2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
104 #include "internal.h"
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
110 static struct kmem_cache *policy_cache;
111 static struct kmem_cache *sn_cache;
113 /* Highest zone. An specific allocation for a zone below that is not
115 enum zone_type policy_zone = 0;
118 * run-time system-wide default policy => local allocation
120 static struct mempolicy default_policy = {
121 .refcnt = ATOMIC_INIT(1), /* never free it */
122 .mode = MPOL_PREFERRED,
123 .flags = MPOL_F_LOCAL,
126 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128 struct mempolicy *get_task_policy(struct task_struct *p)
130 struct mempolicy *pol = p->mempolicy;
136 node = numa_node_id();
137 if (node != NUMA_NO_NODE) {
138 pol = &preferred_node_policy[node];
139 /* preferred_node_policy is not initialised early in boot */
144 return &default_policy;
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
155 * If we have a lock to protect task->mempolicy in read-side, we do
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
167 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
169 return pol->flags & MPOL_MODE_FLAGS;
172 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
173 const nodemask_t *rel)
176 nodes_fold(tmp, *orig, nodes_weight(*rel));
177 nodes_onto(*ret, tmp, *rel);
180 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
182 if (nodes_empty(*nodes))
184 pol->v.nodes = *nodes;
188 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
191 pol->flags |= MPOL_F_LOCAL; /* local allocation */
192 else if (nodes_empty(*nodes))
193 return -EINVAL; /* no allowed nodes */
195 pol->v.preferred_node = first_node(*nodes);
199 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
201 if (nodes_empty(*nodes))
203 pol->v.nodes = *nodes;
208 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
209 * any, for the new policy. mpol_new() has already validated the nodes
210 * parameter with respect to the policy mode and flags. But, we need to
211 * handle an empty nodemask with MPOL_PREFERRED here.
213 * Must be called holding task's alloc_lock to protect task's mems_allowed
214 * and mempolicy. May also be called holding the mmap_semaphore for write.
216 static int mpol_set_nodemask(struct mempolicy *pol,
217 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 nodes_and(nsc->mask1,
226 cpuset_current_mems_allowed, node_states[N_MEMORY]);
229 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
230 nodes = NULL; /* explicit local allocation */
232 if (pol->flags & MPOL_F_RELATIVE_NODES)
233 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
235 nodes_and(nsc->mask2, *nodes, nsc->mask1);
237 if (mpol_store_user_nodemask(pol))
238 pol->w.user_nodemask = *nodes;
240 pol->w.cpuset_mems_allowed =
241 cpuset_current_mems_allowed;
245 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
247 ret = mpol_ops[pol->mode].create(pol, NULL);
252 * This function just creates a new policy, does some check and simple
253 * initialization. You must invoke mpol_set_nodemask() to set nodes.
255 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
258 struct mempolicy *policy;
260 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
261 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
263 if (mode == MPOL_DEFAULT) {
264 if (nodes && !nodes_empty(*nodes))
265 return ERR_PTR(-EINVAL);
271 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
272 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
273 * All other modes require a valid pointer to a non-empty nodemask.
275 if (mode == MPOL_PREFERRED) {
276 if (nodes_empty(*nodes)) {
277 if (((flags & MPOL_F_STATIC_NODES) ||
278 (flags & MPOL_F_RELATIVE_NODES)))
279 return ERR_PTR(-EINVAL);
281 } else if (mode == MPOL_LOCAL) {
282 if (!nodes_empty(*nodes) ||
283 (flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES))
285 return ERR_PTR(-EINVAL);
286 mode = MPOL_PREFERRED;
287 } else if (nodes_empty(*nodes))
288 return ERR_PTR(-EINVAL);
289 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 return ERR_PTR(-ENOMEM);
292 atomic_set(&policy->refcnt, 1);
294 policy->flags = flags;
299 /* Slow path of a mpol destructor. */
300 void __mpol_put(struct mempolicy *p)
302 if (!atomic_dec_and_test(&p->refcnt))
304 kmem_cache_free(policy_cache, p);
307 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
308 enum mpol_rebind_step step)
314 * MPOL_REBIND_ONCE - do rebind work at once
315 * MPOL_REBIND_STEP1 - set all the newly nodes
316 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
319 enum mpol_rebind_step step)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
333 nodes_remap(tmp, pol->v.nodes,
334 pol->w.cpuset_mems_allowed, *nodes);
335 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
336 } else if (step == MPOL_REBIND_STEP2) {
337 tmp = pol->w.cpuset_mems_allowed;
338 pol->w.cpuset_mems_allowed = *nodes;
343 if (nodes_empty(tmp))
346 if (step == MPOL_REBIND_STEP1)
347 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
348 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
353 if (!node_isset(current->il_next, tmp)) {
354 current->il_next = next_node_in(current->il_next, tmp);
355 if (current->il_next >= MAX_NUMNODES)
356 current->il_next = numa_node_id();
360 static void mpol_rebind_preferred(struct mempolicy *pol,
361 const nodemask_t *nodes,
362 enum mpol_rebind_step step)
366 if (pol->flags & MPOL_F_STATIC_NODES) {
367 int node = first_node(pol->w.user_nodemask);
369 if (node_isset(node, *nodes)) {
370 pol->v.preferred_node = node;
371 pol->flags &= ~MPOL_F_LOCAL;
373 pol->flags |= MPOL_F_LOCAL;
374 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
375 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
376 pol->v.preferred_node = first_node(tmp);
377 } else if (!(pol->flags & MPOL_F_LOCAL)) {
378 pol->v.preferred_node = node_remap(pol->v.preferred_node,
379 pol->w.cpuset_mems_allowed,
381 pol->w.cpuset_mems_allowed = *nodes;
386 * mpol_rebind_policy - Migrate a policy to a different set of nodes
388 * If read-side task has no lock to protect task->mempolicy, write-side
389 * task will rebind the task->mempolicy by two step. The first step is
390 * setting all the newly nodes, and the second step is cleaning all the
391 * disallowed nodes. In this way, we can avoid finding no node to alloc
393 * If we have a lock to protect task->mempolicy in read-side, we do
397 * MPOL_REBIND_ONCE - do rebind work at once
398 * MPOL_REBIND_STEP1 - set all the newly nodes
399 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
401 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
402 enum mpol_rebind_step step)
406 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
407 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
410 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
413 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
416 if (step == MPOL_REBIND_STEP1)
417 pol->flags |= MPOL_F_REBINDING;
418 else if (step == MPOL_REBIND_STEP2)
419 pol->flags &= ~MPOL_F_REBINDING;
420 else if (step >= MPOL_REBIND_NSTEP)
423 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 * Wrapper for mpol_rebind_policy() that just requires task
428 * pointer, and updates task mempolicy.
430 * Called with task's alloc_lock held.
433 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
434 enum mpol_rebind_step step)
436 mpol_rebind_policy(tsk->mempolicy, new, step);
440 * Rebind each vma in mm to new nodemask.
