]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mmap.c
mm/mmap.c: clean up CONFIG_DEBUG_VM_RB checks
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99  * Make sure vm_committed_as in one cacheline and not cacheline shared with
100  * other variables. It can be updated by several CPUs frequently.
101  */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105  * The global memory commitment made in the system can be a metric
106  * that can be used to drive ballooning decisions when Linux is hosted
107  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108  * balancing memory across competing virtual machines that are hosted.
109  * Several metrics drive this policy engine including the guest reported
110  * memory commitment.
111  */
112 unsigned long vm_memory_committed(void)
113 {
114         return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119  * Check that a process has enough memory to allocate a new virtual
120  * mapping. 0 means there is enough memory for the allocation to
121  * succeed and -ENOMEM implies there is not.
122  *
123  * We currently support three overcommit policies, which are set via the
124  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
125  *
126  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127  * Additional code 2002 Jul 20 by Robert Love.
128  *
129  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130  *
131  * Note this is a helper function intended to be used by LSMs which
132  * wish to use this logic.
133  */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136         unsigned long free, allowed, reserve;
137
138         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
139                         -(s64)vm_committed_as_batch * num_online_cpus(),
140                         "memory commitment underflow");
141
142         vm_acct_memory(pages);
143
144         /*
145          * Sometimes we want to use more memory than we have
146          */
147         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
148                 return 0;
149
150         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
151                 free = global_page_state(NR_FREE_PAGES);
152                 free += global_page_state(NR_FILE_PAGES);
153
154                 /*
155                  * shmem pages shouldn't be counted as free in this
156                  * case, they can't be purged, only swapped out, and
157                  * that won't affect the overall amount of available
158                  * memory in the system.
159                  */
160                 free -= global_page_state(NR_SHMEM);
161
162                 free += get_nr_swap_pages();
163
164                 /*
165                  * Any slabs which are created with the
166                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
167                  * which are reclaimable, under pressure.  The dentry
168                  * cache and most inode caches should fall into this
169                  */
170                 free += global_page_state(NR_SLAB_RECLAIMABLE);
171
172                 /*
173                  * Leave reserved pages. The pages are not for anonymous pages.
174                  */
175                 if (free <= totalreserve_pages)
176                         goto error;
177                 else
178                         free -= totalreserve_pages;
179
180                 /*
181                  * Reserve some for root
182                  */
183                 if (!cap_sys_admin)
184                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
185
186                 if (free > pages)
187                         return 0;
188
189                 goto error;
190         }
191
192         allowed = vm_commit_limit();
193         /*
194          * Reserve some for root
195          */
196         if (!cap_sys_admin)
197                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
198
199         /*
200          * Don't let a single process grow so big a user can't recover
201          */
202         if (mm) {
203                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
204                 allowed -= min(mm->total_vm / 32, reserve);
205         }
206
207         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
208                 return 0;
209 error:
210         vm_unacct_memory(pages);
211
212         return -ENOMEM;
213 }
214
215 /*
216  * Requires inode->i_mapping->i_mmap_mutex
217  */
218 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
219                 struct file *file, struct address_space *mapping)
220 {
221         if (vma->vm_flags & VM_DENYWRITE)
222                 atomic_inc(&file_inode(file)->i_writecount);
223         if (vma->vm_flags & VM_SHARED)
224                 mapping_unmap_writable(mapping);
225
226         flush_dcache_mmap_lock(mapping);
227         if (unlikely(vma->vm_flags & VM_NONLINEAR))
228                 list_del_init(&vma->shared.nonlinear);
229         else
230                 vma_interval_tree_remove(vma, &mapping->i_mmap);
231         flush_dcache_mmap_unlock(mapping);
232 }
233
234 /*
235  * Unlink a file-based vm structure from its interval tree, to hide
236  * vma from rmap and vmtruncate before freeing its page tables.
237  */
238 void unlink_file_vma(struct vm_area_struct *vma)
239 {
240         struct file *file = vma->vm_file;
241
242         if (file) {
243                 struct address_space *mapping = file->f_mapping;
244                 mutex_lock(&mapping->i_mmap_mutex);
245                 __remove_shared_vm_struct(vma, file, mapping);
246                 mutex_unlock(&mapping->i_mmap_mutex);
247         }
248 }
249
250 /*
251  * Close a vm structure and free it, returning the next.
252  */
253 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
254 {
255         struct vm_area_struct *next = vma->vm_next;
256
257         might_sleep();
258         if (vma->vm_ops && vma->vm_ops->close)
259                 vma->vm_ops->close(vma);
260         if (vma->vm_file)
261                 fput(vma->vm_file);
262         mpol_put(vma_policy(vma));
263         kmem_cache_free(vm_area_cachep, vma);
264         return next;
265 }
266
267 static unsigned long do_brk(unsigned long addr, unsigned long len);
268
269 SYSCALL_DEFINE1(brk, unsigned long, brk)
270 {
271         unsigned long retval;
272         unsigned long newbrk, oldbrk;
273         struct mm_struct *mm = current->mm;
274         unsigned long min_brk;
275         bool populate;
276
277         down_write(&mm->mmap_sem);
278
279 #ifdef CONFIG_COMPAT_BRK
280         /*
281          * CONFIG_COMPAT_BRK can still be overridden by setting
282          * randomize_va_space to 2, which will still cause mm->start_brk
283          * to be arbitrarily shifted
284          */
285         if (current->brk_randomized)
286                 min_brk = mm->start_brk;
287         else
288                 min_brk = mm->end_data;
289 #else
290         min_brk = mm->start_brk;
291 #endif
292         if (brk < min_brk)
293                 goto out;
294
295         /*
296          * Check against rlimit here. If this check is done later after the test
297          * of oldbrk with newbrk then it can escape the test and let the data
298          * segment grow beyond its set limit the in case where the limit is
299          * not page aligned -Ram Gupta
300          */
301         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
302                               mm->end_data, mm->start_data))
303                 goto out;
304
305         newbrk = PAGE_ALIGN(brk);
306         oldbrk = PAGE_ALIGN(mm->brk);
307         if (oldbrk == newbrk)
308                 goto set_brk;
309
310         /* Always allow shrinking brk. */
311         if (brk <= mm->brk) {
312                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
313                         goto set_brk;
314                 goto out;
315         }
316
317         /* Check against existing mmap mappings. */
318         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
319                 goto out;
320
321         /* Ok, looks good - let it rip. */
322         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
323                 goto out;
324
325 set_brk:
326         mm->brk = brk;
327         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
328         up_write(&mm->mmap_sem);
329         if (populate)
330                 mm_populate(oldbrk, newbrk - oldbrk);
331         return brk;
332
333 out:
334         retval = mm->brk;
335         up_write(&mm->mmap_sem);
336         return retval;
337 }
338
339 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
340 {
341         unsigned long max, subtree_gap;
342         max = vma->vm_start;
343         if (vma->vm_prev)
344                 max -= vma->vm_prev->vm_end;
345         if (vma->vm_rb.rb_left) {
346                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
347                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
348                 if (subtree_gap > max)
349                         max = subtree_gap;
350         }
351         if (vma->vm_rb.rb_right) {
352                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
353                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
354                 if (subtree_gap > max)
355                         max = subtree_gap;
356         }
357         return max;
358 }
359
360 #ifdef CONFIG_DEBUG_VM_RB
361 static int browse_rb(struct rb_root *root)
362 {
363         int i = 0, j, bug = 0;
364         struct rb_node *nd, *pn = NULL;
365         unsigned long prev = 0, pend = 0;
366
367         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
368                 struct vm_area_struct *vma;
369                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
370                 if (vma->vm_start < prev) {
371                         pr_emerg("vm_start %lx < prev %lx\n",
372                                   vma->vm_start, prev);
373                         bug = 1;
374                 }
375                 if (vma->vm_start < pend) {
376                         pr_emerg("vm_start %lx < pend %lx\n",
377                                   vma->vm_start, pend);
378                         bug = 1;
379                 }
380                 if (vma->vm_start > vma->vm_end) {
381                         pr_emerg("vm_start %lx > vm_end %lx\n",
382                                   vma->vm_start, vma->vm_end);
383                         bug = 1;
384                 }
385                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
386                         pr_emerg("free gap %lx, correct %lx\n",
387                                vma->rb_subtree_gap,
388                                vma_compute_subtree_gap(vma));
389                         bug = 1;
390                 }
391                 i++;
392                 pn = nd;
393                 prev = vma->vm_start;
394                 pend = vma->vm_end;
395         }
396         j = 0;
397         for (nd = pn; nd; nd = rb_prev(nd))
398                 j++;
399         if (i != j) {
400                 pr_emerg("backwards %d, forwards %d\n", j, i);
401                 bug = 1;
402         }
403         return bug ? -1 : i;
404 }
405
406 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
407 {
408         struct rb_node *nd;
409
410         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
411                 struct vm_area_struct *vma;
412                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
413                 BUG_ON(vma != ignore &&
414                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
415         }
416 }
417
418 static void validate_mm(struct mm_struct *mm)
419 {
420         int bug = 0;
421         int i = 0;
422         unsigned long highest_address = 0;
423         struct vm_area_struct *vma = mm->mmap;
424
425         while (vma) {
426                 struct anon_vma_chain *avc;
427
428                 vma_lock_anon_vma(vma);
429                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
430                         anon_vma_interval_tree_verify(avc);
431                 vma_unlock_anon_vma(vma);
432                 highest_address = vma->vm_end;
433                 vma = vma->vm_next;
434                 i++;
435         }
436         if (i != mm->map_count) {
437                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
438                 bug = 1;
439         }
440         if (highest_address != mm->highest_vm_end) {
441                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
442                           mm->highest_vm_end, highest_address);
443                 bug = 1;
444         }
445         i = browse_rb(&mm->mm_rb);
446         if (i != mm->map_count) {
447                 if (i != -1)
448                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
449                 bug = 1;
450         }
451         BUG_ON(bug);
452 }
453 #else
454 #define validate_mm_rb(root, ignore) do { } while (0)
455 #define validate_mm(mm) do { } while (0)
456 #endif
457
458 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
459                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
460
461 /*
462  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
463  * vma->vm_prev->vm_end values changed, without modifying the vma's position
464  * in the rbtree.
465  */
466 static void vma_gap_update(struct vm_area_struct *vma)
467 {
468         /*
469          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
470          * function that does exacltly what we want.
471          */
472         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
473 }
474
475 static inline void vma_rb_insert(struct vm_area_struct *vma,
476                                  struct rb_root *root)
477 {
478         /* All rb_subtree_gap values must be consistent prior to insertion */
479         validate_mm_rb(root, NULL);
480
481         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
482 }
483
484 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
485 {
486         /*
487          * All rb_subtree_gap values must be consistent prior to erase,
488          * with the possible exception of the vma being erased.
489          */
490         validate_mm_rb(root, vma);
491
492         /*
493          * Note rb_erase_augmented is a fairly large inline function,
494          * so make sure we instantiate it only once with our desired
495          * augmented rbtree callbacks.
496          */
497         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
498 }
499
500 /*
501  * vma has some anon_vma assigned, and is already inserted on that
502  * anon_vma's interval trees.
503  *
504  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
505  * vma must be removed from the anon_vma's interval trees using
506  * anon_vma_interval_tree_pre_update_vma().
507  *
508  * After the update, the vma will be reinserted using
509  * anon_vma_interval_tree_post_update_vma().
510  *
511  * The entire update must be protected by exclusive mmap_sem and by
512  * the root anon_vma's mutex.
