]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/mmap.c
ced5efcdd4b6c7763e7ab6435db128a638e78059
[karo-tx-linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45
46 #include "internal.h"
47
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags)       (0)
50 #endif
51
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len)              (addr)
54 #endif
55
56 static void unmap_region(struct mm_struct *mm,
57                 struct vm_area_struct *vma, struct vm_area_struct *prev,
58                 unsigned long start, unsigned long end);
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 /*
95  * Make sure vm_committed_as in one cacheline and not cacheline shared with
96  * other variables. It can be updated by several CPUs frequently.
97  */
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99
100 /*
101  * The global memory commitment made in the system can be a metric
102  * that can be used to drive ballooning decisions when Linux is hosted
103  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104  * balancing memory across competing virtual machines that are hosted.
105  * Several metrics drive this policy engine including the guest reported
106  * memory commitment.
107  */
108 unsigned long vm_memory_committed(void)
109 {
110         return percpu_counter_read_positive(&vm_committed_as);
111 }
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
113
114 /*
115  * Check that a process has enough memory to allocate a new virtual
116  * mapping. 0 means there is enough memory for the allocation to
117  * succeed and -ENOMEM implies there is not.
118  *
119  * We currently support three overcommit policies, which are set via the
120  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
121  *
122  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123  * Additional code 2002 Jul 20 by Robert Love.
124  *
125  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126  *
127  * Note this is a helper function intended to be used by LSMs which
128  * wish to use this logic.
129  */
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 {
132         unsigned long free, allowed, reserve;
133
134         vm_acct_memory(pages);
135
136         /*
137          * Sometimes we want to use more memory than we have
138          */
139         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140                 return 0;
141
142         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143                 free = global_page_state(NR_FREE_PAGES);
144                 free += global_page_state(NR_FILE_PAGES);
145
146                 /*
147                  * shmem pages shouldn't be counted as free in this
148                  * case, they can't be purged, only swapped out, and
149                  * that won't affect the overall amount of available
150                  * memory in the system.
151                  */
152                 free -= global_page_state(NR_SHMEM);
153
154                 free += get_nr_swap_pages();
155
156                 /*
157                  * Any slabs which are created with the
158                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159                  * which are reclaimable, under pressure.  The dentry
160                  * cache and most inode caches should fall into this
161                  */
162                 free += global_page_state(NR_SLAB_RECLAIMABLE);
163
164                 /*
165                  * Leave reserved pages. The pages are not for anonymous pages.
166                  */
167                 if (free <= totalreserve_pages)
168                         goto error;
169                 else
170                         free -= totalreserve_pages;
171
172                 /*
173                  * Reserve some for root
174                  */
175                 if (!cap_sys_admin)
176                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177
178                 if (free > pages)
179                         return 0;
180
181                 goto error;
182         }
183
184         allowed = vm_commit_limit();
185         /*
186          * Reserve some for root
187          */
188         if (!cap_sys_admin)
189                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190
191         /*
192          * Don't let a single process grow so big a user can't recover
193          */
194         if (mm) {
195                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196                 allowed -= min(mm->total_vm / 32, reserve);
197         }
198
199         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200                 return 0;
201 error:
202         vm_unacct_memory(pages);
203
204         return -ENOMEM;
205 }
206
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211                 struct file *file, struct address_space *mapping)
212 {
213         if (vma->vm_flags & VM_DENYWRITE)
214                 atomic_inc(&file_inode(file)->i_writecount);
215         if (vma->vm_flags & VM_SHARED)
216                 mapping->i_mmap_writable--;
217
218         flush_dcache_mmap_lock(mapping);
219         if (unlikely(vma->vm_flags & VM_NONLINEAR))
220                 list_del_init(&vma->shared.nonlinear);
221         else
222                 vma_interval_tree_remove(vma, &mapping->i_mmap);
223         flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232         struct file *file = vma->vm_file;
233
234         if (file) {
235                 struct address_space *mapping = file->f_mapping;
236                 mutex_lock(&mapping->i_mmap_mutex);
237                 __remove_shared_vm_struct(vma, file, mapping);
238                 mutex_unlock(&mapping->i_mmap_mutex);
239         }
240 }
241
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247         struct vm_area_struct *next = vma->vm_next;
248
249         might_sleep();
250         if (vma->vm_ops && vma->vm_ops->close)
251                 vma->vm_ops->close(vma);
252         if (vma->vm_file)
253                 fput(vma->vm_file);
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263         unsigned long rlim, retval;
264         unsigned long newbrk, oldbrk;
265         struct mm_struct *mm = current->mm;
266         unsigned long min_brk;
267         bool populate;
268
269         down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272         /*
273          * CONFIG_COMPAT_BRK can still be overridden by setting
274          * randomize_va_space to 2, which will still cause mm->start_brk
275          * to be arbitrarily shifted
276          */
277         if (current->brk_randomized)
278                 min_brk = mm->start_brk;
279         else
280                 min_brk = mm->end_data;
281 #else
282         min_brk = mm->start_brk;
283 #endif
284         if (brk < min_brk)
285                 goto out;
286
287         /*
288          * Check against rlimit here. If this check is done later after the test
289          * of oldbrk with newbrk then it can escape the test and let the data
290          * segment grow beyond its set limit the in case where the limit is
291          * not page aligned -Ram Gupta
292          */
293         rlim = rlimit(RLIMIT_DATA);
294         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295                         (mm->end_data - mm->start_data) > rlim)
296                 goto out;
297
298         newbrk = PAGE_ALIGN(brk);
299         oldbrk = PAGE_ALIGN(mm->brk);
300         if (oldbrk == newbrk)
301                 goto set_brk;
302
303         /* Always allow shrinking brk. */
304         if (brk <= mm->brk) {
305                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306                         goto set_brk;
307                 goto out;
308         }
309
310         /* Check against existing mmap mappings. */
311         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312                 goto out;
313
314         /* Ok, looks good - let it rip. */
315         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316                 goto out;
317
318 set_brk:
319         mm->brk = brk;
320         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321         up_write(&mm->mmap_sem);
322         if (populate)
323                 mm_populate(oldbrk, newbrk - oldbrk);
324         return brk;
325
326 out:
327         retval = mm->brk;
328         up_write(&mm->mmap_sem);
329         return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334         unsigned long max, subtree_gap;
335         max = vma->vm_start;
336         if (vma->vm_prev)
337                 max -= vma->vm_prev->vm_end;
338         if (vma->vm_rb.rb_left) {
339                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341                 if (subtree_gap > max)
342                         max = subtree_gap;
343         }
344         if (vma->vm_rb.rb_right) {
345                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347                 if (subtree_gap > max)
348                         max = subtree_gap;
349         }
350         return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356         int i = 0, j, bug = 0;
357         struct rb_node *nd, *pn = NULL;
358         unsigned long prev = 0, pend = 0;
359
360         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361                 struct vm_area_struct *vma;
362                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363                 if (vma->vm_start < prev) {
364                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365                         bug = 1;
366                 }
367                 if (vma->vm_start < pend) {
368                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369                         bug = 1;
370                 }
371                 if (vma->vm_start > vma->vm_end) {
372                         printk("vm_end %lx < vm_start %lx\n",
373                                 vma->vm_end, vma->vm_start);
374                         bug = 1;
375                 }
376                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377                         printk("free gap %lx, correct %lx\n",
378                                vma->rb_subtree_gap,
379                                vma_compute_subtree_gap(vma));
380                         bug = 1;
381                 }
382                 i++;
383                 pn = nd;
384                 prev = vma->vm_start;
385                 pend = vma->vm_end;
386         }
387         j = 0;
388         for (nd = pn; nd; nd = rb_prev(nd))
389                 j++;
390         if (i != j) {
391                 printk("backwards %d, forwards %d\n", j, i);
392                 bug = 1;
393         }
394         return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399         struct rb_node *nd;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 BUG_ON(vma != ignore &&
405                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406         }
407 }
408
409 static void validate_mm(struct mm_struct *mm)
410 {
411         int bug = 0;
412         int i = 0;
413         unsigned long highest_address = 0;
414         struct vm_area_struct *vma = mm->mmap;
415         while (vma) {
416                 struct anon_vma_chain *avc;
417                 vma_lock_anon_vma(vma);
418                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419                         anon_vma_interval_tree_verify(avc);
420                 vma_unlock_anon_vma(vma);
421                 highest_address = vma->vm_end;
422                 vma = vma->vm_next;
423                 i++;
424         }
425         if (i != mm->map_count) {
426                 printk("map_count %d vm_next %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         if (highest_address != mm->highest_vm_end) {
430                 printk("mm->highest_vm_end %lx, found %lx\n",
431                        mm->highest_vm_end, highest_address);
432                 bug = 1;
433         }
434         i = browse_rb(&mm->mm_rb);
435         if (i != mm->map_count) {
436                 printk("map_count %d rb %d\n", mm->map_count, i);
437                 bug = 1;
438         }
439         BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456         /*
457          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458          * function that does exacltly what we want.
459          */
460         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464                                  struct rb_root *root)
465 {
466         /* All rb_subtree_gap values must be consistent prior to insertion */
467         validate_mm_rb(root, NULL);
468
469         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the vma being erased.
477          */
478         validate_mm_rb(root, vma);
479
480         /*
481          * Note rb_erase_augmented is a fairly large inline function,
482          * so make sure we instantiate it only once with our desired
483          * augmented rbtree callbacks.
484          */
485         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505         struct anon_vma_chain *avc;
506
507         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521                 unsigned long end, struct vm_area_struct **pprev,
522                 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526         __rb_link = &mm->mm_rb.rb_node;
527         rb_prev = __rb_parent = NULL;
528
529         while (*__rb_link) {
530                 struct vm_area_struct *vma_tmp;
531
532                 __rb_parent = *__rb_link;
533                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535                 if (vma_tmp->vm_end > addr) {
536                         /* Fail if an existing vma overlaps the area */
537                         if (vma_tmp->vm_start < end)
538                                 return -ENOMEM;
539                         __rb_link = &__rb_parent->rb_left;
540                 } else {
541                         rb_prev = __rb_parent;
542                         __rb_link = &__rb_parent->rb_right;
543                 }
544         }
545
546         *pprev = NULL;
547         if (rb_prev)
548                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549         *rb_link = __rb_link;
550         *rb_parent = __rb_parent;
551         return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555                 unsigned long addr, unsigned long end)
556 {
557         unsigned long nr_pages = 0;
558         struct vm_area_struct *vma;
559
560         /* Find first overlaping mapping */
561         vma = find_vma_intersection(mm, addr, end);
562         if (!vma)
563                 return 0;
564
565         nr_pages = (min(end, vma->vm_end) -
566                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568         /* Iterate over the rest of the overlaps */
569         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570                 unsigned long overlap_len;
571
572                 if (vma->vm_start > end)
573                         break;
574
575                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576                 nr_pages += overlap_len >> PAGE_SHIFT;
577         }
578
579         return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583                 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585         /* Update tracking information for the gap following the new vma. */
586         if (vma->vm_next)
587                 vma_gap_update(vma->vm_next);
588         else
589                 mm->highest_vm_end = vma->vm_end;
590
591         /*
592          * vma->vm_prev wasn't known when we followed the rbtree to find the
593          * correct insertion point for that vma. As a result, we could not
594          * update the vma vm_rb parents rb_subtree_gap values on the way down.
595          * So, we first insert the vma with a zero rb_subtree_gap value
596          * (to be consistent with what we did on the way down), and then
597          * immediately update the gap to the correct value. Finally we
598          * rebalance the rbtree after all augmented values have been set.