442 * Call holding a reference to mm. Takes mm->mmap_sem during call.
445 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
447 struct vm_area_struct *vma;
449 down_write(&mm->mmap_sem);
450 for (vma = mm->mmap; vma; vma = vma->vm_next)
451 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
452 up_write(&mm->mmap_sem);
455 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
457 .rebind = mpol_rebind_default,
459 [MPOL_INTERLEAVE] = {
460 .create = mpol_new_interleave,
461 .rebind = mpol_rebind_nodemask,
464 .create = mpol_new_preferred,
465 .rebind = mpol_rebind_preferred,
468 .create = mpol_new_bind,
469 .rebind = mpol_rebind_nodemask,
473 static void migrate_page_add(struct page *page, struct list_head *pagelist,
474 unsigned long flags);
477 struct list_head *pagelist;
480 struct vm_area_struct *prev;
484 * Scan through pages checking if pages follow certain conditions,
485 * and move them to the pagelist if they do.
487 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
488 unsigned long end, struct mm_walk *walk)
490 struct vm_area_struct *vma = walk->vma;
492 struct queue_pages *qp = walk->private;
493 unsigned long flags = qp->flags;
498 if (pmd_trans_huge(*pmd)) {
499 ptl = pmd_lock(walk->mm, pmd);
500 if (pmd_trans_huge(*pmd)) {
501 page = pmd_page(*pmd);
502 if (is_huge_zero_page(page)) {
504 __split_huge_pmd(vma, pmd, addr, false, NULL);
509 ret = split_huge_page(page);
520 if (pmd_trans_unstable(pmd))
523 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
527 page = vm_normal_page(vma, addr, *pte);
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
534 if (PageReserved(page))
536 nid = page_to_nid(page);
537 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
539 if (PageTransCompound(page)) {
541 pte_unmap_unlock(pte, ptl);
543 ret = split_huge_page(page);
546 /* Failed to split -- skip. */
548 pte = pte_offset_map_lock(walk->mm, pmd,
555 migrate_page_add(page, qp->pagelist, flags);
557 pte_unmap_unlock(pte - 1, ptl);
562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = qp->flags;
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
578 page = pte_page(entry);
579 nid = page_to_nid(page);
580 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
582 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
583 if (flags & (MPOL_MF_MOVE_ALL) ||
584 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
585 isolate_huge_page(page, qp->pagelist);
594 #ifdef CONFIG_NUMA_BALANCING
596 * This is used to mark a range of virtual addresses to be inaccessible.
597 * These are later cleared by a NUMA hinting fault. Depending on these
598 * faults, pages may be migrated for better NUMA placement.
600 * This is assuming that NUMA faults are handled using PROT_NONE. If
601 * an architecture makes a different choice, it will need further
602 * changes to the core.
604 unsigned long change_prot_numa(struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
609 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
611 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
616 static unsigned long change_prot_numa(struct vm_area_struct *vma,
617 unsigned long addr, unsigned long end)
621 #endif /* CONFIG_NUMA_BALANCING */
623 static int queue_pages_test_walk(unsigned long start, unsigned long end,
624 struct mm_walk *walk)
626 struct vm_area_struct *vma = walk->vma;
627 struct queue_pages *qp = walk->private;
628 unsigned long endvma = vma->vm_end;
629 unsigned long flags = qp->flags;
631 if (!vma_migratable(vma))
636 if (vma->vm_start > start)
637 start = vma->vm_start;
639 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
640 if (!vma->vm_next && vma->vm_end < end)
642 if (qp->prev && qp->prev->vm_end < vma->vm_start)
648 if (flags & MPOL_MF_LAZY) {
649 /* Similar to task_numa_work, skip inaccessible VMAs */
650 if (!is_vm_hugetlb_page(vma) &&
651 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
652 !(vma->vm_flags & VM_MIXEDMAP))
653 change_prot_numa(vma, start, endvma);
657 /* queue pages from current vma */
658 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
664 * Walk through page tables and collect pages to be migrated.
666 * If pages found in a given range are on a set of nodes (determined by
667 * @nodes and @flags,) it's isolated and queued to the pagelist which is
668 * passed via @private.)
671 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
672 nodemask_t *nodes, unsigned long flags,
673 struct list_head *pagelist)
675 struct queue_pages qp = {
676 .pagelist = pagelist,
681 struct mm_walk queue_pages_walk = {
682 .hugetlb_entry = queue_pages_hugetlb,
683 .pmd_entry = queue_pages_pte_range,
684 .test_walk = queue_pages_test_walk,
689 return walk_page_range(start, end, &queue_pages_walk);
693 * Apply policy to a single VMA
694 * This must be called with the mmap_sem held for writing.
696 static int vma_replace_policy(struct vm_area_struct *vma,
697 struct mempolicy *pol)
700 struct mempolicy *old;
701 struct mempolicy *new;
703 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
704 vma->vm_start, vma->vm_end, vma->vm_pgoff,
705 vma->vm_ops, vma->vm_file,
706 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
712 if (vma->vm_ops && vma->vm_ops->set_policy) {
713 err = vma->vm_ops->set_policy(vma, new);
718 old = vma->vm_policy;
719 vma->vm_policy = new; /* protected by mmap_sem */
728 /* Step 2: apply policy to a range and do splits. */
729 static int mbind_range(struct mm_struct *mm, unsigned long start,
730 unsigned long end, struct mempolicy *new_pol)
732 struct vm_area_struct *next;
733 struct vm_area_struct *prev;
734 struct vm_area_struct *vma;
737 unsigned long vmstart;
740 vma = find_vma(mm, start);
741 if (!vma || vma->vm_start > start)
745 if (start > vma->vm_start)
748 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
750 vmstart = max(start, vma->vm_start);
751 vmend = min(end, vma->vm_end);
753 if (mpol_equal(vma_policy(vma), new_pol))
756 pgoff = vma->vm_pgoff +
757 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
758 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
759 vma->anon_vma, vma->vm_file, pgoff,
760 new_pol, vma->vm_userfaultfd_ctx);
764 if (mpol_equal(vma_policy(vma), new_pol))
766 /* vma_merge() joined vma && vma->next, case 8 */
769 if (vma->vm_start != vmstart) {
770 err = split_vma(vma->vm_mm, vma, vmstart, 1);
774 if (vma->vm_end != vmend) {
775 err = split_vma(vma->vm_mm, vma, vmend, 0);
780 err = vma_replace_policy(vma, new_pol);
789 /* Set the process memory policy */
790 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
793 struct mempolicy *new, *old;
794 NODEMASK_SCRATCH(scratch);
800 new = mpol_new(mode, flags, nodes);
807 ret = mpol_set_nodemask(new, nodes, scratch);
809 task_unlock(current);
813 old = current->mempolicy;
814 current->mempolicy = new;
815 if (new && new->mode == MPOL_INTERLEAVE &&
816 nodes_weight(new->v.nodes))
817 current->il_next = first_node(new->v.nodes);
818 task_unlock(current);
822 NODEMASK_SCRATCH_FREE(scratch);
827 * Return nodemask for policy for get_mempolicy() query
829 * Called with task's alloc_lock held
831 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
834 if (p == &default_policy)
840 case MPOL_INTERLEAVE:
844 if (!(p->flags & MPOL_F_LOCAL))
845 node_set(p->v.preferred_node, *nodes);
846 /* else return empty node mask for local allocation */
853 static int lookup_node(unsigned long addr)
858 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
860 err = page_to_nid(p);
866 /* Retrieve NUMA policy */
867 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
868 unsigned long addr, unsigned long flags)
871 struct mm_struct *mm = current->mm;
872 struct vm_area_struct *vma = NULL;
873 struct mempolicy *pol = current->mempolicy;
876 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
879 if (flags & MPOL_F_MEMS_ALLOWED) {
880 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
882 *policy = 0; /* just so it's initialized */
884 *nmask = cpuset_current_mems_allowed;
885 task_unlock(current);
889 if (flags & MPOL_F_ADDR) {
891 * Do NOT fall back to task policy if the
892 * vma/shared policy at addr is NULL. We
893 * want to return MPOL_DEFAULT in this case.