513  */
514 static inline void
515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 {
517         struct anon_vma_chain *avc;
518
519         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 }
522
523 static inline void
524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 {
526         struct anon_vma_chain *avc;
527
528         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
529                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
530 }
531
532 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
533                 unsigned long end, struct vm_area_struct **pprev,
534                 struct rb_node ***rb_link, struct rb_node **rb_parent)
535 {
536         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537
538         __rb_link = &mm->mm_rb.rb_node;
539         rb_prev = __rb_parent = NULL;
540
541         while (*__rb_link) {
542                 struct vm_area_struct *vma_tmp;
543
544                 __rb_parent = *__rb_link;
545                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546
547                 if (vma_tmp->vm_end > addr) {
548                         /* Fail if an existing vma overlaps the area */
549                         if (vma_tmp->vm_start < end)
550                                 return -ENOMEM;
551                         __rb_link = &__rb_parent->rb_left;
552                 } else {
553                         rb_prev = __rb_parent;
554                         __rb_link = &__rb_parent->rb_right;
555                 }
556         }
557
558         *pprev = NULL;
559         if (rb_prev)
560                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561         *rb_link = __rb_link;
562         *rb_parent = __rb_parent;
563         return 0;
564 }
565
566 static unsigned long count_vma_pages_range(struct mm_struct *mm,
567                 unsigned long addr, unsigned long end)
568 {
569         unsigned long nr_pages = 0;
570         struct vm_area_struct *vma;
571
572         /* Find first overlaping mapping */
573         vma = find_vma_intersection(mm, addr, end);
574         if (!vma)
575                 return 0;
576
577         nr_pages = (min(end, vma->vm_end) -
578                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
579
580         /* Iterate over the rest of the overlaps */
581         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
582                 unsigned long overlap_len;
583
584                 if (vma->vm_start > end)
585                         break;
586
587                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
588                 nr_pages += overlap_len >> PAGE_SHIFT;
589         }
590
591         return nr_pages;
592 }
593
594 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
595                 struct rb_node **rb_link, struct rb_node *rb_parent)
596 {
597         /* Update tracking information for the gap following the new vma. */
598         if (vma->vm_next)
599                 vma_gap_update(vma->vm_next);
600         else
601                 mm->highest_vm_end = vma->vm_end;
602
603         /*
604          * vma->vm_prev wasn't known when we followed the rbtree to find the
605          * correct insertion point for that vma. As a result, we could not
606          * update the vma vm_rb parents rb_subtree_gap values on the way down.
607          * So, we first insert the vma with a zero rb_subtree_gap value
608          * (to be consistent with what we did on the way down), and then
609          * immediately update the gap to the correct value. Finally we
610          * rebalance the rbtree after all augmented values have been set.
611          */
612         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
613         vma->rb_subtree_gap = 0;
614         vma_gap_update(vma);
615         vma_rb_insert(vma, &mm->mm_rb);
616 }
617
618 static void __vma_link_file(struct vm_area_struct *vma)
619 {
620         struct file *file;
621
622         file = vma->vm_file;
623         if (file) {
624                 struct address_space *mapping = file->f_mapping;
625
626                 if (vma->vm_flags & VM_DENYWRITE)
627                         atomic_dec(&file_inode(file)->i_writecount);
628                 if (vma->vm_flags & VM_SHARED)
629                         atomic_inc(&mapping->i_mmap_writable);
630
631                 flush_dcache_mmap_lock(mapping);
632                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
633                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
634                 else
635                         vma_interval_tree_insert(vma, &mapping->i_mmap);
636                 flush_dcache_mmap_unlock(mapping);
637         }
638 }
639
640 static void
641 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
642         struct vm_area_struct *prev, struct rb_node **rb_link,
643         struct rb_node *rb_parent)
644 {
645         __vma_link_list(mm, vma, prev, rb_parent);
646         __vma_link_rb(mm, vma, rb_link, rb_parent);
647 }
648
649 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
650                         struct vm_area_struct *prev, struct rb_node **rb_link,
651                         struct rb_node *rb_parent)
652 {
653         struct address_space *mapping = NULL;
654
655         if (vma->vm_file) {
656                 mapping = vma->vm_file->f_mapping;
657                 mutex_lock(&mapping->i_mmap_mutex);
658         }
659
660         __vma_link(mm, vma, prev, rb_link, rb_parent);
661         __vma_link_file(vma);
662
663         if (mapping)
664                 mutex_unlock(&mapping->i_mmap_mutex);
665
666         mm->map_count++;
667         validate_mm(mm);
668 }
669
670 /*
671  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
672  * mm's list and rbtree.  It has already been inserted into the interval tree.
673  */
674 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
675 {
676         struct vm_area_struct *prev;
677         struct rb_node **rb_link, *rb_parent;
678
679         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
680                            &prev, &rb_link, &rb_parent))
681                 BUG();
682         __vma_link(mm, vma, prev, rb_link, rb_parent);
683         mm->map_count++;
684 }
685
686 static inline void
687 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
688                 struct vm_area_struct *prev)
689 {
690         struct vm_area_struct *next;
691
692         vma_rb_erase(vma, &mm->mm_rb);
693         prev->vm_next = next = vma->vm_next;
694         if (next)
695                 next->vm_prev = prev;
696
697         /* Kill the cache */
698         vmacache_invalidate(mm);
699 }
700
701 /*
702  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
703  * is already present in an i_mmap tree without adjusting the tree.
704  * The following helper function should be used when such adjustments
705  * are necessary.  The "insert" vma (if any) is to be inserted
706  * before we drop the necessary locks.
707  */
708 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
709         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
710 {
711         struct mm_struct *mm = vma->vm_mm;
712         struct vm_area_struct *next = vma->vm_next;
713         struct vm_area_struct *importer = NULL;
714         struct address_space *mapping = NULL;
715         struct rb_root *root = NULL;
716         struct anon_vma *anon_vma = NULL;
717         struct file *file = vma->vm_file;
718         bool start_changed = false, end_changed = false;
719         long adjust_next = 0;
720         int remove_next = 0;
721
722         if (next && !insert) {
723                 struct vm_area_struct *exporter = NULL;
724
725                 if (end >= next->vm_end) {
726                         /*
727                          * vma expands, overlapping all the next, and
728                          * perhaps the one after too (mprotect case 6).
729                          */
730 again:                  remove_next = 1 + (end > next->vm_end);
731                         end = next->vm_end;
732                         exporter = next;
733                         importer = vma;
734                 } else if (end > next->vm_start) {
735                         /*
736                          * vma expands, overlapping part of the next:
737                          * mprotect case 5 shifting the boundary up.
738                          */
739                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
740                         exporter = next;
741                         importer = vma;
742                 } else if (end < vma->vm_end) {
743                         /*
744                          * vma shrinks, and !insert tells it's not
745                          * split_vma inserting another: so it must be
746                          * mprotect case 4 shifting the boundary down.
747                          */
748                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
749                         exporter = vma;
750                         importer = next;
751                 }
752
753                 /*
754                  * Easily overlooked: when mprotect shifts the boundary,
755                  * make sure the expanding vma has anon_vma set if the
756                  * shrinking vma had, to cover any anon pages imported.
757                  */
758                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
759                         if (anon_vma_clone(importer, exporter))
760                                 return -ENOMEM;
761                         importer->anon_vma = exporter->anon_vma;
762                 }
763         }
764
765         if (file) {
766                 mapping = file->f_mapping;
767                 if (!(vma->vm_flags & VM_NONLINEAR)) {
768                         root = &mapping->i_mmap;
769                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
770
771                         if (adjust_next)
772                                 uprobe_munmap(next, next->vm_start,
773                                                         next->vm_end);
774                 }
775
776                 mutex_lock(&mapping->i_mmap_mutex);
777                 if (insert) {
778                         /*
779                          * Put into interval tree now, so instantiated pages
780                          * are visible to arm/parisc __flush_dcache_page
781                          * throughout; but we cannot insert into address
782                          * space until vma start or end is updated.
783                          */
784                         __vma_link_file(insert);
785                 }
786         }
787
788         vma_adjust_trans_huge(vma, start, end, adjust_next);
789
790         anon_vma = vma->anon_vma;
791         if (!anon_vma && adjust_next)
792                 anon_vma = next->anon_vma;
793         if (anon_vma) {
794                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
795                           anon_vma != next->anon_vma, next);
796                 anon_vma_lock_write(anon_vma);
797                 anon_vma_interval_tree_pre_update_vma(vma);
798                 if (adjust_next)
799                         anon_vma_interval_tree_pre_update_vma(next);
800         }
801
802         if (root) {
803                 flush_dcache_mmap_lock(mapping);
804                 vma_interval_tree_remove(vma, root);
805                 if (adjust_next)
806                         vma_interval_tree_remove(next, root);
807         }
808
809         if (start != vma->vm_start) {
810                 vma->vm_start = start;
811                 start_changed = true;
812         }
813         if (end != vma->vm_end) {
814                 vma->vm_end = end;
815                 end_changed = true;
816         }
817         vma->vm_pgoff = pgoff;
818         if (adjust_next) {
819                 next->vm_start += adjust_next << PAGE_SHIFT;
820                 next->vm_pgoff += adjust_next;
821         }
822
823         if (root) {
824                 if (adjust_next)
825                         vma_interval_tree_insert(next, root);
826                 vma_interval_tree_insert(vma, root);
827                 flush_dcache_mmap_unlock(mapping);
828         }
829
830         if (remove_next) {
831                 /*
832                  * vma_merge has merged next into vma, and needs
833                  * us to remove next before dropping the locks.
834                  */
835                 __vma_unlink(mm, next, vma);
836                 if (file)
837                         __remove_shared_vm_struct(next, file, mapping);
838         } else if (insert) {
839                 /*
840                  * split_vma has split insert from vma, and needs
841                  * us to insert it before dropping the locks
842                  * (it may either follow vma or precede it).
843                  */
844                 __insert_vm_struct(mm, insert);
845         } else {
846                 if (start_changed)
847                         vma_gap_update(vma);
848                 if (end_changed) {
849                         if (!next)
850                                 mm->highest_vm_end = end;
851                         else if (!adjust_next)
852                                 vma_gap_update(next);
853                 }
854         }
855
856         if (anon_vma) {
857                 anon_vma_interval_tree_post_update_vma(vma);
858                 if (adjust_next)
859                         anon_vma_interval_tree_post_update_vma(next);
860                 anon_vma_unlock_write(anon_vma);
861         }
862         if (mapping)
863                 mutex_unlock(&mapping->i_mmap_mutex);
864
865         if (root) {
866                 uprobe_mmap(vma);
867
868                 if (adjust_next)
869                         uprobe_mmap(next);
870         }
871
872         if (remove_next) {
873                 if (file) {
874                         uprobe_munmap(next, next->vm_start, next->vm_end);
875                         fput(file);
876                 }
877                 if (next->anon_vma)
878                         anon_vma_merge(vma, next);
879                 mm->map_count--;
880                 mpol_put(vma_policy(next));
881                 kmem_cache_free(vm_area_cachep, next);
882                 /*
883                  * In mprotect's case 6 (see comments on vma_merge),
884                  * we must remove another next too. It would clutter
885                  * up the code too much to do both in one go.
886                  */
887                 next = vma->vm_next;
888                 if (remove_next == 2)
889                         goto again;
890                 else if (next)
891                         vma_gap_update(next);
892                 else
893                         mm->highest_vm_end = end;
894         }
895         if (insert && file)
896                 uprobe_mmap(insert);
897
898         validate_mm(mm);
899
900         return 0;
901 }
902
903 /*
904  * If the vma has a ->close operation then the driver probably needs to release
905  * per-vma resources, so we don't attempt to merge those.
906  */
907 static inline int is_mergeable_vma(struct vm_area_struct *vma,
908                         struct file *file, unsigned long vm_flags)
909 {
910         /*
911          * VM_SOFTDIRTY should not prevent from VMA merging, if we
912          * match the flags but dirty bit -- the caller should mark
913          * merged VMA as dirty. If dirty bit won't be excluded from
914          * comparison, we increase pressue on the memory system forcing
915          * the kernel to generate new VMAs when old one could be
916          * extended instead.
917          */
918         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
919                 return 0;
920         if (vma->vm_file != file)
921                 return 0;
922         if (vma->vm_ops && vma->vm_ops->close)
923                 return 0;
924         return 1;
925 }
926
927 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
928                                         struct anon_vma *anon_vma2,
929                                         struct vm_area_struct *vma)
930 {
931         /*
932          * The list_is_singular() test is to avoid merging VMA cloned from
933          * parents. This can improve scalability caused by anon_vma lock.
934          */
935         if ((!anon_vma1 || !anon_vma2) && (!vma ||
936                 list_is_singular(&vma->anon_vma_chain)))
937                 return 1;
938         return anon_vma1 == anon_vma2;
939 }
940
941 /*
942  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
943  * in front of (at a lower virtual address and file offset than) the vma.
944  *
945  * We cannot merge two vmas if they have differently assigned (non-NULL)
946  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
947  *
948  * We don't check here for the merged mmap wrapping around the end of pagecache
949  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
950  * wrap, nor mmaps which cover the final page at index -1UL.
