unmap_unlock(page_table, ptl);
2692                         return handle_userfault(vma, address, flags,
2693                                                 VM_UFFD_MISSING);
2694                 }
2695                 goto setpte;
2696         }
2697
2698         /* Allocate our own private page. */
2699         if (unlikely(anon_vma_prepare(vma)))
2700                 goto oom;
2701         page = alloc_zeroed_user_highpage_movable(vma, address);
2702         if (!page)
2703                 goto oom;
2704
2705         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2706                 goto oom_free_page;
2707
2708         /*
2709          * The memory barrier inside __SetPageUptodate makes sure that
2710          * preceeding stores to the page contents become visible before
2711          * the set_pte_at() write.
2712          */
2713         __SetPageUptodate(page);
2714
2715         entry = mk_pte(page, vma->vm_page_prot);
2716         if (vma->vm_flags & VM_WRITE)
2717                 entry = pte_mkwrite(pte_mkdirty(entry));
2718
2719         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2720         if (!pte_none(*page_table))
2721                 goto release;
2722
2723         /* Deliver the page fault to userland, check inside PT lock */
2724         if (userfaultfd_missing(vma)) {
2725                 pte_unmap_unlock(page_table, ptl);
2726                 mem_cgroup_cancel_charge(page, memcg, false);
2727                 page_cache_release(page);
2728                 return handle_userfault(vma, address, flags,
2729                                         VM_UFFD_MISSING);
2730         }
2731
2732         inc_mm_counter_fast(mm, MM_ANONPAGES);
2733         page_add_new_anon_rmap(page, vma, address, false);
2734         mem_cgroup_commit_charge(page, memcg, false, false);
2735         lru_cache_add_active_or_unevictable(page, vma);
2736 setpte:
2737         set_pte_at(mm, address, page_table, entry);
2738
2739         /* No need to invalidate - it was non-present before */
2740         update_mmu_cache(vma, address, page_table);
2741 unlock:
2742         pte_unmap_unlock(page_table, ptl);
2743         return 0;
2744 release:
2745         mem_cgroup_cancel_charge(page, memcg, false);
2746         page_cache_release(page);
2747         goto unlock;
2748 oom_free_page:
2749         page_cache_release(page);
2750 oom:
2751         return VM_FAULT_OOM;
2752 }
2753
2754 /*
2755  * The mmap_sem must have been held on entry, and may have been
2756  * released depending on flags and vma->vm_ops->fault() return value.
2757  * See filemap_fault() and __lock_page_retry().
2758  */
2759 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2760                         pgoff_t pgoff, unsigned int flags,
2761                         struct page *cow_page, struct page **page)
2762 {
2763         struct vm_fault vmf;
2764         int ret;
2765
2766         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2767         vmf.pgoff = pgoff;
2768         vmf.flags = flags;
2769         vmf.page = NULL;
2770         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2771         vmf.cow_page = cow_page;
2772
2773         ret = vma->vm_ops->fault(vma, &vmf);
2774         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2775                 return ret;
2776         if (!vmf.page)
2777                 goto out;
2778
2779         if (unlikely(PageHWPoison(vmf.page))) {
2780                 if (ret & VM_FAULT_LOCKED)
2781                         unlock_page(vmf.page);
2782                 page_cache_release(vmf.page);
2783                 return VM_FAULT_HWPOISON;
2784         }
2785
2786         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2787                 lock_page(vmf.page);
2788         else
2789                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2790
2791  out:
2792         *page = vmf.page;
2793         return ret;
2794 }
2795
2796 /**
2797  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2798  *
2799  * @vma: virtual memory area
2800  * @address: user virtual address
2801  * @page: page to map
2802  * @pte: pointer to target page table entry
2803  * @write: true, if new entry is writable
2804  * @anon: true, if it's anonymous page
2805  *
2806  * Caller must hold page table lock relevant for @pte.
2807  *
2808  * Target users are page handler itself and implementations of
2809  * vm_ops->map_pages.
2810  */
2811 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2812                 struct page *page, pte_t *pte, bool write, bool anon)
2813 {
2814         pte_t entry;
2815
2816         flush_icache_page(vma, page);
2817         entry = mk_pte(page, vma->vm_page_prot);
2818         if (write)
2819                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2820         if (anon) {
2821                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2822                 page_add_new_anon_rmap(page, vma, address, false);
2823         } else {
2824                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2825                 page_add_file_rmap(page);
2826         }
2827         set_pte_at(vma->vm_mm, address, pte, entry);
2828
2829         /* no need to invalidate: a not-present page won't be cached */
2830         update_mmu_cache(vma, address, pte);
2831 }
2832
2833 static unsigned long fault_around_bytes __read_mostly =
2834         rounddown_pow_of_two(65536);
2835
2836 #ifdef CONFIG_DEBUG_FS
2837 static int fault_around_bytes_get(void *data, u64 *val)
2838 {
2839         *val = fault_around_bytes;
2840         return 0;
2841 }
2842
2843 /*
2844  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2845  * rounded down to nearest page order. It's what do_fault_around() expects to
2846  * see.