895 down_read(&mm->mmap_sem);
896 vma = find_vma_intersection(mm, addr, addr+1);
898 up_read(&mm->mmap_sem);
901 if (vma->vm_ops && vma->vm_ops->get_policy)
902 pol = vma->vm_ops->get_policy(vma, addr);
904 pol = vma->vm_policy;
909 pol = &default_policy; /* indicates default behavior */
911 if (flags & MPOL_F_NODE) {
912 if (flags & MPOL_F_ADDR) {
913 err = lookup_node(addr);
917 } else if (pol == current->mempolicy &&
918 pol->mode == MPOL_INTERLEAVE) {
919 *policy = current->il_next;
925 *policy = pol == &default_policy ? MPOL_DEFAULT :
928 * Internal mempolicy flags must be masked off before exposing
929 * the policy to userspace.
931 *policy |= (pol->flags & MPOL_MODE_FLAGS);
935 up_read(¤t->mm->mmap_sem);
941 if (mpol_store_user_nodemask(pol)) {
942 *nmask = pol->w.user_nodemask;
945 get_policy_nodemask(pol, nmask);
946 task_unlock(current);
953 up_read(¤t->mm->mmap_sem);
957 #ifdef CONFIG_MIGRATION
961 static void migrate_page_add(struct page *page, struct list_head *pagelist,
965 * Avoid migrating a page that is shared with others.
967 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
968 if (!isolate_lru_page(page)) {
969 list_add_tail(&page->lru, pagelist);
970 inc_node_page_state(page, NR_ISOLATED_ANON +
971 page_is_file_cache(page));
976 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
979 return alloc_huge_page_node(page_hstate(compound_head(page)),
982 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
987 * Migrate pages from one node to a target node.
988 * Returns error or the number of pages not migrated.
990 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
998 node_set(source, nmask);
1001 * This does not "check" the range but isolates all pages that
1002 * need migration. Between passing in the full user address
1003 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1005 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1006 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1007 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1009 if (!list_empty(&pagelist)) {
1010 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1011 MIGRATE_SYNC, MR_SYSCALL);
1013 putback_movable_pages(&pagelist);
1020 * Move pages between the two nodesets so as to preserve the physical
1021 * layout as much as possible.
1023 * Returns the number of page that could not be moved.
1025 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1026 const nodemask_t *to, int flags)
1032 err = migrate_prep();
1036 down_read(&mm->mmap_sem);
1039 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1040 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1041 * bit in 'tmp', and return that <source, dest> pair for migration.
1042 * The pair of nodemasks 'to' and 'from' define the map.
1044 * If no pair of bits is found that way, fallback to picking some
1045 * pair of 'source' and 'dest' bits that are not the same. If the
1046 * 'source' and 'dest' bits are the same, this represents a node
1047 * that will be migrating to itself, so no pages need move.
1049 * If no bits are left in 'tmp', or if all remaining bits left
1050 * in 'tmp' correspond to the same bit in 'to', return false
1051 * (nothing left to migrate).
1053 * This lets us pick a pair of nodes to migrate between, such that
1054 * if possible the dest node is not already occupied by some other
1055 * source node, minimizing the risk of overloading the memory on a
1056 * node that would happen if we migrated incoming memory to a node
1057 * before migrating outgoing memory source that same node.
1059 * A single scan of tmp is sufficient. As we go, we remember the
1060 * most recent <s, d> pair that moved (s != d). If we find a pair
1061 * that not only moved, but what's better, moved to an empty slot
1062 * (d is not set in tmp), then we break out then, with that pair.
1063 * Otherwise when we finish scanning from_tmp, we at least have the
1064 * most recent <s, d> pair that moved. If we get all the way through
1065 * the scan of tmp without finding any node that moved, much less
1066 * moved to an empty node, then there is nothing left worth migrating.
1070 while (!nodes_empty(tmp)) {
1072 int source = NUMA_NO_NODE;
1075 for_each_node_mask(s, tmp) {
1078 * do_migrate_pages() tries to maintain the relative
1079 * node relationship of the pages established between
1080 * threads and memory areas.
1082 * However if the number of source nodes is not equal to
1083 * the number of destination nodes we can not preserve
1084 * this node relative relationship. In that case, skip
1085 * copying memory from a node that is in the destination
1088 * Example: [2,3,4] -> [3,4,5] moves everything.
1089 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1092 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1093 (node_isset(s, *to)))
1096 d = node_remap(s, *from, *to);
1100 source = s; /* Node moved. Memorize */
1103 /* dest not in remaining from nodes? */
1104 if (!node_isset(dest, tmp))
1107 if (source == NUMA_NO_NODE)
1110 node_clear(source, tmp);
1111 err = migrate_to_node(mm, source, dest, flags);
1117 up_read(&mm->mmap_sem);
1125 * Allocate a new page for page migration based on vma policy.
1126 * Start by assuming the page is mapped by the same vma as contains @start.
1127 * Search forward from there, if not. N.B., this assumes that the
1128 * list of pages handed to migrate_pages()--which is how we get here--
1129 * is in virtual address order.
