]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mmap.c
537b36584e9afdc7b4272b473f8057ff0c11e783
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37
38 #include "internal.h"
39
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags)       (0)
42 #endif
43
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len)              (addr)
46 #endif
47
48 static void unmap_region(struct mm_struct *mm,
49                 struct vm_area_struct *vma, struct vm_area_struct *prev,
50                 unsigned long start, unsigned long end);
51
52 /*
53  * WARNING: the debugging will use recursive algorithms so never enable this
54  * unless you know what you are doing.
55  */
56 #undef DEBUG_MM_RB
57
58 /* description of effects of mapping type and prot in current implementation.
59  * this is due to the limited x86 page protection hardware.  The expected
60  * behavior is in parens:
61  *
62  * map_type     prot
63  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
64  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
65  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
66  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
67  *              
68  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
69  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
70  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
71  *
72  */
73 pgprot_t protection_map[16] = {
74         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80         return __pgprot(pgprot_val(protection_map[vm_flags &
81                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50;       /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
90
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109         unsigned long free, allowed;
110
111         vm_acct_memory(pages);
112
113         /*
114          * Sometimes we want to use more memory than we have
115          */
116         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117                 return 0;
118
119         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120                 unsigned long n;
121
122                 free = global_page_state(NR_FILE_PAGES);
123                 free += nr_swap_pages;
124
125                 /*
126                  * Any slabs which are created with the
127                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128                  * which are reclaimable, under pressure.  The dentry
129                  * cache and most inode caches should fall into this
130                  */
131                 free += global_page_state(NR_SLAB_RECLAIMABLE);
132
133                 /*
134                  * Leave the last 3% for root
135                  */
136                 if (!cap_sys_admin)
137                         free -= free / 32;
138
139                 if (free > pages)
140                         return 0;
141
142                 /*
143                  * nr_free_pages() is very expensive on large systems,
144                  * only call if we're about to fail.
145                  */
146                 n = nr_free_pages();
147
148                 /*
149                  * Leave reserved pages. The pages are not for anonymous pages.
150                  */
151                 if (n <= totalreserve_pages)
152                         goto error;
153                 else
154                         n -= totalreserve_pages;
155
156                 /*
157                  * Leave the last 3% for root
158                  */
159                 if (!cap_sys_admin)
160                         n -= n / 32;
161                 free += n;
162
163                 if (free > pages)
164                         return 0;
165
166                 goto error;
167         }
168
169         allowed = (totalram_pages - hugetlb_total_pages())
170                 * sysctl_overcommit_ratio / 100;
171         /*
172          * Leave the last 3% for root
173          */
174         if (!cap_sys_admin)
175                 allowed -= allowed / 32;
176         allowed += total_swap_pages;
177
178         /* Don't let a single process grow too big:
179            leave 3% of the size of this process for other processes */
180         if (mm)
181                 allowed -= mm->total_vm / 32;
182
183         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184                 return 0;
185 error:
186         vm_unacct_memory(pages);
187
188         return -ENOMEM;
189 }
190
191 /*
192  * Requires inode->i_mapping->i_mmap_lock
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195                 struct file *file, struct address_space *mapping)
196 {
197         if (vma->vm_flags & VM_DENYWRITE)
198                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199         if (vma->vm_flags & VM_SHARED)
200                 mapping->i_mmap_writable--;
201
202         flush_dcache_mmap_lock(mapping);
203         if (unlikely(vma->vm_flags & VM_NONLINEAR))
204                 list_del_init(&vma->shared.vm_set.list);
205         else
206                 vma_prio_tree_remove(vma, &mapping->i_mmap);
207         flush_dcache_mmap_unlock(mapping);
208 }
209
210 /*
211  * Unlink a file-based vm structure from its prio_tree, to hide
212  * vma from rmap and vmtruncate before freeing its page tables.
213  */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216         struct file *file = vma->vm_file;
217
218         if (file) {
219                 struct address_space *mapping = file->f_mapping;
220                 spin_lock(&mapping->i_mmap_lock);
221                 __remove_shared_vm_struct(vma, file, mapping);
222                 spin_unlock(&mapping->i_mmap_lock);
223         }
224 }
225
226 /*
227  * Close a vm structure and free it, returning the next.
228  */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231         struct vm_area_struct *next = vma->vm_next;
232
233         might_sleep();
234         if (vma->vm_ops && vma->vm_ops->close)
235                 vma->vm_ops->close(vma);
236         if (vma->vm_file) {
237                 fput(vma->vm_file);
238                 if (vma->vm_flags & VM_EXECUTABLE)
239                         removed_exe_file_vma(vma->vm_mm);
240         }
241         mpol_put(vma_policy(vma));
242         kmem_cache_free(vm_area_cachep, vma);
243         return next;
244 }
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         min_brk = mm->end_code;
257 #else
258         min_brk = mm->start_brk;
259 #endif
260         if (brk < min_brk)
261                 goto out;
262
263         /*
264          * Check against rlimit here. If this check is done later after the test
265          * of oldbrk with newbrk then it can escape the test and let the data
266          * segment grow beyond its set limit the in case where the limit is
267          * not page aligned -Ram Gupta
268          */
269         rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
270         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271                         (mm->end_data - mm->start_data) > rlim)
272                 goto out;
273
274         newbrk = PAGE_ALIGN(brk);
275         oldbrk = PAGE_ALIGN(mm->brk);
276         if (oldbrk == newbrk)
277                 goto set_brk;
278
279         /* Always allow shrinking brk. */
280         if (brk <= mm->brk) {
281                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282                         goto set_brk;
283                 goto out;
284         }
285
286         /* Check against existing mmap mappings. */
287         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288                 goto out;
289
290         /* Ok, looks good - let it rip. */
291         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292                 goto out;
293 set_brk:
294         mm->brk = brk;
295 out:
296         retval = mm->brk;
297         up_write(&mm->mmap_sem);
298         return retval;
299 }
300
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304         int i = 0, j;
305         struct rb_node *nd, *pn = NULL;
306         unsigned long prev = 0, pend = 0;
307
308         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309                 struct vm_area_struct *vma;
310                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311                 if (vma->vm_start < prev)
312                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313                 if (vma->vm_start < pend)
314                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315                 if (vma->vm_start > vma->vm_end)
316                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317                 i++;
318                 pn = nd;
319                 prev = vma->vm_start;
320                 pend = vma->vm_end;
321         }
322         j = 0;
323         for (nd = pn; nd; nd = rb_prev(nd)) {
324                 j++;
325         }
326         if (i != j)
327                 printk("backwards %d, forwards %d\n", j, i), i = 0;
328         return i;
329 }
330
331 void validate_mm(struct mm_struct *mm)
332 {
333         int bug = 0;
334         int i = 0;
335         struct vm_area_struct *tmp = mm->mmap;
336         while (tmp) {
337                 tmp = tmp->vm_next;
338                 i++;
339         }
340         if (i != mm->map_count)
341                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342         i = browse_rb(&mm->mm_rb);
343         if (i != mm->map_count)
344                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345         BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
354                 struct rb_node ** rb_parent)
355 {
356         struct vm_area_struct * vma;
357         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358
359         __rb_link = &mm->mm_rb.rb_node;
360         rb_prev = __rb_parent = NULL;
361         vma = NULL;
362
363         while (*__rb_link) {
364                 struct vm_area_struct *vma_tmp;
365
366                 __rb_parent = *__rb_link;
367                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368
369                 if (vma_tmp->vm_end > addr) {
370                         vma = vma_tmp;
371                         if (vma_tmp->vm_start <= addr)
372                                 break;
373                         __rb_link = &__rb_parent->rb_left;
374                 } else {
375                         rb_prev = __rb_parent;
376                         __rb_link = &__rb_parent->rb_right;
377                 }
378         }
379
380         *pprev = NULL;
381         if (rb_prev)
382                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383         *rb_link = __rb_link;
384         *rb_parent = __rb_parent;
385         return vma;
386 }
387
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390                 struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392         struct vm_area_struct *next;
393
394         vma->vm_prev = prev;
395         if (prev) {
396                 next = prev->vm_next;
397                 prev->vm_next = vma;
398         } else {
399                 mm->mmap = vma;
400                 if (rb_parent)
401                         next = rb_entry(rb_parent,
402                                         struct vm_area_struct, vm_rb);
403                 else
404                         next = NULL;
405         }
406         vma->vm_next = next;
407         if (next)
408                 next->vm_prev = vma;
409 }
410
411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
412                 struct rb_node **rb_link, struct rb_node *rb_parent)
413 {
414         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
415         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
416 }
417
418 static void __vma_link_file(struct vm_area_struct *vma)
419 {
420         struct file *file;
421
422         file = vma->vm_file;
423         if (file) {
424                 struct address_space *mapping = file->f_mapping;
425
426                 if (vma->vm_flags & VM_DENYWRITE)
427                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
428                 if (vma->vm_flags & VM_SHARED)
429                         mapping->i_mmap_writable++;
430
431                 flush_dcache_mmap_lock(mapping);
432                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
433                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
434                 else
435                         vma_prio_tree_insert(vma, &mapping->i_mmap);
436                 flush_dcache_mmap_unlock(mapping);
437         }
438 }
439
440 static void
441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
442         struct vm_area_struct *prev, struct rb_node **rb_link,
443         struct rb_node *rb_parent)
444 {
445         __vma_link_list(mm, vma, prev, rb_parent);
446         __vma_link_rb(mm, vma, rb_link, rb_parent);
447         __anon_vma_link(vma);
448 }
449
450 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
451                         struct vm_area_struct *prev, struct rb_node **rb_link,
452                         struct rb_node *rb_parent)
453 {
454         struct address_space *mapping = NULL;
455
456         if (vma->vm_file)
457                 mapping = vma->vm_file->f_mapping;
458
459         if (mapping) {
460                 spin_lock(&mapping->i_mmap_lock);
461                 vma->vm_truncate_count = mapping->truncate_count;
462         }
463         anon_vma_lock(vma);
464
465         __vma_link(mm, vma, prev, rb_link, rb_parent);
466         __vma_link_file(vma);
467
468         anon_vma_unlock(vma);
469         if (mapping)
470                 spin_unlock(&mapping->i_mmap_lock);
471
472         mm->map_count++;
473         validate_mm(mm);
474 }
475
476 /*
477  * Helper for vma_adjust in the split_vma insert case:
478  * insert vm structure into list and rbtree and anon_vma,
479  * but it has already been inserted into prio_tree earlier.
