]> git.karo-electronics.de Git - linux-beck.git/blob - mm/mmap.c
mm: validate_mm browse_rb SMP race condition
[linux-beck.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)       (0)
56 #endif
57
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len)              (addr)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data = true;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77                 struct vm_area_struct *vma, struct vm_area_struct *prev,
78                 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type     prot
85  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
86  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
87  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
88  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
89  *
90  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  */
95 pgprot_t protection_map[16] = {
96         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
97         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 };
99
100 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 {
102         return __pgprot(pgprot_val(protection_map[vm_flags &
103                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
104                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 }
106 EXPORT_SYMBOL(vm_get_page_prot);
107
108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 {
110         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 }
112
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct *vma)
115 {
116         unsigned long vm_flags = vma->vm_flags;
117
118         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
119         if (vma_wants_writenotify(vma)) {
120                 vm_flags &= ~VM_SHARED;
121                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
122                                                      vm_flags);
123         }
124 }
125
126
127 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
128 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
129 unsigned long sysctl_overcommit_kbytes __read_mostly;
130 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
131 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
132 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
133 /*
134  * Make sure vm_committed_as in one cacheline and not cacheline shared with
135  * other variables. It can be updated by several CPUs frequently.
136  */
137 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
138
139 /*
140  * The global memory commitment made in the system can be a metric
141  * that can be used to drive ballooning decisions when Linux is hosted
142  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
143  * balancing memory across competing virtual machines that are hosted.
144  * Several metrics drive this policy engine including the guest reported
145  * memory commitment.
146  */
147 unsigned long vm_memory_committed(void)
148 {
149         return percpu_counter_read_positive(&vm_committed_as);
150 }
151 EXPORT_SYMBOL_GPL(vm_memory_committed);
152
153 /*
154  * Check that a process has enough memory to allocate a new virtual
155  * mapping. 0 means there is enough memory for the allocation to
156  * succeed and -ENOMEM implies there is not.
157  *
158  * We currently support three overcommit policies, which are set via the
159  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
160  *
161  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
162  * Additional code 2002 Jul 20 by Robert Love.
163  *
164  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
165  *
166  * Note this is a helper function intended to be used by LSMs which
167  * wish to use this logic.
168  */
169 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
170 {
171         long free, allowed, reserve;
172
173         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
174                         -(s64)vm_committed_as_batch * num_online_cpus(),
175                         "memory commitment underflow");
176
177         vm_acct_memory(pages);
178
179         /*
180          * Sometimes we want to use more memory than we have
181          */
182         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
183                 return 0;
184
185         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
186                 free = global_page_state(NR_FREE_PAGES);
187                 free += global_page_state(NR_FILE_PAGES);
188
189                 /*
190                  * shmem pages shouldn't be counted as free in this
191                  * case, they can't be purged, only swapped out, and
192                  * that won't affect the overall amount of available
193                  * memory in the system.
194                  */
195                 free -= global_page_state(NR_SHMEM);
196
197                 free += get_nr_swap_pages();
198
199                 /*
200                  * Any slabs which are created with the
201                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
202                  * which are reclaimable, under pressure.  The dentry
203                  * cache and most inode caches should fall into this
204                  */
205                 free += global_page_state(NR_SLAB_RECLAIMABLE);
206
207                 /*
208                  * Leave reserved pages. The pages are not for anonymous pages.
209                  */
210                 if (free <= totalreserve_pages)
211                         goto error;
212                 else
213                         free -= totalreserve_pages;
214
215                 /*
216                  * Reserve some for root
217                  */
218                 if (!cap_sys_admin)
219                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220
221                 if (free > pages)
222                         return 0;
223
224                 goto error;
225         }
226
227         allowed = vm_commit_limit();
228         /*
229          * Reserve some for root
230          */
231         if (!cap_sys_admin)
232                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
233
234         /*
235          * Don't let a single process grow so big a user can't recover
236          */
237         if (mm) {
238                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
239                 allowed -= min_t(long, mm->total_vm / 32, reserve);
240         }
241
242         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
243                 return 0;
244 error:
245         vm_unacct_memory(pages);
246
247         return -ENOMEM;
248 }
249
250 /*
251  * Requires inode->i_mapping->i_mmap_rwsem
252  */
253 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
254                 struct file *file, struct address_space *mapping)
255 {
256         if (vma->vm_flags & VM_DENYWRITE)
257                 atomic_inc(&file_inode(file)->i_writecount);
258         if (vma->vm_flags & VM_SHARED)
259                 mapping_unmap_writable(mapping);
260
261         flush_dcache_mmap_lock(mapping);
262         vma_interval_tree_remove(vma, &mapping->i_mmap);
263         flush_dcache_mmap_unlock(mapping);
264 }
265
266 /*
267  * Unlink a file-based vm structure from its interval tree, to hide
268  * vma from rmap and vmtruncate before freeing its page tables.
269  */
270 void unlink_file_vma(struct vm_area_struct *vma)
271 {
272         struct file *file = vma->vm_file;
273
274         if (file) {
275                 struct address_space *mapping = file->f_mapping;
276                 i_mmap_lock_write(mapping);
277                 __remove_shared_vm_struct(vma, file, mapping);
278                 i_mmap_unlock_write(mapping);
279         }
280 }
281
282 /*
283  * Close a vm structure and free it, returning the next.
284  */
285 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
286 {
287         struct vm_area_struct *next = vma->vm_next;
288
289         might_sleep();
290         if (vma->vm_ops && vma->vm_ops->close)
291                 vma->vm_ops->close(vma);
292         if (vma->vm_file)
293                 fput(vma->vm_file);
294         mpol_put(vma_policy(vma));
295         kmem_cache_free(vm_area_cachep, vma);
296         return next;
297 }
298
299 static unsigned long do_brk(unsigned long addr, unsigned long len);
300
301 SYSCALL_DEFINE1(brk, unsigned long, brk)
302 {
303         unsigned long retval;
304         unsigned long newbrk, oldbrk;
305         struct mm_struct *mm = current->mm;
306         unsigned long min_brk;
307         bool populate;
308
309         down_write(&mm->mmap_sem);
310
311 #ifdef CONFIG_COMPAT_BRK
312         /*
313          * CONFIG_COMPAT_BRK can still be overridden by setting
314          * randomize_va_space to 2, which will still cause mm->start_brk
315          * to be arbitrarily shifted
316          */
317         if (current->brk_randomized)
318                 min_brk = mm->start_brk;
319         else
320                 min_brk = mm->end_data;
321 #else
322         min_brk = mm->start_brk;
323 #endif
324         if (brk < min_brk)
325                 goto out;
326
327         /*
328          * Check against rlimit here. If this check is done later after the test
329          * of oldbrk with newbrk then it can escape the test and let the data
330          * segment grow beyond its set limit the in case where the limit is
331          * not page aligned -Ram Gupta
332          */
333         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
334                               mm->end_data, mm->start_data))
335                 goto out;
336
337         newbrk = PAGE_ALIGN(brk);
338         oldbrk = PAGE_ALIGN(mm->brk);
339         if (oldbrk == newbrk)
340                 goto set_brk;
341
342         /* Always allow shrinking brk. */
343         if (brk <= mm->brk) {
344                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
345                         goto set_brk;
346                 goto out;
347         }
348
349         /* Check against existing mmap mappings. */
350         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
351                 goto out;
352
353         /* Ok, looks good - let it rip. */
354         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
355                 goto out;
356
357 set_brk:
358         mm->brk = brk;
359         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
360         up_write(&mm->mmap_sem);
361         if (populate)
362                 mm_populate(oldbrk, newbrk - oldbrk);
363         return brk;
364
365 out:
366         retval = mm->brk;
367         up_write(&mm->mmap_sem);
368         return retval;
369 }
370
371 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 {
373         unsigned long max, subtree_gap;
374         max = vma->vm_start;
375         if (vma->vm_prev)
376                 max -= vma->vm_prev->vm_end;
377         if (vma->vm_rb.rb_left) {
378                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
379                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
380                 if (subtree_gap > max)
381                         max = subtree_gap;
382         }
383         if (vma->vm_rb.rb_right) {
384                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
385                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
386                 if (subtree_gap > max)
387                         max = subtree_gap;
388         }
389         return max;
390 }
391
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct mm_struct *mm)
394 {
