]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mmap.c
Merge branch 'acpi-scan' into acpi-cca
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100         unsigned long vm_flags = vma->vm_flags;
101
102         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103         if (vma_wants_writenotify(vma)) {
104                 vm_flags &= ~VM_SHARED;
105                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106                                                      vm_flags);
107         }
108 }
109
110
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133         return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155         long free, allowed, reserve;
156
157         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158                         -(s64)vm_committed_as_batch * num_online_cpus(),
159                         "memory commitment underflow");
160
161         vm_acct_memory(pages);
162
163         /*
164          * Sometimes we want to use more memory than we have
165          */
166         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167                 return 0;
168
169         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170                 free = global_page_state(NR_FREE_PAGES);
171                 free += global_page_state(NR_FILE_PAGES);
172
173                 /*
174                  * shmem pages shouldn't be counted as free in this
175                  * case, they can't be purged, only swapped out, and
176                  * that won't affect the overall amount of available
177                  * memory in the system.
178                  */
179                 free -= global_page_state(NR_SHMEM);
180
181                 free += get_nr_swap_pages();
182
183                 /*
184                  * Any slabs which are created with the
185                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186                  * which are reclaimable, under pressure.  The dentry
187                  * cache and most inode caches should fall into this
188                  */
189                 free += global_page_state(NR_SLAB_RECLAIMABLE);
190
191                 /*
192                  * Leave reserved pages. The pages are not for anonymous pages.
193                  */
194                 if (free <= totalreserve_pages)
195                         goto error;
196                 else
197                         free -= totalreserve_pages;
198
199                 /*
200                  * Reserve some for root
201                  */
202                 if (!cap_sys_admin)
203                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204
205                 if (free > pages)
206                         return 0;
207
208                 goto error;
209         }
210
211         allowed = vm_commit_limit();
212         /*
213          * Reserve some for root
214          */
215         if (!cap_sys_admin)
216                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218         /*
219          * Don't let a single process grow so big a user can't recover
220          */
221         if (mm) {
222                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223                 allowed -= min_t(long, mm->total_vm / 32, reserve);
224         }
225
226         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227                 return 0;
228 error:
229         vm_unacct_memory(pages);
230
231         return -ENOMEM;
232 }
233
234 /*
235  * Requires inode->i_mapping->i_mmap_rwsem
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238                 struct file *file, struct address_space *mapping)
239 {
240         if (vma->vm_flags & VM_DENYWRITE)
241                 atomic_inc(&file_inode(file)->i_writecount);
242         if (vma->vm_flags & VM_SHARED)
243                 mapping_unmap_writable(mapping);
244
245         flush_dcache_mmap_lock(mapping);
246         vma_interval_tree_remove(vma, &mapping->i_mmap);
247         flush_dcache_mmap_unlock(mapping);
248 }
249
250 /*
251  * Unlink a file-based vm structure from its interval tree, to hide
252  * vma from rmap and vmtruncate before freeing its page tables.
253  */
254 void unlink_file_vma(struct vm_area_struct *vma)
255 {
256         struct file *file = vma->vm_file;
257
258         if (file) {
259                 struct address_space *mapping = file->f_mapping;
260                 i_mmap_lock_write(mapping);
261                 __remove_shared_vm_struct(vma, file, mapping);
262                 i_mmap_unlock_write(mapping);
263         }
264 }
265
266 /*
267  * Close a vm structure and free it, returning the next.
268  */
269 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
270 {
271         struct vm_area_struct *next = vma->vm_next;
272
273         might_sleep();
274         if (vma->vm_ops && vma->vm_ops->close)
275                 vma->vm_ops->close(vma);
276         if (vma->vm_file)
277                 fput(vma->vm_file);
278         mpol_put(vma_policy(vma));
279         kmem_cache_free(vm_area_cachep, vma);
280         return next;
281 }
282
283 static unsigned long do_brk(unsigned long addr, unsigned long len);
284
285 SYSCALL_DEFINE1(brk, unsigned long, brk)
286 {
287         unsigned long retval;
288         unsigned long newbrk, oldbrk;
289         struct mm_struct *mm = current->mm;
290         unsigned long min_brk;
291         bool populate;
292
293         down_write(&mm->mmap_sem);
294
295 #ifdef CONFIG_COMPAT_BRK
296         /*
297          * CONFIG_COMPAT_BRK can still be overridden by setting
298          * randomize_va_space to 2, which will still cause mm->start_brk
299          * to be arbitrarily shifted
300          */
301         if (current->brk_randomized)
302                 min_brk = mm->start_brk;
303         else
304                 min_brk = mm->end_data;
305 #else
306         min_brk = mm->start_brk;
307 #endif
308         if (brk < min_brk)
309                 goto out;
310
311         /*
312          * Check against rlimit here. If this check is done later after the test
313          * of oldbrk with newbrk then it can escape the test and let the data
314          * segment grow beyond its set limit the in case where the limit is
315          * not page aligned -Ram Gupta
316          */
317         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
318                               mm->end_data, mm->start_data))
319                 goto out;
320
321         newbrk = PAGE_ALIGN(brk);
322         oldbrk = PAGE_ALIGN(mm->brk);
323         if (oldbrk == newbrk)
324                 goto set_brk;
325
326         /* Always allow shrinking brk. */
327         if (brk <= mm->brk) {
328                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
329                         goto set_brk;
330                 goto out;
331         }
332
333         /* Check against existing mmap mappings. */
334         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
335                 goto out;
336
337         /* Ok, looks good - let it rip. */
338         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
339                 goto out;
340
341 set_brk:
342         mm->brk = brk;
343         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
344         up_write(&mm->mmap_sem);
345         if (populate)
346                 mm_populate(oldbrk, newbrk - oldbrk);
347         return brk;
348
349 out:
350         retval = mm->brk;
351         up_write(&mm->mmap_sem);
352         return retval;
353 }
354
355 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
356 {
357         unsigned long max, subtree_gap;
358         max = vma->vm_start;
359         if (vma->vm_prev)
360                 max -= vma->vm_prev->vm_end;
361         if (vma->vm_rb.rb_left) {
362                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
363                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
364                 if (subtree_gap > max)
365                         max = subtree_gap;
366         }
367         if (vma->vm_rb.rb_right) {
368                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
369                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
370                 if (subtree_gap > max)
371                         max = subtree_gap;
372         }
373         return max;
374 }
375
376 #ifdef CONFIG_DEBUG_VM_RB
377 static int browse_rb(struct rb_root *root)
378 {
379         int i = 0, j, bug = 0;
380         struct rb_node *nd, *pn = NULL;
381         unsigned long prev = 0, pend = 0;
382
383         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384                 struct vm_area_struct *vma;
385                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386                 if (vma->vm_start < prev) {
387                         pr_emerg("vm_start %lx < prev %lx\n",
388                                   vma->vm_start, prev);
389                         bug = 1;
390                 }
391                 if (vma->vm_start < pend) {
392                         pr_emerg("vm_start %lx < pend %lx\n",
393                                   vma->vm_start, pend);
394                         bug = 1;
395                 }
396                 if (vma->vm_start > vma->vm_end) {
397                         pr_emerg("vm_start %lx > vm_end %lx\n",
398                                   vma->vm_start, vma->vm_end);
399                         bug = 1;
400                 }
401                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402                         pr_emerg("free gap %lx, correct %lx\n",
403                                vma->rb_subtree_gap,
404                                vma_compute_subtree_gap(vma));
405                         bug = 1;
406                 }
407                 i++;
408                 pn = nd;
409                 prev = vma->vm_start;
410                 pend = vma->vm_end;
411         }
412         j = 0;
413         for (nd = pn; nd; nd = rb_prev(nd))
414                 j++;
415         if (i != j) {
416                 pr_emerg("backwards %d, forwards %d\n", j, i);
417                 bug = 1;
418         }
419         return bug ? -1 : i;
420 }
421
422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
423 {
424         struct rb_node *nd;
425
426         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427                 struct vm_area_struct *vma;
428                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429                 VM_BUG_ON_VMA(vma != ignore &&
430                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
431                         vma);
432         }
433 }
434
435 static void validate_mm(struct mm_struct *mm)
436 {
437         int bug = 0;
438         int i = 0;
439         unsigned long highest_address = 0;
440         struct vm_area_struct *vma = mm->mmap;
441
442         while (vma) {
443                 struct anon_vma_chain *avc;
444
445                 vma_lock_anon_vma(vma);
446                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
447                         anon_vma_interval_tree_verify(avc);
448                 vma_unlock_anon_vma(vma);
449                 highest_address = vma->vm_end;
450                 vma = vma->vm_next;
451                 i++;
452         }
453         if (i != mm->map_count) {
454                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
455                 bug = 1;
456         }
457         if (highest_address != mm->highest_vm_end) {
458                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
459                           mm->highest_vm_end, highest_address);
460                 bug = 1;
461         }
462         i = browse_rb(&mm->mm_rb);
463         if (i != mm->map_count) {
464                 if (i != -1)
465                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
466                 bug = 1;
467         }
468         VM_BUG_ON_MM(bug, mm);
469 }
470 #else
471 #define validate_mm_rb(root, ignore) do { } while (0)
472 #define validate_mm(mm) do { } while (0)
473 #endif
474
475 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
476                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
477
478 /*
479  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
480  * vma->vm_prev->vm_end values changed, without modifying the vma's position
481  * in the rbtree.
482  */
483 static void vma_gap_update(struct vm_area_struct *vma)
484 {
485         /*
486          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
487          * function that does exacltly what we want.
488          */
489         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
490 }
491
492 static inline void vma_rb_insert(struct vm_area_struct *vma,
493                                  struct rb_root *root)
494 {
495         /* All rb_subtree_gap values must be consistent prior to insertion */
496         validate_mm_rb(root, NULL);
497
498         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
499 }
500
501 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
502 {
503         /*
504          * All rb_subtree_gap values must be consistent prior to erase,
505          * with the possible exception of the vma being erased.
506          */
507         validate_mm_rb(root, vma);
508
509         /*
510          * Note rb_erase_augmented is a fairly large inline function,
511          * so make sure we instantiate it only once with our desired
512          * augmented rbtree callbacks.
513          */
514         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
515 }
516
517 /*
518  * vma has some anon_vma assigned, and is already inserted on that
519  * anon_vma's interval trees.
520  *
521  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
522  * vma must be removed from the anon_vma's interval trees using
523  * anon_vma_interval_tree_pre_update_vma().
524  *
525  * After the update, the vma will be reinserted using
526  * anon_vma_interval_tree_post_update_vma().
527  *
528  * The entire update must be protected by exclusive mmap_sem and by
529  * the root anon_vma's mutex.
530  */
531 static inline void
532 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
533 {
534         struct anon_vma_chain *avc;
535
536         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
537                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
538 }
539
540 static inline void
541 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
542 {
543         struct anon_vma_chain *avc;
544
545         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
546                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
547 }
548
549 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
550                 unsigned long end, struct vm_area_struct **pprev,
551                 struct rb_node ***rb_link, struct rb_node **rb_parent)
552 {
553         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
554
555         __rb_link = &mm->mm_rb.rb_node;
556         rb_prev = __rb_parent = NULL;
557
558         while (*__rb_link) {
559                 struct vm_area_struct *vma_tmp;
560
561                 __rb_parent = *__rb_link;
562                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
563
564                 if (vma_tmp->vm_end > addr) {
565                         /* Fail if an existing vma overlaps the area */
566                         if (vma_tmp->vm_start < end)
567                                 return -ENOMEM;
568                         __rb_link = &__rb_parent->rb_left;
569                 } else {
570                         rb_prev = __rb_parent;
571                         __rb_link = &__rb_parent->rb_right;
572                 }
573         }
574
575         *pprev = NULL;
576         if (rb_prev)
577                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
578         *rb_link = __rb_link;
579         *rb_parent = __rb_parent;
580         return 0;
581 }
582
583 static unsigned long count_vma_pages_range(struct mm_struct *mm,
584                 unsigned long addr, unsigned long end)
585 {
586         unsigned long nr_pages = 0;
587         struct vm_area_struct *vma;
588
589         /* Find first overlaping mapping */
590         vma = find_vma_intersection(mm, addr, end);
591         if (!vma)
592                 return 0;
593
594         nr_pages = (min(end, vma->vm_end) -
595                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
596
597         /* Iterate over the rest of the overlaps */
598         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
599                 unsigned long overlap_len;
600
601                 if (vma->vm_start > end)
602                         break;
603
604                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
605                 nr_pages += overlap_len >> PAGE_SHIFT;
606         }
607
608         return nr_pages;
609 }
610
611 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
612                 struct rb_node **rb_link, struct rb_node *rb_parent)
613 {
614         /* Update tracking information for the gap following the new vma. */
615         if (vma->vm_next)
616                 vma_gap_update(vma->vm_next);
617         else
618                 mm->highest_vm_end = vma->vm_end;
619
620         /*
621          * vma->vm_prev wasn't known when we followed the rbtree to find the
622          * correct insertion point for that vma. As a result, we could not
623          * update the vma vm_rb parents rb_subtree_gap values on the way down.
