6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 unsigned long free, allowed;
116 vm_acct_memory(pages);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 free = global_page_state(NR_FREE_PAGES);
126 free += global_page_state(NR_FILE_PAGES);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free -= global_page_state(NR_SHMEM);
136 free += nr_swap_pages;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free += global_page_state(NR_SLAB_RECLAIMABLE);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free <= totalreserve_pages)
152 free -= totalreserve_pages;
155 * Leave the last 3% for root
166 allowed = (totalram_pages - hugetlb_total_pages())
167 * sysctl_overcommit_ratio / 100;
169 * Leave the last 3% for root
172 allowed -= allowed / 32;
173 allowed += total_swap_pages;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
178 allowed -= mm->total_vm / 32;
180 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 vm_unacct_memory(pages);
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 struct file *file, struct address_space *mapping)
194 if (vma->vm_flags & VM_DENYWRITE)
195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 if (vma->vm_flags & VM_SHARED)
197 mapping->i_mmap_writable--;
199 flush_dcache_mmap_lock(mapping);
200 if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 list_del_init(&vma->shared.vm_set.list);
203 vma_prio_tree_remove(vma, &mapping->i_mmap);
204 flush_dcache_mmap_unlock(mapping);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct *vma)
213 struct file *file = vma->vm_file;
216 struct address_space *mapping = file->f_mapping;
217 mutex_lock(&mapping->i_mmap_mutex);
218 __remove_shared_vm_struct(vma, file, mapping);
219 mutex_unlock(&mapping->i_mmap_mutex);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 struct vm_area_struct *next = vma->vm_next;
231 if (vma->vm_ops && vma->vm_ops->close)
232 vma->vm_ops->close(vma);
235 if (vma->vm_flags & VM_EXECUTABLE)
236 removed_exe_file_vma(vma->vm_mm);
238 mpol_put(vma_policy(vma));
239 kmem_cache_free(vm_area_cachep, vma);
243 static unsigned long do_brk(unsigned long addr, unsigned long len);
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
252 down_write(&mm->mmap_sem);
254 #ifdef CONFIG_COMPAT_BRK
256 * CONFIG_COMPAT_BRK can still be overridden by setting
257 * randomize_va_space to 2, which will still cause mm->start_brk
258 * to be arbitrarily shifted
260 if (current->brk_randomized)
261 min_brk = mm->start_brk;
263 min_brk = mm->end_data;
265 min_brk = mm->start_brk;
271 * Check against rlimit here. If this check is done later after the test
272 * of oldbrk with newbrk then it can escape the test and let the data
273 * segment grow beyond its set limit the in case where the limit is
274 * not page aligned -Ram Gupta
276 rlim = rlimit(RLIMIT_DATA);
277 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
278 (mm->end_data - mm->start_data) > rlim)
281 newbrk = PAGE_ALIGN(brk);
282 oldbrk = PAGE_ALIGN(mm->brk);
283 if (oldbrk == newbrk)
286 /* Always allow shrinking brk. */
287 if (brk <= mm->brk) {
288 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
293 /* Check against existing mmap mappings. */
294 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
297 /* Ok, looks good - let it rip. */
298 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
304 up_write(&mm->mmap_sem);
309 static int browse_rb(struct rb_root *root)
312 struct rb_node *nd, *pn = NULL;
313 unsigned long prev = 0, pend = 0;
315 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
316 struct vm_area_struct *vma;
317 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
318 if (vma->vm_start < prev)
319 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
320 if (vma->vm_start < pend)
321 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
322 if (vma->vm_start > vma->vm_end)
323 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
326 prev = vma->vm_start;
330 for (nd = pn; nd; nd = rb_prev(nd)) {
334 printk("backwards %d, forwards %d\n", j, i), i = 0;
338 void validate_mm(struct mm_struct *mm)
342 struct vm_area_struct *tmp = mm->mmap;
347 if (i != mm->map_count)
348 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
349 i = browse_rb(&mm->mm_rb);
350 if (i != mm->map_count)
351 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
355 #define validate_mm(mm) do { } while (0)
358 static struct vm_area_struct *
359 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
360 struct vm_area_struct **pprev, struct rb_node ***rb_link,
361 struct rb_node ** rb_parent)
363 struct vm_area_struct * vma;
364 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366 __rb_link = &mm->mm_rb.rb_node;
367 rb_prev = __rb_parent = NULL;
371 struct vm_area_struct *vma_tmp;
373 __rb_parent = *__rb_link;
374 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376 if (vma_tmp->vm_end > addr) {
378 if (vma_tmp->vm_start <= addr)
380 __rb_link = &__rb_parent->rb_left;
382 rb_prev = __rb_parent;
383 __rb_link = &__rb_parent->rb_right;
389 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
390 *rb_link = __rb_link;
391 *rb_parent = __rb_parent;
395 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
396 struct rb_node **rb_link, struct rb_node *rb_parent)
398 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
399 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
402 static void __vma_link_file(struct vm_area_struct *vma)
408 struct address_space *mapping = file->f_mapping;
410 if (vma->vm_flags & VM_DENYWRITE)
411 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
412 if (vma->vm_flags & VM_SHARED)
413 mapping->i_mmap_writable++;
415 flush_dcache_mmap_lock(mapping);
416 if (unlikely(vma->vm_flags & VM_NONLINEAR))
417 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419 vma_prio_tree_insert(vma, &mapping->i_mmap);
420 flush_dcache_mmap_unlock(mapping);
425 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426 struct vm_area_struct *prev, struct rb_node **rb_link,
427 struct rb_node *rb_parent)
429 __vma_link_list(mm, vma, prev, rb_parent);
430 __vma_link_rb(mm, vma, rb_link, rb_parent);
433 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434 struct vm_area_struct *prev, struct rb_node **rb_link,
435 struct rb_node *rb_parent)
437 struct address_space *mapping = NULL;
440 mapping = vma->vm_file->f_mapping;
443 mutex_lock(&mapping->i_mmap_mutex);
445 __vma_link(mm, vma, prev, rb_link, rb_parent);
446 __vma_link_file(vma);
449 mutex_unlock(&mapping->i_mmap_mutex);
456 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
457 * mm's list and rbtree. It has already been inserted into the prio_tree.
459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 struct vm_area_struct *__vma, *prev;
462 struct rb_node **rb_link, *rb_parent;
464 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466 __vma_link(mm, vma, prev, rb_link, rb_parent);
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472 struct vm_area_struct *prev)
474 struct vm_area_struct *next = vma->vm_next;
476 prev->vm_next = next;
478 next->vm_prev = prev;
479 rb_erase(&vma->vm_rb, &mm->mm_rb);
480 if (mm->mmap_cache == vma)
481 mm->mmap_cache = prev;
485 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486 * is already present in an i_mmap tree without adjusting the tree.
487 * The following helper function should be used when such adjustments
488 * are necessary. The "insert" vma (if any) is to be inserted
489 * before we drop the necessary locks.
491 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
492 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 struct mm_struct *mm = vma->vm_mm;
495 struct vm_area_struct *next = vma->vm_next;
496 struct vm_area_struct *importer = NULL;
497 struct address_space *mapping = NULL;
498 struct prio_tree_root *root = NULL;
499 struct anon_vma *anon_vma = NULL;
500 struct file *file = vma->vm_file;
501 long adjust_next = 0;
504 if (next && !insert) {
505 struct vm_area_struct *exporter = NULL;
507 if (end >= next->vm_end) {
509 * vma expands, overlapping all the next, and
510 * perhaps the one after too (mprotect case 6).