395         struct rb_root *root = &mm->mm_rb;
396         int i = 0, j, bug = 0;
397         struct rb_node *nd, *pn = NULL;
398         unsigned long prev = 0, pend = 0;
399
400         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401                 struct vm_area_struct *vma;
402                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403                 if (vma->vm_start < prev) {
404                         pr_emerg("vm_start %lx < prev %lx\n",
405                                   vma->vm_start, prev);
406                         bug = 1;
407                 }
408                 if (vma->vm_start < pend) {
409                         pr_emerg("vm_start %lx < pend %lx\n",
410                                   vma->vm_start, pend);
411                         bug = 1;
412                 }
413                 if (vma->vm_start > vma->vm_end) {
414                         pr_emerg("vm_start %lx > vm_end %lx\n",
415                                   vma->vm_start, vma->vm_end);
416                         bug = 1;
417                 }
418                 spin_lock(&mm->page_table_lock);
419                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
420                         pr_emerg("free gap %lx, correct %lx\n",
421                                vma->rb_subtree_gap,
422                                vma_compute_subtree_gap(vma));
423                         bug = 1;
424                 }
425                 spin_unlock(&mm->page_table_lock);
426                 i++;
427                 pn = nd;
428                 prev = vma->vm_start;
429                 pend = vma->vm_end;
430         }
431         j = 0;
432         for (nd = pn; nd; nd = rb_prev(nd))
433                 j++;
434         if (i != j) {
435                 pr_emerg("backwards %d, forwards %d\n", j, i);
436                 bug = 1;
437         }
438         return bug ? -1 : i;
439 }
440
441 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
442 {
443         struct rb_node *nd;
444
445         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
446                 struct vm_area_struct *vma;
447                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
448                 VM_BUG_ON_VMA(vma != ignore &&
449                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
450                         vma);
451         }
452 }
453
454 static void validate_mm(struct mm_struct *mm)
455 {
456         int bug = 0;
457         int i = 0;
458         unsigned long highest_address = 0;
459         struct vm_area_struct *vma = mm->mmap;
460
461         while (vma) {
462                 struct anon_vma_chain *avc;
463
464                 vma_lock_anon_vma(vma);
465                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
466                         anon_vma_interval_tree_verify(avc);
467                 vma_unlock_anon_vma(vma);
468                 highest_address = vma->vm_end;
469                 vma = vma->vm_next;
470                 i++;
471         }
472         if (i != mm->map_count) {
473                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
474                 bug = 1;
475         }
476         if (highest_address != mm->highest_vm_end) {
477                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
478                           mm->highest_vm_end, highest_address);
479                 bug = 1;
480         }
481         i = browse_rb(mm);
482         if (i != mm->map_count) {
483                 if (i != -1)
484                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
485                 bug = 1;
486         }
487         VM_BUG_ON_MM(bug, mm);
488 }
489 #else
490 #define validate_mm_rb(root, ignore) do { } while (0)
491 #define validate_mm(mm) do { } while (0)
492 #endif
493
494 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
495                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
496
497 /*
498  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
499  * vma->vm_prev->vm_end values changed, without modifying the vma's position
500  * in the rbtree.
501  */
502 static void vma_gap_update(struct vm_area_struct *vma)
503 {
504         /*
505          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
506          * function that does exacltly what we want.
507          */
508         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
509 }
510
511 static inline void vma_rb_insert(struct vm_area_struct *vma,
512                                  struct rb_root *root)
513 {
514         /* All rb_subtree_gap values must be consistent prior to insertion */
515         validate_mm_rb(root, NULL);
516
517         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519
520 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
521 {
522         /*
523          * All rb_subtree_gap values must be consistent prior to erase,
524          * with the possible exception of the vma being erased.
525          */
526         validate_mm_rb(root, vma);
527
528         /*
529          * Note rb_erase_augmented is a fairly large inline function,
530          * so make sure we instantiate it only once with our desired
531          * augmented rbtree callbacks.
532          */
533         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
534 }
535
536 /*
537  * vma has some anon_vma assigned, and is already inserted on that
538  * anon_vma's interval trees.
539  *
540  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
541  * vma must be removed from the anon_vma's interval trees using
542  * anon_vma_interval_tree_pre_update_vma().
543  *
544  * After the update, the vma will be reinserted using
545  * anon_vma_interval_tree_post_update_vma().
546  *
547  * The entire update must be protected by exclusive mmap_sem and by
548  * the root anon_vma's mutex.
549  */
550 static inline void
551 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
552 {
553         struct anon_vma_chain *avc;
554
555         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
556                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
557 }
558
559 static inline void
560 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
561 {
562         struct anon_vma_chain *avc;
563
564         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
565                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
566 }
567
568 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
569                 unsigned long end, struct vm_area_struct **pprev,
570                 struct rb_node ***rb_link, struct rb_node **rb_parent)
571 {
572         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
573
574         __rb_link = &mm->mm_rb.rb_node;
575         rb_prev = __rb_parent = NULL;
576
577         while (*__rb_link) {
578                 struct vm_area_struct *vma_tmp;
579
580                 __rb_parent = *__rb_link;
581                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
582
583                 if (vma_tmp->vm_end > addr) {
584                         /* Fail if an existing vma overlaps the area */
585                         if (vma_tmp->vm_start < end)
586                                 return -ENOMEM;
587                         __rb_link = &__rb_parent->rb_left;
588                 } else {
589                         rb_prev = __rb_parent;
590                         __rb_link = &__rb_parent->rb_right;
591                 }
592         }
593
594         *pprev = NULL;
595         if (rb_prev)
596                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
597         *rb_link = __rb_link;
598         *rb_parent = __rb_parent;
599         return 0;
600 }
601
602 static unsigned long count_vma_pages_range(struct mm_struct *mm,
603                 unsigned long addr, unsigned long end)
604 {
605         unsigned long nr_pages = 0;
606         struct vm_area_struct *vma;
607
608         /* Find first overlaping mapping */
609         vma = find_vma_intersection(mm, addr, end);
610         if (!vma)
611                 return 0;
612
613         nr_pages = (min(end, vma->vm_end) -
614                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
615
616         /* Iterate over the rest of the overlaps */
617         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
618                 unsigned long overlap_len;
619
620                 if (vma->vm_start > end)
621                         break;
622
623                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
624                 nr_pages += overlap_len >> PAGE_SHIFT;
625         }
626
627         return nr_pages;
628 }
629
630 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
631                 struct rb_node **rb_link, struct rb_node *rb_parent)
632 {
633         /* Update tracking information for the gap following the new vma. */
634         if (vma->vm_next)
635                 vma_gap_update(vma->vm_next);
636         else
637                 mm->highest_vm_end = vma->vm_end;
638
639         /*
640          * vma->vm_prev wasn't known when we followed the rbtree to find the
641          * correct insertion point for that vma. As a result, we could not
642          * update the vma vm_rb parents rb_subtree_gap values on the way down.
643          * So, we first insert the vma with a zero rb_subtree_gap value
644          * (to be consistent with what we did on the way down), and then
645          * immediately update the gap to the correct value. Finally we
646          * rebalance the rbtree after all augmented values have been set.
647          */
648         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
649         vma->rb_subtree_gap = 0;
650         vma_gap_update(vma);
651         vma_rb_insert(vma, &mm->mm_rb);
652 }
653
654 static void __vma_link_file(struct vm_area_struct *vma)
655 {
656         struct file *file;
657
658         file = vma->vm_file;
659         if (file) {
660                 struct address_space *mapping = file->f_mapping;
661
662                 if (vma->vm_flags & VM_DENYWRITE)
663                         atomic_dec(&file_inode(file)->i_writecount);
664                 if (vma->vm_flags & VM_SHARED)
665                         atomic_inc(&mapping->i_mmap_writable);
666
667                 flush_dcache_mmap_lock(mapping);
668                 vma_interval_tree_insert(vma, &mapping->i_mmap);
669                 flush_dcache_mmap_unlock(mapping);
670         }
671 }
672
673 static void
674 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
675         struct vm_area_struct *prev, struct rb_node **rb_link,
676         struct rb_node *rb_parent)
677 {
678         __vma_link_list(mm, vma, prev, rb_parent);
679         __vma_link_rb(mm, vma, rb_link, rb_parent);
680 }
681
682 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
683                         struct vm_area_struct *prev, struct rb_node **rb_link,
684                         struct rb_node *rb_parent)
685 {
686         struct address_space *mapping = NULL;
687
688         if (vma->vm_file) {
689                 mapping = vma->vm_file->f_mapping;
690                 i_mmap_lock_write(mapping);
691         }
692
693         __vma_link(mm, vma, prev, rb_link, rb_parent);
694         __vma_link_file(vma);
695
696         if (mapping)
697                 i_mmap_unlock_write(mapping);
698
699         mm->map_count++;
700         validate_mm(mm);
701 }
702
703 /*
704  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
705  * mm's list and rbtree.  It has already been inserted into the interval tree.
