]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mempolicy.c
6d3639e1f254734ae62b13a04fb78c2153f1c7ba
[karo-tx-linux.git] / mm / mempolicy.c
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *                in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100
101 #include "internal.h"
102
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
106
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
109
110 /* Highest zone. An specific allocation for a zone below that is not
111    policied. */
112 enum zone_type policy_zone = 0;
113
114 /*
115  * run-time system-wide default policy => local allocation
116  */
117 static struct mempolicy default_policy = {
118         .refcnt = ATOMIC_INIT(1), /* never free it */
119         .mode = MPOL_PREFERRED,
120         .flags = MPOL_F_LOCAL,
121 };
122
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124
125 struct mempolicy *get_task_policy(struct task_struct *p)
126 {
127         struct mempolicy *pol = p->mempolicy;
128         int node;
129
130         if (pol)
131                 return pol;
132
133         node = numa_node_id();
134         if (node != NUMA_NO_NODE) {
135                 pol = &preferred_node_policy[node];
136                 /* preferred_node_policy is not initialised early in boot */
137                 if (pol->mode)
138                         return pol;
139         }
140
141         return &default_policy;
142 }
143
144 static const struct mempolicy_operations {
145         int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146         /*
147          * If read-side task has no lock to protect task->mempolicy, write-side
148          * task will rebind the task->mempolicy by two step. The first step is
149          * setting all the newly nodes, and the second step is cleaning all the
150          * disallowed nodes. In this way, we can avoid finding no node to alloc
151          * page.
152          * If we have a lock to protect task->mempolicy in read-side, we do
153          * rebind directly.
154          *
155          * step:
156          *      MPOL_REBIND_ONCE - do rebind work at once
157          *      MPOL_REBIND_STEP1 - set all the newly nodes
158          *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
159          */
160         void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161                         enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165 {
166         return pol->flags & MPOL_MODE_FLAGS;
167 }
168
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170                                    const nodemask_t *rel)
171 {
172         nodemask_t tmp;
173         nodes_fold(tmp, *orig, nodes_weight(*rel));
174         nodes_onto(*ret, tmp, *rel);
175 }
176
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179         if (nodes_empty(*nodes))
180                 return -EINVAL;
181         pol->v.nodes = *nodes;
182         return 0;
183 }
184
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187         if (!nodes)
188                 pol->flags |= MPOL_F_LOCAL;     /* local allocation */
189         else if (nodes_empty(*nodes))
190                 return -EINVAL;                 /*  no allowed nodes */
191         else
192                 pol->v.preferred_node = first_node(*nodes);
193         return 0;
194 }
195
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197 {
198         if (nodes_empty(*nodes))
199                 return -EINVAL;
200         pol->v.nodes = *nodes;
201         return 0;
202 }
203
204 /*
205  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206  * any, for the new policy.  mpol_new() has already validated the nodes
207  * parameter with respect to the policy mode and flags.  But, we need to
208  * handle an empty nodemask with MPOL_PREFERRED here.
209  *
210  * Must be called holding task's alloc_lock to protect task's mems_allowed
211  * and mempolicy.  May also be called holding the mmap_semaphore for write.
212  */
213 static int mpol_set_nodemask(struct mempolicy *pol,
214                      const nodemask_t *nodes, struct nodemask_scratch *nsc)
215 {
216         int ret;
217
218         /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219         if (pol == NULL)
220                 return 0;
221         /* Check N_MEMORY */
222         nodes_and(nsc->mask1,
223                   cpuset_current_mems_allowed, node_states[N_MEMORY]);
224
225         VM_BUG_ON(!nodes);
226         if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227                 nodes = NULL;   /* explicit local allocation */
228         else {
229                 if (pol->flags & MPOL_F_RELATIVE_NODES)
230                         mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231                 else
232                         nodes_and(nsc->mask2, *nodes, nsc->mask1);
233
234                 if (mpol_store_user_nodemask(pol))
235                         pol->w.user_nodemask = *nodes;
236                 else
237                         pol->w.cpuset_mems_allowed =
238                                                 cpuset_current_mems_allowed;
239         }
240
241         if (nodes)
242                 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243         else
244                 ret = mpol_ops[pol->mode].create(pol, NULL);
245         return ret;
246 }
247
248 /*
249  * This function just creates a new policy, does some check and simple
250  * initialization. You must invoke mpol_set_nodemask() to set nodes.
251  */
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253                                   nodemask_t *nodes)
254 {
255         struct mempolicy *policy;
256
257         pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258                  mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259
260         if (mode == MPOL_DEFAULT) {
261                 if (nodes && !nodes_empty(*nodes))
262                         return ERR_PTR(-EINVAL);
263                 return NULL;
264         }
265         VM_BUG_ON(!nodes);
266
267         /*
268          * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269          * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270          * All other modes require a valid pointer to a non-empty nodemask.
271          */
272         if (mode == MPOL_PREFERRED) {
273                 if (nodes_empty(*nodes)) {
274                         if (((flags & MPOL_F_STATIC_NODES) ||
275                              (flags & MPOL_F_RELATIVE_NODES)))
276                                 return ERR_PTR(-EINVAL);
277                 }
278         } else if (mode == MPOL_LOCAL) {
279                 if (!nodes_empty(*nodes) ||
280                     (flags & MPOL_F_STATIC_NODES) ||
281                     (flags & MPOL_F_RELATIVE_NODES))
282                         return ERR_PTR(-EINVAL);
283                 mode = MPOL_PREFERRED;
284         } else if (nodes_empty(*nodes))
285                 return ERR_PTR(-EINVAL);
286         policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
287         if (!policy)
288                 return ERR_PTR(-ENOMEM);
289         atomic_set(&policy->refcnt, 1);
290         policy->mode = mode;
291         policy->flags = flags;
292
293         return policy;
294 }
295
296 /* Slow path of a mpol destructor. */
297 void __mpol_put(struct mempolicy *p)
298 {
299         if (!atomic_dec_and_test(&p->refcnt))
300                 return;
301         kmem_cache_free(policy_cache, p);
302 }
303
304 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
305                                 enum mpol_rebind_step step)
306 {
307 }
308
309 /*
310  * step:
311  *      MPOL_REBIND_ONCE  - do rebind work at once
312  *      MPOL_REBIND_STEP1 - set all the newly nodes
313  *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
314  */
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
316                                  enum mpol_rebind_step step)
317 {
318         nodemask_t tmp;
319
320         if (pol->flags & MPOL_F_STATIC_NODES)
321                 nodes_and(tmp, pol->w.user_nodemask, *nodes);
322         else if (pol->flags & MPOL_F_RELATIVE_NODES)
323                 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
324         else {
325                 /*
326                  * if step == 1, we use ->w.cpuset_mems_allowed to cache the
327                  * result
328                  */
329                 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
330                         nodes_remap(tmp, pol->v.nodes,
331                                         pol->w.cpuset_mems_allowed, *nodes);
332                         pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
333                 } else if (step == MPOL_REBIND_STEP2) {
334                         tmp = pol->w.cpuset_mems_allowed;
335                         pol->w.cpuset_mems_allowed = *nodes;
336                 } else
337                         BUG();
338         }
339
340         if (nodes_empty(tmp))
341                 tmp = *nodes;
342
343         if (step == MPOL_REBIND_STEP1)
344                 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
345         else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
346                 pol->v.nodes = tmp;
347         else
348                 BUG();
349
350         if (!node_isset(current->il_next, tmp)) {
351                 current->il_next = next_node_in(current->il_next, tmp);
352                 if (current->il_next >= MAX_NUMNODES)
353                         current->il_next = numa_node_id();
354         }
355 }
356
357 static void mpol_rebind_preferred(struct mempolicy *pol,
358                                   const nodemask_t *nodes,
359                                   enum mpol_rebind_step step)
360 {
361         nodemask_t tmp;
362
363         if (pol->flags & MPOL_F_STATIC_NODES) {
364                 int node = first_node(pol->w.user_nodemask);
365
366                 if (node_isset(node, *nodes)) {
367                         pol->v.preferred_node = node;
368                         pol->flags &= ~MPOL_F_LOCAL;
369                 } else
370                         pol->flags |= MPOL_F_LOCAL;
371         } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
372                 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
373                 pol->v.preferred_node = first_node(tmp);
374         } else if (!(pol->flags & MPOL_F_LOCAL)) {
375                 pol->v.preferred_node = node_remap(pol->v.preferred_node,
376                                                    pol->w.cpuset_mems_allowed,
377                                                    *nodes);
378                 pol->w.cpuset_mems_allowed = *nodes;
379         }
380 }
381
382 /*
383  * mpol_rebind_policy - Migrate a policy to a different set of nodes
384  *
385  * If read-side task has no lock to protect task->mempolicy, write-side
386  * task will rebind the task->mempolicy by two step. The first step is
387  * setting all the newly nodes, and the second step is cleaning all the
388  * disallowed nodes. In this way, we can avoid finding no node to alloc
389  * page.
390  * If we have a lock to protect task->mempolicy in read-side, we do
391  * rebind directly.
392  *
393  * step:
394  *      MPOL_REBIND_ONCE  - do rebind work at once
395  *      MPOL_REBIND_STEP1 - set all the newly nodes
396  *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
397  */
398 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
399                                 enum mpol_rebind_step step)
400 {
401         if (!pol)
402                 return;
403         if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
404             nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
405                 return;
406
407         if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
408                 return;
409
410         if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
411                 BUG();
412
413         if (step == MPOL_REBIND_STEP1)
414                 pol->flags |= MPOL_F_REBINDING;
415         else if (step == MPOL_REBIND_STEP2)
416                 pol->flags &= ~MPOL_F_REBINDING;
417         else if (step >= MPOL_REBIND_NSTEP)
418                 BUG();
419
420         mpol_ops[pol->mode].rebind(pol, newmask, step);
421 }
422
423 /*
424  * Wrapper for mpol_rebind_policy() that just requires task
425  * pointer, and updates task mempolicy.
426  *
427  * Called with task's alloc_lock held.
428  */
429
430 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
431                         enum mpol_rebind_step step)
432 {
433         mpol_rebind_policy(tsk->mempolicy, new, step);
434 }
435
436 /*
437  * Rebind each vma in mm to new nodemask.