1131 static struct page *new_page(struct page *page, unsigned long start, int **x)
1133 struct vm_area_struct *vma;
1134 unsigned long uninitialized_var(address);
1136 vma = find_vma(current->mm, start);
1138 address = page_address_in_vma(page, vma);
1139 if (address != -EFAULT)
1144 if (PageHuge(page)) {
1146 return alloc_huge_page_noerr(vma, address, 1);
1149 * if !vma, alloc_page_vma() will use task or system default policy
1151 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1155 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1156 unsigned long flags)
1160 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1161 const nodemask_t *to, int flags)
1166 static struct page *new_page(struct page *page, unsigned long start, int **x)
1172 static long do_mbind(unsigned long start, unsigned long len,
1173 unsigned short mode, unsigned short mode_flags,
1174 nodemask_t *nmask, unsigned long flags)
1176 struct mm_struct *mm = current->mm;
1177 struct mempolicy *new;
1180 LIST_HEAD(pagelist);
1182 if (flags & ~(unsigned long)MPOL_MF_VALID)
1184 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1187 if (start & ~PAGE_MASK)
1190 if (mode == MPOL_DEFAULT)
1191 flags &= ~MPOL_MF_STRICT;
1193 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1201 new = mpol_new(mode, mode_flags, nmask);
1203 return PTR_ERR(new);
1205 if (flags & MPOL_MF_LAZY)
1206 new->flags |= MPOL_F_MOF;
1209 * If we are using the default policy then operation
1210 * on discontinuous address spaces is okay after all
1213 flags |= MPOL_MF_DISCONTIG_OK;
1215 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1216 start, start + len, mode, mode_flags,
1217 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1219 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1221 err = migrate_prep();
1226 NODEMASK_SCRATCH(scratch);
1228 down_write(&mm->mmap_sem);
1230 err = mpol_set_nodemask(new, nmask, scratch);
1231 task_unlock(current);
1233 up_write(&mm->mmap_sem);
1236 NODEMASK_SCRATCH_FREE(scratch);
1241 err = queue_pages_range(mm, start, end, nmask,
1242 flags | MPOL_MF_INVERT, &pagelist);
1244 err = mbind_range(mm, start, end, new);
1249 if (!list_empty(&pagelist)) {
1250 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1251 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1252 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1254 putback_movable_pages(&pagelist);
1257 if (nr_failed && (flags & MPOL_MF_STRICT))
1260 putback_movable_pages(&pagelist);
1262 up_write(&mm->mmap_sem);
1269 * User space interface with variable sized bitmaps for nodelists.
1272 /* Copy a node mask from user space. */
1273 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1274 unsigned long maxnode)
1277 unsigned long nlongs;
1278 unsigned long endmask;
1281 nodes_clear(*nodes);
1282 if (maxnode == 0 || !nmask)
1284 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1287 nlongs = BITS_TO_LONGS(maxnode);
1288 if ((maxnode % BITS_PER_LONG) == 0)
1291 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1293 /* When the user specified more nodes than supported just check
1294 if the non supported part is all zero. */
1295 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1296 if (nlongs > PAGE_SIZE/sizeof(long))
1298 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1300 if (get_user(t, nmask + k))
1302 if (k == nlongs - 1) {
1308 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1312 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1314 nodes_addr(*nodes)[nlongs-1] &= endmask;
1318 /* Copy a kernel node mask to user space */
1319 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1322 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1323 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1325 if (copy > nbytes) {
1326 if (copy > PAGE_SIZE)
1328 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1332 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1335 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1336 unsigned long, mode, const unsigned long __user *, nmask,
1337 unsigned long, maxnode, unsigned, flags)
1341 unsigned short mode_flags;
1343 mode_flags = mode & MPOL_MODE_FLAGS;
1344 mode &= ~MPOL_MODE_FLAGS;
1345 if (mode >= MPOL_MAX)
1347 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1348 (mode_flags & MPOL_F_RELATIVE_NODES))
1350 err = get_nodes(&nodes, nmask, maxnode);
1353 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1356 /* Set the process memory policy */
1357 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1358 unsigned long, maxnode)
1362 unsigned short flags;
1364 flags = mode & MPOL_MODE_FLAGS;
1365 mode &= ~MPOL_MODE_FLAGS;
1366 if ((unsigned int)mode >= MPOL_MAX)
1368 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1370 err = get_nodes(&nodes, nmask, maxnode);
1373 return do_set_mempolicy(mode, flags, &nodes);
1376 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1377 const unsigned long __user *, old_nodes,
1378 const unsigned long __user *, new_nodes)
1380 const struct cred *cred = current_cred(), *tcred;
1381 struct mm_struct *mm = NULL;
1382 struct task_struct *task;
1383 nodemask_t task_nodes;
1387 NODEMASK_SCRATCH(scratch);
1392 old = &scratch->mask1;
1393 new = &scratch->mask2;
1395 err = get_nodes(old, old_nodes, maxnode);
1399 err = get_nodes(new, new_nodes, maxnode);
1403 /* Find the mm_struct */
1405 task = pid ? find_task_by_vpid(pid) : current;
1411 get_task_struct(task);
1416 * Check if this process has the right to modify the specified
1417 * process. The right exists if the process has administrative
1418 * capabilities, superuser privileges or the same
1419 * userid as the target process.
1421 tcred = __task_cred(task);
1422 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1423 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1424 !capable(CAP_SYS_NICE)) {
1431 task_nodes = cpuset_mems_allowed(task);
1432 /* Is the user allowed to access the target nodes? */
1433 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1438 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1443 err = security_task_movememory(task);
1447 mm = get_task_mm(task);
1448 put_task_struct(task);
1455 err = do_migrate_pages(mm, old, new,
1456 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1460 NODEMASK_SCRATCH_FREE(scratch);
1465 put_task_struct(task);
1471 /* Retrieve NUMA policy */
1472 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1473 unsigned long __user *, nmask, unsigned long, maxnode,
1474 unsigned long, addr, unsigned long, flags)
1477 int uninitialized_var(pval);
1480 if (nmask != NULL && maxnode < MAX_NUMNODES)
1483 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1488 if (policy && put_user(pval, policy))
1492 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1497 #ifdef CONFIG_COMPAT
1499 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1500 compat_ulong_t __user *, nmask,
1501 compat_ulong_t, maxnode,
1502 compat_ulong_t, addr, compat_ulong_t, flags)
1505 unsigned long __user *nm = NULL;
1506 unsigned long nr_bits, alloc_size;
1507 DECLARE_BITMAP(bm, MAX_NUMNODES);
1509 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1510 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1513 nm = compat_alloc_user_space(alloc_size);
1515 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1517 if (!err && nmask) {
1518 unsigned long copy_size;
1519 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1520 err = copy_from_user(bm, nm, copy_size);
1521 /* ensure entire bitmap is zeroed */
1522 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1523 err |= compat_put_bitmap(nmask, bm, nr_bits);
1529 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1530 compat_ulong_t, maxnode)
1532 unsigned long __user *nm = NULL;
1533 unsigned long nr_bits, alloc_size;
1534 DECLARE_BITMAP(bm, MAX_NUMNODES);
1536 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1537 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1540 if (compat_get_bitmap(bm, nmask, nr_bits))
1542 nm = compat_alloc_user_space(alloc_size);
1543 if (copy_to_user(nm, bm, alloc_size))
1547 return sys_set_mempolicy(mode, nm, nr_bits+1);
1550 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1551 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1552 compat_ulong_t, maxnode, compat_ulong_t, flags)
1554 unsigned long __user *nm = NULL;
1555 unsigned long nr_bits, alloc_size;
1558 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1559 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1562 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1564 nm = compat_alloc_user_space(alloc_size);
1565 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1569 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1574 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1577 struct mempolicy *pol = NULL;
1580 if (vma->vm_ops && vma->vm_ops->get_policy) {
1581 pol = vma->vm_ops->get_policy(vma, addr);
1582 } else if (vma->vm_policy) {
1583 pol = vma->vm_policy;
1586 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1587 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1588 * count on these policies which will be dropped by
1589 * mpol_cond_put() later
1591 if (mpol_needs_cond_ref(pol))
1600 * get_vma_policy(@vma, @addr)
1601 * @vma: virtual memory area whose policy is sought
1602 * @addr: address in @vma for shared policy lookup
1604 * Returns effective policy for a VMA at specified address.