706  */
707 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
708 {
709         struct vm_area_struct *prev;
710         struct rb_node **rb_link, *rb_parent;
711
712         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
713                            &prev, &rb_link, &rb_parent))
714                 BUG();
715         __vma_link(mm, vma, prev, rb_link, rb_parent);
716         mm->map_count++;
717 }
718
719 static inline void
720 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
721                 struct vm_area_struct *prev)
722 {
723         struct vm_area_struct *next;
724
725         vma_rb_erase(vma, &mm->mm_rb);
726         prev->vm_next = next = vma->vm_next;
727         if (next)
728                 next->vm_prev = prev;
729
730         /* Kill the cache */
731         vmacache_invalidate(mm);
732 }
733
734 /*
735  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
736  * is already present in an i_mmap tree without adjusting the tree.
737  * The following helper function should be used when such adjustments
738  * are necessary.  The "insert" vma (if any) is to be inserted
739  * before we drop the necessary locks.
740  */
741 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
742         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
743 {
744         struct mm_struct *mm = vma->vm_mm;
745         struct vm_area_struct *next = vma->vm_next;
746         struct vm_area_struct *importer = NULL;
747         struct address_space *mapping = NULL;
748         struct rb_root *root = NULL;
749         struct anon_vma *anon_vma = NULL;
750         struct file *file = vma->vm_file;
751         bool start_changed = false, end_changed = false;
752         long adjust_next = 0;
753         int remove_next = 0;
754
755         if (next && !insert) {
756                 struct vm_area_struct *exporter = NULL;
757
758                 if (end >= next->vm_end) {
759                         /*
760                          * vma expands, overlapping all the next, and
761                          * perhaps the one after too (mprotect case 6).
762                          */
763 again:                  remove_next = 1 + (end > next->vm_end);
764                         end = next->vm_end;
765                         exporter = next;
766                         importer = vma;
767                 } else if (end > next->vm_start) {
768                         /*
769                          * vma expands, overlapping part of the next:
770                          * mprotect case 5 shifting the boundary up.
771                          */
772                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
773                         exporter = next;
774                         importer = vma;
775                 } else if (end < vma->vm_end) {
776                         /*
777                          * vma shrinks, and !insert tells it's not
778                          * split_vma inserting another: so it must be
779                          * mprotect case 4 shifting the boundary down.
780                          */
781                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
782                         exporter = vma;
783                         importer = next;
784                 }
785
786                 /*
787                  * Easily overlooked: when mprotect shifts the boundary,
788                  * make sure the expanding vma has anon_vma set if the
789                  * shrinking vma had, to cover any anon pages imported.
790                  */
791                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
792                         int error;
793
794                         importer->anon_vma = exporter->anon_vma;
795                         error = anon_vma_clone(importer, exporter);
796                         if (error)
797                                 return error;
798                 }
799         }
800
801         if (file) {
802                 mapping = file->f_mapping;
803                 root = &mapping->i_mmap;
804                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
805
806                 if (adjust_next)
807                         uprobe_munmap(next, next->vm_start, next->vm_end);
808
809                 i_mmap_lock_write(mapping);
810                 if (insert) {
811                         /*
812                          * Put into interval tree now, so instantiated pages
813                          * are visible to arm/parisc __flush_dcache_page
814                          * throughout; but we cannot insert into address
815                          * space until vma start or end is updated.
816                          */
817                         __vma_link_file(insert);
818                 }
819         }
820
821         vma_adjust_trans_huge(vma, start, end, adjust_next);
822
823         anon_vma = vma->anon_vma;
824         if (!anon_vma && adjust_next)
825                 anon_vma = next->anon_vma;
826         if (anon_vma) {
827                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
828                           anon_vma != next->anon_vma, next);
829                 anon_vma_lock_write(anon_vma);
830                 anon_vma_interval_tree_pre_update_vma(vma);
831                 if (adjust_next)
832                         anon_vma_interval_tree_pre_update_vma(next);
833         }
834
835         if (root) {
836                 flush_dcache_mmap_lock(mapping);
837                 vma_interval_tree_remove(vma, root);
838                 if (adjust_next)
839                         vma_interval_tree_remove(next, root);
840         }
841
842         if (start != vma->vm_start) {
843                 vma->vm_start = start;
844                 start_changed = true;
845         }
846         if (end != vma->vm_end) {
847                 vma->vm_end = end;
848                 end_changed = true;
849         }
850         vma->vm_pgoff = pgoff;
851         if (adjust_next) {
852                 next->vm_start += adjust_next << PAGE_SHIFT;
853                 next->vm_pgoff += adjust_next;
854         }
855
856         if (root) {
857                 if (adjust_next)
858                         vma_interval_tree_insert(next, root);
859                 vma_interval_tree_insert(vma, root);
860                 flush_dcache_mmap_unlock(mapping);
861         }
862
863         if (remove_next) {
864                 /*
865                  * vma_merge has merged next into vma, and needs
866                  * us to remove next before dropping the locks.
867                  */
868                 __vma_unlink(mm, next, vma);
869                 if (file)
870                         __remove_shared_vm_struct(next, file, mapping);
871         } else if (insert) {
872                 /*
873                  * split_vma has split insert from vma, and needs
874                  * us to insert it before dropping the locks
875                  * (it may either follow vma or precede it).
876                  */
877                 __insert_vm_struct(mm, insert);
878         } else {
879                 if (start_changed)
880                         vma_gap_update(vma);
881                 if (end_changed) {
882                         if (!next)
883                                 mm->highest_vm_end = end;
884                         else if (!adjust_next)
885                                 vma_gap_update(next);
886                 }
887         }
888
889         if (anon_vma) {
890                 anon_vma_interval_tree_post_update_vma(vma);
891                 if (adjust_next)
892                         anon_vma_interval_tree_post_update_vma(next);
893                 anon_vma_unlock_write(anon_vma);
894         }
895         if (mapping)
896                 i_mmap_unlock_write(mapping);
897
898         if (root) {
899                 uprobe_mmap(vma);
900
901                 if (adjust_next)
902                         uprobe_mmap(next);
903         }
904
905         if (remove_next) {
906                 if (file) {
907                         uprobe_munmap(next, next->vm_start, next->vm_end);
908                         fput(file);
909                 }
910                 if (next->anon_vma)
911                         anon_vma_merge(vma, next);
912                 mm->map_count--;
913                 mpol_put(vma_policy(next));
914                 kmem_cache_free(vm_area_cachep, next);
915                 /*
916                  * In mprotect's case 6 (see comments on vma_merge),
917                  * we must remove another next too. It would clutter
918                  * up the code too much to do both in one go.
919                  */
920                 next = vma->vm_next;
921                 if (remove_next == 2)
922                         goto again;
923                 else if (next)
924                         vma_gap_update(next);
925                 else
926                         mm->highest_vm_end = end;
927         }
928         if (insert && file)
929                 uprobe_mmap(insert);
930
931         validate_mm(mm);
932
933         return 0;
934 }
935
936 /*
937  * If the vma has a ->close operation then the driver probably needs to release
938  * per-vma resources, so we don't attempt to merge those.
939  */
940 static inline int is_mergeable_vma(struct vm_area_struct *vma,
941                                 struct file *file, unsigned long vm_flags,
942                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
943 {
944         /*
945          * VM_SOFTDIRTY should not prevent from VMA merging, if we
946          * match the flags but dirty bit -- the caller should mark
947          * merged VMA as dirty. If dirty bit won't be excluded from
948          * comparison, we increase pressue on the memory system forcing
949          * the kernel to generate new VMAs when old one could be
950          * extended instead.
951          */
952         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
953                 return 0;
954         if (vma->vm_file != file)
955                 return 0;
956         if (vma->vm_ops && vma->vm_ops->close)
957                 return 0;
958         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
959                 return 0;
960         return 1;
961 }
962
963 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
964                                         struct anon_vma *anon_vma2,
965                                         struct vm_area_struct *vma)
966 {
967         /*
968          * The list_is_singular() test is to avoid merging VMA cloned from
969          * parents. This can improve scalability caused by anon_vma lock.