599          */
600         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601         vma->rb_subtree_gap = 0;
602         vma_gap_update(vma);
603         vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608         struct file *file;
609
610         file = vma->vm_file;
611         if (file) {
612                 struct address_space *mapping = file->f_mapping;
613
614                 if (vma->vm_flags & VM_DENYWRITE)
615                         atomic_dec(&file_inode(file)->i_writecount);
616                 if (vma->vm_flags & VM_SHARED)
617                         mapping->i_mmap_writable++;
618
619                 flush_dcache_mmap_lock(mapping);
620                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622                 else
623                         vma_interval_tree_insert(vma, &mapping->i_mmap);
624                 flush_dcache_mmap_unlock(mapping);
625         }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630         struct vm_area_struct *prev, struct rb_node **rb_link,
631         struct rb_node *rb_parent)
632 {
633         __vma_link_list(mm, vma, prev, rb_parent);
634         __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638                         struct vm_area_struct *prev, struct rb_node **rb_link,
639                         struct rb_node *rb_parent)
640 {
641         struct address_space *mapping = NULL;
642
643         if (vma->vm_file) {
644                 mapping = vma->vm_file->f_mapping;
645                 mutex_lock(&mapping->i_mmap_mutex);
646         }
647
648         __vma_link(mm, vma, prev, rb_link, rb_parent);
649         __vma_link_file(vma);
650
651         if (mapping)
652                 mutex_unlock(&mapping->i_mmap_mutex);
653
654         mm->map_count++;
655         validate_mm(mm);
656 }
657
658 /*
659  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660  * mm's list and rbtree.  It has already been inserted into the interval tree.
661  */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664         struct vm_area_struct *prev;
665         struct rb_node **rb_link, *rb_parent;
666
667         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668                            &prev, &rb_link, &rb_parent))
669                 BUG();
670         __vma_link(mm, vma, prev, rb_link, rb_parent);
671         mm->map_count++;
672 }
673
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676                 struct vm_area_struct *prev)
677 {
678         struct vm_area_struct *next;
679
680         vma_rb_erase(vma, &mm->mm_rb);
681         prev->vm_next = next = vma->vm_next;
682         if (next)
683                 next->vm_prev = prev;
684
685         /* Kill the cache */
686         vmacache_invalidate(mm);
687 }
688
689 /*
690  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691  * is already present in an i_mmap tree without adjusting the tree.
692  * The following helper function should be used when such adjustments
693  * are necessary.  The "insert" vma (if any) is to be inserted
694  * before we drop the necessary locks.
695  */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699         struct mm_struct *mm = vma->vm_mm;
700         struct vm_area_struct *next = vma->vm_next;
701         struct vm_area_struct *importer = NULL;
702         struct address_space *mapping = NULL;
703         struct rb_root *root = NULL;
704         struct anon_vma *anon_vma = NULL;
705         struct file *file = vma->vm_file;
706         bool start_changed = false, end_changed = false;
707         long adjust_next = 0;
708         int remove_next = 0;
709
710         if (next && !insert) {
711                 struct vm_area_struct *exporter = NULL;
712
713                 if (end >= next->vm_end) {
714                         /*
715                          * vma expands, overlapping all the next, and
716                          * perhaps the one after too (mprotect case 6).
717                          */
718 again:                  remove_next = 1 + (end > next->vm_end);
719                         end = next->vm_end;
720                         exporter = next;
721                         importer = vma;
722                 } else if (end > next->vm_start) {
723                         /*
724                          * vma expands, overlapping part of the next:
725                          * mprotect case 5 shifting the boundary up.
726                          */
727                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728                         exporter = next;
729                         importer = vma;
730                 } else if (end < vma->vm_end) {
731                         /*
732                          * vma shrinks, and !insert tells it's not
733                          * split_vma inserting another: so it must be
734                          * mprotect case 4 shifting the boundary down.
735                          */
736                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737                         exporter = vma;
738                         importer = next;
739                 }
740
741                 /*
742                  * Easily overlooked: when mprotect shifts the boundary,
743                  * make sure the expanding vma has anon_vma set if the
744                  * shrinking vma had, to cover any anon pages imported.
745                  */
746                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747                         if (anon_vma_clone(importer, exporter))
748                                 return -ENOMEM;
749                         importer->anon_vma = exporter->anon_vma;
750                 }
751         }
752
753         if (file) {
754                 mapping = file->f_mapping;
755                 if (!(vma->vm_flags & VM_NONLINEAR)) {
756                         root = &mapping->i_mmap;
757                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759                         if (adjust_next)
760                                 uprobe_munmap(next, next->vm_start,
761                                                         next->vm_end);
762                 }
763
764                 mutex_lock(&mapping->i_mmap_mutex);
765                 if (insert) {
766                         /*
767                          * Put into interval tree now, so instantiated pages
768                          * are visible to arm/parisc __flush_dcache_page
769                          * throughout; but we cannot insert into address
770                          * space until vma start or end is updated.
771                          */
772                         __vma_link_file(insert);
773                 }
774         }
775
776         vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778         anon_vma = vma->anon_vma;
779         if (!anon_vma && adjust_next)
780                 anon_vma = next->anon_vma;
781         if (anon_vma) {
782                 VM_BUG_ON(adjust_next && next->anon_vma &&
783                           anon_vma != next->anon_vma);
784                 anon_vma_lock_write(anon_vma);
785                 anon_vma_interval_tree_pre_update_vma(vma);
786                 if (adjust_next)
787                         anon_vma_interval_tree_pre_update_vma(next);
788         }
789
790         if (root) {
791                 flush_dcache_mmap_lock(mapping);
792                 vma_interval_tree_remove(vma, root);
793                 if (adjust_next)
794                         vma_interval_tree_remove(next, root);
795         }
796
797         if (start != vma->vm_start) {
798                 vma->vm_start = start;
799                 start_changed = true;
800         }
801         if (end != vma->vm_end) {
802                 vma->vm_end = end;
803                 end_changed = true;
804         }
805         vma->vm_pgoff = pgoff;
806         if (adjust_next) {
807                 next->vm_start += adjust_next << PAGE_SHIFT;
808                 next->vm_pgoff += adjust_next;
809         }
810
811         if (root) {
812                 if (adjust_next)
813                         vma_interval_tree_insert(next, root);
814                 vma_interval_tree_insert(vma, root);
815                 flush_dcache_mmap_unlock(mapping);
816         }
817
818         if (remove_next) {
819                 /*
820                  * vma_merge has merged next into vma, and needs
821                  * us to remove next before dropping the locks.
822                  */
823                 __vma_unlink(mm, next, vma);
824                 if (file)
825                         __remove_shared_vm_struct(next, file, mapping);
826         } else if (insert) {
827                 /*
828                  * split_vma has split insert from vma, and needs
829                  * us to insert it before dropping the locks
830                  * (it may either follow vma or precede it).
831                  */
832                 __insert_vm_struct(mm, insert);
833         } else {
834                 if (start_changed)
835                         vma_gap_update(vma);
836                 if (end_changed) {
837                         if (!next)
838                                 mm->highest_vm_end = end;
839                         else if (!adjust_next)
840                                 vma_gap_update(next);
841                 }
842         }
843
844         if (anon_vma) {
845                 anon_vma_interval_tree_post_update_vma(vma);
846                 if (adjust_next)
847                         anon_vma_interval_tree_post_update_vma(next);
848                 anon_vma_unlock_write(anon_vma);
849         }
850         if (mapping)
851                 mutex_unlock(&mapping->i_mmap_mutex);
852
853         if (root) {
854                 uprobe_mmap(vma);
855
856                 if (adjust_next)
857                         uprobe_mmap(next);
858         }
859
860         if (remove_next) {
861                 if (file) {
862                         uprobe_munmap(next, next->vm_start, next->vm_end);
863                         fput(file);
864                 }
865                 if (next->anon_vma)
866                         anon_vma_merge(vma, next);
867                 mm->map_count--;
868                 mpol_put(vma_policy(next));
869                 kmem_cache_free(vm_area_cachep, next);
870                 /*
871                  * In mprotect's case 6 (see comments on vma_merge),
872                  * we must remove another next too. It would clutter
873                  * up the code too much to do both in one go.
874                  */
875                 next = vma->vm_next;
876                 if (remove_next == 2)
877                         goto again;
878                 else if (next)
879                         vma_gap_update(next);
880                 else
881                         mm->highest_vm_end = end;
882         }
883         if (insert && file)
884                 uprobe_mmap(insert);
885
886         validate_mm(mm);
887
888         return 0;
889 }
890
891 /*
892  * If the vma has a ->close operation then the driver probably needs to release
893  * per-vma resources, so we don't attempt to merge those.
894  */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896                         struct file *file, unsigned long vm_flags)
897 {
898         /*
899          * VM_SOFTDIRTY should not prevent from VMA merging, if we
900          * match the flags but dirty bit -- the caller should mark
901          * merged VMA as dirty. If dirty bit won't be excluded from
902          * comparison, we increase pressue on the memory system forcing
903          * the kernel to generate new VMAs when old one could be
904          * extended instead.
905          */
906         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
907                 return 0;
908         if (vma->vm_file != file)
909                 return 0;
910         if (vma->vm_ops && vma->vm_ops->close)
911                 return 0;
912         return 1;
913 }
914
915 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
916                                         struct anon_vma *anon_vma2,
917                                         struct vm_area_struct *vma)
918 {
919         /*
920          * The list_is_singular() test is to avoid merging VMA cloned from
921          * parents. This can improve scalability caused by anon_vma lock.
922          */
923         if ((!anon_vma1 || !anon_vma2) && (!vma ||
924                 list_is_singular(&vma->anon_vma_chain)))
925                 return 1;
926         return anon_vma1 == anon_vma2;
927 }
928
929 /*
930  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
931  * in front of (at a lower virtual address and file offset than) the vma.
932  *
933  * We cannot merge two vmas if they have differently assigned (non-NULL)
934  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
935  *
936  * We don't check here for the merged mmap wrapping around the end of pagecache
937  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
938  * wrap, nor mmaps which cover the final page at index -1UL.
939  */
940 static int
941 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
942         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
943 {
944         if (is_mergeable_vma(vma, file, vm_flags) &&
945             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
946                 if (vma->vm_pgoff == vm_pgoff)
947                         return 1;
948         }
949         return 0;
950 }
951
952 /*
953  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
954  * beyond (at a higher virtual address and file offset than) the vma.
955  *
956  * We cannot merge two vmas if they have differently assigned (non-NULL)
957  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
958  */
959 static int
960 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
961         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
962 {
963         if (is_mergeable_vma(vma, file, vm_flags) &&
964             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
965                 pgoff_t vm_pglen;
966                 vm_pglen = vma_pages(vma);
967                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
968                         return 1;
969         }
970         return 0;
971 }
972
973 /*
974  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
975  * whether that can be merged with its predecessor or its successor.
976  * Or both (it neatly fills a hole).
977  *
978  * In most cases - when called for mmap, brk or mremap - [addr,end) is
979  * certain not to be mapped by the time vma_merge is called; but when
980  * called for mprotect, it is certain to be already mapped (either at
981  * an offset within prev, or at the start of next), and the flags of
982  * this area are about to be changed to vm_flags - and the no-change
983  * case has already been eliminated.
984  *
985  * The following mprotect cases have to be considered, where AAAA is
986  * the area passed down from mprotect_fixup, never extending beyond one
987  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
988  *
989  *     AAAA             AAAA                AAAA          AAAA
990  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
991  *    cannot merge    might become    might become    might become
992  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
993  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
994  *    mremap move:                                    PPPPNNNNNNNN 8
995  *        AAAA
996  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
997  *    might become    case 1 below    case 2 below    case 3 below
998  *
999  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1000  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1001  */
1002 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1003                         struct vm_area_struct *prev, unsigned long addr,
1004                         unsigned long end, unsigned long vm_flags,
1005                         struct anon_vma *anon_vma, struct file *file,
1006                         pgoff_t pgoff, struct mempolicy *policy)
1007 {
1008         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1009         struct vm_area_struct *area, *next;
1010         int err;
1011
1012         /*
1013          * We later require that vma->vm_flags == vm_flags,
1014          * so this tests vma->vm_flags & VM_SPECIAL, too.
