4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
73 unsigned long num_physpages;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init disable_randmaps(char *s)
101 randomize_va_space = 0;
104 __setup("norandmaps", disable_randmaps);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t *pgd)
119 void pud_clear_bad(pud_t *pud)
125 void pmd_clear_bad(pmd_t *pmd)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
137 pgtable_t token = pmd_pgtable(*pmd);
139 pte_free_tlb(tlb, token);
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
152 pmd = pmd_offset(pud, addr);
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
157 free_pte_range(tlb, pmd);
158 } while (pmd++, addr = next, addr != end);
168 if (end - 1 > ceiling - 1)
171 pmd = pmd_offset(pud, start);
173 pmd_free_tlb(tlb, pmd);
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
185 pud = pud_offset(pgd, addr);
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 } while (pud++, addr = next, addr != end);
197 ceiling &= PGDIR_MASK;
201 if (end - 1 > ceiling - 1)
204 pud = pud_offset(pgd, start);
206 pud_free_tlb(tlb, pud);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather **tlb,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end - 1 > ceiling - 1)
265 pgd = pgd_offset((*tlb)->mm, addr);
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 } while (pgd++, addr = next, addr != end);
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 unsigned long floor, unsigned long ceiling)
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
287 if (is_vm_hugetlb_page(vma)) {
288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 floor, next? next->vm_start: ceiling);
292 * Optimization: gather nearby vmas into one call down
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 && !is_vm_hugetlb_page(next)) {
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
310 pgtable_t new = pte_alloc_one(mm, address);
314 spin_lock(&mm->page_table_lock);
315 if (!pmd_present(*pmd)) { /* Has another populated it ? */
317 pmd_populate(mm, pmd, new);
320 spin_unlock(&mm->page_table_lock);
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
328 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
332 spin_lock(&init_mm.page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 pmd_populate_kernel(&init_mm, pmd, new);
337 spin_unlock(&init_mm.page_table_lock);
339 pte_free_kernel(&init_mm, new);
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
346 add_mm_counter(mm, file_rss, file_rss);
348 add_mm_counter(mm, anon_rss, anon_rss);
352 * This function is called to print an error when a bad pte
353 * is found. For example, we might have a PFN-mapped pte in
354 * a region that doesn't allow it.
356 * The calling function must still handle the error.
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
360 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361 "vm_flags = %lx, vaddr = %lx\n",
362 (long long)pte_val(pte),
363 (vma->vm_mm == current->mm ? current->comm : "???"),
364 vma->vm_flags, vaddr);
368 static inline int is_cow_mapping(unsigned int flags)
370 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
374 * This function gets the "struct page" associated with a pte or returns
375 * NULL if no "struct page" is associated with the pte.
377 * A raw VM_PFNMAP mapping (ie. one that is not COWed) may not have any "struct
378 * page" backing, and even if they do, they are not refcounted. COWed pages of
379 * a VM_PFNMAP do always have a struct page, and they are normally refcounted
380 * (they are _normal_ pages).
382 * So a raw PFNMAP mapping will have each page table entry just pointing
383 * to a page frame number, and as far as the VM layer is concerned, those do
384 * not have pages associated with them - even if the PFN might point to memory
385 * that otherwise is perfectly fine and has a "struct page".
387 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
388 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
389 * set, and the vm_pgoff will point to the first PFN mapped: thus every
390 * page that is a raw mapping will always honor the rule
392 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
394 * A call to vm_normal_page() will return NULL for such a page.
396 * If the page doesn't follow the "remap_pfn_range()" rule in a VM_PFNMAP
397 * then the page has been COW'ed. A COW'ed page _does_ have a "struct page"
398 * associated with it even if it is in a VM_PFNMAP range. Calling
399 * vm_normal_page() on such a page will therefore return the "struct page".
402 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
403 * page" backing, however the difference is that _all_ pages with a struct
404 * page (that is, those where pfn_valid is true) are refcounted and considered
405 * normal pages by the VM. The disadvantage is that pages are refcounted
406 * (which can be slower and simply not an option for some PFNMAP users). The
407 * advantage is that we don't have to follow the strict linearity rule of
408 * PFNMAP mappings in order to support COWable mappings.
410 * A call to vm_normal_page() with a VM_MIXEDMAP mapping will return the
411 * associated "struct page" or NULL for memory not backed by a "struct page".
414 * All other mappings should have a valid struct page, which will be
415 * returned by a call to vm_normal_page().
417 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
419 unsigned long pfn = pte_pfn(pte);
421 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
422 if (vma->vm_flags & VM_MIXEDMAP) {
427 unsigned long off = (addr-vma->vm_start) >> PAGE_SHIFT;
428 if (pfn == vma->vm_pgoff + off)
430 if (!is_cow_mapping(vma->vm_flags))
435 #ifdef CONFIG_DEBUG_VM
437 * Add some anal sanity checks for now. Eventually,
438 * we should just do "return pfn_to_page(pfn)", but
439 * in the meantime we check that we get a valid pfn,
440 * and that the resulting page looks ok.
442 if (unlikely(!pfn_valid(pfn))) {
443 print_bad_pte(vma, pte, addr);
449 * NOTE! We still have PageReserved() pages in the page
452 * The PAGE_ZERO() pages and various VDSO mappings can
453 * cause them to exist.
456 return pfn_to_page(pfn);
460 * copy one vm_area from one task to the other. Assumes the page tables
461 * already present in the new task to be cleared in the whole range
462 * covered by this vma.
466 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
467 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
468 unsigned long addr, int *rss)
470 unsigned long vm_flags = vma->vm_flags;
471 pte_t pte = *src_pte;
474 /* pte contains position in swap or file, so copy. */
475 if (unlikely(!pte_present(pte))) {
476 if (!pte_file(pte)) {
477 swp_entry_t entry = pte_to_swp_entry(pte);
479 swap_duplicate(entry);
480 /* make sure dst_mm is on swapoff's mmlist. */
481 if (unlikely(list_empty(&dst_mm->mmlist))) {
482 spin_lock(&mmlist_lock);
483 if (list_empty(&dst_mm->mmlist))
484 list_add(&dst_mm->mmlist,
486 spin_unlock(&mmlist_lock);
488 if (is_write_migration_entry(entry) &&
489 is_cow_mapping(vm_flags)) {
491 * COW mappings require pages in both parent
492 * and child to be set to read.
494 make_migration_entry_read(&entry);
495 pte = swp_entry_to_pte(entry);
496 set_pte_at(src_mm, addr, src_pte, pte);
503 * If it's a COW mapping, write protect it both
504 * in the parent and the child
506 if (is_cow_mapping(vm_flags)) {
507 ptep_set_wrprotect(src_mm, addr, src_pte);
508 pte = pte_wrprotect(pte);
512 * If it's a shared mapping, mark it clean in
515 if (vm_flags & VM_SHARED)
516 pte = pte_mkclean(pte);
517 pte = pte_mkold(pte);
519 page = vm_normal_page(vma, addr, pte);
522 page_dup_rmap(page, vma, addr);
523 rss[!!PageAnon(page)]++;
527 set_pte_at(dst_mm, addr, dst_pte, pte);
530 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
531 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
532 unsigned long addr, unsigned long end)
534 pte_t *src_pte, *dst_pte;
535 spinlock_t *src_ptl, *dst_ptl;
541 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
544 src_pte = pte_offset_map_nested(src_pmd, addr);
545 src_ptl = pte_lockptr(src_mm, src_pmd);
546 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
547 arch_enter_lazy_mmu_mode();
551 * We are holding two locks at this point - either of them
552 * could generate latencies in another task on another CPU.