970          */
971         if ((!anon_vma1 || !anon_vma2) && (!vma ||
972                 list_is_singular(&vma->anon_vma_chain)))
973                 return 1;
974         return anon_vma1 == anon_vma2;
975 }
976
977 /*
978  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
979  * in front of (at a lower virtual address and file offset than) the vma.
980  *
981  * We cannot merge two vmas if they have differently assigned (non-NULL)
982  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
983  *
984  * We don't check here for the merged mmap wrapping around the end of pagecache
985  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
986  * wrap, nor mmaps which cover the final page at index -1UL.
987  */
988 static int
989 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
990                      struct anon_vma *anon_vma, struct file *file,
991                      pgoff_t vm_pgoff,
992                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
993 {
994         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
995             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
996                 if (vma->vm_pgoff == vm_pgoff)
997                         return 1;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1004  * beyond (at a higher virtual address and file offset than) the vma.
1005  *
1006  * We cannot merge two vmas if they have differently assigned (non-NULL)
1007  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1008  */
1009 static int
1010 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1011                     struct anon_vma *anon_vma, struct file *file,
1012                     pgoff_t vm_pgoff,
1013                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1014 {
1015         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1016             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1017                 pgoff_t vm_pglen;
1018                 vm_pglen = vma_pages(vma);
1019                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1020                         return 1;
1021         }
1022         return 0;
1023 }
1024
1025 /*
1026  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1027  * whether that can be merged with its predecessor or its successor.
1028  * Or both (it neatly fills a hole).
1029  *
1030  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1031  * certain not to be mapped by the time vma_merge is called; but when
1032  * called for mprotect, it is certain to be already mapped (either at
1033  * an offset within prev, or at the start of next), and the flags of
1034  * this area are about to be changed to vm_flags - and the no-change
1035  * case has already been eliminated.
1036  *
1037  * The following mprotect cases have to be considered, where AAAA is
1038  * the area passed down from mprotect_fixup, never extending beyond one
1039  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1040  *
1041  *     AAAA             AAAA                AAAA          AAAA
1042  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1043  *    cannot merge    might become    might become    might become
1044  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1045  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1046  *    mremap move:                                    PPPPNNNNNNNN 8
1047  *        AAAA
1048  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1049  *    might become    case 1 below    case 2 below    case 3 below
1050  *
1051  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1052  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1053  */
1054 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1055                         struct vm_area_struct *prev, unsigned long addr,
1056                         unsigned long end, unsigned long vm_flags,
1057                         struct anon_vma *anon_vma, struct file *file,
1058                         pgoff_t pgoff, struct mempolicy *policy,
1059                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1060 {
1061         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1062         struct vm_area_struct *area, *next;
1063         int err;
1064
1065         /*
1066          * We later require that vma->vm_flags == vm_flags,
1067          * so this tests vma->vm_flags & VM_SPECIAL, too.
1068          */
1069         if (vm_flags & VM_SPECIAL)
1070                 return NULL;
1071
1072         if (prev)
1073                 next = prev->vm_next;
1074         else
1075                 next = mm->mmap;
1076         area = next;
1077         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1078                 next = next->vm_next;
1079
1080         /*
1081          * Can it merge with the predecessor?
1082          */
1083         if (prev && prev->vm_end == addr &&
1084                         mpol_equal(vma_policy(prev), policy) &&
1085                         can_vma_merge_after(prev, vm_flags,
1086                                             anon_vma, file, pgoff,
1087                                             vm_userfaultfd_ctx)) {
1088                 /*
1089                  * OK, it can.  Can we now merge in the successor as well?
1090                  */
1091                 if (next && end == next->vm_start &&
1092                                 mpol_equal(policy, vma_policy(next)) &&
1093                                 can_vma_merge_before(next, vm_flags,
1094                                                      anon_vma, file,
1095                                                      pgoff+pglen,
1096                                                      vm_userfaultfd_ctx) &&
1097                                 is_mergeable_anon_vma(prev->anon_vma,
1098                                                       next->anon_vma, NULL)) {
1099                                                         /* cases 1, 6 */
1100                         err = vma_adjust(prev, prev->vm_start,
1101                                 next->vm_end, prev->vm_pgoff, NULL);
1102                 } else                                  /* cases 2, 5, 7 */
1103                         err = vma_adjust(prev, prev->vm_start,
1104                                 end, prev->vm_pgoff, NULL);
1105                 if (err)
1106                         return NULL;
1107                 khugepaged_enter_vma_merge(prev, vm_flags);
1108                 return prev;
1109         }
1110
1111         /*
1112          * Can this new request be merged in front of next?
1113          */
1114         if (next && end == next->vm_start &&
1115                         mpol_equal(policy, vma_policy(next)) &&
1116                         can_vma_merge_before(next, vm_flags,
1117                                              anon_vma, file, pgoff+pglen,
1118                                              vm_userfaultfd_ctx)) {
1119                 if (prev && addr < prev->vm_end)        /* case 4 */
1120                         err = vma_adjust(prev, prev->vm_start,
1121                                 addr, prev->vm_pgoff, NULL);
1122                 else                                    /* cases 3, 8 */
1123                         err = vma_adjust(area, addr, next->vm_end,
1124                                 next->vm_pgoff - pglen, NULL);
1125                 if (err)
1126                         return NULL;
1127                 khugepaged_enter_vma_merge(area, vm_flags);
1128                 return area;
1129         }
1130
1131         return NULL;
1132 }
1133
1134 /*
1135  * Rough compatbility check to quickly see if it's even worth looking
1136  * at sharing an anon_vma.
1137  *
1138  * They need to have the same vm_file, and the flags can only differ
1139  * in things that mprotect may change.
1140  *
1141  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1142  * we can merge the two vma's. For example, we refuse to merge a vma if
1143  * there is a vm_ops->close() function, because that indicates that the
1144  * driver is doing some kind of reference counting. But that doesn't
1145  * really matter for the anon_vma sharing case.
1146  */
1147 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1148 {
1149         return a->vm_end == b->vm_start &&
1150                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1151                 a->vm_file == b->vm_file &&
1152                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1153                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1154 }
1155
1156 /*
1157  * Do some basic sanity checking to see if we can re-use the anon_vma
1158  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1159  * the same as 'old', the other will be the new one that is trying
1160  * to share the anon_vma.
1161  *
1162  * NOTE! This runs with mm_sem held for reading, so it is possible that
1163  * the anon_vma of 'old' is concurrently in the process of being set up
1164  * by another page fault trying to merge _that_. But that's ok: if it
1165  * is being set up, that automatically means that it will be a singleton
1166  * acceptable for merging, so we can do all of this optimistically. But
1167  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1168  *
1169  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1170  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1171  * is to return an anon_vma that is "complex" due to having gone through
1172  * a fork).
1173  *
1174  * We also make sure that the two vma's are compatible (adjacent,
1175  * and with the same memory policies). That's all stable, even with just
1176  * a read lock on the mm_sem.
1177  */
1178 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1179 {
1180         if (anon_vma_compatible(a, b)) {
1181                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1182
1183                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1184                         return anon_vma;
1185         }
1186         return NULL;
1187 }
1188
1189 /*
1190  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1191  * neighbouring vmas for a suitable anon_vma, before it goes off
1192  * to allocate a new anon_vma.  It checks because a repetitive
1193  * sequence of mprotects and faults may otherwise lead to distinct
1194  * anon_vmas being allocated, preventing vma merge in subsequent
1195  * mprotect.
1196  */
1197 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1198 {
1199         struct anon_vma *anon_vma;
1200         struct vm_area_struct *near;
1201
1202         near = vma->vm_next;
1203         if (!near)
1204                 goto try_prev;
1205
1206         anon_vma = reusable_anon_vma(near, vma, near);
1207         if (anon_vma)
1208                 return anon_vma;
1209 try_prev:
1210         near = vma->vm_prev;
1211         if (!near)
1212                 goto none;
1213
1214         anon_vma = reusable_anon_vma(near, near, vma);
1215         if (anon_vma)
1216                 return anon_vma;
1217 none:
1218         /*
1219          * There's no absolute need to look only at touching neighbours:
1220          * we could search further afield for "compatible" anon_vmas.