2847  */
2848 static int fault_around_bytes_set(void *data, u64 val)
2849 {
2850         if (val / PAGE_SIZE > PTRS_PER_PTE)
2851                 return -EINVAL;
2852         if (val > PAGE_SIZE)
2853                 fault_around_bytes = rounddown_pow_of_two(val);
2854         else
2855                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2856         return 0;
2857 }
2858 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2859                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2860
2861 static int __init fault_around_debugfs(void)
2862 {
2863         void *ret;
2864
2865         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2866                         &fault_around_bytes_fops);
2867         if (!ret)
2868                 pr_warn("Failed to create fault_around_bytes in debugfs");
2869         return 0;
2870 }
2871 late_initcall(fault_around_debugfs);
2872 #endif
2873
2874 /*
2875  * do_fault_around() tries to map few pages around the fault address. The hope
2876  * is that the pages will be needed soon and this will lower the number of
2877  * faults to handle.
2878  *
2879  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2880  * not ready to be mapped: not up-to-date, locked, etc.
2881  *
2882  * This function is called with the page table lock taken. In the split ptlock
2883  * case the page table lock only protects only those entries which belong to
2884  * the page table corresponding to the fault address.
2885  *
2886  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2887  * only once.
2888  *
2889  * fault_around_pages() defines how many pages we'll try to map.
2890  * do_fault_around() expects it to return a power of two less than or equal to
2891  * PTRS_PER_PTE.
2892  *
2893  * The virtual address of the area that we map is naturally aligned to the
2894  * fault_around_pages() value (and therefore to page order).  This way it's
2895  * easier to guarantee that we don't cross page table boundaries.
2896  */
2897 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2898                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2899 {
2900         unsigned long start_addr, nr_pages, mask;
2901         pgoff_t max_pgoff;
2902         struct vm_fault vmf;
2903         int off;
2904
2905         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2906         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2907
2908         start_addr = max(address & mask, vma->vm_start);
2909         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2910         pte -= off;
2911         pgoff -= off;
2912
2913         /*
2914          *  max_pgoff is either end of page table or end of vma
2915          *  or fault_around_pages() from pgoff, depending what is nearest.
2916          */
2917         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2918                 PTRS_PER_PTE - 1;
2919         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2920                         pgoff + nr_pages - 1);
2921
2922         /* Check if it makes any sense to call ->map_pages */
2923         while (!pte_none(*pte)) {
2924                 if (++pgoff > max_pgoff)
2925                         return;
2926                 start_addr += PAGE_SIZE;
2927                 if (start_addr >= vma->vm_end)
2928                         return;
2929                 pte++;
2930         }
2931
2932         vmf.virtual_address = (void __user *) start_addr;
2933         vmf.pte = pte;
2934         vmf.pgoff = pgoff;
2935         vmf.max_pgoff = max_pgoff;
2936         vmf.flags = flags;
2937         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2938         vma->vm_ops->map_pages(vma, &vmf);
2939 }
2940
2941 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2942                 unsigned long address, pmd_t *pmd,
2943                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2944 {
2945         struct page *fault_page;
2946         spinlock_t *ptl;
2947         pte_t *pte;
2948         int ret = 0;
2949
2950         /*
2951          * Let's call ->map_pages() first and use ->fault() as fallback
2952          * if page by the offset is not ready to be mapped (cold cache or
2953          * something).
2954          */
2955         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2956                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2957                 do_fault_around(vma, address, pte, pgoff, flags);
2958                 if (!pte_same(*pte, orig_pte))
2959                         goto unlock_out;
2960                 pte_unmap_unlock(pte, ptl);
2961         }
2962
2963         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2964         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2965                 return ret;
2966
2967         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2968         if (unlikely(!pte_same(*pte, orig_pte))) {
2969                 pte_unmap_unlock(pte, ptl);
2970                 unlock_page(fault_page);
2971                 page_cache_release(fault_page);
2972                 return ret;
2973         }
2974         do_set_pte(vma, address, fault_page, pte, false, false);
2975         unlock_page(fault_page);
2976 unlock_out:
2977         pte_unmap_unlock(pte, ptl);
2978         return ret;
2979 }
2980
2981 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2982                 unsigned long address, pmd_t *pmd,
2983                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2984 {
2985         struct page *fault_page, *new_page;
2986         struct mem_cgroup *memcg;
2987         spinlock_t *ptl;
2988         pte_t *pte;
2989         int ret;
2990
2991         if (unlikely(anon_vma_prepare(vma)))
2992                 return VM_FAULT_OOM;
2993
2994         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2995         if (!new_page)
2996                 return VM_FAULT_OOM;
2997
2998         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
2999                 page_cache_release(new_page);
3000                 return VM_FAULT_OOM;
3001         }
3002
3003         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3004         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3005                 goto uncharge_out;
3006
3007         if (fault_page)
3008                 copy_user_highpage(new_page, fault_page, address, vma);
3009         __SetPageUptodate(new_page);
3010
3011         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3012         if (unlikely(!pte_same(*pte, orig_pte))) {
3013                 pte_unmap_unlock(pte, ptl);
3014                 if (fault_page) {
3015                         unlock_page(fault_page);
3016                         page_cache_release(fault_page);
3017                 } else {
3018                         /*
3019                          * The fault handler has no page to lock, so it holds
3020                          * i_mmap_lock for read to protect against truncate.