554 if (progress >= 32) {
556 if (need_resched() ||
557 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
560 if (pte_none(*src_pte)) {
564 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
566 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
568 arch_leave_lazy_mmu_mode();
569 spin_unlock(src_ptl);
570 pte_unmap_nested(src_pte - 1);
571 add_mm_rss(dst_mm, rss[0], rss[1]);
572 pte_unmap_unlock(dst_pte - 1, dst_ptl);
579 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
580 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
581 unsigned long addr, unsigned long end)
583 pmd_t *src_pmd, *dst_pmd;
586 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
589 src_pmd = pmd_offset(src_pud, addr);
591 next = pmd_addr_end(addr, end);
592 if (pmd_none_or_clear_bad(src_pmd))
594 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
597 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
601 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
603 unsigned long addr, unsigned long end)
605 pud_t *src_pud, *dst_pud;
608 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
611 src_pud = pud_offset(src_pgd, addr);
613 next = pud_addr_end(addr, end);
614 if (pud_none_or_clear_bad(src_pud))
616 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
619 } while (dst_pud++, src_pud++, addr = next, addr != end);
623 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624 struct vm_area_struct *vma)
626 pgd_t *src_pgd, *dst_pgd;
628 unsigned long addr = vma->vm_start;
629 unsigned long end = vma->vm_end;
632 * Don't copy ptes where a page fault will fill them correctly.
633 * Fork becomes much lighter when there are big shared or private
634 * readonly mappings. The tradeoff is that copy_page_range is more
635 * efficient than faulting.
637 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
642 if (is_vm_hugetlb_page(vma))
643 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
645 dst_pgd = pgd_offset(dst_mm, addr);
646 src_pgd = pgd_offset(src_mm, addr);
648 next = pgd_addr_end(addr, end);
649 if (pgd_none_or_clear_bad(src_pgd))
651 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
654 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
658 static unsigned long zap_pte_range(struct mmu_gather *tlb,
659 struct vm_area_struct *vma, pmd_t *pmd,
660 unsigned long addr, unsigned long end,
661 long *zap_work, struct zap_details *details)
663 struct mm_struct *mm = tlb->mm;
669 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
670 arch_enter_lazy_mmu_mode();
673 if (pte_none(ptent)) {
678 (*zap_work) -= PAGE_SIZE;
680 if (pte_present(ptent)) {
683 page = vm_normal_page(vma, addr, ptent);
684 if (unlikely(details) && page) {
686 * unmap_shared_mapping_pages() wants to
687 * invalidate cache without truncating:
688 * unmap shared but keep private pages.
690 if (details->check_mapping &&
691 details->check_mapping != page->mapping)
694 * Each page->index must be checked when
695 * invalidating or truncating nonlinear.
697 if (details->nonlinear_vma &&
698 (page->index < details->first_index ||
699 page->index > details->last_index))
702 ptent = ptep_get_and_clear_full(mm, addr, pte,
704 tlb_remove_tlb_entry(tlb, pte, addr);
707 if (unlikely(details) && details->nonlinear_vma
708 && linear_page_index(details->nonlinear_vma,
709 addr) != page->index)
710 set_pte_at(mm, addr, pte,
711 pgoff_to_pte(page->index));
715 if (pte_dirty(ptent))
716 set_page_dirty(page);
717 if (pte_young(ptent))
718 SetPageReferenced(page);
721 page_remove_rmap(page, vma);
722 tlb_remove_page(tlb, page);
726 * If details->check_mapping, we leave swap entries;
727 * if details->nonlinear_vma, we leave file entries.
729 if (unlikely(details))
731 if (!pte_file(ptent))
732 free_swap_and_cache(pte_to_swp_entry(ptent));
733 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
734 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
736 add_mm_rss(mm, file_rss, anon_rss);
737 arch_leave_lazy_mmu_mode();
738 pte_unmap_unlock(pte - 1, ptl);
743 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
744 struct vm_area_struct *vma, pud_t *pud,
745 unsigned long addr, unsigned long end,
746 long *zap_work, struct zap_details *details)
751 pmd = pmd_offset(pud, addr);
753 next = pmd_addr_end(addr, end);
754 if (pmd_none_or_clear_bad(pmd)) {
758 next = zap_pte_range(tlb, vma, pmd, addr, next,
760 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
765 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
766 struct vm_area_struct *vma, pgd_t *pgd,
767 unsigned long addr, unsigned long end,
768 long *zap_work, struct zap_details *details)
773 pud = pud_offset(pgd, addr);
775 next = pud_addr_end(addr, end);
776 if (pud_none_or_clear_bad(pud)) {
780 next = zap_pmd_range(tlb, vma, pud, addr, next,
782 } while (pud++, addr = next, (addr != end && *zap_work > 0));
787 static unsigned long unmap_page_range(struct mmu_gather *tlb,
788 struct vm_area_struct *vma,
789 unsigned long addr, unsigned long end,
790 long *zap_work, struct zap_details *details)
795 if (details && !details->check_mapping && !details->nonlinear_vma)
799 tlb_start_vma(tlb, vma);
800 pgd = pgd_offset(vma->vm_mm, addr);
802 next = pgd_addr_end(addr, end);
803 if (pgd_none_or_clear_bad(pgd)) {
807 next = zap_pud_range(tlb, vma, pgd, addr, next,
809 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
810 tlb_end_vma(tlb, vma);
815 #ifdef CONFIG_PREEMPT
816 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
818 /* No preempt: go for improved straight-line efficiency */
819 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
823 * unmap_vmas - unmap a range of memory covered by a list of vma's
824 * @tlbp: address of the caller's struct mmu_gather
825 * @vma: the starting vma
826 * @start_addr: virtual address at which to start unmapping
827 * @end_addr: virtual address at which to end unmapping
828 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
829 * @details: details of nonlinear truncation or shared cache invalidation
831 * Returns the end address of the unmapping (restart addr if interrupted).
833 * Unmap all pages in the vma list.
835 * We aim to not hold locks for too long (for scheduling latency reasons).
836 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
837 * return the ending mmu_gather to the caller.
839 * Only addresses between `start' and `end' will be unmapped.
841 * The VMA list must be sorted in ascending virtual address order.
843 * unmap_vmas() assumes that the caller will flush the whole unmapped address
844 * range after unmap_vmas() returns. So the only responsibility here is to
845 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
846 * drops the lock and schedules.