624          * So, we first insert the vma with a zero rb_subtree_gap value
625          * (to be consistent with what we did on the way down), and then
626          * immediately update the gap to the correct value. Finally we
627          * rebalance the rbtree after all augmented values have been set.
628          */
629         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
630         vma->rb_subtree_gap = 0;
631         vma_gap_update(vma);
632         vma_rb_insert(vma, &mm->mm_rb);
633 }
634
635 static void __vma_link_file(struct vm_area_struct *vma)
636 {
637         struct file *file;
638
639         file = vma->vm_file;
640         if (file) {
641                 struct address_space *mapping = file->f_mapping;
642
643                 if (vma->vm_flags & VM_DENYWRITE)
644                         atomic_dec(&file_inode(file)->i_writecount);
645                 if (vma->vm_flags & VM_SHARED)
646                         atomic_inc(&mapping->i_mmap_writable);
647
648                 flush_dcache_mmap_lock(mapping);
649                 vma_interval_tree_insert(vma, &mapping->i_mmap);
650                 flush_dcache_mmap_unlock(mapping);
651         }
652 }
653
654 static void
655 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
656         struct vm_area_struct *prev, struct rb_node **rb_link,
657         struct rb_node *rb_parent)
658 {
659         __vma_link_list(mm, vma, prev, rb_parent);
660         __vma_link_rb(mm, vma, rb_link, rb_parent);
661 }
662
663 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
664                         struct vm_area_struct *prev, struct rb_node **rb_link,
665                         struct rb_node *rb_parent)
666 {
667         struct address_space *mapping = NULL;
668
669         if (vma->vm_file) {
670                 mapping = vma->vm_file->f_mapping;
671                 i_mmap_lock_write(mapping);
672         }
673
674         __vma_link(mm, vma, prev, rb_link, rb_parent);
675         __vma_link_file(vma);
676
677         if (mapping)
678                 i_mmap_unlock_write(mapping);
679
680         mm->map_count++;
681         validate_mm(mm);
682 }
683
684 /*
685  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
686  * mm's list and rbtree.  It has already been inserted into the interval tree.
687  */
688 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690         struct vm_area_struct *prev;
691         struct rb_node **rb_link, *rb_parent;
692
693         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
694                            &prev, &rb_link, &rb_parent))
695                 BUG();
696         __vma_link(mm, vma, prev, rb_link, rb_parent);
697         mm->map_count++;
698 }
699
700 static inline void
701 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
702                 struct vm_area_struct *prev)
703 {
704         struct vm_area_struct *next;
705
706         vma_rb_erase(vma, &mm->mm_rb);
707         prev->vm_next = next = vma->vm_next;
708         if (next)
709                 next->vm_prev = prev;
710
711         /* Kill the cache */
712         vmacache_invalidate(mm);
713 }
714
715 /*
716  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
717  * is already present in an i_mmap tree without adjusting the tree.
718  * The following helper function should be used when such adjustments
719  * are necessary.  The "insert" vma (if any) is to be inserted
720  * before we drop the necessary locks.
721  */
722 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
723         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
724 {
725         struct mm_struct *mm = vma->vm_mm;
726         struct vm_area_struct *next = vma->vm_next;
727         struct vm_area_struct *importer = NULL;
728         struct address_space *mapping = NULL;
729         struct rb_root *root = NULL;
730         struct anon_vma *anon_vma = NULL;
731         struct file *file = vma->vm_file;
732         bool start_changed = false, end_changed = false;
733         long adjust_next = 0;
734         int remove_next = 0;
735
736         if (next && !insert) {
737                 struct vm_area_struct *exporter = NULL;
738
739                 if (end >= next->vm_end) {
740                         /*
741                          * vma expands, overlapping all the next, and
742                          * perhaps the one after too (mprotect case 6).
743                          */
744 again:                  remove_next = 1 + (end > next->vm_end);
745                         end = next->vm_end;
746                         exporter = next;
747                         importer = vma;
748                 } else if (end > next->vm_start) {
749                         /*
750                          * vma expands, overlapping part of the next:
751                          * mprotect case 5 shifting the boundary up.
752                          */
753                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754                         exporter = next;
755                         importer = vma;
756                 } else if (end < vma->vm_end) {
757                         /*
758                          * vma shrinks, and !insert tells it's not
759                          * split_vma inserting another: so it must be
760                          * mprotect case 4 shifting the boundary down.
761                          */
762                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
763                         exporter = vma;
764                         importer = next;
765                 }
766
767                 /*
768                  * Easily overlooked: when mprotect shifts the boundary,
769                  * make sure the expanding vma has anon_vma set if the
770                  * shrinking vma had, to cover any anon pages imported.
771                  */
772                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
773                         int error;
774
775                         importer->anon_vma = exporter->anon_vma;
776                         error = anon_vma_clone(importer, exporter);
777                         if (error)
778                                 return error;
779                 }
780         }
781
782         if (file) {
783                 mapping = file->f_mapping;
784                 root = &mapping->i_mmap;
785                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
786
787                 if (adjust_next)
788                         uprobe_munmap(next, next->vm_start, next->vm_end);
789
790                 i_mmap_lock_write(mapping);
791                 if (insert) {
792                         /*
793                          * Put into interval tree now, so instantiated pages
794                          * are visible to arm/parisc __flush_dcache_page
795                          * throughout; but we cannot insert into address
796                          * space until vma start or end is updated.
797                          */
798                         __vma_link_file(insert);
799                 }
800         }
801
802         vma_adjust_trans_huge(vma, start, end, adjust_next);
803
804         anon_vma = vma->anon_vma;
805         if (!anon_vma && adjust_next)
806                 anon_vma = next->anon_vma;
807         if (anon_vma) {
808                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
809                           anon_vma != next->anon_vma, next);
810                 anon_vma_lock_write(anon_vma);
811                 anon_vma_interval_tree_pre_update_vma(vma);
812                 if (adjust_next)
813                         anon_vma_interval_tree_pre_update_vma(next);
814         }
815
816         if (root) {
817                 flush_dcache_mmap_lock(mapping);
818                 vma_interval_tree_remove(vma, root);
819                 if (adjust_next)
820                         vma_interval_tree_remove(next, root);
821         }
822
823         if (start != vma->vm_start) {
824                 vma->vm_start = start;
825                 start_changed = true;
826         }
827         if (end != vma->vm_end) {
828                 vma->vm_end = end;
829                 end_changed = true;
830         }
831         vma->vm_pgoff = pgoff;
832         if (adjust_next) {
833                 next->vm_start += adjust_next << PAGE_SHIFT;
834                 next->vm_pgoff += adjust_next;
835         }
836
837         if (root) {
838                 if (adjust_next)
839                         vma_interval_tree_insert(next, root);
840                 vma_interval_tree_insert(vma, root);
841                 flush_dcache_mmap_unlock(mapping);
842         }
843
844         if (remove_next) {
845                 /*
846                  * vma_merge has merged next into vma, and needs
847                  * us to remove next before dropping the locks.
848                  */
849                 __vma_unlink(mm, next, vma);
850                 if (file)
851                         __remove_shared_vm_struct(next, file, mapping);
852         } else if (insert) {
853                 /*
854                  * split_vma has split insert from vma, and needs
855                  * us to insert it before dropping the locks
856                  * (it may either follow vma or precede it).
857                  */
858                 __insert_vm_struct(mm, insert);
859         } else {
860                 if (start_changed)
861                         vma_gap_update(vma);
862                 if (end_changed) {
863                         if (!next)
864                                 mm->highest_vm_end = end;
865                         else if (!adjust_next)
866                                 vma_gap_update(next);
867                 }
868         }
869
870         if (anon_vma) {
871                 anon_vma_interval_tree_post_update_vma(vma);
872                 if (adjust_next)
873                         anon_vma_interval_tree_post_update_vma(next);
874                 anon_vma_unlock_write(anon_vma);
875         }
876         if (mapping)
877                 i_mmap_unlock_write(mapping);
878
879         if (root) {
880                 uprobe_mmap(vma);
881
882                 if (adjust_next)
883                         uprobe_mmap(next);
884         }
885
886         if (remove_next) {
887                 if (file) {
888                         uprobe_munmap(next, next->vm_start, next->vm_end);
889                         fput(file);
890                 }
891                 if (next->anon_vma)
892                         anon_vma_merge(vma, next);
893                 mm->map_count--;
894                 mpol_put(vma_policy(next));
895                 kmem_cache_free(vm_area_cachep, next);
896                 /*
897                  * In mprotect's case 6 (see comments on vma_merge),
898                  * we must remove another next too. It would clutter
899                  * up the code too much to do both in one go.
900                  */
901                 next = vma->vm_next;
902                 if (remove_next == 2)
903                         goto again;
904                 else if (next)
905                         vma_gap_update(next);
906                 else
907                         mm->highest_vm_end = end;
908         }
909         if (insert && file)
910                 uprobe_mmap(insert);
911
912         validate_mm(mm);
913
914         return 0;
915 }
916
917 /*
918  * If the vma has a ->close operation then the driver probably needs to release
919  * per-vma resources, so we don't attempt to merge those.
920  */
921 static inline int is_mergeable_vma(struct vm_area_struct *vma,
922                         struct file *file, unsigned long vm_flags)
923 {
924         /*
925          * VM_SOFTDIRTY should not prevent from VMA merging, if we
926          * match the flags but dirty bit -- the caller should mark
927          * merged VMA as dirty. If dirty bit won't be excluded from
928          * comparison, we increase pressue on the memory system forcing
929          * the kernel to generate new VMAs when old one could be
930          * extended instead.
931          */
932         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
933                 return 0;
934         if (vma->vm_file != file)
935                 return 0;
936         if (vma->vm_ops && vma->vm_ops->close)
937                 return 0;
938         return 1;
939 }
940
941 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
942                                         struct anon_vma *anon_vma2,
943                                         struct vm_area_struct *vma)
944 {
945         /*
946          * The list_is_singular() test is to avoid merging VMA cloned from
947          * parents. This can improve scalability caused by anon_vma lock.
948          */
949         if ((!anon_vma1 || !anon_vma2) && (!vma ||
950                 list_is_singular(&vma->anon_vma_chain)))
951                 return 1;
952         return anon_vma1 == anon_vma2;
953 }
954
955 /*
956  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957  * in front of (at a lower virtual address and file offset than) the vma.
958  *
959  * We cannot merge two vmas if they have differently assigned (non-NULL)
960  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
961  *
962  * We don't check here for the merged mmap wrapping around the end of pagecache
963  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
964  * wrap, nor mmaps which cover the final page at index -1UL.
965  */
966 static int
967 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
968         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
969 {
970         if (is_mergeable_vma(vma, file, vm_flags) &&
971             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
972                 if (vma->vm_pgoff == vm_pgoff)
973                         return 1;
974         }
975         return 0;
976 }
977
978 /*
979  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
980  * beyond (at a higher virtual address and file offset than) the vma.
981  *
982  * We cannot merge two vmas if they have differently assigned (non-NULL)
983  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
984  */
985 static int
986 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
987         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
988 {
989         if (is_mergeable_vma(vma, file, vm_flags) &&
990             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
991                 pgoff_t vm_pglen;
992                 vm_pglen = vma_pages(vma);
993                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
994                         return 1;
995         }
996         return 0;
997 }
998
999 /*
1000  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1001  * whether that can be merged with its predecessor or its successor.
1002  * Or both (it neatly fills a hole).
1003  *
1004  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1005  * certain not to be mapped by the time vma_merge is called; but when
1006  * called for mprotect, it is certain to be already mapped (either at
1007  * an offset within prev, or at the start of next), and the flags of
1008  * this area are about to be changed to vm_flags - and the no-change
1009  * case has already been eliminated.