1221          * But it would probably just be a waste of time searching,
1222          * or lead to too many vmas hanging off the same anon_vma.
1223          * We're trying to allow mprotect remerging later on,
1224          * not trying to minimize memory used for anon_vmas.
1225          */
1226         return NULL;
1227 }
1228
1229 /*
1230  * If a hint addr is less than mmap_min_addr change hint to be as
1231  * low as possible but still greater than mmap_min_addr
1232  */
1233 static inline unsigned long round_hint_to_min(unsigned long hint)
1234 {
1235         hint &= PAGE_MASK;
1236         if (((void *)hint != NULL) &&
1237             (hint < mmap_min_addr))
1238                 return PAGE_ALIGN(mmap_min_addr);
1239         return hint;
1240 }
1241
1242 static inline int mlock_future_check(struct mm_struct *mm,
1243                                      unsigned long flags,
1244                                      unsigned long len)
1245 {
1246         unsigned long locked, lock_limit;
1247
1248         /*  mlock MCL_FUTURE? */
1249         if (flags & VM_LOCKED) {
1250                 locked = len >> PAGE_SHIFT;
1251                 locked += mm->locked_vm;
1252                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1253                 lock_limit >>= PAGE_SHIFT;
1254                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1255                         return -EAGAIN;
1256         }
1257         return 0;
1258 }
1259
1260 /*
1261  * The caller must hold down_write(&current->mm->mmap_sem).
1262  */
1263 unsigned long do_mmap(struct file *file, unsigned long addr,
1264                         unsigned long len, unsigned long prot,
1265                         unsigned long flags, vm_flags_t vm_flags,
1266                         unsigned long pgoff, unsigned long *populate)
1267 {
1268         struct mm_struct *mm = current->mm;
1269
1270         *populate = 0;
1271
1272         if (!len)
1273                 return -EINVAL;
1274
1275         /*
1276          * Does the application expect PROT_READ to imply PROT_EXEC?
1277          *
1278          * (the exception is when the underlying filesystem is noexec
1279          *  mounted, in which case we dont add PROT_EXEC.)
1280          */
1281         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1282                 if (!(file && path_noexec(&file->f_path)))
1283                         prot |= PROT_EXEC;
1284
1285         if (!(flags & MAP_FIXED))
1286                 addr = round_hint_to_min(addr);
1287
1288         /* Careful about overflows.. */
1289         len = PAGE_ALIGN(len);
1290         if (!len)
1291                 return -ENOMEM;
1292
1293         /* offset overflow? */
1294         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1295                 return -EOVERFLOW;
1296
1297         /* Too many mappings? */
1298         if (mm->map_count > sysctl_max_map_count)
1299                 return -ENOMEM;
1300
1301         /* Obtain the address to map to. we verify (or select) it and ensure
1302          * that it represents a valid section of the address space.
1303          */
1304         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1305         if (offset_in_page(addr))
1306                 return addr;
1307
1308         /* Do simple checking here so the lower-level routines won't have
1309          * to. we assume access permissions have been handled by the open
1310          * of the memory object, so we don't do any here.
1311          */
1312         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1313                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1314
1315         if (flags & MAP_LOCKED)
1316                 if (!can_do_mlock())
1317                         return -EPERM;
1318
1319         if (mlock_future_check(mm, vm_flags, len))
1320                 return -EAGAIN;
1321
1322         if (file) {
1323                 struct inode *inode = file_inode(file);
1324
1325                 switch (flags & MAP_TYPE) {
1326                 case MAP_SHARED:
1327                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1328                                 return -EACCES;
1329
1330                         /*
1331                          * Make sure we don't allow writing to an append-only
1332                          * file..
1333                          */
1334                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1335                                 return -EACCES;
1336
1337                         /*
1338                          * Make sure there are no mandatory locks on the file.
1339                          */
1340                         if (locks_verify_locked(file))
1341                                 return -EAGAIN;
1342
1343                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1344                         if (!(file->f_mode & FMODE_WRITE))
1345                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1346
1347                         /* fall through */
1348                 case MAP_PRIVATE:
1349                         if (!(file->f_mode & FMODE_READ))
1350                                 return -EACCES;
1351                         if (path_noexec(&file->f_path)) {
1352                                 if (vm_flags & VM_EXEC)
1353                                         return -EPERM;
1354                                 vm_flags &= ~VM_MAYEXEC;
1355                         }
1356
1357                         if (!file->f_op->mmap)
1358                                 return -ENODEV;
1359                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1360                                 return -EINVAL;
1361                         break;
1362
1363                 default:
1364                         return -EINVAL;
1365                 }
1366         } else {
1367                 switch (flags & MAP_TYPE) {
1368                 case MAP_SHARED:
1369                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1370                                 return -EINVAL;
1371                         /*
1372                          * Ignore pgoff.
1373                          */
1374                         pgoff = 0;
1375                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1376                         break;
1377                 case MAP_PRIVATE:
1378                         /*
1379                          * Set pgoff according to addr for anon_vma.
1380                          */
1381                         pgoff = addr >> PAGE_SHIFT;
1382                         break;
1383                 default:
1384                         return -EINVAL;
1385                 }
1386         }
1387
1388         /*
1389          * Set 'VM_NORESERVE' if we should not account for the
1390          * memory use of this mapping.
1391          */
1392         if (flags & MAP_NORESERVE) {
1393                 /* We honor MAP_NORESERVE if allowed to overcommit */
1394                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1395                         vm_flags |= VM_NORESERVE;
1396
1397                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1398                 if (file && is_file_hugepages(file))
1399                         vm_flags |= VM_NORESERVE;
1400         }
1401
1402         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1403         if (!IS_ERR_VALUE(addr) &&
1404             ((vm_flags & VM_LOCKED) ||
1405              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1406                 *populate = len;
1407         return addr;
1408 }
1409
1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1411                 unsigned long, prot, unsigned long, flags,
1412                 unsigned long, fd, unsigned long, pgoff)
1413 {
1414         struct file *file = NULL;
1415         unsigned long retval;
1416
1417         if (!(flags & MAP_ANONYMOUS)) {
1418                 audit_mmap_fd(fd, flags);
1419                 file = fget(fd);
1420                 if (!file)
1421                         return -EBADF;
1422                 if (is_file_hugepages(file))
1423                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1424                 retval = -EINVAL;
1425                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1426                         goto out_fput;
1427         } else if (flags & MAP_HUGETLB) {
1428                 struct user_struct *user = NULL;
1429                 struct hstate *hs;
1430
1431                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1432                 if (!hs)
1433                         return -EINVAL;
1434
1435                 len = ALIGN(len, huge_page_size(hs));
1436                 /*
1437                  * VM_NORESERVE is used because the reservations will be
1438                  * taken when vm_ops->mmap() is called
1439                  * A dummy user value is used because we are not locking
1440                  * memory so no accounting is necessary
1441                  */
1442                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1443                                 VM_NORESERVE,
1444                                 &user, HUGETLB_ANONHUGE_INODE,
1445                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1446                 if (IS_ERR(file))
1447                         return PTR_ERR(file);
1448         }
1449
1450         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1451
1452         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1453 out_fput:
1454         if (file)
1455                 fput(file);
1456         return retval;
1457 }
1458
1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1460 struct mmap_arg_struct {
1461         unsigned long addr;
1462         unsigned long len;
1463         unsigned long prot;
1464         unsigned long flags;
1465         unsigned long fd;
1466         unsigned long offset;
1467 };
1468
1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1470 {
1471         struct mmap_arg_struct a;
1472
1473         if (copy_from_user(&a, arg, sizeof(a)))
1474                 return -EFAULT;
1475         if (offset_in_page(a.offset))
1476                 return -EINVAL;
1477
1478         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1479                               a.offset >> PAGE_SHIFT);
1480 }
1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1482
1483 /*
1484  * Some shared mappigns will want the pages marked read-only
1485  * to track write events. If so, we'll downgrade vm_page_prot
1486  * to the private version (using protection_map[] without the
1487  * VM_SHARED bit).