951  */
952 static int
953 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
954         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
955 {
956         if (is_mergeable_vma(vma, file, vm_flags) &&
957             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
958                 if (vma->vm_pgoff == vm_pgoff)
959                         return 1;
960         }
961         return 0;
962 }
963
964 /*
965  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
966  * beyond (at a higher virtual address and file offset than) the vma.
967  *
968  * We cannot merge two vmas if they have differently assigned (non-NULL)
969  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
970  */
971 static int
972 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
973         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
974 {
975         if (is_mergeable_vma(vma, file, vm_flags) &&
976             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
977                 pgoff_t vm_pglen;
978                 vm_pglen = vma_pages(vma);
979                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
980                         return 1;
981         }
982         return 0;
983 }
984
985 /*
986  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
987  * whether that can be merged with its predecessor or its successor.
988  * Or both (it neatly fills a hole).
989  *
990  * In most cases - when called for mmap, brk or mremap - [addr,end) is
991  * certain not to be mapped by the time vma_merge is called; but when
992  * called for mprotect, it is certain to be already mapped (either at
993  * an offset within prev, or at the start of next), and the flags of
994  * this area are about to be changed to vm_flags - and the no-change
995  * case has already been eliminated.
996  *
997  * The following mprotect cases have to be considered, where AAAA is
998  * the area passed down from mprotect_fixup, never extending beyond one
999  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1000  *
1001  *     AAAA             AAAA                AAAA          AAAA
1002  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1003  *    cannot merge    might become    might become    might become
1004  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1005  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1006  *    mremap move:                                    PPPPNNNNNNNN 8
1007  *        AAAA
1008  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1009  *    might become    case 1 below    case 2 below    case 3 below
1010  *
1011  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1012  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1013  */
1014 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1015                         struct vm_area_struct *prev, unsigned long addr,
1016                         unsigned long end, unsigned long vm_flags,
1017                         struct anon_vma *anon_vma, struct file *file,
1018                         pgoff_t pgoff, struct mempolicy *policy)
1019 {
1020         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1021         struct vm_area_struct *area, *next;
1022         int err;
1023
1024         /*
1025          * We later require that vma->vm_flags == vm_flags,
1026          * so this tests vma->vm_flags & VM_SPECIAL, too.
1027          */
1028         if (vm_flags & VM_SPECIAL)
1029                 return NULL;
1030
1031         if (prev)
1032                 next = prev->vm_next;
1033         else
1034                 next = mm->mmap;
1035         area = next;
1036         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1037                 next = next->vm_next;
1038
1039         /*
1040          * Can it merge with the predecessor?
1041          */
1042         if (prev && prev->vm_end == addr &&
1043                         mpol_equal(vma_policy(prev), policy) &&
1044                         can_vma_merge_after(prev, vm_flags,
1045                                                 anon_vma, file, pgoff)) {
1046                 /*
1047                  * OK, it can.  Can we now merge in the successor as well?
1048                  */
1049                 if (next && end == next->vm_start &&
1050                                 mpol_equal(policy, vma_policy(next)) &&
1051                                 can_vma_merge_before(next, vm_flags,
1052                                         anon_vma, file, pgoff+pglen) &&
1053                                 is_mergeable_anon_vma(prev->anon_vma,
1054                                                       next->anon_vma, NULL)) {
1055                                                         /* cases 1, 6 */
1056                         err = vma_adjust(prev, prev->vm_start,
1057                                 next->vm_end, prev->vm_pgoff, NULL);
1058                 } else                                  /* cases 2, 5, 7 */
1059                         err = vma_adjust(prev, prev->vm_start,
1060                                 end, prev->vm_pgoff, NULL);
1061                 if (err)
1062                         return NULL;
1063                 khugepaged_enter_vma_merge(prev);
1064                 return prev;
1065         }
1066
1067         /*
1068          * Can this new request be merged in front of next?
1069          */
1070         if (next && end == next->vm_start &&
1071                         mpol_equal(policy, vma_policy(next)) &&
1072                         can_vma_merge_before(next, vm_flags,
1073                                         anon_vma, file, pgoff+pglen)) {
1074                 if (prev && addr < prev->vm_end)        /* case 4 */
1075                         err = vma_adjust(prev, prev->vm_start,
1076                                 addr, prev->vm_pgoff, NULL);
1077                 else                                    /* cases 3, 8 */
1078                         err = vma_adjust(area, addr, next->vm_end,
1079                                 next->vm_pgoff - pglen, NULL);
1080                 if (err)
1081                         return NULL;
1082                 khugepaged_enter_vma_merge(area);
1083                 return area;
1084         }
1085
1086         return NULL;
1087 }
1088
1089 /*
1090  * Rough compatbility check to quickly see if it's even worth looking
1091  * at sharing an anon_vma.
1092  *
1093  * They need to have the same vm_file, and the flags can only differ
1094  * in things that mprotect may change.
1095  *
1096  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1097  * we can merge the two vma's. For example, we refuse to merge a vma if
1098  * there is a vm_ops->close() function, because that indicates that the
1099  * driver is doing some kind of reference counting. But that doesn't
1100  * really matter for the anon_vma sharing case.
1101  */
1102 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1103 {
1104         return a->vm_end == b->vm_start &&
1105                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1106                 a->vm_file == b->vm_file &&
1107                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1108                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1109 }
1110
1111 /*
1112  * Do some basic sanity checking to see if we can re-use the anon_vma
1113  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1114  * the same as 'old', the other will be the new one that is trying
1115  * to share the anon_vma.
1116  *
1117  * NOTE! This runs with mm_sem held for reading, so it is possible that
1118  * the anon_vma of 'old' is concurrently in the process of being set up
1119  * by another page fault trying to merge _that_. But that's ok: if it
1120  * is being set up, that automatically means that it will be a singleton
1121  * acceptable for merging, so we can do all of this optimistically. But
1122  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1123  *
1124  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1125  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1126  * is to return an anon_vma that is "complex" due to having gone through
1127  * a fork).
1128  *
1129  * We also make sure that the two vma's are compatible (adjacent,
1130  * and with the same memory policies). That's all stable, even with just
1131  * a read lock on the mm_sem.
1132  */
1133 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1134 {
1135         if (anon_vma_compatible(a, b)) {
1136                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1137
1138                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1139                         return anon_vma;
1140         }
1141         return NULL;
1142 }
1143
1144 /*
1145  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1146  * neighbouring vmas for a suitable anon_vma, before it goes off
1147  * to allocate a new anon_vma.  It checks because a repetitive
1148  * sequence of mprotects and faults may otherwise lead to distinct
1149  * anon_vmas being allocated, preventing vma merge in subsequent
1150  * mprotect.
1151  */
1152 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1153 {
1154         struct anon_vma *anon_vma;
1155         struct vm_area_struct *near;
1156
1157         near = vma->vm_next;
1158         if (!near)
1159                 goto try_prev;
1160
1161         anon_vma = reusable_anon_vma(near, vma, near);
1162         if (anon_vma)
1163                 return anon_vma;
1164 try_prev:
1165         near = vma->vm_prev;
1166         if (!near)
1167                 goto none;
1168
1169         anon_vma = reusable_anon_vma(near, near, vma);
1170         if (anon_vma)
1171                 return anon_vma;
1172 none:
1173         /*
1174          * There's no absolute need to look only at touching neighbours:
1175          * we could search further afield for "compatible" anon_vmas.
1176          * But it would probably just be a waste of time searching,
1177          * or lead to too many vmas hanging off the same anon_vma.
1178          * We're trying to allow mprotect remerging later on,
1179          * not trying to minimize memory used for anon_vmas.
1180          */
1181         return NULL;
1182 }
1183
1184 #ifdef CONFIG_PROC_FS
1185 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1186                                                 struct file *file, long pages)
1187 {
1188         const unsigned long stack_flags
1189                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1190
1191         mm->total_vm += pages;
1192
1193         if (file) {
1194                 mm->shared_vm += pages;
1195                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1196                         mm->exec_vm += pages;
1197         } else if (flags & stack_flags)
1198                 mm->stack_vm += pages;
1199 }
1200 #endif /* CONFIG_PROC_FS */
1201
1202 /*
1203  * If a hint addr is less than mmap_min_addr change hint to be as
1204  * low as possible but still greater than mmap_min_addr
1205  */
1206 static inline unsigned long round_hint_to_min(unsigned long hint)
1207 {
1208         hint &= PAGE_MASK;
1209         if (((void *)hint != NULL) &&
1210             (hint < mmap_min_addr))
1211                 return PAGE_ALIGN(mmap_min_addr);
1212         return hint;
1213 }
1214
1215 static inline int mlock_future_check(struct mm_struct *mm,
1216                                      unsigned long flags,
1217                                      unsigned long len)
1218 {
1219         unsigned long locked, lock_limit;
1220
1221         /*  mlock MCL_FUTURE? */
1222         if (flags & VM_LOCKED) {
1223                 locked = len >> PAGE_SHIFT;
1224                 locked += mm->locked_vm;
1225                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1226                 lock_limit >>= PAGE_SHIFT;
1227                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1228                         return -EAGAIN;
1229         }
1230         return 0;
1231 }
1232
1233 /*
1234  * The caller must hold down_write(&current->mm->mmap_sem).
1235  */
1236
1237 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1238                         unsigned long len, unsigned long prot,
1239                         unsigned long flags, unsigned long pgoff,
1240                         unsigned long *populate)
1241 {
1242         struct mm_struct *mm = current->mm;
1243         vm_flags_t vm_flags;
1244
1245         *populate = 0;
1246
1247         /*
1248          * Does the application expect PROT_READ to imply PROT_EXEC?
1249          *
1250          * (the exception is when the underlying filesystem is noexec
1251          *  mounted, in which case we dont add PROT_EXEC.)
1252          */
1253         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1254                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1255                         prot |= PROT_EXEC;
1256
1257         if (!len)
1258                 return -EINVAL;
1259
1260         if (!(flags & MAP_FIXED))
1261                 addr = round_hint_to_min(addr);
1262
1263         /* Careful about overflows.. */
1264         len = PAGE_ALIGN(len);
1265         if (!len)
1266                 return -ENOMEM;
1267
1268         /* offset overflow? */
1269         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1270                 return -EOVERFLOW;
1271
1272         /* Too many mappings? */
1273         if (mm->map_count > sysctl_max_map_count)
1274                 return -ENOMEM;
1275
1276         /* Obtain the address to map to. we verify (or select) it and ensure
1277          * that it represents a valid section of the address space.
1278          */
1279         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1280         if (addr & ~PAGE_MASK)
1281                 return addr;
1282
1283         /* Do simple checking here so the lower-level routines won't have
1284          * to. we assume access permissions have been handled by the open
1285          * of the memory object, so we don't do any here.
1286          */
1287         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1288                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1289
1290         if (flags & MAP_LOCKED)
1291                 if (!can_do_mlock())
1292                         return -EPERM;
1293
1294         if (mlock_future_check(mm, vm_flags, len))
1295                 return -EAGAIN;
1296
1297         if (file) {
1298                 struct inode *inode = file_inode(file);
1299
1300                 switch (flags & MAP_TYPE) {
1301                 case MAP_SHARED:
1302                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1303                                 return -EACCES;
1304
1305                         /*
1306                          * Make sure we don't allow writing to an append-only
1307                          * file..
1308                          */
1309                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1310                                 return -EACCES;
1311
1312                         /*
1313                          * Make sure there are no mandatory locks on the file.
1314                          */
1315                         if (locks_verify_locked(file))
1316                                 return -EAGAIN;
1317
1318                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1319                         if (!(file->f_mode & FMODE_WRITE))
1320                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1321
1322                         /* fall through */
1323                 case MAP_PRIVATE:
1324                         if (!(file->f_mode & FMODE_READ))
1325                                 return -EACCES;
1326                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1327                                 if (vm_flags & VM_EXEC)
1328                                         return -EPERM;
1329                                 vm_flags &= ~VM_MAYEXEC;
1330                         }
1331
1332                         if (!file->f_op->mmap)
1333                                 return -ENODEV;
1334                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1335                                 return -EINVAL;
1336                         break;
1337
1338                 default:
1339                         return -EINVAL;
1340                 }
1341         } else {
1342                 switch (flags & MAP_TYPE) {
1343                 case MAP_SHARED:
1344                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345                                 return -EINVAL;
1346                         /*
1347                          * Ignore pgoff.