480  */
481 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
482 {
483         struct vm_area_struct *__vma, *prev;
484         struct rb_node **rb_link, *rb_parent;
485
486         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
487         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
488         __vma_link(mm, vma, prev, rb_link, rb_parent);
489         mm->map_count++;
490 }
491
492 static inline void
493 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
494                 struct vm_area_struct *prev)
495 {
496         struct vm_area_struct *next = vma->vm_next;
497
498         prev->vm_next = next;
499         if (next)
500                 next->vm_prev = prev;
501         rb_erase(&vma->vm_rb, &mm->mm_rb);
502         if (mm->mmap_cache == vma)
503                 mm->mmap_cache = prev;
504 }
505
506 /*
507  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
508  * is already present in an i_mmap tree without adjusting the tree.
509  * The following helper function should be used when such adjustments
510  * are necessary.  The "insert" vma (if any) is to be inserted
511  * before we drop the necessary locks.
512  */
513 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
514         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
515 {
516         struct mm_struct *mm = vma->vm_mm;
517         struct vm_area_struct *next = vma->vm_next;
518         struct vm_area_struct *importer = NULL;
519         struct address_space *mapping = NULL;
520         struct prio_tree_root *root = NULL;
521         struct file *file = vma->vm_file;
522         struct anon_vma *anon_vma = NULL;
523         long adjust_next = 0;
524         int remove_next = 0;
525
526         if (next && !insert) {
527                 if (end >= next->vm_end) {
528                         /*
529                          * vma expands, overlapping all the next, and
530                          * perhaps the one after too (mprotect case 6).
531                          */
532 again:                  remove_next = 1 + (end > next->vm_end);
533                         end = next->vm_end;
534                         anon_vma = next->anon_vma;
535                         importer = vma;
536                 } else if (end > next->vm_start) {
537                         /*
538                          * vma expands, overlapping part of the next:
539                          * mprotect case 5 shifting the boundary up.
540                          */
541                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
542                         anon_vma = next->anon_vma;
543                         importer = vma;
544                 } else if (end < vma->vm_end) {
545                         /*
546                          * vma shrinks, and !insert tells it's not
547                          * split_vma inserting another: so it must be
548                          * mprotect case 4 shifting the boundary down.
549                          */
550                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
551                         anon_vma = next->anon_vma;
552                         importer = next;
553                 }
554         }
555
556         if (file) {
557                 mapping = file->f_mapping;
558                 if (!(vma->vm_flags & VM_NONLINEAR))
559                         root = &mapping->i_mmap;
560                 spin_lock(&mapping->i_mmap_lock);
561                 if (importer &&
562                     vma->vm_truncate_count != next->vm_truncate_count) {
563                         /*
564                          * unmap_mapping_range might be in progress:
565                          * ensure that the expanding vma is rescanned.
566                          */
567                         importer->vm_truncate_count = 0;
568                 }
569                 if (insert) {
570                         insert->vm_truncate_count = vma->vm_truncate_count;
571                         /*
572                          * Put into prio_tree now, so instantiated pages
573                          * are visible to arm/parisc __flush_dcache_page
574                          * throughout; but we cannot insert into address
575                          * space until vma start or end is updated.
576                          */
577                         __vma_link_file(insert);
578                 }
579         }
580
581         /*
582          * When changing only vma->vm_end, we don't really need
583          * anon_vma lock.
584          */
585         if (vma->anon_vma && (insert || importer || start != vma->vm_start))
586                 anon_vma = vma->anon_vma;
587         if (anon_vma) {
588                 spin_lock(&anon_vma->lock);
589                 /*
590                  * Easily overlooked: when mprotect shifts the boundary,
591                  * make sure the expanding vma has anon_vma set if the
592                  * shrinking vma had, to cover any anon pages imported.
593                  */
594                 if (importer && !importer->anon_vma) {
595                         importer->anon_vma = anon_vma;
596                         __anon_vma_link(importer);
597                 }
598         }
599
600         if (root) {
601                 flush_dcache_mmap_lock(mapping);
602                 vma_prio_tree_remove(vma, root);
603                 if (adjust_next)
604                         vma_prio_tree_remove(next, root);
605         }
606
607         vma->vm_start = start;
608         vma->vm_end = end;
609         vma->vm_pgoff = pgoff;
610         if (adjust_next) {
611                 next->vm_start += adjust_next << PAGE_SHIFT;
612                 next->vm_pgoff += adjust_next;
613         }
614
615         if (root) {
616                 if (adjust_next)
617                         vma_prio_tree_insert(next, root);
618                 vma_prio_tree_insert(vma, root);
619                 flush_dcache_mmap_unlock(mapping);
620         }
621
622         if (remove_next) {
623                 /*
624                  * vma_merge has merged next into vma, and needs
625                  * us to remove next before dropping the locks.
626                  */
627                 __vma_unlink(mm, next, vma);
628                 if (file)
629                         __remove_shared_vm_struct(next, file, mapping);
630                 if (next->anon_vma)
631                         __anon_vma_merge(vma, next);
632         } else if (insert) {
633                 /*
634                  * split_vma has split insert from vma, and needs
635                  * us to insert it before dropping the locks
636                  * (it may either follow vma or precede it).
637                  */
638                 __insert_vm_struct(mm, insert);
639         }
640
641         if (anon_vma)
642                 spin_unlock(&anon_vma->lock);
643         if (mapping)
644                 spin_unlock(&mapping->i_mmap_lock);
645
646         if (remove_next) {
647                 if (file) {
648                         fput(file);
649                         if (next->vm_flags & VM_EXECUTABLE)
650                                 removed_exe_file_vma(mm);
651                 }
652                 mm->map_count--;
653                 mpol_put(vma_policy(next));
654                 kmem_cache_free(vm_area_cachep, next);
655                 /*
656                  * In mprotect's case 6 (see comments on vma_merge),
657                  * we must remove another next too. It would clutter
658                  * up the code too much to do both in one go.
659                  */
660                 if (remove_next == 2) {
661                         next = vma->vm_next;
662                         goto again;
663                 }
664         }
665
666         validate_mm(mm);
667 }
668
669 /*
670  * If the vma has a ->close operation then the driver probably needs to release
671  * per-vma resources, so we don't attempt to merge those.
672  */
673 static inline int is_mergeable_vma(struct vm_area_struct *vma,
674                         struct file *file, unsigned long vm_flags)
675 {
676         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
677         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
678                 return 0;
679         if (vma->vm_file != file)
680                 return 0;
681         if (vma->vm_ops && vma->vm_ops->close)
682                 return 0;
683         return 1;
684 }
685
686 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
687                                         struct anon_vma *anon_vma2)
688 {
689         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
690 }
691
692 /*
693  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
694  * in front of (at a lower virtual address and file offset than) the vma.
695  *
696  * We cannot merge two vmas if they have differently assigned (non-NULL)
697  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
698  *
699  * We don't check here for the merged mmap wrapping around the end of pagecache
700  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
701  * wrap, nor mmaps which cover the final page at index -1UL.
702  */
703 static int
704 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
705         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
706 {
707         if (is_mergeable_vma(vma, file, vm_flags) &&
708             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
709                 if (vma->vm_pgoff == vm_pgoff)
710                         return 1;
711         }
712         return 0;
713 }
714
715 /*
716  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
717  * beyond (at a higher virtual address and file offset than) the vma.
718  *
719  * We cannot merge two vmas if they have differently assigned (non-NULL)
720  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
721  */
722 static int
723 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
724         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
725 {
726         if (is_mergeable_vma(vma, file, vm_flags) &&
727             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
728                 pgoff_t vm_pglen;
729                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
730                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
731                         return 1;
732         }
733         return 0;
734 }
735
736 /*
737  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
738  * whether that can be merged with its predecessor or its successor.
739  * Or both (it neatly fills a hole).