438  *
439  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
440  */
441
442 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
443 {
444         struct vm_area_struct *vma;
445
446         down_write(&mm->mmap_sem);
447         for (vma = mm->mmap; vma; vma = vma->vm_next)
448                 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
449         up_write(&mm->mmap_sem);
450 }
451
452 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
453         [MPOL_DEFAULT] = {
454                 .rebind = mpol_rebind_default,
455         },
456         [MPOL_INTERLEAVE] = {
457                 .create = mpol_new_interleave,
458                 .rebind = mpol_rebind_nodemask,
459         },
460         [MPOL_PREFERRED] = {
461                 .create = mpol_new_preferred,
462                 .rebind = mpol_rebind_preferred,
463         },
464         [MPOL_BIND] = {
465                 .create = mpol_new_bind,
466                 .rebind = mpol_rebind_nodemask,
467         },
468 };
469
470 static void migrate_page_add(struct page *page, struct list_head *pagelist,
471                                 unsigned long flags);
472
473 struct queue_pages {
474         struct list_head *pagelist;
475         unsigned long flags;
476         nodemask_t *nmask;
477         struct vm_area_struct *prev;
478 };
479
480 /*
481  * Scan through pages checking if pages follow certain conditions,
482  * and move them to the pagelist if they do.
483  */
484 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
485                         unsigned long end, struct mm_walk *walk)
486 {
487         struct vm_area_struct *vma = walk->vma;
488         struct page *page;
489         struct queue_pages *qp = walk->private;
490         unsigned long flags = qp->flags;
491         int nid, ret;
492         pte_t *pte;
493         spinlock_t *ptl;
494
495         if (pmd_trans_huge(*pmd)) {
496                 ptl = pmd_lock(walk->mm, pmd);
497                 if (pmd_trans_huge(*pmd)) {
498                         page = pmd_page(*pmd);
499                         if (is_huge_zero_page(page)) {
500                                 spin_unlock(ptl);
501                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
502                         } else {
503                                 get_page(page);
504                                 spin_unlock(ptl);
505                                 lock_page(page);
506                                 ret = split_huge_page(page);
507                                 unlock_page(page);
508                                 put_page(page);
509                                 if (ret)
510                                         return 0;
511                         }
512                 } else {
513                         spin_unlock(ptl);
514                 }
515         }
516
517         if (pmd_trans_unstable(pmd))
518                 return 0;
519 retry:
520         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521         for (; addr != end; pte++, addr += PAGE_SIZE) {
522                 if (!pte_present(*pte))
523                         continue;
524                 page = vm_normal_page(vma, addr, *pte);
525                 if (!page)
526                         continue;
527                 /*
528                  * vm_normal_page() filters out zero pages, but there might
529                  * still be PageReserved pages to skip, perhaps in a VDSO.
530                  */
531                 if (PageReserved(page))
532                         continue;
533                 nid = page_to_nid(page);
534                 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
535                         continue;
536                 if (PageTransCompound(page)) {
537                         get_page(page);
538                         pte_unmap_unlock(pte, ptl);
539                         lock_page(page);
540                         ret = split_huge_page(page);
541                         unlock_page(page);
542                         put_page(page);
543                         /* Failed to split -- skip. */
544                         if (ret) {
545                                 pte = pte_offset_map_lock(walk->mm, pmd,
546                                                 addr, &ptl);
547                                 continue;
548                         }
549                         goto retry;
550                 }
551
552                 migrate_page_add(page, qp->pagelist, flags);
553         }
554         pte_unmap_unlock(pte - 1, ptl);
555         cond_resched();
556         return 0;
557 }
558
559 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
560                                unsigned long addr, unsigned long end,
561                                struct mm_walk *walk)
562 {
563 #ifdef CONFIG_HUGETLB_PAGE
564         struct queue_pages *qp = walk->private;
565         unsigned long flags = qp->flags;
566         int nid;
567         struct page *page;
568         spinlock_t *ptl;
569         pte_t entry;
570
571         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
572         entry = huge_ptep_get(pte);
573         if (!pte_present(entry))
574                 goto unlock;
575         page = pte_page(entry);
576         nid = page_to_nid(page);
577         if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
578                 goto unlock;
579         /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
580         if (flags & (MPOL_MF_MOVE_ALL) ||
581             (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
582                 isolate_huge_page(page, qp->pagelist);
583 unlock:
584         spin_unlock(ptl);
585 #else
586         BUG();
587 #endif
588         return 0;
589 }
590
591 #ifdef CONFIG_NUMA_BALANCING
592 /*
593  * This is used to mark a range of virtual addresses to be inaccessible.
594  * These are later cleared by a NUMA hinting fault. Depending on these
595  * faults, pages may be migrated for better NUMA placement.
596  *
597  * This is assuming that NUMA faults are handled using PROT_NONE. If
598  * an architecture makes a different choice, it will need further
599  * changes to the core.
600  */
601 unsigned long change_prot_numa(struct vm_area_struct *vma,
602                         unsigned long addr, unsigned long end)
603 {
604         int nr_updated;
605
606         nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
607         if (nr_updated)
608                 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
609
610         return nr_updated;
611 }
612 #else
613 static unsigned long change_prot_numa(struct vm_area_struct *vma,
614                         unsigned long addr, unsigned long end)
615 {
616         return 0;
617 }
618 #endif /* CONFIG_NUMA_BALANCING */
619
620 static int queue_pages_test_walk(unsigned long start, unsigned long end,
621                                 struct mm_walk *walk)
622 {
623         struct vm_area_struct *vma = walk->vma;
624         struct queue_pages *qp = walk->private;
625         unsigned long endvma = vma->vm_end;
626         unsigned long flags = qp->flags;
627
628         if (!vma_migratable(vma))
629                 return 1;
630
631         if (endvma > end)
632                 endvma = end;
633         if (vma->vm_start > start)
634                 start = vma->vm_start;
635
636         if (!(flags & MPOL_MF_DISCONTIG_OK)) {
637                 if (!vma->vm_next && vma->vm_end < end)
638                         return -EFAULT;
639                 if (qp->prev && qp->prev->vm_end < vma->vm_start)
640                         return -EFAULT;
641         }
642
643         qp->prev = vma;
644
645         if (flags & MPOL_MF_LAZY) {
646                 /* Similar to task_numa_work, skip inaccessible VMAs */
647                 if (!is_vm_hugetlb_page(vma) &&
648                         (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
649                         !(vma->vm_flags & VM_MIXEDMAP))
650                         change_prot_numa(vma, start, endvma);
651                 return 1;
652         }
653
654         /* queue pages from current vma */
655         if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
656                 return 0;
657         return 1;
658 }
659
660 /*
661  * Walk through page tables and collect pages to be migrated.
662  *
663  * If pages found in a given range are on a set of nodes (determined by
664  * @nodes and @flags,) it's isolated and queued to the pagelist which is
665  * passed via @private.)
666  */
667 static int
668 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
669                 nodemask_t *nodes, unsigned long flags,
670                 struct list_head *pagelist)
671 {
672         struct queue_pages qp = {
673                 .pagelist = pagelist,
674                 .flags = flags,
675                 .nmask = nodes,
676                 .prev = NULL,
677         };
678         struct mm_walk queue_pages_walk = {
679                 .hugetlb_entry = queue_pages_hugetlb,
680                 .pmd_entry = queue_pages_pte_range,
681                 .test_walk = queue_pages_test_walk,
682                 .mm = mm,
683                 .private = &qp,
684         };
685
686         return walk_page_range(start, end, &queue_pages_walk);
687 }
688
689 /*
690  * Apply policy to a single VMA
691  * This must be called with the mmap_sem held for writing.
692  */
693 static int vma_replace_policy(struct vm_area_struct *vma,
694                                                 struct mempolicy *pol)
695 {
696         int err;
697         struct mempolicy *old;
698         struct mempolicy *new;
699
700         pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
701                  vma->vm_start, vma->vm_end, vma->vm_pgoff,
702                  vma->vm_ops, vma->vm_file,
703                  vma->vm_ops ? vma->vm_ops->set_policy : NULL);
704
705         new = mpol_dup(pol);
706         if (IS_ERR(new))
707                 return PTR_ERR(new);
708
709         if (vma->vm_ops && vma->vm_ops->set_policy) {
710                 err = vma->vm_ops->set_policy(vma, new);
711                 if (err)
712                         goto err_out;
713         }
714
715         old = vma->vm_policy;
716         vma->vm_policy = new; /* protected by mmap_sem */
717         mpol_put(old);
718
719         return 0;
720  err_out:
721         mpol_put(new);
722         return err;
723 }
724
725 /* Step 2: apply policy to a range and do splits. */
726 static int mbind_range(struct mm_struct *mm, unsigned long start,
727                        unsigned long end, struct mempolicy *new_pol)
728 {
729         struct vm_area_struct *next;
730         struct vm_area_struct *prev;
731         struct vm_area_struct *vma;
732         int err = 0;
733         pgoff_t pgoff;
734         unsigned long vmstart;
735         unsigned long vmend;
736
737         vma = find_vma(mm, start);
738         if (!vma || vma->vm_start > start)
739                 return -EFAULT;
740
741         prev = vma->vm_prev;
742         if (start > vma->vm_start)
743                 prev = vma;
744
745         for (; vma && vma->vm_start < end; prev = vma, vma = next) {
746                 next = vma->vm_next;
747                 vmstart = max(start, vma->vm_start);
748                 vmend   = min(end, vma->vm_end);
749
750                 if (mpol_equal(vma_policy(vma), new_pol))
751                         continue;
752
753                 pgoff = vma->vm_pgoff +
754                         ((vmstart - vma->vm_start) >> PAGE_SHIFT);
755                 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
756                                  vma->anon_vma, vma->vm_file, pgoff,
757                                  new_pol, vma->vm_userfaultfd_ctx);
758                 if (prev) {
759                         vma = prev;
760                         next = vma->vm_next;
761                         if (mpol_equal(vma_policy(vma), new_pol))
762                                 continue;
763                         /* vma_merge() joined vma && vma->next, case 8 */
764                         goto replace;
765                 }
766                 if (vma->vm_start != vmstart) {
767                         err = split_vma(vma->vm_mm, vma, vmstart, 1);
768                         if (err)
769                                 goto out;
770                 }
771                 if (vma->vm_end != vmend) {
772                         err = split_vma(vma->vm_mm, vma, vmend, 0);
773                         if (err)
774                                 goto out;
775                 }
776  replace:
777                 err = vma_replace_policy(vma, new_pol);
778                 if (err)
779                         goto out;
780         }
781
782  out:
783         return err;
784 }
785
786 /* Set the process memory policy */
787 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
788                              nodemask_t *nodes)
789 {
790         struct mempolicy *new, *old;
791         NODEMASK_SCRATCH(scratch);
792         int ret;
793
794         if (!scratch)
795                 return -ENOMEM;
796
797         new = mpol_new(mode, flags, nodes);
798         if (IS_ERR(new)) {
799                 ret = PTR_ERR(new);
800                 goto out;
801         }
802
803         task_lock(current);
804         ret = mpol_set_nodemask(new, nodes, scratch);
805         if (ret) {
806                 task_unlock(current);
807                 mpol_put(new);
808                 goto out;
809         }
810         old = current->mempolicy;
811         current->mempolicy = new;
812         if (new && new->mode == MPOL_INTERLEAVE &&
813             nodes_weight(new->v.nodes))
814                 current->il_next = first_node(new->v.nodes);
815         task_unlock(current);
816         mpol_put(old);
817         ret = 0;
818 out:
819         NODEMASK_SCRATCH_FREE(scratch);
820         return ret;
821 }
822
823 /*
824  * Return nodemask for policy for get_mempolicy() query
825  *
826  * Called with task's alloc_lock held
827  */
828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
829 {
830         nodes_clear(*nodes);
831         if (p == &default_policy)
832                 return;
833
834         switch (p->mode) {
835         case MPOL_BIND:
836                 /* Fall through */
837         case MPOL_INTERLEAVE:
838                 *nodes = p->v.nodes;
839                 break;
840         case MPOL_PREFERRED:
841                 if (!(p->flags & MPOL_F_LOCAL))
842                         node_set(p->v.preferred_node, *nodes);
843                 /* else return empty node mask for local allocation */
844                 break;
845         default:
846                 BUG();
847         }
848 }
849
850 static int lookup_node(unsigned long addr)
851 {
852         struct page *p;
853         int err;
854
855         err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
856         if (err >= 0) {
857                 err = page_to_nid(p);
858                 put_page(p);
859         }
860         return err;
861 }
862
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
865                              unsigned long addr, unsigned long flags)
866 {
867         int err;
868         struct mm_struct *mm = current->mm;
869         struct vm_area_struct *vma = NULL;
870         struct mempolicy *pol = current->mempolicy;
871
872         if (flags &
873                 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
874                 return -EINVAL;
875
876         if (flags & MPOL_F_MEMS_ALLOWED) {
877                 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
878                         return -EINVAL;
879                 *policy = 0;    /* just so it's initialized */
880                 task_lock(current);
881                 *nmask  = cpuset_current_mems_allowed;
882                 task_unlock(current);
883                 return 0;
884         }
885
886         if (flags & MPOL_F_ADDR) {
887                 /*
888                  * Do NOT fall back to task policy if the
889                  * vma/shared policy at addr is NULL.  We
890                  * want to return MPOL_DEFAULT in this case.