1010  *
1011  * The following mprotect cases have to be considered, where AAAA is
1012  * the area passed down from mprotect_fixup, never extending beyond one
1013  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1014  *
1015  *     AAAA             AAAA                AAAA          AAAA
1016  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1017  *    cannot merge    might become    might become    might become
1018  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1019  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1020  *    mremap move:                                    PPPPNNNNNNNN 8
1021  *        AAAA
1022  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1023  *    might become    case 1 below    case 2 below    case 3 below
1024  *
1025  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1026  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1027  */
1028 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1029                         struct vm_area_struct *prev, unsigned long addr,
1030                         unsigned long end, unsigned long vm_flags,
1031                         struct anon_vma *anon_vma, struct file *file,
1032                         pgoff_t pgoff, struct mempolicy *policy)
1033 {
1034         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1035         struct vm_area_struct *area, *next;
1036         int err;
1037
1038         /*
1039          * We later require that vma->vm_flags == vm_flags,
1040          * so this tests vma->vm_flags & VM_SPECIAL, too.
1041          */
1042         if (vm_flags & VM_SPECIAL)
1043                 return NULL;
1044
1045         if (prev)
1046                 next = prev->vm_next;
1047         else
1048                 next = mm->mmap;
1049         area = next;
1050         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1051                 next = next->vm_next;
1052
1053         /*
1054          * Can it merge with the predecessor?
1055          */
1056         if (prev && prev->vm_end == addr &&
1057                         mpol_equal(vma_policy(prev), policy) &&
1058                         can_vma_merge_after(prev, vm_flags,
1059                                                 anon_vma, file, pgoff)) {
1060                 /*
1061                  * OK, it can.  Can we now merge in the successor as well?
1062                  */
1063                 if (next && end == next->vm_start &&
1064                                 mpol_equal(policy, vma_policy(next)) &&
1065                                 can_vma_merge_before(next, vm_flags,
1066                                         anon_vma, file, pgoff+pglen) &&
1067                                 is_mergeable_anon_vma(prev->anon_vma,
1068                                                       next->anon_vma, NULL)) {
1069                                                         /* cases 1, 6 */
1070                         err = vma_adjust(prev, prev->vm_start,
1071                                 next->vm_end, prev->vm_pgoff, NULL);
1072                 } else                                  /* cases 2, 5, 7 */
1073                         err = vma_adjust(prev, prev->vm_start,
1074                                 end, prev->vm_pgoff, NULL);
1075                 if (err)
1076                         return NULL;
1077                 khugepaged_enter_vma_merge(prev, vm_flags);
1078                 return prev;
1079         }
1080
1081         /*
1082          * Can this new request be merged in front of next?
1083          */
1084         if (next && end == next->vm_start &&
1085                         mpol_equal(policy, vma_policy(next)) &&
1086                         can_vma_merge_before(next, vm_flags,
1087                                         anon_vma, file, pgoff+pglen)) {
1088                 if (prev && addr < prev->vm_end)        /* case 4 */
1089                         err = vma_adjust(prev, prev->vm_start,
1090                                 addr, prev->vm_pgoff, NULL);
1091                 else                                    /* cases 3, 8 */
1092                         err = vma_adjust(area, addr, next->vm_end,
1093                                 next->vm_pgoff - pglen, NULL);
1094                 if (err)
1095                         return NULL;
1096                 khugepaged_enter_vma_merge(area, vm_flags);
1097                 return area;
1098         }
1099
1100         return NULL;
1101 }
1102
1103 /*
1104  * Rough compatbility check to quickly see if it's even worth looking
1105  * at sharing an anon_vma.
1106  *
1107  * They need to have the same vm_file, and the flags can only differ
1108  * in things that mprotect may change.
1109  *
1110  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1111  * we can merge the two vma's. For example, we refuse to merge a vma if
1112  * there is a vm_ops->close() function, because that indicates that the
1113  * driver is doing some kind of reference counting. But that doesn't
1114  * really matter for the anon_vma sharing case.
1115  */
1116 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1117 {
1118         return a->vm_end == b->vm_start &&
1119                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1120                 a->vm_file == b->vm_file &&
1121                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1122                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1123 }
1124
1125 /*
1126  * Do some basic sanity checking to see if we can re-use the anon_vma
1127  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1128  * the same as 'old', the other will be the new one that is trying
1129  * to share the anon_vma.
1130  *
1131  * NOTE! This runs with mm_sem held for reading, so it is possible that
1132  * the anon_vma of 'old' is concurrently in the process of being set up
1133  * by another page fault trying to merge _that_. But that's ok: if it
1134  * is being set up, that automatically means that it will be a singleton
1135  * acceptable for merging, so we can do all of this optimistically. But
1136  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1137  *
1138  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1139  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1140  * is to return an anon_vma that is "complex" due to having gone through
1141  * a fork).
1142  *
1143  * We also make sure that the two vma's are compatible (adjacent,
1144  * and with the same memory policies). That's all stable, even with just
1145  * a read lock on the mm_sem.
1146  */
1147 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1148 {
1149         if (anon_vma_compatible(a, b)) {
1150                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1151
1152                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1153                         return anon_vma;
1154         }
1155         return NULL;
1156 }
1157
1158 /*
1159  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1160  * neighbouring vmas for a suitable anon_vma, before it goes off
1161  * to allocate a new anon_vma.  It checks because a repetitive
1162  * sequence of mprotects and faults may otherwise lead to distinct
1163  * anon_vmas being allocated, preventing vma merge in subsequent
1164  * mprotect.
1165  */
1166 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1167 {
1168         struct anon_vma *anon_vma;
1169         struct vm_area_struct *near;
1170
1171         near = vma->vm_next;
1172         if (!near)
1173                 goto try_prev;
1174
1175         anon_vma = reusable_anon_vma(near, vma, near);
1176         if (anon_vma)
1177                 return anon_vma;
1178 try_prev:
1179         near = vma->vm_prev;
1180         if (!near)
1181                 goto none;
1182
1183         anon_vma = reusable_anon_vma(near, near, vma);
1184         if (anon_vma)
1185                 return anon_vma;
1186 none:
1187         /*
1188          * There's no absolute need to look only at touching neighbours:
1189          * we could search further afield for "compatible" anon_vmas.
1190          * But it would probably just be a waste of time searching,
1191          * or lead to too many vmas hanging off the same anon_vma.
1192          * We're trying to allow mprotect remerging later on,
1193          * not trying to minimize memory used for anon_vmas.
1194          */
1195         return NULL;
1196 }
1197
1198 #ifdef CONFIG_PROC_FS
1199 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1200                                                 struct file *file, long pages)
1201 {
1202         const unsigned long stack_flags
1203                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1204
1205         mm->total_vm += pages;
1206
1207         if (file) {
1208                 mm->shared_vm += pages;
1209                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1210                         mm->exec_vm += pages;
1211         } else if (flags & stack_flags)
1212                 mm->stack_vm += pages;
1213 }
1214 #endif /* CONFIG_PROC_FS */
1215
1216 /*
1217  * If a hint addr is less than mmap_min_addr change hint to be as
1218  * low as possible but still greater than mmap_min_addr
1219  */
1220 static inline unsigned long round_hint_to_min(unsigned long hint)
1221 {
1222         hint &= PAGE_MASK;
1223         if (((void *)hint != NULL) &&
1224             (hint < mmap_min_addr))
1225                 return PAGE_ALIGN(mmap_min_addr);
1226         return hint;
1227 }
1228
1229 static inline int mlock_future_check(struct mm_struct *mm,
1230                                      unsigned long flags,
1231                                      unsigned long len)
1232 {
1233         unsigned long locked, lock_limit;
1234
1235         /*  mlock MCL_FUTURE? */
1236         if (flags & VM_LOCKED) {
1237                 locked = len >> PAGE_SHIFT;
1238                 locked += mm->locked_vm;
1239                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1240                 lock_limit >>= PAGE_SHIFT;
1241                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1242                         return -EAGAIN;
1243         }
1244         return 0;
1245 }
1246
1247 /*
1248  * The caller must hold down_write(&current->mm->mmap_sem).
1249  */
1250
1251 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1252                         unsigned long len, unsigned long prot,
1253                         unsigned long flags, unsigned long pgoff,
1254                         unsigned long *populate)
1255 {
1256         struct mm_struct *mm = current->mm;
1257         vm_flags_t vm_flags;
1258
1259         *populate = 0;
1260
1261         /*
1262          * Does the application expect PROT_READ to imply PROT_EXEC?
1263          *
1264          * (the exception is when the underlying filesystem is noexec
1265          *  mounted, in which case we dont add PROT_EXEC.)
1266          */
1267         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1268                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1269                         prot |= PROT_EXEC;
1270
1271         if (!len)
1272                 return -EINVAL;
1273
1274         if (!(flags & MAP_FIXED))
1275                 addr = round_hint_to_min(addr);
1276
1277         /* Careful about overflows.. */
1278         len = PAGE_ALIGN(len);
1279         if (!len)
1280                 return -ENOMEM;
1281
1282         /* offset overflow? */
1283         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1284                 return -EOVERFLOW;
1285
1286         /* Too many mappings? */
1287         if (mm->map_count > sysctl_max_map_count)
1288                 return -ENOMEM;
1289
1290         /* Obtain the address to map to. we verify (or select) it and ensure
1291          * that it represents a valid section of the address space.
1292          */
1293         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1294         if (addr & ~PAGE_MASK)
1295                 return addr;
1296
1297         /* Do simple checking here so the lower-level routines won't have
1298          * to. we assume access permissions have been handled by the open
1299          * of the memory object, so we don't do any here.
1300          */
1301         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1302                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1303
1304         if (flags & MAP_LOCKED)
1305                 if (!can_do_mlock())
1306                         return -EPERM;
1307
1308         if (mlock_future_check(mm, vm_flags, len))
1309                 return -EAGAIN;
1310
1311         if (file) {
1312                 struct inode *inode = file_inode(file);
1313
1314                 switch (flags & MAP_TYPE) {
1315                 case MAP_SHARED:
1316                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1317                                 return -EACCES;
1318
1319                         /*
1320                          * Make sure we don't allow writing to an append-only
1321                          * file..
1322                          */
1323                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1324                                 return -EACCES;
1325
1326                         /*
1327                          * Make sure there are no mandatory locks on the file.
1328                          */
1329                         if (locks_verify_locked(file))
1330                                 return -EAGAIN;
1331
1332                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1333                         if (!(file->f_mode & FMODE_WRITE))
1334                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1335
1336                         /* fall through */
1337                 case MAP_PRIVATE:
1338                         if (!(file->f_mode & FMODE_READ))
1339                                 return -EACCES;
1340                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1341                                 if (vm_flags & VM_EXEC)
1342                                         return -EPERM;
1343                                 vm_flags &= ~VM_MAYEXEC;
1344                         }
1345
1346                         if (!file->f_op->mmap)
1347                                 return -ENODEV;
1348                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1349                                 return -EINVAL;
1350                         break;
1351
1352                 default:
1353                         return -EINVAL;
1354                 }
1355         } else {
1356                 switch (flags & MAP_TYPE) {
1357                 case MAP_SHARED:
1358                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1359                                 return -EINVAL;
1360                         /*
1361                          * Ignore pgoff.
1362                          */
1363                         pgoff = 0;
1364                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1365                         break;
1366                 case MAP_PRIVATE:
1367                         /*
1368                          * Set pgoff according to addr for anon_vma.
1369                          */
1370                         pgoff = addr >> PAGE_SHIFT;
1371                         break;
1372                 default:
1373                         return -EINVAL;
1374                 }
1375         }
1376
1377         /*
1378          * Set 'VM_NORESERVE' if we should not account for the
1379          * memory use of this mapping.