740  *
741  * In most cases - when called for mmap, brk or mremap - [addr,end) is
742  * certain not to be mapped by the time vma_merge is called; but when
743  * called for mprotect, it is certain to be already mapped (either at
744  * an offset within prev, or at the start of next), and the flags of
745  * this area are about to be changed to vm_flags - and the no-change
746  * case has already been eliminated.
747  *
748  * The following mprotect cases have to be considered, where AAAA is
749  * the area passed down from mprotect_fixup, never extending beyond one
750  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
751  *
752  *     AAAA             AAAA                AAAA          AAAA
753  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
754  *    cannot merge    might become    might become    might become
755  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
756  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
757  *    mremap move:                                    PPPPNNNNNNNN 8
758  *        AAAA
759  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
760  *    might become    case 1 below    case 2 below    case 3 below
761  *
762  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
763  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
764  */
765 struct vm_area_struct *vma_merge(struct mm_struct *mm,
766                         struct vm_area_struct *prev, unsigned long addr,
767                         unsigned long end, unsigned long vm_flags,
768                         struct anon_vma *anon_vma, struct file *file,
769                         pgoff_t pgoff, struct mempolicy *policy)
770 {
771         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
772         struct vm_area_struct *area, *next;
773
774         /*
775          * We later require that vma->vm_flags == vm_flags,
776          * so this tests vma->vm_flags & VM_SPECIAL, too.
777          */
778         if (vm_flags & VM_SPECIAL)
779                 return NULL;
780
781         if (prev)
782                 next = prev->vm_next;
783         else
784                 next = mm->mmap;
785         area = next;
786         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
787                 next = next->vm_next;
788
789         /*
790          * Can it merge with the predecessor?
791          */
792         if (prev && prev->vm_end == addr &&
793                         mpol_equal(vma_policy(prev), policy) &&
794                         can_vma_merge_after(prev, vm_flags,
795                                                 anon_vma, file, pgoff)) {
796                 /*
797                  * OK, it can.  Can we now merge in the successor as well?
798                  */
799                 if (next && end == next->vm_start &&
800                                 mpol_equal(policy, vma_policy(next)) &&
801                                 can_vma_merge_before(next, vm_flags,
802                                         anon_vma, file, pgoff+pglen) &&
803                                 is_mergeable_anon_vma(prev->anon_vma,
804                                                       next->anon_vma)) {
805                                                         /* cases 1, 6 */
806                         vma_adjust(prev, prev->vm_start,
807                                 next->vm_end, prev->vm_pgoff, NULL);
808                 } else                                  /* cases 2, 5, 7 */
809                         vma_adjust(prev, prev->vm_start,
810                                 end, prev->vm_pgoff, NULL);
811                 return prev;
812         }
813
814         /*
815          * Can this new request be merged in front of next?
816          */
817         if (next && end == next->vm_start &&
818                         mpol_equal(policy, vma_policy(next)) &&
819                         can_vma_merge_before(next, vm_flags,
820                                         anon_vma, file, pgoff+pglen)) {
821                 if (prev && addr < prev->vm_end)        /* case 4 */
822                         vma_adjust(prev, prev->vm_start,
823                                 addr, prev->vm_pgoff, NULL);
824                 else                                    /* cases 3, 8 */
825                         vma_adjust(area, addr, next->vm_end,
826                                 next->vm_pgoff - pglen, NULL);
827                 return area;
828         }
829
830         return NULL;
831 }
832
833 /*
834  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
835  * neighbouring vmas for a suitable anon_vma, before it goes off
836  * to allocate a new anon_vma.  It checks because a repetitive
837  * sequence of mprotects and faults may otherwise lead to distinct
838  * anon_vmas being allocated, preventing vma merge in subsequent
839  * mprotect.
840  */
841 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
842 {
843         struct vm_area_struct *near;
844         unsigned long vm_flags;
845
846         near = vma->vm_next;
847         if (!near)
848                 goto try_prev;
849
850         /*
851          * Since only mprotect tries to remerge vmas, match flags
852          * which might be mprotected into each other later on.
853          * Neither mlock nor madvise tries to remerge at present,
854          * so leave their flags as obstructing a merge.
855          */
856         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
857         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
858
859         if (near->anon_vma && vma->vm_end == near->vm_start &&
860                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
861                         can_vma_merge_before(near, vm_flags,
862                                 NULL, vma->vm_file, vma->vm_pgoff +
863                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
864                 return near->anon_vma;
865 try_prev:
866         /*
867          * It is potentially slow to have to call find_vma_prev here.
868          * But it's only on the first write fault on the vma, not
869          * every time, and we could devise a way to avoid it later
870          * (e.g. stash info in next's anon_vma_node when assigning
871          * an anon_vma, or when trying vma_merge).  Another time.
872          */
873         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
874         if (!near)
875                 goto none;
876
877         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
878         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
879
880         if (near->anon_vma && near->vm_end == vma->vm_start &&
881                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
882                         can_vma_merge_after(near, vm_flags,
883                                 NULL, vma->vm_file, vma->vm_pgoff))
884                 return near->anon_vma;
885 none:
886         /*
887          * There's no absolute need to look only at touching neighbours:
888          * we could search further afield for "compatible" anon_vmas.
889          * But it would probably just be a waste of time searching,
890          * or lead to too many vmas hanging off the same anon_vma.
891          * We're trying to allow mprotect remerging later on,
892          * not trying to minimize memory used for anon_vmas.
893          */
894         return NULL;
895 }
896
897 #ifdef CONFIG_PROC_FS
898 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
899                                                 struct file *file, long pages)
900 {
901         const unsigned long stack_flags
902                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
903
904         if (file) {
905                 mm->shared_vm += pages;
906                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
907                         mm->exec_vm += pages;
908         } else if (flags & stack_flags)
909                 mm->stack_vm += pages;
910         if (flags & (VM_RESERVED|VM_IO))
911                 mm->reserved_vm += pages;
912 }
913 #endif /* CONFIG_PROC_FS */
914
915 /*
916  * The caller must hold down_write(&current->mm->mmap_sem).
917  */
918
919 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
920                         unsigned long len, unsigned long prot,
921                         unsigned long flags, unsigned long pgoff)
922 {
923         struct mm_struct * mm = current->mm;
924         struct inode *inode;
925         unsigned int vm_flags;
926         int error;
927         unsigned long reqprot = prot;
928
929         /*
930          * Does the application expect PROT_READ to imply PROT_EXEC?
931          *
932          * (the exception is when the underlying filesystem is noexec
933          *  mounted, in which case we dont add PROT_EXEC.)
934          */
935         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
936                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
937                         prot |= PROT_EXEC;
938
939         if (!len)
940                 return -EINVAL;
941
942         if (!(flags & MAP_FIXED))
943                 addr = round_hint_to_min(addr);
944
945         /* Careful about overflows.. */
946         len = PAGE_ALIGN(len);
947         if (!len)
948                 return -ENOMEM;
949
950         /* offset overflow? */
951         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
952                return -EOVERFLOW;
953
954         /* Too many mappings? */
955         if (mm->map_count > sysctl_max_map_count)
956                 return -ENOMEM;
957
958         /* Obtain the address to map to. we verify (or select) it and ensure
959          * that it represents a valid section of the address space.
960          */
961         addr = get_unmapped_area(file, addr, len, pgoff, flags);
962         if (addr & ~PAGE_MASK)
963                 return addr;
964
965         /* Do simple checking here so the lower-level routines won't have
966          * to. we assume access permissions have been handled by the open
967          * of the memory object, so we don't do any here.
968          */
969         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
970                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
971
972         if (flags & MAP_LOCKED)
973                 if (!can_do_mlock())
974                         return -EPERM;
975
976         /* mlock MCL_FUTURE? */
977         if (vm_flags & VM_LOCKED) {
978                 unsigned long locked, lock_limit;
979                 locked = len >> PAGE_SHIFT;
980                 locked += mm->locked_vm;
981                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
982                 lock_limit >>= PAGE_SHIFT;
983                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
984                         return -EAGAIN;
985         }
986
987         inode = file ? file->f_path.dentry->d_inode : NULL;
988
989         if (file) {
990                 switch (flags & MAP_TYPE) {
991                 case MAP_SHARED:
992                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
993                                 return -EACCES;
994
995                         /*
996                          * Make sure we don't allow writing to an append-only
997                          * file..
998                          */
999                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1000                                 return -EACCES;
1001
1002                         /*
1003                          * Make sure there are no mandatory locks on the file.
1004                          */
1005                         if (locks_verify_locked(inode))
1006                                 return -EAGAIN;
1007
1008                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1009                         if (!(file->f_mode & FMODE_WRITE))
1010                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1011
1012                         /* fall through */
1013                 case MAP_PRIVATE:
1014                         if (!(file->f_mode & FMODE_READ))
1015                                 return -EACCES;
1016                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1017                                 if (vm_flags & VM_EXEC)
1018                                         return -EPERM;
1019                                 vm_flags &= ~VM_MAYEXEC;
1020                         }
1021
1022                         if (!file->f_op || !file->f_op->mmap)
1023                                 return -ENODEV;
1024                         break;
1025
1026                 default:
1027                         return -EINVAL;
1028                 }
1029         } else {
1030                 switch (flags & MAP_TYPE) {
1031                 case MAP_SHARED:
1032                         /*
1033                          * Ignore pgoff.