1348                          */
1349                         pgoff = 0;
1350                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1351                         break;
1352                 case MAP_PRIVATE:
1353                         /*
1354                          * Set pgoff according to addr for anon_vma.
1355                          */
1356                         pgoff = addr >> PAGE_SHIFT;
1357                         break;
1358                 default:
1359                         return -EINVAL;
1360                 }
1361         }
1362
1363         /*
1364          * Set 'VM_NORESERVE' if we should not account for the
1365          * memory use of this mapping.
1366          */
1367         if (flags & MAP_NORESERVE) {
1368                 /* We honor MAP_NORESERVE if allowed to overcommit */
1369                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1370                         vm_flags |= VM_NORESERVE;
1371
1372                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1373                 if (file && is_file_hugepages(file))
1374                         vm_flags |= VM_NORESERVE;
1375         }
1376
1377         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1378         if (!IS_ERR_VALUE(addr) &&
1379             ((vm_flags & VM_LOCKED) ||
1380              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1381                 *populate = len;
1382         return addr;
1383 }
1384
1385 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1386                 unsigned long, prot, unsigned long, flags,
1387                 unsigned long, fd, unsigned long, pgoff)
1388 {
1389         struct file *file = NULL;
1390         unsigned long retval = -EBADF;
1391
1392         if (!(flags & MAP_ANONYMOUS)) {
1393                 audit_mmap_fd(fd, flags);
1394                 file = fget(fd);
1395                 if (!file)
1396                         goto out;
1397                 if (is_file_hugepages(file))
1398                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1399                 retval = -EINVAL;
1400                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1401                         goto out_fput;
1402         } else if (flags & MAP_HUGETLB) {
1403                 struct user_struct *user = NULL;
1404                 struct hstate *hs;
1405
1406                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1407                 if (!hs)
1408                         return -EINVAL;
1409
1410                 len = ALIGN(len, huge_page_size(hs));
1411                 /*
1412                  * VM_NORESERVE is used because the reservations will be
1413                  * taken when vm_ops->mmap() is called
1414                  * A dummy user value is used because we are not locking
1415                  * memory so no accounting is necessary
1416                  */
1417                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1418                                 VM_NORESERVE,
1419                                 &user, HUGETLB_ANONHUGE_INODE,
1420                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1421                 if (IS_ERR(file))
1422                         return PTR_ERR(file);
1423         }
1424
1425         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1426
1427         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1428 out_fput:
1429         if (file)
1430                 fput(file);
1431 out:
1432         return retval;
1433 }
1434
1435 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1436 struct mmap_arg_struct {
1437         unsigned long addr;
1438         unsigned long len;
1439         unsigned long prot;
1440         unsigned long flags;
1441         unsigned long fd;
1442         unsigned long offset;
1443 };
1444
1445 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1446 {
1447         struct mmap_arg_struct a;
1448
1449         if (copy_from_user(&a, arg, sizeof(a)))
1450                 return -EFAULT;
1451         if (a.offset & ~PAGE_MASK)
1452                 return -EINVAL;
1453
1454         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1455                               a.offset >> PAGE_SHIFT);
1456 }
1457 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1458
1459 /*
1460  * Some shared mappigns will want the pages marked read-only
1461  * to track write events. If so, we'll downgrade vm_page_prot
1462  * to the private version (using protection_map[] without the
1463  * VM_SHARED bit).
1464  */
1465 int vma_wants_writenotify(struct vm_area_struct *vma)
1466 {
1467         vm_flags_t vm_flags = vma->vm_flags;
1468
1469         /* If it was private or non-writable, the write bit is already clear */
1470         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1471                 return 0;
1472
1473         /* The backer wishes to know when pages are first written to? */
1474         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1475                 return 1;
1476
1477         /* The open routine did something to the protections already? */
1478         if (pgprot_val(vma->vm_page_prot) !=
1479             pgprot_val(vm_get_page_prot(vm_flags)))
1480                 return 0;
1481
1482         /* Specialty mapping? */
1483         if (vm_flags & VM_PFNMAP)
1484                 return 0;
1485
1486         /* Can the mapping track the dirty pages? */
1487         return vma->vm_file && vma->vm_file->f_mapping &&
1488                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1489 }
1490
1491 /*
1492  * We account for memory if it's a private writeable mapping,
1493  * not hugepages and VM_NORESERVE wasn't set.
1494  */
1495 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1496 {
1497         /*
1498          * hugetlb has its own accounting separate from the core VM
1499          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1500          */
1501         if (file && is_file_hugepages(file))
1502                 return 0;
1503
1504         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1505 }
1506
1507 unsigned long mmap_region(struct file *file, unsigned long addr,
1508                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1509 {
1510         struct mm_struct *mm = current->mm;
1511         struct vm_area_struct *vma, *prev;
1512         int error;
1513         struct rb_node **rb_link, *rb_parent;
1514         unsigned long charged = 0;
1515
1516         /* Check against address space limit. */
1517         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1518                 unsigned long nr_pages;
1519
1520                 /*
1521                  * MAP_FIXED may remove pages of mappings that intersects with
1522                  * requested mapping. Account for the pages it would unmap.
1523                  */
1524                 if (!(vm_flags & MAP_FIXED))
1525                         return -ENOMEM;
1526
1527                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1528
1529                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1530                         return -ENOMEM;
1531         }
1532
1533         /* Clear old maps */
1534         error = -ENOMEM;
1535 munmap_back:
1536         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1537                 if (do_munmap(mm, addr, len))
1538                         return -ENOMEM;
1539                 goto munmap_back;
1540         }
1541
1542         /*
1543          * Private writable mapping: check memory availability
1544          */
1545         if (accountable_mapping(file, vm_flags)) {
1546                 charged = len >> PAGE_SHIFT;
1547                 if (security_vm_enough_memory_mm(mm, charged))
1548                         return -ENOMEM;
1549                 vm_flags |= VM_ACCOUNT;
1550         }
1551
1552         /*
1553          * Can we just expand an old mapping?
1554          */
1555         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1556         if (vma)
1557                 goto out;
1558
1559         /*
1560          * Determine the object being mapped and call the appropriate
1561          * specific mapper. the address has already been validated, but
1562          * not unmapped, but the maps are removed from the list.
1563          */
1564         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1565         if (!vma) {
1566                 error = -ENOMEM;
1567                 goto unacct_error;
1568         }
1569
1570         vma->vm_mm = mm;
1571         vma->vm_start = addr;
1572         vma->vm_end = addr + len;
1573         vma->vm_flags = vm_flags;
1574         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1575         vma->vm_pgoff = pgoff;
1576         INIT_LIST_HEAD(&vma->anon_vma_chain);
1577
1578         if (file) {
1579                 if (vm_flags & VM_DENYWRITE) {
1580                         error = deny_write_access(file);
1581                         if (error)
1582                                 goto free_vma;
1583                 }
1584                 if (vm_flags & VM_SHARED) {
1585                         error = mapping_map_writable(file->f_mapping);
1586                         if (error)
1587                                 goto allow_write_and_free_vma;
1588                 }
1589
1590                 /* ->mmap() can change vma->vm_file, but must guarantee that
1591                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1592                  * and map writably if VM_SHARED is set. This usually means the
1593                  * new file must not have been exposed to user-space, yet.
1594                  */
1595                 vma->vm_file = get_file(file);
1596                 error = file->f_op->mmap(file, vma);
1597                 if (error)
1598                         goto unmap_and_free_vma;
1599
1600                 /* Can addr have changed??
1601                  *
1602                  * Answer: Yes, several device drivers can do it in their
1603                  *         f_op->mmap method. -DaveM
1604                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1605                  *      be updated for vma_link()
1606                  */
1607                 WARN_ON_ONCE(addr != vma->vm_start);
1608
1609                 addr = vma->vm_start;
1610                 vm_flags = vma->vm_flags;
1611         } else if (vm_flags & VM_SHARED) {
1612                 error = shmem_zero_setup(vma);
1613                 if (error)
1614                         goto free_vma;
1615         }
1616
1617         if (vma_wants_writenotify(vma)) {
1618                 pgprot_t pprot = vma->vm_page_prot;
1619
1620                 /* Can vma->vm_page_prot have changed??
1621                  *
1622                  * Answer: Yes, drivers may have changed it in their
1623                  *         f_op->mmap method.
1624                  *
1625                  * Ensures that vmas marked as uncached stay that way.
1626                  */
1627                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1628                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1629                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1630         }
1631
1632         vma_link(mm, vma, prev, rb_link, rb_parent);
1633         /* Once vma denies write, undo our temporary denial count */
1634         if (file) {
1635                 if (vm_flags & VM_SHARED)
1636                         mapping_unmap_writable(file->f_mapping);
1637                 if (vm_flags & VM_DENYWRITE)
1638                         allow_write_access(file);
1639         }
1640         file = vma->vm_file;
1641 out:
1642         perf_event_mmap(vma);
1643
1644         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1645         if (vm_flags & VM_LOCKED) {
1646                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1647                                         vma == get_gate_vma(current->mm)))
1648                         mm->locked_vm += (len >> PAGE_SHIFT);
1649                 else
1650                         vma->vm_flags &= ~VM_LOCKED;
1651         }
1652
1653         if (file)
1654                 uprobe_mmap(vma);
1655
1656         /*
1657          * New (or expanded) vma always get soft dirty status.
1658          * Otherwise user-space soft-dirty page tracker won't
1659          * be able to distinguish situation when vma area unmapped,
1660          * then new mapped in-place (which must be aimed as
1661          * a completely new data area).
1662          */
1663         vma->vm_flags |= VM_SOFTDIRTY;
1664
1665         return addr;
1666
1667 unmap_and_free_vma:
1668         vma->vm_file = NULL;
1669         fput(file);
1670
1671         /* Undo any partial mapping done by a device driver. */
1672         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1673         charged = 0;
1674         if (vm_flags & VM_SHARED)
1675                 mapping_unmap_writable(file->f_mapping);
1676 allow_write_and_free_vma:
1677         if (vm_flags & VM_DENYWRITE)
1678                 allow_write_access(file);
1679 free_vma:
1680         kmem_cache_free(vm_area_cachep, vma);
1681 unacct_error:
1682         if (charged)
1683                 vm_unacct_memory(charged);
1684         return error;
1685 }
1686
1687 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1688 {
1689         /*
1690          * We implement the search by looking for an rbtree node that
1691          * immediately follows a suitable gap. That is,
1692          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1693          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1694          * - gap_end - gap_start >= length
1695          */
1696
1697         struct mm_struct *mm = current->mm;
1698         struct vm_area_struct *vma;
1699         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1700
1701         /* Adjust search length to account for worst case alignment overhead */
1702         length = info->length + info->align_mask;
1703         if (length < info->length)
1704                 return -ENOMEM;
1705
1706         /* Adjust search limits by the desired length */
1707         if (info->high_limit < length)
1708                 return -ENOMEM;
1709         high_limit = info->high_limit - length;
1710
1711         if (info->low_limit > high_limit)
1712                 return -ENOMEM;
1713         low_limit = info->low_limit + length;
1714
1715         /* Check if rbtree root looks promising */
1716         if (RB_EMPTY_ROOT(&mm->mm_rb))
1717                 goto check_highest;
1718         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1719         if (vma->rb_subtree_gap < length)
1720                 goto check_highest;
1721
1722         while (true) {
1723                 /* Visit left subtree if it looks promising */
1724                 gap_end = vma->vm_start;
1725                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1726                         struct vm_area_struct *left =
1727                                 rb_entry(vma->vm_rb.rb_left,
1728                                          struct vm_area_struct, vm_rb);
1729                         if (left->rb_subtree_gap >= length) {
1730                                 vma = left;
1731                                 continue;
1732                         }
1733                 }
1734
1735                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1736 check_current:
1737                 /* Check if current node has a suitable gap */
1738                 if (gap_start > high_limit)
1739                         return -ENOMEM;
1740                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1741                         goto found;
1742
1743                 /* Visit right subtree if it looks promising */
1744                 if (vma->vm_rb.rb_right) {
1745                         struct vm_area_struct *right =
1746                                 rb_entry(vma->vm_rb.rb_right,
1747                                          struct vm_area_struct, vm_rb);
1748                         if (right->rb_subtree_gap >= length) {
1749                                 vma = right;
1750                                 continue;
1751                         }
1752                 }
1753
1754                 /* Go back up the rbtree to find next candidate node */
1755                 while (true) {
1756                         struct rb_node *prev = &vma->vm_rb;
1757                         if (!rb_parent(prev))
1758                                 goto check_highest;
1759                         vma = rb_entry(rb_parent(prev),
1760                                        struct vm_area_struct, vm_rb);
1761                         if (prev == vma->vm_rb.rb_left) {
1762                                 gap_start = vma->vm_prev->vm_end;
1763                                 gap_end = vma->vm_start;
1764                                 goto check_current;
1765                         }
1766                 }
1767         }
1768
1769 check_highest:
1770         /* Check highest gap, which does not precede any rbtree node */
1771         gap_start = mm->highest_vm_end;
1772         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1773         if (gap_start > high_limit)
1774                 return -ENOMEM;
1775
1776 found:
1777         /* We found a suitable gap. Clip it with the original low_limit. */
1778         if (gap_start < info->low_limit)
1779                 gap_start = info->low_limit;
1780
1781         /* Adjust gap address to the desired alignment */
1782         gap_start += (info->align_offset - gap_start) & info->align_mask;
1783
1784         VM_BUG_ON(gap_start + info->length > info->high_limit);
1785         VM_BUG_ON(gap_start + info->length > gap_end);
1786         return gap_start;
1787 }
1788
1789 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1790 {
1791         struct mm_struct *mm = current->mm;
1792         struct vm_area_struct *vma;
1793         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1794
1795         /* Adjust search length to account for worst case alignment overhead */
1796         length = info->length + info->align_mask;
1797         if (length < info->length)
1798                 return -ENOMEM;
1799
1800         /*
1801          * Adjust search limits by the desired length.