1015          */
1016         if (vm_flags & VM_SPECIAL)
1017                 return NULL;
1018
1019         if (prev)
1020                 next = prev->vm_next;
1021         else
1022                 next = mm->mmap;
1023         area = next;
1024         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1025                 next = next->vm_next;
1026
1027         /*
1028          * Can it merge with the predecessor?
1029          */
1030         if (prev && prev->vm_end == addr &&
1031                         mpol_equal(vma_policy(prev), policy) &&
1032                         can_vma_merge_after(prev, vm_flags,
1033                                                 anon_vma, file, pgoff)) {
1034                 /*
1035                  * OK, it can.  Can we now merge in the successor as well?
1036                  */
1037                 if (next && end == next->vm_start &&
1038                                 mpol_equal(policy, vma_policy(next)) &&
1039                                 can_vma_merge_before(next, vm_flags,
1040                                         anon_vma, file, pgoff+pglen) &&
1041                                 is_mergeable_anon_vma(prev->anon_vma,
1042                                                       next->anon_vma, NULL)) {
1043                                                         /* cases 1, 6 */
1044                         err = vma_adjust(prev, prev->vm_start,
1045                                 next->vm_end, prev->vm_pgoff, NULL);
1046                 } else                                  /* cases 2, 5, 7 */
1047                         err = vma_adjust(prev, prev->vm_start,
1048                                 end, prev->vm_pgoff, NULL);
1049                 if (err)
1050                         return NULL;
1051                 khugepaged_enter_vma_merge(prev);
1052                 return prev;
1053         }
1054
1055         /*
1056          * Can this new request be merged in front of next?
1057          */
1058         if (next && end == next->vm_start &&
1059                         mpol_equal(policy, vma_policy(next)) &&
1060                         can_vma_merge_before(next, vm_flags,
1061                                         anon_vma, file, pgoff+pglen)) {
1062                 if (prev && addr < prev->vm_end)        /* case 4 */
1063                         err = vma_adjust(prev, prev->vm_start,
1064                                 addr, prev->vm_pgoff, NULL);
1065                 else                                    /* cases 3, 8 */
1066                         err = vma_adjust(area, addr, next->vm_end,
1067                                 next->vm_pgoff - pglen, NULL);
1068                 if (err)
1069                         return NULL;
1070                 khugepaged_enter_vma_merge(area);
1071                 return area;
1072         }
1073
1074         return NULL;
1075 }
1076
1077 /*
1078  * Rough compatbility check to quickly see if it's even worth looking
1079  * at sharing an anon_vma.
1080  *
1081  * They need to have the same vm_file, and the flags can only differ
1082  * in things that mprotect may change.
1083  *
1084  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1085  * we can merge the two vma's. For example, we refuse to merge a vma if
1086  * there is a vm_ops->close() function, because that indicates that the
1087  * driver is doing some kind of reference counting. But that doesn't
1088  * really matter for the anon_vma sharing case.
1089  */
1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1091 {
1092         return a->vm_end == b->vm_start &&
1093                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1094                 a->vm_file == b->vm_file &&
1095                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1096                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1097 }
1098
1099 /*
1100  * Do some basic sanity checking to see if we can re-use the anon_vma
1101  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1102  * the same as 'old', the other will be the new one that is trying
1103  * to share the anon_vma.
1104  *
1105  * NOTE! This runs with mm_sem held for reading, so it is possible that
1106  * the anon_vma of 'old' is concurrently in the process of being set up
1107  * by another page fault trying to merge _that_. But that's ok: if it
1108  * is being set up, that automatically means that it will be a singleton
1109  * acceptable for merging, so we can do all of this optimistically. But
1110  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1111  *
1112  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1113  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1114  * is to return an anon_vma that is "complex" due to having gone through
1115  * a fork).
1116  *
1117  * We also make sure that the two vma's are compatible (adjacent,
1118  * and with the same memory policies). That's all stable, even with just
1119  * a read lock on the mm_sem.
1120  */
1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1122 {
1123         if (anon_vma_compatible(a, b)) {
1124                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1125
1126                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1127                         return anon_vma;
1128         }
1129         return NULL;
1130 }
1131
1132 /*
1133  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1134  * neighbouring vmas for a suitable anon_vma, before it goes off
1135  * to allocate a new anon_vma.  It checks because a repetitive
1136  * sequence of mprotects and faults may otherwise lead to distinct
1137  * anon_vmas being allocated, preventing vma merge in subsequent
1138  * mprotect.
1139  */
1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1141 {
1142         struct anon_vma *anon_vma;
1143         struct vm_area_struct *near;
1144
1145         near = vma->vm_next;
1146         if (!near)
1147                 goto try_prev;
1148
1149         anon_vma = reusable_anon_vma(near, vma, near);
1150         if (anon_vma)
1151                 return anon_vma;
1152 try_prev:
1153         near = vma->vm_prev;
1154         if (!near)
1155                 goto none;
1156
1157         anon_vma = reusable_anon_vma(near, near, vma);
1158         if (anon_vma)
1159                 return anon_vma;
1160 none:
1161         /*
1162          * There's no absolute need to look only at touching neighbours:
1163          * we could search further afield for "compatible" anon_vmas.
1164          * But it would probably just be a waste of time searching,
1165          * or lead to too many vmas hanging off the same anon_vma.
1166          * We're trying to allow mprotect remerging later on,
1167          * not trying to minimize memory used for anon_vmas.
1168          */
1169         return NULL;
1170 }
1171
1172 #ifdef CONFIG_PROC_FS
1173 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1174                                                 struct file *file, long pages)
1175 {
1176         const unsigned long stack_flags
1177                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1178
1179         mm->total_vm += pages;
1180
1181         if (file) {
1182                 mm->shared_vm += pages;
1183                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1184                         mm->exec_vm += pages;
1185         } else if (flags & stack_flags)
1186                 mm->stack_vm += pages;
1187 }
1188 #endif /* CONFIG_PROC_FS */
1189
1190 /*
1191  * If a hint addr is less than mmap_min_addr change hint to be as
1192  * low as possible but still greater than mmap_min_addr
1193  */
1194 static inline unsigned long round_hint_to_min(unsigned long hint)
1195 {
1196         hint &= PAGE_MASK;
1197         if (((void *)hint != NULL) &&
1198             (hint < mmap_min_addr))
1199                 return PAGE_ALIGN(mmap_min_addr);
1200         return hint;
1201 }
1202
1203 static inline int mlock_future_check(struct mm_struct *mm,
1204                                      unsigned long flags,
1205                                      unsigned long len)
1206 {
1207         unsigned long locked, lock_limit;
1208
1209         /*  mlock MCL_FUTURE? */
1210         if (flags & VM_LOCKED) {
1211                 locked = len >> PAGE_SHIFT;
1212                 locked += mm->locked_vm;
1213                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1214                 lock_limit >>= PAGE_SHIFT;
1215                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1216                         return -EAGAIN;
1217         }
1218         return 0;
1219 }
1220
1221 /*
1222  * The caller must hold down_write(&current->mm->mmap_sem).
1223  */
1224
1225 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1226                         unsigned long len, unsigned long prot,
1227                         unsigned long flags, unsigned long pgoff,
1228                         unsigned long *populate)
1229 {
1230         struct mm_struct * mm = current->mm;
1231         vm_flags_t vm_flags;
1232
1233         *populate = 0;
1234
1235         /*
1236          * Does the application expect PROT_READ to imply PROT_EXEC?
1237          *
1238          * (the exception is when the underlying filesystem is noexec
1239          *  mounted, in which case we dont add PROT_EXEC.)
1240          */
1241         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1242                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1243                         prot |= PROT_EXEC;
1244
1245         if (!len)
1246                 return -EINVAL;
1247
1248         if (!(flags & MAP_FIXED))
1249                 addr = round_hint_to_min(addr);
1250
1251         /* Careful about overflows.. */
1252         len = PAGE_ALIGN(len);
1253         if (!len)
1254                 return -ENOMEM;
1255
1256         /* offset overflow? */
1257         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1258                return -EOVERFLOW;
1259
1260         /* Too many mappings? */
1261         if (mm->map_count > sysctl_max_map_count)
1262                 return -ENOMEM;
1263
1264         /* Obtain the address to map to. we verify (or select) it and ensure
1265          * that it represents a valid section of the address space.
1266          */
1267         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1268         if (addr & ~PAGE_MASK)
1269                 return addr;
1270
1271         /* Do simple checking here so the lower-level routines won't have
1272          * to. we assume access permissions have been handled by the open
1273          * of the memory object, so we don't do any here.
1274          */
1275         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1276                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1277
1278         if (flags & MAP_LOCKED)
1279                 if (!can_do_mlock())
1280                         return -EPERM;
1281
1282         if (mlock_future_check(mm, vm_flags, len))
1283                 return -EAGAIN;
1284
1285         if (file) {
1286                 struct inode *inode = file_inode(file);
1287
1288                 switch (flags & MAP_TYPE) {
1289                 case MAP_SHARED:
1290                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1291                                 return -EACCES;
1292
1293                         /*
1294                          * Make sure we don't allow writing to an append-only
1295                          * file..
1296                          */
1297                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1298                                 return -EACCES;
1299
1300                         /*
1301                          * Make sure there are no mandatory locks on the file.
1302                          */
1303                         if (locks_verify_locked(file))
1304                                 return -EAGAIN;
1305
1306                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1307                         if (!(file->f_mode & FMODE_WRITE))
1308                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1309
1310                         /* fall through */
1311                 case MAP_PRIVATE:
1312                         if (!(file->f_mode & FMODE_READ))
1313                                 return -EACCES;
1314                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1315                                 if (vm_flags & VM_EXEC)
1316                                         return -EPERM;
1317                                 vm_flags &= ~VM_MAYEXEC;
1318                         }
1319
1320                         if (!file->f_op->mmap)
1321                                 return -ENODEV;
1322                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1323                                 return -EINVAL;
1324                         break;
1325
1326                 default:
1327                         return -EINVAL;
1328                 }
1329         } else {
1330                 switch (flags & MAP_TYPE) {
1331                 case MAP_SHARED:
1332                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1333                                 return -EINVAL;
1334                         /*
1335                          * Ignore pgoff.
1336                          */
1337                         pgoff = 0;
1338                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1339                         break;
1340                 case MAP_PRIVATE:
1341                         /*
1342                          * Set pgoff according to addr for anon_vma.
1343                          */
1344                         pgoff = addr >> PAGE_SHIFT;
1345                         break;
1346                 default:
1347                         return -EINVAL;
1348                 }
1349         }
1350
1351         /*
1352          * Set 'VM_NORESERVE' if we should not account for the
1353          * memory use of this mapping.