1034                          */
1035                         pgoff = 0;
1036                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1037                         break;
1038                 case MAP_PRIVATE:
1039                         /*
1040                          * Set pgoff according to addr for anon_vma.
1041                          */
1042                         pgoff = addr >> PAGE_SHIFT;
1043                         break;
1044                 default:
1045                         return -EINVAL;
1046                 }
1047         }
1048
1049         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1050         if (error)
1051                 return error;
1052         error = ima_file_mmap(file, prot);
1053         if (error)
1054                 return error;
1055
1056         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1057 }
1058 EXPORT_SYMBOL(do_mmap_pgoff);
1059
1060 /*
1061  * Some shared mappigns will want the pages marked read-only
1062  * to track write events. If so, we'll downgrade vm_page_prot
1063  * to the private version (using protection_map[] without the
1064  * VM_SHARED bit).
1065  */
1066 int vma_wants_writenotify(struct vm_area_struct *vma)
1067 {
1068         unsigned int vm_flags = vma->vm_flags;
1069
1070         /* If it was private or non-writable, the write bit is already clear */
1071         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1072                 return 0;
1073
1074         /* The backer wishes to know when pages are first written to? */
1075         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1076                 return 1;
1077
1078         /* The open routine did something to the protections already? */
1079         if (pgprot_val(vma->vm_page_prot) !=
1080             pgprot_val(vm_get_page_prot(vm_flags)))
1081                 return 0;
1082
1083         /* Specialty mapping? */
1084         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1085                 return 0;
1086
1087         /* Can the mapping track the dirty pages? */
1088         return vma->vm_file && vma->vm_file->f_mapping &&
1089                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1090 }
1091
1092 /*
1093  * We account for memory if it's a private writeable mapping,
1094  * not hugepages and VM_NORESERVE wasn't set.
1095  */
1096 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1097 {
1098         /*
1099          * hugetlb has its own accounting separate from the core VM
1100          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1101          */
1102         if (file && is_file_hugepages(file))
1103                 return 0;
1104
1105         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1106 }
1107
1108 unsigned long mmap_region(struct file *file, unsigned long addr,
1109                           unsigned long len, unsigned long flags,
1110                           unsigned int vm_flags, unsigned long pgoff)
1111 {
1112         struct mm_struct *mm = current->mm;
1113         struct vm_area_struct *vma, *prev;
1114         int correct_wcount = 0;
1115         int error;
1116         struct rb_node **rb_link, *rb_parent;
1117         unsigned long charged = 0;
1118         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1119
1120         /* Clear old maps */
1121         error = -ENOMEM;
1122 munmap_back:
1123         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1124         if (vma && vma->vm_start < addr + len) {
1125                 if (do_munmap(mm, addr, len))
1126                         return -ENOMEM;
1127                 goto munmap_back;
1128         }
1129
1130         /* Check against address space limit. */
1131         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1132                 return -ENOMEM;
1133
1134         /*
1135          * Set 'VM_NORESERVE' if we should not account for the
1136          * memory use of this mapping.
1137          */
1138         if ((flags & MAP_NORESERVE)) {
1139                 /* We honor MAP_NORESERVE if allowed to overcommit */
1140                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1141                         vm_flags |= VM_NORESERVE;
1142
1143                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1144                 if (file && is_file_hugepages(file))
1145                         vm_flags |= VM_NORESERVE;
1146         }
1147
1148         /*
1149          * Private writable mapping: check memory availability
1150          */
1151         if (accountable_mapping(file, vm_flags)) {
1152                 charged = len >> PAGE_SHIFT;
1153                 if (security_vm_enough_memory(charged))
1154                         return -ENOMEM;
1155                 vm_flags |= VM_ACCOUNT;
1156         }
1157
1158         /*
1159          * Can we just expand an old mapping?
1160          */
1161         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1162         if (vma)
1163                 goto out;
1164
1165         /*
1166          * Determine the object being mapped and call the appropriate
1167          * specific mapper. the address has already been validated, but
1168          * not unmapped, but the maps are removed from the list.
1169          */
1170         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1171         if (!vma) {
1172                 error = -ENOMEM;
1173                 goto unacct_error;
1174         }
1175
1176         vma->vm_mm = mm;
1177         vma->vm_start = addr;
1178         vma->vm_end = addr + len;
1179         vma->vm_flags = vm_flags;
1180         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1181         vma->vm_pgoff = pgoff;
1182
1183         if (file) {
1184                 error = -EINVAL;
1185                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1186                         goto free_vma;
1187                 if (vm_flags & VM_DENYWRITE) {
1188                         error = deny_write_access(file);
1189                         if (error)
1190                                 goto free_vma;
1191                         correct_wcount = 1;
1192                 }
1193                 vma->vm_file = file;
1194                 get_file(file);
1195                 error = file->f_op->mmap(file, vma);
1196                 if (error)
1197                         goto unmap_and_free_vma;
1198                 if (vm_flags & VM_EXECUTABLE)
1199                         added_exe_file_vma(mm);
1200
1201                 /* Can addr have changed??
1202                  *
1203                  * Answer: Yes, several device drivers can do it in their
1204                  *         f_op->mmap method. -DaveM
1205                  */
1206                 addr = vma->vm_start;
1207                 pgoff = vma->vm_pgoff;
1208                 vm_flags = vma->vm_flags;
1209         } else if (vm_flags & VM_SHARED) {
1210                 error = shmem_zero_setup(vma);
1211                 if (error)
1212                         goto free_vma;
1213         }
1214
1215         if (vma_wants_writenotify(vma))
1216                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1217
1218         vma_link(mm, vma, prev, rb_link, rb_parent);
1219         file = vma->vm_file;
1220
1221         /* Once vma denies write, undo our temporary denial count */
1222         if (correct_wcount)
1223                 atomic_inc(&inode->i_writecount);
1224 out:
1225         perf_event_mmap(vma);
1226
1227         mm->total_vm += len >> PAGE_SHIFT;
1228         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1229         if (vm_flags & VM_LOCKED) {
1230                 /*
1231                  * makes pages present; downgrades, drops, reacquires mmap_sem
1232                  */
1233                 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1234                 if (nr_pages < 0)
1235                         return nr_pages;        /* vma gone! */
1236                 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1237         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1238                 make_pages_present(addr, addr + len);
1239         return addr;
1240
1241 unmap_and_free_vma:
1242         if (correct_wcount)
1243                 atomic_inc(&inode->i_writecount);
1244         vma->vm_file = NULL;
1245         fput(file);
1246
1247         /* Undo any partial mapping done by a device driver. */
1248         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1249         charged = 0;
1250 free_vma:
1251         kmem_cache_free(vm_area_cachep, vma);
1252 unacct_error:
1253         if (charged)
1254                 vm_unacct_memory(charged);
1255         return error;
1256 }
1257
1258 /* Get an address range which is currently unmapped.
1259  * For shmat() with addr=0.
1260  *
1261  * Ugly calling convention alert:
1262  * Return value with the low bits set means error value,
1263  * ie
1264  *      if (ret & ~PAGE_MASK)
1265  *              error = ret;
1266  *
1267  * This function "knows" that -ENOMEM has the bits set.
1268  */
1269 #ifndef HAVE_ARCH_UNMAPPED_AREA
1270 unsigned long
1271 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1272                 unsigned long len, unsigned long pgoff, unsigned long flags)
1273 {
1274         struct mm_struct *mm = current->mm;
1275         struct vm_area_struct *vma;
1276         unsigned long start_addr;
1277
1278         if (len > TASK_SIZE)
1279                 return -ENOMEM;
1280
1281         if (flags & MAP_FIXED)
1282                 return addr;
1283
1284         if (addr) {
1285                 addr = PAGE_ALIGN(addr);
1286                 vma = find_vma(mm, addr);
1287                 if (TASK_SIZE - len >= addr &&
1288                     (!vma || addr + len <= vma->vm_start))
1289                         return addr;
1290         }
1291         if (len > mm->cached_hole_size) {
1292                 start_addr = addr = mm->free_area_cache;
1293         } else {
1294                 start_addr = addr = TASK_UNMAPPED_BASE;
1295                 mm->cached_hole_size = 0;
1296         }
1297
1298 full_search:
1299         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1300                 /* At this point:  (!vma || addr < vma->vm_end). */
1301                 if (TASK_SIZE - len < addr) {
1302                         /*
1303                          * Start a new search - just in case we missed
1304                          * some holes.
1305                          */
1306                         if (start_addr != TASK_UNMAPPED_BASE) {
1307                                 addr = TASK_UNMAPPED_BASE;
1308                                 start_addr = addr;
1309                                 mm->cached_hole_size = 0;
1310                                 goto full_search;
1311                         }
1312                         return -ENOMEM;
1313                 }
1314                 if (!vma || addr + len <= vma->vm_start) {
1315                         /*
1316                          * Remember the place where we stopped the search:
1317                          */
1318                         mm->free_area_cache = addr + len;
1319                         return addr;
1320                 }
1321                 if (addr + mm->cached_hole_size < vma->vm_start)
1322                         mm->cached_hole_size = vma->vm_start - addr;
1323                 addr = vma->vm_end;
1324         }
1325 }
1326 #endif  
1327
1328 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1329 {
1330         /*
1331          * Is this a new hole at the lowest possible address?