848 unsigned long unmap_vmas(struct mmu_gather **tlbp,
849 struct vm_area_struct *vma, unsigned long start_addr,
850 unsigned long end_addr, unsigned long *nr_accounted,
851 struct zap_details *details)
853 long zap_work = ZAP_BLOCK_SIZE;
854 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
855 int tlb_start_valid = 0;
856 unsigned long start = start_addr;
857 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
858 int fullmm = (*tlbp)->fullmm;
860 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
863 start = max(vma->vm_start, start_addr);
864 if (start >= vma->vm_end)
866 end = min(vma->vm_end, end_addr);
867 if (end <= vma->vm_start)
870 if (vma->vm_flags & VM_ACCOUNT)
871 *nr_accounted += (end - start) >> PAGE_SHIFT;
873 while (start != end) {
874 if (!tlb_start_valid) {
879 if (unlikely(is_vm_hugetlb_page(vma))) {
880 unmap_hugepage_range(vma, start, end);
881 zap_work -= (end - start) /
882 (HPAGE_SIZE / PAGE_SIZE);
885 start = unmap_page_range(*tlbp, vma,
886 start, end, &zap_work, details);
889 BUG_ON(start != end);
893 tlb_finish_mmu(*tlbp, tlb_start, start);
895 if (need_resched() ||
896 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
904 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
906 zap_work = ZAP_BLOCK_SIZE;
910 return start; /* which is now the end (or restart) address */
914 * zap_page_range - remove user pages in a given range
915 * @vma: vm_area_struct holding the applicable pages
916 * @address: starting address of pages to zap
917 * @size: number of bytes to zap
918 * @details: details of nonlinear truncation or shared cache invalidation
920 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
921 unsigned long size, struct zap_details *details)
923 struct mm_struct *mm = vma->vm_mm;
924 struct mmu_gather *tlb;
925 unsigned long end = address + size;
926 unsigned long nr_accounted = 0;
929 tlb = tlb_gather_mmu(mm, 0);
930 update_hiwater_rss(mm);
931 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
933 tlb_finish_mmu(tlb, address, end);
938 * Do a quick page-table lookup for a single page.
940 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
949 struct mm_struct *mm = vma->vm_mm;
951 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
953 BUG_ON(flags & FOLL_GET);
958 pgd = pgd_offset(mm, address);
959 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
962 pud = pud_offset(pgd, address);
963 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
966 pmd = pmd_offset(pud, address);
967 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
970 if (pmd_huge(*pmd)) {
971 BUG_ON(flags & FOLL_GET);
972 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
976 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
981 if (!pte_present(pte))
983 if ((flags & FOLL_WRITE) && !pte_write(pte))
985 page = vm_normal_page(vma, address, pte);
989 if (flags & FOLL_GET)
991 if (flags & FOLL_TOUCH) {
992 if ((flags & FOLL_WRITE) &&
993 !pte_dirty(pte) && !PageDirty(page))
994 set_page_dirty(page);
995 mark_page_accessed(page);
998 pte_unmap_unlock(ptep, ptl);
1004 * When core dumping an enormous anonymous area that nobody
1005 * has touched so far, we don't want to allocate page tables.
1007 if (flags & FOLL_ANON) {
1008 page = ZERO_PAGE(0);
1009 if (flags & FOLL_GET)
1011 BUG_ON(flags & FOLL_WRITE);
1016 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1017 unsigned long start, int len, int write, int force,
1018 struct page **pages, struct vm_area_struct **vmas)
1021 unsigned int vm_flags;
1026 * Require read or write permissions.
1027 * If 'force' is set, we only require the "MAY" flags.
1029 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1030 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1034 struct vm_area_struct *vma;
1035 unsigned int foll_flags;
1037 vma = find_extend_vma(mm, start);
1038 if (!vma && in_gate_area(tsk, start)) {
1039 unsigned long pg = start & PAGE_MASK;
1040 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1045 if (write) /* user gate pages are read-only */
1046 return i ? : -EFAULT;
1048 pgd = pgd_offset_k(pg);
1050 pgd = pgd_offset_gate(mm, pg);
1051 BUG_ON(pgd_none(*pgd));
1052 pud = pud_offset(pgd, pg);
1053 BUG_ON(pud_none(*pud));
1054 pmd = pmd_offset(pud, pg);
1056 return i ? : -EFAULT;
1057 pte = pte_offset_map(pmd, pg);
1058 if (pte_none(*pte)) {
1060 return i ? : -EFAULT;
1063 struct page *page = vm_normal_page(gate_vma, start, *pte);
1077 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1078 || !(vm_flags & vma->vm_flags))
1079 return i ? : -EFAULT;
1081 if (is_vm_hugetlb_page(vma)) {
1082 i = follow_hugetlb_page(mm, vma, pages, vmas,
1083 &start, &len, i, write);
1087 foll_flags = FOLL_TOUCH;
1089 foll_flags |= FOLL_GET;
1090 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1091 (!vma->vm_ops || !vma->vm_ops->fault))
1092 foll_flags |= FOLL_ANON;
1098 * If tsk is ooming, cut off its access to large memory
1099 * allocations. It has a pending SIGKILL, but it can't
1100 * be processed until returning to user space.
1102 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1106 foll_flags |= FOLL_WRITE;
1109 while (!(page = follow_page(vma, start, foll_flags))) {
1111 ret = handle_mm_fault(mm, vma, start,
1112 foll_flags & FOLL_WRITE);
1113 if (ret & VM_FAULT_ERROR) {
1114 if (ret & VM_FAULT_OOM)
1115 return i ? i : -ENOMEM;
1116 else if (ret & VM_FAULT_SIGBUS)
1117 return i ? i : -EFAULT;
1120 if (ret & VM_FAULT_MAJOR)
1126 * The VM_FAULT_WRITE bit tells us that
1127 * do_wp_page has broken COW when necessary,
1128 * even if maybe_mkwrite decided not to set
1129 * pte_write. We can thus safely do subsequent
1130 * page lookups as if they were reads.
1132 if (ret & VM_FAULT_WRITE)
1133 foll_flags &= ~FOLL_WRITE;
1140 flush_anon_page(vma, page, start);
1141 flush_dcache_page(page);
1148 } while (len && start < vma->vm_end);
1152 EXPORT_SYMBOL(get_user_pages);
1154 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1157 pgd_t * pgd = pgd_offset(mm, addr);
1158 pud_t * pud = pud_alloc(mm, pgd, addr);
1160 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1162 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1168 * This is the old fallback for page remapping.
1170 * For historical reasons, it only allows reserved pages. Only
1171 * old drivers should use this, and they needed to mark their
1172 * pages reserved for the old functions anyway.
1174 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1180 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1188 flush_dcache_page(page);
1189 pte = get_locked_pte(mm, addr, &ptl);
1193 if (!pte_none(*pte))
1196 /* Ok, finally just insert the thing.. */
1198 inc_mm_counter(mm, file_rss);
1199 page_add_file_rmap(page);
1200 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1203 pte_unmap_unlock(pte, ptl);
1206 pte_unmap_unlock(pte, ptl);
1208 mem_cgroup_uncharge_page(page);
1214 * vm_insert_page - insert single page into user vma
1215 * @vma: user vma to map to
1216 * @addr: target user address of this page
1217 * @page: source kernel page
1219 * This allows drivers to insert individual pages they've allocated
1222 * The page has to be a nice clean _individual_ kernel allocation.
1223 * If you allocate a compound page, you need to have marked it as
1224 * such (__GFP_COMP), or manually just split the page up yourself
1225 * (see split_page()).
1227 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1228 * took an arbitrary page protection parameter. This doesn't allow
1229 * that. Your vma protection will have to be set up correctly, which
1230 * means that if you want a shared writable mapping, you'd better
1231 * ask for a shared writable mapping!
1233 * The page does not need to be reserved.
1235 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1237 if (addr < vma->vm_start || addr >= vma->vm_end)
1239 if (!page_count(page))
1241 vma->vm_flags |= VM_INSERTPAGE;
1242 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1244 EXPORT_SYMBOL(vm_insert_page);
1247 * vm_insert_pfn - insert single pfn into user vma
1248 * @vma: user vma to map to
1249 * @addr: target user address of this page
1250 * @pfn: source kernel pfn
1252 * Similar to vm_inert_page, this allows drivers to insert individual pages
1253 * they've allocated into a user vma. Same comments apply.
1255 * This function should only be called from a vm_ops->fault handler, and
1256 * in that case the handler should return NULL.