1354          */
1355         if (flags & MAP_NORESERVE) {
1356                 /* We honor MAP_NORESERVE if allowed to overcommit */
1357                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1358                         vm_flags |= VM_NORESERVE;
1359
1360                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1361                 if (file && is_file_hugepages(file))
1362                         vm_flags |= VM_NORESERVE;
1363         }
1364
1365         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1366         if (!IS_ERR_VALUE(addr) &&
1367             ((vm_flags & VM_LOCKED) ||
1368              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1369                 *populate = len;
1370         return addr;
1371 }
1372
1373 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1374                 unsigned long, prot, unsigned long, flags,
1375                 unsigned long, fd, unsigned long, pgoff)
1376 {
1377         struct file *file = NULL;
1378         unsigned long retval = -EBADF;
1379
1380         if (!(flags & MAP_ANONYMOUS)) {
1381                 audit_mmap_fd(fd, flags);
1382                 file = fget(fd);
1383                 if (!file)
1384                         goto out;
1385                 if (is_file_hugepages(file))
1386                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1387                 retval = -EINVAL;
1388                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1389                         goto out_fput;
1390         } else if (flags & MAP_HUGETLB) {
1391                 struct user_struct *user = NULL;
1392                 struct hstate *hs;
1393
1394                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1395                 if (!hs)
1396                         return -EINVAL;
1397
1398                 len = ALIGN(len, huge_page_size(hs));
1399                 /*
1400                  * VM_NORESERVE is used because the reservations will be
1401                  * taken when vm_ops->mmap() is called
1402                  * A dummy user value is used because we are not locking
1403                  * memory so no accounting is necessary
1404                  */
1405                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1406                                 VM_NORESERVE,
1407                                 &user, HUGETLB_ANONHUGE_INODE,
1408                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409                 if (IS_ERR(file))
1410                         return PTR_ERR(file);
1411         }
1412
1413         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1414
1415         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1416 out_fput:
1417         if (file)
1418                 fput(file);
1419 out:
1420         return retval;
1421 }
1422
1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1424 struct mmap_arg_struct {
1425         unsigned long addr;
1426         unsigned long len;
1427         unsigned long prot;
1428         unsigned long flags;
1429         unsigned long fd;
1430         unsigned long offset;
1431 };
1432
1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1434 {
1435         struct mmap_arg_struct a;
1436
1437         if (copy_from_user(&a, arg, sizeof(a)))
1438                 return -EFAULT;
1439         if (a.offset & ~PAGE_MASK)
1440                 return -EINVAL;
1441
1442         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1443                               a.offset >> PAGE_SHIFT);
1444 }
1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1446
1447 /*
1448  * Some shared mappigns will want the pages marked read-only
1449  * to track write events. If so, we'll downgrade vm_page_prot
1450  * to the private version (using protection_map[] without the
1451  * VM_SHARED bit).
1452  */
1453 int vma_wants_writenotify(struct vm_area_struct *vma)
1454 {
1455         vm_flags_t vm_flags = vma->vm_flags;
1456
1457         /* If it was private or non-writable, the write bit is already clear */
1458         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1459                 return 0;
1460
1461         /* The backer wishes to know when pages are first written to? */
1462         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1463                 return 1;
1464
1465         /* The open routine did something to the protections already? */
1466         if (pgprot_val(vma->vm_page_prot) !=
1467             pgprot_val(vm_get_page_prot(vm_flags)))
1468                 return 0;
1469
1470         /* Specialty mapping? */
1471         if (vm_flags & VM_PFNMAP)
1472                 return 0;
1473
1474         /* Can the mapping track the dirty pages? */
1475         return vma->vm_file && vma->vm_file->f_mapping &&
1476                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1477 }
1478
1479 /*
1480  * We account for memory if it's a private writeable mapping,
1481  * not hugepages and VM_NORESERVE wasn't set.
1482  */
1483 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1484 {
1485         /*
1486          * hugetlb has its own accounting separate from the core VM
1487          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1488          */
1489         if (file && is_file_hugepages(file))
1490                 return 0;
1491
1492         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1493 }
1494
1495 unsigned long mmap_region(struct file *file, unsigned long addr,
1496                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1497 {
1498         struct mm_struct *mm = current->mm;
1499         struct vm_area_struct *vma, *prev;
1500         int error;
1501         struct rb_node **rb_link, *rb_parent;
1502         unsigned long charged = 0;
1503
1504         /* Check against address space limit. */
1505         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1506                 unsigned long nr_pages;
1507
1508                 /*
1509                  * MAP_FIXED may remove pages of mappings that intersects with
1510                  * requested mapping. Account for the pages it would unmap.
1511                  */
1512                 if (!(vm_flags & MAP_FIXED))
1513                         return -ENOMEM;
1514
1515                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1516
1517                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1518                         return -ENOMEM;
1519         }
1520
1521         /* Clear old maps */
1522         error = -ENOMEM;
1523 munmap_back:
1524         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1525                 if (do_munmap(mm, addr, len))
1526                         return -ENOMEM;
1527                 goto munmap_back;
1528         }
1529
1530         /*
1531          * Private writable mapping: check memory availability
1532          */
1533         if (accountable_mapping(file, vm_flags)) {
1534                 charged = len >> PAGE_SHIFT;
1535                 if (security_vm_enough_memory_mm(mm, charged))
1536                         return -ENOMEM;
1537                 vm_flags |= VM_ACCOUNT;
1538         }
1539
1540         /*
1541          * Can we just expand an old mapping?
1542          */
1543         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1544         if (vma)
1545                 goto out;
1546
1547         /*
1548          * Determine the object being mapped and call the appropriate
1549          * specific mapper. the address has already been validated, but
1550          * not unmapped, but the maps are removed from the list.
1551          */
1552         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1553         if (!vma) {
1554                 error = -ENOMEM;
1555                 goto unacct_error;
1556         }
1557
1558         vma->vm_mm = mm;
1559         vma->vm_start = addr;
1560         vma->vm_end = addr + len;
1561         vma->vm_flags = vm_flags;
1562         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1563         vma->vm_pgoff = pgoff;
1564         INIT_LIST_HEAD(&vma->anon_vma_chain);
1565
1566         if (file) {
1567                 if (vm_flags & VM_DENYWRITE) {
1568                         error = deny_write_access(file);
1569                         if (error)
1570                                 goto free_vma;
1571                 }
1572                 vma->vm_file = get_file(file);
1573                 error = file->f_op->mmap(file, vma);
1574                 if (error)
1575                         goto unmap_and_free_vma;
1576
1577                 /* Can addr have changed??
1578                  *
1579                  * Answer: Yes, several device drivers can do it in their
1580                  *         f_op->mmap method. -DaveM
1581                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1582                  *      be updated for vma_link()
1583                  */
1584                 WARN_ON_ONCE(addr != vma->vm_start);
1585
1586                 addr = vma->vm_start;
1587                 vm_flags = vma->vm_flags;
1588         } else if (vm_flags & VM_SHARED) {
1589                 error = shmem_zero_setup(vma);
1590                 if (error)
1591                         goto free_vma;
1592         }
1593
1594         if (vma_wants_writenotify(vma)) {
1595                 pgprot_t pprot = vma->vm_page_prot;
1596
1597                 /* Can vma->vm_page_prot have changed??
1598                  *
1599                  * Answer: Yes, drivers may have changed it in their
1600                  *         f_op->mmap method.
1601                  *
1602                  * Ensures that vmas marked as uncached stay that way.
1603                  */
1604                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1605                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1606                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1607         }
1608
1609         vma_link(mm, vma, prev, rb_link, rb_parent);
1610         /* Once vma denies write, undo our temporary denial count */
1611         if (vm_flags & VM_DENYWRITE)
1612                 allow_write_access(file);
1613         file = vma->vm_file;
1614 out:
1615         perf_event_mmap(vma);
1616
1617         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1618         if (vm_flags & VM_LOCKED) {
1619                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1620                                         vma == get_gate_vma(current->mm)))
1621                         mm->locked_vm += (len >> PAGE_SHIFT);
1622                 else
1623                         vma->vm_flags &= ~VM_LOCKED;
1624         }
1625
1626         if (file)
1627                 uprobe_mmap(vma);
1628
1629         /*
1630          * New (or expanded) vma always get soft dirty status.
1631          * Otherwise user-space soft-dirty page tracker won't
1632          * be able to distinguish situation when vma area unmapped,
1633          * then new mapped in-place (which must be aimed as
1634          * a completely new data area).
1635          */
1636         vma->vm_flags |= VM_SOFTDIRTY;
1637
1638         return addr;
1639
1640 unmap_and_free_vma:
1641         if (vm_flags & VM_DENYWRITE)
1642                 allow_write_access(file);
1643         vma->vm_file = NULL;
1644         fput(file);
1645
1646         /* Undo any partial mapping done by a device driver. */
1647         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1648         charged = 0;
1649 free_vma:
1650         kmem_cache_free(vm_area_cachep, vma);
1651 unacct_error:
1652         if (charged)
1653                 vm_unacct_memory(charged);
1654         return error;
1655 }
1656
1657 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1658 {
1659         /*
1660          * We implement the search by looking for an rbtree node that
1661          * immediately follows a suitable gap. That is,
1662          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1663          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1664          * - gap_end - gap_start >= length
1665          */
1666
1667         struct mm_struct *mm = current->mm;
1668         struct vm_area_struct *vma;
1669         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1670
1671         /* Adjust search length to account for worst case alignment overhead */
1672         length = info->length + info->align_mask;
1673         if (length < info->length)
1674                 return -ENOMEM;
1675
1676         /* Adjust search limits by the desired length */
1677         if (info->high_limit < length)
1678                 return -ENOMEM;
1679         high_limit = info->high_limit - length;
1680
1681         if (info->low_limit > high_limit)
1682                 return -ENOMEM;
1683         low_limit = info->low_limit + length;
1684
1685         /* Check if rbtree root looks promising */
1686         if (RB_EMPTY_ROOT(&mm->mm_rb))
1687                 goto check_highest;
1688         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1689         if (vma->rb_subtree_gap < length)
1690                 goto check_highest;
1691
1692         while (true) {
1693                 /* Visit left subtree if it looks promising */
1694                 gap_end = vma->vm_start;
1695                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1696                         struct vm_area_struct *left =
1697                                 rb_entry(vma->vm_rb.rb_left,
1698                                          struct vm_area_struct, vm_rb);
1699                         if (left->rb_subtree_gap >= length) {
1700                                 vma = left;
1701                                 continue;
1702                         }
1703                 }
1704
1705                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1706 check_current:
1707                 /* Check if current node has a suitable gap */
1708                 if (gap_start > high_limit)
1709                         return -ENOMEM;
1710                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1711                         goto found;
1712
1713                 /* Visit right subtree if it looks promising */
1714                 if (vma->vm_rb.rb_right) {
1715                         struct vm_area_struct *right =
1716                                 rb_entry(vma->vm_rb.rb_right,
1717                                          struct vm_area_struct, vm_rb);
1718                         if (right->rb_subtree_gap >= length) {
1719                                 vma = right;
1720                                 continue;
1721                         }
1722                 }
1723
1724                 /* Go back up the rbtree to find next candidate node */
1725                 while (true) {
1726                         struct rb_node *prev = &vma->vm_rb;
1727                         if (!rb_parent(prev))
1728                                 goto check_highest;
1729                         vma = rb_entry(rb_parent(prev),
1730                                        struct vm_area_struct, vm_rb);
1731                         if (prev == vma->vm_rb.rb_left) {
1732                                 gap_start = vma->vm_prev->vm_end;
1733                                 gap_end = vma->vm_start;
1734                                 goto check_current;
1735                         }
1736                 }
1737         }
1738
1739 check_highest:
1740         /* Check highest gap, which does not precede any rbtree node */
1741         gap_start = mm->highest_vm_end;
1742         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1743         if (gap_start > high_limit)
1744                 return -ENOMEM;
1745
1746 found:
1747         /* We found a suitable gap. Clip it with the original low_limit. */
1748         if (gap_start < info->low_limit)
1749                 gap_start = info->low_limit;
1750
1751         /* Adjust gap address to the desired alignment */
1752         gap_start += (info->align_offset - gap_start) & info->align_mask;
1753
1754         VM_BUG_ON(gap_start + info->length > info->high_limit);
1755         VM_BUG_ON(gap_start + info->length > gap_end);
1756         return gap_start;
1757 }
1758
1759 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1760 {
1761         struct mm_struct *mm = current->mm;
1762         struct vm_area_struct *vma;
1763         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1764
1765         /* Adjust search length to account for worst case alignment overhead */
1766         length = info->length + info->align_mask;
1767         if (length < info->length)
1768                 return -ENOMEM;
1769
1770         /*
1771          * Adjust search limits by the desired length.
1772          * See implementation comment at top of unmapped_area().