1332          */
1333         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1334                 mm->free_area_cache = addr;
1335                 mm->cached_hole_size = ~0UL;
1336         }
1337 }
1338
1339 /*
1340  * This mmap-allocator allocates new areas top-down from below the
1341  * stack's low limit (the base):
1342  */
1343 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1344 unsigned long
1345 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1346                           const unsigned long len, const unsigned long pgoff,
1347                           const unsigned long flags)
1348 {
1349         struct vm_area_struct *vma;
1350         struct mm_struct *mm = current->mm;
1351         unsigned long addr = addr0;
1352
1353         /* requested length too big for entire address space */
1354         if (len > TASK_SIZE)
1355                 return -ENOMEM;
1356
1357         if (flags & MAP_FIXED)
1358                 return addr;
1359
1360         /* requesting a specific address */
1361         if (addr) {
1362                 addr = PAGE_ALIGN(addr);
1363                 vma = find_vma(mm, addr);
1364                 if (TASK_SIZE - len >= addr &&
1365                                 (!vma || addr + len <= vma->vm_start))
1366                         return addr;
1367         }
1368
1369         /* check if free_area_cache is useful for us */
1370         if (len <= mm->cached_hole_size) {
1371                 mm->cached_hole_size = 0;
1372                 mm->free_area_cache = mm->mmap_base;
1373         }
1374
1375         /* either no address requested or can't fit in requested address hole */
1376         addr = mm->free_area_cache;
1377
1378         /* make sure it can fit in the remaining address space */
1379         if (addr > len) {
1380                 vma = find_vma(mm, addr-len);
1381                 if (!vma || addr <= vma->vm_start)
1382                         /* remember the address as a hint for next time */
1383                         return (mm->free_area_cache = addr-len);
1384         }
1385
1386         if (mm->mmap_base < len)
1387                 goto bottomup;
1388
1389         addr = mm->mmap_base-len;
1390
1391         do {
1392                 /*
1393                  * Lookup failure means no vma is above this address,
1394                  * else if new region fits below vma->vm_start,
1395                  * return with success:
1396                  */
1397                 vma = find_vma(mm, addr);
1398                 if (!vma || addr+len <= vma->vm_start)
1399                         /* remember the address as a hint for next time */
1400                         return (mm->free_area_cache = addr);
1401
1402                 /* remember the largest hole we saw so far */
1403                 if (addr + mm->cached_hole_size < vma->vm_start)
1404                         mm->cached_hole_size = vma->vm_start - addr;
1405
1406                 /* try just below the current vma->vm_start */
1407                 addr = vma->vm_start-len;
1408         } while (len < vma->vm_start);
1409
1410 bottomup:
1411         /*
1412          * A failed mmap() very likely causes application failure,
1413          * so fall back to the bottom-up function here. This scenario
1414          * can happen with large stack limits and large mmap()
1415          * allocations.
1416          */
1417         mm->cached_hole_size = ~0UL;
1418         mm->free_area_cache = TASK_UNMAPPED_BASE;
1419         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1420         /*
1421          * Restore the topdown base:
1422          */
1423         mm->free_area_cache = mm->mmap_base;
1424         mm->cached_hole_size = ~0UL;
1425
1426         return addr;
1427 }
1428 #endif
1429
1430 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1431 {
1432         /*
1433          * Is this a new hole at the highest possible address?
1434          */
1435         if (addr > mm->free_area_cache)
1436                 mm->free_area_cache = addr;
1437
1438         /* dont allow allocations above current base */
1439         if (mm->free_area_cache > mm->mmap_base)
1440                 mm->free_area_cache = mm->mmap_base;
1441 }
1442
1443 unsigned long
1444 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1445                 unsigned long pgoff, unsigned long flags)
1446 {
1447         unsigned long (*get_area)(struct file *, unsigned long,
1448                                   unsigned long, unsigned long, unsigned long);
1449
1450         unsigned long error = arch_mmap_check(addr, len, flags);
1451         if (error)
1452                 return error;
1453
1454         /* Careful about overflows.. */
1455         if (len > TASK_SIZE)
1456                 return -ENOMEM;
1457
1458         get_area = current->mm->get_unmapped_area;
1459         if (file && file->f_op && file->f_op->get_unmapped_area)
1460                 get_area = file->f_op->get_unmapped_area;
1461         addr = get_area(file, addr, len, pgoff, flags);
1462         if (IS_ERR_VALUE(addr))
1463                 return addr;
1464
1465         if (addr > TASK_SIZE - len)
1466                 return -ENOMEM;
1467         if (addr & ~PAGE_MASK)
1468                 return -EINVAL;
1469
1470         return arch_rebalance_pgtables(addr, len);
1471 }
1472
1473 EXPORT_SYMBOL(get_unmapped_area);
1474
1475 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1476 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1477 {
1478         struct vm_area_struct *vma = NULL;
1479
1480         if (mm) {
1481                 /* Check the cache first. */
1482                 /* (Cache hit rate is typically around 35%.) */
1483                 vma = mm->mmap_cache;
1484                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1485                         struct rb_node * rb_node;
1486
1487                         rb_node = mm->mm_rb.rb_node;
1488                         vma = NULL;
1489
1490                         while (rb_node) {
1491                                 struct vm_area_struct * vma_tmp;
1492
1493                                 vma_tmp = rb_entry(rb_node,
1494                                                 struct vm_area_struct, vm_rb);
1495
1496                                 if (vma_tmp->vm_end > addr) {
1497                                         vma = vma_tmp;
1498                                         if (vma_tmp->vm_start <= addr)
1499                                                 break;
1500                                         rb_node = rb_node->rb_left;
1501                                 } else
1502                                         rb_node = rb_node->rb_right;
1503                         }
1504                         if (vma)
1505                                 mm->mmap_cache = vma;
1506                 }
1507         }
1508         return vma;
1509 }
1510
1511 EXPORT_SYMBOL(find_vma);
1512
1513 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1514 struct vm_area_struct *
1515 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1516                         struct vm_area_struct **pprev)
1517 {
1518         struct vm_area_struct *vma = NULL, *prev = NULL;
1519         struct rb_node *rb_node;
1520         if (!mm)
1521                 goto out;
1522
1523         /* Guard against addr being lower than the first VMA */
1524         vma = mm->mmap;
1525
1526         /* Go through the RB tree quickly. */
1527         rb_node = mm->mm_rb.rb_node;
1528
1529         while (rb_node) {
1530                 struct vm_area_struct *vma_tmp;
1531                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1532
1533                 if (addr < vma_tmp->vm_end) {
1534                         rb_node = rb_node->rb_left;
1535                 } else {
1536                         prev = vma_tmp;
1537                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1538                                 break;
1539                         rb_node = rb_node->rb_right;
1540                 }
1541         }
1542
1543 out:
1544         *pprev = prev;
1545         return prev ? prev->vm_next : vma;
1546 }
1547
1548 /*
1549  * Verify that the stack growth is acceptable and
1550  * update accounting. This is shared with both the
1551  * grow-up and grow-down cases.
1552  */
1553 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1554 {
1555         struct mm_struct *mm = vma->vm_mm;
1556         struct rlimit *rlim = current->signal->rlim;
1557         unsigned long new_start;
1558
1559         /* address space limit tests */
1560         if (!may_expand_vm(mm, grow))
1561                 return -ENOMEM;
1562
1563         /* Stack limit test */
1564         if (size > rlim[RLIMIT_STACK].rlim_cur)
1565                 return -ENOMEM;
1566
1567         /* mlock limit tests */
1568         if (vma->vm_flags & VM_LOCKED) {
1569                 unsigned long locked;
1570                 unsigned long limit;
1571                 locked = mm->locked_vm + grow;
1572                 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1573                 if (locked > limit && !capable(CAP_IPC_LOCK))
1574                         return -ENOMEM;
1575         }
1576
1577         /* Check to ensure the stack will not grow into a hugetlb-only region */
1578         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1579                         vma->vm_end - size;
1580         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1581                 return -EFAULT;
1582
1583         /*
1584          * Overcommit..  This must be the final test, as it will
1585          * update security statistics.
1586          */
1587         if (security_vm_enough_memory_mm(mm, grow))
1588                 return -ENOMEM;
1589
1590         /* Ok, everything looks good - let it rip */
1591         mm->total_vm += grow;
1592         if (vma->vm_flags & VM_LOCKED)
1593                 mm->locked_vm += grow;
1594         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1595         return 0;
1596 }
1597
1598 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1599 /*
1600  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1601  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1602  */
1603 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1604 {
1605         int error;
1606
1607         if (!(vma->vm_flags & VM_GROWSUP))
1608                 return -EFAULT;
1609
1610         /*
1611          * We must make sure the anon_vma is allocated
1612          * so that the anon_vma locking is not a noop.