3021                          */
3022                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3023                 }
3024                 goto uncharge_out;
3025         }
3026         do_set_pte(vma, address, new_page, pte, true, true);
3027         mem_cgroup_commit_charge(new_page, memcg, false, false);
3028         lru_cache_add_active_or_unevictable(new_page, vma);
3029         pte_unmap_unlock(pte, ptl);
3030         if (fault_page) {
3031                 unlock_page(fault_page);
3032                 page_cache_release(fault_page);
3033         } else {
3034                 /*
3035                  * The fault handler has no page to lock, so it holds
3036                  * i_mmap_lock for read to protect against truncate.
3037                  */
3038                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3039         }
3040         return ret;
3041 uncharge_out:
3042         mem_cgroup_cancel_charge(new_page, memcg, false);
3043         page_cache_release(new_page);
3044         return ret;
3045 }
3046
3047 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048                 unsigned long address, pmd_t *pmd,
3049                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3050 {
3051         struct page *fault_page;
3052         struct address_space *mapping;
3053         spinlock_t *ptl;
3054         pte_t *pte;
3055         int dirtied = 0;
3056         int ret, tmp;
3057
3058         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3059         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3060                 return ret;
3061
3062         /*
3063          * Check if the backing address space wants to know that the page is
3064          * about to become writable
3065          */
3066         if (vma->vm_ops->page_mkwrite) {
3067                 unlock_page(fault_page);
3068                 tmp = do_page_mkwrite(vma, fault_page, address);
3069                 if (unlikely(!tmp ||
3070                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3071                         page_cache_release(fault_page);
3072                         return tmp;
3073                 }
3074         }
3075
3076         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3077         if (unlikely(!pte_same(*pte, orig_pte))) {
3078                 pte_unmap_unlock(pte, ptl);
3079                 unlock_page(fault_page);
3080                 page_cache_release(fault_page);
3081                 return ret;
3082         }
3083         do_set_pte(vma, address, fault_page, pte, true, false);
3084         pte_unmap_unlock(pte, ptl);
3085
3086         if (set_page_dirty(fault_page))
3087                 dirtied = 1;
3088         /*
3089          * Take a local copy of the address_space - page.mapping may be zeroed
3090          * by truncate after unlock_page().   The address_space itself remains
3091          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3092          * release semantics to prevent the compiler from undoing this copying.
3093          */
3094         mapping = page_rmapping(fault_page);
3095         unlock_page(fault_page);
3096         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3097                 /*
3098                  * Some device drivers do not set page.mapping but still
3099                  * dirty their pages
3100                  */
3101                 balance_dirty_pages_ratelimited(mapping);
3102         }
3103
3104         if (!vma->vm_ops->page_mkwrite)
3105                 file_update_time(vma->vm_file);
3106
3107         return ret;
3108 }
3109
3110 /*
3111  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3112  * but allow concurrent faults).
3113  * The mmap_sem may have been released depending on flags and our
3114  * return value.  See filemap_fault() and __lock_page_or_retry().