1605 * Falls back to current->mempolicy or system default policy, as necessary.
1606 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1607 * count--added by the get_policy() vm_op, as appropriate--to protect against
1608 * freeing by another task. It is the caller's responsibility to free the
1609 * extra reference for shared policies.
1611 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1614 struct mempolicy *pol = __get_vma_policy(vma, addr);
1617 pol = get_task_policy(current);
1622 bool vma_policy_mof(struct vm_area_struct *vma)
1624 struct mempolicy *pol;
1626 if (vma->vm_ops && vma->vm_ops->get_policy) {
1629 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1630 if (pol && (pol->flags & MPOL_F_MOF))
1637 pol = vma->vm_policy;
1639 pol = get_task_policy(current);
1641 return pol->flags & MPOL_F_MOF;
1644 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1646 enum zone_type dynamic_policy_zone = policy_zone;
1648 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1651 * if policy->v.nodes has movable memory only,
1652 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1654 * policy->v.nodes is intersect with node_states[N_MEMORY].
1655 * so if the following test faile, it implies
1656 * policy->v.nodes has movable memory only.
1658 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1659 dynamic_policy_zone = ZONE_MOVABLE;
1661 return zone >= dynamic_policy_zone;
1665 * Return a nodemask representing a mempolicy for filtering nodes for
1668 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1670 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1671 if (unlikely(policy->mode == MPOL_BIND) &&
1672 apply_policy_zone(policy, gfp_zone(gfp)) &&
1673 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1674 return &policy->v.nodes;
1679 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1680 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1683 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1684 nd = policy->v.preferred_node;
1687 * __GFP_THISNODE shouldn't even be used with the bind policy
1688 * because we might easily break the expectation to stay on the
1689 * requested node and not break the policy.
1691 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1694 return node_zonelist(nd, gfp);
1697 /* Do dynamic interleaving for a process */
1698 static unsigned interleave_nodes(struct mempolicy *policy)
1701 struct task_struct *me = current;
1704 next = next_node_in(nid, policy->v.nodes);
1705 if (next < MAX_NUMNODES)
1711 * Depending on the memory policy provide a node from which to allocate the
1714 unsigned int mempolicy_slab_node(void)
1716 struct mempolicy *policy;
1717 int node = numa_mem_id();
1722 policy = current->mempolicy;
1723 if (!policy || policy->flags & MPOL_F_LOCAL)
1726 switch (policy->mode) {
1727 case MPOL_PREFERRED:
1729 * handled MPOL_F_LOCAL above
1731 return policy->v.preferred_node;
1733 case MPOL_INTERLEAVE:
1734 return interleave_nodes(policy);
1740 * Follow bind policy behavior and start allocation at the
1743 struct zonelist *zonelist;
1744 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1745 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1746 z = first_zones_zonelist(zonelist, highest_zoneidx,
1748 return z->zone ? z->zone->node : node;
1757 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1758 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1759 * number of present nodes.
1761 static unsigned offset_il_node(struct mempolicy *pol,
1762 struct vm_area_struct *vma, unsigned long n)
1764 unsigned nnodes = nodes_weight(pol->v.nodes);
1770 return numa_node_id();
1771 target = (unsigned int)n % nnodes;
1772 nid = first_node(pol->v.nodes);
1773 for (i = 0; i < target; i++)
1774 nid = next_node(nid, pol->v.nodes);
1778 /* Determine a node number for interleave */
1779 static inline unsigned interleave_nid(struct mempolicy *pol,
1780 struct vm_area_struct *vma, unsigned long addr, int shift)
1786 * for small pages, there is no difference between
1787 * shift and PAGE_SHIFT, so the bit-shift is safe.
1788 * for huge pages, since vm_pgoff is in units of small
1789 * pages, we need to shift off the always 0 bits to get
1792 BUG_ON(shift < PAGE_SHIFT);
1793 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1794 off += (addr - vma->vm_start) >> shift;
1795 return offset_il_node(pol, vma, off);
1797 return interleave_nodes(pol);
1800 #ifdef CONFIG_HUGETLBFS
1802 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1803 * @vma: virtual memory area whose policy is sought
1804 * @addr: address in @vma for shared policy lookup and interleave policy
1805 * @gfp_flags: for requested zone
1806 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1807 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1809 * Returns a zonelist suitable for a huge page allocation and a pointer
1810 * to the struct mempolicy for conditional unref after allocation.
1811 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1812 * @nodemask for filtering the zonelist.
1814 * Must be protected by read_mems_allowed_begin()
1816 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1817 gfp_t gfp_flags, struct mempolicy **mpol,
1818 nodemask_t **nodemask)
1820 struct zonelist *zl;
1822 *mpol = get_vma_policy(vma, addr);
1823 *nodemask = NULL; /* assume !MPOL_BIND */
1825 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1826 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1827 huge_page_shift(hstate_vma(vma))), gfp_flags);
1829 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1830 if ((*mpol)->mode == MPOL_BIND)
1831 *nodemask = &(*mpol)->v.nodes;
1837 * init_nodemask_of_mempolicy
1839 * If the current task's mempolicy is "default" [NULL], return 'false'
1840 * to indicate default policy. Otherwise, extract the policy nodemask
1841 * for 'bind' or 'interleave' policy into the argument nodemask, or
1842 * initialize the argument nodemask to contain the single node for
1843 * 'preferred' or 'local' policy and return 'true' to indicate presence
1844 * of non-default mempolicy.
1846 * We don't bother with reference counting the mempolicy [mpol_get/put]
1847 * because the current task is examining it's own mempolicy and a task's
1848 * mempolicy is only ever changed by the task itself.
1850 * N.B., it is the caller's responsibility to free a returned nodemask.