1802          * See implementation comment at top of unmapped_area().
1803          */
1804         gap_end = info->high_limit;
1805         if (gap_end < length)
1806                 return -ENOMEM;
1807         high_limit = gap_end - length;
1808
1809         if (info->low_limit > high_limit)
1810                 return -ENOMEM;
1811         low_limit = info->low_limit + length;
1812
1813         /* Check highest gap, which does not precede any rbtree node */
1814         gap_start = mm->highest_vm_end;
1815         if (gap_start <= high_limit)
1816                 goto found_highest;
1817
1818         /* Check if rbtree root looks promising */
1819         if (RB_EMPTY_ROOT(&mm->mm_rb))
1820                 return -ENOMEM;
1821         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1822         if (vma->rb_subtree_gap < length)
1823                 return -ENOMEM;
1824
1825         while (true) {
1826                 /* Visit right subtree if it looks promising */
1827                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1828                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1829                         struct vm_area_struct *right =
1830                                 rb_entry(vma->vm_rb.rb_right,
1831                                          struct vm_area_struct, vm_rb);
1832                         if (right->rb_subtree_gap >= length) {
1833                                 vma = right;
1834                                 continue;
1835                         }
1836                 }
1837
1838 check_current:
1839                 /* Check if current node has a suitable gap */
1840                 gap_end = vma->vm_start;
1841                 if (gap_end < low_limit)
1842                         return -ENOMEM;
1843                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1844                         goto found;
1845
1846                 /* Visit left subtree if it looks promising */
1847                 if (vma->vm_rb.rb_left) {
1848                         struct vm_area_struct *left =
1849                                 rb_entry(vma->vm_rb.rb_left,
1850                                          struct vm_area_struct, vm_rb);
1851                         if (left->rb_subtree_gap >= length) {
1852                                 vma = left;
1853                                 continue;
1854                         }
1855                 }
1856
1857                 /* Go back up the rbtree to find next candidate node */
1858                 while (true) {
1859                         struct rb_node *prev = &vma->vm_rb;
1860                         if (!rb_parent(prev))
1861                                 return -ENOMEM;
1862                         vma = rb_entry(rb_parent(prev),
1863                                        struct vm_area_struct, vm_rb);
1864                         if (prev == vma->vm_rb.rb_right) {
1865                                 gap_start = vma->vm_prev ?
1866                                         vma->vm_prev->vm_end : 0;
1867                                 goto check_current;
1868                         }
1869                 }
1870         }
1871
1872 found:
1873         /* We found a suitable gap. Clip it with the original high_limit. */
1874         if (gap_end > info->high_limit)
1875                 gap_end = info->high_limit;
1876
1877 found_highest:
1878         /* Compute highest gap address at the desired alignment */
1879         gap_end -= info->length;
1880         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1881
1882         VM_BUG_ON(gap_end < info->low_limit);
1883         VM_BUG_ON(gap_end < gap_start);
1884         return gap_end;
1885 }
1886
1887 /* Get an address range which is currently unmapped.
1888  * For shmat() with addr=0.
1889  *
1890  * Ugly calling convention alert:
1891  * Return value with the low bits set means error value,
1892  * ie
1893  *      if (ret & ~PAGE_MASK)
1894  *              error = ret;
1895  *
1896  * This function "knows" that -ENOMEM has the bits set.
1897  */
1898 #ifndef HAVE_ARCH_UNMAPPED_AREA
1899 unsigned long
1900 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1901                 unsigned long len, unsigned long pgoff, unsigned long flags)
1902 {
1903         struct mm_struct *mm = current->mm;
1904         struct vm_area_struct *vma;
1905         struct vm_unmapped_area_info info;
1906
1907         if (len > TASK_SIZE - mmap_min_addr)
1908                 return -ENOMEM;
1909
1910         if (flags & MAP_FIXED)
1911                 return addr;
1912
1913         if (addr) {
1914                 addr = PAGE_ALIGN(addr);
1915                 vma = find_vma(mm, addr);
1916                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1917                     (!vma || addr + len <= vma->vm_start))
1918                         return addr;
1919         }
1920
1921         info.flags = 0;
1922         info.length = len;
1923         info.low_limit = mm->mmap_base;
1924         info.high_limit = TASK_SIZE;
1925         info.align_mask = 0;
1926         return vm_unmapped_area(&info);
1927 }
1928 #endif
1929
1930 /*
1931  * This mmap-allocator allocates new areas top-down from below the
1932  * stack's low limit (the base):
1933  */
1934 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1935 unsigned long
1936 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1937                           const unsigned long len, const unsigned long pgoff,
1938                           const unsigned long flags)
1939 {
1940         struct vm_area_struct *vma;
1941         struct mm_struct *mm = current->mm;
1942         unsigned long addr = addr0;
1943         struct vm_unmapped_area_info info;
1944
1945         /* requested length too big for entire address space */
1946         if (len > TASK_SIZE - mmap_min_addr)
1947                 return -ENOMEM;
1948
1949         if (flags & MAP_FIXED)
1950                 return addr;
1951
1952         /* requesting a specific address */
1953         if (addr) {
1954                 addr = PAGE_ALIGN(addr);
1955                 vma = find_vma(mm, addr);
1956                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1957                                 (!vma || addr + len <= vma->vm_start))
1958                         return addr;
1959         }
1960
1961         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1962         info.length = len;
1963         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1964         info.high_limit = mm->mmap_base;
1965         info.align_mask = 0;
1966         addr = vm_unmapped_area(&info);
1967
1968         /*
1969          * A failed mmap() very likely causes application failure,
1970          * so fall back to the bottom-up function here. This scenario
1971          * can happen with large stack limits and large mmap()
1972          * allocations.
1973          */
1974         if (addr & ~PAGE_MASK) {
1975                 VM_BUG_ON(addr != -ENOMEM);
1976                 info.flags = 0;
1977                 info.low_limit = TASK_UNMAPPED_BASE;
1978                 info.high_limit = TASK_SIZE;
1979                 addr = vm_unmapped_area(&info);
1980         }
1981
1982         return addr;
1983 }
1984 #endif
1985
1986 unsigned long
1987 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1988                 unsigned long pgoff, unsigned long flags)
1989 {
1990         unsigned long (*get_area)(struct file *, unsigned long,
1991                                   unsigned long, unsigned long, unsigned long);
1992
1993         unsigned long error = arch_mmap_check(addr, len, flags);
1994         if (error)
1995                 return error;
1996
1997         /* Careful about overflows.. */
1998         if (len > TASK_SIZE)
1999                 return -ENOMEM;
2000
2001         get_area = current->mm->get_unmapped_area;
2002         if (file && file->f_op->get_unmapped_area)
2003                 get_area = file->f_op->get_unmapped_area;
2004         addr = get_area(file, addr, len, pgoff, flags);
2005         if (IS_ERR_VALUE(addr))
2006                 return addr;
2007
2008         if (addr > TASK_SIZE - len)
2009                 return -ENOMEM;
2010         if (addr & ~PAGE_MASK)
2011                 return -EINVAL;
2012
2013         addr = arch_rebalance_pgtables(addr, len);
2014         error = security_mmap_addr(addr);
2015         return error ? error : addr;
2016 }
2017
2018 EXPORT_SYMBOL(get_unmapped_area);
2019
2020 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2021 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2022 {
2023         struct rb_node *rb_node;
2024         struct vm_area_struct *vma;
2025
2026         /* Check the cache first. */
2027         vma = vmacache_find(mm, addr);
2028         if (likely(vma))
2029                 return vma;
2030
2031         rb_node = mm->mm_rb.rb_node;
2032         vma = NULL;
2033
2034         while (rb_node) {
2035                 struct vm_area_struct *tmp;
2036
2037                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2038
2039                 if (tmp->vm_end > addr) {
2040                         vma = tmp;
2041                         if (tmp->vm_start <= addr)
2042                                 break;
2043                         rb_node = rb_node->rb_left;
2044                 } else
2045                         rb_node = rb_node->rb_right;
2046         }
2047
2048         if (vma)
2049                 vmacache_update(addr, vma);
2050         return vma;
2051 }
2052
2053 EXPORT_SYMBOL(find_vma);
2054
2055 /*
2056  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2057  */
2058 struct vm_area_struct *
2059 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2060                         struct vm_area_struct **pprev)
2061 {
2062         struct vm_area_struct *vma;
2063
2064         vma = find_vma(mm, addr);
2065         if (vma) {
2066                 *pprev = vma->vm_prev;
2067         } else {
2068                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2069                 *pprev = NULL;
2070                 while (rb_node) {
2071                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2072                         rb_node = rb_node->rb_right;
2073                 }
2074         }
2075         return vma;
2076 }
2077
2078 /*
2079  * Verify that the stack growth is acceptable and
2080  * update accounting. This is shared with both the
2081  * grow-up and grow-down cases.
2082  */
2083 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2084 {
2085         struct mm_struct *mm = vma->vm_mm;
2086         struct rlimit *rlim = current->signal->rlim;
2087         unsigned long new_start;
2088
2089         /* address space limit tests */
2090         if (!may_expand_vm(mm, grow))
2091                 return -ENOMEM;
2092
2093         /* Stack limit test */
2094         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2095                 return -ENOMEM;
2096
2097         /* mlock limit tests */
2098         if (vma->vm_flags & VM_LOCKED) {
2099                 unsigned long locked;
2100                 unsigned long limit;
2101                 locked = mm->locked_vm + grow;
2102                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2103                 limit >>= PAGE_SHIFT;
2104                 if (locked > limit && !capable(CAP_IPC_LOCK))
2105                         return -ENOMEM;
2106         }
2107
2108         /* Check to ensure the stack will not grow into a hugetlb-only region */
2109         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2110                         vma->vm_end - size;
2111         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2112                 return -EFAULT;
2113
2114         /*
2115          * Overcommit..  This must be the final test, as it will
2116          * update security statistics.
2117          */
2118         if (security_vm_enough_memory_mm(mm, grow))
2119                 return -ENOMEM;
2120
2121         /* Ok, everything looks good - let it rip */
2122         if (vma->vm_flags & VM_LOCKED)
2123                 mm->locked_vm += grow;
2124         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2125         return 0;
2126 }
2127
2128 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2129 /*
2130  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2131  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2132  */
2133 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2134 {
2135         int error;
2136
2137         if (!(vma->vm_flags & VM_GROWSUP))
2138                 return -EFAULT;
2139
2140         /*
2141          * We must make sure the anon_vma is allocated
2142          * so that the anon_vma locking is not a noop.
2143          */
2144         if (unlikely(anon_vma_prepare(vma)))
2145                 return -ENOMEM;
2146         vma_lock_anon_vma(vma);
2147
2148         /*
2149          * vma->vm_start/vm_end cannot change under us because the caller
2150          * is required to hold the mmap_sem in read mode.  We need the
2151          * anon_vma lock to serialize against concurrent expand_stacks.