1773          */
1774         gap_end = info->high_limit;
1775         if (gap_end < length)
1776                 return -ENOMEM;
1777         high_limit = gap_end - length;
1778
1779         if (info->low_limit > high_limit)
1780                 return -ENOMEM;
1781         low_limit = info->low_limit + length;
1782
1783         /* Check highest gap, which does not precede any rbtree node */
1784         gap_start = mm->highest_vm_end;
1785         if (gap_start <= high_limit)
1786                 goto found_highest;
1787
1788         /* Check if rbtree root looks promising */
1789         if (RB_EMPTY_ROOT(&mm->mm_rb))
1790                 return -ENOMEM;
1791         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1792         if (vma->rb_subtree_gap < length)
1793                 return -ENOMEM;
1794
1795         while (true) {
1796                 /* Visit right subtree if it looks promising */
1797                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1799                         struct vm_area_struct *right =
1800                                 rb_entry(vma->vm_rb.rb_right,
1801                                          struct vm_area_struct, vm_rb);
1802                         if (right->rb_subtree_gap >= length) {
1803                                 vma = right;
1804                                 continue;
1805                         }
1806                 }
1807
1808 check_current:
1809                 /* Check if current node has a suitable gap */
1810                 gap_end = vma->vm_start;
1811                 if (gap_end < low_limit)
1812                         return -ENOMEM;
1813                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1814                         goto found;
1815
1816                 /* Visit left subtree if it looks promising */
1817                 if (vma->vm_rb.rb_left) {
1818                         struct vm_area_struct *left =
1819                                 rb_entry(vma->vm_rb.rb_left,
1820                                          struct vm_area_struct, vm_rb);
1821                         if (left->rb_subtree_gap >= length) {
1822                                 vma = left;
1823                                 continue;
1824                         }
1825                 }
1826
1827                 /* Go back up the rbtree to find next candidate node */
1828                 while (true) {
1829                         struct rb_node *prev = &vma->vm_rb;
1830                         if (!rb_parent(prev))
1831                                 return -ENOMEM;
1832                         vma = rb_entry(rb_parent(prev),
1833                                        struct vm_area_struct, vm_rb);
1834                         if (prev == vma->vm_rb.rb_right) {
1835                                 gap_start = vma->vm_prev ?
1836                                         vma->vm_prev->vm_end : 0;
1837                                 goto check_current;
1838                         }
1839                 }
1840         }
1841
1842 found:
1843         /* We found a suitable gap. Clip it with the original high_limit. */
1844         if (gap_end > info->high_limit)
1845                 gap_end = info->high_limit;
1846
1847 found_highest:
1848         /* Compute highest gap address at the desired alignment */
1849         gap_end -= info->length;
1850         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1851
1852         VM_BUG_ON(gap_end < info->low_limit);
1853         VM_BUG_ON(gap_end < gap_start);
1854         return gap_end;
1855 }
1856
1857 /* Get an address range which is currently unmapped.
1858  * For shmat() with addr=0.
1859  *
1860  * Ugly calling convention alert:
1861  * Return value with the low bits set means error value,
1862  * ie
1863  *      if (ret & ~PAGE_MASK)
1864  *              error = ret;
1865  *
1866  * This function "knows" that -ENOMEM has the bits set.
1867  */
1868 #ifndef HAVE_ARCH_UNMAPPED_AREA
1869 unsigned long
1870 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1871                 unsigned long len, unsigned long pgoff, unsigned long flags)
1872 {
1873         struct mm_struct *mm = current->mm;
1874         struct vm_area_struct *vma;
1875         struct vm_unmapped_area_info info;
1876
1877         if (len > TASK_SIZE - mmap_min_addr)
1878                 return -ENOMEM;
1879
1880         if (flags & MAP_FIXED)
1881                 return addr;
1882
1883         if (addr) {
1884                 addr = PAGE_ALIGN(addr);
1885                 vma = find_vma(mm, addr);
1886                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1887                     (!vma || addr + len <= vma->vm_start))
1888                         return addr;
1889         }
1890
1891         info.flags = 0;
1892         info.length = len;
1893         info.low_limit = mm->mmap_base;
1894         info.high_limit = TASK_SIZE;
1895         info.align_mask = 0;
1896         return vm_unmapped_area(&info);
1897 }
1898 #endif  
1899
1900 /*
1901  * This mmap-allocator allocates new areas top-down from below the
1902  * stack's low limit (the base):
1903  */
1904 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1905 unsigned long
1906 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1907                           const unsigned long len, const unsigned long pgoff,
1908                           const unsigned long flags)
1909 {
1910         struct vm_area_struct *vma;
1911         struct mm_struct *mm = current->mm;
1912         unsigned long addr = addr0;
1913         struct vm_unmapped_area_info info;
1914
1915         /* requested length too big for entire address space */
1916         if (len > TASK_SIZE - mmap_min_addr)
1917                 return -ENOMEM;
1918
1919         if (flags & MAP_FIXED)
1920                 return addr;
1921
1922         /* requesting a specific address */
1923         if (addr) {
1924                 addr = PAGE_ALIGN(addr);
1925                 vma = find_vma(mm, addr);
1926                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1927                                 (!vma || addr + len <= vma->vm_start))
1928                         return addr;
1929         }
1930
1931         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1932         info.length = len;
1933         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1934         info.high_limit = mm->mmap_base;
1935         info.align_mask = 0;
1936         addr = vm_unmapped_area(&info);
1937
1938         /*
1939          * A failed mmap() very likely causes application failure,
1940          * so fall back to the bottom-up function here. This scenario
1941          * can happen with large stack limits and large mmap()
1942          * allocations.
1943          */
1944         if (addr & ~PAGE_MASK) {
1945                 VM_BUG_ON(addr != -ENOMEM);
1946                 info.flags = 0;
1947                 info.low_limit = TASK_UNMAPPED_BASE;
1948                 info.high_limit = TASK_SIZE;
1949                 addr = vm_unmapped_area(&info);
1950         }
1951
1952         return addr;
1953 }
1954 #endif
1955
1956 unsigned long
1957 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1958                 unsigned long pgoff, unsigned long flags)
1959 {
1960         unsigned long (*get_area)(struct file *, unsigned long,
1961                                   unsigned long, unsigned long, unsigned long);
1962
1963         unsigned long error = arch_mmap_check(addr, len, flags);
1964         if (error)
1965                 return error;
1966
1967         /* Careful about overflows.. */
1968         if (len > TASK_SIZE)
1969                 return -ENOMEM;
1970
1971         get_area = current->mm->get_unmapped_area;
1972         if (file && file->f_op->get_unmapped_area)
1973                 get_area = file->f_op->get_unmapped_area;
1974         addr = get_area(file, addr, len, pgoff, flags);
1975         if (IS_ERR_VALUE(addr))
1976                 return addr;
1977
1978         if (addr > TASK_SIZE - len)
1979                 return -ENOMEM;
1980         if (addr & ~PAGE_MASK)
1981                 return -EINVAL;
1982
1983         addr = arch_rebalance_pgtables(addr, len);
1984         error = security_mmap_addr(addr);
1985         return error ? error : addr;
1986 }
1987
1988 EXPORT_SYMBOL(get_unmapped_area);
1989
1990 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1991 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1992 {
1993         struct rb_node *rb_node;
1994         struct vm_area_struct *vma;
1995
1996         /* Check the cache first. */
1997         vma = vmacache_find(mm, addr);
1998         if (likely(vma))
1999                 return vma;
2000
2001         rb_node = mm->mm_rb.rb_node;
2002         vma = NULL;
2003
2004         while (rb_node) {
2005                 struct vm_area_struct *tmp;
2006
2007                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2008
2009                 if (tmp->vm_end > addr) {
2010                         vma = tmp;
2011                         if (tmp->vm_start <= addr)
2012                                 break;
2013                         rb_node = rb_node->rb_left;
2014                 } else
2015                         rb_node = rb_node->rb_right;
2016         }
2017
2018         if (vma)
2019                 vmacache_update(addr, vma);
2020         return vma;
2021 }
2022
2023 EXPORT_SYMBOL(find_vma);
2024
2025 /*
2026  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2027  */
2028 struct vm_area_struct *
2029 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2030                         struct vm_area_struct **pprev)
2031 {
2032         struct vm_area_struct *vma;
2033
2034         vma = find_vma(mm, addr);
2035         if (vma) {
2036                 *pprev = vma->vm_prev;
2037         } else {
2038                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2039                 *pprev = NULL;
2040                 while (rb_node) {
2041                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2042                         rb_node = rb_node->rb_right;
2043                 }
2044         }
2045         return vma;
2046 }
2047
2048 /*
2049  * Verify that the stack growth is acceptable and
2050  * update accounting. This is shared with both the
2051  * grow-up and grow-down cases.
2052  */
2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2054 {
2055         struct mm_struct *mm = vma->vm_mm;
2056         struct rlimit *rlim = current->signal->rlim;
2057         unsigned long new_start;
2058
2059         /* address space limit tests */
2060         if (!may_expand_vm(mm, grow))
2061                 return -ENOMEM;
2062
2063         /* Stack limit test */
2064         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2065                 return -ENOMEM;
2066
2067         /* mlock limit tests */
2068         if (vma->vm_flags & VM_LOCKED) {
2069                 unsigned long locked;
2070                 unsigned long limit;
2071                 locked = mm->locked_vm + grow;
2072                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2073                 limit >>= PAGE_SHIFT;
2074                 if (locked > limit && !capable(CAP_IPC_LOCK))
2075                         return -ENOMEM;
2076         }
2077
2078         /* Check to ensure the stack will not grow into a hugetlb-only region */
2079         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2080                         vma->vm_end - size;
2081         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2082                 return -EFAULT;
2083
2084         /*
2085          * Overcommit..  This must be the final test, as it will
2086          * update security statistics.
2087          */
2088         if (security_vm_enough_memory_mm(mm, grow))
2089                 return -ENOMEM;
2090
2091         /* Ok, everything looks good - let it rip */
2092         if (vma->vm_flags & VM_LOCKED)
2093                 mm->locked_vm += grow;
2094         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2095         return 0;
2096 }
2097
2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2099 /*
2100  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2101  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2102  */
2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2104 {
2105         int error;
2106
2107         if (!(vma->vm_flags & VM_GROWSUP))
2108                 return -EFAULT;
2109
2110         /*
2111          * We must make sure the anon_vma is allocated
2112          * so that the anon_vma locking is not a noop.
2113          */
2114         if (unlikely(anon_vma_prepare(vma)))
2115                 return -ENOMEM;
2116         vma_lock_anon_vma(vma);
2117
2118         /*
2119          * vma->vm_start/vm_end cannot change under us because the caller
2120          * is required to hold the mmap_sem in read mode.  We need the
2121          * anon_vma lock to serialize against concurrent expand_stacks.
2122          * Also guard against wrapping around to address 0.
2123          */
2124         if (address < PAGE_ALIGN(address+4))
2125                 address = PAGE_ALIGN(address+4);
2126         else {
2127                 vma_unlock_anon_vma(vma);
2128                 return -ENOMEM;
2129         }
2130         error = 0;
2131
2132         /* Somebody else might have raced and expanded it already */
2133         if (address > vma->vm_end) {
2134                 unsigned long size, grow;
2135
2136                 size = address - vma->vm_start;
2137                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2138
2139                 error = -ENOMEM;
2140                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2141                         error = acct_stack_growth(vma, size, grow);
2142                         if (!error) {
2143                                 /*
2144                                  * vma_gap_update() doesn't support concurrent
2145                                  * updates, but we only hold a shared mmap_sem
2146                                  * lock here, so we need to protect against
2147                                  * concurrent vma expansions.
2148                                  * vma_lock_anon_vma() doesn't help here, as
2149                                  * we don't guarantee that all growable vmas
2150                                  * in a mm share the same root anon vma.
2151                                  * So, we reuse mm->page_table_lock to guard
2152                                  * against concurrent vma expansions.