512 again: remove_next = 1 + (end > next->vm_end);
516 } else if (end > next->vm_start) {
518 * vma expands, overlapping part of the next:
519 * mprotect case 5 shifting the boundary up.
521 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
524 } else if (end < vma->vm_end) {
526 * vma shrinks, and !insert tells it's not
527 * split_vma inserting another: so it must be
528 * mprotect case 4 shifting the boundary down.
530 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
536 * Easily overlooked: when mprotect shifts the boundary,
537 * make sure the expanding vma has anon_vma set if the
538 * shrinking vma had, to cover any anon pages imported.
540 if (exporter && exporter->anon_vma && !importer->anon_vma) {
541 if (anon_vma_clone(importer, exporter))
543 importer->anon_vma = exporter->anon_vma;
548 mapping = file->f_mapping;
549 if (!(vma->vm_flags & VM_NONLINEAR))
550 root = &mapping->i_mmap;
551 mutex_lock(&mapping->i_mmap_mutex);
554 * Put into prio_tree now, so instantiated pages
555 * are visible to arm/parisc __flush_dcache_page
556 * throughout; but we cannot insert into address
557 * space until vma start or end is updated.
559 __vma_link_file(insert);
563 vma_adjust_trans_huge(vma, start, end, adjust_next);
566 * When changing only vma->vm_end, we don't really need anon_vma
567 * lock. This is a fairly rare case by itself, but the anon_vma
568 * lock may be shared between many sibling processes. Skipping
569 * the lock for brk adjustments makes a difference sometimes.
571 if (vma->anon_vma && (importer || start != vma->vm_start)) {
572 anon_vma = vma->anon_vma;
573 anon_vma_lock(anon_vma);
577 flush_dcache_mmap_lock(mapping);
578 vma_prio_tree_remove(vma, root);
580 vma_prio_tree_remove(next, root);
583 vma->vm_start = start;
585 vma->vm_pgoff = pgoff;
587 next->vm_start += adjust_next << PAGE_SHIFT;
588 next->vm_pgoff += adjust_next;
593 vma_prio_tree_insert(next, root);
594 vma_prio_tree_insert(vma, root);
595 flush_dcache_mmap_unlock(mapping);
600 * vma_merge has merged next into vma, and needs
601 * us to remove next before dropping the locks.
603 __vma_unlink(mm, next, vma);
605 __remove_shared_vm_struct(next, file, mapping);
608 * split_vma has split insert from vma, and needs
609 * us to insert it before dropping the locks
610 * (it may either follow vma or precede it).
612 __insert_vm_struct(mm, insert);
616 anon_vma_unlock(anon_vma);
618 mutex_unlock(&mapping->i_mmap_mutex);
623 if (next->vm_flags & VM_EXECUTABLE)
624 removed_exe_file_vma(mm);
627 anon_vma_merge(vma, next);
629 mpol_put(vma_policy(next));
630 kmem_cache_free(vm_area_cachep, next);
632 * In mprotect's case 6 (see comments on vma_merge),
633 * we must remove another next too. It would clutter
634 * up the code too much to do both in one go.
636 if (remove_next == 2) {
648 * If the vma has a ->close operation then the driver probably needs to release
649 * per-vma resources, so we don't attempt to merge those.
651 static inline int is_mergeable_vma(struct vm_area_struct *vma,
652 struct file *file, unsigned long vm_flags)
654 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
655 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
657 if (vma->vm_file != file)
659 if (vma->vm_ops && vma->vm_ops->close)
664 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
665 struct anon_vma *anon_vma2,
666 struct vm_area_struct *vma)
669 * The list_is_singular() test is to avoid merging VMA cloned from
670 * parents. This can improve scalability caused by anon_vma lock.
672 if ((!anon_vma1 || !anon_vma2) && (!vma ||
673 list_is_singular(&vma->anon_vma_chain)))
675 return anon_vma1 == anon_vma2;
679 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
680 * in front of (at a lower virtual address and file offset than) the vma.
682 * We cannot merge two vmas if they have differently assigned (non-NULL)
683 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
685 * We don't check here for the merged mmap wrapping around the end of pagecache
686 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
687 * wrap, nor mmaps which cover the final page at index -1UL.
690 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
691 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
693 if (is_mergeable_vma(vma, file, vm_flags) &&
694 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
695 if (vma->vm_pgoff == vm_pgoff)
702 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
703 * beyond (at a higher virtual address and file offset than) the vma.
705 * We cannot merge two vmas if they have differently assigned (non-NULL)
706 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
709 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
710 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
712 if (is_mergeable_vma(vma, file, vm_flags) &&
713 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
715 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
716 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
723 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
724 * whether that can be merged with its predecessor or its successor.
725 * Or both (it neatly fills a hole).
727 * In most cases - when called for mmap, brk or mremap - [addr,end) is
728 * certain not to be mapped by the time vma_merge is called; but when
729 * called for mprotect, it is certain to be already mapped (either at
730 * an offset within prev, or at the start of next), and the flags of
731 * this area are about to be changed to vm_flags - and the no-change
732 * case has already been eliminated.
734 * The following mprotect cases have to be considered, where AAAA is
735 * the area passed down from mprotect_fixup, never extending beyond one
736 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
738 * AAAA AAAA AAAA AAAA
739 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
740 * cannot merge might become might become might become
741 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
742 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
743 * mremap move: PPPPNNNNNNNN 8
745 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
746 * might become case 1 below case 2 below case 3 below
748 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
749 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
751 struct vm_area_struct *vma_merge(struct mm_struct *mm,
752 struct vm_area_struct *prev, unsigned long addr,
753 unsigned long end, unsigned long vm_flags,
754 struct anon_vma *anon_vma, struct file *file,
755 pgoff_t pgoff, struct mempolicy *policy)
757 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
758 struct vm_area_struct *area, *next;
762 * We later require that vma->vm_flags == vm_flags,
763 * so this tests vma->vm_flags & VM_SPECIAL, too.
765 if (vm_flags & VM_SPECIAL)
769 next = prev->vm_next;
773 if (next && next->vm_end == end) /* cases 6, 7, 8 */
774 next = next->vm_next;
777 * Can it merge with the predecessor?
779 if (prev && prev->vm_end == addr &&
780 mpol_equal(vma_policy(prev), policy) &&
781 can_vma_merge_after(prev, vm_flags,
782 anon_vma, file, pgoff)) {
784 * OK, it can. Can we now merge in the successor as well?
786 if (next && end == next->vm_start &&
787 mpol_equal(policy, vma_policy(next)) &&
788 can_vma_merge_before(next, vm_flags,
789 anon_vma, file, pgoff+pglen) &&
790 is_mergeable_anon_vma(prev->anon_vma,
791 next->anon_vma, NULL)) {
793 err = vma_adjust(prev, prev->vm_start,
794 next->vm_end, prev->vm_pgoff, NULL);
795 } else /* cases 2, 5, 7 */
796 err = vma_adjust(prev, prev->vm_start,
797 end, prev->vm_pgoff, NULL);
800 khugepaged_enter_vma_merge(prev);
805 * Can this new request be merged in front of next?