1258 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1261 struct mm_struct *mm = vma->vm_mm;
1266 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1267 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1268 (VM_PFNMAP|VM_MIXEDMAP));
1269 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1270 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1273 pte = get_locked_pte(mm, addr, &ptl);
1277 if (!pte_none(*pte))
1280 /* Ok, finally just insert the thing.. */
1281 entry = pfn_pte(pfn, vma->vm_page_prot);
1282 set_pte_at(mm, addr, pte, entry);
1283 update_mmu_cache(vma, addr, entry);
1287 pte_unmap_unlock(pte, ptl);
1292 EXPORT_SYMBOL(vm_insert_pfn);
1295 * maps a range of physical memory into the requested pages. the old
1296 * mappings are removed. any references to nonexistent pages results
1297 * in null mappings (currently treated as "copy-on-access")
1299 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1300 unsigned long addr, unsigned long end,
1301 unsigned long pfn, pgprot_t prot)
1306 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1309 arch_enter_lazy_mmu_mode();
1311 BUG_ON(!pte_none(*pte));
1312 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1314 } while (pte++, addr += PAGE_SIZE, addr != end);
1315 arch_leave_lazy_mmu_mode();
1316 pte_unmap_unlock(pte - 1, ptl);
1320 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1321 unsigned long addr, unsigned long end,
1322 unsigned long pfn, pgprot_t prot)
1327 pfn -= addr >> PAGE_SHIFT;
1328 pmd = pmd_alloc(mm, pud, addr);
1332 next = pmd_addr_end(addr, end);
1333 if (remap_pte_range(mm, pmd, addr, next,
1334 pfn + (addr >> PAGE_SHIFT), prot))
1336 } while (pmd++, addr = next, addr != end);
1340 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1341 unsigned long addr, unsigned long end,
1342 unsigned long pfn, pgprot_t prot)
1347 pfn -= addr >> PAGE_SHIFT;
1348 pud = pud_alloc(mm, pgd, addr);
1352 next = pud_addr_end(addr, end);
1353 if (remap_pmd_range(mm, pud, addr, next,
1354 pfn + (addr >> PAGE_SHIFT), prot))
1356 } while (pud++, addr = next, addr != end);
1361 * remap_pfn_range - remap kernel memory to userspace
1362 * @vma: user vma to map to
1363 * @addr: target user address to start at
1364 * @pfn: physical address of kernel memory
1365 * @size: size of map area
1366 * @prot: page protection flags for this mapping
1368 * Note: this is only safe if the mm semaphore is held when called.
1370 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1371 unsigned long pfn, unsigned long size, pgprot_t prot)
1375 unsigned long end = addr + PAGE_ALIGN(size);
1376 struct mm_struct *mm = vma->vm_mm;
1380 * Physically remapped pages are special. Tell the
1381 * rest of the world about it:
1382 * VM_IO tells people not to look at these pages
1383 * (accesses can have side effects).
1384 * VM_RESERVED is specified all over the place, because
1385 * in 2.4 it kept swapout's vma scan off this vma; but
1386 * in 2.6 the LRU scan won't even find its pages, so this
1387 * flag means no more than count its pages in reserved_vm,
1388 * and omit it from core dump, even when VM_IO turned off.
1389 * VM_PFNMAP tells the core MM that the base pages are just
1390 * raw PFN mappings, and do not have a "struct page" associated
1393 * There's a horrible special case to handle copy-on-write
1394 * behaviour that some programs depend on. We mark the "original"
1395 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1397 if (is_cow_mapping(vma->vm_flags)) {
1398 if (addr != vma->vm_start || end != vma->vm_end)
1400 vma->vm_pgoff = pfn;
1403 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1405 BUG_ON(addr >= end);
1406 pfn -= addr >> PAGE_SHIFT;
1407 pgd = pgd_offset(mm, addr);
1408 flush_cache_range(vma, addr, end);
1410 next = pgd_addr_end(addr, end);
1411 err = remap_pud_range(mm, pgd, addr, next,
1412 pfn + (addr >> PAGE_SHIFT), prot);
1415 } while (pgd++, addr = next, addr != end);
1418 EXPORT_SYMBOL(remap_pfn_range);
1420 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1421 unsigned long addr, unsigned long end,
1422 pte_fn_t fn, void *data)
1427 spinlock_t *uninitialized_var(ptl);
1429 pte = (mm == &init_mm) ?
1430 pte_alloc_kernel(pmd, addr) :
1431 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1435 BUG_ON(pmd_huge(*pmd));
1437 token = pmd_pgtable(*pmd);
1440 err = fn(pte, token, addr, data);
1443 } while (pte++, addr += PAGE_SIZE, addr != end);
1446 pte_unmap_unlock(pte-1, ptl);
1450 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1451 unsigned long addr, unsigned long end,
1452 pte_fn_t fn, void *data)
1458 pmd = pmd_alloc(mm, pud, addr);
1462 next = pmd_addr_end(addr, end);
1463 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1466 } while (pmd++, addr = next, addr != end);
1470 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1471 unsigned long addr, unsigned long end,
1472 pte_fn_t fn, void *data)
1478 pud = pud_alloc(mm, pgd, addr);
1482 next = pud_addr_end(addr, end);
1483 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1486 } while (pud++, addr = next, addr != end);
1491 * Scan a region of virtual memory, filling in page tables as necessary
1492 * and calling a provided function on each leaf page table.
1494 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1495 unsigned long size, pte_fn_t fn, void *data)
1499 unsigned long end = addr + size;
1502 BUG_ON(addr >= end);
1503 pgd = pgd_offset(mm, addr);
1505 next = pgd_addr_end(addr, end);
1506 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1509 } while (pgd++, addr = next, addr != end);
1512 EXPORT_SYMBOL_GPL(apply_to_page_range);
1515 * handle_pte_fault chooses page fault handler according to an entry
1516 * which was read non-atomically. Before making any commitment, on
1517 * those architectures or configurations (e.g. i386 with PAE) which
1518 * might give a mix of unmatched parts, do_swap_page and do_file_page
1519 * must check under lock before unmapping the pte and proceeding
1520 * (but do_wp_page is only called after already making such a check;
1521 * and do_anonymous_page and do_no_page can safely check later on).
1523 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1524 pte_t *page_table, pte_t orig_pte)
1527 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1528 if (sizeof(pte_t) > sizeof(unsigned long)) {
1529 spinlock_t *ptl = pte_lockptr(mm, pmd);
1531 same = pte_same(*page_table, orig_pte);
1535 pte_unmap(page_table);
1540 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1541 * servicing faults for write access. In the normal case, do always want
1542 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1543 * that do not have writing enabled, when used by access_process_vm.
1545 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1547 if (likely(vma->vm_flags & VM_WRITE))
1548 pte = pte_mkwrite(pte);
1552 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1555 * If the source page was a PFN mapping, we don't have
1556 * a "struct page" for it. We do a best-effort copy by
1557 * just copying from the original user address. If that
1558 * fails, we just zero-fill it. Live with it.
1560 if (unlikely(!src)) {
1561 void *kaddr = kmap_atomic(dst, KM_USER0);
1562 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1565 * This really shouldn't fail, because the page is there
1566 * in the page tables. But it might just be unreadable,
1567 * in which case we just give up and fill the result with
1570 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1571 memset(kaddr, 0, PAGE_SIZE);
1572 kunmap_atomic(kaddr, KM_USER0);
1573 flush_dcache_page(dst);
1575 copy_user_highpage(dst, src, va, vma);
1579 * This routine handles present pages, when users try to write
1580 * to a shared page. It is done by copying the page to a new address
1581 * and decrementing the shared-page counter for the old page.
