]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mempool.c
Merge remote-tracking branch 'uml/linux-next'
[karo-tx-linux.git] / mm / mempool.c
1 /*
2  *  linux/mm/mempool.c
3  *
4  *  memory buffer pool support. Such pools are mostly used
5  *  for guaranteed, deadlock-free memory allocations during
6  *  extreme VM load.
7  *
8  *  started by Ingo Molnar, Copyright (C) 2001
9  *  debugging by David Rientjes, Copyright (C) 2015
10  */
11
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/kasan.h>
16 #include <linux/kmemleak.h>
17 #include <linux/export.h>
18 #include <linux/mempool.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22
23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24 static void poison_error(mempool_t *pool, void *element, size_t size,
25                          size_t byte)
26 {
27         const int nr = pool->curr_nr;
28         const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29         const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30         int i;
31
32         pr_err("BUG: mempool element poison mismatch\n");
33         pr_err("Mempool %p size %zu\n", pool, size);
34         pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35         for (i = start; i < end; i++)
36                 pr_cont("%x ", *(u8 *)(element + i));
37         pr_cont("%s\n", end < size ? "..." : "");
38         dump_stack();
39 }
40
41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43         u8 *obj = element;
44         size_t i;
45
46         for (i = 0; i < size; i++) {
47                 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48
49                 if (obj[i] != exp) {
50                         poison_error(pool, element, size, i);
51                         return;
52                 }
53         }
54         memset(obj, POISON_INUSE, size);
55 }
56
57 static void check_element(mempool_t *pool, void *element)
58 {
59         /* Mempools backed by slab allocator */
60         if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
61                 __check_element(pool, element, ksize(element));
62
63         /* Mempools backed by page allocator */
64         if (pool->free == mempool_free_pages) {
65                 int order = (int)(long)pool->pool_data;
66                 void *addr = kmap_atomic((struct page *)element);
67
68                 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69                 kunmap_atomic(addr);
70         }
71 }
72
73 static void __poison_element(void *element, size_t size)
74 {
75         u8 *obj = element;
76
77         memset(obj, POISON_FREE, size - 1);
78         obj[size - 1] = POISON_END;
79 }
80
81 static void poison_element(mempool_t *pool, void *element)
82 {
83         /* Mempools backed by slab allocator */
84         if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
85                 __poison_element(element, ksize(element));
86
87         /* Mempools backed by page allocator */
88         if (pool->alloc == mempool_alloc_pages) {
89                 int order = (int)(long)pool->pool_data;
90                 void *addr = kmap_atomic((struct page *)element);
91
92                 __poison_element(addr, 1UL << (PAGE_SHIFT + order));
93                 kunmap_atomic(addr);
94         }
95 }
96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
97 static inline void check_element(mempool_t *pool, void *element)
98 {
99 }
100 static inline void poison_element(mempool_t *pool, void *element)
101 {
102 }
103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105 static void kasan_poison_element(mempool_t *pool, void *element)
106 {
107         if (pool->alloc == mempool_alloc_slab)
108                 kasan_slab_free(pool->pool_data, element);
109         if (pool->alloc == mempool_kmalloc)
110                 kasan_kfree(element);
111         if (pool->alloc == mempool_alloc_pages)
112                 kasan_free_pages(element, (unsigned long)pool->pool_data);
113 }
114
115 static void kasan_unpoison_element(mempool_t *pool, void *element)
116 {
117         if (pool->alloc == mempool_alloc_slab)
118                 kasan_slab_alloc(pool->pool_data, element);
119         if (pool->alloc == mempool_kmalloc)
120                 kasan_krealloc(element, (size_t)pool->pool_data);
121         if (pool->alloc == mempool_alloc_pages)
122                 kasan_alloc_pages(element, (unsigned long)pool->pool_data);
123 }
124
125 static void add_element(mempool_t *pool, void *element)
126 {
127         BUG_ON(pool->curr_nr >= pool->min_nr);
128         poison_element(pool, element);
129         kasan_poison_element(pool, element);
130         pool->elements[pool->curr_nr++] = element;
131 }
132
133 static void *remove_element(mempool_t *pool)
134 {
135         void *element = pool->elements[--pool->curr_nr];
136
137         BUG_ON(pool->curr_nr < 0);
138         check_element(pool, element);
139         kasan_unpoison_element(pool, element);
140         return element;
141 }
142
143 /**
144  * mempool_destroy - deallocate a memory pool
145  * @pool:      pointer to the memory pool which was allocated via
146  *             mempool_create().