2153                                  */
2154                                 spin_lock(&vma->vm_mm->page_table_lock);
2155                                 anon_vma_interval_tree_pre_update_vma(vma);
2156                                 vma->vm_end = address;
2157                                 anon_vma_interval_tree_post_update_vma(vma);
2158                                 if (vma->vm_next)
2159                                         vma_gap_update(vma->vm_next);
2160                                 else
2161                                         vma->vm_mm->highest_vm_end = address;
2162                                 spin_unlock(&vma->vm_mm->page_table_lock);
2163
2164                                 perf_event_mmap(vma);
2165                         }
2166                 }
2167         }
2168         vma_unlock_anon_vma(vma);
2169         khugepaged_enter_vma_merge(vma);
2170         validate_mm(vma->vm_mm);
2171         return error;
2172 }
2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2174
2175 /*
2176  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2177  */
2178 int expand_downwards(struct vm_area_struct *vma,
2179                                    unsigned long address)
2180 {
2181         int error;
2182
2183         /*
2184          * We must make sure the anon_vma is allocated
2185          * so that the anon_vma locking is not a noop.
2186          */
2187         if (unlikely(anon_vma_prepare(vma)))
2188                 return -ENOMEM;
2189
2190         address &= PAGE_MASK;
2191         error = security_mmap_addr(address);
2192         if (error)
2193                 return error;
2194
2195         vma_lock_anon_vma(vma);
2196
2197         /*
2198          * vma->vm_start/vm_end cannot change under us because the caller
2199          * is required to hold the mmap_sem in read mode.  We need the
2200          * anon_vma lock to serialize against concurrent expand_stacks.
2201          */
2202
2203         /* Somebody else might have raced and expanded it already */
2204         if (address < vma->vm_start) {
2205                 unsigned long size, grow;
2206
2207                 size = vma->vm_end - address;
2208                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2209
2210                 error = -ENOMEM;
2211                 if (grow <= vma->vm_pgoff) {
2212                         error = acct_stack_growth(vma, size, grow);
2213                         if (!error) {
2214                                 /*
2215                                  * vma_gap_update() doesn't support concurrent
2216                                  * updates, but we only hold a shared mmap_sem
2217                                  * lock here, so we need to protect against
2218                                  * concurrent vma expansions.
2219                                  * vma_lock_anon_vma() doesn't help here, as
2220                                  * we don't guarantee that all growable vmas
2221                                  * in a mm share the same root anon vma.
2222                                  * So, we reuse mm->page_table_lock to guard
2223                                  * against concurrent vma expansions.
2224                                  */
2225                                 spin_lock(&vma->vm_mm->page_table_lock);
2226                                 anon_vma_interval_tree_pre_update_vma(vma);
2227                                 vma->vm_start = address;
2228                                 vma->vm_pgoff -= grow;
2229                                 anon_vma_interval_tree_post_update_vma(vma);
2230                                 vma_gap_update(vma);
2231                                 spin_unlock(&vma->vm_mm->page_table_lock);
2232
2233                                 perf_event_mmap(vma);
2234                         }
2235                 }
2236         }
2237         vma_unlock_anon_vma(vma);
2238         khugepaged_enter_vma_merge(vma);
2239         validate_mm(vma->vm_mm);
2240         return error;
2241 }
2242
2243 /*
2244  * Note how expand_stack() refuses to expand the stack all the way to
2245  * abut the next virtual mapping, *unless* that mapping itself is also
2246  * a stack mapping. We want to leave room for a guard page, after all
2247  * (the guard page itself is not added here, that is done by the
2248  * actual page faulting logic)
2249  *
2250  * This matches the behavior of the guard page logic (see mm/memory.c:
2251  * check_stack_guard_page()), which only allows the guard page to be
2252  * removed under these circumstances.
2253  */
2254 #ifdef CONFIG_STACK_GROWSUP
2255 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2256 {
2257         struct vm_area_struct *next;
2258
2259         address &= PAGE_MASK;
2260         next = vma->vm_next;
2261         if (next && next->vm_start == address + PAGE_SIZE) {
2262                 if (!(next->vm_flags & VM_GROWSUP))
2263                         return -ENOMEM;
2264         }
2265         return expand_upwards(vma, address);
2266 }
2267
2268 struct vm_area_struct *
2269 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2270 {
2271         struct vm_area_struct *vma, *prev;
2272
2273         addr &= PAGE_MASK;
2274         vma = find_vma_prev(mm, addr, &prev);
2275         if (vma && (vma->vm_start <= addr))
2276                 return vma;
2277         if (!prev || expand_stack(prev, addr))
2278                 return NULL;
2279         if (prev->vm_flags & VM_LOCKED)
2280                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2281         return prev;
2282 }
2283 #else
2284 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2285 {
2286         struct vm_area_struct *prev;
2287
2288         address &= PAGE_MASK;
2289         prev = vma->vm_prev;
2290         if (prev && prev->vm_end == address) {
2291                 if (!(prev->vm_flags & VM_GROWSDOWN))
2292                         return -ENOMEM;
2293         }
2294         return expand_downwards(vma, address);
2295 }
2296
2297 struct vm_area_struct *
2298 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2299 {
2300         struct vm_area_struct * vma;
2301         unsigned long start;
2302
2303         addr &= PAGE_MASK;
2304         vma = find_vma(mm,addr);
2305         if (!vma)
2306                 return NULL;
2307         if (vma->vm_start <= addr)
2308                 return vma;
2309         if (!(vma->vm_flags & VM_GROWSDOWN))
2310                 return NULL;
2311         start = vma->vm_start;
2312         if (expand_stack(vma, addr))
2313                 return NULL;
2314         if (vma->vm_flags & VM_LOCKED)
2315                 __mlock_vma_pages_range(vma, addr, start, NULL);
2316         return vma;
2317 }
2318 #endif
2319
2320 /*
2321  * Ok - we have the memory areas we should free on the vma list,
2322  * so release them, and do the vma updates.
2323  *
2324  * Called with the mm semaphore held.
2325  */
2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2327 {
2328         unsigned long nr_accounted = 0;
2329
2330         /* Update high watermark before we lower total_vm */
2331         update_hiwater_vm(mm);
2332         do {
2333                 long nrpages = vma_pages(vma);
2334
2335                 if (vma->vm_flags & VM_ACCOUNT)
2336                         nr_accounted += nrpages;
2337                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2338                 vma = remove_vma(vma);
2339         } while (vma);
2340         vm_unacct_memory(nr_accounted);
2341         validate_mm(mm);
2342 }
2343
2344 /*
2345  * Get rid of page table information in the indicated region.
2346  *
2347  * Called with the mm semaphore held.
2348  */
2349 static void unmap_region(struct mm_struct *mm,
2350                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2351                 unsigned long start, unsigned long end)
2352 {
2353         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2354         struct mmu_gather tlb;
2355
2356         lru_add_drain();
2357         tlb_gather_mmu(&tlb, mm, start, end);
2358         update_hiwater_rss(mm);
2359         unmap_vmas(&tlb, vma, start, end);
2360         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2361                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2362         tlb_finish_mmu(&tlb, start, end);
2363 }
2364
2365 /*
2366  * Create a list of vma's touched by the unmap, removing them from the mm's
2367  * vma list as we go..
2368  */
2369 static void
2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2371         struct vm_area_struct *prev, unsigned long end)
2372 {
2373         struct vm_area_struct **insertion_point;
2374         struct vm_area_struct *tail_vma = NULL;
2375
2376         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2377         vma->vm_prev = NULL;
2378         do {
2379                 vma_rb_erase(vma, &mm->mm_rb);
2380                 mm->map_count--;
2381                 tail_vma = vma;
2382                 vma = vma->vm_next;
2383         } while (vma && vma->vm_start < end);
2384         *insertion_point = vma;
2385         if (vma) {
2386                 vma->vm_prev = prev;
2387                 vma_gap_update(vma);
2388         } else
2389                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2390         tail_vma->vm_next = NULL;
2391
2392         /* Kill the cache */
2393         vmacache_invalidate(mm);
2394 }
2395
2396 /*
2397  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2398  * munmap path where it doesn't make sense to fail.
2399  */
2400 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2401               unsigned long addr, int new_below)
2402 {
2403         struct vm_area_struct *new;
2404         int err = -ENOMEM;
2405
2406         if (is_vm_hugetlb_page(vma) && (addr &
2407                                         ~(huge_page_mask(hstate_vma(vma)))))
2408                 return -EINVAL;
2409
2410         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2411         if (!new)
2412                 goto out_err;
2413
2414         /* most fields are the same, copy all, and then fixup */
2415         *new = *vma;
2416
2417         INIT_LIST_HEAD(&new->anon_vma_chain);
2418
2419         if (new_below)
2420                 new->vm_end = addr;
2421         else {
2422                 new->vm_start = addr;
2423                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2424         }
2425
2426         err = vma_dup_policy(vma, new);
2427         if (err)
2428                 goto out_free_vma;
2429
2430         if (anon_vma_clone(new, vma))
2431                 goto out_free_mpol;
2432
2433         if (new->vm_file)
2434                 get_file(new->vm_file);
2435
2436         if (new->vm_ops && new->vm_ops->open)
2437                 new->vm_ops->open(new);
2438
2439         if (new_below)
2440                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2441                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2442         else
2443                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2444
2445         /* Success. */
2446         if (!err)
2447                 return 0;
2448
2449         /* Clean everything up if vma_adjust failed. */
2450         if (new->vm_ops && new->vm_ops->close)
2451                 new->vm_ops->close(new);
2452         if (new->vm_file)
2453                 fput(new->vm_file);
2454         unlink_anon_vmas(new);
2455  out_free_mpol:
2456         mpol_put(vma_policy(new));
2457  out_free_vma:
2458         kmem_cache_free(vm_area_cachep, new);
2459  out_err:
2460         return err;
2461 }
2462
2463 /*
2464  * Split a vma into two pieces at address 'addr', a new vma is allocated
2465  * either for the first part or the tail.
2466  */
2467 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2468               unsigned long addr, int new_below)
2469 {
2470         if (mm->map_count >= sysctl_max_map_count)
2471                 return -ENOMEM;
2472
2473         return __split_vma(mm, vma, addr, new_below);
2474 }
2475
2476 /* Munmap is split into 2 main parts -- this part which finds
2477  * what needs doing, and the areas themselves, which do the
2478  * work.  This now handles partial unmappings.
2479  * Jeremy Fitzhardinge <jeremy@goop.org>
2480  */
2481 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2482 {
2483         unsigned long end;
2484         struct vm_area_struct *vma, *prev, *last;
2485
2486         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2487                 return -EINVAL;
2488
2489         if ((len = PAGE_ALIGN(len)) == 0)
2490                 return -EINVAL;
2491
2492         /* Find the first overlapping VMA */
2493         vma = find_vma(mm, start);
2494         if (!vma)
2495                 return 0;
2496         prev = vma->vm_prev;
2497         /* we have  start < vma->vm_end  */
2498
2499         /* if it doesn't overlap, we have nothing.. */
2500         end = start + len;
2501         if (vma->vm_start >= end)
2502                 return 0;
2503
2504         /*
2505          * If we need to split any vma, do it now to save pain later.
2506          *
2507          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2508          * unmapped vm_area_struct will remain in use: so lower split_vma
2509          * places tmp vma above, and higher split_vma places tmp vma below.
2510          */
2511         if (start > vma->vm_start) {
2512                 int error;
2513
2514                 /*
2515                  * Make sure that map_count on return from munmap() will
2516                  * not exceed its limit; but let map_count go just above
2517                  * its limit temporarily, to help free resources as expected.