1583 * Note that this routine assumes that the protection checks have been
1584 * done by the caller (the low-level page fault routine in most cases).
1585 * Thus we can safely just mark it writable once we've done any necessary
1588 * We also mark the page dirty at this point even though the page will
1589 * change only once the write actually happens. This avoids a few races,
1590 * and potentially makes it more efficient.
1592 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1593 * but allow concurrent faults), with pte both mapped and locked.
1594 * We return with mmap_sem still held, but pte unmapped and unlocked.
1596 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1597 unsigned long address, pte_t *page_table, pmd_t *pmd,
1598 spinlock_t *ptl, pte_t orig_pte)
1600 struct page *old_page, *new_page;
1602 int reuse = 0, ret = 0;
1603 int page_mkwrite = 0;
1604 struct page *dirty_page = NULL;
1606 old_page = vm_normal_page(vma, address, orig_pte);
1611 * Take out anonymous pages first, anonymous shared vmas are
1612 * not dirty accountable.
1614 if (PageAnon(old_page)) {
1615 if (!TestSetPageLocked(old_page)) {
1616 reuse = can_share_swap_page(old_page);
1617 unlock_page(old_page);
1619 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1620 (VM_WRITE|VM_SHARED))) {
1622 * Only catch write-faults on shared writable pages,
1623 * read-only shared pages can get COWed by
1624 * get_user_pages(.write=1, .force=1).
1626 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1628 * Notify the address space that the page is about to
1629 * become writable so that it can prohibit this or wait
1630 * for the page to get into an appropriate state.
1632 * We do this without the lock held, so that it can
1633 * sleep if it needs to.
1635 page_cache_get(old_page);
1636 pte_unmap_unlock(page_table, ptl);
1638 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1639 goto unwritable_page;
1642 * Since we dropped the lock we need to revalidate
1643 * the PTE as someone else may have changed it. If
1644 * they did, we just return, as we can count on the
1645 * MMU to tell us if they didn't also make it writable.
1647 page_table = pte_offset_map_lock(mm, pmd, address,
1649 page_cache_release(old_page);
1650 if (!pte_same(*page_table, orig_pte))
1655 dirty_page = old_page;
1656 get_page(dirty_page);
1661 flush_cache_page(vma, address, pte_pfn(orig_pte));
1662 entry = pte_mkyoung(orig_pte);
1663 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1664 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1665 update_mmu_cache(vma, address, entry);
1666 ret |= VM_FAULT_WRITE;
1671 * Ok, we need to copy. Oh, well..
1673 page_cache_get(old_page);
1675 pte_unmap_unlock(page_table, ptl);
1677 if (unlikely(anon_vma_prepare(vma)))
1679 VM_BUG_ON(old_page == ZERO_PAGE(0));
1680 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1683 cow_user_page(new_page, old_page, address, vma);
1684 __SetPageUptodate(new_page);
1686 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1690 * Re-check the pte - we dropped the lock
1692 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1693 if (likely(pte_same(*page_table, orig_pte))) {
1695 page_remove_rmap(old_page, vma);
1696 if (!PageAnon(old_page)) {
1697 dec_mm_counter(mm, file_rss);
1698 inc_mm_counter(mm, anon_rss);
1701 inc_mm_counter(mm, anon_rss);
1702 flush_cache_page(vma, address, pte_pfn(orig_pte));
1703 entry = mk_pte(new_page, vma->vm_page_prot);
1704 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1706 * Clear the pte entry and flush it first, before updating the
1707 * pte with the new entry. This will avoid a race condition
1708 * seen in the presence of one thread doing SMC and another
1711 ptep_clear_flush(vma, address, page_table);
1712 set_pte_at(mm, address, page_table, entry);
1713 update_mmu_cache(vma, address, entry);
1714 lru_cache_add_active(new_page);
1715 page_add_new_anon_rmap(new_page, vma, address);
1717 /* Free the old page.. */
1718 new_page = old_page;
1719 ret |= VM_FAULT_WRITE;
1721 mem_cgroup_uncharge_page(new_page);
1724 page_cache_release(new_page);
1726 page_cache_release(old_page);
1728 pte_unmap_unlock(page_table, ptl);
1731 file_update_time(vma->vm_file);
1734 * Yes, Virginia, this is actually required to prevent a race
1735 * with clear_page_dirty_for_io() from clearing the page dirty
1736 * bit after it clear all dirty ptes, but before a racing
1737 * do_wp_page installs a dirty pte.
1739 * do_no_page is protected similarly.
1741 wait_on_page_locked(dirty_page);
1742 set_page_dirty_balance(dirty_page, page_mkwrite);
1743 put_page(dirty_page);
1747 page_cache_release(new_page);
1750 page_cache_release(old_page);
1751 return VM_FAULT_OOM;
1754 page_cache_release(old_page);
1755 return VM_FAULT_SIGBUS;
1759 * Helper functions for unmap_mapping_range().
1761 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1763 * We have to restart searching the prio_tree whenever we drop the lock,
1764 * since the iterator is only valid while the lock is held, and anyway
1765 * a later vma might be split and reinserted earlier while lock dropped.
1767 * The list of nonlinear vmas could be handled more efficiently, using
1768 * a placeholder, but handle it in the same way until a need is shown.
1769 * It is important to search the prio_tree before nonlinear list: a vma
1770 * may become nonlinear and be shifted from prio_tree to nonlinear list
1771 * while the lock is dropped; but never shifted from list to prio_tree.
1773 * In order to make forward progress despite restarting the search,
1774 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1775 * quickly skip it next time around. Since the prio_tree search only
1776 * shows us those vmas affected by unmapping the range in question, we
1777 * can't efficiently keep all vmas in step with mapping->truncate_count:
1778 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1779 * mapping->truncate_count and vma->vm_truncate_count are protected by
1782 * In order to make forward progress despite repeatedly restarting some
1783 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1784 * and restart from that address when we reach that vma again. It might
1785 * have been split or merged, shrunk or extended, but never shifted: so
1786 * restart_addr remains valid so long as it remains in the vma's range.
1787 * unmap_mapping_range forces truncate_count to leap over page-aligned
1788 * values so we can save vma's restart_addr in its truncate_count field.
1790 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1792 static void reset_vma_truncate_counts(struct address_space *mapping)
1794 struct vm_area_struct *vma;
1795 struct prio_tree_iter iter;
1797 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1798 vma->vm_truncate_count = 0;
1799 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1800 vma->vm_truncate_count = 0;
1803 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1804 unsigned long start_addr, unsigned long end_addr,
1805 struct zap_details *details)
1807 unsigned long restart_addr;
1811 * files that support invalidating or truncating portions of the
1812 * file from under mmaped areas must have their ->fault function
1813 * return a locked page (and set VM_FAULT_LOCKED in the return).
1814 * This provides synchronisation against concurrent unmapping here.