807 if (next && end == next->vm_start &&
808 mpol_equal(policy, vma_policy(next)) &&
809 can_vma_merge_before(next, vm_flags,
810 anon_vma, file, pgoff+pglen)) {
811 if (prev && addr < prev->vm_end) /* case 4 */
812 err = vma_adjust(prev, prev->vm_start,
813 addr, prev->vm_pgoff, NULL);
814 else /* cases 3, 8 */
815 err = vma_adjust(area, addr, next->vm_end,
816 next->vm_pgoff - pglen, NULL);
819 khugepaged_enter_vma_merge(area);
827 * Rough compatbility check to quickly see if it's even worth looking
828 * at sharing an anon_vma.
830 * They need to have the same vm_file, and the flags can only differ
831 * in things that mprotect may change.
833 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
834 * we can merge the two vma's. For example, we refuse to merge a vma if
835 * there is a vm_ops->close() function, because that indicates that the
836 * driver is doing some kind of reference counting. But that doesn't
837 * really matter for the anon_vma sharing case.
839 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
841 return a->vm_end == b->vm_start &&
842 mpol_equal(vma_policy(a), vma_policy(b)) &&
843 a->vm_file == b->vm_file &&
844 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
845 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
849 * Do some basic sanity checking to see if we can re-use the anon_vma
850 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
851 * the same as 'old', the other will be the new one that is trying
852 * to share the anon_vma.
854 * NOTE! This runs with mm_sem held for reading, so it is possible that
855 * the anon_vma of 'old' is concurrently in the process of being set up
856 * by another page fault trying to merge _that_. But that's ok: if it
857 * is being set up, that automatically means that it will be a singleton
858 * acceptable for merging, so we can do all of this optimistically. But
859 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
861 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
862 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
863 * is to return an anon_vma that is "complex" due to having gone through
866 * We also make sure that the two vma's are compatible (adjacent,
867 * and with the same memory policies). That's all stable, even with just
868 * a read lock on the mm_sem.
870 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
872 if (anon_vma_compatible(a, b)) {
873 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
875 if (anon_vma && list_is_singular(&old->anon_vma_chain))
882 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
883 * neighbouring vmas for a suitable anon_vma, before it goes off
884 * to allocate a new anon_vma. It checks because a repetitive
885 * sequence of mprotects and faults may otherwise lead to distinct
886 * anon_vmas being allocated, preventing vma merge in subsequent
889 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
891 struct anon_vma *anon_vma;
892 struct vm_area_struct *near;
898 anon_vma = reusable_anon_vma(near, vma, near);
906 anon_vma = reusable_anon_vma(near, near, vma);
911 * There's no absolute need to look only at touching neighbours:
912 * we could search further afield for "compatible" anon_vmas.
913 * But it would probably just be a waste of time searching,
914 * or lead to too many vmas hanging off the same anon_vma.
915 * We're trying to allow mprotect remerging later on,
916 * not trying to minimize memory used for anon_vmas.
921 #ifdef CONFIG_PROC_FS
922 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
923 struct file *file, long pages)
925 const unsigned long stack_flags
926 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
929 mm->shared_vm += pages;
930 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
931 mm->exec_vm += pages;
932 } else if (flags & stack_flags)
933 mm->stack_vm += pages;
934 if (flags & (VM_RESERVED|VM_IO))
935 mm->reserved_vm += pages;
937 #endif /* CONFIG_PROC_FS */
940 * If a hint addr is less than mmap_min_addr change hint to be as
941 * low as possible but still greater than mmap_min_addr
943 static inline unsigned long round_hint_to_min(unsigned long hint)
946 if (((void *)hint != NULL) &&
947 (hint < mmap_min_addr))
948 return PAGE_ALIGN(mmap_min_addr);
953 * The caller must hold down_write(¤t->mm->mmap_sem).
956 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
957 unsigned long len, unsigned long prot,
958 unsigned long flags, unsigned long pgoff)
960 struct mm_struct * mm = current->mm;
964 unsigned long reqprot = prot;
967 * Does the application expect PROT_READ to imply PROT_EXEC?
969 * (the exception is when the underlying filesystem is noexec
970 * mounted, in which case we dont add PROT_EXEC.)
972 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
973 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
979 if (!(flags & MAP_FIXED))
980 addr = round_hint_to_min(addr);
982 /* Careful about overflows.. */
983 len = PAGE_ALIGN(len);
987 /* offset overflow? */
988 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
991 /* Too many mappings? */
992 if (mm->map_count > sysctl_max_map_count)
995 /* Obtain the address to map to. we verify (or select) it and ensure
996 * that it represents a valid section of the address space.
998 addr = get_unmapped_area(file, addr, len, pgoff, flags);
999 if (addr & ~PAGE_MASK)
1002 /* Do simple checking here so the lower-level routines won't have
1003 * to. we assume access permissions have been handled by the open
1004 * of the memory object, so we don't do any here.
1006 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1007 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1009 if (flags & MAP_LOCKED)
1010 if (!can_do_mlock())
1013 /* mlock MCL_FUTURE? */
1014 if (vm_flags & VM_LOCKED) {
1015 unsigned long locked, lock_limit;
1016 locked = len >> PAGE_SHIFT;
1017 locked += mm->locked_vm;
1018 lock_limit = rlimit(RLIMIT_MEMLOCK);
1019 lock_limit >>= PAGE_SHIFT;
1020 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1024 inode = file ? file->f_path.dentry->d_inode : NULL;
1027 switch (flags & MAP_TYPE) {
1029 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1033 * Make sure we don't allow writing to an append-only
1036 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1040 * Make sure there are no mandatory locks on the file.
1042 if (locks_verify_locked(inode))
1045 vm_flags |= VM_SHARED | VM_MAYSHARE;
1046 if (!(file->f_mode & FMODE_WRITE))
1047 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1051 if (!(file->f_mode & FMODE_READ))
1053 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1054 if (vm_flags & VM_EXEC)
1056 vm_flags &= ~VM_MAYEXEC;
1059 if (!file->f_op || !file->f_op->mmap)
1067 switch (flags & MAP_TYPE) {
1073 vm_flags |= VM_SHARED | VM_MAYSHARE;
1077 * Set pgoff according to addr for anon_vma.