2518                  */
2519                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2520                         return -ENOMEM;
2521
2522                 error = __split_vma(mm, vma, start, 0);
2523                 if (error)
2524                         return error;
2525                 prev = vma;
2526         }
2527
2528         /* Does it split the last one? */
2529         last = find_vma(mm, end);
2530         if (last && end > last->vm_start) {
2531                 int error = __split_vma(mm, last, end, 1);
2532                 if (error)
2533                         return error;
2534         }
2535         vma = prev? prev->vm_next: mm->mmap;
2536
2537         /*
2538          * unlock any mlock()ed ranges before detaching vmas
2539          */
2540         if (mm->locked_vm) {
2541                 struct vm_area_struct *tmp = vma;
2542                 while (tmp && tmp->vm_start < end) {
2543                         if (tmp->vm_flags & VM_LOCKED) {
2544                                 mm->locked_vm -= vma_pages(tmp);
2545                                 munlock_vma_pages_all(tmp);
2546                         }
2547                         tmp = tmp->vm_next;
2548                 }
2549         }
2550
2551         /*
2552          * Remove the vma's, and unmap the actual pages
2553          */
2554         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2555         unmap_region(mm, vma, prev, start, end);
2556
2557         /* Fix up all other VM information */
2558         remove_vma_list(mm, vma);
2559
2560         return 0;
2561 }
2562
2563 int vm_munmap(unsigned long start, size_t len)
2564 {
2565         int ret;
2566         struct mm_struct *mm = current->mm;
2567
2568         down_write(&mm->mmap_sem);
2569         ret = do_munmap(mm, start, len);
2570         up_write(&mm->mmap_sem);
2571         return ret;
2572 }
2573 EXPORT_SYMBOL(vm_munmap);
2574
2575 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2576 {
2577         profile_munmap(addr);
2578         return vm_munmap(addr, len);
2579 }
2580
2581 static inline void verify_mm_writelocked(struct mm_struct *mm)
2582 {
2583 #ifdef CONFIG_DEBUG_VM
2584         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2585                 WARN_ON(1);
2586                 up_read(&mm->mmap_sem);
2587         }
2588 #endif
2589 }
2590
2591 /*
2592  *  this is really a simplified "do_mmap".  it only handles
2593  *  anonymous maps.  eventually we may be able to do some
2594  *  brk-specific accounting here.
2595  */
2596 static unsigned long do_brk(unsigned long addr, unsigned long len)
2597 {
2598         struct mm_struct * mm = current->mm;
2599         struct vm_area_struct * vma, * prev;
2600         unsigned long flags;
2601         struct rb_node ** rb_link, * rb_parent;
2602         pgoff_t pgoff = addr >> PAGE_SHIFT;
2603         int error;
2604
2605         len = PAGE_ALIGN(len);
2606         if (!len)
2607                 return addr;
2608
2609         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2610
2611         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2612         if (error & ~PAGE_MASK)
2613                 return error;
2614
2615         error = mlock_future_check(mm, mm->def_flags, len);
2616         if (error)
2617                 return error;
2618
2619         /*
2620          * mm->mmap_sem is required to protect against another thread
2621          * changing the mappings in case we sleep.
2622          */
2623         verify_mm_writelocked(mm);
2624
2625         /*
2626          * Clear old maps.  this also does some error checking for us
2627          */
2628  munmap_back:
2629         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2630                 if (do_munmap(mm, addr, len))
2631                         return -ENOMEM;
2632                 goto munmap_back;
2633         }
2634
2635         /* Check against address space limits *after* clearing old maps... */
2636         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2637                 return -ENOMEM;
2638
2639         if (mm->map_count > sysctl_max_map_count)
2640                 return -ENOMEM;
2641
2642         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2643                 return -ENOMEM;
2644
2645         /* Can we just expand an old private anonymous mapping? */
2646         vma = vma_merge(mm, prev, addr, addr + len, flags,
2647                                         NULL, NULL, pgoff, NULL);
2648         if (vma)
2649                 goto out;
2650
2651         /*
2652          * create a vma struct for an anonymous mapping
2653          */
2654         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2655         if (!vma) {
2656                 vm_unacct_memory(len >> PAGE_SHIFT);
2657                 return -ENOMEM;
2658         }
2659
2660         INIT_LIST_HEAD(&vma->anon_vma_chain);
2661         vma->vm_mm = mm;
2662         vma->vm_start = addr;
2663         vma->vm_end = addr + len;
2664         vma->vm_pgoff = pgoff;
2665         vma->vm_flags = flags;
2666         vma->vm_page_prot = vm_get_page_prot(flags);
2667         vma_link(mm, vma, prev, rb_link, rb_parent);
2668 out:
2669         perf_event_mmap(vma);
2670         mm->total_vm += len >> PAGE_SHIFT;
2671         if (flags & VM_LOCKED)
2672                 mm->locked_vm += (len >> PAGE_SHIFT);
2673         vma->vm_flags |= VM_SOFTDIRTY;
2674         return addr;
2675 }
2676
2677 unsigned long vm_brk(unsigned long addr, unsigned long len)
2678 {
2679         struct mm_struct *mm = current->mm;
2680         unsigned long ret;
2681         bool populate;
2682
2683         down_write(&mm->mmap_sem);
2684         ret = do_brk(addr, len);
2685         populate = ((mm->def_flags & VM_LOCKED) != 0);
2686         up_write(&mm->mmap_sem);
2687         if (populate)
2688                 mm_populate(addr, len);
2689         return ret;
2690 }
2691 EXPORT_SYMBOL(vm_brk);
2692
2693 /* Release all mmaps. */
2694 void exit_mmap(struct mm_struct *mm)
2695 {
2696         struct mmu_gather tlb;
2697         struct vm_area_struct *vma;
2698         unsigned long nr_accounted = 0;
2699
2700         /* mm's last user has gone, and its about to be pulled down */
2701         mmu_notifier_release(mm);
2702
2703         if (mm->locked_vm) {
2704                 vma = mm->mmap;
2705                 while (vma) {
2706                         if (vma->vm_flags & VM_LOCKED)
2707                                 munlock_vma_pages_all(vma);
2708                         vma = vma->vm_next;
2709                 }
2710         }
2711
2712         arch_exit_mmap(mm);
2713
2714         vma = mm->mmap;
2715         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2716                 return;
2717
2718         lru_add_drain();
2719         flush_cache_mm(mm);
2720         tlb_gather_mmu(&tlb, mm, 0, -1);
2721         /* update_hiwater_rss(mm) here? but nobody should be looking */
2722         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2723         unmap_vmas(&tlb, vma, 0, -1);
2724
2725         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2726         tlb_finish_mmu(&tlb, 0, -1);
2727
2728         /*
2729          * Walk the list again, actually closing and freeing it,
2730          * with preemption enabled, without holding any MM locks.
2731          */
2732         while (vma) {
2733                 if (vma->vm_flags & VM_ACCOUNT)
2734                         nr_accounted += vma_pages(vma);
2735                 vma = remove_vma(vma);
2736         }
2737         vm_unacct_memory(nr_accounted);
2738
2739         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2740                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2741 }
2742
2743 /* Insert vm structure into process list sorted by address
2744  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2745  * then i_mmap_mutex is taken here.
2746  */
2747 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2748 {
2749         struct vm_area_struct *prev;
2750         struct rb_node **rb_link, *rb_parent;
2751
2752         /*
2753          * The vm_pgoff of a purely anonymous vma should be irrelevant
2754          * until its first write fault, when page's anon_vma and index
2755          * are set.  But now set the vm_pgoff it will almost certainly
2756          * end up with (unless mremap moves it elsewhere before that
2757          * first wfault), so /proc/pid/maps tells a consistent story.
2758          *
2759          * By setting it to reflect the virtual start address of the
2760          * vma, merges and splits can happen in a seamless way, just
2761          * using the existing file pgoff checks and manipulations.
2762          * Similarly in do_mmap_pgoff and in do_brk.
2763          */
2764         if (!vma->vm_file) {
2765                 BUG_ON(vma->anon_vma);
2766                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2767         }
2768         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2769                            &prev, &rb_link, &rb_parent))
2770                 return -ENOMEM;
2771         if ((vma->vm_flags & VM_ACCOUNT) &&
2772              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2773                 return -ENOMEM;
2774
2775         vma_link(mm, vma, prev, rb_link, rb_parent);
2776         return 0;
2777 }
2778
2779 /*
2780  * Copy the vma structure to a new location in the same mm,
2781  * prior to moving page table entries, to effect an mremap move.
2782  */
2783 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2784         unsigned long addr, unsigned long len, pgoff_t pgoff,
2785         bool *need_rmap_locks)
2786 {
2787         struct vm_area_struct *vma = *vmap;
2788         unsigned long vma_start = vma->vm_start;
2789         struct mm_struct *mm = vma->vm_mm;
2790         struct vm_area_struct *new_vma, *prev;
2791         struct rb_node **rb_link, *rb_parent;
2792         bool faulted_in_anon_vma = true;
2793
2794         /*
2795          * If anonymous vma has not yet been faulted, update new pgoff
2796          * to match new location, to increase its chance of merging.
2797          */
2798         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2799                 pgoff = addr >> PAGE_SHIFT;
2800                 faulted_in_anon_vma = false;
2801         }
2802
2803         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2804                 return NULL;    /* should never get here */
2805         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2806                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2807         if (new_vma) {
2808                 /*
2809                  * Source vma may have been merged into new_vma
2810                  */
2811                 if (unlikely(vma_start >= new_vma->vm_start &&
2812                              vma_start < new_vma->vm_end)) {
2813                         /*
2814                          * The only way we can get a vma_merge with
2815                          * self during an mremap is if the vma hasn't
2816                          * been faulted in yet and we were allowed to
2817                          * reset the dst vma->vm_pgoff to the
2818                          * destination address of the mremap to allow
2819                          * the merge to happen. mremap must change the
2820                          * vm_pgoff linearity between src and dst vmas
2821                          * (in turn preventing a vma_merge) to be
2822                          * safe. It is only safe to keep the vm_pgoff
2823                          * linear if there are no pages mapped yet.
2824                          */
2825                         VM_BUG_ON(faulted_in_anon_vma);
2826                         *vmap = vma = new_vma;
2827                 }
2828                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2829         } else {
2830                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2831                 if (new_vma) {
2832                         *new_vma = *vma;
2833                         new_vma->vm_start = addr;
2834                         new_vma->vm_end = addr + len;
2835                         new_vma->vm_pgoff = pgoff;
2836                         if (vma_dup_policy(vma, new_vma))
2837                                 goto out_free_vma;
2838                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2839                         if (anon_vma_clone(new_vma, vma))
2840                                 goto out_free_mempol;
2841                         if (new_vma->vm_file)
2842                                 get_file(new_vma->vm_file);
2843                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2844                                 new_vma->vm_ops->open(new_vma);
2845                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2846                         *need_rmap_locks = false;
2847                 }
2848         }
2849         return new_vma;
2850
2851  out_free_mempol:
2852         mpol_put(vma_policy(new_vma));
2853  out_free_vma:
2854         kmem_cache_free(vm_area_cachep, new_vma);
2855         return NULL;
2856 }
2857
2858 /*
2859  * Return true if the calling process may expand its vm space by the passed
2860  * number of pages
2861  */
2862 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2863 {
2864         unsigned long cur = mm->total_vm;       /* pages */
2865         unsigned long lim;
2866
2867         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2868
2869         if (cur + npages > lim)
2870                 return 0;
2871         return 1;
2872 }
2873
2874 static int special_mapping_fault(struct vm_area_struct *vma,
2875                                  struct vm_fault *vmf);
2876
2877 /*
2878  * Having a close hook prevents vma merging regardless of flags.
2879  */
2880 static void special_mapping_close(struct vm_area_struct *vma)
2881 {
2882 }
2883
2884 static const char *special_mapping_name(struct vm_area_struct *vma)
2885 {
2886         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2887 }
2888
2889 static const struct vm_operations_struct special_mapping_vmops = {
2890         .close = special_mapping_close,
2891         .fault = special_mapping_fault,
2892         .name = special_mapping_name,
2893 };
2894
2895 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2896         .close = special_mapping_close,
2897         .fault = special_mapping_fault,
2898 };
2899
2900 static int special_mapping_fault(struct vm_area_struct *vma,
2901                                 struct vm_fault *vmf)
2902 {
2903         pgoff_t pgoff;
2904         struct page **pages;
2905
2906         /*
2907          * special mappings have no vm_file, and in that case, the mm
2908          * uses vm_pgoff internally. So we have to subtract it from here.