891                  */
892                 down_read(&mm->mmap_sem);
893                 vma = find_vma_intersection(mm, addr, addr+1);
894                 if (!vma) {
895                         up_read(&mm->mmap_sem);
896                         return -EFAULT;
897                 }
898                 if (vma->vm_ops && vma->vm_ops->get_policy)
899                         pol = vma->vm_ops->get_policy(vma, addr);
900                 else
901                         pol = vma->vm_policy;
902         } else if (addr)
903                 return -EINVAL;
904
905         if (!pol)
906                 pol = &default_policy;  /* indicates default behavior */
907
908         if (flags & MPOL_F_NODE) {
909                 if (flags & MPOL_F_ADDR) {
910                         err = lookup_node(addr);
911                         if (err < 0)
912                                 goto out;
913                         *policy = err;
914                 } else if (pol == current->mempolicy &&
915                                 pol->mode == MPOL_INTERLEAVE) {
916                         *policy = current->il_next;
917                 } else {
918                         err = -EINVAL;
919                         goto out;
920                 }
921         } else {
922                 *policy = pol == &default_policy ? MPOL_DEFAULT :
923                                                 pol->mode;
924                 /*
925                  * Internal mempolicy flags must be masked off before exposing
926                  * the policy to userspace.
927                  */
928                 *policy |= (pol->flags & MPOL_MODE_FLAGS);
929         }
930
931         if (vma) {
932                 up_read(&current->mm->mmap_sem);
933                 vma = NULL;
934         }
935
936         err = 0;
937         if (nmask) {
938                 if (mpol_store_user_nodemask(pol)) {
939                         *nmask = pol->w.user_nodemask;
940                 } else {
941                         task_lock(current);
942                         get_policy_nodemask(pol, nmask);
943                         task_unlock(current);
944                 }
945         }
946
947  out:
948         mpol_cond_put(pol);
949         if (vma)
950                 up_read(&current->mm->mmap_sem);
951         return err;
952 }
953
954 #ifdef CONFIG_MIGRATION
955 /*
956  * page migration
957  */
958 static void migrate_page_add(struct page *page, struct list_head *pagelist,
959                                 unsigned long flags)
960 {
961         /*
962          * Avoid migrating a page that is shared with others.
963          */
964         if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
965                 if (!isolate_lru_page(page)) {
966                         list_add_tail(&page->lru, pagelist);
967                         inc_node_page_state(page, NR_ISOLATED_ANON +
968                                             page_is_file_cache(page));
969                 }
970         }
971 }
972
973 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
974 {
975         if (PageHuge(page))
976                 return alloc_huge_page_node(page_hstate(compound_head(page)),
977                                         node);
978         else
979                 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
980                                                     __GFP_THISNODE, 0);
981 }
982
983 /*
984  * Migrate pages from one node to a target node.
985  * Returns error or the number of pages not migrated.
986  */
987 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
988                            int flags)
989 {
990         nodemask_t nmask;
991         LIST_HEAD(pagelist);
992         int err = 0;
993
994         nodes_clear(nmask);
995         node_set(source, nmask);
996
997         /*
998          * This does not "check" the range but isolates all pages that
999          * need migration.  Between passing in the full user address
1000          * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1001          */
1002         VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1003         queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1004                         flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1005
1006         if (!list_empty(&pagelist)) {
1007                 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1008                                         MIGRATE_SYNC, MR_SYSCALL);
1009                 if (err)
1010                         putback_movable_pages(&pagelist);
1011         }
1012
1013         return err;
1014 }
1015
1016 /*
1017  * Move pages between the two nodesets so as to preserve the physical
1018  * layout as much as possible.
1019  *
1020  * Returns the number of page that could not be moved.
1021  */
1022 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1023                      const nodemask_t *to, int flags)
1024 {
1025         int busy = 0;
1026         int err;
1027         nodemask_t tmp;
1028
1029         err = migrate_prep();
1030         if (err)
1031                 return err;
1032
1033         down_read(&mm->mmap_sem);
1034
1035         /*
1036          * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1037          * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1038          * bit in 'tmp', and return that <source, dest> pair for migration.
1039          * The pair of nodemasks 'to' and 'from' define the map.
1040          *
1041          * If no pair of bits is found that way, fallback to picking some
1042          * pair of 'source' and 'dest' bits that are not the same.  If the
1043          * 'source' and 'dest' bits are the same, this represents a node
1044          * that will be migrating to itself, so no pages need move.
1045          *
1046          * If no bits are left in 'tmp', or if all remaining bits left
1047          * in 'tmp' correspond to the same bit in 'to', return false
1048          * (nothing left to migrate).
1049          *
1050          * This lets us pick a pair of nodes to migrate between, such that
1051          * if possible the dest node is not already occupied by some other
1052          * source node, minimizing the risk of overloading the memory on a
1053          * node that would happen if we migrated incoming memory to a node
1054          * before migrating outgoing memory source that same node.
1055          *
1056          * A single scan of tmp is sufficient.  As we go, we remember the
1057          * most recent <s, d> pair that moved (s != d).  If we find a pair
1058          * that not only moved, but what's better, moved to an empty slot
1059          * (d is not set in tmp), then we break out then, with that pair.
1060          * Otherwise when we finish scanning from_tmp, we at least have the
1061          * most recent <s, d> pair that moved.  If we get all the way through
1062          * the scan of tmp without finding any node that moved, much less
1063          * moved to an empty node, then there is nothing left worth migrating.
1064          */
1065
1066         tmp = *from;
1067         while (!nodes_empty(tmp)) {
1068                 int s,d;
1069                 int source = NUMA_NO_NODE;
1070                 int dest = 0;
1071
1072                 for_each_node_mask(s, tmp) {
1073
1074                         /*
1075                          * do_migrate_pages() tries to maintain the relative
1076                          * node relationship of the pages established between
1077                          * threads and memory areas.
1078                          *
1079                          * However if the number of source nodes is not equal to
1080                          * the number of destination nodes we can not preserve
1081                          * this node relative relationship.  In that case, skip
1082                          * copying memory from a node that is in the destination
1083                          * mask.
1084                          *
1085                          * Example: [2,3,4] -> [3,4,5] moves everything.
1086                          *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1087                          */
1088
1089                         if ((nodes_weight(*from) != nodes_weight(*to)) &&
1090                                                 (node_isset(s, *to)))
1091                                 continue;
1092
1093                         d = node_remap(s, *from, *to);
1094                         if (s == d)
1095                                 continue;
1096
1097                         source = s;     /* Node moved. Memorize */
1098                         dest = d;
1099
1100                         /* dest not in remaining from nodes? */
1101                         if (!node_isset(dest, tmp))
1102                                 break;
1103                 }
1104                 if (source == NUMA_NO_NODE)
1105                         break;
1106
1107                 node_clear(source, tmp);
1108                 err = migrate_to_node(mm, source, dest, flags);
1109                 if (err > 0)
1110                         busy += err;
1111                 if (err < 0)
1112                         break;
1113         }
1114         up_read(&mm->mmap_sem);
1115         if (err < 0)
1116                 return err;
1117         return busy;
1118
1119 }
1120
1121 /*
1122  * Allocate a new page for page migration based on vma policy.
1123  * Start by assuming the page is mapped by the same vma as contains @start.
1124  * Search forward from there, if not.  N.B., this assumes that the
1125  * list of pages handed to migrate_pages()--which is how we get here--
1126  * is in virtual address order.