1079 pgoff = addr >> PAGE_SHIFT;
1086 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1090 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1093 unsigned long do_mmap(struct file *file, unsigned long addr,
1094 unsigned long len, unsigned long prot,
1095 unsigned long flag, unsigned long offset)
1097 if (unlikely(offset + PAGE_ALIGN(len) < offset))
1099 if (unlikely(offset & ~PAGE_MASK))
1101 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1103 EXPORT_SYMBOL(do_mmap);
1105 unsigned long vm_mmap(struct file *file, unsigned long addr,
1106 unsigned long len, unsigned long prot,
1107 unsigned long flag, unsigned long offset)
1110 struct mm_struct *mm = current->mm;
1112 down_write(&mm->mmap_sem);
1113 ret = do_mmap(file, addr, len, prot, flag, offset);
1114 up_write(&mm->mmap_sem);
1117 EXPORT_SYMBOL(vm_mmap);
1119 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1120 unsigned long, prot, unsigned long, flags,
1121 unsigned long, fd, unsigned long, pgoff)
1123 struct file *file = NULL;
1124 unsigned long retval = -EBADF;
1126 if (!(flags & MAP_ANONYMOUS)) {
1127 audit_mmap_fd(fd, flags);
1128 if (unlikely(flags & MAP_HUGETLB))
1133 } else if (flags & MAP_HUGETLB) {
1134 struct user_struct *user = NULL;
1136 * VM_NORESERVE is used because the reservations will be
1137 * taken when vm_ops->mmap() is called
1138 * A dummy user value is used because we are not locking
1139 * memory so no accounting is necessary
1141 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1142 VM_NORESERVE, &user,
1143 HUGETLB_ANONHUGE_INODE);
1145 return PTR_ERR(file);
1148 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1150 down_write(¤t->mm->mmap_sem);
1151 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1152 up_write(¤t->mm->mmap_sem);
1160 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1161 struct mmap_arg_struct {
1165 unsigned long flags;
1167 unsigned long offset;
1170 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1172 struct mmap_arg_struct a;
1174 if (copy_from_user(&a, arg, sizeof(a)))
1176 if (a.offset & ~PAGE_MASK)
1179 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1180 a.offset >> PAGE_SHIFT);
1182 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1185 * Some shared mappigns will want the pages marked read-only
1186 * to track write events. If so, we'll downgrade vm_page_prot
1187 * to the private version (using protection_map[] without the
1190 int vma_wants_writenotify(struct vm_area_struct *vma)
1192 vm_flags_t vm_flags = vma->vm_flags;
1194 /* If it was private or non-writable, the write bit is already clear */
1195 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1198 /* The backer wishes to know when pages are first written to? */
1199 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1202 /* The open routine did something to the protections already? */
1203 if (pgprot_val(vma->vm_page_prot) !=
1204 pgprot_val(vm_get_page_prot(vm_flags)))
1207 /* Specialty mapping? */
1208 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1211 /* Can the mapping track the dirty pages? */
1212 return vma->vm_file && vma->vm_file->f_mapping &&
1213 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1217 * We account for memory if it's a private writeable mapping,
1218 * not hugepages and VM_NORESERVE wasn't set.
1220 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1223 * hugetlb has its own accounting separate from the core VM
1224 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1226 if (file && is_file_hugepages(file))
1229 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1232 unsigned long mmap_region(struct file *file, unsigned long addr,
1233 unsigned long len, unsigned long flags,
1234 vm_flags_t vm_flags, unsigned long pgoff)
1236 struct mm_struct *mm = current->mm;
1237 struct vm_area_struct *vma, *prev;
1238 int correct_wcount = 0;
1240 struct rb_node **rb_link, *rb_parent;
1241 unsigned long charged = 0;
1242 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1244 /* Clear old maps */
1247 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1248 if (vma && vma->vm_start < addr + len) {
1249 if (do_munmap(mm, addr, len))
1254 /* Check against address space limit. */
1255 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1259 * Set 'VM_NORESERVE' if we should not account for the
1260 * memory use of this mapping.
1262 if ((flags & MAP_NORESERVE)) {
1263 /* We honor MAP_NORESERVE if allowed to overcommit */
1264 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1265 vm_flags |= VM_NORESERVE;
1267 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1268 if (file && is_file_hugepages(file))
1269 vm_flags |= VM_NORESERVE;
1273 * Private writable mapping: check memory availability
1275 if (accountable_mapping(file, vm_flags)) {
1276 charged = len >> PAGE_SHIFT;
1277 if (security_vm_enough_memory_mm(mm, charged))
1279 vm_flags |= VM_ACCOUNT;
1283 * Can we just expand an old mapping?
1285 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1290 * Determine the object being mapped and call the appropriate
1291 * specific mapper. the address has already been validated, but
1292 * not unmapped, but the maps are removed from the list.
1294 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1301 vma->vm_start = addr;
1302 vma->vm_end = addr + len;
1303 vma->vm_flags = vm_flags;
1304 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1305 vma->vm_pgoff = pgoff;
1306 INIT_LIST_HEAD(&vma->anon_vma_chain);
1308 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1311 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1313 if (vm_flags & VM_DENYWRITE) {
1314 error = deny_write_access(file);
1319 vma->vm_file = file;
1321 error = file->f_op->mmap(file, vma);
1323 goto unmap_and_free_vma;
1324 if (vm_flags & VM_EXECUTABLE)
1325 added_exe_file_vma(mm);
1327 /* Can addr have changed??
1329 * Answer: Yes, several device drivers can do it in their
1330 * f_op->mmap method. -DaveM
1332 addr = vma->vm_start;
1333 pgoff = vma->vm_pgoff;
1334 vm_flags = vma->vm_flags;
1335 } else if (vm_flags & VM_SHARED) {
1336 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1338 error = shmem_zero_setup(vma);
1343 if (vma_wants_writenotify(vma)) {
1344 pgprot_t pprot = vma->vm_page_prot;
1346 /* Can vma->vm_page_prot have changed??
1348 * Answer: Yes, drivers may have changed it in their
1349 * f_op->mmap method.
1351 * Ensures that vmas marked as uncached stay that way.
1353 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1354 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1355 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1358 vma_link(mm, vma, prev, rb_link, rb_parent);
1359 file = vma->vm_file;
1361 /* Once vma denies write, undo our temporary denial count */
1363 atomic_inc(&inode->i_writecount);
1365 perf_event_mmap(vma);
1367 mm->total_vm += len >> PAGE_SHIFT;
1368 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1369 if (vm_flags & VM_LOCKED) {
1370 if (!mlock_vma_pages_range(vma, addr, addr + len))
1371 mm->locked_vm += (len >> PAGE_SHIFT);
1372 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1373 make_pages_present(addr, addr + len);
1378 atomic_inc(&inode->i_writecount);
1379 vma->vm_file = NULL;
1382 /* Undo any partial mapping done by a device driver. */
1383 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1386 kmem_cache_free(vm_area_cachep, vma);
1389 vm_unacct_memory(charged);
1393 /* Get an address range which is currently unmapped.
1394 * For shmat() with addr=0.
1396 * Ugly calling convention alert:
1397 * Return value with the low bits set means error value,
1399 * if (ret & ~PAGE_MASK)
1402 * This function "knows" that -ENOMEM has the bits set.
1404 #ifndef HAVE_ARCH_UNMAPPED_AREA
1406 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1407 unsigned long len, unsigned long pgoff, unsigned long flags)
1409 struct mm_struct *mm = current->mm;
1410 struct vm_area_struct *vma;
1411 unsigned long start_addr;
1413 if (len > TASK_SIZE)
1416 if (flags & MAP_FIXED)
1420 addr = PAGE_ALIGN(addr);
1421 vma = find_vma(mm, addr);
1422 if (TASK_SIZE - len >= addr &&
1423 (!vma || addr + len <= vma->vm_start))
1426 if (len > mm->cached_hole_size) {
1427 start_addr = addr = mm->free_area_cache;
1429 start_addr = addr = TASK_UNMAPPED_BASE;
1430 mm->cached_hole_size = 0;
1434 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1435 /* At this point: (!vma || addr < vma->vm_end). */
1436 if (TASK_SIZE - len < addr) {
1438 * Start a new search - just in case we missed
1441 if (start_addr != TASK_UNMAPPED_BASE) {
1442 addr = TASK_UNMAPPED_BASE;
1444 mm->cached_hole_size = 0;
1449 if (!vma || addr + len <= vma->vm_start) {
1451 * Remember the place where we stopped the search:
1453 mm->free_area_cache = addr + len;
1456 if (addr + mm->cached_hole_size < vma->vm_start)
1457 mm->cached_hole_size = vma->vm_start - addr;
1463 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1466 * Is this a new hole at the lowest possible address?