3115  */
3116 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3118                 unsigned int flags, pte_t orig_pte)
3119 {
3120         pgoff_t pgoff = (((address & PAGE_MASK)
3121                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3122
3123         pte_unmap(page_table);
3124         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3125         if (!vma->vm_ops->fault)
3126                 return VM_FAULT_SIGBUS;
3127         if (!(flags & FAULT_FLAG_WRITE))
3128                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3129                                 orig_pte);
3130         if (!(vma->vm_flags & VM_SHARED))
3131                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3132                                 orig_pte);
3133         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3134 }
3135
3136 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3137                                 unsigned long addr, int page_nid,
3138                                 int *flags)
3139 {
3140         get_page(page);
3141
3142         count_vm_numa_event(NUMA_HINT_FAULTS);
3143         if (page_nid == numa_node_id()) {
3144                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3145                 *flags |= TNF_FAULT_LOCAL;
3146         }
3147
3148         return mpol_misplaced(page, vma, addr);
3149 }
3150
3151 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3152                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3153 {
3154         struct page *page = NULL;
3155         spinlock_t *ptl;
3156         int page_nid = -1;
3157         int last_cpupid;
3158         int target_nid;
3159         bool migrated = false;
3160         bool was_writable = pte_write(pte);
3161         int flags = 0;
3162
3163         /* A PROT_NONE fault should not end up here */
3164         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3165
3166         /*
3167         * The "pte" at this point cannot be used safely without
3168         * validation through pte_unmap_same(). It's of NUMA type but
3169         * the pfn may be screwed if the read is non atomic.
3170         *
3171         * We can safely just do a "set_pte_at()", because the old
3172         * page table entry is not accessible, so there would be no
3173         * concurrent hardware modifications to the PTE.
3174         */
3175         ptl = pte_lockptr(mm, pmd);
3176         spin_lock(ptl);
3177         if (unlikely(!pte_same(*ptep, pte))) {
3178                 pte_unmap_unlock(ptep, ptl);
3179                 goto out;
3180         }
3181
3182         /* Make it present again */
3183         pte = pte_modify(pte, vma->vm_page_prot);
3184         pte = pte_mkyoung(pte);
3185         if (was_writable)
3186                 pte = pte_mkwrite(pte);
3187         set_pte_at(mm, addr, ptep, pte);
3188         update_mmu_cache(vma, addr, ptep);
3189
3190         page = vm_normal_page(vma, addr, pte);
3191         if (!page) {
3192                 pte_unmap_unlock(ptep, ptl);
3193                 return 0;
3194         }
3195
3196         /*
3197          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3198          * much anyway since they can be in shared cache state. This misses
3199          * the case where a mapping is writable but the process never writes
3200          * to it but pte_write gets cleared during protection updates and
3201          * pte_dirty has unpredictable behaviour between PTE scan updates,
3202          * background writeback, dirty balancing and application behaviour.
3203          */
3204         if (!(vma->vm_flags & VM_WRITE))
3205                 flags |= TNF_NO_GROUP;
3206
3207         /*
3208          * Flag if the page is shared between multiple address spaces. This
3209          * is later used when determining whether to group tasks together
3210          */
3211         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3212                 flags |= TNF_SHARED;
3213
3214         last_cpupid = page_cpupid_last(page);
3215         page_nid = page_to_nid(page);
3216         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3217         pte_unmap_unlock(ptep, ptl);
3218         if (target_nid == -1) {
3219                 put_page(page);
3220                 goto out;
3221         }
3222
3223         /* Migrate to the requested node */
3224         migrated = migrate_misplaced_page(page, vma, target_nid);
3225         if (migrated) {
3226                 page_nid = target_nid;
3227                 flags |= TNF_MIGRATED;
3228         } else
3229                 flags |= TNF_MIGRATE_FAIL;
3230
3231 out:
3232         if (page_nid != -1)
3233                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3234         return 0;
3235 }
3236
3237 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3238                         unsigned long address, pmd_t *pmd, unsigned int flags)
3239 {
3240         if (vma_is_anonymous(vma))
3241                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3242         if (vma->vm_ops->pmd_fault)
3243                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3244         return VM_FAULT_FALLBACK;
3245 }
3246
3247 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3248                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3249                         unsigned int flags)
3250 {
3251         if (vma_is_anonymous(vma))
3252                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3253         if (vma->vm_ops->pmd_fault)
3254                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3255         return VM_FAULT_FALLBACK;
3256 }
3257
3258 /*
3259  * These routines also need to handle stuff like marking pages dirty
3260  * and/or accessed for architectures that don't do it in hardware (most
3261  * RISC architectures).  The early dirtying is also good on the i386.
3262  *
3263  * There is also a hook called "update_mmu_cache()" that architectures
3264  * with external mmu caches can use to update those (ie the Sparc or
3265  * PowerPC hashed page tables that act as extended TLBs).
3266  *
3267  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3268  * but allow concurrent faults), and pte mapped but not yet locked.
3269  * We return with pte unmapped and unlocked.
3270  *
3271  * The mmap_sem may have been released depending on flags and our
3272  * return value.  See filemap_fault() and __lock_page_or_retry().
3273  */
3274 static int handle_pte_fault(struct mm_struct *mm,
3275                      struct vm_area_struct *vma, unsigned long address,
3276                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3277 {
3278         pte_t entry;
3279         spinlock_t *ptl;
3280
3281         /*
3282          * some architectures can have larger ptes than wordsize,
3283          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3284          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3285          * The code below just needs a consistent view for the ifs and
3286          * we later double check anyway with the ptl lock held. So here
3287          * a barrier will do.