1818 restart_addr = vma->vm_truncate_count;
1819 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1820 start_addr = restart_addr;
1821 if (start_addr >= end_addr) {
1822 /* Top of vma has been split off since last time */
1823 vma->vm_truncate_count = details->truncate_count;
1828 restart_addr = zap_page_range(vma, start_addr,
1829 end_addr - start_addr, details);
1830 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1832 if (restart_addr >= end_addr) {
1833 /* We have now completed this vma: mark it so */
1834 vma->vm_truncate_count = details->truncate_count;
1838 /* Note restart_addr in vma's truncate_count field */
1839 vma->vm_truncate_count = restart_addr;
1844 spin_unlock(details->i_mmap_lock);
1846 spin_lock(details->i_mmap_lock);
1850 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1851 struct zap_details *details)
1853 struct vm_area_struct *vma;
1854 struct prio_tree_iter iter;
1855 pgoff_t vba, vea, zba, zea;
1858 vma_prio_tree_foreach(vma, &iter, root,
1859 details->first_index, details->last_index) {
1860 /* Skip quickly over those we have already dealt with */
1861 if (vma->vm_truncate_count == details->truncate_count)
1864 vba = vma->vm_pgoff;
1865 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1866 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1867 zba = details->first_index;
1870 zea = details->last_index;
1874 if (unmap_mapping_range_vma(vma,
1875 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1876 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1882 static inline void unmap_mapping_range_list(struct list_head *head,
1883 struct zap_details *details)
1885 struct vm_area_struct *vma;
1888 * In nonlinear VMAs there is no correspondence between virtual address
1889 * offset and file offset. So we must perform an exhaustive search
1890 * across *all* the pages in each nonlinear VMA, not just the pages
1891 * whose virtual address lies outside the file truncation point.
1894 list_for_each_entry(vma, head, shared.vm_set.list) {
1895 /* Skip quickly over those we have already dealt with */
1896 if (vma->vm_truncate_count == details->truncate_count)
1898 details->nonlinear_vma = vma;
1899 if (unmap_mapping_range_vma(vma, vma->vm_start,
1900 vma->vm_end, details) < 0)
1906 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1907 * @mapping: the address space containing mmaps to be unmapped.
1908 * @holebegin: byte in first page to unmap, relative to the start of
1909 * the underlying file. This will be rounded down to a PAGE_SIZE
1910 * boundary. Note that this is different from vmtruncate(), which
1911 * must keep the partial page. In contrast, we must get rid of
1913 * @holelen: size of prospective hole in bytes. This will be rounded
1914 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1916 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1917 * but 0 when invalidating pagecache, don't throw away private data.
1919 void unmap_mapping_range(struct address_space *mapping,
1920 loff_t const holebegin, loff_t const holelen, int even_cows)
1922 struct zap_details details;
1923 pgoff_t hba = holebegin >> PAGE_SHIFT;
1924 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1926 /* Check for overflow. */
1927 if (sizeof(holelen) > sizeof(hlen)) {
1929 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1930 if (holeend & ~(long long)ULONG_MAX)
1931 hlen = ULONG_MAX - hba + 1;
1934 details.check_mapping = even_cows? NULL: mapping;
1935 details.nonlinear_vma = NULL;
1936 details.first_index = hba;
1937 details.last_index = hba + hlen - 1;
1938 if (details.last_index < details.first_index)
1939 details.last_index = ULONG_MAX;
1940 details.i_mmap_lock = &mapping->i_mmap_lock;
1942 spin_lock(&mapping->i_mmap_lock);
1944 /* Protect against endless unmapping loops */
1945 mapping->truncate_count++;
1946 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1947 if (mapping->truncate_count == 0)
1948 reset_vma_truncate_counts(mapping);
1949 mapping->truncate_count++;
1951 details.truncate_count = mapping->truncate_count;
1953 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1954 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1955 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1956 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1957 spin_unlock(&mapping->i_mmap_lock);
1959 EXPORT_SYMBOL(unmap_mapping_range);
1962 * vmtruncate - unmap mappings "freed" by truncate() syscall
1963 * @inode: inode of the file used
1964 * @offset: file offset to start truncating
1966 * NOTE! We have to be ready to update the memory sharing
1967 * between the file and the memory map for a potential last
1968 * incomplete page. Ugly, but necessary.
1970 int vmtruncate(struct inode * inode, loff_t offset)
1972 if (inode->i_size < offset) {
1973 unsigned long limit;
1975 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1976 if (limit != RLIM_INFINITY && offset > limit)
1978 if (offset > inode->i_sb->s_maxbytes)
1980 i_size_write(inode, offset);
1982 struct address_space *mapping = inode->i_mapping;
1985 * truncation of in-use swapfiles is disallowed - it would
1986 * cause subsequent swapout to scribble on the now-freed
1989 if (IS_SWAPFILE(inode))
1991 i_size_write(inode, offset);
1994 * unmap_mapping_range is called twice, first simply for
1995 * efficiency so that truncate_inode_pages does fewer
1996 * single-page unmaps. However after this first call, and
1997 * before truncate_inode_pages finishes, it is possible for
1998 * private pages to be COWed, which remain after
1999 * truncate_inode_pages finishes, hence the second
2000 * unmap_mapping_range call must be made for correctness.
2002 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2003 truncate_inode_pages(mapping, offset);
2004 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2007 if (inode->i_op && inode->i_op->truncate)
2008 inode->i_op->truncate(inode);
2012 send_sig(SIGXFSZ, current, 0);
2016 EXPORT_SYMBOL(vmtruncate);
2018 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2020 struct address_space *mapping = inode->i_mapping;
2023 * If the underlying filesystem is not going to provide
2024 * a way to truncate a range of blocks (punch a hole) -
2025 * we should return failure right now.
2027 if (!inode->i_op || !inode->i_op->truncate_range)
2030 mutex_lock(&inode->i_mutex);
2031 down_write(&inode->i_alloc_sem);
2032 unmap_mapping_range(mapping, offset, (end - offset), 1);
2033 truncate_inode_pages_range(mapping, offset, end);
2034 unmap_mapping_range(mapping, offset, (end - offset), 1);
2035 inode->i_op->truncate_range(inode, offset, end);
2036 up_write(&inode->i_alloc_sem);
2037 mutex_unlock(&inode->i_mutex);
2043 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2044 * but allow concurrent faults), and pte mapped but not yet locked.
2045 * We return with mmap_sem still held, but pte unmapped and unlocked.
2047 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2048 unsigned long address, pte_t *page_table, pmd_t *pmd,
2049 int write_access, pte_t orig_pte)
2057 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2060 entry = pte_to_swp_entry(orig_pte);
2061 if (is_migration_entry(entry)) {
2062 migration_entry_wait(mm, pmd, address);
2065 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2066 page = lookup_swap_cache(entry);
2068 grab_swap_token(); /* Contend for token _before_ read-in */
2069 page = swapin_readahead(entry,
2070 GFP_HIGHUSER_MOVABLE, vma, address);
2073 * Back out if somebody else faulted in this pte
2074 * while we released the pte lock.
2076 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2077 if (likely(pte_same(*page_table, orig_pte)))
2079 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2083 /* Had to read the page from swap area: Major fault */
2084 ret = VM_FAULT_MAJOR;
2085 count_vm_event(PGMAJFAULT);
2088 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2089 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2094 mark_page_accessed(page);
2096 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2099 * Back out if somebody else already faulted in this pte.
2101 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2102 if (unlikely(!pte_same(*page_table, orig_pte)))
2105 if (unlikely(!PageUptodate(page))) {
2106 ret = VM_FAULT_SIGBUS;
2110 /* The page isn't present yet, go ahead with the fault. */
2112 inc_mm_counter(mm, anon_rss);
2113 pte = mk_pte(page, vma->vm_page_prot);
2114 if (write_access && can_share_swap_page(page)) {
2115 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2119 flush_icache_page(vma, page);
2120 set_pte_at(mm, address, page_table, pte);
2121 page_add_anon_rmap(page, vma, address);
2125 remove_exclusive_swap_page(page);
2129 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2130 if (ret & VM_FAULT_ERROR)
2131 ret &= VM_FAULT_ERROR;
2135 /* No need to invalidate - it was non-present before */
2136 update_mmu_cache(vma, address, pte);
2138 pte_unmap_unlock(page_table, ptl);
2142 mem_cgroup_uncharge_page(page);
2143 pte_unmap_unlock(page_table, ptl);
2145 page_cache_release(page);
2150 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2151 * but allow concurrent faults), and pte mapped but not yet locked.