1380          */
1381         if (flags & MAP_NORESERVE) {
1382                 /* We honor MAP_NORESERVE if allowed to overcommit */
1383                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1384                         vm_flags |= VM_NORESERVE;
1385
1386                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1387                 if (file && is_file_hugepages(file))
1388                         vm_flags |= VM_NORESERVE;
1389         }
1390
1391         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1392         if (!IS_ERR_VALUE(addr) &&
1393             ((vm_flags & VM_LOCKED) ||
1394              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1395                 *populate = len;
1396         return addr;
1397 }
1398
1399 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1400                 unsigned long, prot, unsigned long, flags,
1401                 unsigned long, fd, unsigned long, pgoff)
1402 {
1403         struct file *file = NULL;
1404         unsigned long retval = -EBADF;
1405
1406         if (!(flags & MAP_ANONYMOUS)) {
1407                 audit_mmap_fd(fd, flags);
1408                 file = fget(fd);
1409                 if (!file)
1410                         goto out;
1411                 if (is_file_hugepages(file))
1412                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1413                 retval = -EINVAL;
1414                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1415                         goto out_fput;
1416         } else if (flags & MAP_HUGETLB) {
1417                 struct user_struct *user = NULL;
1418                 struct hstate *hs;
1419
1420                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1421                 if (!hs)
1422                         return -EINVAL;
1423
1424                 len = ALIGN(len, huge_page_size(hs));
1425                 /*
1426                  * VM_NORESERVE is used because the reservations will be
1427                  * taken when vm_ops->mmap() is called
1428                  * A dummy user value is used because we are not locking
1429                  * memory so no accounting is necessary
1430                  */
1431                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1432                                 VM_NORESERVE,
1433                                 &user, HUGETLB_ANONHUGE_INODE,
1434                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1435                 if (IS_ERR(file))
1436                         return PTR_ERR(file);
1437         }
1438
1439         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1440
1441         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1442 out_fput:
1443         if (file)
1444                 fput(file);
1445 out:
1446         return retval;
1447 }
1448
1449 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1450 struct mmap_arg_struct {
1451         unsigned long addr;
1452         unsigned long len;
1453         unsigned long prot;
1454         unsigned long flags;
1455         unsigned long fd;
1456         unsigned long offset;
1457 };
1458
1459 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1460 {
1461         struct mmap_arg_struct a;
1462
1463         if (copy_from_user(&a, arg, sizeof(a)))
1464                 return -EFAULT;
1465         if (a.offset & ~PAGE_MASK)
1466                 return -EINVAL;
1467
1468         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1469                               a.offset >> PAGE_SHIFT);
1470 }
1471 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1472
1473 /*
1474  * Some shared mappigns will want the pages marked read-only
1475  * to track write events. If so, we'll downgrade vm_page_prot
1476  * to the private version (using protection_map[] without the
1477  * VM_SHARED bit).
1478  */
1479 int vma_wants_writenotify(struct vm_area_struct *vma)
1480 {
1481         vm_flags_t vm_flags = vma->vm_flags;
1482
1483         /* If it was private or non-writable, the write bit is already clear */
1484         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1485                 return 0;
1486
1487         /* The backer wishes to know when pages are first written to? */
1488         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1489                 return 1;
1490
1491         /* The open routine did something to the protections that pgprot_modify
1492          * won't preserve? */
1493         if (pgprot_val(vma->vm_page_prot) !=
1494             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1495                 return 0;
1496
1497         /* Do we need to track softdirty? */
1498         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1499                 return 1;
1500
1501         /* Specialty mapping? */
1502         if (vm_flags & VM_PFNMAP)
1503                 return 0;
1504
1505         /* Can the mapping track the dirty pages? */
1506         return vma->vm_file && vma->vm_file->f_mapping &&
1507                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1508 }
1509
1510 /*
1511  * We account for memory if it's a private writeable mapping,
1512  * not hugepages and VM_NORESERVE wasn't set.
1513  */
1514 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1515 {
1516         /*
1517          * hugetlb has its own accounting separate from the core VM
1518          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1519          */
1520         if (file && is_file_hugepages(file))
1521                 return 0;
1522
1523         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1524 }
1525
1526 unsigned long mmap_region(struct file *file, unsigned long addr,
1527                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1528 {
1529         struct mm_struct *mm = current->mm;
1530         struct vm_area_struct *vma, *prev;
1531         int error;
1532         struct rb_node **rb_link, *rb_parent;
1533         unsigned long charged = 0;
1534
1535         /* Check against address space limit. */
1536         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1537                 unsigned long nr_pages;
1538
1539                 /*
1540                  * MAP_FIXED may remove pages of mappings that intersects with
1541                  * requested mapping. Account for the pages it would unmap.
1542                  */
1543                 if (!(vm_flags & MAP_FIXED))
1544                         return -ENOMEM;
1545
1546                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1547
1548                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1549                         return -ENOMEM;
1550         }
1551
1552         /* Clear old maps */
1553         error = -ENOMEM;
1554         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1555                               &rb_parent)) {
1556                 if (do_munmap(mm, addr, len))
1557                         return -ENOMEM;
1558         }
1559
1560         /*
1561          * Private writable mapping: check memory availability
1562          */
1563         if (accountable_mapping(file, vm_flags)) {
1564                 charged = len >> PAGE_SHIFT;
1565                 if (security_vm_enough_memory_mm(mm, charged))
1566                         return -ENOMEM;
1567                 vm_flags |= VM_ACCOUNT;
1568         }
1569
1570         /*
1571          * Can we just expand an old mapping?
1572          */
1573         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1574                         NULL);
1575         if (vma)
1576                 goto out;
1577
1578         /*
1579          * Determine the object being mapped and call the appropriate
1580          * specific mapper. the address has already been validated, but
1581          * not unmapped, but the maps are removed from the list.
1582          */
1583         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1584         if (!vma) {
1585                 error = -ENOMEM;
1586                 goto unacct_error;
1587         }
1588
1589         vma->vm_mm = mm;
1590         vma->vm_start = addr;
1591         vma->vm_end = addr + len;
1592         vma->vm_flags = vm_flags;
1593         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1594         vma->vm_pgoff = pgoff;
1595         INIT_LIST_HEAD(&vma->anon_vma_chain);
1596
1597         if (file) {
1598                 if (vm_flags & VM_DENYWRITE) {
1599                         error = deny_write_access(file);
1600                         if (error)
1601                                 goto free_vma;
1602                 }
1603                 if (vm_flags & VM_SHARED) {
1604                         error = mapping_map_writable(file->f_mapping);
1605                         if (error)
1606                                 goto allow_write_and_free_vma;
1607                 }
1608
1609                 /* ->mmap() can change vma->vm_file, but must guarantee that
1610                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1611                  * and map writably if VM_SHARED is set. This usually means the
1612                  * new file must not have been exposed to user-space, yet.
1613                  */
1614                 vma->vm_file = get_file(file);
1615                 error = file->f_op->mmap(file, vma);
1616                 if (error)
1617                         goto unmap_and_free_vma;
1618
1619                 /* Can addr have changed??
1620                  *
1621                  * Answer: Yes, several device drivers can do it in their
1622                  *         f_op->mmap method. -DaveM
1623                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1624                  *      be updated for vma_link()
1625                  */
1626                 WARN_ON_ONCE(addr != vma->vm_start);
1627
1628                 addr = vma->vm_start;
1629                 vm_flags = vma->vm_flags;
1630         } else if (vm_flags & VM_SHARED) {
1631                 error = shmem_zero_setup(vma);
1632                 if (error)
1633                         goto free_vma;
1634         }
1635
1636         vma_link(mm, vma, prev, rb_link, rb_parent);
1637         /* Once vma denies write, undo our temporary denial count */
1638         if (file) {
1639                 if (vm_flags & VM_SHARED)
1640                         mapping_unmap_writable(file->f_mapping);
1641                 if (vm_flags & VM_DENYWRITE)
1642                         allow_write_access(file);
1643         }
1644         file = vma->vm_file;
1645 out:
1646         perf_event_mmap(vma);
1647
1648         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1649         if (vm_flags & VM_LOCKED) {
1650                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1651                                         vma == get_gate_vma(current->mm)))
1652                         mm->locked_vm += (len >> PAGE_SHIFT);
1653                 else
1654                         vma->vm_flags &= ~VM_LOCKED;
1655         }
1656
1657         if (file)
1658                 uprobe_mmap(vma);
1659
1660         /*
1661          * New (or expanded) vma always get soft dirty status.
1662          * Otherwise user-space soft-dirty page tracker won't
1663          * be able to distinguish situation when vma area unmapped,
1664          * then new mapped in-place (which must be aimed as
1665          * a completely new data area).
1666          */
1667         vma->vm_flags |= VM_SOFTDIRTY;
1668
1669         vma_set_page_prot(vma);
1670
1671         return addr;
1672
1673 unmap_and_free_vma:
1674         vma->vm_file = NULL;
1675         fput(file);
1676
1677         /* Undo any partial mapping done by a device driver. */
1678         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1679         charged = 0;
1680         if (vm_flags & VM_SHARED)
1681                 mapping_unmap_writable(file->f_mapping);
1682 allow_write_and_free_vma:
1683         if (vm_flags & VM_DENYWRITE)
1684                 allow_write_access(file);
1685 free_vma:
1686         kmem_cache_free(vm_area_cachep, vma);
1687 unacct_error:
1688         if (charged)
1689                 vm_unacct_memory(charged);
1690         return error;
1691 }
1692
1693 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1694 {
1695         /*
1696          * We implement the search by looking for an rbtree node that
1697          * immediately follows a suitable gap. That is,
1698          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1699          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1700          * - gap_end - gap_start >= length
1701          */
1702
1703         struct mm_struct *mm = current->mm;
1704         struct vm_area_struct *vma;
1705         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1706
1707         /* Adjust search length to account for worst case alignment overhead */
1708         length = info->length + info->align_mask;
1709         if (length < info->length)
1710                 return -ENOMEM;
1711
1712         /* Adjust search limits by the desired length */
1713         if (info->high_limit < length)
1714                 return -ENOMEM;
1715         high_limit = info->high_limit - length;
1716
1717         if (info->low_limit > high_limit)
1718                 return -ENOMEM;
1719         low_limit = info->low_limit + length;
1720
1721         /* Check if rbtree root looks promising */
1722         if (RB_EMPTY_ROOT(&mm->mm_rb))
1723                 goto check_highest;
1724         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1725         if (vma->rb_subtree_gap < length)
1726                 goto check_highest;
1727
1728         while (true) {
1729                 /* Visit left subtree if it looks promising */
1730                 gap_end = vma->vm_start;
1731                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1732                         struct vm_area_struct *left =
1733                                 rb_entry(vma->vm_rb.rb_left,
1734                                          struct vm_area_struct, vm_rb);
1735                         if (left->rb_subtree_gap >= length) {
1736                                 vma = left;
1737                                 continue;
1738                         }
1739                 }
1740
1741                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1742 check_current:
1743                 /* Check if current node has a suitable gap */
1744                 if (gap_start > high_limit)
1745                         return -ENOMEM;
1746                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1747                         goto found;
1748
1749                 /* Visit right subtree if it looks promising */
1750                 if (vma->vm_rb.rb_right) {
1751                         struct vm_area_struct *right =
1752                                 rb_entry(vma->vm_rb.rb_right,
1753                                          struct vm_area_struct, vm_rb);
1754                         if (right->rb_subtree_gap >= length) {
1755                                 vma = right;
1756                                 continue;
1757                         }
1758                 }
1759
1760                 /* Go back up the rbtree to find next candidate node */
1761                 while (true) {
1762                         struct rb_node *prev = &vma->vm_rb;
1763                         if (!rb_parent(prev))
1764                                 goto check_highest;
1765                         vma = rb_entry(rb_parent(prev),
1766                                        struct vm_area_struct, vm_rb);
1767                         if (prev == vma->vm_rb.rb_left) {
1768                                 gap_start = vma->vm_prev->vm_end;
1769                                 gap_end = vma->vm_start;
1770                                 goto check_current;
1771                         }
1772                 }
1773         }
1774
1775 check_highest:
1776         /* Check highest gap, which does not precede any rbtree node */
1777         gap_start = mm->highest_vm_end;
1778         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1779         if (gap_start > high_limit)
1780                 return -ENOMEM;
1781
1782 found:
1783         /* We found a suitable gap. Clip it with the original low_limit. */
1784         if (gap_start < info->low_limit)
1785                 gap_start = info->low_limit;
1786
1787         /* Adjust gap address to the desired alignment */
1788         gap_start += (info->align_offset - gap_start) & info->align_mask;
1789
1790         VM_BUG_ON(gap_start + info->length > info->high_limit);
1791         VM_BUG_ON(gap_start + info->length > gap_end);
1792         return gap_start;
1793 }
1794
1795 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1796 {
1797         struct mm_struct *mm = current->mm;
1798         struct vm_area_struct *vma;
1799         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1800
1801         /* Adjust search length to account for worst case alignment overhead */
1802         length = info->length + info->align_mask;
1803         if (length < info->length)
1804                 return -ENOMEM;
1805
1806         /*
1807          * Adjust search limits by the desired length.
1808          * See implementation comment at top of unmapped_area().