3288          */
3289         entry = *pte;
3290         barrier();
3291         if (!pte_present(entry)) {
3292                 if (pte_none(entry)) {
3293                         if (vma_is_anonymous(vma))
3294                                 return do_anonymous_page(mm, vma, address,
3295                                                          pte, pmd, flags);
3296                         else
3297                                 return do_fault(mm, vma, address, pte, pmd,
3298                                                 flags, entry);
3299                 }
3300                 return do_swap_page(mm, vma, address,
3301                                         pte, pmd, flags, entry);
3302         }
3303
3304         if (pte_protnone(entry))
3305                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3306
3307         ptl = pte_lockptr(mm, pmd);
3308         spin_lock(ptl);
3309         if (unlikely(!pte_same(*pte, entry)))
3310                 goto unlock;
3311         if (flags & FAULT_FLAG_WRITE) {
3312                 if (!pte_write(entry))
3313                         return do_wp_page(mm, vma, address,
3314                                         pte, pmd, ptl, entry);
3315                 entry = pte_mkdirty(entry);
3316         }
3317         entry = pte_mkyoung(entry);
3318         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3319                 update_mmu_cache(vma, address, pte);
3320         } else {
3321                 /*
3322                  * This is needed only for protection faults but the arch code
3323                  * is not yet telling us if this is a protection fault or not.
3324                  * This still avoids useless tlb flushes for .text page faults
3325                  * with threads.
3326                  */
3327                 if (flags & FAULT_FLAG_WRITE)
3328                         flush_tlb_fix_spurious_fault(vma, address);
3329         }
3330 unlock:
3331         pte_unmap_unlock(pte, ptl);
3332         return 0;
3333 }
3334
3335 /*
3336  * By the time we get here, we already hold the mm semaphore
3337  *
3338  * The mmap_sem may have been released depending on flags and our
3339  * return value.  See filemap_fault() and __lock_page_or_retry().
3340  */
3341 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3342                              unsigned long address, unsigned int flags)
3343 {
3344         pgd_t *pgd;
3345         pud_t *pud;
3346         pmd_t *pmd;
3347         pte_t *pte;
3348
3349         if (unlikely(is_vm_hugetlb_page(vma)))
3350                 return hugetlb_fault(mm, vma, address, flags);
3351
3352         pgd = pgd_offset(mm, address);
3353         pud = pud_alloc(mm, pgd, address);
3354         if (!pud)
3355                 return VM_FAULT_OOM;
3356         pmd = pmd_alloc(mm, pud, address);
3357         if (!pmd)
3358                 return VM_FAULT_OOM;
3359         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3360                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3361                 if (!(ret & VM_FAULT_FALLBACK))
3362                         return ret;
3363         } else {
3364                 pmd_t orig_pmd = *pmd;
3365                 int ret;
3366
3367                 barrier();
3368                 if (pmd_trans_huge(orig_pmd)) {
3369                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3370
3371                         if (pmd_protnone(orig_pmd))
3372                                 return do_huge_pmd_numa_page(mm, vma, address,
3373                                                              orig_pmd, pmd);
3374
3375                         if (dirty && !pmd_write(orig_pmd)) {
3376                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3377                                                         orig_pmd, flags);
3378                                 if (!(ret & VM_FAULT_FALLBACK))
3379                                         return ret;
3380                         } else {
3381                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3382                                                       orig_pmd, dirty);
3383                                 return 0;
3384                         }
3385                 }
3386         }
3387
3388         /*
3389          * Use __pte_alloc instead of pte_alloc_map, because we can't
3390          * run pte_offset_map on the pmd, if an huge pmd could
3391          * materialize from under us from a different thread.
3392          */
3393         if (unlikely(pmd_none(*pmd)) &&
3394             unlikely(__pte_alloc(mm, vma, pmd, address)))
3395                 return VM_FAULT_OOM;
3396         /* if an huge pmd materialized from under us just retry later */
3397         if (unlikely(pmd_trans_huge(*pmd)))
3398                 return 0;
3399         /*
3400          * A regular pmd is established and it can't morph into a huge pmd
3401          * from under us anymore at this point because we hold the mmap_sem
3402          * read mode and khugepaged takes it in write mode. So now it's
3403          * safe to run pte_offset_map().
3404          */
3405         pte = pte_offset_map(pmd, address);
3406
3407         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3408 }
3409
3410 /*
3411  * By the time we get here, we already hold the mm semaphore
3412  *
3413  * The mmap_sem may have been released depending on flags and our
3414  * return value.  See filemap_fault() and __lock_page_or_retry().