1127  */
1128 static struct page *new_page(struct page *page, unsigned long start, int **x)
1129 {
1130         struct vm_area_struct *vma;
1131         unsigned long uninitialized_var(address);
1132
1133         vma = find_vma(current->mm, start);
1134         while (vma) {
1135                 address = page_address_in_vma(page, vma);
1136                 if (address != -EFAULT)
1137                         break;
1138                 vma = vma->vm_next;
1139         }
1140
1141         if (PageHuge(page)) {
1142                 BUG_ON(!vma);
1143                 return alloc_huge_page_noerr(vma, address, 1);
1144         }
1145         /*
1146          * if !vma, alloc_page_vma() will use task or system default policy
1147          */
1148         return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1149 }
1150 #else
1151
1152 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1153                                 unsigned long flags)
1154 {
1155 }
1156
1157 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1158                      const nodemask_t *to, int flags)
1159 {
1160         return -ENOSYS;
1161 }
1162
1163 static struct page *new_page(struct page *page, unsigned long start, int **x)
1164 {
1165         return NULL;
1166 }
1167 #endif
1168
1169 static long do_mbind(unsigned long start, unsigned long len,
1170                      unsigned short mode, unsigned short mode_flags,
1171                      nodemask_t *nmask, unsigned long flags)
1172 {
1173         struct mm_struct *mm = current->mm;
1174         struct mempolicy *new;
1175         unsigned long end;
1176         int err;
1177         LIST_HEAD(pagelist);
1178
1179         if (flags & ~(unsigned long)MPOL_MF_VALID)
1180                 return -EINVAL;
1181         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1182                 return -EPERM;
1183
1184         if (start & ~PAGE_MASK)
1185                 return -EINVAL;
1186
1187         if (mode == MPOL_DEFAULT)
1188                 flags &= ~MPOL_MF_STRICT;
1189
1190         len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1191         end = start + len;
1192
1193         if (end < start)
1194                 return -EINVAL;
1195         if (end == start)
1196                 return 0;
1197
1198         new = mpol_new(mode, mode_flags, nmask);
1199         if (IS_ERR(new))
1200                 return PTR_ERR(new);
1201
1202         if (flags & MPOL_MF_LAZY)
1203                 new->flags |= MPOL_F_MOF;
1204
1205         /*
1206          * If we are using the default policy then operation
1207          * on discontinuous address spaces is okay after all
1208          */
1209         if (!new)
1210                 flags |= MPOL_MF_DISCONTIG_OK;
1211
1212         pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1213                  start, start + len, mode, mode_flags,
1214                  nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1215
1216         if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1217
1218                 err = migrate_prep();
1219                 if (err)
1220                         goto mpol_out;
1221         }
1222         {
1223                 NODEMASK_SCRATCH(scratch);
1224                 if (scratch) {
1225                         down_write(&mm->mmap_sem);
1226                         task_lock(current);
1227                         err = mpol_set_nodemask(new, nmask, scratch);
1228                         task_unlock(current);
1229                         if (err)
1230                                 up_write(&mm->mmap_sem);
1231                 } else
1232                         err = -ENOMEM;
1233                 NODEMASK_SCRATCH_FREE(scratch);
1234         }
1235         if (err)
1236                 goto mpol_out;
1237
1238         err = queue_pages_range(mm, start, end, nmask,
1239                           flags | MPOL_MF_INVERT, &pagelist);
1240         if (!err)
1241                 err = mbind_range(mm, start, end, new);
1242
1243         if (!err) {
1244                 int nr_failed = 0;
1245
1246                 if (!list_empty(&pagelist)) {
1247                         WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1248                         nr_failed = migrate_pages(&pagelist, new_page, NULL,
1249                                 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1250                         if (nr_failed)
1251                                 putback_movable_pages(&pagelist);
1252                 }
1253
1254                 if (nr_failed && (flags & MPOL_MF_STRICT))
1255                         err = -EIO;
1256         } else
1257                 putback_movable_pages(&pagelist);
1258
1259         up_write(&mm->mmap_sem);
1260  mpol_out:
1261         mpol_put(new);
1262         return err;
1263 }
1264
1265 /*
1266  * User space interface with variable sized bitmaps for nodelists.
1267  */
1268
1269 /* Copy a node mask from user space. */
1270 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1271                      unsigned long maxnode)
1272 {
1273         unsigned long k;
1274         unsigned long nlongs;
1275         unsigned long endmask;
1276
1277         --maxnode;
1278         nodes_clear(*nodes);
1279         if (maxnode == 0 || !nmask)
1280                 return 0;
1281         if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1282                 return -EINVAL;
1283
1284         nlongs = BITS_TO_LONGS(maxnode);
1285         if ((maxnode % BITS_PER_LONG) == 0)
1286                 endmask = ~0UL;
1287         else
1288                 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1289
1290         /* When the user specified more nodes than supported just check
1291            if the non supported part is all zero. */
1292         if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293                 if (nlongs > PAGE_SIZE/sizeof(long))
1294                         return -EINVAL;
1295                 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1296                         unsigned long t;
1297                         if (get_user(t, nmask + k))
1298                                 return -EFAULT;
1299                         if (k == nlongs - 1) {
1300                                 if (t & endmask)
1301                                         return -EINVAL;
1302                         } else if (t)
1303                                 return -EINVAL;
1304                 }
1305                 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1306                 endmask = ~0UL;
1307         }
1308
1309         if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1310                 return -EFAULT;
1311         nodes_addr(*nodes)[nlongs-1] &= endmask;
1312         return 0;
1313 }
1314
1315 /* Copy a kernel node mask to user space */
1316 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1317                               nodemask_t *nodes)
1318 {
1319         unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1320         const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1321
1322         if (copy > nbytes) {
1323                 if (copy > PAGE_SIZE)
1324                         return -EINVAL;
1325                 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1326                         return -EFAULT;
1327                 copy = nbytes;
1328         }
1329         return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1330 }
1331
1332 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1333                 unsigned long, mode, const unsigned long __user *, nmask,
1334                 unsigned long, maxnode, unsigned, flags)
1335 {
1336         nodemask_t nodes;
1337         int err;
1338         unsigned short mode_flags;
1339
1340         mode_flags = mode & MPOL_MODE_FLAGS;
1341         mode &= ~MPOL_MODE_FLAGS;
1342         if (mode >= MPOL_MAX)
1343                 return -EINVAL;
1344         if ((mode_flags & MPOL_F_STATIC_NODES) &&
1345             (mode_flags & MPOL_F_RELATIVE_NODES))
1346                 return -EINVAL;
1347         err = get_nodes(&nodes, nmask, maxnode);
1348         if (err)
1349                 return err;
1350         return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1351 }
1352
1353 /* Set the process memory policy */
1354 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1355                 unsigned long, maxnode)
1356 {
1357         int err;
1358         nodemask_t nodes;
1359         unsigned short flags;
1360
1361         flags = mode & MPOL_MODE_FLAGS;
1362         mode &= ~MPOL_MODE_FLAGS;
1363         if ((unsigned int)mode >= MPOL_MAX)
1364                 return -EINVAL;
1365         if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1366                 return -EINVAL;
1367         err = get_nodes(&nodes, nmask, maxnode);
1368         if (err)
1369                 return err;
1370         return do_set_mempolicy(mode, flags, &nodes);
1371 }
1372
1373 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1374                 const unsigned long __user *, old_nodes,
1375                 const unsigned long __user *, new_nodes)
1376 {
1377         const struct cred *cred = current_cred(), *tcred;
1378         struct mm_struct *mm = NULL;
1379         struct task_struct *task;
1380         nodemask_t task_nodes;
1381         int err;
1382         nodemask_t *old;
1383         nodemask_t *new;
1384         NODEMASK_SCRATCH(scratch);
1385
1386         if (!scratch)
1387                 return -ENOMEM;
1388
1389         old = &scratch->mask1;
1390         new = &scratch->mask2;
1391
1392         err = get_nodes(old, old_nodes, maxnode);
1393         if (err)
1394                 goto out;
1395
1396         err = get_nodes(new, new_nodes, maxnode);
1397         if (err)
1398                 goto out;
1399
1400         /* Find the mm_struct */
1401         rcu_read_lock();
1402         task = pid ? find_task_by_vpid(pid) : current;
1403         if (!task) {
1404                 rcu_read_unlock();
1405                 err = -ESRCH;
1406                 goto out;
1407         }
1408         get_task_struct(task);
1409
1410         err = -EINVAL;
1411
1412         /*
1413          * Check if this process has the right to modify the specified
1414          * process. The right exists if the process has administrative
1415          * capabilities, superuser privileges or the same
1416          * userid as the target process.