1613          */
1614         if (unlikely(anon_vma_prepare(vma)))
1615                 return -ENOMEM;
1616         anon_vma_lock(vma);
1617
1618         /*
1619          * vma->vm_start/vm_end cannot change under us because the caller
1620          * is required to hold the mmap_sem in read mode.  We need the
1621          * anon_vma lock to serialize against concurrent expand_stacks.
1622          * Also guard against wrapping around to address 0.
1623          */
1624         if (address < PAGE_ALIGN(address+4))
1625                 address = PAGE_ALIGN(address+4);
1626         else {
1627                 anon_vma_unlock(vma);
1628                 return -ENOMEM;
1629         }
1630         error = 0;
1631
1632         /* Somebody else might have raced and expanded it already */
1633         if (address > vma->vm_end) {
1634                 unsigned long size, grow;
1635
1636                 size = address - vma->vm_start;
1637                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1638
1639                 error = acct_stack_growth(vma, size, grow);
1640                 if (!error)
1641                         vma->vm_end = address;
1642         }
1643         anon_vma_unlock(vma);
1644         return error;
1645 }
1646 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1647
1648 /*
1649  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1650  */
1651 static int expand_downwards(struct vm_area_struct *vma,
1652                                    unsigned long address)
1653 {
1654         int error;
1655
1656         /*
1657          * We must make sure the anon_vma is allocated
1658          * so that the anon_vma locking is not a noop.
1659          */
1660         if (unlikely(anon_vma_prepare(vma)))
1661                 return -ENOMEM;
1662
1663         address &= PAGE_MASK;
1664         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1665         if (error)
1666                 return error;
1667
1668         anon_vma_lock(vma);
1669
1670         /*
1671          * vma->vm_start/vm_end cannot change under us because the caller
1672          * is required to hold the mmap_sem in read mode.  We need the
1673          * anon_vma lock to serialize against concurrent expand_stacks.
1674          */
1675
1676         /* Somebody else might have raced and expanded it already */
1677         if (address < vma->vm_start) {
1678                 unsigned long size, grow;
1679
1680                 size = vma->vm_end - address;
1681                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1682
1683                 error = -ENOMEM;
1684                 if (grow <= vma->vm_pgoff) {
1685                         error = acct_stack_growth(vma, size, grow);
1686                         if (!error) {
1687                                 vma->vm_start = address;
1688                                 vma->vm_pgoff -= grow;
1689                         }
1690                 }
1691         }
1692         anon_vma_unlock(vma);
1693         return error;
1694 }
1695
1696 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1697 {
1698         return expand_downwards(vma, address);
1699 }
1700
1701 #ifdef CONFIG_STACK_GROWSUP
1702 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1703 {
1704         return expand_upwards(vma, address);
1705 }
1706
1707 struct vm_area_struct *
1708 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1709 {
1710         struct vm_area_struct *vma, *prev;
1711
1712         addr &= PAGE_MASK;
1713         vma = find_vma_prev(mm, addr, &prev);
1714         if (vma && (vma->vm_start <= addr))
1715                 return vma;
1716         if (!prev || expand_stack(prev, addr))
1717                 return NULL;
1718         if (prev->vm_flags & VM_LOCKED) {
1719                 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1720                         return NULL;    /* vma gone! */
1721         }
1722         return prev;
1723 }
1724 #else
1725 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1726 {
1727         return expand_downwards(vma, address);
1728 }
1729
1730 struct vm_area_struct *
1731 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1732 {
1733         struct vm_area_struct * vma;
1734         unsigned long start;
1735
1736         addr &= PAGE_MASK;
1737         vma = find_vma(mm,addr);
1738         if (!vma)
1739                 return NULL;
1740         if (vma->vm_start <= addr)
1741                 return vma;
1742         if (!(vma->vm_flags & VM_GROWSDOWN))
1743                 return NULL;
1744         start = vma->vm_start;
1745         if (expand_stack(vma, addr))
1746                 return NULL;
1747         if (vma->vm_flags & VM_LOCKED) {
1748                 if (mlock_vma_pages_range(vma, addr, start) < 0)
1749                         return NULL;    /* vma gone! */
1750         }
1751         return vma;
1752 }
1753 #endif
1754
1755 /*
1756  * Ok - we have the memory areas we should free on the vma list,
1757  * so release them, and do the vma updates.
1758  *
1759  * Called with the mm semaphore held.
1760  */
1761 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1762 {
1763         /* Update high watermark before we lower total_vm */
1764         update_hiwater_vm(mm);
1765         do {
1766                 long nrpages = vma_pages(vma);
1767
1768                 mm->total_vm -= nrpages;
1769                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1770                 vma = remove_vma(vma);
1771         } while (vma);
1772         validate_mm(mm);
1773 }
1774
1775 /*
1776  * Get rid of page table information in the indicated region.
1777  *
1778  * Called with the mm semaphore held.
1779  */
1780 static void unmap_region(struct mm_struct *mm,
1781                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1782                 unsigned long start, unsigned long end)
1783 {
1784         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1785         struct mmu_gather *tlb;
1786         unsigned long nr_accounted = 0;
1787
1788         lru_add_drain();
1789         tlb = tlb_gather_mmu(mm, 0);
1790         update_hiwater_rss(mm);
1791         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1792         vm_unacct_memory(nr_accounted);
1793         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1794                                  next? next->vm_start: 0);
1795         tlb_finish_mmu(tlb, start, end);
1796 }
1797
1798 /*
1799  * Create a list of vma's touched by the unmap, removing them from the mm's
1800  * vma list as we go..
1801  */
1802 static void
1803 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1804         struct vm_area_struct *prev, unsigned long end)
1805 {
1806         struct vm_area_struct **insertion_point;
1807         struct vm_area_struct *tail_vma = NULL;
1808         unsigned long addr;
1809
1810         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1811         vma->vm_prev = NULL;
1812         do {
1813                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1814                 mm->map_count--;
1815                 tail_vma = vma;
1816                 vma = vma->vm_next;
1817         } while (vma && vma->vm_start < end);
1818         *insertion_point = vma;
1819         if (vma)
1820                 vma->vm_prev = prev;
1821         tail_vma->vm_next = NULL;
1822         if (mm->unmap_area == arch_unmap_area)
1823                 addr = prev ? prev->vm_end : mm->mmap_base;
1824         else
1825                 addr = vma ?  vma->vm_start : mm->mmap_base;
1826         mm->unmap_area(mm, addr);
1827         mm->mmap_cache = NULL;          /* Kill the cache. */
1828 }
1829
1830 /*
1831  * Split a vma into two pieces at address 'addr', a new vma is allocated
1832  * either for the first part or the tail.
1833  */
1834 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1835               unsigned long addr, int new_below)
1836 {
1837         struct mempolicy *pol;
1838         struct vm_area_struct *new;
1839
1840         if (is_vm_hugetlb_page(vma) && (addr &
1841                                         ~(huge_page_mask(hstate_vma(vma)))))
1842                 return -EINVAL;
1843
1844         if (mm->map_count >= sysctl_max_map_count)
1845                 return -ENOMEM;
1846
1847         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1848         if (!new)
1849                 return -ENOMEM;
1850
1851         /* most fields are the same, copy all, and then fixup */
1852         *new = *vma;
1853
1854         if (new_below)
1855                 new->vm_end = addr;
1856         else {
1857                 new->vm_start = addr;
1858                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1859         }
1860
1861         pol = mpol_dup(vma_policy(vma));
1862         if (IS_ERR(pol)) {
1863                 kmem_cache_free(vm_area_cachep, new);
1864                 return PTR_ERR(pol);
1865         }
1866         vma_set_policy(new, pol);
1867
1868         if (new->vm_file) {
1869                 get_file(new->vm_file);
1870                 if (vma->vm_flags & VM_EXECUTABLE)
1871                         added_exe_file_vma(mm);
1872         }
1873
1874         if (new->vm_ops && new->vm_ops->open)
1875                 new->vm_ops->open(new);
1876
1877         if (new_below)
1878                 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1879                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1880         else
1881                 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1882
1883         return 0;
1884 }
1885
1886 /* Munmap is split into 2 main parts -- this part which finds
1887  * what needs doing, and the areas themselves, which do the
1888  * work.  This now handles partial unmappings.
1889  * Jeremy Fitzhardinge <jeremy@goop.org>
1890  */
1891 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1892 {
1893         unsigned long end;
1894         struct vm_area_struct *vma, *prev, *last;
1895
1896         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1897                 return -EINVAL;
1898
1899         if ((len = PAGE_ALIGN(len)) == 0)
1900                 return -EINVAL;
1901
1902         /* Find the first overlapping VMA */
1903         vma = find_vma_prev(mm, start, &prev);
1904         if (!vma)
1905                 return 0;
1906         /* we have  start < vma->vm_end  */
1907
1908         /* if it doesn't overlap, we have nothing.. */
1909         end = start + len;
1910         if (vma->vm_start >= end)
1911                 return 0;
1912
1913         /*
1914          * If we need to split any vma, do it now to save pain later.
1915          *
1916          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1917          * unmapped vm_area_struct will remain in use: so lower split_vma
1918          * places tmp vma above, and higher split_vma places tmp vma below.