3415  */
3416 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3417                     unsigned long address, unsigned int flags)
3418 {
3419         int ret;
3420
3421         __set_current_state(TASK_RUNNING);
3422
3423         count_vm_event(PGFAULT);
3424         mem_cgroup_count_vm_event(mm, PGFAULT);
3425
3426         /* do counter updates before entering really critical section. */
3427         check_sync_rss_stat(current);
3428
3429         /*
3430          * Enable the memcg OOM handling for faults triggered in user
3431          * space.  Kernel faults are handled more gracefully.
3432          */
3433         if (flags & FAULT_FLAG_USER)
3434                 mem_cgroup_oom_enable();
3435
3436         ret = __handle_mm_fault(mm, vma, address, flags);
3437
3438         if (flags & FAULT_FLAG_USER) {
3439                 mem_cgroup_oom_disable();
3440                 /*
3441                  * The task may have entered a memcg OOM situation but
3442                  * if the allocation error was handled gracefully (no
3443                  * VM_FAULT_OOM), there is no need to kill anything.
3444                  * Just clean up the OOM state peacefully.
3445                  */
3446                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3447                         mem_cgroup_oom_synchronize(false);
3448         }
3449
3450         return ret;
3451 }
3452 EXPORT_SYMBOL_GPL(handle_mm_fault);
3453
3454 #ifndef __PAGETABLE_PUD_FOLDED
3455 /*
3456  * Allocate page upper directory.
3457  * We've already handled the fast-path in-line.
3458  */
3459 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3460 {
3461         pud_t *new = pud_alloc_one(mm, address);
3462         if (!new)
3463                 return -ENOMEM;
3464
3465         smp_wmb(); /* See comment in __pte_alloc */
3466
3467         spin_lock(&mm->page_table_lock);
3468         if (pgd_present(*pgd))          /* Another has populated it */
3469                 pud_free(mm, new);
3470         else
3471                 pgd_populate(mm, pgd, new);
3472         spin_unlock(&mm->page_table_lock);
3473         return 0;
3474 }
3475 #endif /* __PAGETABLE_PUD_FOLDED */
3476
3477 #ifndef __PAGETABLE_PMD_FOLDED
3478 /*
3479  * Allocate page middle directory.
3480  * We've already handled the fast-path in-line.
3481  */
3482 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3483 {
3484         pmd_t *new = pmd_alloc_one(mm, address);
3485         if (!new)
3486                 return -ENOMEM;
3487
3488         smp_wmb(); /* See comment in __pte_alloc */
3489
3490         spin_lock(&mm->page_table_lock);
3491 #ifndef __ARCH_HAS_4LEVEL_HACK
3492         if (!pud_present(*pud)) {
3493                 mm_inc_nr_pmds(mm);
3494                 pud_populate(mm, pud, new);
3495         } else  /* Another has populated it */
3496                 pmd_free(mm, new);
3497 #else
3498         if (!pgd_present(*pud)) {
3499                 mm_inc_nr_pmds(mm);
3500                 pgd_populate(mm, pud, new);
3501         } else /* Another has populated it */
3502                 pmd_free(mm, new);
3503 #endif /* __ARCH_HAS_4LEVEL_HACK */
3504         spin_unlock(&mm->page_table_lock);
3505         return 0;
3506 }
3507 #endif /* __PAGETABLE_PMD_FOLDED */
3508
3509 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3510                 pte_t **ptepp, spinlock_t **ptlp)
3511 {
3512         pgd_t *pgd;
3513         pud_t *pud;
3514         pmd_t *pmd;
3515         pte_t *ptep;
3516
3517         pgd = pgd_offset(mm, address);
3518         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3519                 goto out;
3520
3521         pud = pud_offset(pgd, address);
3522         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3523                 goto out;
3524
3525         pmd = pmd_offset(pud, address);
3526         VM_BUG_ON(pmd_trans_huge(*pmd));
3527         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3528                 goto out;
3529
3530         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3531         if (pmd_huge(*pmd))
3532                 goto out;
3533
3534         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3535         if (!ptep)
3536                 goto out;
3537         if (!pte_present(*ptep))
3538                 goto unlock;
3539         *ptepp = ptep;
3540         return 0;
3541 unlock:
3542         pte_unmap_unlock(ptep, *ptlp);
3543 out:
3544         return -EINVAL;
3545 }
3546
3547 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3548                              pte_t **ptepp, spinlock_t **ptlp)
3549 {
3550         int res;
3551
3552         /* (void) is needed to make gcc happy */
3553         (void) __cond_lock(*ptlp,
3554                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3555         return res;
3556 }
3557
3558 /**
3559  * follow_pfn - look up PFN at a user virtual address
3560  * @vma: memory mapping
3561  * @address: user virtual address
3562  * @pfn: location to store found PFN
3563  *
3564  * Only IO mappings and raw PFN mappings are allowed.