1809          */
1810         gap_end = info->high_limit;
1811         if (gap_end < length)
1812                 return -ENOMEM;
1813         high_limit = gap_end - length;
1814
1815         if (info->low_limit > high_limit)
1816                 return -ENOMEM;
1817         low_limit = info->low_limit + length;
1818
1819         /* Check highest gap, which does not precede any rbtree node */
1820         gap_start = mm->highest_vm_end;
1821         if (gap_start <= high_limit)
1822                 goto found_highest;
1823
1824         /* Check if rbtree root looks promising */
1825         if (RB_EMPTY_ROOT(&mm->mm_rb))
1826                 return -ENOMEM;
1827         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1828         if (vma->rb_subtree_gap < length)
1829                 return -ENOMEM;
1830
1831         while (true) {
1832                 /* Visit right subtree if it looks promising */
1833                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1834                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1835                         struct vm_area_struct *right =
1836                                 rb_entry(vma->vm_rb.rb_right,
1837                                          struct vm_area_struct, vm_rb);
1838                         if (right->rb_subtree_gap >= length) {
1839                                 vma = right;
1840                                 continue;
1841                         }
1842                 }
1843
1844 check_current:
1845                 /* Check if current node has a suitable gap */
1846                 gap_end = vma->vm_start;
1847                 if (gap_end < low_limit)
1848                         return -ENOMEM;
1849                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1850                         goto found;
1851
1852                 /* Visit left subtree if it looks promising */
1853                 if (vma->vm_rb.rb_left) {
1854                         struct vm_area_struct *left =
1855                                 rb_entry(vma->vm_rb.rb_left,
1856                                          struct vm_area_struct, vm_rb);
1857                         if (left->rb_subtree_gap >= length) {
1858                                 vma = left;
1859                                 continue;
1860                         }
1861                 }
1862
1863                 /* Go back up the rbtree to find next candidate node */
1864                 while (true) {
1865                         struct rb_node *prev = &vma->vm_rb;
1866                         if (!rb_parent(prev))
1867                                 return -ENOMEM;
1868                         vma = rb_entry(rb_parent(prev),
1869                                        struct vm_area_struct, vm_rb);
1870                         if (prev == vma->vm_rb.rb_right) {
1871                                 gap_start = vma->vm_prev ?
1872                                         vma->vm_prev->vm_end : 0;
1873                                 goto check_current;
1874                         }
1875                 }
1876         }
1877
1878 found:
1879         /* We found a suitable gap. Clip it with the original high_limit. */
1880         if (gap_end > info->high_limit)
1881                 gap_end = info->high_limit;
1882
1883 found_highest:
1884         /* Compute highest gap address at the desired alignment */
1885         gap_end -= info->length;
1886         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1887
1888         VM_BUG_ON(gap_end < info->low_limit);
1889         VM_BUG_ON(gap_end < gap_start);
1890         return gap_end;
1891 }
1892
1893 /* Get an address range which is currently unmapped.
1894  * For shmat() with addr=0.
1895  *
1896  * Ugly calling convention alert:
1897  * Return value with the low bits set means error value,
1898  * ie
1899  *      if (ret & ~PAGE_MASK)
1900  *              error = ret;
1901  *
1902  * This function "knows" that -ENOMEM has the bits set.
1903  */
1904 #ifndef HAVE_ARCH_UNMAPPED_AREA
1905 unsigned long
1906 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1907                 unsigned long len, unsigned long pgoff, unsigned long flags)
1908 {
1909         struct mm_struct *mm = current->mm;
1910         struct vm_area_struct *vma;
1911         struct vm_unmapped_area_info info;
1912
1913         if (len > TASK_SIZE - mmap_min_addr)
1914                 return -ENOMEM;
1915
1916         if (flags & MAP_FIXED)
1917                 return addr;
1918
1919         if (addr) {
1920                 addr = PAGE_ALIGN(addr);
1921                 vma = find_vma(mm, addr);
1922                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1923                     (!vma || addr + len <= vma->vm_start))
1924                         return addr;
1925         }
1926
1927         info.flags = 0;
1928         info.length = len;
1929         info.low_limit = mm->mmap_base;
1930         info.high_limit = TASK_SIZE;
1931         info.align_mask = 0;
1932         return vm_unmapped_area(&info);
1933 }
1934 #endif
1935
1936 /*
1937  * This mmap-allocator allocates new areas top-down from below the
1938  * stack's low limit (the base):
1939  */
1940 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1941 unsigned long
1942 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1943                           const unsigned long len, const unsigned long pgoff,
1944                           const unsigned long flags)
1945 {
1946         struct vm_area_struct *vma;
1947         struct mm_struct *mm = current->mm;
1948         unsigned long addr = addr0;
1949         struct vm_unmapped_area_info info;
1950
1951         /* requested length too big for entire address space */
1952         if (len > TASK_SIZE - mmap_min_addr)
1953                 return -ENOMEM;
1954
1955         if (flags & MAP_FIXED)
1956                 return addr;
1957
1958         /* requesting a specific address */
1959         if (addr) {
1960                 addr = PAGE_ALIGN(addr);
1961                 vma = find_vma(mm, addr);
1962                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1963                                 (!vma || addr + len <= vma->vm_start))
1964                         return addr;
1965         }
1966
1967         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1968         info.length = len;
1969         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1970         info.high_limit = mm->mmap_base;
1971         info.align_mask = 0;
1972         addr = vm_unmapped_area(&info);
1973
1974         /*
1975          * A failed mmap() very likely causes application failure,
1976          * so fall back to the bottom-up function here. This scenario
1977          * can happen with large stack limits and large mmap()
1978          * allocations.
1979          */
1980         if (addr & ~PAGE_MASK) {
1981                 VM_BUG_ON(addr != -ENOMEM);
1982                 info.flags = 0;
1983                 info.low_limit = TASK_UNMAPPED_BASE;
1984                 info.high_limit = TASK_SIZE;
1985                 addr = vm_unmapped_area(&info);
1986         }
1987
1988         return addr;
1989 }
1990 #endif
1991
1992 unsigned long
1993 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1994                 unsigned long pgoff, unsigned long flags)
1995 {
1996         unsigned long (*get_area)(struct file *, unsigned long,
1997                                   unsigned long, unsigned long, unsigned long);
1998
1999         unsigned long error = arch_mmap_check(addr, len, flags);
2000         if (error)
2001                 return error;
2002
2003         /* Careful about overflows.. */
2004         if (len > TASK_SIZE)
2005                 return -ENOMEM;
2006
2007         get_area = current->mm->get_unmapped_area;
2008         if (file && file->f_op->get_unmapped_area)
2009                 get_area = file->f_op->get_unmapped_area;
2010         addr = get_area(file, addr, len, pgoff, flags);
2011         if (IS_ERR_VALUE(addr))
2012                 return addr;
2013
2014         if (addr > TASK_SIZE - len)
2015                 return -ENOMEM;
2016         if (addr & ~PAGE_MASK)
2017                 return -EINVAL;
2018
2019         addr = arch_rebalance_pgtables(addr, len);
2020         error = security_mmap_addr(addr);
2021         return error ? error : addr;
2022 }
2023
2024 EXPORT_SYMBOL(get_unmapped_area);
2025
2026 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2027 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2028 {
2029         struct rb_node *rb_node;
2030         struct vm_area_struct *vma;
2031
2032         /* Check the cache first. */
2033         vma = vmacache_find(mm, addr);
2034         if (likely(vma))
2035                 return vma;
2036
2037         rb_node = mm->mm_rb.rb_node;
2038         vma = NULL;
2039
2040         while (rb_node) {
2041                 struct vm_area_struct *tmp;
2042
2043                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2044
2045                 if (tmp->vm_end > addr) {
2046                         vma = tmp;
2047                         if (tmp->vm_start <= addr)
2048                                 break;
2049                         rb_node = rb_node->rb_left;
2050                 } else
2051                         rb_node = rb_node->rb_right;
2052         }
2053
2054         if (vma)
2055                 vmacache_update(addr, vma);
2056         return vma;
2057 }
2058
2059 EXPORT_SYMBOL(find_vma);
2060
2061 /*
2062  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2063  */
2064 struct vm_area_struct *
2065 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2066                         struct vm_area_struct **pprev)
2067 {
2068         struct vm_area_struct *vma;
2069
2070         vma = find_vma(mm, addr);
2071         if (vma) {
2072                 *pprev = vma->vm_prev;
2073         } else {
2074                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2075                 *pprev = NULL;
2076                 while (rb_node) {
2077                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2078                         rb_node = rb_node->rb_right;
2079                 }
2080         }
2081         return vma;
2082 }
2083
2084 /*
2085  * Verify that the stack growth is acceptable and
2086  * update accounting. This is shared with both the
2087  * grow-up and grow-down cases.
2088  */
2089 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2090 {
2091         struct mm_struct *mm = vma->vm_mm;
2092         struct rlimit *rlim = current->signal->rlim;
2093         unsigned long new_start, actual_size;
2094
2095         /* address space limit tests */
2096         if (!may_expand_vm(mm, grow))
2097                 return -ENOMEM;
2098
2099         /* Stack limit test */
2100         actual_size = size;
2101         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2102                 actual_size -= PAGE_SIZE;
2103         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2104                 return -ENOMEM;
2105
2106         /* mlock limit tests */
2107         if (vma->vm_flags & VM_LOCKED) {
2108                 unsigned long locked;
2109                 unsigned long limit;
2110                 locked = mm->locked_vm + grow;
2111                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2112                 limit >>= PAGE_SHIFT;
2113                 if (locked > limit && !capable(CAP_IPC_LOCK))
2114                         return -ENOMEM;
2115         }
2116
2117         /* Check to ensure the stack will not grow into a hugetlb-only region */
2118         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2119                         vma->vm_end - size;
2120         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2121                 return -EFAULT;
2122
2123         /*
2124          * Overcommit..  This must be the final test, as it will
2125          * update security statistics.
2126          */
2127         if (security_vm_enough_memory_mm(mm, grow))
2128                 return -ENOMEM;
2129
2130         /* Ok, everything looks good - let it rip */
2131         if (vma->vm_flags & VM_LOCKED)
2132                 mm->locked_vm += grow;
2133         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2134         return 0;
2135 }
2136
2137 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2138 /*
2139  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2140  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2141  */
2142 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2143 {
2144         int error;
2145
2146         if (!(vma->vm_flags & VM_GROWSUP))
2147                 return -EFAULT;
2148
2149         /*
2150          * We must make sure the anon_vma is allocated
2151          * so that the anon_vma locking is not a noop.
2152          */
2153         if (unlikely(anon_vma_prepare(vma)))
2154                 return -ENOMEM;
2155         vma_lock_anon_vma(vma);
2156
2157         /*
2158          * vma->vm_start/vm_end cannot change under us because the caller
2159          * is required to hold the mmap_sem in read mode.  We need the
2160          * anon_vma lock to serialize against concurrent expand_stacks.
2161          * Also guard against wrapping around to address 0.
2162          */
2163         if (address < PAGE_ALIGN(address+4))
2164                 address = PAGE_ALIGN(address+4);
2165         else {
2166                 vma_unlock_anon_vma(vma);
2167                 return -ENOMEM;
2168         }
2169         error = 0;
2170
2171         /* Somebody else might have raced and expanded it already */
2172         if (address > vma->vm_end) {
2173                 unsigned long size, grow;
2174
2175                 size = address - vma->vm_start;
2176                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2177
2178                 error = -ENOMEM;
2179                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2180                         error = acct_stack_growth(vma, size, grow);
2181                         if (!error) {
2182                                 /*
2183                                  * vma_gap_update() doesn't support concurrent
2184                                  * updates, but we only hold a shared mmap_sem
2185                                  * lock here, so we need to protect against
2186                                  * concurrent vma expansions.
2187                                  * vma_lock_anon_vma() doesn't help here, as
2188                                  * we don't guarantee that all growable vmas
2189                                  * in a mm share the same root anon vma.
2190                                  * So, we reuse mm->page_table_lock to guard
2191                                  * against concurrent vma expansions.