1488  */
1489 int vma_wants_writenotify(struct vm_area_struct *vma)
1490 {
1491         vm_flags_t vm_flags = vma->vm_flags;
1492         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1493
1494         /* If it was private or non-writable, the write bit is already clear */
1495         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1496                 return 0;
1497
1498         /* The backer wishes to know when pages are first written to? */
1499         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1500                 return 1;
1501
1502         /* The open routine did something to the protections that pgprot_modify
1503          * won't preserve? */
1504         if (pgprot_val(vma->vm_page_prot) !=
1505             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1506                 return 0;
1507
1508         /* Do we need to track softdirty? */
1509         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1510                 return 1;
1511
1512         /* Specialty mapping? */
1513         if (vm_flags & VM_PFNMAP)
1514                 return 0;
1515
1516         /* Can the mapping track the dirty pages? */
1517         return vma->vm_file && vma->vm_file->f_mapping &&
1518                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1519 }
1520
1521 /*
1522  * We account for memory if it's a private writeable mapping,
1523  * not hugepages and VM_NORESERVE wasn't set.
1524  */
1525 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1526 {
1527         /*
1528          * hugetlb has its own accounting separate from the core VM
1529          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1530          */
1531         if (file && is_file_hugepages(file))
1532                 return 0;
1533
1534         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1535 }
1536
1537 unsigned long mmap_region(struct file *file, unsigned long addr,
1538                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1539 {
1540         struct mm_struct *mm = current->mm;
1541         struct vm_area_struct *vma, *prev;
1542         int error;
1543         struct rb_node **rb_link, *rb_parent;
1544         unsigned long charged = 0;
1545
1546         /* Check against address space limit. */
1547         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1548                 unsigned long nr_pages;
1549
1550                 /*
1551                  * MAP_FIXED may remove pages of mappings that intersects with
1552                  * requested mapping. Account for the pages it would unmap.
1553                  */
1554                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1555
1556                 if (!may_expand_vm(mm, vm_flags,
1557                                         (len >> PAGE_SHIFT) - nr_pages))
1558                         return -ENOMEM;
1559         }
1560
1561         /* Clear old maps */
1562         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1563                               &rb_parent)) {
1564                 if (do_munmap(mm, addr, len))
1565                         return -ENOMEM;
1566         }
1567
1568         /*
1569          * Private writable mapping: check memory availability
1570          */
1571         if (accountable_mapping(file, vm_flags)) {
1572                 charged = len >> PAGE_SHIFT;
1573                 if (security_vm_enough_memory_mm(mm, charged))
1574                         return -ENOMEM;
1575                 vm_flags |= VM_ACCOUNT;
1576         }
1577
1578         /*
1579          * Can we just expand an old mapping?
1580          */
1581         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1582                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1583         if (vma)
1584                 goto out;
1585
1586         /*
1587          * Determine the object being mapped and call the appropriate
1588          * specific mapper. the address has already been validated, but
1589          * not unmapped, but the maps are removed from the list.
1590          */
1591         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1592         if (!vma) {
1593                 error = -ENOMEM;
1594                 goto unacct_error;
1595         }
1596
1597         vma->vm_mm = mm;
1598         vma->vm_start = addr;
1599         vma->vm_end = addr + len;
1600         vma->vm_flags = vm_flags;
1601         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1602         vma->vm_pgoff = pgoff;
1603         INIT_LIST_HEAD(&vma->anon_vma_chain);
1604
1605         if (file) {
1606                 if (vm_flags & VM_DENYWRITE) {
1607                         error = deny_write_access(file);
1608                         if (error)
1609                                 goto free_vma;
1610                 }
1611                 if (vm_flags & VM_SHARED) {
1612                         error = mapping_map_writable(file->f_mapping);
1613                         if (error)
1614                                 goto allow_write_and_free_vma;
1615                 }
1616
1617                 /* ->mmap() can change vma->vm_file, but must guarantee that
1618                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1619                  * and map writably if VM_SHARED is set. This usually means the
1620                  * new file must not have been exposed to user-space, yet.
1621                  */
1622                 vma->vm_file = get_file(file);
1623                 error = file->f_op->mmap(file, vma);
1624                 if (error)
1625                         goto unmap_and_free_vma;
1626
1627                 /* Can addr have changed??
1628                  *
1629                  * Answer: Yes, several device drivers can do it in their
1630                  *         f_op->mmap method. -DaveM
1631                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1632                  *      be updated for vma_link()
1633                  */
1634                 WARN_ON_ONCE(addr != vma->vm_start);
1635
1636                 addr = vma->vm_start;
1637                 vm_flags = vma->vm_flags;
1638         } else if (vm_flags & VM_SHARED) {
1639                 error = shmem_zero_setup(vma);
1640                 if (error)
1641                         goto free_vma;
1642         }
1643
1644         vma_link(mm, vma, prev, rb_link, rb_parent);
1645         /* Once vma denies write, undo our temporary denial count */
1646         if (file) {
1647                 if (vm_flags & VM_SHARED)
1648                         mapping_unmap_writable(file->f_mapping);
1649                 if (vm_flags & VM_DENYWRITE)
1650                         allow_write_access(file);
1651         }
1652         file = vma->vm_file;
1653 out:
1654         perf_event_mmap(vma);
1655
1656         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1657         if (vm_flags & VM_LOCKED) {
1658                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1659                                         vma == get_gate_vma(current->mm)))
1660                         mm->locked_vm += (len >> PAGE_SHIFT);
1661                 else
1662                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1663         }
1664
1665         if (file)
1666                 uprobe_mmap(vma);
1667
1668         /*
1669          * New (or expanded) vma always get soft dirty status.
1670          * Otherwise user-space soft-dirty page tracker won't
1671          * be able to distinguish situation when vma area unmapped,
1672          * then new mapped in-place (which must be aimed as
1673          * a completely new data area).
1674          */
1675         vma->vm_flags |= VM_SOFTDIRTY;
1676
1677         vma_set_page_prot(vma);
1678
1679         return addr;
1680
1681 unmap_and_free_vma:
1682         vma->vm_file = NULL;
1683         fput(file);
1684
1685         /* Undo any partial mapping done by a device driver. */
1686         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1687         charged = 0;
1688         if (vm_flags & VM_SHARED)
1689                 mapping_unmap_writable(file->f_mapping);
1690 allow_write_and_free_vma:
1691         if (vm_flags & VM_DENYWRITE)
1692                 allow_write_access(file);
1693 free_vma:
1694         kmem_cache_free(vm_area_cachep, vma);
1695 unacct_error:
1696         if (charged)
1697                 vm_unacct_memory(charged);
1698         return error;
1699 }
1700
1701 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1702 {
1703         /*
1704          * We implement the search by looking for an rbtree node that
1705          * immediately follows a suitable gap. That is,
1706          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1707          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1708          * - gap_end - gap_start >= length
1709          */
1710
1711         struct mm_struct *mm = current->mm;
1712         struct vm_area_struct *vma;
1713         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1714
1715         /* Adjust search length to account for worst case alignment overhead */
1716         length = info->length + info->align_mask;
1717         if (length < info->length)
1718                 return -ENOMEM;
1719
1720         /* Adjust search limits by the desired length */
1721         if (info->high_limit < length)
1722                 return -ENOMEM;
1723         high_limit = info->high_limit - length;
1724
1725         if (info->low_limit > high_limit)
1726                 return -ENOMEM;
1727         low_limit = info->low_limit + length;
1728
1729         /* Check if rbtree root looks promising */
1730         if (RB_EMPTY_ROOT(&mm->mm_rb))
1731                 goto check_highest;
1732         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1733         if (vma->rb_subtree_gap < length)
1734                 goto check_highest;
1735
1736         while (true) {
1737                 /* Visit left subtree if it looks promising */
1738                 gap_end = vma->vm_start;
1739                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1740                         struct vm_area_struct *left =
1741                                 rb_entry(vma->vm_rb.rb_left,
1742                                          struct vm_area_struct, vm_rb);
1743                         if (left->rb_subtree_gap >= length) {
1744                                 vma = left;
1745                                 continue;
1746                         }
1747                 }
1748
1749                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1750 check_current:
1751                 /* Check if current node has a suitable gap */
1752                 if (gap_start > high_limit)
1753                         return -ENOMEM;
1754                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1755                         goto found;
1756
1757                 /* Visit right subtree if it looks promising */
1758                 if (vma->vm_rb.rb_right) {
1759                         struct vm_area_struct *right =
1760                                 rb_entry(vma->vm_rb.rb_right,
1761                                          struct vm_area_struct, vm_rb);
1762                         if (right->rb_subtree_gap >= length) {
1763                                 vma = right;
1764                                 continue;
1765                         }
1766                 }
1767
1768                 /* Go back up the rbtree to find next candidate node */
1769                 while (true) {
1770                         struct rb_node *prev = &vma->vm_rb;
1771                         if (!rb_parent(prev))
1772                                 goto check_highest;
1773                         vma = rb_entry(rb_parent(prev),
1774                                        struct vm_area_struct, vm_rb);
1775                         if (prev == vma->vm_rb.rb_left) {
1776                                 gap_start = vma->vm_prev->vm_end;
1777                                 gap_end = vma->vm_start;
1778                                 goto check_current;
1779                         }
1780                 }
1781         }
1782
1783 check_highest:
1784         /* Check highest gap, which does not precede any rbtree node */
1785         gap_start = mm->highest_vm_end;
1786         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1787         if (gap_start > high_limit)
1788                 return -ENOMEM;
1789
1790 found:
1791         /* We found a suitable gap. Clip it with the original low_limit. */
1792         if (gap_start < info->low_limit)
1793                 gap_start = info->low_limit;
1794
1795         /* Adjust gap address to the desired alignment */
1796         gap_start += (info->align_offset - gap_start) & info->align_mask;
1797
1798         VM_BUG_ON(gap_start + info->length > info->high_limit);
1799         VM_BUG_ON(gap_start + info->length > gap_end);
1800         return gap_start;
1801 }
1802
1803 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1804 {
1805         struct mm_struct *mm = current->mm;
1806         struct vm_area_struct *vma;
1807         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1808
1809         /* Adjust search length to account for worst case alignment overhead */
1810         length = info->length + info->align_mask;
1811         if (length < info->length)
1812                 return -ENOMEM;
1813
1814         /*
1815          * Adjust search limits by the desired length.