147  *
148  * Free all reserved elements in @pool and @pool itself.  This function
149  * only sleeps if the free_fn() function sleeps.
150  */
151 void mempool_destroy(mempool_t *pool)
152 {
153         if (unlikely(!pool))
154                 return;
155
156         while (pool->curr_nr) {
157                 void *element = remove_element(pool);
158                 pool->free(element, pool->pool_data);
159         }
160         kfree(pool->elements);
161         kfree(pool);
162 }
163 EXPORT_SYMBOL(mempool_destroy);
164
165 /**
166  * mempool_create - create a memory pool
167  * @min_nr:    the minimum number of elements guaranteed to be
168  *             allocated for this pool.
169  * @alloc_fn:  user-defined element-allocation function.
170  * @free_fn:   user-defined element-freeing function.
171  * @pool_data: optional private data available to the user-defined functions.
172  *
173  * this function creates and allocates a guaranteed size, preallocated
174  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
175  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
176  * functions might sleep - as long as the mempool_alloc() function is not called
177  * from IRQ contexts.
178  */
179 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
180                                 mempool_free_t *free_fn, void *pool_data)
181 {
182         return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
183                                    GFP_KERNEL, NUMA_NO_NODE);
184 }
185 EXPORT_SYMBOL(mempool_create);
186
187 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
188                                mempool_free_t *free_fn, void *pool_data,
189                                gfp_t gfp_mask, int node_id)
190 {
191         mempool_t *pool;
192         pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
193         if (!pool)
194                 return NULL;
195         pool->elements = kmalloc_node(min_nr * sizeof(void *),
196                                       gfp_mask, node_id);
197         if (!pool->elements) {
198                 kfree(pool);
199                 return NULL;
200         }
201         spin_lock_init(&pool->lock);
202         pool->min_nr = min_nr;
203         pool->pool_data = pool_data;
204         init_waitqueue_head(&pool->wait);
205         pool->alloc = alloc_fn;
206         pool->free = free_fn;
207
208         /*
209          * First pre-allocate the guaranteed number of buffers.
210          */
211         while (pool->curr_nr < pool->min_nr) {
212                 void *element;
213
214                 element = pool->alloc(gfp_mask, pool->pool_data);
215                 if (unlikely(!element)) {
216                         mempool_destroy(pool);
217                         return NULL;
218                 }
219                 add_element(pool, element);
220         }
221         return pool;
222 }
223 EXPORT_SYMBOL(mempool_create_node);
224
225 /**
226  * mempool_resize - resize an existing memory pool
227  * @pool:       pointer to the memory pool which was allocated via
228  *              mempool_create().
229  * @new_min_nr: the new minimum number of elements guaranteed to be
230  *              allocated for this pool.
231  *
232  * This function shrinks/grows the pool. In the case of growing,
233  * it cannot be guaranteed that the pool will be grown to the new
234  * size immediately, but new mempool_free() calls will refill it.
235  * This function may sleep.
236  *
237  * Note, the caller must guarantee that no mempool_destroy is called
238  * while this function is running. mempool_alloc() & mempool_free()
239  * might be called (eg. from IRQ contexts) while this function executes.