2192                                  */
2193                                 spin_lock(&vma->vm_mm->page_table_lock);
2194                                 anon_vma_interval_tree_pre_update_vma(vma);
2195                                 vma->vm_end = address;
2196                                 anon_vma_interval_tree_post_update_vma(vma);
2197                                 if (vma->vm_next)
2198                                         vma_gap_update(vma->vm_next);
2199                                 else
2200                                         vma->vm_mm->highest_vm_end = address;
2201                                 spin_unlock(&vma->vm_mm->page_table_lock);
2202
2203                                 perf_event_mmap(vma);
2204                         }
2205                 }
2206         }
2207         vma_unlock_anon_vma(vma);
2208         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2209         validate_mm(vma->vm_mm);
2210         return error;
2211 }
2212 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2213
2214 /*
2215  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2216  */
2217 int expand_downwards(struct vm_area_struct *vma,
2218                                    unsigned long address)
2219 {
2220         int error;
2221
2222         /*
2223          * We must make sure the anon_vma is allocated
2224          * so that the anon_vma locking is not a noop.
2225          */
2226         if (unlikely(anon_vma_prepare(vma)))
2227                 return -ENOMEM;
2228
2229         address &= PAGE_MASK;
2230         error = security_mmap_addr(address);
2231         if (error)
2232                 return error;
2233
2234         vma_lock_anon_vma(vma);
2235
2236         /*
2237          * vma->vm_start/vm_end cannot change under us because the caller
2238          * is required to hold the mmap_sem in read mode.  We need the
2239          * anon_vma lock to serialize against concurrent expand_stacks.
2240          */
2241
2242         /* Somebody else might have raced and expanded it already */
2243         if (address < vma->vm_start) {
2244                 unsigned long size, grow;
2245
2246                 size = vma->vm_end - address;
2247                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2248
2249                 error = -ENOMEM;
2250                 if (grow <= vma->vm_pgoff) {
2251                         error = acct_stack_growth(vma, size, grow);
2252                         if (!error) {
2253                                 /*
2254                                  * vma_gap_update() doesn't support concurrent
2255                                  * updates, but we only hold a shared mmap_sem
2256                                  * lock here, so we need to protect against
2257                                  * concurrent vma expansions.
2258                                  * vma_lock_anon_vma() doesn't help here, as
2259                                  * we don't guarantee that all growable vmas
2260                                  * in a mm share the same root anon vma.
2261                                  * So, we reuse mm->page_table_lock to guard
2262                                  * against concurrent vma expansions.
2263                                  */
2264                                 spin_lock(&vma->vm_mm->page_table_lock);
2265                                 anon_vma_interval_tree_pre_update_vma(vma);
2266                                 vma->vm_start = address;
2267                                 vma->vm_pgoff -= grow;
2268                                 anon_vma_interval_tree_post_update_vma(vma);
2269                                 vma_gap_update(vma);
2270                                 spin_unlock(&vma->vm_mm->page_table_lock);
2271
2272                                 perf_event_mmap(vma);
2273                         }
2274                 }
2275         }
2276         vma_unlock_anon_vma(vma);
2277         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2278         validate_mm(vma->vm_mm);
2279         return error;
2280 }
2281
2282 /*
2283  * Note how expand_stack() refuses to expand the stack all the way to
2284  * abut the next virtual mapping, *unless* that mapping itself is also
2285  * a stack mapping. We want to leave room for a guard page, after all
2286  * (the guard page itself is not added here, that is done by the
2287  * actual page faulting logic)
2288  *
2289  * This matches the behavior of the guard page logic (see mm/memory.c:
2290  * check_stack_guard_page()), which only allows the guard page to be
2291  * removed under these circumstances.
2292  */
2293 #ifdef CONFIG_STACK_GROWSUP
2294 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2295 {
2296         struct vm_area_struct *next;
2297
2298         address &= PAGE_MASK;
2299         next = vma->vm_next;
2300         if (next && next->vm_start == address + PAGE_SIZE) {
2301                 if (!(next->vm_flags & VM_GROWSUP))
2302                         return -ENOMEM;
2303         }
2304         return expand_upwards(vma, address);
2305 }
2306
2307 struct vm_area_struct *
2308 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2309 {
2310         struct vm_area_struct *vma, *prev;
2311
2312         addr &= PAGE_MASK;
2313         vma = find_vma_prev(mm, addr, &prev);
2314         if (vma && (vma->vm_start <= addr))
2315                 return vma;
2316         if (!prev || expand_stack(prev, addr))
2317                 return NULL;
2318         if (prev->vm_flags & VM_LOCKED)
2319                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2320         return prev;
2321 }
2322 #else
2323 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2324 {
2325         struct vm_area_struct *prev;
2326
2327         address &= PAGE_MASK;
2328         prev = vma->vm_prev;
2329         if (prev && prev->vm_end == address) {
2330                 if (!(prev->vm_flags & VM_GROWSDOWN))
2331                         return -ENOMEM;
2332         }
2333         return expand_downwards(vma, address);
2334 }
2335
2336 struct vm_area_struct *
2337 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2338 {
2339         struct vm_area_struct *vma;
2340         unsigned long start;
2341
2342         addr &= PAGE_MASK;
2343         vma = find_vma(mm, addr);
2344         if (!vma)
2345                 return NULL;
2346         if (vma->vm_start <= addr)
2347                 return vma;
2348         if (!(vma->vm_flags & VM_GROWSDOWN))
2349                 return NULL;
2350         start = vma->vm_start;
2351         if (expand_stack(vma, addr))
2352                 return NULL;
2353         if (vma->vm_flags & VM_LOCKED)
2354                 populate_vma_page_range(vma, addr, start, NULL);
2355         return vma;
2356 }
2357 #endif
2358
2359 EXPORT_SYMBOL_GPL(find_extend_vma);
2360
2361 /*
2362  * Ok - we have the memory areas we should free on the vma list,
2363  * so release them, and do the vma updates.
2364  *
2365  * Called with the mm semaphore held.
2366  */
2367 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2368 {
2369         unsigned long nr_accounted = 0;
2370
2371         /* Update high watermark before we lower total_vm */
2372         update_hiwater_vm(mm);
2373         do {
2374                 long nrpages = vma_pages(vma);
2375
2376                 if (vma->vm_flags & VM_ACCOUNT)
2377                         nr_accounted += nrpages;
2378                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2379                 vma = remove_vma(vma);
2380         } while (vma);
2381         vm_unacct_memory(nr_accounted);
2382         validate_mm(mm);
2383 }
2384
2385 /*
2386  * Get rid of page table information in the indicated region.
2387  *
2388  * Called with the mm semaphore held.
2389  */
2390 static void unmap_region(struct mm_struct *mm,
2391                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2392                 unsigned long start, unsigned long end)
2393 {
2394         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2395         struct mmu_gather tlb;
2396
2397         lru_add_drain();
2398         tlb_gather_mmu(&tlb, mm, start, end);
2399         update_hiwater_rss(mm);
2400         unmap_vmas(&tlb, vma, start, end);
2401         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2402                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2403         tlb_finish_mmu(&tlb, start, end);
2404 }
2405
2406 /*
2407  * Create a list of vma's touched by the unmap, removing them from the mm's
2408  * vma list as we go..
2409  */
2410 static void
2411 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2412         struct vm_area_struct *prev, unsigned long end)
2413 {
2414         struct vm_area_struct **insertion_point;
2415         struct vm_area_struct *tail_vma = NULL;
2416
2417         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2418         vma->vm_prev = NULL;
2419         do {
2420                 vma_rb_erase(vma, &mm->mm_rb);
2421                 mm->map_count--;
2422                 tail_vma = vma;
2423                 vma = vma->vm_next;
2424         } while (vma && vma->vm_start < end);
2425         *insertion_point = vma;
2426         if (vma) {
2427                 vma->vm_prev = prev;
2428                 vma_gap_update(vma);
2429         } else
2430                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2431         tail_vma->vm_next = NULL;
2432
2433         /* Kill the cache */
2434         vmacache_invalidate(mm);
2435 }
2436
2437 /*
2438  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2439  * munmap path where it doesn't make sense to fail.
2440  */
2441 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2442               unsigned long addr, int new_below)
2443 {
2444         struct vm_area_struct *new;
2445         int err = -ENOMEM;
2446
2447         if (is_vm_hugetlb_page(vma) && (addr &
2448                                         ~(huge_page_mask(hstate_vma(vma)))))
2449                 return -EINVAL;
2450
2451         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2452         if (!new)
2453                 goto out_err;
2454
2455         /* most fields are the same, copy all, and then fixup */
2456         *new = *vma;
2457
2458         INIT_LIST_HEAD(&new->anon_vma_chain);
2459
2460         if (new_below)
2461                 new->vm_end = addr;
2462         else {
2463                 new->vm_start = addr;
2464                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2465         }
2466
2467         err = vma_dup_policy(vma, new);
2468         if (err)
2469                 goto out_free_vma;
2470
2471         err = anon_vma_clone(new, vma);
2472         if (err)
2473                 goto out_free_mpol;
2474
2475         if (new->vm_file)
2476                 get_file(new->vm_file);
2477
2478         if (new->vm_ops && new->vm_ops->open)
2479                 new->vm_ops->open(new);
2480
2481         if (new_below)
2482                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2483                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2484         else
2485                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2486
2487         /* Success. */
2488         if (!err)
2489                 return 0;
2490
2491         /* Clean everything up if vma_adjust failed. */
2492         if (new->vm_ops && new->vm_ops->close)
2493                 new->vm_ops->close(new);
2494         if (new->vm_file)
2495                 fput(new->vm_file);
2496         unlink_anon_vmas(new);
2497  out_free_mpol:
2498         mpol_put(vma_policy(new));
2499  out_free_vma:
2500         kmem_cache_free(vm_area_cachep, new);
2501  out_err:
2502         return err;
2503 }
2504
2505 /*
2506  * Split a vma into two pieces at address 'addr', a new vma is allocated
2507  * either for the first part or the tail.
2508  */
2509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2510               unsigned long addr, int new_below)
2511 {
2512         if (mm->map_count >= sysctl_max_map_count)
2513                 return -ENOMEM;
2514
2515         return __split_vma(mm, vma, addr, new_below);
2516 }
2517
2518 /* Munmap is split into 2 main parts -- this part which finds
2519  * what needs doing, and the areas themselves, which do the
2520  * work.  This now handles partial unmappings.
2521  * Jeremy Fitzhardinge <jeremy@goop.org>
2522  */
2523 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2524 {
2525         unsigned long end;
2526         struct vm_area_struct *vma, *prev, *last;
2527
2528         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2529                 return -EINVAL;
2530
2531         len = PAGE_ALIGN(len);
2532         if (len == 0)
2533                 return -EINVAL;
2534
2535         /* Find the first overlapping VMA */
2536         vma = find_vma(mm, start);
2537         if (!vma)
2538                 return 0;
2539         prev = vma->vm_prev;
2540         /* we have  start < vma->vm_end  */
2541
2542         /* if it doesn't overlap, we have nothing.. */
2543         end = start + len;
2544         if (vma->vm_start >= end)
2545                 return 0;
2546
2547         /*
2548          * If we need to split any vma, do it now to save pain later.
2549          *
2550          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551          * unmapped vm_area_struct will remain in use: so lower split_vma
2552          * places tmp vma above, and higher split_vma places tmp vma below.
2553          */
2554         if (start > vma->vm_start) {
2555                 int error;
2556
2557                 /*
2558                  * Make sure that map_count on return from munmap() will
2559                  * not exceed its limit; but let map_count go just above
2560                  * its limit temporarily, to help free resources as expected.
2561                  */
2562                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2563                         return -ENOMEM;
2564
2565                 error = __split_vma(mm, vma, start, 0);
2566                 if (error)
2567                         return error;
2568                 prev = vma;
2569         }
2570
2571         /* Does it split the last one? */
2572         last = find_vma(mm, end);
2573         if (last && end > last->vm_start) {
2574                 int error = __split_vma(mm, last, end, 1);
2575                 if (error)
2576                         return error;
2577         }
2578         vma = prev ? prev->vm_next : mm->mmap;
2579
2580         /*
2581          * unlock any mlock()ed ranges before detaching vmas
2582          */
2583         if (mm->locked_vm) {
2584                 struct vm_area_struct *tmp = vma;
2585                 while (tmp && tmp->vm_start < end) {
2586                         if (tmp->vm_flags & VM_LOCKED) {
2587                                 mm->locked_vm -= vma_pages(tmp);
2588                                 munlock_vma_pages_all(tmp);
2589                         }
2590                         tmp = tmp->vm_next;
2591                 }
2592         }
2593
2594         /*
2595          * Remove the vma's, and unmap the actual pages
2596          */
2597         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2598         unmap_region(mm, vma, prev, start, end);
2599
2600         arch_unmap(mm, vma, start, end);
2601
2602         /* Fix up all other VM information */
2603         remove_vma_list(mm, vma);
2604
2605         return 0;
2606 }
2607
2608 int vm_munmap(unsigned long start, size_t len)
2609 {
2610         int ret;
2611         struct mm_struct *mm = current->mm;
2612
2613         down_write(&mm->mmap_sem);
2614         ret = do_munmap(mm, start, len);
2615         up_write(&mm->mmap_sem);
2616         return ret;
2617 }
2618 EXPORT_SYMBOL(vm_munmap);
2619
2620 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2621 {
2622         profile_munmap(addr);
2623         return vm_munmap(addr, len);
2624 }
2625
2626
2627 /*
2628  * Emulation of deprecated remap_file_pages() syscall.