2152 * We return with mmap_sem still held, but pte unmapped and unlocked.
2154 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2155 unsigned long address, pte_t *page_table, pmd_t *pmd,
2162 /* Allocate our own private page. */
2163 pte_unmap(page_table);
2165 if (unlikely(anon_vma_prepare(vma)))
2167 page = alloc_zeroed_user_highpage_movable(vma, address);
2170 __SetPageUptodate(page);
2172 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2175 entry = mk_pte(page, vma->vm_page_prot);
2176 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2178 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2179 if (!pte_none(*page_table))
2181 inc_mm_counter(mm, anon_rss);
2182 lru_cache_add_active(page);
2183 page_add_new_anon_rmap(page, vma, address);
2184 set_pte_at(mm, address, page_table, entry);
2186 /* No need to invalidate - it was non-present before */
2187 update_mmu_cache(vma, address, entry);
2189 pte_unmap_unlock(page_table, ptl);
2192 mem_cgroup_uncharge_page(page);
2193 page_cache_release(page);
2196 page_cache_release(page);
2198 return VM_FAULT_OOM;
2202 * __do_fault() tries to create a new page mapping. It aggressively
2203 * tries to share with existing pages, but makes a separate copy if
2204 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2205 * the next page fault.
2207 * As this is called only for pages that do not currently exist, we
2208 * do not need to flush old virtual caches or the TLB.
2210 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2211 * but allow concurrent faults), and pte neither mapped nor locked.
2212 * We return with mmap_sem still held, but pte unmapped and unlocked.
2214 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2215 unsigned long address, pmd_t *pmd,
2216 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2223 struct page *dirty_page = NULL;
2224 struct vm_fault vmf;
2226 int page_mkwrite = 0;
2228 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2233 BUG_ON(vma->vm_flags & VM_PFNMAP);
2235 ret = vma->vm_ops->fault(vma, &vmf);
2236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2240 * For consistency in subsequent calls, make the faulted page always
2243 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2244 lock_page(vmf.page);
2246 VM_BUG_ON(!PageLocked(vmf.page));
2249 * Should we do an early C-O-W break?
2252 if (flags & FAULT_FLAG_WRITE) {
2253 if (!(vma->vm_flags & VM_SHARED)) {
2255 if (unlikely(anon_vma_prepare(vma))) {
2259 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2265 copy_user_highpage(page, vmf.page, address, vma);
2266 __SetPageUptodate(page);
2269 * If the page will be shareable, see if the backing
2270 * address space wants to know that the page is about
2271 * to become writable
2273 if (vma->vm_ops->page_mkwrite) {
2275 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2276 ret = VM_FAULT_SIGBUS;
2277 anon = 1; /* no anon but release vmf.page */
2282 * XXX: this is not quite right (racy vs
2283 * invalidate) to unlock and relock the page
2284 * like this, however a better fix requires
2285 * reworking page_mkwrite locking API, which
2286 * is better done later.
2288 if (!page->mapping) {
2290 anon = 1; /* no anon but release vmf.page */
2299 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2304 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2307 * This silly early PAGE_DIRTY setting removes a race
2308 * due to the bad i386 page protection. But it's valid
2309 * for other architectures too.
2311 * Note that if write_access is true, we either now have
2312 * an exclusive copy of the page, or this is a shared mapping,
2313 * so we can make it writable and dirty to avoid having to
2314 * handle that later.
2316 /* Only go through if we didn't race with anybody else... */
2317 if (likely(pte_same(*page_table, orig_pte))) {
2318 flush_icache_page(vma, page);
2319 entry = mk_pte(page, vma->vm_page_prot);
2320 if (flags & FAULT_FLAG_WRITE)
2321 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2322 set_pte_at(mm, address, page_table, entry);
2324 inc_mm_counter(mm, anon_rss);
2325 lru_cache_add_active(page);
2326 page_add_new_anon_rmap(page, vma, address);
2328 inc_mm_counter(mm, file_rss);
2329 page_add_file_rmap(page);
2330 if (flags & FAULT_FLAG_WRITE) {
2332 get_page(dirty_page);
2336 /* no need to invalidate: a not-present page won't be cached */
2337 update_mmu_cache(vma, address, entry);
2339 mem_cgroup_uncharge_page(page);
2341 page_cache_release(page);
2343 anon = 1; /* no anon but release faulted_page */
2346 pte_unmap_unlock(page_table, ptl);
2349 unlock_page(vmf.page);
2352 page_cache_release(vmf.page);
2353 else if (dirty_page) {
2355 file_update_time(vma->vm_file);
2357 set_page_dirty_balance(dirty_page, page_mkwrite);
2358 put_page(dirty_page);
2364 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2365 unsigned long address, pte_t *page_table, pmd_t *pmd,
2366 int write_access, pte_t orig_pte)
2368 pgoff_t pgoff = (((address & PAGE_MASK)
2369 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2370 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2372 pte_unmap(page_table);
2373 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2378 * do_no_pfn() tries to create a new page mapping for a page without
2379 * a struct_page backing it
2381 * As this is called only for pages that do not currently exist, we
2382 * do not need to flush old virtual caches or the TLB.
2384 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2385 * but allow concurrent faults), and pte mapped but not yet locked.
2386 * We return with mmap_sem still held, but pte unmapped and unlocked.
2388 * It is expected that the ->nopfn handler always returns the same pfn
2389 * for a given virtual mapping.
2391 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2393 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2394 unsigned long address, pte_t *page_table, pmd_t *pmd,
2401 pte_unmap(page_table);
2402 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2403 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2405 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2407 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2409 if (unlikely(pfn == NOPFN_OOM))
2410 return VM_FAULT_OOM;
2411 else if (unlikely(pfn == NOPFN_SIGBUS))
2412 return VM_FAULT_SIGBUS;
2413 else if (unlikely(pfn == NOPFN_REFAULT))
2416 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2418 /* Only go through if we didn't race with anybody else... */
2419 if (pte_none(*page_table)) {
2420 entry = pfn_pte(pfn, vma->vm_page_prot);
2422 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2423 set_pte_at(mm, address, page_table, entry);
2425 pte_unmap_unlock(page_table, ptl);
2430 * Fault of a previously existing named mapping. Repopulate the pte
2431 * from the encoded file_pte if possible. This enables swappable
2434 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2435 * but allow concurrent faults), and pte mapped but not yet locked.
2436 * We return with mmap_sem still held, but pte unmapped and unlocked.
2438 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2439 unsigned long address, pte_t *page_table, pmd_t *pmd,
2440 int write_access, pte_t orig_pte)
2442 unsigned int flags = FAULT_FLAG_NONLINEAR |
2443 (write_access ? FAULT_FLAG_WRITE : 0);
2446 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2449 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2450 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2452 * Page table corrupted: show pte and kill process.
2454 print_bad_pte(vma, orig_pte, address);
2455 return VM_FAULT_OOM;
2458 pgoff = pte_to_pgoff(orig_pte);
2459 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2463 * These routines also need to handle stuff like marking pages dirty
2464 * and/or accessed for architectures that don't do it in hardware (most
2465 * RISC architectures). The early dirtying is also good on the i386.