240  */
241 int mempool_resize(mempool_t *pool, int new_min_nr)
242 {
243         void *element;
244         void **new_elements;
245         unsigned long flags;
246
247         BUG_ON(new_min_nr <= 0);
248         might_sleep();
249
250         spin_lock_irqsave(&pool->lock, flags);
251         if (new_min_nr <= pool->min_nr) {
252                 while (new_min_nr < pool->curr_nr) {
253                         element = remove_element(pool);
254                         spin_unlock_irqrestore(&pool->lock, flags);
255                         pool->free(element, pool->pool_data);
256                         spin_lock_irqsave(&pool->lock, flags);
257                 }
258                 pool->min_nr = new_min_nr;
259                 goto out_unlock;
260         }
261         spin_unlock_irqrestore(&pool->lock, flags);
262
263         /* Grow the pool */
264         new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
265                                      GFP_KERNEL);
266         if (!new_elements)
267                 return -ENOMEM;
268
269         spin_lock_irqsave(&pool->lock, flags);
270         if (unlikely(new_min_nr <= pool->min_nr)) {
271                 /* Raced, other resize will do our work */
272                 spin_unlock_irqrestore(&pool->lock, flags);
273                 kfree(new_elements);
274                 goto out;
275         }
276         memcpy(new_elements, pool->elements,
277                         pool->curr_nr * sizeof(*new_elements));
278         kfree(pool->elements);
279         pool->elements = new_elements;
280         pool->min_nr = new_min_nr;
281
282         while (pool->curr_nr < pool->min_nr) {
283                 spin_unlock_irqrestore(&pool->lock, flags);
284                 element = pool->alloc(GFP_KERNEL, pool->pool_data);
285                 if (!element)
286                         goto out;
287                 spin_lock_irqsave(&pool->lock, flags);
288                 if (pool->curr_nr < pool->min_nr) {
289                         add_element(pool, element);
290                 } else {
291                         spin_unlock_irqrestore(&pool->lock, flags);
292                         pool->free(element, pool->pool_data);   /* Raced */
293                         goto out;
294                 }
295         }
296 out_unlock:
297         spin_unlock_irqrestore(&pool->lock, flags);
298 out:
299         return 0;
300 }
301 EXPORT_SYMBOL(mempool_resize);
302
303 /**
304  * mempool_alloc - allocate an element from a specific memory pool
305  * @pool:      pointer to the memory pool which was allocated via
306  *             mempool_create().
307  * @gfp_mask:  the usual allocation bitmask.
308  *
309  * this function only sleeps if the alloc_fn() function sleeps or
310  * returns NULL. Note that due to preallocation, this function
311  * *never* fails when called from process contexts. (it might
312  * fail if called from an IRQ context.)
313  * Note: using __GFP_ZERO is not supported.
314  */
315 void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
316 {
317         void *element;
318         unsigned long flags;
319         wait_queue_t wait;
320         gfp_t gfp_temp;
321
322         VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
323         might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
324
325         gfp_mask |= __GFP_NOMEMALLOC;   /* don't allocate emergency reserves */
326         gfp_mask |= __GFP_NORETRY;      /* don't loop in __alloc_pages */
327         gfp_mask |= __GFP_NOWARN;       /* failures are OK */
328
329         gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
330
331 repeat_alloc:
332
333         element = pool->alloc(gfp_temp, pool->pool_data);
334         if (likely(element != NULL))
335                 return element;
336
337         spin_lock_irqsave(&pool->lock, flags);
338         if (likely(pool->curr_nr)) {
339                 element = remove_element(pool);
340                 spin_unlock_irqrestore(&pool->lock, flags);
341                 /* paired with rmb in mempool_free(), read comment there */
342                 smp_wmb();
343                 /*
344                  * Update the allocation stack trace as this is more useful
345                  * for debugging.
346                  */
347                 kmemleak_update_trace(element);
348                 return element;
349         }
350
351         /*
352          * We use gfp mask w/o direct reclaim or IO for the first round.  If
353          * alloc failed with that and @pool was empty, retry immediately.
354          */
355         if (gfp_temp != gfp_mask) {
356                 spin_unlock_irqrestore(&pool->lock, flags);
357                 gfp_temp = gfp_mask;
358                 goto repeat_alloc;
359         }
360
361         /* We must not sleep if !__GFP_DIRECT_RECLAIM */
362         if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
363                 spin_unlock_irqrestore(&pool->lock, flags);
364                 return NULL;
365         }
366
367         /* Let's wait for someone else to return an element to @pool */
368         init_wait(&wait);
369         prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
370
371         spin_unlock_irqrestore(&pool->lock, flags);
372
373         /*
374          * FIXME: this should be io_schedule().  The timeout is there as a
375          * workaround for some DM problems in 2.6.18.