1417          */
1418         tcred = __task_cred(task);
1419         if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1420             !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1421             !capable(CAP_SYS_NICE)) {
1422                 rcu_read_unlock();
1423                 err = -EPERM;
1424                 goto out_put;
1425         }
1426         rcu_read_unlock();
1427
1428         task_nodes = cpuset_mems_allowed(task);
1429         /* Is the user allowed to access the target nodes? */
1430         if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1431                 err = -EPERM;
1432                 goto out_put;
1433         }
1434
1435         if (!nodes_subset(*new, node_states[N_MEMORY])) {
1436                 err = -EINVAL;
1437                 goto out_put;
1438         }
1439
1440         err = security_task_movememory(task);
1441         if (err)
1442                 goto out_put;
1443
1444         mm = get_task_mm(task);
1445         put_task_struct(task);
1446
1447         if (!mm) {
1448                 err = -EINVAL;
1449                 goto out;
1450         }
1451
1452         err = do_migrate_pages(mm, old, new,
1453                 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1454
1455         mmput(mm);
1456 out:
1457         NODEMASK_SCRATCH_FREE(scratch);
1458
1459         return err;
1460
1461 out_put:
1462         put_task_struct(task);
1463         goto out;
1464
1465 }
1466
1467
1468 /* Retrieve NUMA policy */
1469 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1470                 unsigned long __user *, nmask, unsigned long, maxnode,
1471                 unsigned long, addr, unsigned long, flags)
1472 {
1473         int err;
1474         int uninitialized_var(pval);
1475         nodemask_t nodes;
1476
1477         if (nmask != NULL && maxnode < MAX_NUMNODES)
1478                 return -EINVAL;
1479
1480         err = do_get_mempolicy(&pval, &nodes, addr, flags);
1481
1482         if (err)
1483                 return err;
1484
1485         if (policy && put_user(pval, policy))
1486                 return -EFAULT;
1487
1488         if (nmask)
1489                 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1490
1491         return err;
1492 }
1493
1494 #ifdef CONFIG_COMPAT
1495
1496 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1497                        compat_ulong_t __user *, nmask,
1498                        compat_ulong_t, maxnode,
1499                        compat_ulong_t, addr, compat_ulong_t, flags)
1500 {
1501         long err;
1502         unsigned long __user *nm = NULL;
1503         unsigned long nr_bits, alloc_size;
1504         DECLARE_BITMAP(bm, MAX_NUMNODES);
1505
1506         nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1507         alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1508
1509         if (nmask)
1510                 nm = compat_alloc_user_space(alloc_size);
1511
1512         err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1513
1514         if (!err && nmask) {
1515                 unsigned long copy_size;
1516                 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1517                 err = copy_from_user(bm, nm, copy_size);
1518                 /* ensure entire bitmap is zeroed */
1519                 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1520                 err |= compat_put_bitmap(nmask, bm, nr_bits);
1521         }
1522
1523         return err;
1524 }
1525
1526 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1527                        compat_ulong_t, maxnode)
1528 {
1529         long err = 0;
1530         unsigned long __user *nm = NULL;
1531         unsigned long nr_bits, alloc_size;
1532         DECLARE_BITMAP(bm, MAX_NUMNODES);
1533
1534         nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1535         alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1536
1537         if (nmask) {
1538                 err = compat_get_bitmap(bm, nmask, nr_bits);
1539                 nm = compat_alloc_user_space(alloc_size);
1540                 err |= copy_to_user(nm, bm, alloc_size);
1541         }
1542
1543         if (err)
1544                 return -EFAULT;
1545
1546         return sys_set_mempolicy(mode, nm, nr_bits+1);
1547 }
1548
1549 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1550                        compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1551                        compat_ulong_t, maxnode, compat_ulong_t, flags)
1552 {
1553         long err = 0;
1554         unsigned long __user *nm = NULL;
1555         unsigned long nr_bits, alloc_size;
1556         nodemask_t bm;
1557
1558         nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1559         alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1560
1561         if (nmask) {
1562                 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1563                 nm = compat_alloc_user_space(alloc_size);
1564                 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1565         }
1566
1567         if (err)
1568                 return -EFAULT;
1569
1570         return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1571 }
1572
1573 #endif
1574
1575 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1576                                                 unsigned long addr)
1577 {
1578         struct mempolicy *pol = NULL;
1579
1580         if (vma) {
1581                 if (vma->vm_ops && vma->vm_ops->get_policy) {
1582                         pol = vma->vm_ops->get_policy(vma, addr);
1583                 } else if (vma->vm_policy) {
1584                         pol = vma->vm_policy;
1585
1586                         /*
1587                          * shmem_alloc_page() passes MPOL_F_SHARED policy with
1588                          * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1589                          * count on these policies which will be dropped by
1590                          * mpol_cond_put() later
1591                          */
1592                         if (mpol_needs_cond_ref(pol))
1593                                 mpol_get(pol);
1594                 }
1595         }
1596
1597         return pol;
1598 }
1599
1600 /*
1601  * get_vma_policy(@vma, @addr)
1602  * @vma: virtual memory area whose policy is sought
1603  * @addr: address in @vma for shared policy lookup
1604  *
1605  * Returns effective policy for a VMA at specified address.
1606  * Falls back to current->mempolicy or system default policy, as necessary.
1607  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1608  * count--added by the get_policy() vm_op, as appropriate--to protect against
1609  * freeing by another task.  It is the caller's responsibility to free the
1610  * extra reference for shared policies.
1611  */
1612 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1613                                                 unsigned long addr)
1614 {
1615         struct mempolicy *pol = __get_vma_policy(vma, addr);
1616
1617         if (!pol)
1618                 pol = get_task_policy(current);
1619
1620         return pol;
1621 }
1622
1623 bool vma_policy_mof(struct vm_area_struct *vma)
1624 {
1625         struct mempolicy *pol;
1626
1627         if (vma->vm_ops && vma->vm_ops->get_policy) {
1628                 bool ret = false;
1629
1630                 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1631                 if (pol && (pol->flags & MPOL_F_MOF))
1632                         ret = true;
1633                 mpol_cond_put(pol);
1634
1635                 return ret;
1636         }
1637
1638         pol = vma->vm_policy;
1639         if (!pol)
1640                 pol = get_task_policy(current);
1641
1642         return pol->flags & MPOL_F_MOF;
1643 }
1644
1645 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1646 {
1647         enum zone_type dynamic_policy_zone = policy_zone;
1648
1649         BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1650
1651         /*
1652          * if policy->v.nodes has movable memory only,
1653          * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1654          *
1655          * policy->v.nodes is intersect with node_states[N_MEMORY].
1656          * so if the following test faile, it implies
1657          * policy->v.nodes has movable memory only.
1658          */
1659         if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1660                 dynamic_policy_zone = ZONE_MOVABLE;
1661
1662         return zone >= dynamic_policy_zone;
1663 }
1664
1665 /*
1666  * Return a nodemask representing a mempolicy for filtering nodes for
1667  * page allocation
1668  */
1669 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1670 {
1671         /* Lower zones don't get a nodemask applied for MPOL_BIND */
1672         if (unlikely(policy->mode == MPOL_BIND) &&
1673                         apply_policy_zone(policy, gfp_zone(gfp)) &&
1674                         cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1675                 return &policy->v.nodes;
1676
1677         return NULL;
1678 }
1679
1680 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1681 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1682         int nd)
1683 {
1684         if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1685                 nd = policy->v.preferred_node;
1686         else {
1687                 /*
1688                  * __GFP_THISNODE shouldn't even be used with the bind policy
1689                  * because we might easily break the expectation to stay on the
1690                  * requested node and not break the policy.
1691                  */
1692                 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1693         }
1694
1695         return node_zonelist(nd, gfp);
1696 }
1697
1698 /* Do dynamic interleaving for a process */
1699 static unsigned interleave_nodes(struct mempolicy *policy)
1700 {
1701         unsigned nid, next;
1702         struct task_struct *me = current;
1703
1704         nid = me->il_next;
1705         next = next_node_in(nid, policy->v.nodes);
1706         if (next < MAX_NUMNODES)
1707                 me->il_next = next;
1708         return nid;
1709 }
1710
1711 /*
1712  * Depending on the memory policy provide a node from which to allocate the
1713  * next slab entry.
1714  */
1715 unsigned int mempolicy_slab_node(void)
1716 {
1717         struct mempolicy *policy;
1718         int node = numa_mem_id();
1719
1720         if (in_interrupt())
1721                 return node;
1722
1723         policy = current->mempolicy;
1724         if (!policy || policy->flags & MPOL_F_LOCAL)
1725                 return node;
1726
1727         switch (policy->mode) {
1728         case MPOL_PREFERRED:
1729                 /*
1730                  * handled MPOL_F_LOCAL above
1731                  */
1732                 return policy->v.preferred_node;
1733
1734         case MPOL_INTERLEAVE:
1735                 return interleave_nodes(policy);
1736
1737         case MPOL_BIND: {
1738                 struct zoneref *z;
1739
1740                 /*
1741                  * Follow bind policy behavior and start allocation at the
1742                  * first node.
1743                  */
1744                 struct zonelist *zonelist;
1745                 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1746                 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1747                 z = first_zones_zonelist(zonelist, highest_zoneidx,
1748                                                         &policy->v.nodes);
1749                 return z->zone ? z->zone->node : node;
1750         }
1751
1752         default:
1753                 BUG();
1754         }
1755 }
1756
1757 /*
1758  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1759  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1760  * number of present nodes.
1761  */
1762 static unsigned offset_il_node(struct mempolicy *pol,
1763                                struct vm_area_struct *vma, unsigned long n)
1764 {
1765         unsigned nnodes = nodes_weight(pol->v.nodes);
1766         unsigned target;
1767         int i;
1768         int nid;
1769
1770         if (!nnodes)
1771                 return numa_node_id();
1772         target = (unsigned int)n % nnodes;
1773         nid = first_node(pol->v.nodes);
1774         for (i = 0; i < target; i++)
1775                 nid = next_node(nid, pol->v.nodes);
1776         return nid;
1777 }
1778
1779 /* Determine a node number for interleave */
1780 static inline unsigned interleave_nid(struct mempolicy *pol,
1781                  struct vm_area_struct *vma, unsigned long addr, int shift)
1782 {
1783         if (vma) {
1784                 unsigned long off;
1785
1786                 /*
1787                  * for small pages, there is no difference between
1788                  * shift and PAGE_SHIFT, so the bit-shift is safe.
1789                  * for huge pages, since vm_pgoff is in units of small
1790                  * pages, we need to shift off the always 0 bits to get
1791                  * a useful offset.
1792                  */
1793                 BUG_ON(shift < PAGE_SHIFT);
1794                 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1795                 off += (addr - vma->vm_start) >> shift;
1796                 return offset_il_node(pol, vma, off);
1797         } else
1798                 return interleave_nodes(pol);
1799 }
1800
1801 #ifdef CONFIG_HUGETLBFS
1802 /*
1803  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1804  * @vma: virtual memory area whose policy is sought
1805  * @addr: address in @vma for shared policy lookup and interleave policy
1806  * @gfp_flags: for requested zone
1807  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1808  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1809  *
1810  * Returns a zonelist suitable for a huge page allocation and a pointer
1811  * to the struct mempolicy for conditional unref after allocation.
1812  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1813  * @nodemask for filtering the zonelist.
1814  *
1815  * Must be protected by read_mems_allowed_begin()
1816  */
1817 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1818                                 gfp_t gfp_flags, struct mempolicy **mpol,
1819                                 nodemask_t **nodemask)
1820 {
1821         struct zonelist *zl;
1822
1823         *mpol = get_vma_policy(vma, addr);
1824         *nodemask = NULL;       /* assume !MPOL_BIND */
1825
1826         if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1827                 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1828                                 huge_page_shift(hstate_vma(vma))), gfp_flags);
1829         } else {
1830                 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1831                 if ((*mpol)->mode == MPOL_BIND)
1832                         *nodemask = &(*mpol)->v.nodes;
1833         }
1834         return zl;
1835 }
1836
1837 /*
1838  * init_nodemask_of_mempolicy
1839  *
1840  * If the current task's mempolicy is "default" [NULL], return 'false'
1841  * to indicate default policy.  Otherwise, extract the policy nodemask
1842  * for 'bind' or 'interleave' policy into the argument nodemask, or
1843  * initialize the argument nodemask to contain the single node for
1844  * 'preferred' or 'local' policy and return 'true' to indicate presence
1845  * of non-default mempolicy.