1919          */
1920         if (start > vma->vm_start) {
1921                 int error = split_vma(mm, vma, start, 0);
1922                 if (error)
1923                         return error;
1924                 prev = vma;
1925         }
1926
1927         /* Does it split the last one? */
1928         last = find_vma(mm, end);
1929         if (last && end > last->vm_start) {
1930                 int error = split_vma(mm, last, end, 1);
1931                 if (error)
1932                         return error;
1933         }
1934         vma = prev? prev->vm_next: mm->mmap;
1935
1936         /*
1937          * unlock any mlock()ed ranges before detaching vmas
1938          */
1939         if (mm->locked_vm) {
1940                 struct vm_area_struct *tmp = vma;
1941                 while (tmp && tmp->vm_start < end) {
1942                         if (tmp->vm_flags & VM_LOCKED) {
1943                                 mm->locked_vm -= vma_pages(tmp);
1944                                 munlock_vma_pages_all(tmp);
1945                         }
1946                         tmp = tmp->vm_next;
1947                 }
1948         }
1949
1950         /*
1951          * Remove the vma's, and unmap the actual pages
1952          */
1953         detach_vmas_to_be_unmapped(mm, vma, prev, end);
1954         unmap_region(mm, vma, prev, start, end);
1955
1956         /* Fix up all other VM information */
1957         remove_vma_list(mm, vma);
1958
1959         return 0;
1960 }
1961
1962 EXPORT_SYMBOL(do_munmap);
1963
1964 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1965 {
1966         int ret;
1967         struct mm_struct *mm = current->mm;
1968
1969         profile_munmap(addr);
1970
1971         down_write(&mm->mmap_sem);
1972         ret = do_munmap(mm, addr, len);
1973         up_write(&mm->mmap_sem);
1974         return ret;
1975 }
1976
1977 static inline void verify_mm_writelocked(struct mm_struct *mm)
1978 {
1979 #ifdef CONFIG_DEBUG_VM
1980         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1981                 WARN_ON(1);
1982                 up_read(&mm->mmap_sem);
1983         }
1984 #endif
1985 }
1986
1987 /*
1988  *  this is really a simplified "do_mmap".  it only handles
1989  *  anonymous maps.  eventually we may be able to do some
1990  *  brk-specific accounting here.
1991  */
1992 unsigned long do_brk(unsigned long addr, unsigned long len)
1993 {
1994         struct mm_struct * mm = current->mm;
1995         struct vm_area_struct * vma, * prev;
1996         unsigned long flags;
1997         struct rb_node ** rb_link, * rb_parent;
1998         pgoff_t pgoff = addr >> PAGE_SHIFT;
1999         int error;
2000
2001         len = PAGE_ALIGN(len);
2002         if (!len)
2003                 return addr;
2004
2005         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2006         if (error)
2007                 return error;
2008
2009         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2010
2011         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2012         if (error & ~PAGE_MASK)
2013                 return error;
2014
2015         /*
2016          * mlock MCL_FUTURE?
2017          */
2018         if (mm->def_flags & VM_LOCKED) {
2019                 unsigned long locked, lock_limit;
2020                 locked = len >> PAGE_SHIFT;
2021                 locked += mm->locked_vm;
2022                 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2023                 lock_limit >>= PAGE_SHIFT;
2024                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2025                         return -EAGAIN;
2026         }
2027
2028         /*
2029          * mm->mmap_sem is required to protect against another thread
2030          * changing the mappings in case we sleep.
2031          */
2032         verify_mm_writelocked(mm);
2033
2034         /*
2035          * Clear old maps.  this also does some error checking for us
2036          */
2037  munmap_back:
2038         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2039         if (vma && vma->vm_start < addr + len) {
2040                 if (do_munmap(mm, addr, len))
2041                         return -ENOMEM;
2042                 goto munmap_back;
2043         }
2044
2045         /* Check against address space limits *after* clearing old maps... */
2046         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2047                 return -ENOMEM;
2048
2049         if (mm->map_count > sysctl_max_map_count)
2050                 return -ENOMEM;
2051
2052         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2053                 return -ENOMEM;
2054
2055         /* Can we just expand an old private anonymous mapping? */
2056         vma = vma_merge(mm, prev, addr, addr + len, flags,
2057                                         NULL, NULL, pgoff, NULL);
2058         if (vma)
2059                 goto out;
2060
2061         /*
2062          * create a vma struct for an anonymous mapping
2063          */
2064         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2065         if (!vma) {
2066                 vm_unacct_memory(len >> PAGE_SHIFT);
2067                 return -ENOMEM;
2068         }
2069
2070         vma->vm_mm = mm;
2071         vma->vm_start = addr;
2072         vma->vm_end = addr + len;
2073         vma->vm_pgoff = pgoff;
2074         vma->vm_flags = flags;
2075         vma->vm_page_prot = vm_get_page_prot(flags);
2076         vma_link(mm, vma, prev, rb_link, rb_parent);
2077 out:
2078         mm->total_vm += len >> PAGE_SHIFT;
2079         if (flags & VM_LOCKED) {
2080                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2081                         mm->locked_vm += (len >> PAGE_SHIFT);
2082         }
2083         return addr;
2084 }
2085
2086 EXPORT_SYMBOL(do_brk);
2087
2088 /* Release all mmaps. */
2089 void exit_mmap(struct mm_struct *mm)
2090 {
2091         struct mmu_gather *tlb;
2092         struct vm_area_struct *vma;
2093         unsigned long nr_accounted = 0;
2094         unsigned long end;
2095
2096         /* mm's last user has gone, and its about to be pulled down */
2097         mmu_notifier_release(mm);
2098
2099         if (mm->locked_vm) {
2100                 vma = mm->mmap;
2101                 while (vma) {
2102                         if (vma->vm_flags & VM_LOCKED)
2103                                 munlock_vma_pages_all(vma);
2104                         vma = vma->vm_next;
2105                 }
2106         }
2107
2108         arch_exit_mmap(mm);
2109
2110         vma = mm->mmap;
2111         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2112                 return;
2113
2114         lru_add_drain();
2115         flush_cache_mm(mm);
2116         tlb = tlb_gather_mmu(mm, 1);
2117         /* update_hiwater_rss(mm) here? but nobody should be looking */
2118         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2119         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2120         vm_unacct_memory(nr_accounted);
2121
2122         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2123         tlb_finish_mmu(tlb, 0, end);
2124
2125         /*
2126          * Walk the list again, actually closing and freeing it,
2127          * with preemption enabled, without holding any MM locks.
2128          */
2129         while (vma)
2130                 vma = remove_vma(vma);
2131
2132         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2133 }
2134
2135 /* Insert vm structure into process list sorted by address
2136  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2137  * then i_mmap_lock is taken here.
2138  */
2139 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2140 {
2141         struct vm_area_struct * __vma, * prev;
2142         struct rb_node ** rb_link, * rb_parent;
2143
2144         /*
2145          * The vm_pgoff of a purely anonymous vma should be irrelevant
2146          * until its first write fault, when page's anon_vma and index
2147          * are set.  But now set the vm_pgoff it will almost certainly
2148          * end up with (unless mremap moves it elsewhere before that
2149          * first wfault), so /proc/pid/maps tells a consistent story.
2150          *
2151          * By setting it to reflect the virtual start address of the
2152          * vma, merges and splits can happen in a seamless way, just
2153          * using the existing file pgoff checks and manipulations.
2154          * Similarly in do_mmap_pgoff and in do_brk.
2155          */
2156         if (!vma->vm_file) {
2157                 BUG_ON(vma->anon_vma);
2158                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2159         }
2160         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2161         if (__vma && __vma->vm_start < vma->vm_end)
2162                 return -ENOMEM;
2163         if ((vma->vm_flags & VM_ACCOUNT) &&
2164              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2165                 return -ENOMEM;
2166         vma_link(mm, vma, prev, rb_link, rb_parent);
2167         return 0;
2168 }
2169
2170 /*
2171  * Copy the vma structure to a new location in the same mm,
2172  * prior to moving page table entries, to effect an mremap move.
2173  */
2174 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2175         unsigned long addr, unsigned long len, pgoff_t pgoff)
2176 {
2177         struct vm_area_struct *vma = *vmap;
2178         unsigned long vma_start = vma->vm_start;
2179         struct mm_struct *mm = vma->vm_mm;
2180         struct vm_area_struct *new_vma, *prev;
2181         struct rb_node **rb_link, *rb_parent;
2182         struct mempolicy *pol;
2183
2184         /*
2185          * If anonymous vma has not yet been faulted, update new pgoff
2186          * to match new location, to increase its chance of merging.