2152          * Also guard against wrapping around to address 0.
2153          */
2154         if (address < PAGE_ALIGN(address+4))
2155                 address = PAGE_ALIGN(address+4);
2156         else {
2157                 vma_unlock_anon_vma(vma);
2158                 return -ENOMEM;
2159         }
2160         error = 0;
2161
2162         /* Somebody else might have raced and expanded it already */
2163         if (address > vma->vm_end) {
2164                 unsigned long size, grow;
2165
2166                 size = address - vma->vm_start;
2167                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2168
2169                 error = -ENOMEM;
2170                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2171                         error = acct_stack_growth(vma, size, grow);
2172                         if (!error) {
2173                                 /*
2174                                  * vma_gap_update() doesn't support concurrent
2175                                  * updates, but we only hold a shared mmap_sem
2176                                  * lock here, so we need to protect against
2177                                  * concurrent vma expansions.
2178                                  * vma_lock_anon_vma() doesn't help here, as
2179                                  * we don't guarantee that all growable vmas
2180                                  * in a mm share the same root anon vma.
2181                                  * So, we reuse mm->page_table_lock to guard
2182                                  * against concurrent vma expansions.
2183                                  */
2184                                 spin_lock(&vma->vm_mm->page_table_lock);
2185                                 anon_vma_interval_tree_pre_update_vma(vma);
2186                                 vma->vm_end = address;
2187                                 anon_vma_interval_tree_post_update_vma(vma);
2188                                 if (vma->vm_next)
2189                                         vma_gap_update(vma->vm_next);
2190                                 else
2191                                         vma->vm_mm->highest_vm_end = address;
2192                                 spin_unlock(&vma->vm_mm->page_table_lock);
2193
2194                                 perf_event_mmap(vma);
2195                         }
2196                 }
2197         }
2198         vma_unlock_anon_vma(vma);
2199         khugepaged_enter_vma_merge(vma);
2200         validate_mm(vma->vm_mm);
2201         return error;
2202 }
2203 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2204
2205 /*
2206  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2207  */
2208 int expand_downwards(struct vm_area_struct *vma,
2209                                    unsigned long address)
2210 {
2211         int error;
2212
2213         /*
2214          * We must make sure the anon_vma is allocated
2215          * so that the anon_vma locking is not a noop.
2216          */
2217         if (unlikely(anon_vma_prepare(vma)))
2218                 return -ENOMEM;
2219
2220         address &= PAGE_MASK;
2221         error = security_mmap_addr(address);
2222         if (error)
2223                 return error;
2224
2225         vma_lock_anon_vma(vma);
2226
2227         /*
2228          * vma->vm_start/vm_end cannot change under us because the caller
2229          * is required to hold the mmap_sem in read mode.  We need the
2230          * anon_vma lock to serialize against concurrent expand_stacks.
2231          */
2232
2233         /* Somebody else might have raced and expanded it already */
2234         if (address < vma->vm_start) {
2235                 unsigned long size, grow;
2236
2237                 size = vma->vm_end - address;
2238                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2239
2240                 error = -ENOMEM;
2241                 if (grow <= vma->vm_pgoff) {
2242                         error = acct_stack_growth(vma, size, grow);
2243                         if (!error) {
2244                                 /*
2245                                  * vma_gap_update() doesn't support concurrent
2246                                  * updates, but we only hold a shared mmap_sem
2247                                  * lock here, so we need to protect against
2248                                  * concurrent vma expansions.
2249                                  * vma_lock_anon_vma() doesn't help here, as
2250                                  * we don't guarantee that all growable vmas
2251                                  * in a mm share the same root anon vma.
2252                                  * So, we reuse mm->page_table_lock to guard
2253                                  * against concurrent vma expansions.
2254                                  */
2255                                 spin_lock(&vma->vm_mm->page_table_lock);
2256                                 anon_vma_interval_tree_pre_update_vma(vma);
2257                                 vma->vm_start = address;
2258                                 vma->vm_pgoff -= grow;
2259                                 anon_vma_interval_tree_post_update_vma(vma);
2260                                 vma_gap_update(vma);
2261                                 spin_unlock(&vma->vm_mm->page_table_lock);
2262
2263                                 perf_event_mmap(vma);
2264                         }
2265                 }
2266         }
2267         vma_unlock_anon_vma(vma);
2268         khugepaged_enter_vma_merge(vma);
2269         validate_mm(vma->vm_mm);
2270         return error;
2271 }
2272
2273 /*
2274  * Note how expand_stack() refuses to expand the stack all the way to
2275  * abut the next virtual mapping, *unless* that mapping itself is also
2276  * a stack mapping. We want to leave room for a guard page, after all
2277  * (the guard page itself is not added here, that is done by the
2278  * actual page faulting logic)
2279  *
2280  * This matches the behavior of the guard page logic (see mm/memory.c:
2281  * check_stack_guard_page()), which only allows the guard page to be
2282  * removed under these circumstances.
2283  */
2284 #ifdef CONFIG_STACK_GROWSUP
2285 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 {
2287         struct vm_area_struct *next;
2288
2289         address &= PAGE_MASK;
2290         next = vma->vm_next;
2291         if (next && next->vm_start == address + PAGE_SIZE) {
2292                 if (!(next->vm_flags & VM_GROWSUP))
2293                         return -ENOMEM;
2294         }
2295         return expand_upwards(vma, address);
2296 }
2297
2298 struct vm_area_struct *
2299 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2300 {
2301         struct vm_area_struct *vma, *prev;
2302
2303         addr &= PAGE_MASK;
2304         vma = find_vma_prev(mm, addr, &prev);
2305         if (vma && (vma->vm_start <= addr))
2306                 return vma;
2307         if (!prev || expand_stack(prev, addr))
2308                 return NULL;
2309         if (prev->vm_flags & VM_LOCKED)
2310                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2311         return prev;
2312 }
2313 #else
2314 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2315 {
2316         struct vm_area_struct *prev;
2317
2318         address &= PAGE_MASK;
2319         prev = vma->vm_prev;
2320         if (prev && prev->vm_end == address) {
2321                 if (!(prev->vm_flags & VM_GROWSDOWN))
2322                         return -ENOMEM;
2323         }
2324         return expand_downwards(vma, address);
2325 }
2326
2327 struct vm_area_struct *
2328 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2329 {
2330         struct vm_area_struct *vma;
2331         unsigned long start;
2332
2333         addr &= PAGE_MASK;
2334         vma = find_vma(mm, addr);
2335         if (!vma)
2336                 return NULL;
2337         if (vma->vm_start <= addr)
2338                 return vma;
2339         if (!(vma->vm_flags & VM_GROWSDOWN))
2340                 return NULL;
2341         start = vma->vm_start;
2342         if (expand_stack(vma, addr))
2343                 return NULL;
2344         if (vma->vm_flags & VM_LOCKED)
2345                 __mlock_vma_pages_range(vma, addr, start, NULL);
2346         return vma;
2347 }
2348 #endif
2349
2350 /*
2351  * Ok - we have the memory areas we should free on the vma list,
2352  * so release them, and do the vma updates.
2353  *
2354  * Called with the mm semaphore held.
2355  */
2356 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2357 {
2358         unsigned long nr_accounted = 0;
2359
2360         /* Update high watermark before we lower total_vm */
2361         update_hiwater_vm(mm);
2362         do {
2363                 long nrpages = vma_pages(vma);
2364
2365                 if (vma->vm_flags & VM_ACCOUNT)
2366                         nr_accounted += nrpages;
2367                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2368                 vma = remove_vma(vma);
2369         } while (vma);
2370         vm_unacct_memory(nr_accounted);
2371         validate_mm(mm);
2372 }
2373
2374 /*
2375  * Get rid of page table information in the indicated region.
2376  *
2377  * Called with the mm semaphore held.
2378  */
2379 static void unmap_region(struct mm_struct *mm,
2380                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2381                 unsigned long start, unsigned long end)
2382 {
2383         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2384         struct mmu_gather tlb;
2385
2386         lru_add_drain();
2387         tlb_gather_mmu(&tlb, mm, start, end);
2388         update_hiwater_rss(mm);
2389         unmap_vmas(&tlb, vma, start, end);
2390         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2391                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2392         tlb_finish_mmu(&tlb, start, end);
2393 }
2394
2395 /*
2396  * Create a list of vma's touched by the unmap, removing them from the mm's
2397  * vma list as we go..
2398  */
2399 static void
2400 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2401         struct vm_area_struct *prev, unsigned long end)
2402 {
2403         struct vm_area_struct **insertion_point;
2404         struct vm_area_struct *tail_vma = NULL;
2405
2406         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2407         vma->vm_prev = NULL;
2408         do {
2409                 vma_rb_erase(vma, &mm->mm_rb);
2410                 mm->map_count--;
2411                 tail_vma = vma;
2412                 vma = vma->vm_next;
2413         } while (vma && vma->vm_start < end);
2414         *insertion_point = vma;
2415         if (vma) {
2416                 vma->vm_prev = prev;
2417                 vma_gap_update(vma);
2418         } else
2419                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2420         tail_vma->vm_next = NULL;
2421
2422         /* Kill the cache */
2423         vmacache_invalidate(mm);
2424 }
2425
2426 /*
2427  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2428  * munmap path where it doesn't make sense to fail.
2429  */
2430 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2431               unsigned long addr, int new_below)
2432 {
2433         struct vm_area_struct *new;
2434         int err = -ENOMEM;
2435
2436         if (is_vm_hugetlb_page(vma) && (addr &
2437                                         ~(huge_page_mask(hstate_vma(vma)))))
2438                 return -EINVAL;
2439
2440         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2441         if (!new)
2442                 goto out_err;
2443
2444         /* most fields are the same, copy all, and then fixup */
2445         *new = *vma;
2446
2447         INIT_LIST_HEAD(&new->anon_vma_chain);
2448
2449         if (new_below)
2450                 new->vm_end = addr;
2451         else {
2452                 new->vm_start = addr;
2453                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2454         }
2455
2456         err = vma_dup_policy(vma, new);
2457         if (err)
2458                 goto out_free_vma;
2459
2460         if (anon_vma_clone(new, vma))
2461                 goto out_free_mpol;
2462
2463         if (new->vm_file)
2464                 get_file(new->vm_file);
2465
2466         if (new->vm_ops && new->vm_ops->open)
2467                 new->vm_ops->open(new);
2468
2469         if (new_below)
2470                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2471                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2472         else
2473                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2474
2475         /* Success. */
2476         if (!err)
2477                 return 0;
2478
2479         /* Clean everything up if vma_adjust failed. */
2480         if (new->vm_ops && new->vm_ops->close)
2481                 new->vm_ops->close(new);
2482         if (new->vm_file)
2483                 fput(new->vm_file);
2484         unlink_anon_vmas(new);
2485  out_free_mpol:
2486         mpol_put(vma_policy(new));
2487  out_free_vma:
2488         kmem_cache_free(vm_area_cachep, new);
2489  out_err:
2490         return err;
2491 }
2492
2493 /*
2494  * Split a vma into two pieces at address 'addr', a new vma is allocated
2495  * either for the first part or the tail.
2496  */
2497 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2498               unsigned long addr, int new_below)
2499 {
2500         if (mm->map_count >= sysctl_max_map_count)
2501                 return -ENOMEM;
2502
2503         return __split_vma(mm, vma, addr, new_below);
2504 }
2505
2506 /* Munmap is split into 2 main parts -- this part which finds
2507  * what needs doing, and the areas themselves, which do the
2508  * work.  This now handles partial unmappings.
2509  * Jeremy Fitzhardinge <jeremy@goop.org>
2510  */
2511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2512 {
2513         unsigned long end;
2514         struct vm_area_struct *vma, *prev, *last;
2515
2516         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2517                 return -EINVAL;
2518
2519         len = PAGE_ALIGN(len);
2520         if (len == 0)
2521                 return -EINVAL;
2522
2523         /* Find the first overlapping VMA */
2524         vma = find_vma(mm, start);
2525         if (!vma)
2526                 return 0;
2527         prev = vma->vm_prev;
2528         /* we have  start < vma->vm_end  */
2529
2530         /* if it doesn't overlap, we have nothing.. */
2531         end = start + len;
2532         if (vma->vm_start >= end)
2533                 return 0;
2534
2535         /*
2536          * If we need to split any vma, do it now to save pain later.