1852 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1854 struct mempolicy *mempolicy;
1857 if (!(mask && current->mempolicy))
1861 mempolicy = current->mempolicy;
1862 switch (mempolicy->mode) {
1863 case MPOL_PREFERRED:
1864 if (mempolicy->flags & MPOL_F_LOCAL)
1865 nid = numa_node_id();
1867 nid = mempolicy->v.preferred_node;
1868 init_nodemask_of_node(mask, nid);
1873 case MPOL_INTERLEAVE:
1874 *mask = mempolicy->v.nodes;
1880 task_unlock(current);
1887 * mempolicy_nodemask_intersects
1889 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1890 * policy. Otherwise, check for intersection between mask and the policy
1891 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1892 * policy, always return true since it may allocate elsewhere on fallback.
1894 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1896 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1897 const nodemask_t *mask)
1899 struct mempolicy *mempolicy;
1905 mempolicy = tsk->mempolicy;
1909 switch (mempolicy->mode) {
1910 case MPOL_PREFERRED:
1912 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1913 * allocate from, they may fallback to other nodes when oom.
1914 * Thus, it's possible for tsk to have allocated memory from
1919 case MPOL_INTERLEAVE:
1920 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1930 /* Allocate a page in interleaved policy.
1931 Own path because it needs to do special accounting. */
1932 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1935 struct zonelist *zl;
1938 zl = node_zonelist(nid, gfp);
1939 page = __alloc_pages(gfp, order, zl);
1940 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1941 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1946 * alloc_pages_vma - Allocate a page for a VMA.
1949 * %GFP_USER user allocation.
1950 * %GFP_KERNEL kernel allocations,
1951 * %GFP_HIGHMEM highmem/user allocations,
1952 * %GFP_FS allocation should not call back into a file system.
1953 * %GFP_ATOMIC don't sleep.
1955 * @order:Order of the GFP allocation.
1956 * @vma: Pointer to VMA or NULL if not available.
1957 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1958 * @node: Which node to prefer for allocation (modulo policy).
1959 * @hugepage: for hugepages try only the preferred node if possible
1961 * This function allocates a page from the kernel page pool and applies
1962 * a NUMA policy associated with the VMA or the current process.
1963 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1964 * mm_struct of the VMA to prevent it from going away. Should be used for
1965 * all allocations for pages that will be mapped into user space. Returns
1966 * NULL when no page can be allocated.
1969 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1970 unsigned long addr, int node, bool hugepage)
1972 struct mempolicy *pol;
1974 unsigned int cpuset_mems_cookie;
1975 struct zonelist *zl;
1979 pol = get_vma_policy(vma, addr);
1980 cpuset_mems_cookie = read_mems_allowed_begin();
1982 if (pol->mode == MPOL_INTERLEAVE) {
1985 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1987 page = alloc_page_interleave(gfp, order, nid);
1991 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1992 int hpage_node = node;
1995 * For hugepage allocation and non-interleave policy which
1996 * allows the current node (or other explicitly preferred
1997 * node) we only try to allocate from the current/preferred
1998 * node and don't fall back to other nodes, as the cost of
1999 * remote accesses would likely offset THP benefits.
2001 * If the policy is interleave, or does not allow the current
2002 * node in its nodemask, we allocate the standard way.
2004 if (pol->mode == MPOL_PREFERRED &&
2005 !(pol->flags & MPOL_F_LOCAL))
2006 hpage_node = pol->v.preferred_node;
2008 nmask = policy_nodemask(gfp, pol);
2009 if (!nmask || node_isset(hpage_node, *nmask)) {
2011 page = __alloc_pages_node(hpage_node,
2012 gfp | __GFP_THISNODE, order);
2017 nmask = policy_nodemask(gfp, pol);
2018 zl = policy_zonelist(gfp, pol, node);
2019 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2022 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2028 * alloc_pages_current - Allocate pages.
2031 * %GFP_USER user allocation,
2032 * %GFP_KERNEL kernel allocation,
2033 * %GFP_HIGHMEM highmem allocation,
2034 * %GFP_FS don't call back into a file system.
2035 * %GFP_ATOMIC don't sleep.
2036 * @order: Power of two of allocation size in pages. 0 is a single page.
2038 * Allocate a page from the kernel page pool. When not in
2039 * interrupt context and apply the current process NUMA policy.
2040 * Returns NULL when no page can be allocated.
2042 * Don't call cpuset_update_task_memory_state() unless
2043 * 1) it's ok to take cpuset_sem (can WAIT), and
2044 * 2) allocating for current task (not interrupt).
2046 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2048 struct mempolicy *pol = &default_policy;
2050 unsigned int cpuset_mems_cookie;
2052 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2053 pol = get_task_policy(current);
2056 cpuset_mems_cookie = read_mems_allowed_begin();
2059 * No reference counting needed for current->mempolicy
2060 * nor system default_policy
2062 if (pol->mode == MPOL_INTERLEAVE)
2063 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2065 page = __alloc_pages_nodemask(gfp, order,
2066 policy_zonelist(gfp, pol, numa_node_id()),
2067 policy_nodemask(gfp, pol));
2069 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2074 EXPORT_SYMBOL(alloc_pages_current);
2076 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2078 struct mempolicy *pol = mpol_dup(vma_policy(src));
2081 return PTR_ERR(pol);
2082 dst->vm_policy = pol;
2087 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2088 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2089 * with the mems_allowed returned by cpuset_mems_allowed(). This
2090 * keeps mempolicies cpuset relative after its cpuset moves. See
2091 * further kernel/cpuset.c update_nodemask().
2093 * current's mempolicy may be rebinded by the other task(the task that changes
2094 * cpuset's mems), so we needn't do rebind work for current task.
2097 /* Slow path of a mempolicy duplicate */
2098 struct mempolicy *__mpol_dup(struct mempolicy *old)
2100 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2103 return ERR_PTR(-ENOMEM);
2105 /* task's mempolicy is protected by alloc_lock */
2106 if (old == current->mempolicy) {
2109 task_unlock(current);
2113 if (current_cpuset_is_being_rebound()) {
2114 nodemask_t mems = cpuset_mems_allowed(current);
2115 if (new->flags & MPOL_F_REBINDING)
2116 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2118 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2120 atomic_set(&new->refcnt, 1);
2124 /* Slow path of a mempolicy comparison */
2125 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2129 if (a->mode != b->mode)
2131 if (a->flags != b->flags)
2133 if (mpol_store_user_nodemask(a))
2134 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2140 case MPOL_INTERLEAVE:
2141 return !!nodes_equal(a->v.nodes, b->v.nodes);
2142 case MPOL_PREFERRED:
2143 return a->v.preferred_node == b->v.preferred_node;
2151 * Shared memory backing store policy support.
2153 * Remember policies even when nobody has shared memory mapped.
2154 * The policies are kept in Red-Black tree linked from the inode.
2155 * They are protected by the sp->lock rwlock, which should be held
2156 * for any accesses to the tree.