3565  *
3566  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3567  */
3568 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3569         unsigned long *pfn)
3570 {
3571         int ret = -EINVAL;
3572         spinlock_t *ptl;
3573         pte_t *ptep;
3574
3575         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3576                 return ret;
3577
3578         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3579         if (ret)
3580                 return ret;
3581         *pfn = pte_pfn(*ptep);
3582         pte_unmap_unlock(ptep, ptl);
3583         return 0;
3584 }
3585 EXPORT_SYMBOL(follow_pfn);
3586
3587 #ifdef CONFIG_HAVE_IOREMAP_PROT
3588 int follow_phys(struct vm_area_struct *vma,
3589                 unsigned long address, unsigned int flags,
3590                 unsigned long *prot, resource_size_t *phys)
3591 {
3592         int ret = -EINVAL;
3593         pte_t *ptep, pte;
3594         spinlock_t *ptl;
3595
3596         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3597                 goto out;
3598
3599         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3600                 goto out;
3601         pte = *ptep;
3602
3603         if ((flags & FOLL_WRITE) && !pte_write(pte))
3604                 goto unlock;
3605
3606         *prot = pgprot_val(pte_pgprot(pte));
3607         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3608
3609         ret = 0;
3610 unlock:
3611         pte_unmap_unlock(ptep, ptl);
3612 out:
3613         return ret;
3614 }
3615
3616 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3617                         void *buf, int len, int write)
3618 {
3619         resource_size_t phys_addr;
3620         unsigned long prot = 0;
3621         void __iomem *maddr;
3622         int offset = addr & (PAGE_SIZE-1);
3623
3624         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3625                 return -EINVAL;
3626
3627         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3628         if (write)
3629                 memcpy_toio(maddr + offset, buf, len);
3630         else
3631                 memcpy_fromio(buf, maddr + offset, len);
3632         iounmap(maddr);
3633
3634         return len;
3635 }
3636 EXPORT_SYMBOL_GPL(generic_access_phys);
3637 #endif
3638
3639 /*
3640  * Access another process' address space as given in mm.  If non-NULL, use the
3641  * given task for page fault accounting.
3642  */
3643 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3644                 unsigned long addr, void *buf, int len, int write)
3645 {
3646         struct vm_area_struct *vma;
3647         void *old_buf = buf;
3648
3649         down_read(&mm->mmap_sem);
3650         /* ignore errors, just check how much was successfully transferred */
3651         while (len) {
3652                 int bytes, ret, offset;
3653                 void *maddr;
3654                 struct page *page = NULL;
3655
3656                 ret = get_user_pages(tsk, mm, addr, 1,
3657                                 write, 1, &page, &vma);
3658                 if (ret <= 0) {
3659 #ifndef CONFIG_HAVE_IOREMAP_PROT
3660                         break;
3661 #else
3662                         /*
3663                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3664                          * we can access using slightly different code.
3665                          */
3666                         vma = find_vma(mm, addr);
3667                         if (!vma || vma->vm_start > addr)
3668                                 break;
3669                         if (vma->vm_ops && vma->vm_ops->access)
3670                                 ret = vma->vm_ops->access(vma, addr, buf,
3671                                                           len, write);
3672                         if (ret <= 0)
3673                                 break;
3674                         bytes = ret;
3675 #endif
3676                 } else {
3677                         bytes = len;
3678                         offset = addr & (PAGE_SIZE-1);
3679                         if (bytes > PAGE_SIZE-offset)
3680                                 bytes = PAGE_SIZE-offset;
3681
3682                         maddr = kmap(page);
3683                         if (write) {
3684                                 copy_to_user_page(vma, page, addr,
3685                                                   maddr + offset, buf, bytes);
3686                                 set_page_dirty_lock(page);
3687                         } else {
3688                                 copy_from_user_page(vma, page, addr,
3689                                                     buf, maddr + offset, bytes);
3690                         }
3691                         kunmap(page);
3692                         page_cache_release(page);
3693                 }
3694                 len -= bytes;
3695                 buf += bytes;
3696                 addr += bytes;
3697         }
3698         up_read(&mm->mmap_sem);
3699
3700         return buf - old_buf;
3701 }
3702
3703 /**
3704  * access_remote_vm - access another process' address space
3705  * @mm:         the mm_struct of the target address space
3706  * @addr:       start address to access
3707  * @buf:        source or destination buffer
3708  * @len:        number of bytes to transfer
3709  * @write:      whether the access is a write
3710  *
3711  * The caller must hold a reference on @mm.
3712  */
3713 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3714                 void *buf, int len, int write)
3715 {
3716         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3717 }
3718
3719 /*
3720  * Access another process' address space.