2537          *
2538          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2539          * unmapped vm_area_struct will remain in use: so lower split_vma
2540          * places tmp vma above, and higher split_vma places tmp vma below.
2541          */
2542         if (start > vma->vm_start) {
2543                 int error;
2544
2545                 /*
2546                  * Make sure that map_count on return from munmap() will
2547                  * not exceed its limit; but let map_count go just above
2548                  * its limit temporarily, to help free resources as expected.
2549                  */
2550                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2551                         return -ENOMEM;
2552
2553                 error = __split_vma(mm, vma, start, 0);
2554                 if (error)
2555                         return error;
2556                 prev = vma;
2557         }
2558
2559         /* Does it split the last one? */
2560         last = find_vma(mm, end);
2561         if (last && end > last->vm_start) {
2562                 int error = __split_vma(mm, last, end, 1);
2563                 if (error)
2564                         return error;
2565         }
2566         vma = prev ? prev->vm_next : mm->mmap;
2567
2568         /*
2569          * unlock any mlock()ed ranges before detaching vmas
2570          */
2571         if (mm->locked_vm) {
2572                 struct vm_area_struct *tmp = vma;
2573                 while (tmp && tmp->vm_start < end) {
2574                         if (tmp->vm_flags & VM_LOCKED) {
2575                                 mm->locked_vm -= vma_pages(tmp);
2576                                 munlock_vma_pages_all(tmp);
2577                         }
2578                         tmp = tmp->vm_next;
2579                 }
2580         }
2581
2582         /*
2583          * Remove the vma's, and unmap the actual pages
2584          */
2585         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2586         unmap_region(mm, vma, prev, start, end);
2587
2588         /* Fix up all other VM information */
2589         remove_vma_list(mm, vma);
2590
2591         return 0;
2592 }
2593
2594 int vm_munmap(unsigned long start, size_t len)
2595 {
2596         int ret;
2597         struct mm_struct *mm = current->mm;
2598
2599         down_write(&mm->mmap_sem);
2600         ret = do_munmap(mm, start, len);
2601         up_write(&mm->mmap_sem);
2602         return ret;
2603 }
2604 EXPORT_SYMBOL(vm_munmap);
2605
2606 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2607 {
2608         profile_munmap(addr);
2609         return vm_munmap(addr, len);
2610 }
2611
2612 static inline void verify_mm_writelocked(struct mm_struct *mm)
2613 {
2614 #ifdef CONFIG_DEBUG_VM
2615         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2616                 WARN_ON(1);
2617                 up_read(&mm->mmap_sem);
2618         }
2619 #endif
2620 }
2621
2622 /*
2623  *  this is really a simplified "do_mmap".  it only handles
2624  *  anonymous maps.  eventually we may be able to do some
2625  *  brk-specific accounting here.
2626  */
2627 static unsigned long do_brk(unsigned long addr, unsigned long len)
2628 {
2629         struct mm_struct *mm = current->mm;
2630         struct vm_area_struct *vma, *prev;
2631         unsigned long flags;
2632         struct rb_node **rb_link, *rb_parent;
2633         pgoff_t pgoff = addr >> PAGE_SHIFT;
2634         int error;
2635
2636         len = PAGE_ALIGN(len);
2637         if (!len)
2638                 return addr;
2639
2640         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2641
2642         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2643         if (error & ~PAGE_MASK)
2644                 return error;
2645
2646         error = mlock_future_check(mm, mm->def_flags, len);
2647         if (error)
2648                 return error;
2649
2650         /*
2651          * mm->mmap_sem is required to protect against another thread
2652          * changing the mappings in case we sleep.
2653          */
2654         verify_mm_writelocked(mm);
2655
2656         /*
2657          * Clear old maps.  this also does some error checking for us
2658          */
2659  munmap_back:
2660         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2661                 if (do_munmap(mm, addr, len))
2662                         return -ENOMEM;
2663                 goto munmap_back;
2664         }
2665
2666         /* Check against address space limits *after* clearing old maps... */
2667         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2668                 return -ENOMEM;
2669
2670         if (mm->map_count > sysctl_max_map_count)
2671                 return -ENOMEM;
2672
2673         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2674                 return -ENOMEM;
2675
2676         /* Can we just expand an old private anonymous mapping? */
2677         vma = vma_merge(mm, prev, addr, addr + len, flags,
2678                                         NULL, NULL, pgoff, NULL);
2679         if (vma)
2680                 goto out;
2681
2682         /*
2683          * create a vma struct for an anonymous mapping
2684          */
2685         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2686         if (!vma) {
2687                 vm_unacct_memory(len >> PAGE_SHIFT);
2688                 return -ENOMEM;
2689         }
2690
2691         INIT_LIST_HEAD(&vma->anon_vma_chain);
2692         vma->vm_mm = mm;
2693         vma->vm_start = addr;
2694         vma->vm_end = addr + len;
2695         vma->vm_pgoff = pgoff;
2696         vma->vm_flags = flags;
2697         vma->vm_page_prot = vm_get_page_prot(flags);
2698         vma_link(mm, vma, prev, rb_link, rb_parent);
2699 out:
2700         perf_event_mmap(vma);
2701         mm->total_vm += len >> PAGE_SHIFT;
2702         if (flags & VM_LOCKED)
2703                 mm->locked_vm += (len >> PAGE_SHIFT);
2704         vma->vm_flags |= VM_SOFTDIRTY;
2705         return addr;
2706 }
2707
2708 unsigned long vm_brk(unsigned long addr, unsigned long len)
2709 {
2710         struct mm_struct *mm = current->mm;
2711         unsigned long ret;
2712         bool populate;
2713
2714         down_write(&mm->mmap_sem);
2715         ret = do_brk(addr, len);
2716         populate = ((mm->def_flags & VM_LOCKED) != 0);
2717         up_write(&mm->mmap_sem);
2718         if (populate)
2719                 mm_populate(addr, len);
2720         return ret;
2721 }
2722 EXPORT_SYMBOL(vm_brk);
2723
2724 /* Release all mmaps. */
2725 void exit_mmap(struct mm_struct *mm)
2726 {
2727         struct mmu_gather tlb;
2728         struct vm_area_struct *vma;
2729         unsigned long nr_accounted = 0;
2730
2731         /* mm's last user has gone, and its about to be pulled down */
2732         mmu_notifier_release(mm);
2733
2734         if (mm->locked_vm) {
2735                 vma = mm->mmap;
2736                 while (vma) {
2737                         if (vma->vm_flags & VM_LOCKED)
2738                                 munlock_vma_pages_all(vma);
2739                         vma = vma->vm_next;
2740                 }
2741         }
2742
2743         arch_exit_mmap(mm);
2744
2745         vma = mm->mmap;
2746         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2747                 return;
2748
2749         lru_add_drain();
2750         flush_cache_mm(mm);
2751         tlb_gather_mmu(&tlb, mm, 0, -1);
2752         /* update_hiwater_rss(mm) here? but nobody should be looking */
2753         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2754         unmap_vmas(&tlb, vma, 0, -1);
2755
2756         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2757         tlb_finish_mmu(&tlb, 0, -1);
2758
2759         /*
2760          * Walk the list again, actually closing and freeing it,
2761          * with preemption enabled, without holding any MM locks.
2762          */
2763         while (vma) {
2764                 if (vma->vm_flags & VM_ACCOUNT)
2765                         nr_accounted += vma_pages(vma);
2766                 vma = remove_vma(vma);
2767         }
2768         vm_unacct_memory(nr_accounted);
2769
2770         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2771                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2772 }
2773
2774 /* Insert vm structure into process list sorted by address
2775  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2776  * then i_mmap_mutex is taken here.
2777  */
2778 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2779 {
2780         struct vm_area_struct *prev;
2781         struct rb_node **rb_link, *rb_parent;
2782
2783         /*
2784          * The vm_pgoff of a purely anonymous vma should be irrelevant
2785          * until its first write fault, when page's anon_vma and index
2786          * are set.  But now set the vm_pgoff it will almost certainly
2787          * end up with (unless mremap moves it elsewhere before that
2788          * first wfault), so /proc/pid/maps tells a consistent story.
2789          *
2790          * By setting it to reflect the virtual start address of the
2791          * vma, merges and splits can happen in a seamless way, just
2792          * using the existing file pgoff checks and manipulations.
2793          * Similarly in do_mmap_pgoff and in do_brk.
2794          */
2795         if (!vma->vm_file) {
2796                 BUG_ON(vma->anon_vma);
2797                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2798         }
2799         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2800                            &prev, &rb_link, &rb_parent))
2801                 return -ENOMEM;
2802         if ((vma->vm_flags & VM_ACCOUNT) &&
2803              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2804                 return -ENOMEM;
2805
2806         vma_link(mm, vma, prev, rb_link, rb_parent);
2807         return 0;
2808 }
2809
2810 /*
2811  * Copy the vma structure to a new location in the same mm,
2812  * prior to moving page table entries, to effect an mremap move.
2813  */
2814 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2815         unsigned long addr, unsigned long len, pgoff_t pgoff,
2816         bool *need_rmap_locks)
2817 {
2818         struct vm_area_struct *vma = *vmap;
2819         unsigned long vma_start = vma->vm_start;
2820         struct mm_struct *mm = vma->vm_mm;
2821         struct vm_area_struct *new_vma, *prev;
2822         struct rb_node **rb_link, *rb_parent;
2823         bool faulted_in_anon_vma = true;
2824
2825         /*
2826          * If anonymous vma has not yet been faulted, update new pgoff
2827          * to match new location, to increase its chance of merging.
2828          */
2829         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2830                 pgoff = addr >> PAGE_SHIFT;
2831                 faulted_in_anon_vma = false;
2832         }
2833
2834         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2835                 return NULL;    /* should never get here */
2836         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2837                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2838         if (new_vma) {
2839                 /*
2840                  * Source vma may have been merged into new_vma
2841                  */
2842                 if (unlikely(vma_start >= new_vma->vm_start &&
2843                              vma_start < new_vma->vm_end)) {
2844                         /*
2845                          * The only way we can get a vma_merge with
2846                          * self during an mremap is if the vma hasn't
2847                          * been faulted in yet and we were allowed to
2848                          * reset the dst vma->vm_pgoff to the
2849                          * destination address of the mremap to allow
2850                          * the merge to happen. mremap must change the
2851                          * vm_pgoff linearity between src and dst vmas
2852                          * (in turn preventing a vma_merge) to be
2853                          * safe. It is only safe to keep the vm_pgoff
2854                          * linear if there are no pages mapped yet.
2855                          */
2856                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2857                         *vmap = vma = new_vma;
2858                 }
2859                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2860         } else {
2861                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2862                 if (new_vma) {
2863                         *new_vma = *vma;
2864                         new_vma->vm_start = addr;
2865                         new_vma->vm_end = addr + len;
2866                         new_vma->vm_pgoff = pgoff;
2867                         if (vma_dup_policy(vma, new_vma))
2868                                 goto out_free_vma;
2869                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2870                         if (anon_vma_clone(new_vma, vma))
2871                                 goto out_free_mempol;
2872                         if (new_vma->vm_file)
2873                                 get_file(new_vma->vm_file);
2874                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2875                                 new_vma->vm_ops->open(new_vma);
2876                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2877                         *need_rmap_locks = false;
2878                 }
2879         }
2880         return new_vma;
2881
2882  out_free_mempol:
2883         mpol_put(vma_policy(new_vma));
2884  out_free_vma:
2885         kmem_cache_free(vm_area_cachep, new_vma);
2886         return NULL;
2887 }
2888
2889 /*
2890  * Return true if the calling process may expand its vm space by the passed
2891  * number of pages
2892  */
2893 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2894 {
2895         unsigned long cur = mm->total_vm;       /* pages */
2896         unsigned long lim;
2897
2898         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2899
2900         if (cur + npages > lim)
2901                 return 0;
2902         return 1;
2903 }
2904
2905 static int special_mapping_fault(struct vm_area_struct *vma,
2906                                  struct vm_fault *vmf);
2907
2908 /*
2909  * Having a close hook prevents vma merging regardless of flags.