1468 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1469 mm->free_area_cache = addr;
1473 * This mmap-allocator allocates new areas top-down from below the
1474 * stack's low limit (the base):
1476 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1478 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1479 const unsigned long len, const unsigned long pgoff,
1480 const unsigned long flags)
1482 struct vm_area_struct *vma;
1483 struct mm_struct *mm = current->mm;
1484 unsigned long addr = addr0, start_addr;
1486 /* requested length too big for entire address space */
1487 if (len > TASK_SIZE)
1490 if (flags & MAP_FIXED)
1493 /* requesting a specific address */
1495 addr = PAGE_ALIGN(addr);
1496 vma = find_vma(mm, addr);
1497 if (TASK_SIZE - len >= addr &&
1498 (!vma || addr + len <= vma->vm_start))
1502 /* check if free_area_cache is useful for us */
1503 if (len <= mm->cached_hole_size) {
1504 mm->cached_hole_size = 0;
1505 mm->free_area_cache = mm->mmap_base;
1509 /* either no address requested or can't fit in requested address hole */
1510 start_addr = addr = mm->free_area_cache;
1518 * Lookup failure means no vma is above this address,
1519 * else if new region fits below vma->vm_start,
1520 * return with success:
1522 vma = find_vma(mm, addr);
1523 if (!vma || addr+len <= vma->vm_start)
1524 /* remember the address as a hint for next time */
1525 return (mm->free_area_cache = addr);
1527 /* remember the largest hole we saw so far */
1528 if (addr + mm->cached_hole_size < vma->vm_start)
1529 mm->cached_hole_size = vma->vm_start - addr;
1531 /* try just below the current vma->vm_start */
1532 addr = vma->vm_start-len;
1533 } while (len < vma->vm_start);
1537 * if hint left us with no space for the requested
1538 * mapping then try again:
1540 * Note: this is different with the case of bottomup
1541 * which does the fully line-search, but we use find_vma
1542 * here that causes some holes skipped.
1544 if (start_addr != mm->mmap_base) {
1545 mm->free_area_cache = mm->mmap_base;
1546 mm->cached_hole_size = 0;
1551 * A failed mmap() very likely causes application failure,
1552 * so fall back to the bottom-up function here. This scenario
1553 * can happen with large stack limits and large mmap()
1556 mm->cached_hole_size = ~0UL;
1557 mm->free_area_cache = TASK_UNMAPPED_BASE;
1558 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1560 * Restore the topdown base:
1562 mm->free_area_cache = mm->mmap_base;
1563 mm->cached_hole_size = ~0UL;
1569 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1572 * Is this a new hole at the highest possible address?
1574 if (addr > mm->free_area_cache)
1575 mm->free_area_cache = addr;
1577 /* dont allow allocations above current base */
1578 if (mm->free_area_cache > mm->mmap_base)
1579 mm->free_area_cache = mm->mmap_base;
1583 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1584 unsigned long pgoff, unsigned long flags)
1586 unsigned long (*get_area)(struct file *, unsigned long,
1587 unsigned long, unsigned long, unsigned long);
1589 unsigned long error = arch_mmap_check(addr, len, flags);
1593 /* Careful about overflows.. */
1594 if (len > TASK_SIZE)
1597 get_area = current->mm->get_unmapped_area;
1598 if (file && file->f_op && file->f_op->get_unmapped_area)
1599 get_area = file->f_op->get_unmapped_area;
1600 addr = get_area(file, addr, len, pgoff, flags);
1601 if (IS_ERR_VALUE(addr))
1604 if (addr > TASK_SIZE - len)
1606 if (addr & ~PAGE_MASK)
1609 return arch_rebalance_pgtables(addr, len);
1612 EXPORT_SYMBOL(get_unmapped_area);
1614 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1615 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1617 struct vm_area_struct *vma = NULL;
1620 /* Check the cache first. */
1621 /* (Cache hit rate is typically around 35%.) */
1622 vma = mm->mmap_cache;
1623 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1624 struct rb_node * rb_node;
1626 rb_node = mm->mm_rb.rb_node;
1630 struct vm_area_struct * vma_tmp;
1632 vma_tmp = rb_entry(rb_node,
1633 struct vm_area_struct, vm_rb);
1635 if (vma_tmp->vm_end > addr) {
1637 if (vma_tmp->vm_start <= addr)
1639 rb_node = rb_node->rb_left;
1641 rb_node = rb_node->rb_right;
1644 mm->mmap_cache = vma;
1650 EXPORT_SYMBOL(find_vma);
1653 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1655 struct vm_area_struct *
1656 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1657 struct vm_area_struct **pprev)
1659 struct vm_area_struct *vma;
1661 vma = find_vma(mm, addr);
1663 *pprev = vma->vm_prev;
1665 struct rb_node *rb_node = mm->mm_rb.rb_node;
1668 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1669 rb_node = rb_node->rb_right;
1676 * Verify that the stack growth is acceptable and
1677 * update accounting. This is shared with both the
1678 * grow-up and grow-down cases.
1680 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1682 struct mm_struct *mm = vma->vm_mm;
1683 struct rlimit *rlim = current->signal->rlim;
1684 unsigned long new_start;
1686 /* address space limit tests */
1687 if (!may_expand_vm(mm, grow))
1690 /* Stack limit test */
1691 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1694 /* mlock limit tests */
1695 if (vma->vm_flags & VM_LOCKED) {
1696 unsigned long locked;
1697 unsigned long limit;
1698 locked = mm->locked_vm + grow;
1699 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1700 limit >>= PAGE_SHIFT;
1701 if (locked > limit && !capable(CAP_IPC_LOCK))
1705 /* Check to ensure the stack will not grow into a hugetlb-only region */
1706 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1708 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1712 * Overcommit.. This must be the final test, as it will
1713 * update security statistics.
1715 if (security_vm_enough_memory_mm(mm, grow))
1718 /* Ok, everything looks good - let it rip */
1719 mm->total_vm += grow;
1720 if (vma->vm_flags & VM_LOCKED)
1721 mm->locked_vm += grow;
1722 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1726 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1728 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1729 * vma is the last one with address > vma->vm_end. Have to extend vma.
1731 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1735 if (!(vma->vm_flags & VM_GROWSUP))
1739 * We must make sure the anon_vma is allocated
1740 * so that the anon_vma locking is not a noop.
1742 if (unlikely(anon_vma_prepare(vma)))
1744 vma_lock_anon_vma(vma);
1747 * vma->vm_start/vm_end cannot change under us because the caller
1748 * is required to hold the mmap_sem in read mode. We need the
1749 * anon_vma lock to serialize against concurrent expand_stacks.
1750 * Also guard against wrapping around to address 0.
1752 if (address < PAGE_ALIGN(address+4))
1753 address = PAGE_ALIGN(address+4);
1755 vma_unlock_anon_vma(vma);
1760 /* Somebody else might have raced and expanded it already */
1761 if (address > vma->vm_end) {
1762 unsigned long size, grow;
1764 size = address - vma->vm_start;
1765 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1768 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1769 error = acct_stack_growth(vma, size, grow);
1771 vma->vm_end = address;
1772 perf_event_mmap(vma);
1776 vma_unlock_anon_vma(vma);
1777 khugepaged_enter_vma_merge(vma);
1780 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1783 * vma is the first one with address < vma->vm_start. Have to extend vma.