2629  */
2630 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2631                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2632 {
2633
2634         struct mm_struct *mm = current->mm;
2635         struct vm_area_struct *vma;
2636         unsigned long populate = 0;
2637         unsigned long ret = -EINVAL;
2638         struct file *file;
2639
2640         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2641                         "See Documentation/vm/remap_file_pages.txt.\n",
2642                         current->comm, current->pid);
2643
2644         if (prot)
2645                 return ret;
2646         start = start & PAGE_MASK;
2647         size = size & PAGE_MASK;
2648
2649         if (start + size <= start)
2650                 return ret;
2651
2652         /* Does pgoff wrap? */
2653         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2654                 return ret;
2655
2656         down_write(&mm->mmap_sem);
2657         vma = find_vma(mm, start);
2658
2659         if (!vma || !(vma->vm_flags & VM_SHARED))
2660                 goto out;
2661
2662         if (start < vma->vm_start || start + size > vma->vm_end)
2663                 goto out;
2664
2665         if (pgoff == linear_page_index(vma, start)) {
2666                 ret = 0;
2667                 goto out;
2668         }
2669
2670         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2671         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2672         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2673
2674         flags &= MAP_NONBLOCK;
2675         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2676         if (vma->vm_flags & VM_LOCKED) {
2677                 flags |= MAP_LOCKED;
2678                 /* drop PG_Mlocked flag for over-mapped range */
2679                 munlock_vma_pages_range(vma, start, start + size);
2680         }
2681
2682         file = get_file(vma->vm_file);
2683         ret = do_mmap_pgoff(vma->vm_file, start, size,
2684                         prot, flags, pgoff, &populate);
2685         fput(file);
2686 out:
2687         up_write(&mm->mmap_sem);
2688         if (populate)
2689                 mm_populate(ret, populate);
2690         if (!IS_ERR_VALUE(ret))
2691                 ret = 0;
2692         return ret;
2693 }
2694
2695 static inline void verify_mm_writelocked(struct mm_struct *mm)
2696 {
2697 #ifdef CONFIG_DEBUG_VM
2698         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2699                 WARN_ON(1);
2700                 up_read(&mm->mmap_sem);
2701         }
2702 #endif
2703 }
2704
2705 /*
2706  *  this is really a simplified "do_mmap".  it only handles
2707  *  anonymous maps.  eventually we may be able to do some
2708  *  brk-specific accounting here.
2709  */
2710 static unsigned long do_brk(unsigned long addr, unsigned long len)
2711 {
2712         struct mm_struct *mm = current->mm;
2713         struct vm_area_struct *vma, *prev;
2714         unsigned long flags;
2715         struct rb_node **rb_link, *rb_parent;
2716         pgoff_t pgoff = addr >> PAGE_SHIFT;
2717         int error;
2718
2719         len = PAGE_ALIGN(len);
2720         if (!len)
2721                 return addr;
2722
2723         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2724
2725         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2726         if (error & ~PAGE_MASK)
2727                 return error;
2728
2729         error = mlock_future_check(mm, mm->def_flags, len);
2730         if (error)
2731                 return error;
2732
2733         /*
2734          * mm->mmap_sem is required to protect against another thread
2735          * changing the mappings in case we sleep.
2736          */
2737         verify_mm_writelocked(mm);
2738
2739         /*
2740          * Clear old maps.  this also does some error checking for us
2741          */
2742         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2743                               &rb_parent)) {
2744                 if (do_munmap(mm, addr, len))
2745                         return -ENOMEM;
2746         }
2747
2748         /* Check against address space limits *after* clearing old maps... */
2749         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2750                 return -ENOMEM;
2751
2752         if (mm->map_count > sysctl_max_map_count)
2753                 return -ENOMEM;
2754
2755         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2756                 return -ENOMEM;
2757
2758         /* Can we just expand an old private anonymous mapping? */
2759         vma = vma_merge(mm, prev, addr, addr + len, flags,
2760                                         NULL, NULL, pgoff, NULL);
2761         if (vma)
2762                 goto out;
2763
2764         /*
2765          * create a vma struct for an anonymous mapping
2766          */
2767         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2768         if (!vma) {
2769                 vm_unacct_memory(len >> PAGE_SHIFT);
2770                 return -ENOMEM;
2771         }
2772
2773         INIT_LIST_HEAD(&vma->anon_vma_chain);
2774         vma->vm_mm = mm;
2775         vma->vm_start = addr;
2776         vma->vm_end = addr + len;
2777         vma->vm_pgoff = pgoff;
2778         vma->vm_flags = flags;
2779         vma->vm_page_prot = vm_get_page_prot(flags);
2780         vma_link(mm, vma, prev, rb_link, rb_parent);
2781 out:
2782         perf_event_mmap(vma);
2783         mm->total_vm += len >> PAGE_SHIFT;
2784         if (flags & VM_LOCKED)
2785                 mm->locked_vm += (len >> PAGE_SHIFT);
2786         vma->vm_flags |= VM_SOFTDIRTY;
2787         return addr;
2788 }
2789
2790 unsigned long vm_brk(unsigned long addr, unsigned long len)
2791 {
2792         struct mm_struct *mm = current->mm;
2793         unsigned long ret;
2794         bool populate;
2795
2796         down_write(&mm->mmap_sem);
2797         ret = do_brk(addr, len);
2798         populate = ((mm->def_flags & VM_LOCKED) != 0);
2799         up_write(&mm->mmap_sem);
2800         if (populate)
2801                 mm_populate(addr, len);
2802         return ret;
2803 }
2804 EXPORT_SYMBOL(vm_brk);
2805
2806 /* Release all mmaps. */
2807 void exit_mmap(struct mm_struct *mm)
2808 {
2809         struct mmu_gather tlb;
2810         struct vm_area_struct *vma;
2811         unsigned long nr_accounted = 0;
2812
2813         /* mm's last user has gone, and its about to be pulled down */
2814         mmu_notifier_release(mm);
2815
2816         if (mm->locked_vm) {
2817                 vma = mm->mmap;
2818                 while (vma) {
2819                         if (vma->vm_flags & VM_LOCKED)
2820                                 munlock_vma_pages_all(vma);
2821                         vma = vma->vm_next;
2822                 }
2823         }
2824
2825         arch_exit_mmap(mm);
2826
2827         vma = mm->mmap;
2828         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2829                 return;
2830
2831         lru_add_drain();
2832         flush_cache_mm(mm);
2833         tlb_gather_mmu(&tlb, mm, 0, -1);
2834         /* update_hiwater_rss(mm) here? but nobody should be looking */
2835         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2836         unmap_vmas(&tlb, vma, 0, -1);
2837
2838         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2839         tlb_finish_mmu(&tlb, 0, -1);
2840
2841         /*
2842          * Walk the list again, actually closing and freeing it,
2843          * with preemption enabled, without holding any MM locks.
2844          */
2845         while (vma) {
2846                 if (vma->vm_flags & VM_ACCOUNT)
2847                         nr_accounted += vma_pages(vma);
2848                 vma = remove_vma(vma);
2849         }
2850         vm_unacct_memory(nr_accounted);
2851 }
2852
2853 /* Insert vm structure into process list sorted by address
2854  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2855  * then i_mmap_rwsem is taken here.
2856  */
2857 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2858 {
2859         struct vm_area_struct *prev;
2860         struct rb_node **rb_link, *rb_parent;
2861
2862         /*
2863          * The vm_pgoff of a purely anonymous vma should be irrelevant
2864          * until its first write fault, when page's anon_vma and index
2865          * are set.  But now set the vm_pgoff it will almost certainly
2866          * end up with (unless mremap moves it elsewhere before that
2867          * first wfault), so /proc/pid/maps tells a consistent story.
2868          *
2869          * By setting it to reflect the virtual start address of the
2870          * vma, merges and splits can happen in a seamless way, just
2871          * using the existing file pgoff checks and manipulations.
2872          * Similarly in do_mmap_pgoff and in do_brk.
2873          */
2874         if (!vma->vm_file) {
2875                 BUG_ON(vma->anon_vma);
2876                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2877         }
2878         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2879                            &prev, &rb_link, &rb_parent))
2880                 return -ENOMEM;
2881         if ((vma->vm_flags & VM_ACCOUNT) &&
2882              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2883                 return -ENOMEM;
2884
2885         vma_link(mm, vma, prev, rb_link, rb_parent);
2886         return 0;
2887 }
2888
2889 /*
2890  * Copy the vma structure to a new location in the same mm,
2891  * prior to moving page table entries, to effect an mremap move.
2892  */
2893 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2894         unsigned long addr, unsigned long len, pgoff_t pgoff,
2895         bool *need_rmap_locks)
2896 {
2897         struct vm_area_struct *vma = *vmap;
2898         unsigned long vma_start = vma->vm_start;
2899         struct mm_struct *mm = vma->vm_mm;
2900         struct vm_area_struct *new_vma, *prev;
2901         struct rb_node **rb_link, *rb_parent;
2902         bool faulted_in_anon_vma = true;
2903
2904         /*
2905          * If anonymous vma has not yet been faulted, update new pgoff
2906          * to match new location, to increase its chance of merging.
2907          */
2908         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2909                 pgoff = addr >> PAGE_SHIFT;
2910                 faulted_in_anon_vma = false;
2911         }
2912
2913         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2914                 return NULL;    /* should never get here */
2915         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2916                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2917         if (new_vma) {
2918                 /*
2919                  * Source vma may have been merged into new_vma
2920                  */
2921                 if (unlikely(vma_start >= new_vma->vm_start &&
2922                              vma_start < new_vma->vm_end)) {
2923                         /*
2924                          * The only way we can get a vma_merge with
2925                          * self during an mremap is if the vma hasn't
2926                          * been faulted in yet and we were allowed to
2927                          * reset the dst vma->vm_pgoff to the
2928                          * destination address of the mremap to allow
2929                          * the merge to happen. mremap must change the
2930                          * vm_pgoff linearity between src and dst vmas
2931                          * (in turn preventing a vma_merge) to be
2932                          * safe. It is only safe to keep the vm_pgoff
2933                          * linear if there are no pages mapped yet.
2934                          */
2935                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2936                         *vmap = vma = new_vma;
2937                 }
2938                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2939         } else {
2940                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2941                 if (new_vma) {
2942                         *new_vma = *vma;
2943                         new_vma->vm_start = addr;
2944                         new_vma->vm_end = addr + len;
2945                         new_vma->vm_pgoff = pgoff;
2946                         if (vma_dup_policy(vma, new_vma))
2947                                 goto out_free_vma;
2948                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2949                         if (anon_vma_clone(new_vma, vma))
2950                                 goto out_free_mempol;
2951                         if (new_vma->vm_file)
2952                                 get_file(new_vma->vm_file);
2953                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2954                                 new_vma->vm_ops->open(new_vma);
2955                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2956                         *need_rmap_locks = false;
2957                 }
2958         }
2959         return new_vma;
2960
2961  out_free_mempol:
2962         mpol_put(vma_policy(new_vma));
2963  out_free_vma:
2964         kmem_cache_free(vm_area_cachep, new_vma);
2965         return NULL;
2966 }
2967
2968 /*
2969  * Return true if the calling process may expand its vm space by the passed
2970  * number of pages
2971  */
2972 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2973 {
2974         unsigned long cur = mm->total_vm;       /* pages */
2975         unsigned long lim;
2976
2977         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2978
2979         if (cur + npages > lim)
2980                 return 0;
2981         return 1;
2982 }
2983
2984 static int special_mapping_fault(struct vm_area_struct *vma,
2985                                  struct vm_fault *vmf);
2986
2987 /*
2988  * Having a close hook prevents vma merging regardless of flags.