3721  * Source/target buffer must be kernel space,
3722  * Do not walk the page table directly, use get_user_pages
3723  */
3724 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3725                 void *buf, int len, int write)
3726 {
3727         struct mm_struct *mm;
3728         int ret;
3729
3730         mm = get_task_mm(tsk);
3731         if (!mm)
3732                 return 0;
3733
3734         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3735         mmput(mm);
3736
3737         return ret;
3738 }
3739
3740 /*
3741  * Print the name of a VMA.
3742  */
3743 void print_vma_addr(char *prefix, unsigned long ip)
3744 {
3745         struct mm_struct *mm = current->mm;
3746         struct vm_area_struct *vma;
3747
3748         /*
3749          * Do not print if we are in atomic
3750          * contexts (in exception stacks, etc.):
3751          */
3752         if (preempt_count())
3753                 return;
3754
3755         down_read(&mm->mmap_sem);
3756         vma = find_vma(mm, ip);
3757         if (vma && vma->vm_file) {
3758                 struct file *f = vma->vm_file;
3759                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3760                 if (buf) {
3761                         char *p;
3762
3763                         p = file_path(f, buf, PAGE_SIZE);
3764                         if (IS_ERR(p))
3765                                 p = "?";
3766                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3767                                         vma->vm_start,
3768                                         vma->vm_end - vma->vm_start);
3769                         free_page((unsigned long)buf);
3770                 }
3771         }
3772         up_read(&mm->mmap_sem);
3773 }
3774
3775 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3776 void __might_fault(const char *file, int line)
3777 {
3778         /*
3779          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3780          * holding the mmap_sem, this is safe because kernel memory doesn't
3781          * get paged out, therefore we'll never actually fault, and the
3782          * below annotations will generate false positives.
3783          */
3784         if (segment_eq(get_fs(), KERNEL_DS))
3785                 return;
3786         if (pagefault_disabled())
3787                 return;
3788         __might_sleep(file, line, 0);
3789 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3790         if (current->mm)
3791                 might_lock_read(&current->mm->mmap_sem);
3792 #endif
3793 }
3794 EXPORT_SYMBOL(__might_fault);
3795 #endif
3796
3797 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3798 static void clear_gigantic_page(struct page *page,
3799                                 unsigned long addr,
3800                                 unsigned int pages_per_huge_page)
3801 {
3802         int i;
3803         struct page *p = page;
3804
3805         might_sleep();
3806         for (i = 0; i < pages_per_huge_page;
3807              i++, p = mem_map_next(p, page, i)) {
3808                 cond_resched();
3809                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3810         }
3811 }
3812 void clear_huge_page(struct page *page,
3813                      unsigned long addr, unsigned int pages_per_huge_page)
3814 {
3815         int i;
3816
3817         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3818                 clear_gigantic_page(page, addr, pages_per_huge_page);
3819                 return;
3820         }
3821
3822         might_sleep();
3823         for (i = 0; i < pages_per_huge_page; i++) {
3824                 cond_resched();
3825                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3826         }
3827 }
3828
3829 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3830                                     unsigned long addr,
3831                                     struct vm_area_struct *vma,
3832                                     unsigned int pages_per_huge_page)
3833 {
3834         int i;
3835         struct page *dst_base = dst;
3836         struct page *src_base = src;
3837
3838         for (i = 0; i < pages_per_huge_page; ) {
3839                 cond_resched();
3840                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3841
3842                 i++;
3843                 dst = mem_map_next(dst, dst_base, i);
3844                 src = mem_map_next(src, src_base, i);
3845         }
3846 }
3847
3848 void copy_user_huge_page(struct page *dst, struct page *src,
3849                          unsigned long addr, struct vm_area_struct *vma,
3850                          unsigned int pages_per_huge_page)
3851 {
3852         int i;
3853
3854         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3855                 copy_user_gigantic_page(dst, src, addr, vma,
3856                                         pages_per_huge_page);
3857                 return;
3858         }
3859
3860         might_sleep();
3861         for (i = 0; i < pages_per_huge_page; i++) {
3862                 cond_resched();
3863                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3864         }
3865 }
3866 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3867
3868 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3869
3870 static struct kmem_cache *page_ptl_cachep;
3871
3872 void __init ptlock_cache_init(void)
3873 {
3874         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3875                         SLAB_PANIC, NULL);
3876 }
3877
3878 bool ptlock_alloc(struct page *page)
3879 {
3880         spinlock_t *ptl;
3881
3882         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3883         if (!ptl)
3884                 return false;
3885         page->ptl = ptl;
3886         return true;
3887 }
3888
3889 void ptlock_free(struct page *page)
3890 {
3891         kmem_cache_free(page_ptl_cachep, page->ptl);
3892 }
3893 #endif