2910  */
2911 static void special_mapping_close(struct vm_area_struct *vma)
2912 {
2913 }
2914
2915 static const char *special_mapping_name(struct vm_area_struct *vma)
2916 {
2917         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2918 }
2919
2920 static const struct vm_operations_struct special_mapping_vmops = {
2921         .close = special_mapping_close,
2922         .fault = special_mapping_fault,
2923         .name = special_mapping_name,
2924 };
2925
2926 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2927         .close = special_mapping_close,
2928         .fault = special_mapping_fault,
2929 };
2930
2931 static int special_mapping_fault(struct vm_area_struct *vma,
2932                                 struct vm_fault *vmf)
2933 {
2934         pgoff_t pgoff;
2935         struct page **pages;
2936
2937         /*
2938          * special mappings have no vm_file, and in that case, the mm
2939          * uses vm_pgoff internally. So we have to subtract it from here.
2940          * We are allowed to do this because we are the mm; do not copy
2941          * this code into drivers!
2942          */
2943         pgoff = vmf->pgoff - vma->vm_pgoff;
2944
2945         if (vma->vm_ops == &legacy_special_mapping_vmops)
2946                 pages = vma->vm_private_data;
2947         else
2948                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2949                         pages;
2950
2951         for (; pgoff && *pages; ++pages)
2952                 pgoff--;
2953
2954         if (*pages) {
2955                 struct page *page = *pages;
2956                 get_page(page);
2957                 vmf->page = page;
2958                 return 0;
2959         }
2960
2961         return VM_FAULT_SIGBUS;
2962 }
2963
2964 static struct vm_area_struct *__install_special_mapping(
2965         struct mm_struct *mm,
2966         unsigned long addr, unsigned long len,
2967         unsigned long vm_flags, const struct vm_operations_struct *ops,
2968         void *priv)
2969 {
2970         int ret;
2971         struct vm_area_struct *vma;
2972
2973         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2974         if (unlikely(vma == NULL))
2975                 return ERR_PTR(-ENOMEM);
2976
2977         INIT_LIST_HEAD(&vma->anon_vma_chain);
2978         vma->vm_mm = mm;
2979         vma->vm_start = addr;
2980         vma->vm_end = addr + len;
2981
2982         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2983         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2984
2985         vma->vm_ops = ops;
2986         vma->vm_private_data = priv;
2987
2988         ret = insert_vm_struct(mm, vma);
2989         if (ret)
2990                 goto out;
2991
2992         mm->total_vm += len >> PAGE_SHIFT;
2993
2994         perf_event_mmap(vma);
2995
2996         return vma;
2997
2998 out:
2999         kmem_cache_free(vm_area_cachep, vma);
3000         return ERR_PTR(ret);
3001 }
3002
3003 /*
3004  * Called with mm->mmap_sem held for writing.
3005  * Insert a new vma covering the given region, with the given flags.
3006  * Its pages are supplied by the given array of struct page *.
3007  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3008  * The region past the last page supplied will always produce SIGBUS.
3009  * The array pointer and the pages it points to are assumed to stay alive
3010  * for as long as this mapping might exist.
3011  */
3012 struct vm_area_struct *_install_special_mapping(
3013         struct mm_struct *mm,
3014         unsigned long addr, unsigned long len,
3015         unsigned long vm_flags, const struct vm_special_mapping *spec)
3016 {
3017         return __install_special_mapping(mm, addr, len, vm_flags,
3018                                          &special_mapping_vmops, (void *)spec);
3019 }
3020
3021 int install_special_mapping(struct mm_struct *mm,
3022                             unsigned long addr, unsigned long len,
3023                             unsigned long vm_flags, struct page **pages)
3024 {
3025         struct vm_area_struct *vma = __install_special_mapping(
3026                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3027                 (void *)pages);
3028
3029         return PTR_ERR_OR_ZERO(vma);
3030 }
3031
3032 static DEFINE_MUTEX(mm_all_locks_mutex);
3033
3034 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3035 {
3036         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3037                 /*
3038                  * The LSB of head.next can't change from under us
3039                  * because we hold the mm_all_locks_mutex.
3040                  */
3041                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3042                 /*
3043                  * We can safely modify head.next after taking the
3044                  * anon_vma->root->rwsem. If some other vma in this mm shares
3045                  * the same anon_vma we won't take it again.
3046                  *
3047                  * No need of atomic instructions here, head.next
3048                  * can't change from under us thanks to the
3049                  * anon_vma->root->rwsem.
3050                  */
3051                 if (__test_and_set_bit(0, (unsigned long *)
3052                                        &anon_vma->root->rb_root.rb_node))
3053                         BUG();
3054         }
3055 }
3056
3057 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3058 {
3059         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3060                 /*
3061                  * AS_MM_ALL_LOCKS can't change from under us because
3062                  * we hold the mm_all_locks_mutex.
3063                  *
3064                  * Operations on ->flags have to be atomic because
3065                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3066                  * mm_all_locks_mutex, there may be other cpus
3067                  * changing other bitflags in parallel to us.
3068                  */
3069                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3070                         BUG();
3071                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3072         }
3073 }
3074
3075 /*
3076  * This operation locks against the VM for all pte/vma/mm related
3077  * operations that could ever happen on a certain mm. This includes
3078  * vmtruncate, try_to_unmap, and all page faults.
3079  *
3080  * The caller must take the mmap_sem in write mode before calling
3081  * mm_take_all_locks(). The caller isn't allowed to release the
3082  * mmap_sem until mm_drop_all_locks() returns.
3083  *
3084  * mmap_sem in write mode is required in order to block all operations
3085  * that could modify pagetables and free pages without need of
3086  * altering the vma layout (for example populate_range() with
3087  * nonlinear vmas). It's also needed in write mode to avoid new
3088  * anon_vmas to be associated with existing vmas.
3089  *
3090  * A single task can't take more than one mm_take_all_locks() in a row
3091  * or it would deadlock.
3092  *
3093  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3094  * mapping->flags avoid to take the same lock twice, if more than one
3095  * vma in this mm is backed by the same anon_vma or address_space.
3096  *
3097  * We can take all the locks in random order because the VM code
3098  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3099  * takes more than one of them in a row. Secondly we're protected
3100  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3101  *
3102  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3103  * that may have to take thousand of locks.
3104  *
3105  * mm_take_all_locks() can fail if it's interrupted by signals.
3106  */
3107 int mm_take_all_locks(struct mm_struct *mm)
3108 {
3109         struct vm_area_struct *vma;
3110         struct anon_vma_chain *avc;
3111
3112         BUG_ON(down_read_trylock(&mm->mmap_sem));
3113
3114         mutex_lock(&mm_all_locks_mutex);
3115
3116         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3117                 if (signal_pending(current))
3118                         goto out_unlock;
3119                 if (vma->vm_file && vma->vm_file->f_mapping)
3120                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3121         }
3122
3123         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3124                 if (signal_pending(current))
3125                         goto out_unlock;
3126                 if (vma->anon_vma)
3127                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3128                                 vm_lock_anon_vma(mm, avc->anon_vma);
3129         }
3130
3131         return 0;
3132
3133 out_unlock:
3134         mm_drop_all_locks(mm);
3135         return -EINTR;
3136 }
3137
3138 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3139 {
3140         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3141                 /*
3142                  * The LSB of head.next can't change to 0 from under
3143                  * us because we hold the mm_all_locks_mutex.
3144                  *
3145                  * We must however clear the bitflag before unlocking
3146                  * the vma so the users using the anon_vma->rb_root will
3147                  * never see our bitflag.
3148                  *
3149                  * No need of atomic instructions here, head.next
3150                  * can't change from under us until we release the
3151                  * anon_vma->root->rwsem.
3152                  */
3153                 if (!__test_and_clear_bit(0, (unsigned long *)
3154                                           &anon_vma->root->rb_root.rb_node))
3155                         BUG();
3156                 anon_vma_unlock_write(anon_vma);
3157         }
3158 }
3159
3160 static void vm_unlock_mapping(struct address_space *mapping)
3161 {
3162         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3163                 /*
3164                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3165                  * because we hold the mm_all_locks_mutex.
3166                  */
3167                 mutex_unlock(&mapping->i_mmap_mutex);
3168                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3169                                         &mapping->flags))
3170                         BUG();
3171         }
3172 }
3173
3174 /*
3175  * The mmap_sem cannot be released by the caller until
3176  * mm_drop_all_locks() returns.
3177  */
3178 void mm_drop_all_locks(struct mm_struct *mm)
3179 {
3180         struct vm_area_struct *vma;
3181         struct anon_vma_chain *avc;
3182
3183         BUG_ON(down_read_trylock(&mm->mmap_sem));
3184         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3185
3186         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3187                 if (vma->anon_vma)
3188                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3189                                 vm_unlock_anon_vma(avc->anon_vma);
3190                 if (vma->vm_file && vma->vm_file->f_mapping)
3191                         vm_unlock_mapping(vma->vm_file->f_mapping);
3192         }
3193
3194         mutex_unlock(&mm_all_locks_mutex);
3195 }
3196
3197 /*
3198  * initialise the VMA slab
3199  */
3200 void __init mmap_init(void)
3201 {
3202         int ret;
3203
3204         ret = percpu_counter_init(&vm_committed_as, 0);
3205         VM_BUG_ON(ret);
3206 }
3207
3208 /*
3209  * Initialise sysctl_user_reserve_kbytes.
3210  *
3211  * This is intended to prevent a user from starting a single memory hogging
3212  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3213  * mode.
3214  *
3215  * The default value is min(3% of free memory, 128MB)
3216  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3217  */
3218 static int init_user_reserve(void)
3219 {
3220         unsigned long free_kbytes;
3221
3222         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3223
3224         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3225         return 0;
3226 }
3227 subsys_initcall(init_user_reserve);
3228
3229 /*
3230  * Initialise sysctl_admin_reserve_kbytes.
3231  *
3232  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3233  * to log in and kill a memory hogging process.
3234  *
3235  * Systems with more than 256MB will reserve 8MB, enough to recover
3236  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3237  * only reserve 3% of free pages by default.
3238  */
3239 static int init_admin_reserve(void)
3240 {
3241         unsigned long free_kbytes;
3242
3243         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3244
3245         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3246         return 0;
3247 }
3248 subsys_initcall(init_admin_reserve);
3249
3250 /*
3251  * Reinititalise user and admin reserves if memory is added or removed.
3252  *
3253  * The default user reserve max is 128MB, and the default max for the
3254  * admin reserve is 8MB. These are usually, but not always, enough to
3255  * enable recovery from a memory hogging process using login/sshd, a shell,
3256  * and tools like top. It may make sense to increase or even disable the
3257  * reserve depending on the existence of swap or variations in the recovery
3258  * tools. So, the admin may have changed them.
3259  *
3260  * If memory is added and the reserves have been eliminated or increased above
3261  * the default max, then we'll trust the admin.
3262  *
3263  * If memory is removed and there isn't enough free memory, then we
3264  * need to reset the reserves.
3265  *
3266  * Otherwise keep the reserve set by the admin.
3267  */
3268 static int reserve_mem_notifier(struct notifier_block *nb,
3269                              unsigned long action, void *data)
3270 {
3271         unsigned long tmp, free_kbytes;
3272
3273         switch (action) {
3274         case MEM_ONLINE:
3275                 /* Default max is 128MB. Leave alone if modified by operator. */
3276                 tmp = sysctl_user_reserve_kbytes;
3277                 if (0 < tmp && tmp < (1UL << 17))
3278                         init_user_reserve();
3279
3280                 /* Default max is 8MB.  Leave alone if modified by operator. */
3281                 tmp = sysctl_admin_reserve_kbytes;
3282                 if (0 < tmp && tmp < (1UL << 13))
3283                         init_admin_reserve();
3284
3285                 break;
3286         case MEM_OFFLINE:
3287                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3288
3289                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3290                         init_user_reserve();
3291                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3292                                 sysctl_user_reserve_kbytes);
3293                 }
3294
3295                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3296                         init_admin_reserve();
3297                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3298                                 sysctl_admin_reserve_kbytes);
3299                 }
3300                 break;
3301         default:
3302                 break;
3303         }
3304         return NOTIFY_OK;
3305 }
3306
3307 static struct notifier_block reserve_mem_nb = {
3308         .notifier_call = reserve_mem_notifier,
3309 };
3310
3311 static int __meminit init_reserve_notifier(void)
3312 {
3313         if (register_hotmemory_notifier(&reserve_mem_nb))
3314                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3315
3316         return 0;
3317 }
3318 subsys_initcall(init_reserve_notifier);