1785 int expand_downwards(struct vm_area_struct *vma,
1786 unsigned long address)
1791 * We must make sure the anon_vma is allocated
1792 * so that the anon_vma locking is not a noop.
1794 if (unlikely(anon_vma_prepare(vma)))
1797 address &= PAGE_MASK;
1798 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1802 vma_lock_anon_vma(vma);
1805 * vma->vm_start/vm_end cannot change under us because the caller
1806 * is required to hold the mmap_sem in read mode. We need the
1807 * anon_vma lock to serialize against concurrent expand_stacks.
1810 /* Somebody else might have raced and expanded it already */
1811 if (address < vma->vm_start) {
1812 unsigned long size, grow;
1814 size = vma->vm_end - address;
1815 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1818 if (grow <= vma->vm_pgoff) {
1819 error = acct_stack_growth(vma, size, grow);
1821 vma->vm_start = address;
1822 vma->vm_pgoff -= grow;
1823 perf_event_mmap(vma);
1827 vma_unlock_anon_vma(vma);
1828 khugepaged_enter_vma_merge(vma);
1832 #ifdef CONFIG_STACK_GROWSUP
1833 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1835 return expand_upwards(vma, address);
1838 struct vm_area_struct *
1839 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1841 struct vm_area_struct *vma, *prev;
1844 vma = find_vma_prev(mm, addr, &prev);
1845 if (vma && (vma->vm_start <= addr))
1847 if (!prev || expand_stack(prev, addr))
1849 if (prev->vm_flags & VM_LOCKED) {
1850 mlock_vma_pages_range(prev, addr, prev->vm_end);
1855 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1857 return expand_downwards(vma, address);
1860 struct vm_area_struct *
1861 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1863 struct vm_area_struct * vma;
1864 unsigned long start;
1867 vma = find_vma(mm,addr);
1870 if (vma->vm_start <= addr)
1872 if (!(vma->vm_flags & VM_GROWSDOWN))
1874 start = vma->vm_start;
1875 if (expand_stack(vma, addr))
1877 if (vma->vm_flags & VM_LOCKED) {
1878 mlock_vma_pages_range(vma, addr, start);
1885 * Ok - we have the memory areas we should free on the vma list,
1886 * so release them, and do the vma updates.
1888 * Called with the mm semaphore held.
1890 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1892 /* Update high watermark before we lower total_vm */
1893 update_hiwater_vm(mm);
1895 long nrpages = vma_pages(vma);
1897 mm->total_vm -= nrpages;
1898 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1899 vma = remove_vma(vma);
1905 * Get rid of page table information in the indicated region.
1907 * Called with the mm semaphore held.
1909 static void unmap_region(struct mm_struct *mm,
1910 struct vm_area_struct *vma, struct vm_area_struct *prev,
1911 unsigned long start, unsigned long end)
1913 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1914 struct mmu_gather tlb;
1915 unsigned long nr_accounted = 0;
1918 tlb_gather_mmu(&tlb, mm, 0);
1919 update_hiwater_rss(mm);
1920 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1921 vm_unacct_memory(nr_accounted);
1922 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1923 next ? next->vm_start : 0);
1924 tlb_finish_mmu(&tlb, start, end);
1928 * Create a list of vma's touched by the unmap, removing them from the mm's
1929 * vma list as we go..
1932 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1933 struct vm_area_struct *prev, unsigned long end)
1935 struct vm_area_struct **insertion_point;
1936 struct vm_area_struct *tail_vma = NULL;
1939 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1940 vma->vm_prev = NULL;
1942 rb_erase(&vma->vm_rb, &mm->mm_rb);
1946 } while (vma && vma->vm_start < end);
1947 *insertion_point = vma;
1949 vma->vm_prev = prev;
1950 tail_vma->vm_next = NULL;
1951 if (mm->unmap_area == arch_unmap_area)
1952 addr = prev ? prev->vm_end : mm->mmap_base;
1954 addr = vma ? vma->vm_start : mm->mmap_base;
1955 mm->unmap_area(mm, addr);
1956 mm->mmap_cache = NULL; /* Kill the cache. */
1960 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1961 * munmap path where it doesn't make sense to fail.
1963 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1964 unsigned long addr, int new_below)
1966 struct mempolicy *pol;
1967 struct vm_area_struct *new;
1970 if (is_vm_hugetlb_page(vma) && (addr &
1971 ~(huge_page_mask(hstate_vma(vma)))))
1974 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1978 /* most fields are the same, copy all, and then fixup */
1981 INIT_LIST_HEAD(&new->anon_vma_chain);
1986 new->vm_start = addr;
1987 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1990 pol = mpol_dup(vma_policy(vma));
1995 vma_set_policy(new, pol);
1997 if (anon_vma_clone(new, vma))
2001 get_file(new->vm_file);
2002 if (vma->vm_flags & VM_EXECUTABLE)
2003 added_exe_file_vma(mm);
2006 if (new->vm_ops && new->vm_ops->open)
2007 new->vm_ops->open(new);
2010 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2011 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2013 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2019 /* Clean everything up if vma_adjust failed. */
2020 if (new->vm_ops && new->vm_ops->close)
2021 new->vm_ops->close(new);
2023 if (vma->vm_flags & VM_EXECUTABLE)
2024 removed_exe_file_vma(mm);
2027 unlink_anon_vmas(new);
2031 kmem_cache_free(vm_area_cachep, new);
2037 * Split a vma into two pieces at address 'addr', a new vma is allocated
2038 * either for the first part or the tail.
2040 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2041 unsigned long addr, int new_below)
2043 if (mm->map_count >= sysctl_max_map_count)
2046 return __split_vma(mm, vma, addr, new_below);
2049 /* Munmap is split into 2 main parts -- this part which finds
2050 * what needs doing, and the areas themselves, which do the
2051 * work. This now handles partial unmappings.
2052 * Jeremy Fitzhardinge <jeremy@goop.org>
2054 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2057 struct vm_area_struct *vma, *prev, *last;
2059 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2062 if ((len = PAGE_ALIGN(len)) == 0)
2065 /* Find the first overlapping VMA */
2066 vma = find_vma(mm, start);
2069 prev = vma->vm_prev;
2070 /* we have start < vma->vm_end */
2072 /* if it doesn't overlap, we have nothing.. */
2074 if (vma->vm_start >= end)
2078 * If we need to split any vma, do it now to save pain later.
2080 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2081 * unmapped vm_area_struct will remain in use: so lower split_vma
2082 * places tmp vma above, and higher split_vma places tmp vma below.
2084 if (start > vma->vm_start) {
2088 * Make sure that map_count on return from munmap() will
2089 * not exceed its limit; but let map_count go just above
2090 * its limit temporarily, to help free resources as expected.