2160 * lookup first element intersecting start-end. Caller holds sp->lock for
2161 * reading or for writing
2163 static struct sp_node *
2164 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2166 struct rb_node *n = sp->root.rb_node;
2169 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2171 if (start >= p->end)
2173 else if (end <= p->start)
2181 struct sp_node *w = NULL;
2182 struct rb_node *prev = rb_prev(n);
2185 w = rb_entry(prev, struct sp_node, nd);
2186 if (w->end <= start)
2190 return rb_entry(n, struct sp_node, nd);
2194 * Insert a new shared policy into the list. Caller holds sp->lock for
2197 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2199 struct rb_node **p = &sp->root.rb_node;
2200 struct rb_node *parent = NULL;
2205 nd = rb_entry(parent, struct sp_node, nd);
2206 if (new->start < nd->start)
2208 else if (new->end > nd->end)
2209 p = &(*p)->rb_right;
2213 rb_link_node(&new->nd, parent, p);
2214 rb_insert_color(&new->nd, &sp->root);
2215 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2216 new->policy ? new->policy->mode : 0);
2219 /* Find shared policy intersecting idx */
2221 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2223 struct mempolicy *pol = NULL;
2226 if (!sp->root.rb_node)
2228 read_lock(&sp->lock);
2229 sn = sp_lookup(sp, idx, idx+1);
2231 mpol_get(sn->policy);
2234 read_unlock(&sp->lock);
2238 static void sp_free(struct sp_node *n)
2240 mpol_put(n->policy);
2241 kmem_cache_free(sn_cache, n);
2245 * mpol_misplaced - check whether current page node is valid in policy
2247 * @page: page to be checked
2248 * @vma: vm area where page mapped
2249 * @addr: virtual address where page mapped
2251 * Lookup current policy node id for vma,addr and "compare to" page's
2255 * -1 - not misplaced, page is in the right node
2256 * node - node id where the page should be
2258 * Policy determination "mimics" alloc_page_vma().
2259 * Called from fault path where we know the vma and faulting address.
2261 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2263 struct mempolicy *pol;
2265 int curnid = page_to_nid(page);
2266 unsigned long pgoff;
2267 int thiscpu = raw_smp_processor_id();
2268 int thisnid = cpu_to_node(thiscpu);
2274 pol = get_vma_policy(vma, addr);
2275 if (!(pol->flags & MPOL_F_MOF))
2278 switch (pol->mode) {
2279 case MPOL_INTERLEAVE:
2280 BUG_ON(addr >= vma->vm_end);
2281 BUG_ON(addr < vma->vm_start);
2283 pgoff = vma->vm_pgoff;
2284 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2285 polnid = offset_il_node(pol, vma, pgoff);
2288 case MPOL_PREFERRED:
2289 if (pol->flags & MPOL_F_LOCAL)
2290 polnid = numa_node_id();
2292 polnid = pol->v.preferred_node;
2298 * allows binding to multiple nodes.
2299 * use current page if in policy nodemask,
2300 * else select nearest allowed node, if any.
2301 * If no allowed nodes, use current [!misplaced].
2303 if (node_isset(curnid, pol->v.nodes))
2305 z = first_zones_zonelist(
2306 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2307 gfp_zone(GFP_HIGHUSER),
2309 polnid = z->zone->node;
2316 /* Migrate the page towards the node whose CPU is referencing it */
2317 if (pol->flags & MPOL_F_MORON) {
2320 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2324 if (curnid != polnid)
2333 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2334 * dropped after task->mempolicy is set to NULL so that any allocation done as
2335 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2338 void mpol_put_task_policy(struct task_struct *task)
2340 struct mempolicy *pol;
2343 pol = task->mempolicy;
2344 task->mempolicy = NULL;
2349 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2351 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2352 rb_erase(&n->nd, &sp->root);
2356 static void sp_node_init(struct sp_node *node, unsigned long start,
2357 unsigned long end, struct mempolicy *pol)
2359 node->start = start;
2364 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2365 struct mempolicy *pol)
2368 struct mempolicy *newpol;
2370 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2374 newpol = mpol_dup(pol);
2375 if (IS_ERR(newpol)) {
2376 kmem_cache_free(sn_cache, n);
2379 newpol->flags |= MPOL_F_SHARED;
2380 sp_node_init(n, start, end, newpol);
2385 /* Replace a policy range. */
2386 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2387 unsigned long end, struct sp_node *new)
2390 struct sp_node *n_new = NULL;
2391 struct mempolicy *mpol_new = NULL;
2395 write_lock(&sp->lock);
2396 n = sp_lookup(sp, start, end);
2397 /* Take care of old policies in the same range. */
2398 while (n && n->start < end) {
2399 struct rb_node *next = rb_next(&n->nd);
2400 if (n->start >= start) {
2406 /* Old policy spanning whole new range. */
2411 *mpol_new = *n->policy;
2412 atomic_set(&mpol_new->refcnt, 1);
2413 sp_node_init(n_new, end, n->end, mpol_new);
2415 sp_insert(sp, n_new);
2424 n = rb_entry(next, struct sp_node, nd);
2428 write_unlock(&sp->lock);
2435 kmem_cache_free(sn_cache, n_new);
2440 write_unlock(&sp->lock);
2442 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2445 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2452 * mpol_shared_policy_init - initialize shared policy for inode
2453 * @sp: pointer to inode shared policy
2454 * @mpol: struct mempolicy to install
2456 * Install non-NULL @mpol in inode's shared policy rb-tree.
2457 * On entry, the current task has a reference on a non-NULL @mpol.
2458 * This must be released on exit.
2459 * This is called at get_inode() calls and we can use GFP_KERNEL.