2909          * We are allowed to do this because we are the mm; do not copy
2910          * this code into drivers!
2911          */
2912         pgoff = vmf->pgoff - vma->vm_pgoff;
2913
2914         if (vma->vm_ops == &legacy_special_mapping_vmops)
2915                 pages = vma->vm_private_data;
2916         else
2917                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2918                         pages;
2919
2920         for (; pgoff && *pages; ++pages)
2921                 pgoff--;
2922
2923         if (*pages) {
2924                 struct page *page = *pages;
2925                 get_page(page);
2926                 vmf->page = page;
2927                 return 0;
2928         }
2929
2930         return VM_FAULT_SIGBUS;
2931 }
2932
2933 static struct vm_area_struct *__install_special_mapping(
2934         struct mm_struct *mm,
2935         unsigned long addr, unsigned long len,
2936         unsigned long vm_flags, const struct vm_operations_struct *ops,
2937         void *priv)
2938 {
2939         int ret;
2940         struct vm_area_struct *vma;
2941
2942         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2943         if (unlikely(vma == NULL))
2944                 return ERR_PTR(-ENOMEM);
2945
2946         INIT_LIST_HEAD(&vma->anon_vma_chain);
2947         vma->vm_mm = mm;
2948         vma->vm_start = addr;
2949         vma->vm_end = addr + len;
2950
2951         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2952         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2953
2954         vma->vm_ops = ops;
2955         vma->vm_private_data = priv;
2956
2957         ret = insert_vm_struct(mm, vma);
2958         if (ret)
2959                 goto out;
2960
2961         mm->total_vm += len >> PAGE_SHIFT;
2962
2963         perf_event_mmap(vma);
2964
2965         return vma;
2966
2967 out:
2968         kmem_cache_free(vm_area_cachep, vma);
2969         return ERR_PTR(ret);
2970 }
2971
2972 /*
2973  * Called with mm->mmap_sem held for writing.
2974  * Insert a new vma covering the given region, with the given flags.
2975  * Its pages are supplied by the given array of struct page *.
2976  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2977  * The region past the last page supplied will always produce SIGBUS.
2978  * The array pointer and the pages it points to are assumed to stay alive
2979  * for as long as this mapping might exist.
2980  */
2981 struct vm_area_struct *_install_special_mapping(
2982         struct mm_struct *mm,
2983         unsigned long addr, unsigned long len,
2984         unsigned long vm_flags, const struct vm_special_mapping *spec)
2985 {
2986         return __install_special_mapping(mm, addr, len, vm_flags,
2987                                          &special_mapping_vmops, (void *)spec);
2988 }
2989
2990 int install_special_mapping(struct mm_struct *mm,
2991                             unsigned long addr, unsigned long len,
2992                             unsigned long vm_flags, struct page **pages)
2993 {
2994         struct vm_area_struct *vma = __install_special_mapping(
2995                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
2996                 (void *)pages);
2997
2998         return PTR_ERR_OR_ZERO(vma);
2999 }
3000
3001 static DEFINE_MUTEX(mm_all_locks_mutex);
3002
3003 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3004 {
3005         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3006                 /*
3007                  * The LSB of head.next can't change from under us
3008                  * because we hold the mm_all_locks_mutex.
3009                  */
3010                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3011                 /*
3012                  * We can safely modify head.next after taking the
3013                  * anon_vma->root->rwsem. If some other vma in this mm shares
3014                  * the same anon_vma we won't take it again.
3015                  *
3016                  * No need of atomic instructions here, head.next
3017                  * can't change from under us thanks to the
3018                  * anon_vma->root->rwsem.
3019                  */
3020                 if (__test_and_set_bit(0, (unsigned long *)
3021                                        &anon_vma->root->rb_root.rb_node))
3022                         BUG();
3023         }
3024 }
3025
3026 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3027 {
3028         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3029                 /*
3030                  * AS_MM_ALL_LOCKS can't change from under us because
3031                  * we hold the mm_all_locks_mutex.
3032                  *
3033                  * Operations on ->flags have to be atomic because
3034                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3035                  * mm_all_locks_mutex, there may be other cpus
3036                  * changing other bitflags in parallel to us.
3037                  */
3038                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3039                         BUG();
3040                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3041         }
3042 }
3043
3044 /*
3045  * This operation locks against the VM for all pte/vma/mm related
3046  * operations that could ever happen on a certain mm. This includes
3047  * vmtruncate, try_to_unmap, and all page faults.
3048  *
3049  * The caller must take the mmap_sem in write mode before calling
3050  * mm_take_all_locks(). The caller isn't allowed to release the
3051  * mmap_sem until mm_drop_all_locks() returns.
3052  *
3053  * mmap_sem in write mode is required in order to block all operations
3054  * that could modify pagetables and free pages without need of
3055  * altering the vma layout (for example populate_range() with
3056  * nonlinear vmas). It's also needed in write mode to avoid new
3057  * anon_vmas to be associated with existing vmas.
3058  *
3059  * A single task can't take more than one mm_take_all_locks() in a row
3060  * or it would deadlock.
3061  *
3062  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3063  * mapping->flags avoid to take the same lock twice, if more than one
3064  * vma in this mm is backed by the same anon_vma or address_space.
3065  *
3066  * We can take all the locks in random order because the VM code
3067  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3068  * takes more than one of them in a row. Secondly we're protected
3069  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3070  *
3071  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3072  * that may have to take thousand of locks.
3073  *
3074  * mm_take_all_locks() can fail if it's interrupted by signals.
3075  */
3076 int mm_take_all_locks(struct mm_struct *mm)
3077 {
3078         struct vm_area_struct *vma;
3079         struct anon_vma_chain *avc;
3080
3081         BUG_ON(down_read_trylock(&mm->mmap_sem));
3082
3083         mutex_lock(&mm_all_locks_mutex);
3084
3085         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3086                 if (signal_pending(current))
3087                         goto out_unlock;
3088                 if (vma->vm_file && vma->vm_file->f_mapping)
3089                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3090         }
3091
3092         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3093                 if (signal_pending(current))
3094                         goto out_unlock;
3095                 if (vma->anon_vma)
3096                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3097                                 vm_lock_anon_vma(mm, avc->anon_vma);
3098         }
3099
3100         return 0;
3101
3102 out_unlock:
3103         mm_drop_all_locks(mm);
3104         return -EINTR;
3105 }
3106
3107 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3108 {
3109         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3110                 /*
3111                  * The LSB of head.next can't change to 0 from under
3112                  * us because we hold the mm_all_locks_mutex.
3113                  *
3114                  * We must however clear the bitflag before unlocking
3115                  * the vma so the users using the anon_vma->rb_root will
3116                  * never see our bitflag.
3117                  *
3118                  * No need of atomic instructions here, head.next
3119                  * can't change from under us until we release the
3120                  * anon_vma->root->rwsem.
3121                  */
3122                 if (!__test_and_clear_bit(0, (unsigned long *)
3123                                           &anon_vma->root->rb_root.rb_node))
3124                         BUG();
3125                 anon_vma_unlock_write(anon_vma);
3126         }
3127 }
3128
3129 static void vm_unlock_mapping(struct address_space *mapping)
3130 {
3131         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3132                 /*
3133                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3134                  * because we hold the mm_all_locks_mutex.
3135                  */
3136                 mutex_unlock(&mapping->i_mmap_mutex);
3137                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3138                                         &mapping->flags))
3139                         BUG();
3140         }
3141 }
3142
3143 /*
3144  * The mmap_sem cannot be released by the caller until
3145  * mm_drop_all_locks() returns.
3146  */
3147 void mm_drop_all_locks(struct mm_struct *mm)
3148 {
3149         struct vm_area_struct *vma;
3150         struct anon_vma_chain *avc;
3151
3152         BUG_ON(down_read_trylock(&mm->mmap_sem));
3153         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3154
3155         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3156                 if (vma->anon_vma)
3157                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3158                                 vm_unlock_anon_vma(avc->anon_vma);
3159                 if (vma->vm_file && vma->vm_file->f_mapping)
3160                         vm_unlock_mapping(vma->vm_file->f_mapping);
3161         }
3162
3163         mutex_unlock(&mm_all_locks_mutex);
3164 }
3165
3166 /*
3167  * initialise the VMA slab
3168  */
3169 void __init mmap_init(void)
3170 {
3171         int ret;
3172
3173         ret = percpu_counter_init(&vm_committed_as, 0);
3174         VM_BUG_ON(ret);
3175 }
3176
3177 /*
3178  * Initialise sysctl_user_reserve_kbytes.
3179  *
3180  * This is intended to prevent a user from starting a single memory hogging
3181  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3182  * mode.
3183  *
3184  * The default value is min(3% of free memory, 128MB)
3185  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3186  */
3187 static int init_user_reserve(void)
3188 {
3189         unsigned long free_kbytes;
3190
3191         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3192
3193         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3194         return 0;
3195 }
3196 subsys_initcall(init_user_reserve);
3197
3198 /*
3199  * Initialise sysctl_admin_reserve_kbytes.
3200  *
3201  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3202  * to log in and kill a memory hogging process.
3203  *
3204  * Systems with more than 256MB will reserve 8MB, enough to recover
3205  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3206  * only reserve 3% of free pages by default.
3207  */
3208 static int init_admin_reserve(void)
3209 {
3210         unsigned long free_kbytes;
3211
3212         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3213
3214         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3215         return 0;
3216 }
3217 subsys_initcall(init_admin_reserve);
3218
3219 /*
3220  * Reinititalise user and admin reserves if memory is added or removed.
3221  *
3222  * The default user reserve max is 128MB, and the default max for the
3223  * admin reserve is 8MB. These are usually, but not always, enough to
3224  * enable recovery from a memory hogging process using login/sshd, a shell,
3225  * and tools like top. It may make sense to increase or even disable the
3226  * reserve depending on the existence of swap or variations in the recovery
3227  * tools. So, the admin may have changed them.
3228  *
3229  * If memory is added and the reserves have been eliminated or increased above
3230  * the default max, then we'll trust the admin.
3231  *
3232  * If memory is removed and there isn't enough free memory, then we
3233  * need to reset the reserves.
3234  *
3235  * Otherwise keep the reserve set by the admin.
3236  */
3237 static int reserve_mem_notifier(struct notifier_block *nb,
3238                              unsigned long action, void *data)
3239 {
3240         unsigned long tmp, free_kbytes;
3241
3242         switch (action) {
3243         case MEM_ONLINE:
3244                 /* Default max is 128MB. Leave alone if modified by operator. */
3245                 tmp = sysctl_user_reserve_kbytes;
3246                 if (0 < tmp && tmp < (1UL << 17))
3247                         init_user_reserve();
3248
3249                 /* Default max is 8MB.  Leave alone if modified by operator. */
3250                 tmp = sysctl_admin_reserve_kbytes;
3251                 if (0 < tmp && tmp < (1UL << 13))
3252                         init_admin_reserve();
3253
3254                 break;
3255         case MEM_OFFLINE:
3256                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3257
3258                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3259                         init_user_reserve();
3260                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3261                                 sysctl_user_reserve_kbytes);
3262                 }
3263
3264                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3265                         init_admin_reserve();
3266                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3267                                 sysctl_admin_reserve_kbytes);
3268                 }
3269                 break;
3270         default:
3271                 break;
3272         }
3273         return NOTIFY_OK;
3274 }
3275
3276 static struct notifier_block reserve_mem_nb = {
3277         .notifier_call = reserve_mem_notifier,
3278 };
3279
3280 static int __meminit init_reserve_notifier(void)
3281 {
3282         if (register_hotmemory_notifier(&reserve_mem_nb))
3283                 printk("Failed registering memory add/remove notifier for admin reserve");
3284
3285         return 0;
3286 }
3287 subsys_initcall(init_reserve_notifier);