1846  *
1847  * We don't bother with reference counting the mempolicy [mpol_get/put]
1848  * because the current task is examining it's own mempolicy and a task's
1849  * mempolicy is only ever changed by the task itself.
1850  *
1851  * N.B., it is the caller's responsibility to free a returned nodemask.
1852  */
1853 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1854 {
1855         struct mempolicy *mempolicy;
1856         int nid;
1857
1858         if (!(mask && current->mempolicy))
1859                 return false;
1860
1861         task_lock(current);
1862         mempolicy = current->mempolicy;
1863         switch (mempolicy->mode) {
1864         case MPOL_PREFERRED:
1865                 if (mempolicy->flags & MPOL_F_LOCAL)
1866                         nid = numa_node_id();
1867                 else
1868                         nid = mempolicy->v.preferred_node;
1869                 init_nodemask_of_node(mask, nid);
1870                 break;
1871
1872         case MPOL_BIND:
1873                 /* Fall through */
1874         case MPOL_INTERLEAVE:
1875                 *mask =  mempolicy->v.nodes;
1876                 break;
1877
1878         default:
1879                 BUG();
1880         }
1881         task_unlock(current);
1882
1883         return true;
1884 }
1885 #endif
1886
1887 /*
1888  * mempolicy_nodemask_intersects
1889  *
1890  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1891  * policy.  Otherwise, check for intersection between mask and the policy
1892  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1893  * policy, always return true since it may allocate elsewhere on fallback.
1894  *
1895  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1896  */
1897 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1898                                         const nodemask_t *mask)
1899 {
1900         struct mempolicy *mempolicy;
1901         bool ret = true;
1902
1903         if (!mask)
1904                 return ret;
1905         task_lock(tsk);
1906         mempolicy = tsk->mempolicy;
1907         if (!mempolicy)
1908                 goto out;
1909
1910         switch (mempolicy->mode) {
1911         case MPOL_PREFERRED:
1912                 /*
1913                  * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1914                  * allocate from, they may fallback to other nodes when oom.
1915                  * Thus, it's possible for tsk to have allocated memory from
1916                  * nodes in mask.
1917                  */
1918                 break;
1919         case MPOL_BIND:
1920         case MPOL_INTERLEAVE:
1921                 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1922                 break;
1923         default:
1924                 BUG();
1925         }
1926 out:
1927         task_unlock(tsk);
1928         return ret;
1929 }
1930
1931 /* Allocate a page in interleaved policy.
1932    Own path because it needs to do special accounting. */
1933 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1934                                         unsigned nid)
1935 {
1936         struct zonelist *zl;
1937         struct page *page;
1938
1939         zl = node_zonelist(nid, gfp);
1940         page = __alloc_pages(gfp, order, zl);
1941         if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1942                 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1943         return page;
1944 }
1945
1946 /**
1947  *      alloc_pages_vma - Allocate a page for a VMA.
1948  *
1949  *      @gfp:
1950  *      %GFP_USER    user allocation.
1951  *      %GFP_KERNEL  kernel allocations,
1952  *      %GFP_HIGHMEM highmem/user allocations,
1953  *      %GFP_FS      allocation should not call back into a file system.
1954  *      %GFP_ATOMIC  don't sleep.
1955  *
1956  *      @order:Order of the GFP allocation.
1957  *      @vma:  Pointer to VMA or NULL if not available.
1958  *      @addr: Virtual Address of the allocation. Must be inside the VMA.
1959  *      @node: Which node to prefer for allocation (modulo policy).
1960  *      @hugepage: for hugepages try only the preferred node if possible
1961  *
1962  *      This function allocates a page from the kernel page pool and applies
1963  *      a NUMA policy associated with the VMA or the current process.
1964  *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
1965  *      mm_struct of the VMA to prevent it from going away. Should be used for
1966  *      all allocations for pages that will be mapped into user space. Returns
1967  *      NULL when no page can be allocated.
1968  */
1969 struct page *
1970 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1971                 unsigned long addr, int node, bool hugepage)
1972 {
1973         struct mempolicy *pol;
1974         struct page *page;
1975         unsigned int cpuset_mems_cookie;
1976         struct zonelist *zl;
1977         nodemask_t *nmask;
1978
1979 retry_cpuset:
1980         pol = get_vma_policy(vma, addr);
1981         cpuset_mems_cookie = read_mems_allowed_begin();
1982
1983         if (pol->mode == MPOL_INTERLEAVE) {
1984                 unsigned nid;
1985
1986                 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1987                 mpol_cond_put(pol);
1988                 page = alloc_page_interleave(gfp, order, nid);
1989                 goto out;
1990         }
1991
1992         if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1993                 int hpage_node = node;
1994
1995                 /*
1996                  * For hugepage allocation and non-interleave policy which
1997                  * allows the current node (or other explicitly preferred
1998                  * node) we only try to allocate from the current/preferred
1999                  * node and don't fall back to other nodes, as the cost of
2000                  * remote accesses would likely offset THP benefits.
2001                  *
2002                  * If the policy is interleave, or does not allow the current
2003                  * node in its nodemask, we allocate the standard way.
2004                  */
2005                 if (pol->mode == MPOL_PREFERRED &&
2006                                                 !(pol->flags & MPOL_F_LOCAL))
2007                         hpage_node = pol->v.preferred_node;
2008
2009                 nmask = policy_nodemask(gfp, pol);
2010                 if (!nmask || node_isset(hpage_node, *nmask)) {
2011                         mpol_cond_put(pol);
2012                         page = __alloc_pages_node(hpage_node,
2013                                                 gfp | __GFP_THISNODE, order);
2014                         goto out;
2015                 }
2016         }
2017
2018         nmask = policy_nodemask(gfp, pol);
2019         zl = policy_zonelist(gfp, pol, node);
2020         mpol_cond_put(pol);
2021         page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2022 out:
2023         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2024                 goto retry_cpuset;
2025         return page;
2026 }
2027
2028 /**
2029  *      alloc_pages_current - Allocate pages.
2030  *
2031  *      @gfp:
2032  *              %GFP_USER   user allocation,
2033  *              %GFP_KERNEL kernel allocation,
2034  *              %GFP_HIGHMEM highmem allocation,
2035  *              %GFP_FS     don't call back into a file system.
2036  *              %GFP_ATOMIC don't sleep.
2037  *      @order: Power of two of allocation size in pages. 0 is a single page.
2038  *
2039  *      Allocate a page from the kernel page pool.  When not in
2040  *      interrupt context and apply the current process NUMA policy.
2041  *      Returns NULL when no page can be allocated.
2042  *
2043  *      Don't call cpuset_update_task_memory_state() unless
2044  *      1) it's ok to take cpuset_sem (can WAIT), and
2045  *      2) allocating for current task (not interrupt).
2046  */
2047 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2048 {
2049         struct mempolicy *pol = &default_policy;
2050         struct page *page;
2051         unsigned int cpuset_mems_cookie;
2052
2053         if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2054                 pol = get_task_policy(current);
2055
2056 retry_cpuset:
2057         cpuset_mems_cookie = read_mems_allowed_begin();
2058
2059         /*
2060          * No reference counting needed for current->mempolicy
2061          * nor system default_policy
2062          */
2063         if (pol->mode == MPOL_INTERLEAVE)
2064                 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2065         else
2066                 page = __alloc_pages_nodemask(gfp, order,
2067                                 policy_zonelist(gfp, pol, numa_node_id()),
2068                                 policy_nodemask(gfp, pol));
2069
2070         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2071                 goto retry_cpuset;
2072
2073         return page;
2074 }
2075 EXPORT_SYMBOL(alloc_pages_current);
2076
2077 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2078 {
2079         struct mempolicy *pol = mpol_dup(vma_policy(src));
2080
2081         if (IS_ERR(pol))
2082                 return PTR_ERR(pol);
2083         dst->vm_policy = pol;
2084         return 0;
2085 }
2086
2087 /*
2088  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2089  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2090  * with the mems_allowed returned by cpuset_mems_allowed().  This
2091  * keeps mempolicies cpuset relative after its cpuset moves.  See
2092  * further kernel/cpuset.c update_nodemask().
2093  *
2094  * current's mempolicy may be rebinded by the other task(the task that changes
2095  * cpuset's mems), so we needn't do rebind work for current task.
2096  */
2097
2098 /* Slow path of a mempolicy duplicate */
2099 struct mempolicy *__mpol_dup(struct mempolicy *old)
2100 {
2101         struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2102
2103         if (!new)
2104                 return ERR_PTR(-ENOMEM);
2105
2106         /* task's mempolicy is protected by alloc_lock */
2107         if (old == current->mempolicy) {
2108                 task_lock(current);
2109                 *new = *old;
2110                 task_unlock(current);
2111         } else
2112                 *new = *old;
2113
2114         if (current_cpuset_is_being_rebound()) {
2115                 nodemask_t mems = cpuset_mems_allowed(current);
2116                 if (new->flags & MPOL_F_REBINDING)
2117                         mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2118                 else
2119                         mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2120         }
2121         atomic_set(&new->refcnt, 1);
2122         return new;
2123 }
2124
2125 /* Slow path of a mempolicy comparison */
2126 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2127 {
2128         if (!a || !b)
2129                 return false;
2130         if (a->mode != b->mode)
2131                 return false;
2132         if (a->flags != b->flags)
2133                 return false;
2134         if (mpol_store_user_nodemask(a))
2135                 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2136                         return false;
2137
2138         switch (a->mode) {
2139         case MPOL_BIND:
2140                 /* Fall through */
2141         case MPOL_INTERLEAVE:
2142                 return !!nodes_equal(a->v.nodes, b->v.nodes);
2143         case MPOL_PREFERRED:
2144                 return a->v.preferred_node == b->v.preferred_node;
2145         default:
2146                 BUG();
2147                 return false;
2148         }
2149 }
2150
2151 /*
2152  * Shared memory backing store policy support.
2153  *
2154  * Remember policies even when nobody has shared memory mapped.
2155  * The policies are kept in Red-Black tree linked from the inode.
2156  * They are protected by the sp->lock rwlock, which should be held
2157  * for any accesses to the tree.