2092 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2095 error = __split_vma(mm, vma, start, 0);
2101 /* Does it split the last one? */
2102 last = find_vma(mm, end);
2103 if (last && end > last->vm_start) {
2104 int error = __split_vma(mm, last, end, 1);
2108 vma = prev? prev->vm_next: mm->mmap;
2111 * unlock any mlock()ed ranges before detaching vmas
2113 if (mm->locked_vm) {
2114 struct vm_area_struct *tmp = vma;
2115 while (tmp && tmp->vm_start < end) {
2116 if (tmp->vm_flags & VM_LOCKED) {
2117 mm->locked_vm -= vma_pages(tmp);
2118 munlock_vma_pages_all(tmp);
2125 * Remove the vma's, and unmap the actual pages
2127 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2128 unmap_region(mm, vma, prev, start, end);
2130 /* Fix up all other VM information */
2131 remove_vma_list(mm, vma);
2135 EXPORT_SYMBOL(do_munmap);
2137 int vm_munmap(unsigned long start, size_t len)
2140 struct mm_struct *mm = current->mm;
2142 down_write(&mm->mmap_sem);
2143 ret = do_munmap(mm, start, len);
2144 up_write(&mm->mmap_sem);
2147 EXPORT_SYMBOL(vm_munmap);
2149 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2151 profile_munmap(addr);
2152 return vm_munmap(addr, len);
2155 static inline void verify_mm_writelocked(struct mm_struct *mm)
2157 #ifdef CONFIG_DEBUG_VM
2158 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2160 up_read(&mm->mmap_sem);
2166 * this is really a simplified "do_mmap". it only handles
2167 * anonymous maps. eventually we may be able to do some
2168 * brk-specific accounting here.
2170 static unsigned long do_brk(unsigned long addr, unsigned long len)
2172 struct mm_struct * mm = current->mm;
2173 struct vm_area_struct * vma, * prev;
2174 unsigned long flags;
2175 struct rb_node ** rb_link, * rb_parent;
2176 pgoff_t pgoff = addr >> PAGE_SHIFT;
2179 len = PAGE_ALIGN(len);
2183 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2187 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2189 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2190 if (error & ~PAGE_MASK)
2196 if (mm->def_flags & VM_LOCKED) {
2197 unsigned long locked, lock_limit;
2198 locked = len >> PAGE_SHIFT;
2199 locked += mm->locked_vm;
2200 lock_limit = rlimit(RLIMIT_MEMLOCK);
2201 lock_limit >>= PAGE_SHIFT;
2202 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2207 * mm->mmap_sem is required to protect against another thread
2208 * changing the mappings in case we sleep.
2210 verify_mm_writelocked(mm);
2213 * Clear old maps. this also does some error checking for us
2216 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2217 if (vma && vma->vm_start < addr + len) {
2218 if (do_munmap(mm, addr, len))
2223 /* Check against address space limits *after* clearing old maps... */
2224 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2227 if (mm->map_count > sysctl_max_map_count)
2230 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2233 /* Can we just expand an old private anonymous mapping? */
2234 vma = vma_merge(mm, prev, addr, addr + len, flags,
2235 NULL, NULL, pgoff, NULL);
2240 * create a vma struct for an anonymous mapping
2242 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2244 vm_unacct_memory(len >> PAGE_SHIFT);
2248 INIT_LIST_HEAD(&vma->anon_vma_chain);
2250 vma->vm_start = addr;
2251 vma->vm_end = addr + len;
2252 vma->vm_pgoff = pgoff;
2253 vma->vm_flags = flags;
2254 vma->vm_page_prot = vm_get_page_prot(flags);
2255 vma_link(mm, vma, prev, rb_link, rb_parent);
2257 perf_event_mmap(vma);
2258 mm->total_vm += len >> PAGE_SHIFT;
2259 if (flags & VM_LOCKED) {
2260 if (!mlock_vma_pages_range(vma, addr, addr + len))
2261 mm->locked_vm += (len >> PAGE_SHIFT);
2266 unsigned long vm_brk(unsigned long addr, unsigned long len)
2268 struct mm_struct *mm = current->mm;
2271 down_write(&mm->mmap_sem);
2272 ret = do_brk(addr, len);
2273 up_write(&mm->mmap_sem);
2276 EXPORT_SYMBOL(vm_brk);
2278 /* Release all mmaps. */
2279 void exit_mmap(struct mm_struct *mm)
2281 struct mmu_gather tlb;
2282 struct vm_area_struct *vma;
2283 unsigned long nr_accounted = 0;
2285 /* mm's last user has gone, and its about to be pulled down */
2286 mmu_notifier_release(mm);
2288 if (mm->locked_vm) {
2291 if (vma->vm_flags & VM_LOCKED)
2292 munlock_vma_pages_all(vma);
2300 if (!vma) /* Can happen if dup_mmap() received an OOM */
2305 tlb_gather_mmu(&tlb, mm, 1);
2306 /* update_hiwater_rss(mm) here? but nobody should be looking */
2307 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2308 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2309 vm_unacct_memory(nr_accounted);
2311 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2312 tlb_finish_mmu(&tlb, 0, -1);
2315 * Walk the list again, actually closing and freeing it,
2316 * with preemption enabled, without holding any MM locks.
2319 vma = remove_vma(vma);
2321 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2324 /* Insert vm structure into process list sorted by address
2325 * and into the inode's i_mmap tree. If vm_file is non-NULL
2326 * then i_mmap_mutex is taken here.
2328 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2330 struct vm_area_struct * __vma, * prev;
2331 struct rb_node ** rb_link, * rb_parent;
2334 * The vm_pgoff of a purely anonymous vma should be irrelevant
2335 * until its first write fault, when page's anon_vma and index
2336 * are set. But now set the vm_pgoff it will almost certainly
2337 * end up with (unless mremap moves it elsewhere before that
2338 * first wfault), so /proc/pid/maps tells a consistent story.
2340 * By setting it to reflect the virtual start address of the
2341 * vma, merges and splits can happen in a seamless way, just
2342 * using the existing file pgoff checks and manipulations.
2343 * Similarly in do_mmap_pgoff and in do_brk.
2345 if (!vma->vm_file) {
2346 BUG_ON(vma->anon_vma);
2347 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2349 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2350 if (__vma && __vma->vm_start < vma->vm_end)
2352 if ((vma->vm_flags & VM_ACCOUNT) &&
2353 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2355 vma_link(mm, vma, prev, rb_link, rb_parent);
2360 * Copy the vma structure to a new location in the same mm,
2361 * prior to moving page table entries, to effect an mremap move.
2363 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2364 unsigned long addr, unsigned long len, pgoff_t pgoff)
2366 struct vm_area_struct *vma = *vmap;
2367 unsigned long vma_start = vma->vm_start;
2368 struct mm_struct *mm = vma->vm_mm;
2369 struct vm_area_struct *new_vma, *prev;
2370 struct rb_node **rb_link, *rb_parent;
2371 struct mempolicy *pol;
2372 bool faulted_in_anon_vma = true;
2375 * If anonymous vma has not yet been faulted, update new pgoff
2376 * to match new location, to increase its chance of merging.
2378 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2379 pgoff = addr >> PAGE_SHIFT;
2380 faulted_in_anon_vma = false;
2383 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2384 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2385 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2388 * Source vma may have been merged into new_vma
2390 if (unlikely(vma_start >= new_vma->vm_start &&
2391 vma_start < new_vma->vm_end)) {
2393 * The only way we can get a vma_merge with
2394 * self during an mremap is if the vma hasn't
2395 * been faulted in yet and we were allowed to
2396 * reset the dst vma->vm_pgoff to the
2397 * destination address of the mremap to allow
2398 * the merge to happen. mremap must change the
2399 * vm_pgoff linearity between src and dst vmas
2400 * (in turn preventing a vma_merge) to be
2401 * safe. It is only safe to keep the vm_pgoff
2402 * linear if there are no pages mapped yet.