376          */
377         io_schedule_timeout(5*HZ);
378
379         finish_wait(&pool->wait, &wait);
380         goto repeat_alloc;
381 }
382 EXPORT_SYMBOL(mempool_alloc);
383
384 /**
385  * mempool_free - return an element to the pool.
386  * @element:   pool element pointer.
387  * @pool:      pointer to the memory pool which was allocated via
388  *             mempool_create().
389  *
390  * this function only sleeps if the free_fn() function sleeps.
391  */
392 void mempool_free(void *element, mempool_t *pool)
393 {
394         unsigned long flags;
395
396         if (unlikely(element == NULL))
397                 return;
398
399         /*
400          * Paired with the wmb in mempool_alloc().  The preceding read is
401          * for @element and the following @pool->curr_nr.  This ensures
402          * that the visible value of @pool->curr_nr is from after the
403          * allocation of @element.  This is necessary for fringe cases
404          * where @element was passed to this task without going through
405          * barriers.
406          *
407          * For example, assume @p is %NULL at the beginning and one task
408          * performs "p = mempool_alloc(...);" while another task is doing
409          * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
410          * may end up using curr_nr value which is from before allocation
411          * of @p without the following rmb.
412          */
413         smp_rmb();
414
415         /*
416          * For correctness, we need a test which is guaranteed to trigger
417          * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
418          * without locking achieves that and refilling as soon as possible
419          * is desirable.
420          *
421          * Because curr_nr visible here is always a value after the
422          * allocation of @element, any task which decremented curr_nr below
423          * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
424          * incremented to min_nr afterwards.  If curr_nr gets incremented
425          * to min_nr after the allocation of @element, the elements
426          * allocated after that are subject to the same guarantee.
427          *
428          * Waiters happen iff curr_nr is 0 and the above guarantee also
429          * ensures that there will be frees which return elements to the
430          * pool waking up the waiters.
431          */
432         if (unlikely(pool->curr_nr < pool->min_nr)) {
433                 spin_lock_irqsave(&pool->lock, flags);
434                 if (likely(pool->curr_nr < pool->min_nr)) {
435                         add_element(pool, element);
436                         spin_unlock_irqrestore(&pool->lock, flags);
437                         wake_up(&pool->wait);
438                         return;
439                 }
440                 spin_unlock_irqrestore(&pool->lock, flags);
441         }
442         pool->free(element, pool->pool_data);
443 }
444 EXPORT_SYMBOL(mempool_free);
445
446 /*
447  * A commonly used alloc and free fn.
448  */
449 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
450 {
451         struct kmem_cache *mem = pool_data;
452         VM_BUG_ON(mem->ctor);
453         return kmem_cache_alloc(mem, gfp_mask);
454 }
455 EXPORT_SYMBOL(mempool_alloc_slab);
456
457 void mempool_free_slab(void *element, void *pool_data)
458 {
459         struct kmem_cache *mem = pool_data;
460         kmem_cache_free(mem, element);
461 }
462 EXPORT_SYMBOL(mempool_free_slab);
463
464 /*
465  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
466  * specified by pool_data
467  */
468 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
469 {
470         size_t size = (size_t)pool_data;
471         return kmalloc(size, gfp_mask);
472 }
473 EXPORT_SYMBOL(mempool_kmalloc);
474
475 void mempool_kfree(void *element, void *pool_data)
476 {
477         kfree(element);
478 }
479 EXPORT_SYMBOL(mempool_kfree);
480
481 /*
482  * A simple mempool-backed page allocator that allocates pages
483  * of the order specified by pool_data.
484  */
485 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
486 {
487         int order = (int)(long)pool_data;
488         return alloc_pages(gfp_mask, order);
489 }
490 EXPORT_SYMBOL(mempool_alloc_pages);
491
492 void mempool_free_pages(void *element, void *pool_data)
493 {
494         int order = (int)(long)pool_data;
495         __free_pages(element, order);
496 }
497 EXPORT_SYMBOL(mempool_free_pages);