2467 * There is also a hook called "update_mmu_cache()" that architectures
2468 * with external mmu caches can use to update those (ie the Sparc or
2469 * PowerPC hashed page tables that act as extended TLBs).
2471 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2472 * but allow concurrent faults), and pte mapped but not yet locked.
2473 * We return with mmap_sem still held, but pte unmapped and unlocked.
2475 static inline int handle_pte_fault(struct mm_struct *mm,
2476 struct vm_area_struct *vma, unsigned long address,
2477 pte_t *pte, pmd_t *pmd, int write_access)
2483 if (!pte_present(entry)) {
2484 if (pte_none(entry)) {
2486 if (likely(vma->vm_ops->fault))
2487 return do_linear_fault(mm, vma, address,
2488 pte, pmd, write_access, entry);
2489 if (unlikely(vma->vm_ops->nopfn))
2490 return do_no_pfn(mm, vma, address, pte,
2493 return do_anonymous_page(mm, vma, address,
2494 pte, pmd, write_access);
2496 if (pte_file(entry))
2497 return do_nonlinear_fault(mm, vma, address,
2498 pte, pmd, write_access, entry);
2499 return do_swap_page(mm, vma, address,
2500 pte, pmd, write_access, entry);
2503 ptl = pte_lockptr(mm, pmd);
2505 if (unlikely(!pte_same(*pte, entry)))
2508 if (!pte_write(entry))
2509 return do_wp_page(mm, vma, address,
2510 pte, pmd, ptl, entry);
2511 entry = pte_mkdirty(entry);
2513 entry = pte_mkyoung(entry);
2514 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2515 update_mmu_cache(vma, address, entry);
2518 * This is needed only for protection faults but the arch code
2519 * is not yet telling us if this is a protection fault or not.
2520 * This still avoids useless tlb flushes for .text page faults
2524 flush_tlb_page(vma, address);
2527 pte_unmap_unlock(pte, ptl);
2532 * By the time we get here, we already hold the mm semaphore
2534 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2535 unsigned long address, int write_access)
2542 __set_current_state(TASK_RUNNING);
2544 count_vm_event(PGFAULT);
2546 if (unlikely(is_vm_hugetlb_page(vma)))
2547 return hugetlb_fault(mm, vma, address, write_access);
2549 pgd = pgd_offset(mm, address);
2550 pud = pud_alloc(mm, pgd, address);
2552 return VM_FAULT_OOM;
2553 pmd = pmd_alloc(mm, pud, address);
2555 return VM_FAULT_OOM;
2556 pte = pte_alloc_map(mm, pmd, address);
2558 return VM_FAULT_OOM;
2560 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2563 #ifndef __PAGETABLE_PUD_FOLDED
2565 * Allocate page upper directory.
2566 * We've already handled the fast-path in-line.
2568 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2570 pud_t *new = pud_alloc_one(mm, address);
2574 spin_lock(&mm->page_table_lock);
2575 if (pgd_present(*pgd)) /* Another has populated it */
2578 pgd_populate(mm, pgd, new);
2579 spin_unlock(&mm->page_table_lock);
2582 #endif /* __PAGETABLE_PUD_FOLDED */
2584 #ifndef __PAGETABLE_PMD_FOLDED
2586 * Allocate page middle directory.
2587 * We've already handled the fast-path in-line.
2589 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2591 pmd_t *new = pmd_alloc_one(mm, address);
2595 spin_lock(&mm->page_table_lock);
2596 #ifndef __ARCH_HAS_4LEVEL_HACK
2597 if (pud_present(*pud)) /* Another has populated it */
2600 pud_populate(mm, pud, new);
2602 if (pgd_present(*pud)) /* Another has populated it */
2605 pgd_populate(mm, pud, new);
2606 #endif /* __ARCH_HAS_4LEVEL_HACK */
2607 spin_unlock(&mm->page_table_lock);
2610 #endif /* __PAGETABLE_PMD_FOLDED */
2612 int make_pages_present(unsigned long addr, unsigned long end)
2614 int ret, len, write;
2615 struct vm_area_struct * vma;
2617 vma = find_vma(current->mm, addr);
2620 write = (vma->vm_flags & VM_WRITE) != 0;
2621 BUG_ON(addr >= end);
2622 BUG_ON(end > vma->vm_end);
2623 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2624 ret = get_user_pages(current, current->mm, addr,
2625 len, write, 0, NULL, NULL);
2628 return ret == len ? 0 : -1;
2631 #if !defined(__HAVE_ARCH_GATE_AREA)
2633 #if defined(AT_SYSINFO_EHDR)
2634 static struct vm_area_struct gate_vma;
2636 static int __init gate_vma_init(void)
2638 gate_vma.vm_mm = NULL;
2639 gate_vma.vm_start = FIXADDR_USER_START;
2640 gate_vma.vm_end = FIXADDR_USER_END;
2641 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2642 gate_vma.vm_page_prot = __P101;
2644 * Make sure the vDSO gets into every core dump.
2645 * Dumping its contents makes post-mortem fully interpretable later
2646 * without matching up the same kernel and hardware config to see
2647 * what PC values meant.
2649 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2652 __initcall(gate_vma_init);
2655 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2657 #ifdef AT_SYSINFO_EHDR
2664 int in_gate_area_no_task(unsigned long addr)
2666 #ifdef AT_SYSINFO_EHDR
2667 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2673 #endif /* __HAVE_ARCH_GATE_AREA */
2676 * Access another process' address space.
2677 * Source/target buffer must be kernel space,
2678 * Do not walk the page table directly, use get_user_pages
2680 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2682 struct mm_struct *mm;
2683 struct vm_area_struct *vma;
2685 void *old_buf = buf;
2687 mm = get_task_mm(tsk);
2691 down_read(&mm->mmap_sem);
2692 /* ignore errors, just check how much was successfully transferred */
2694 int bytes, ret, offset;
2697 ret = get_user_pages(tsk, mm, addr, 1,
2698 write, 1, &page, &vma);
2703 offset = addr & (PAGE_SIZE-1);
2704 if (bytes > PAGE_SIZE-offset)
2705 bytes = PAGE_SIZE-offset;
2709 copy_to_user_page(vma, page, addr,
2710 maddr + offset, buf, bytes);
2711 set_page_dirty_lock(page);
2713 copy_from_user_page(vma, page, addr,
2714 buf, maddr + offset, bytes);
2717 page_cache_release(page);
2722 up_read(&mm->mmap_sem);
2725 return buf - old_buf;
2729 * Print the name of a VMA.
2731 void print_vma_addr(char *prefix, unsigned long ip)
2733 struct mm_struct *mm = current->mm;
2734 struct vm_area_struct *vma;
2737 * Do not print if we are in atomic
2738 * contexts (in exception stacks, etc.):
2740 if (preempt_count())
2743 down_read(&mm->mmap_sem);
2744 vma = find_vma(mm, ip);
2745 if (vma && vma->vm_file) {
2746 struct file *f = vma->vm_file;
2747 char *buf = (char *)__get_free_page(GFP_KERNEL);
2751 p = d_path(&f->f_path, buf, PAGE_SIZE);
2754 s = strrchr(p, '/');
2757 printk("%s%s[%lx+%lx]", prefix, p,
2759 vma->vm_end - vma->vm_start);
2760 free_page((unsigned long)buf);
2763 up_read(¤t->mm->mmap_sem);