2989  */
2990 static void special_mapping_close(struct vm_area_struct *vma)
2991 {
2992 }
2993
2994 static const char *special_mapping_name(struct vm_area_struct *vma)
2995 {
2996         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2997 }
2998
2999 static const struct vm_operations_struct special_mapping_vmops = {
3000         .close = special_mapping_close,
3001         .fault = special_mapping_fault,
3002         .name = special_mapping_name,
3003 };
3004
3005 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3006         .close = special_mapping_close,
3007         .fault = special_mapping_fault,
3008 };
3009
3010 static int special_mapping_fault(struct vm_area_struct *vma,
3011                                 struct vm_fault *vmf)
3012 {
3013         pgoff_t pgoff;
3014         struct page **pages;
3015
3016         /*
3017          * special mappings have no vm_file, and in that case, the mm
3018          * uses vm_pgoff internally. So we have to subtract it from here.
3019          * We are allowed to do this because we are the mm; do not copy
3020          * this code into drivers!
3021          */
3022         pgoff = vmf->pgoff - vma->vm_pgoff;
3023
3024         if (vma->vm_ops == &legacy_special_mapping_vmops)
3025                 pages = vma->vm_private_data;
3026         else
3027                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3028                         pages;
3029
3030         for (; pgoff && *pages; ++pages)
3031                 pgoff--;
3032
3033         if (*pages) {
3034                 struct page *page = *pages;
3035                 get_page(page);
3036                 vmf->page = page;
3037                 return 0;
3038         }
3039
3040         return VM_FAULT_SIGBUS;
3041 }
3042
3043 static struct vm_area_struct *__install_special_mapping(
3044         struct mm_struct *mm,
3045         unsigned long addr, unsigned long len,
3046         unsigned long vm_flags, const struct vm_operations_struct *ops,
3047         void *priv)
3048 {
3049         int ret;
3050         struct vm_area_struct *vma;
3051
3052         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3053         if (unlikely(vma == NULL))
3054                 return ERR_PTR(-ENOMEM);
3055
3056         INIT_LIST_HEAD(&vma->anon_vma_chain);
3057         vma->vm_mm = mm;
3058         vma->vm_start = addr;
3059         vma->vm_end = addr + len;
3060
3061         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3062         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3063
3064         vma->vm_ops = ops;
3065         vma->vm_private_data = priv;
3066
3067         ret = insert_vm_struct(mm, vma);
3068         if (ret)
3069                 goto out;
3070
3071         mm->total_vm += len >> PAGE_SHIFT;
3072
3073         perf_event_mmap(vma);
3074
3075         return vma;
3076
3077 out:
3078         kmem_cache_free(vm_area_cachep, vma);
3079         return ERR_PTR(ret);
3080 }
3081
3082 /*
3083  * Called with mm->mmap_sem held for writing.
3084  * Insert a new vma covering the given region, with the given flags.
3085  * Its pages are supplied by the given array of struct page *.
3086  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3087  * The region past the last page supplied will always produce SIGBUS.
3088  * The array pointer and the pages it points to are assumed to stay alive
3089  * for as long as this mapping might exist.
3090  */
3091 struct vm_area_struct *_install_special_mapping(
3092         struct mm_struct *mm,
3093         unsigned long addr, unsigned long len,
3094         unsigned long vm_flags, const struct vm_special_mapping *spec)
3095 {
3096         return __install_special_mapping(mm, addr, len, vm_flags,
3097                                          &special_mapping_vmops, (void *)spec);
3098 }
3099
3100 int install_special_mapping(struct mm_struct *mm,
3101                             unsigned long addr, unsigned long len,
3102                             unsigned long vm_flags, struct page **pages)
3103 {
3104         struct vm_area_struct *vma = __install_special_mapping(
3105                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3106                 (void *)pages);
3107
3108         return PTR_ERR_OR_ZERO(vma);
3109 }
3110
3111 static DEFINE_MUTEX(mm_all_locks_mutex);
3112
3113 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3114 {
3115         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3116                 /*
3117                  * The LSB of head.next can't change from under us
3118                  * because we hold the mm_all_locks_mutex.
3119                  */
3120                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3121                 /*
3122                  * We can safely modify head.next after taking the
3123                  * anon_vma->root->rwsem. If some other vma in this mm shares
3124                  * the same anon_vma we won't take it again.
3125                  *
3126                  * No need of atomic instructions here, head.next
3127                  * can't change from under us thanks to the
3128                  * anon_vma->root->rwsem.
3129                  */
3130                 if (__test_and_set_bit(0, (unsigned long *)
3131                                        &anon_vma->root->rb_root.rb_node))
3132                         BUG();
3133         }
3134 }
3135
3136 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3137 {
3138         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3139                 /*
3140                  * AS_MM_ALL_LOCKS can't change from under us because
3141                  * we hold the mm_all_locks_mutex.
3142                  *
3143                  * Operations on ->flags have to be atomic because
3144                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3145                  * mm_all_locks_mutex, there may be other cpus
3146                  * changing other bitflags in parallel to us.
3147                  */
3148                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3149                         BUG();
3150                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3151         }
3152 }
3153
3154 /*
3155  * This operation locks against the VM for all pte/vma/mm related
3156  * operations that could ever happen on a certain mm. This includes
3157  * vmtruncate, try_to_unmap, and all page faults.
3158  *
3159  * The caller must take the mmap_sem in write mode before calling
3160  * mm_take_all_locks(). The caller isn't allowed to release the
3161  * mmap_sem until mm_drop_all_locks() returns.
3162  *
3163  * mmap_sem in write mode is required in order to block all operations
3164  * that could modify pagetables and free pages without need of
3165  * altering the vma layout. It's also needed in write mode to avoid new
3166  * anon_vmas to be associated with existing vmas.
3167  *
3168  * A single task can't take more than one mm_take_all_locks() in a row
3169  * or it would deadlock.
3170  *
3171  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3172  * mapping->flags avoid to take the same lock twice, if more than one
3173  * vma in this mm is backed by the same anon_vma or address_space.
3174  *
3175  * We can take all the locks in random order because the VM code
3176  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3177  * takes more than one of them in a row. Secondly we're protected
3178  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3179  *
3180  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3181  * that may have to take thousand of locks.
3182  *
3183  * mm_take_all_locks() can fail if it's interrupted by signals.
3184  */
3185 int mm_take_all_locks(struct mm_struct *mm)
3186 {
3187         struct vm_area_struct *vma;
3188         struct anon_vma_chain *avc;
3189
3190         BUG_ON(down_read_trylock(&mm->mmap_sem));
3191
3192         mutex_lock(&mm_all_locks_mutex);
3193
3194         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3195                 if (signal_pending(current))
3196                         goto out_unlock;
3197                 if (vma->vm_file && vma->vm_file->f_mapping)
3198                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3199         }
3200
3201         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3202                 if (signal_pending(current))
3203                         goto out_unlock;
3204                 if (vma->anon_vma)
3205                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3206                                 vm_lock_anon_vma(mm, avc->anon_vma);
3207         }
3208
3209         return 0;
3210
3211 out_unlock:
3212         mm_drop_all_locks(mm);
3213         return -EINTR;
3214 }
3215
3216 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3217 {
3218         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3219                 /*
3220                  * The LSB of head.next can't change to 0 from under
3221                  * us because we hold the mm_all_locks_mutex.
3222                  *
3223                  * We must however clear the bitflag before unlocking
3224                  * the vma so the users using the anon_vma->rb_root will
3225                  * never see our bitflag.
3226                  *
3227                  * No need of atomic instructions here, head.next
3228                  * can't change from under us until we release the
3229                  * anon_vma->root->rwsem.
3230                  */
3231                 if (!__test_and_clear_bit(0, (unsigned long *)
3232                                           &anon_vma->root->rb_root.rb_node))
3233                         BUG();
3234                 anon_vma_unlock_write(anon_vma);
3235         }
3236 }
3237
3238 static void vm_unlock_mapping(struct address_space *mapping)
3239 {
3240         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3241                 /*
3242                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3243                  * because we hold the mm_all_locks_mutex.
3244                  */
3245                 i_mmap_unlock_write(mapping);
3246                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3247                                         &mapping->flags))
3248                         BUG();
3249         }
3250 }
3251
3252 /*
3253  * The mmap_sem cannot be released by the caller until
3254  * mm_drop_all_locks() returns.
3255  */
3256 void mm_drop_all_locks(struct mm_struct *mm)
3257 {
3258         struct vm_area_struct *vma;
3259         struct anon_vma_chain *avc;
3260
3261         BUG_ON(down_read_trylock(&mm->mmap_sem));
3262         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3263
3264         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3265                 if (vma->anon_vma)
3266                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3267                                 vm_unlock_anon_vma(avc->anon_vma);
3268                 if (vma->vm_file && vma->vm_file->f_mapping)
3269                         vm_unlock_mapping(vma->vm_file->f_mapping);
3270         }
3271
3272         mutex_unlock(&mm_all_locks_mutex);
3273 }
3274
3275 /*
3276  * initialise the VMA slab
3277  */
3278 void __init mmap_init(void)
3279 {
3280         int ret;
3281
3282         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3283         VM_BUG_ON(ret);
3284 }
3285
3286 /*
3287  * Initialise sysctl_user_reserve_kbytes.
3288  *
3289  * This is intended to prevent a user from starting a single memory hogging
3290  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3291  * mode.
3292  *
3293  * The default value is min(3% of free memory, 128MB)
3294  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3295  */
3296 static int init_user_reserve(void)
3297 {
3298         unsigned long free_kbytes;
3299
3300         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3301
3302         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3303         return 0;
3304 }
3305 subsys_initcall(init_user_reserve);
3306
3307 /*
3308  * Initialise sysctl_admin_reserve_kbytes.
3309  *
3310  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3311  * to log in and kill a memory hogging process.
3312  *
3313  * Systems with more than 256MB will reserve 8MB, enough to recover
3314  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3315  * only reserve 3% of free pages by default.
3316  */
3317 static int init_admin_reserve(void)
3318 {
3319         unsigned long free_kbytes;
3320
3321         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3322
3323         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3324         return 0;
3325 }
3326 subsys_initcall(init_admin_reserve);
3327
3328 /*
3329  * Reinititalise user and admin reserves if memory is added or removed.
3330  *
3331  * The default user reserve max is 128MB, and the default max for the
3332  * admin reserve is 8MB. These are usually, but not always, enough to
3333  * enable recovery from a memory hogging process using login/sshd, a shell,
3334  * and tools like top. It may make sense to increase or even disable the
3335  * reserve depending on the existence of swap or variations in the recovery
3336  * tools. So, the admin may have changed them.
3337  *
3338  * If memory is added and the reserves have been eliminated or increased above
3339  * the default max, then we'll trust the admin.
3340  *
3341  * If memory is removed and there isn't enough free memory, then we
3342  * need to reset the reserves.
3343  *
3344  * Otherwise keep the reserve set by the admin.
3345  */
3346 static int reserve_mem_notifier(struct notifier_block *nb,
3347                              unsigned long action, void *data)
3348 {
3349         unsigned long tmp, free_kbytes;
3350
3351         switch (action) {
3352         case MEM_ONLINE:
3353                 /* Default max is 128MB. Leave alone if modified by operator. */
3354                 tmp = sysctl_user_reserve_kbytes;
3355                 if (0 < tmp && tmp < (1UL << 17))
3356                         init_user_reserve();
3357
3358                 /* Default max is 8MB.  Leave alone if modified by operator. */
3359                 tmp = sysctl_admin_reserve_kbytes;
3360                 if (0 < tmp && tmp < (1UL << 13))
3361                         init_admin_reserve();
3362
3363                 break;
3364         case MEM_OFFLINE:
3365                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3366
3367                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3368                         init_user_reserve();
3369                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3370                                 sysctl_user_reserve_kbytes);
3371                 }
3372
3373                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3374                         init_admin_reserve();
3375                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3376                                 sysctl_admin_reserve_kbytes);
3377                 }
3378                 break;
3379         default:
3380                 break;
3381         }
3382         return NOTIFY_OK;
3383 }
3384
3385 static struct notifier_block reserve_mem_nb = {
3386         .notifier_call = reserve_mem_notifier,
3387 };
3388
3389 static int __meminit init_reserve_notifier(void)
3390 {
3391         if (register_hotmemory_notifier(&reserve_mem_nb))
3392                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3393
3394         return 0;
3395 }
3396 subsys_initcall(init_reserve_notifier);