2158  */
2159
2160 /*
2161  * lookup first element intersecting start-end.  Caller holds sp->lock for
2162  * reading or for writing
2163  */
2164 static struct sp_node *
2165 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2166 {
2167         struct rb_node *n = sp->root.rb_node;
2168
2169         while (n) {
2170                 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2171
2172                 if (start >= p->end)
2173                         n = n->rb_right;
2174                 else if (end <= p->start)
2175                         n = n->rb_left;
2176                 else
2177                         break;
2178         }
2179         if (!n)
2180                 return NULL;
2181         for (;;) {
2182                 struct sp_node *w = NULL;
2183                 struct rb_node *prev = rb_prev(n);
2184                 if (!prev)
2185                         break;
2186                 w = rb_entry(prev, struct sp_node, nd);
2187                 if (w->end <= start)
2188                         break;
2189                 n = prev;
2190         }
2191         return rb_entry(n, struct sp_node, nd);
2192 }
2193
2194 /*
2195  * Insert a new shared policy into the list.  Caller holds sp->lock for
2196  * writing.
2197  */
2198 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2199 {
2200         struct rb_node **p = &sp->root.rb_node;
2201         struct rb_node *parent = NULL;
2202         struct sp_node *nd;
2203
2204         while (*p) {
2205                 parent = *p;
2206                 nd = rb_entry(parent, struct sp_node, nd);
2207                 if (new->start < nd->start)
2208                         p = &(*p)->rb_left;
2209                 else if (new->end > nd->end)
2210                         p = &(*p)->rb_right;
2211                 else
2212                         BUG();
2213         }
2214         rb_link_node(&new->nd, parent, p);
2215         rb_insert_color(&new->nd, &sp->root);
2216         pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2217                  new->policy ? new->policy->mode : 0);
2218 }
2219
2220 /* Find shared policy intersecting idx */
2221 struct mempolicy *
2222 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2223 {
2224         struct mempolicy *pol = NULL;
2225         struct sp_node *sn;
2226
2227         if (!sp->root.rb_node)
2228                 return NULL;
2229         read_lock(&sp->lock);
2230         sn = sp_lookup(sp, idx, idx+1);
2231         if (sn) {
2232                 mpol_get(sn->policy);
2233                 pol = sn->policy;
2234         }
2235         read_unlock(&sp->lock);
2236         return pol;
2237 }
2238
2239 static void sp_free(struct sp_node *n)
2240 {
2241         mpol_put(n->policy);
2242         kmem_cache_free(sn_cache, n);
2243 }
2244
2245 /**
2246  * mpol_misplaced - check whether current page node is valid in policy
2247  *
2248  * @page: page to be checked
2249  * @vma: vm area where page mapped
2250  * @addr: virtual address where page mapped
2251  *
2252  * Lookup current policy node id for vma,addr and "compare to" page's
2253  * node id.
2254  *
2255  * Returns:
2256  *      -1      - not misplaced, page is in the right node
2257  *      node    - node id where the page should be
2258  *
2259  * Policy determination "mimics" alloc_page_vma().
2260  * Called from fault path where we know the vma and faulting address.
2261  */
2262 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2263 {
2264         struct mempolicy *pol;
2265         struct zoneref *z;
2266         int curnid = page_to_nid(page);
2267         unsigned long pgoff;
2268         int thiscpu = raw_smp_processor_id();
2269         int thisnid = cpu_to_node(thiscpu);
2270         int polnid = -1;
2271         int ret = -1;
2272
2273         BUG_ON(!vma);
2274
2275         pol = get_vma_policy(vma, addr);
2276         if (!(pol->flags & MPOL_F_MOF))
2277                 goto out;
2278
2279         switch (pol->mode) {
2280         case MPOL_INTERLEAVE:
2281                 BUG_ON(addr >= vma->vm_end);
2282                 BUG_ON(addr < vma->vm_start);
2283
2284                 pgoff = vma->vm_pgoff;
2285                 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2286                 polnid = offset_il_node(pol, vma, pgoff);
2287                 break;
2288
2289         case MPOL_PREFERRED:
2290                 if (pol->flags & MPOL_F_LOCAL)
2291                         polnid = numa_node_id();
2292                 else
2293                         polnid = pol->v.preferred_node;
2294                 break;
2295
2296         case MPOL_BIND:
2297
2298                 /*
2299                  * allows binding to multiple nodes.
2300                  * use current page if in policy nodemask,
2301                  * else select nearest allowed node, if any.
2302                  * If no allowed nodes, use current [!misplaced].
2303                  */
2304                 if (node_isset(curnid, pol->v.nodes))
2305                         goto out;
2306                 z = first_zones_zonelist(
2307                                 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2308                                 gfp_zone(GFP_HIGHUSER),
2309                                 &pol->v.nodes);
2310                 polnid = z->zone->node;
2311                 break;
2312
2313         default:
2314                 BUG();
2315         }
2316
2317         /* Migrate the page towards the node whose CPU is referencing it */
2318         if (pol->flags & MPOL_F_MORON) {
2319                 polnid = thisnid;
2320
2321                 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2322                         goto out;
2323         }
2324
2325         if (curnid != polnid)
2326                 ret = polnid;
2327 out:
2328         mpol_cond_put(pol);
2329
2330         return ret;
2331 }
2332
2333 /*
2334  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2335  * dropped after task->mempolicy is set to NULL so that any allocation done as
2336  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2337  * policy.
2338  */
2339 void mpol_put_task_policy(struct task_struct *task)
2340 {
2341         struct mempolicy *pol;
2342
2343         task_lock(task);
2344         pol = task->mempolicy;
2345         task->mempolicy = NULL;
2346         task_unlock(task);
2347         mpol_put(pol);
2348 }
2349
2350 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2351 {
2352         pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2353         rb_erase(&n->nd, &sp->root);
2354         sp_free(n);
2355 }
2356
2357 static void sp_node_init(struct sp_node *node, unsigned long start,
2358                         unsigned long end, struct mempolicy *pol)
2359 {
2360         node->start = start;
2361         node->end = end;
2362         node->policy = pol;
2363 }
2364
2365 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2366                                 struct mempolicy *pol)
2367 {
2368         struct sp_node *n;
2369         struct mempolicy *newpol;
2370
2371         n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2372         if (!n)
2373                 return NULL;
2374
2375         newpol = mpol_dup(pol);
2376         if (IS_ERR(newpol)) {
2377                 kmem_cache_free(sn_cache, n);
2378                 return NULL;
2379         }
2380         newpol->flags |= MPOL_F_SHARED;
2381         sp_node_init(n, start, end, newpol);
2382
2383         return n;
2384 }
2385
2386 /* Replace a policy range. */
2387 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2388                                  unsigned long end, struct sp_node *new)
2389 {
2390         struct sp_node *n;
2391         struct sp_node *n_new = NULL;
2392         struct mempolicy *mpol_new = NULL;
2393         int ret = 0;
2394
2395 restart:
2396         write_lock(&sp->lock);
2397         n = sp_lookup(sp, start, end);
2398         /* Take care of old policies in the same range. */
2399         while (n && n->start < end) {
2400                 struct rb_node *next = rb_next(&n->nd);
2401                 if (n->start >= start) {
2402                         if (n->end <= end)
2403                                 sp_delete(sp, n);
2404                         else
2405                                 n->start = end;
2406                 } else {
2407                         /* Old policy spanning whole new range. */
2408                         if (n->end > end) {
2409                                 if (!n_new)
2410                                         goto alloc_new;
2411
2412                                 *mpol_new = *n->policy;
2413                                 atomic_set(&mpol_new->refcnt, 1);
2414                                 sp_node_init(n_new, end, n->end, mpol_new);
2415                                 n->end = start;
2416                                 sp_insert(sp, n_new);
2417                                 n_new = NULL;
2418                                 mpol_new = NULL;
2419                                 break;
2420                         } else
2421                                 n->end = start;
2422                 }
2423                 if (!next)
2424                         break;
2425                 n = rb_entry(next, struct sp_node, nd);
2426         }
2427         if (new)
2428                 sp_insert(sp, new);
2429         write_unlock(&sp->lock);
2430         ret = 0;
2431
2432 err_out:
2433         if (mpol_new)
2434                 mpol_put(mpol_new);
2435         if (n_new)
2436                 kmem_cache_free(sn_cache, n_new);
2437
2438         return ret;
2439
2440 alloc_new:
2441         write_unlock(&sp->lock);
2442         ret = -ENOMEM;
2443         n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2444         if (!n_new)
2445                 goto err_out;
2446         mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2447         if (!mpol_new)
2448                 goto err_out;
2449         goto restart;
2450 }
2451
2452 /**
2453  * mpol_shared_policy_init - initialize shared policy for inode
2454  * @sp: pointer to inode shared policy
2455  * @mpol:  struct mempolicy to install
2456  *
2457  * Install non-NULL @mpol in inode's shared policy rb-tree.
2458  * On entry, the current task has a reference on a non-NULL @mpol.
2459  * This must be released on exit.
2460  * This is called at get_inode() calls and we can use GFP_KERNEL.