1816          * See implementation comment at top of unmapped_area().
1817          */
1818         gap_end = info->high_limit;
1819         if (gap_end < length)
1820                 return -ENOMEM;
1821         high_limit = gap_end - length;
1822
1823         if (info->low_limit > high_limit)
1824                 return -ENOMEM;
1825         low_limit = info->low_limit + length;
1826
1827         /* Check highest gap, which does not precede any rbtree node */
1828         gap_start = mm->highest_vm_end;
1829         if (gap_start <= high_limit)
1830                 goto found_highest;
1831
1832         /* Check if rbtree root looks promising */
1833         if (RB_EMPTY_ROOT(&mm->mm_rb))
1834                 return -ENOMEM;
1835         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1836         if (vma->rb_subtree_gap < length)
1837                 return -ENOMEM;
1838
1839         while (true) {
1840                 /* Visit right subtree if it looks promising */
1841                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1842                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1843                         struct vm_area_struct *right =
1844                                 rb_entry(vma->vm_rb.rb_right,
1845                                          struct vm_area_struct, vm_rb);
1846                         if (right->rb_subtree_gap >= length) {
1847                                 vma = right;
1848                                 continue;
1849                         }
1850                 }
1851
1852 check_current:
1853                 /* Check if current node has a suitable gap */
1854                 gap_end = vma->vm_start;
1855                 if (gap_end < low_limit)
1856                         return -ENOMEM;
1857                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1858                         goto found;
1859
1860                 /* Visit left subtree if it looks promising */
1861                 if (vma->vm_rb.rb_left) {
1862                         struct vm_area_struct *left =
1863                                 rb_entry(vma->vm_rb.rb_left,
1864                                          struct vm_area_struct, vm_rb);
1865                         if (left->rb_subtree_gap >= length) {
1866                                 vma = left;
1867                                 continue;
1868                         }
1869                 }
1870
1871                 /* Go back up the rbtree to find next candidate node */
1872                 while (true) {
1873                         struct rb_node *prev = &vma->vm_rb;
1874                         if (!rb_parent(prev))
1875                                 return -ENOMEM;
1876                         vma = rb_entry(rb_parent(prev),
1877                                        struct vm_area_struct, vm_rb);
1878                         if (prev == vma->vm_rb.rb_right) {
1879                                 gap_start = vma->vm_prev ?
1880                                         vma->vm_prev->vm_end : 0;
1881                                 goto check_current;
1882                         }
1883                 }
1884         }
1885
1886 found:
1887         /* We found a suitable gap. Clip it with the original high_limit. */
1888         if (gap_end > info->high_limit)
1889                 gap_end = info->high_limit;
1890
1891 found_highest:
1892         /* Compute highest gap address at the desired alignment */
1893         gap_end -= info->length;
1894         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1895
1896         VM_BUG_ON(gap_end < info->low_limit);
1897         VM_BUG_ON(gap_end < gap_start);
1898         return gap_end;
1899 }
1900
1901 /* Get an address range which is currently unmapped.
1902  * For shmat() with addr=0.
1903  *
1904  * Ugly calling convention alert:
1905  * Return value with the low bits set means error value,
1906  * ie
1907  *      if (ret & ~PAGE_MASK)
1908  *              error = ret;
1909  *
1910  * This function "knows" that -ENOMEM has the bits set.
1911  */
1912 #ifndef HAVE_ARCH_UNMAPPED_AREA
1913 unsigned long
1914 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1915                 unsigned long len, unsigned long pgoff, unsigned long flags)
1916 {
1917         struct mm_struct *mm = current->mm;
1918         struct vm_area_struct *vma;
1919         struct vm_unmapped_area_info info;
1920
1921         if (len > TASK_SIZE - mmap_min_addr)
1922                 return -ENOMEM;
1923
1924         if (flags & MAP_FIXED)
1925                 return addr;
1926
1927         if (addr) {
1928                 addr = PAGE_ALIGN(addr);
1929                 vma = find_vma(mm, addr);
1930                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1931                     (!vma || addr + len <= vma->vm_start))
1932                         return addr;
1933         }
1934
1935         info.flags = 0;
1936         info.length = len;
1937         info.low_limit = mm->mmap_base;
1938         info.high_limit = TASK_SIZE;
1939         info.align_mask = 0;
1940         return vm_unmapped_area(&info);
1941 }
1942 #endif
1943
1944 /*
1945  * This mmap-allocator allocates new areas top-down from below the
1946  * stack's low limit (the base):
1947  */
1948 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1949 unsigned long
1950 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1951                           const unsigned long len, const unsigned long pgoff,
1952                           const unsigned long flags)
1953 {
1954         struct vm_area_struct *vma;
1955         struct mm_struct *mm = current->mm;
1956         unsigned long addr = addr0;
1957         struct vm_unmapped_area_info info;
1958
1959         /* requested length too big for entire address space */
1960         if (len > TASK_SIZE - mmap_min_addr)
1961                 return -ENOMEM;
1962
1963         if (flags & MAP_FIXED)
1964                 return addr;
1965
1966         /* requesting a specific address */
1967         if (addr) {
1968                 addr = PAGE_ALIGN(addr);
1969                 vma = find_vma(mm, addr);
1970                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1971                                 (!vma || addr + len <= vma->vm_start))
1972                         return addr;
1973         }
1974
1975         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1976         info.length = len;
1977         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1978         info.high_limit = mm->mmap_base;
1979         info.align_mask = 0;
1980         addr = vm_unmapped_area(&info);
1981
1982         /*
1983          * A failed mmap() very likely causes application failure,
1984          * so fall back to the bottom-up function here. This scenario
1985          * can happen with large stack limits and large mmap()
1986          * allocations.