2461 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2465 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2466 rwlock_init(&sp->lock);
2469 struct vm_area_struct pvma;
2470 struct mempolicy *new;
2471 NODEMASK_SCRATCH(scratch);
2475 /* contextualize the tmpfs mount point mempolicy */
2476 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2478 goto free_scratch; /* no valid nodemask intersection */
2481 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2482 task_unlock(current);
2486 /* Create pseudo-vma that contains just the policy */
2487 memset(&pvma, 0, sizeof(struct vm_area_struct));
2488 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2489 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2492 mpol_put(new); /* drop initial ref */
2494 NODEMASK_SCRATCH_FREE(scratch);
2496 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2500 int mpol_set_shared_policy(struct shared_policy *info,
2501 struct vm_area_struct *vma, struct mempolicy *npol)
2504 struct sp_node *new = NULL;
2505 unsigned long sz = vma_pages(vma);
2507 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2509 sz, npol ? npol->mode : -1,
2510 npol ? npol->flags : -1,
2511 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2514 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2518 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2524 /* Free a backing policy store on inode delete. */
2525 void mpol_free_shared_policy(struct shared_policy *p)
2528 struct rb_node *next;
2530 if (!p->root.rb_node)
2532 write_lock(&p->lock);
2533 next = rb_first(&p->root);
2535 n = rb_entry(next, struct sp_node, nd);
2536 next = rb_next(&n->nd);
2539 write_unlock(&p->lock);
2542 #ifdef CONFIG_NUMA_BALANCING
2543 static int __initdata numabalancing_override;
2545 static void __init check_numabalancing_enable(void)
2547 bool numabalancing_default = false;
2549 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2550 numabalancing_default = true;
2552 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2553 if (numabalancing_override)
2554 set_numabalancing_state(numabalancing_override == 1);
2556 if (num_online_nodes() > 1 && !numabalancing_override) {
2557 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2558 numabalancing_default ? "Enabling" : "Disabling");
2559 set_numabalancing_state(numabalancing_default);
2563 static int __init setup_numabalancing(char *str)
2569 if (!strcmp(str, "enable")) {
2570 numabalancing_override = 1;
2572 } else if (!strcmp(str, "disable")) {
2573 numabalancing_override = -1;
2578 pr_warn("Unable to parse numa_balancing=\n");
2582 __setup("numa_balancing=", setup_numabalancing);
2584 static inline void __init check_numabalancing_enable(void)
2587 #endif /* CONFIG_NUMA_BALANCING */
2589 /* assumes fs == KERNEL_DS */
2590 void __init numa_policy_init(void)
2592 nodemask_t interleave_nodes;
2593 unsigned long largest = 0;
2594 int nid, prefer = 0;
2596 policy_cache = kmem_cache_create("numa_policy",
2597 sizeof(struct mempolicy),
2598 0, SLAB_PANIC, NULL);
2600 sn_cache = kmem_cache_create("shared_policy_node",
2601 sizeof(struct sp_node),
2602 0, SLAB_PANIC, NULL);
2604 for_each_node(nid) {
2605 preferred_node_policy[nid] = (struct mempolicy) {
2606 .refcnt = ATOMIC_INIT(1),
2607 .mode = MPOL_PREFERRED,
2608 .flags = MPOL_F_MOF | MPOL_F_MORON,
2609 .v = { .preferred_node = nid, },
2614 * Set interleaving policy for system init. Interleaving is only
2615 * enabled across suitably sized nodes (default is >= 16MB), or
2616 * fall back to the largest node if they're all smaller.
2618 nodes_clear(interleave_nodes);
2619 for_each_node_state(nid, N_MEMORY) {
2620 unsigned long total_pages = node_present_pages(nid);
2622 /* Preserve the largest node */
2623 if (largest < total_pages) {
2624 largest = total_pages;
2628 /* Interleave this node? */
2629 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2630 node_set(nid, interleave_nodes);
2633 /* All too small, use the largest */
2634 if (unlikely(nodes_empty(interleave_nodes)))
2635 node_set(prefer, interleave_nodes);
2637 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2638 pr_err("%s: interleaving failed\n", __func__);
2640 check_numabalancing_enable();
2643 /* Reset policy of current process to default */
2644 void numa_default_policy(void)
2646 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2650 * Parse and format mempolicy from/to strings
2654 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2656 static const char * const policy_modes[] =
2658 [MPOL_DEFAULT] = "default",
2659 [MPOL_PREFERRED] = "prefer",
2660 [MPOL_BIND] = "bind",
2661 [MPOL_INTERLEAVE] = "interleave",
2662 [MPOL_LOCAL] = "local",
2668 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2669 * @str: string containing mempolicy to parse
2670 * @mpol: pointer to struct mempolicy pointer, returned on success.
2673 * <mode>[=<flags>][:<nodelist>]
2675 * On success, returns 0, else 1
2677 int mpol_parse_str(char *str, struct mempolicy **mpol)
2679 struct mempolicy *new = NULL;
2680 unsigned short mode;
2681 unsigned short mode_flags;
2683 char *nodelist = strchr(str, ':');
2684 char *flags = strchr(str, '=');
2688 /* NUL-terminate mode or flags string */
2690 if (nodelist_parse(nodelist, nodes))
2692 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2698 *flags++ = '\0'; /* terminate mode string */
2700 for (mode = 0; mode < MPOL_MAX; mode++) {
2701 if (!strcmp(str, policy_modes[mode])) {
2705 if (mode >= MPOL_MAX)
2709 case MPOL_PREFERRED:
2711 * Insist on a nodelist of one node only
2714 char *rest = nodelist;
2715 while (isdigit(*rest))
2721 case MPOL_INTERLEAVE:
2723 * Default to online nodes with memory if no nodelist
2726 nodes = node_states[N_MEMORY];
2730 * Don't allow a nodelist; mpol_new() checks flags
2734 mode = MPOL_PREFERRED;
2738 * Insist on a empty nodelist
2745 * Insist on a nodelist
2754 * Currently, we only support two mutually exclusive
2757 if (!strcmp(flags, "static"))
2758 mode_flags |= MPOL_F_STATIC_NODES;
2759 else if (!strcmp(flags, "relative"))
2760 mode_flags |= MPOL_F_RELATIVE_NODES;
2765 new = mpol_new(mode, mode_flags, &nodes);
2770 * Save nodes for mpol_to_str() to show the tmpfs mount options
2771 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2773 if (mode != MPOL_PREFERRED)
2774 new->v.nodes = nodes;
2776 new->v.preferred_node = first_node(nodes);
2778 new->flags |= MPOL_F_LOCAL;
2781 * Save nodes for contextualization: this will be used to "clone"
2782 * the mempolicy in a specific context [cpuset] at a later time.
2784 new->w.user_nodemask = nodes;
2789 /* Restore string for error message */
2798 #endif /* CONFIG_TMPFS */
2801 * mpol_to_str - format a mempolicy structure for printing
2802 * @buffer: to contain formatted mempolicy string
2803 * @maxlen: length of @buffer
2804 * @pol: pointer to mempolicy to be formatted
2806 * Convert @pol into a string. If @buffer is too short, truncate the string.
2807 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2808 * longest flag, "relative", and to display at least a few node ids.
2810 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2813 nodemask_t nodes = NODE_MASK_NONE;
2814 unsigned short mode = MPOL_DEFAULT;
2815 unsigned short flags = 0;
2817 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2825 case MPOL_PREFERRED:
2826 if (flags & MPOL_F_LOCAL)
2829 node_set(pol->v.preferred_node, nodes);
2832 case MPOL_INTERLEAVE:
2833 nodes = pol->v.nodes;
2837 snprintf(p, maxlen, "unknown");
2841 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2843 if (flags & MPOL_MODE_FLAGS) {
2844 p += snprintf(p, buffer + maxlen - p, "=");
2847 * Currently, the only defined flags are mutually exclusive
2849 if (flags & MPOL_F_STATIC_NODES)
2850 p += snprintf(p, buffer + maxlen - p, "static");
2851 else if (flags & MPOL_F_RELATIVE_NODES)
2852 p += snprintf(p, buffer + maxlen - p, "relative");
2855 if (!nodes_empty(nodes))
2856 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2857 nodemask_pr_args(&nodes));