2187          */
2188         if (!vma->vm_file && !vma->anon_vma)
2189                 pgoff = addr >> PAGE_SHIFT;
2190
2191         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2192         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2193                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2194         if (new_vma) {
2195                 /*
2196                  * Source vma may have been merged into new_vma
2197                  */
2198                 if (vma_start >= new_vma->vm_start &&
2199                     vma_start < new_vma->vm_end)
2200                         *vmap = new_vma;
2201         } else {
2202                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2203                 if (new_vma) {
2204                         *new_vma = *vma;
2205                         pol = mpol_dup(vma_policy(vma));
2206                         if (IS_ERR(pol)) {
2207                                 kmem_cache_free(vm_area_cachep, new_vma);
2208                                 return NULL;
2209                         }
2210                         vma_set_policy(new_vma, pol);
2211                         new_vma->vm_start = addr;
2212                         new_vma->vm_end = addr + len;
2213                         new_vma->vm_pgoff = pgoff;
2214                         if (new_vma->vm_file) {
2215                                 get_file(new_vma->vm_file);
2216                                 if (vma->vm_flags & VM_EXECUTABLE)
2217                                         added_exe_file_vma(mm);
2218                         }
2219                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2220                                 new_vma->vm_ops->open(new_vma);
2221                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2222                 }
2223         }
2224         return new_vma;
2225 }
2226
2227 /*
2228  * Return true if the calling process may expand its vm space by the passed
2229  * number of pages
2230  */
2231 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2232 {
2233         unsigned long cur = mm->total_vm;       /* pages */
2234         unsigned long lim;
2235
2236         lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2237
2238         if (cur + npages > lim)
2239                 return 0;
2240         return 1;
2241 }
2242
2243
2244 static int special_mapping_fault(struct vm_area_struct *vma,
2245                                 struct vm_fault *vmf)
2246 {
2247         pgoff_t pgoff;
2248         struct page **pages;
2249
2250         /*
2251          * special mappings have no vm_file, and in that case, the mm
2252          * uses vm_pgoff internally. So we have to subtract it from here.
2253          * We are allowed to do this because we are the mm; do not copy
2254          * this code into drivers!
2255          */
2256         pgoff = vmf->pgoff - vma->vm_pgoff;
2257
2258         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2259                 pgoff--;
2260
2261         if (*pages) {
2262                 struct page *page = *pages;
2263                 get_page(page);
2264                 vmf->page = page;
2265                 return 0;
2266         }
2267
2268         return VM_FAULT_SIGBUS;
2269 }
2270
2271 /*
2272  * Having a close hook prevents vma merging regardless of flags.
2273  */
2274 static void special_mapping_close(struct vm_area_struct *vma)
2275 {
2276 }
2277
2278 static const struct vm_operations_struct special_mapping_vmops = {
2279         .close = special_mapping_close,
2280         .fault = special_mapping_fault,
2281 };
2282
2283 /*
2284  * Called with mm->mmap_sem held for writing.
2285  * Insert a new vma covering the given region, with the given flags.
2286  * Its pages are supplied by the given array of struct page *.
2287  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2288  * The region past the last page supplied will always produce SIGBUS.
2289  * The array pointer and the pages it points to are assumed to stay alive
2290  * for as long as this mapping might exist.
2291  */
2292 int install_special_mapping(struct mm_struct *mm,
2293                             unsigned long addr, unsigned long len,
2294                             unsigned long vm_flags, struct page **pages)
2295 {
2296         int ret;
2297         struct vm_area_struct *vma;
2298
2299         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2300         if (unlikely(vma == NULL))
2301                 return -ENOMEM;
2302
2303         vma->vm_mm = mm;
2304         vma->vm_start = addr;
2305         vma->vm_end = addr + len;
2306
2307         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2308         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2309
2310         vma->vm_ops = &special_mapping_vmops;
2311         vma->vm_private_data = pages;
2312
2313         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2314         if (ret)
2315                 goto out;
2316
2317         ret = insert_vm_struct(mm, vma);
2318         if (ret)
2319                 goto out;
2320
2321         mm->total_vm += len >> PAGE_SHIFT;
2322
2323         perf_event_mmap(vma);
2324
2325         return 0;
2326
2327 out:
2328         kmem_cache_free(vm_area_cachep, vma);
2329         return ret;
2330 }
2331
2332 static DEFINE_MUTEX(mm_all_locks_mutex);
2333
2334 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2335 {
2336         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2337                 /*
2338                  * The LSB of head.next can't change from under us
2339                  * because we hold the mm_all_locks_mutex.
2340                  */
2341                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2342                 /*
2343                  * We can safely modify head.next after taking the
2344                  * anon_vma->lock. If some other vma in this mm shares
2345                  * the same anon_vma we won't take it again.
2346                  *
2347                  * No need of atomic instructions here, head.next
2348                  * can't change from under us thanks to the
2349                  * anon_vma->lock.
2350                  */
2351                 if (__test_and_set_bit(0, (unsigned long *)
2352                                        &anon_vma->head.next))
2353                         BUG();
2354         }
2355 }
2356
2357 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2358 {
2359         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2360                 /*
2361                  * AS_MM_ALL_LOCKS can't change from under us because
2362                  * we hold the mm_all_locks_mutex.
2363                  *
2364                  * Operations on ->flags have to be atomic because
2365                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2366                  * mm_all_locks_mutex, there may be other cpus
2367                  * changing other bitflags in parallel to us.
2368                  */
2369                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2370                         BUG();
2371                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2372         }
2373 }
2374
2375 /*
2376  * This operation locks against the VM for all pte/vma/mm related
2377  * operations that could ever happen on a certain mm. This includes
2378  * vmtruncate, try_to_unmap, and all page faults.
2379  *
2380  * The caller must take the mmap_sem in write mode before calling
2381  * mm_take_all_locks(). The caller isn't allowed to release the
2382  * mmap_sem until mm_drop_all_locks() returns.
2383  *
2384  * mmap_sem in write mode is required in order to block all operations
2385  * that could modify pagetables and free pages without need of
2386  * altering the vma layout (for example populate_range() with
2387  * nonlinear vmas). It's also needed in write mode to avoid new
2388  * anon_vmas to be associated with existing vmas.
2389  *
2390  * A single task can't take more than one mm_take_all_locks() in a row
2391  * or it would deadlock.
2392  *
2393  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2394  * mapping->flags avoid to take the same lock twice, if more than one
2395  * vma in this mm is backed by the same anon_vma or address_space.
2396  *
2397  * We can take all the locks in random order because the VM code
2398  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2399  * takes more than one of them in a row. Secondly we're protected
2400  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2401  *
2402  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2403  * that may have to take thousand of locks.
2404  *
2405  * mm_take_all_locks() can fail if it's interrupted by signals.
2406  */
2407 int mm_take_all_locks(struct mm_struct *mm)
2408 {
2409         struct vm_area_struct *vma;
2410         int ret = -EINTR;
2411
2412         BUG_ON(down_read_trylock(&mm->mmap_sem));
2413
2414         mutex_lock(&mm_all_locks_mutex);
2415
2416         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2417                 if (signal_pending(current))
2418                         goto out_unlock;
2419                 if (vma->vm_file && vma->vm_file->f_mapping)
2420                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2421         }
2422
2423         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2424                 if (signal_pending(current))
2425                         goto out_unlock;
2426                 if (vma->anon_vma)
2427                         vm_lock_anon_vma(mm, vma->anon_vma);
2428         }
2429
2430         ret = 0;
2431
2432 out_unlock:
2433         if (ret)
2434                 mm_drop_all_locks(mm);
2435
2436         return ret;
2437 }
2438
2439 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2440 {
2441         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2442                 /*
2443                  * The LSB of head.next can't change to 0 from under
2444                  * us because we hold the mm_all_locks_mutex.
2445                  *
2446                  * We must however clear the bitflag before unlocking
2447                  * the vma so the users using the anon_vma->head will
2448                  * never see our bitflag.
2449                  *
2450                  * No need of atomic instructions here, head.next
2451                  * can't change from under us until we release the
2452                  * anon_vma->lock.
2453                  */
2454                 if (!__test_and_clear_bit(0, (unsigned long *)
2455                                           &anon_vma->head.next))
2456                         BUG();
2457                 spin_unlock(&anon_vma->lock);
2458         }
2459 }
2460
2461 static void vm_unlock_mapping(struct address_space *mapping)
2462 {
2463         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2464                 /*
2465                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2466                  * because we hold the mm_all_locks_mutex.
2467                  */
2468                 spin_unlock(&mapping->i_mmap_lock);
2469                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2470                                         &mapping->flags))
2471                         BUG();
2472         }
2473 }
2474
2475 /*
2476  * The mmap_sem cannot be released by the caller until
2477  * mm_drop_all_locks() returns.
2478  */
2479 void mm_drop_all_locks(struct mm_struct *mm)
2480 {
2481         struct vm_area_struct *vma;
2482
2483         BUG_ON(down_read_trylock(&mm->mmap_sem));
2484         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2485
2486         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2487                 if (vma->anon_vma)
2488                         vm_unlock_anon_vma(vma->anon_vma);
2489                 if (vma->vm_file && vma->vm_file->f_mapping)
2490                         vm_unlock_mapping(vma->vm_file->f_mapping);
2491         }
2492
2493         mutex_unlock(&mm_all_locks_mutex);
2494 }
2495
2496 /*
2497  * initialise the VMA slab
2498  */
2499 void __init mmap_init(void)
2500 {
2501         int ret;
2502
2503         ret = percpu_counter_init(&vm_committed_as, 0);
2504         VM_BUG_ON(ret);
2505 }