2404 VM_BUG_ON(faulted_in_anon_vma);
2407 anon_vma_moveto_tail(new_vma);
2409 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412 pol = mpol_dup(vma_policy(vma));
2415 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2416 if (anon_vma_clone(new_vma, vma))
2417 goto out_free_mempol;
2418 vma_set_policy(new_vma, pol);
2419 new_vma->vm_start = addr;
2420 new_vma->vm_end = addr + len;
2421 new_vma->vm_pgoff = pgoff;
2422 if (new_vma->vm_file) {
2423 get_file(new_vma->vm_file);
2424 if (vma->vm_flags & VM_EXECUTABLE)
2425 added_exe_file_vma(mm);
2427 if (new_vma->vm_ops && new_vma->vm_ops->open)
2428 new_vma->vm_ops->open(new_vma);
2429 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2437 kmem_cache_free(vm_area_cachep, new_vma);
2442 * Return true if the calling process may expand its vm space by the passed
2445 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2447 unsigned long cur = mm->total_vm; /* pages */
2450 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2452 if (cur + npages > lim)
2458 static int special_mapping_fault(struct vm_area_struct *vma,
2459 struct vm_fault *vmf)
2462 struct page **pages;
2465 * special mappings have no vm_file, and in that case, the mm
2466 * uses vm_pgoff internally. So we have to subtract it from here.
2467 * We are allowed to do this because we are the mm; do not copy
2468 * this code into drivers!
2470 pgoff = vmf->pgoff - vma->vm_pgoff;
2472 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2476 struct page *page = *pages;
2482 return VM_FAULT_SIGBUS;
2486 * Having a close hook prevents vma merging regardless of flags.
2488 static void special_mapping_close(struct vm_area_struct *vma)
2492 static const struct vm_operations_struct special_mapping_vmops = {
2493 .close = special_mapping_close,
2494 .fault = special_mapping_fault,
2498 * Called with mm->mmap_sem held for writing.
2499 * Insert a new vma covering the given region, with the given flags.
2500 * Its pages are supplied by the given array of struct page *.
2501 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2502 * The region past the last page supplied will always produce SIGBUS.
2503 * The array pointer and the pages it points to are assumed to stay alive
2504 * for as long as this mapping might exist.
2506 int install_special_mapping(struct mm_struct *mm,
2507 unsigned long addr, unsigned long len,
2508 unsigned long vm_flags, struct page **pages)
2511 struct vm_area_struct *vma;
2513 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2514 if (unlikely(vma == NULL))
2517 INIT_LIST_HEAD(&vma->anon_vma_chain);
2519 vma->vm_start = addr;
2520 vma->vm_end = addr + len;
2522 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2525 vma->vm_ops = &special_mapping_vmops;
2526 vma->vm_private_data = pages;
2528 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2532 ret = insert_vm_struct(mm, vma);
2536 mm->total_vm += len >> PAGE_SHIFT;
2538 perf_event_mmap(vma);
2543 kmem_cache_free(vm_area_cachep, vma);
2547 static DEFINE_MUTEX(mm_all_locks_mutex);
2549 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2551 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2553 * The LSB of head.next can't change from under us
2554 * because we hold the mm_all_locks_mutex.
2556 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2558 * We can safely modify head.next after taking the
2559 * anon_vma->root->mutex. If some other vma in this mm shares
2560 * the same anon_vma we won't take it again.
2562 * No need of atomic instructions here, head.next
2563 * can't change from under us thanks to the
2564 * anon_vma->root->mutex.
2566 if (__test_and_set_bit(0, (unsigned long *)
2567 &anon_vma->root->head.next))
2572 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2574 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2576 * AS_MM_ALL_LOCKS can't change from under us because
2577 * we hold the mm_all_locks_mutex.
2579 * Operations on ->flags have to be atomic because
2580 * even if AS_MM_ALL_LOCKS is stable thanks to the
2581 * mm_all_locks_mutex, there may be other cpus
2582 * changing other bitflags in parallel to us.
2584 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2586 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2591 * This operation locks against the VM for all pte/vma/mm related
2592 * operations that could ever happen on a certain mm. This includes
2593 * vmtruncate, try_to_unmap, and all page faults.
2595 * The caller must take the mmap_sem in write mode before calling
2596 * mm_take_all_locks(). The caller isn't allowed to release the
2597 * mmap_sem until mm_drop_all_locks() returns.
2599 * mmap_sem in write mode is required in order to block all operations
2600 * that could modify pagetables and free pages without need of
2601 * altering the vma layout (for example populate_range() with
2602 * nonlinear vmas). It's also needed in write mode to avoid new
2603 * anon_vmas to be associated with existing vmas.
2605 * A single task can't take more than one mm_take_all_locks() in a row
2606 * or it would deadlock.
2608 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2609 * mapping->flags avoid to take the same lock twice, if more than one
2610 * vma in this mm is backed by the same anon_vma or address_space.
2612 * We can take all the locks in random order because the VM code
2613 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2614 * takes more than one of them in a row. Secondly we're protected
2615 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2617 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2618 * that may have to take thousand of locks.
2620 * mm_take_all_locks() can fail if it's interrupted by signals.
2622 int mm_take_all_locks(struct mm_struct *mm)
2624 struct vm_area_struct *vma;
2625 struct anon_vma_chain *avc;
2627 BUG_ON(down_read_trylock(&mm->mmap_sem));
2629 mutex_lock(&mm_all_locks_mutex);
2631 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2632 if (signal_pending(current))
2634 if (vma->vm_file && vma->vm_file->f_mapping)
2635 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2638 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2639 if (signal_pending(current))
2642 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2643 vm_lock_anon_vma(mm, avc->anon_vma);
2649 mm_drop_all_locks(mm);
2653 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2655 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2657 * The LSB of head.next can't change to 0 from under
2658 * us because we hold the mm_all_locks_mutex.
2660 * We must however clear the bitflag before unlocking
2661 * the vma so the users using the anon_vma->head will
2662 * never see our bitflag.
2664 * No need of atomic instructions here, head.next
2665 * can't change from under us until we release the
2666 * anon_vma->root->mutex.
2668 if (!__test_and_clear_bit(0, (unsigned long *)
2669 &anon_vma->root->head.next))
2671 anon_vma_unlock(anon_vma);
2675 static void vm_unlock_mapping(struct address_space *mapping)
2677 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2679 * AS_MM_ALL_LOCKS can't change to 0 from under us
2680 * because we hold the mm_all_locks_mutex.
2682 mutex_unlock(&mapping->i_mmap_mutex);
2683 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2690 * The mmap_sem cannot be released by the caller until
2691 * mm_drop_all_locks() returns.
2693 void mm_drop_all_locks(struct mm_struct *mm)
2695 struct vm_area_struct *vma;
2696 struct anon_vma_chain *avc;
2698 BUG_ON(down_read_trylock(&mm->mmap_sem));
2699 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2701 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2703 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2704 vm_unlock_anon_vma(avc->anon_vma);
2705 if (vma->vm_file && vma->vm_file->f_mapping)
2706 vm_unlock_mapping(vma->vm_file->f_mapping);
2709 mutex_unlock(&mm_all_locks_mutex);
2713 * initialise the VMA slab
2715 void __init mmap_init(void)
2719 ret = percpu_counter_init(&vm_committed_as, 0);