2461  */
2462 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2463 {
2464         int ret;
2465
2466         sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2467         rwlock_init(&sp->lock);
2468
2469         if (mpol) {
2470                 struct vm_area_struct pvma;
2471                 struct mempolicy *new;
2472                 NODEMASK_SCRATCH(scratch);
2473
2474                 if (!scratch)
2475                         goto put_mpol;
2476                 /* contextualize the tmpfs mount point mempolicy */
2477                 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2478                 if (IS_ERR(new))
2479                         goto free_scratch; /* no valid nodemask intersection */
2480
2481                 task_lock(current);
2482                 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2483                 task_unlock(current);
2484                 if (ret)
2485                         goto put_new;
2486
2487                 /* Create pseudo-vma that contains just the policy */
2488                 memset(&pvma, 0, sizeof(struct vm_area_struct));
2489                 pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2490                 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2491
2492 put_new:
2493                 mpol_put(new);                  /* drop initial ref */
2494 free_scratch:
2495                 NODEMASK_SCRATCH_FREE(scratch);
2496 put_mpol:
2497                 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2498         }
2499 }
2500
2501 int mpol_set_shared_policy(struct shared_policy *info,
2502                         struct vm_area_struct *vma, struct mempolicy *npol)
2503 {
2504         int err;
2505         struct sp_node *new = NULL;
2506         unsigned long sz = vma_pages(vma);
2507
2508         pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2509                  vma->vm_pgoff,
2510                  sz, npol ? npol->mode : -1,
2511                  npol ? npol->flags : -1,
2512                  npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2513
2514         if (npol) {
2515                 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2516                 if (!new)
2517                         return -ENOMEM;
2518         }
2519         err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2520         if (err && new)
2521                 sp_free(new);
2522         return err;
2523 }
2524
2525 /* Free a backing policy store on inode delete. */
2526 void mpol_free_shared_policy(struct shared_policy *p)
2527 {
2528         struct sp_node *n;
2529         struct rb_node *next;
2530
2531         if (!p->root.rb_node)
2532                 return;
2533         write_lock(&p->lock);
2534         next = rb_first(&p->root);
2535         while (next) {
2536                 n = rb_entry(next, struct sp_node, nd);
2537                 next = rb_next(&n->nd);
2538                 sp_delete(p, n);
2539         }
2540         write_unlock(&p->lock);
2541 }
2542
2543 #ifdef CONFIG_NUMA_BALANCING
2544 static int __initdata numabalancing_override;
2545
2546 static void __init check_numabalancing_enable(void)
2547 {
2548         bool numabalancing_default = false;
2549
2550         if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2551                 numabalancing_default = true;
2552
2553         /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2554         if (numabalancing_override)
2555                 set_numabalancing_state(numabalancing_override == 1);
2556
2557         if (num_online_nodes() > 1 && !numabalancing_override) {
2558                 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2559                         numabalancing_default ? "Enabling" : "Disabling");
2560                 set_numabalancing_state(numabalancing_default);
2561         }
2562 }
2563
2564 static int __init setup_numabalancing(char *str)
2565 {
2566         int ret = 0;
2567         if (!str)
2568                 goto out;
2569
2570         if (!strcmp(str, "enable")) {
2571                 numabalancing_override = 1;
2572                 ret = 1;
2573         } else if (!strcmp(str, "disable")) {
2574                 numabalancing_override = -1;
2575                 ret = 1;
2576         }
2577 out:
2578         if (!ret)
2579                 pr_warn("Unable to parse numa_balancing=\n");
2580
2581         return ret;
2582 }
2583 __setup("numa_balancing=", setup_numabalancing);
2584 #else
2585 static inline void __init check_numabalancing_enable(void)
2586 {
2587 }
2588 #endif /* CONFIG_NUMA_BALANCING */
2589
2590 /* assumes fs == KERNEL_DS */
2591 void __init numa_policy_init(void)
2592 {
2593         nodemask_t interleave_nodes;
2594         unsigned long largest = 0;
2595         int nid, prefer = 0;
2596
2597         policy_cache = kmem_cache_create("numa_policy",
2598                                          sizeof(struct mempolicy),
2599                                          0, SLAB_PANIC, NULL);
2600
2601         sn_cache = kmem_cache_create("shared_policy_node",
2602                                      sizeof(struct sp_node),
2603                                      0, SLAB_PANIC, NULL);
2604
2605         for_each_node(nid) {
2606                 preferred_node_policy[nid] = (struct mempolicy) {
2607                         .refcnt = ATOMIC_INIT(1),
2608                         .mode = MPOL_PREFERRED,
2609                         .flags = MPOL_F_MOF | MPOL_F_MORON,
2610                         .v = { .preferred_node = nid, },
2611                 };
2612         }
2613
2614         /*
2615          * Set interleaving policy for system init. Interleaving is only
2616          * enabled across suitably sized nodes (default is >= 16MB), or
2617          * fall back to the largest node if they're all smaller.
2618          */
2619         nodes_clear(interleave_nodes);
2620         for_each_node_state(nid, N_MEMORY) {
2621                 unsigned long total_pages = node_present_pages(nid);
2622
2623                 /* Preserve the largest node */
2624                 if (largest < total_pages) {
2625                         largest = total_pages;
2626                         prefer = nid;
2627                 }
2628
2629                 /* Interleave this node? */
2630                 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2631                         node_set(nid, interleave_nodes);
2632         }
2633
2634         /* All too small, use the largest */
2635         if (unlikely(nodes_empty(interleave_nodes)))
2636                 node_set(prefer, interleave_nodes);
2637
2638         if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2639                 pr_err("%s: interleaving failed\n", __func__);
2640
2641         check_numabalancing_enable();
2642 }
2643
2644 /* Reset policy of current process to default */
2645 void numa_default_policy(void)
2646 {
2647         do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2648 }
2649
2650 /*
2651  * Parse and format mempolicy from/to strings
2652  */
2653
2654 /*
2655  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2656  */
2657 static const char * const policy_modes[] =
2658 {
2659         [MPOL_DEFAULT]    = "default",
2660         [MPOL_PREFERRED]  = "prefer",
2661         [MPOL_BIND]       = "bind",
2662         [MPOL_INTERLEAVE] = "interleave",
2663         [MPOL_LOCAL]      = "local",
2664 };
2665
2666
2667 #ifdef CONFIG_TMPFS
2668 /**
2669  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2670  * @str:  string containing mempolicy to parse
2671  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2672  *
2673  * Format of input:
2674  *      <mode>[=<flags>][:<nodelist>]
2675  *
2676  * On success, returns 0, else 1
2677  */
2678 int mpol_parse_str(char *str, struct mempolicy **mpol)
2679 {
2680         struct mempolicy *new = NULL;
2681         unsigned short mode;
2682         unsigned short mode_flags;
2683         nodemask_t nodes;
2684         char *nodelist = strchr(str, ':');
2685         char *flags = strchr(str, '=');
2686         int err = 1;
2687
2688         if (nodelist) {
2689                 /* NUL-terminate mode or flags string */
2690                 *nodelist++ = '\0';
2691                 if (nodelist_parse(nodelist, nodes))
2692                         goto out;
2693                 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2694                         goto out;
2695         } else
2696                 nodes_clear(nodes);
2697
2698         if (flags)
2699                 *flags++ = '\0';        /* terminate mode string */
2700
2701         for (mode = 0; mode < MPOL_MAX; mode++) {
2702                 if (!strcmp(str, policy_modes[mode])) {
2703                         break;
2704                 }
2705         }
2706         if (mode >= MPOL_MAX)
2707                 goto out;
2708
2709         switch (mode) {
2710         case MPOL_PREFERRED:
2711                 /*
2712                  * Insist on a nodelist of one node only
2713                  */
2714                 if (nodelist) {
2715                         char *rest = nodelist;
2716                         while (isdigit(*rest))
2717                                 rest++;
2718                         if (*rest)
2719                                 goto out;
2720                 }
2721                 break;
2722         case MPOL_INTERLEAVE:
2723                 /*
2724                  * Default to online nodes with memory if no nodelist
2725                  */
2726                 if (!nodelist)
2727                         nodes = node_states[N_MEMORY];
2728                 break;
2729         case MPOL_LOCAL:
2730                 /*
2731                  * Don't allow a nodelist;  mpol_new() checks flags
2732                  */
2733                 if (nodelist)
2734                         goto out;
2735                 mode = MPOL_PREFERRED;
2736                 break;
2737         case MPOL_DEFAULT:
2738                 /*
2739                  * Insist on a empty nodelist
2740                  */
2741                 if (!nodelist)
2742                         err = 0;
2743                 goto out;
2744         case MPOL_BIND:
2745                 /*
2746                  * Insist on a nodelist
2747                  */
2748                 if (!nodelist)
2749                         goto out;
2750         }
2751
2752         mode_flags = 0;
2753         if (flags) {
2754                 /*
2755                  * Currently, we only support two mutually exclusive
2756                  * mode flags.
2757                  */
2758                 if (!strcmp(flags, "static"))
2759                         mode_flags |= MPOL_F_STATIC_NODES;
2760                 else if (!strcmp(flags, "relative"))
2761                         mode_flags |= MPOL_F_RELATIVE_NODES;
2762                 else
2763                         goto out;
2764         }
2765
2766         new = mpol_new(mode, mode_flags, &nodes);
2767         if (IS_ERR(new))
2768                 goto out;
2769
2770         /*
2771          * Save nodes for mpol_to_str() to show the tmpfs mount options
2772          * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2773          */
2774         if (mode != MPOL_PREFERRED)
2775                 new->v.nodes = nodes;
2776         else if (nodelist)
2777                 new->v.preferred_node = first_node(nodes);
2778         else
2779                 new->flags |= MPOL_F_LOCAL;
2780
2781         /*
2782          * Save nodes for contextualization: this will be used to "clone"
2783          * the mempolicy in a specific context [cpuset] at a later time.
2784          */
2785         new->w.user_nodemask = nodes;
2786
2787         err = 0;
2788
2789 out:
2790         /* Restore string for error message */
2791         if (nodelist)
2792                 *--nodelist = ':';
2793         if (flags)
2794                 *--flags = '=';
2795         if (!err)
2796                 *mpol = new;
2797         return err;
2798 }
2799 #endif /* CONFIG_TMPFS */
2800
2801 /**
2802  * mpol_to_str - format a mempolicy structure for printing
2803  * @buffer:  to contain formatted mempolicy string
2804  * @maxlen:  length of @buffer
2805  * @pol:  pointer to mempolicy to be formatted
2806  *
2807  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2808  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2809  * longest flag, "relative", and to display at least a few node ids.
2810  */
2811 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2812 {
2813         char *p = buffer;
2814         nodemask_t nodes = NODE_MASK_NONE;
2815         unsigned short mode = MPOL_DEFAULT;
2816         unsigned short flags = 0;
2817
2818         if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2819                 mode = pol->mode;
2820                 flags = pol->flags;
2821         }
2822
2823         switch (mode) {
2824         case MPOL_DEFAULT:
2825                 break;
2826         case MPOL_PREFERRED:
2827                 if (flags & MPOL_F_LOCAL)
2828                         mode = MPOL_LOCAL;
2829                 else
2830                         node_set(pol->v.preferred_node, nodes);
2831                 break;
2832         case MPOL_BIND:
2833         case MPOL_INTERLEAVE:
2834                 nodes = pol->v.nodes;
2835                 break;
2836         default:
2837                 WARN_ON_ONCE(1);
2838                 snprintf(p, maxlen, "unknown");
2839                 return;
2840         }
2841
2842         p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2843
2844         if (flags & MPOL_MODE_FLAGS) {
2845                 p += snprintf(p, buffer + maxlen - p, "=");
2846
2847                 /*
2848                  * Currently, the only defined flags are mutually exclusive
2849                  */
2850                 if (flags & MPOL_F_STATIC_NODES)
2851                         p += snprintf(p, buffer + maxlen - p, "static");
2852                 else if (flags & MPOL_F_RELATIVE_NODES)
2853                         p += snprintf(p, buffer + maxlen - p, "relative");
2854         }
2855
2856         if (!nodes_empty(nodes))
2857                 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2858                                nodemask_pr_args(&nodes));
2859 }