1987          */
1988         if (offset_in_page(addr)) {
1989                 VM_BUG_ON(addr != -ENOMEM);
1990                 info.flags = 0;
1991                 info.low_limit = TASK_UNMAPPED_BASE;
1992                 info.high_limit = TASK_SIZE;
1993                 addr = vm_unmapped_area(&info);
1994         }
1995
1996         return addr;
1997 }
1998 #endif
1999
2000 unsigned long
2001 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2002                 unsigned long pgoff, unsigned long flags)
2003 {
2004         unsigned long (*get_area)(struct file *, unsigned long,
2005                                   unsigned long, unsigned long, unsigned long);
2006
2007         unsigned long error = arch_mmap_check(addr, len, flags);
2008         if (error)
2009                 return error;
2010
2011         /* Careful about overflows.. */
2012         if (len > TASK_SIZE)
2013                 return -ENOMEM;
2014
2015         get_area = current->mm->get_unmapped_area;
2016         if (file && file->f_op->get_unmapped_area)
2017                 get_area = file->f_op->get_unmapped_area;
2018         addr = get_area(file, addr, len, pgoff, flags);
2019         if (IS_ERR_VALUE(addr))
2020                 return addr;
2021
2022         if (addr > TASK_SIZE - len)
2023                 return -ENOMEM;
2024         if (offset_in_page(addr))
2025                 return -EINVAL;
2026
2027         addr = arch_rebalance_pgtables(addr, len);
2028         error = security_mmap_addr(addr);
2029         return error ? error : addr;
2030 }
2031
2032 EXPORT_SYMBOL(get_unmapped_area);
2033
2034 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2035 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2036 {
2037         struct rb_node *rb_node;
2038         struct vm_area_struct *vma;
2039
2040         /* Check the cache first. */
2041         vma = vmacache_find(mm, addr);
2042         if (likely(vma))
2043                 return vma;
2044
2045         rb_node = mm->mm_rb.rb_node;
2046
2047         while (rb_node) {
2048                 struct vm_area_struct *tmp;
2049
2050                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2051
2052                 if (tmp->vm_end > addr) {
2053                         vma = tmp;
2054                         if (tmp->vm_start <= addr)
2055                                 break;
2056                         rb_node = rb_node->rb_left;
2057                 } else
2058                         rb_node = rb_node->rb_right;
2059         }
2060
2061         if (vma)
2062                 vmacache_update(addr, vma);
2063         return vma;
2064 }
2065
2066 EXPORT_SYMBOL(find_vma);
2067
2068 /*
2069  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2070  */
2071 struct vm_area_struct *
2072 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2073                         struct vm_area_struct **pprev)
2074 {
2075         struct vm_area_struct *vma;
2076
2077         vma = find_vma(mm, addr);
2078         if (vma) {
2079                 *pprev = vma->vm_prev;
2080         } else {
2081                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2082                 *pprev = NULL;
2083                 while (rb_node) {
2084                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2085                         rb_node = rb_node->rb_right;
2086                 }
2087         }
2088         return vma;
2089 }
2090
2091 /*
2092  * Verify that the stack growth is acceptable and
2093  * update accounting. This is shared with both the
2094  * grow-up and grow-down cases.
2095  */
2096 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2097 {
2098         struct mm_struct *mm = vma->vm_mm;
2099         struct rlimit *rlim = current->signal->rlim;
2100         unsigned long new_start, actual_size;
2101
2102         /* address space limit tests */
2103         if (!may_expand_vm(mm, vma->vm_flags, grow))
2104                 return -ENOMEM;
2105
2106         /* Stack limit test */
2107         actual_size = size;
2108         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2109                 actual_size -= PAGE_SIZE;
2110         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2111                 return -ENOMEM;
2112
2113         /* mlock limit tests */
2114         if (vma->vm_flags & VM_LOCKED) {
2115                 unsigned long locked;
2116                 unsigned long limit;
2117                 locked = mm->locked_vm + grow;
2118                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2119                 limit >>= PAGE_SHIFT;
2120                 if (locked > limit && !capable(CAP_IPC_LOCK))
2121                         return -ENOMEM;
2122         }
2123
2124         /* Check to ensure the stack will not grow into a hugetlb-only region */
2125         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2126                         vma->vm_end - size;
2127         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2128                 return -EFAULT;
2129
2130         /*
2131          * Overcommit..  This must be the final test, as it will
2132          * update security statistics.
2133          */
2134         if (security_vm_enough_memory_mm(mm, grow))
2135                 return -ENOMEM;
2136
2137         return 0;
2138 }
2139
2140 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2141 /*
2142  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2143  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2144  */
2145 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2146 {
2147         struct mm_struct *mm = vma->vm_mm;
2148         int error;
2149
2150         if (!(vma->vm_flags & VM_GROWSUP))
2151                 return -EFAULT;
2152
2153         /*
2154          * We must make sure the anon_vma is allocated
2155          * so that the anon_vma locking is not a noop.
2156          */
2157         if (unlikely(anon_vma_prepare(vma)))
2158                 return -ENOMEM;
2159         vma_lock_anon_vma(vma);
2160
2161         /*
2162          * vma->vm_start/vm_end cannot change under us because the caller
2163          * is required to hold the mmap_sem in read mode.  We need the
2164          * anon_vma lock to serialize against concurrent expand_stacks.
2165          * Also guard against wrapping around to address 0.
2166          */
2167         if (address < PAGE_ALIGN(address+4))
2168                 address = PAGE_ALIGN(address+4);
2169         else {
2170                 vma_unlock_anon_vma(vma);
2171                 return -ENOMEM;
2172         }
2173         error = 0;
2174
2175         /* Somebody else might have raced and expanded it already */
2176         if (address > vma->vm_end) {
2177                 unsigned long size, grow;
2178
2179                 size = address - vma->vm_start;
2180                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2181
2182                 error = -ENOMEM;
2183                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2184                         error = acct_stack_growth(vma, size, grow);
2185                         if (!error) {
2186                                 /*
2187                                  * vma_gap_update() doesn't support concurrent
2188                                  * updates, but we only hold a shared mmap_sem
2189                                  * lock here, so we need to protect against
2190                                  * concurrent vma expansions.
2191                                  * vma_lock_anon_vma() doesn't help here, as
2192                                  * we don't guarantee that all growable vmas
2193                                  * in a mm share the same root anon vma.
2194                                  * So, we reuse mm->page_table_lock to guard
2195                                  * against concurrent vma expansions.
2196                                  */
2197                                 spin_lock(&mm->page_table_lock);
2198                                 if (vma->vm_flags & VM_LOCKED)
2199                                         mm->locked_vm += grow;
2200                                 vm_stat_account(mm, vma->vm_flags, grow);
2201                                 anon_vma_interval_tree_pre_update_vma(vma);
2202                                 vma->vm_end = address;
2203                                 anon_vma_interval_tree_post_update_vma(vma);
2204                                 if (vma->vm_next)
2205                                         vma_gap_update(vma->vm_next);
2206                                 else
2207                                         mm->highest_vm_end = address;
2208                                 spin_unlock(&mm->page_table_lock);
2209
2210                                 perf_event_mmap(vma);
2211                         }
2212                 }
2213         }
2214         vma_unlock_anon_vma(vma);
2215         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2216         validate_mm(mm);
2217         return error;
2218 }
2219 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2220
2221 /*
2222  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2223  */
2224 int expand_downwards(struct vm_area_struct *vma,
2225                                    unsigned long address)
2226 {
2227         struct mm_struct *mm = vma->vm_mm;
2228         int error;
2229
2230         /*
2231          * We must make sure the anon_vma is allocated
2232          * so that the anon_vma locking is not a noop.
2233          */
2234         if (unlikely(anon_vma_prepare(vma)))
2235                 return -ENOMEM;
2236
2237         address &= PAGE_MASK;
2238         error = security_mmap_addr(address);
2239         if (error)
2240                 return error;
2241
2242         vma_lock_anon_vma(vma);
2243
2244         /*
2245          * vma->vm_start/vm_end cannot change under us because the caller
2246          * is required to hold the mmap_sem in read mode.  We need the
2247          * anon_vma lock to serialize against concurrent expand_stacks.
2248          */
2249
2250         /* Somebody else might have raced and expanded it already */
2251         if (address < vma->vm_start) {
2252                 unsigned long size, grow;
2253
2254                 size = vma->vm_end - address;
2255                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2256
2257                 error = -ENOMEM;
2258                 if (grow <= vma->vm_pgoff) {
2259                         error = acct_stack_growth(vma, size, grow);
2260                         if (!error) {
2261                                 /*
2262                                  * vma_gap_update() doesn't support concurrent
2263                                  * updates, but we only hold a shared mmap_sem
2264                                  * lock here, so we need to protect against
2265                                  * concurrent vma expansions.
2266                                  * vma_lock_anon_vma() doesn't help here, as
2267                                  * we don't guarantee that all growable vmas
2268                                  * in a mm share the same root anon vma.
2269                                  * So, we reuse mm->page_table_lock to guard
2270                                  * against concurrent vma expansions.
2271                                  */
2272                                 spin_lock(&mm->page_table_lock);
2273                                 if (vma->vm_flags & VM_LOCKED)
2274                                         mm->locked_vm += grow;
2275                                 vm_stat_account(mm, vma->vm_flags, grow);
2276                                 anon_vma_interval_tree_pre_update_vma(vma);
2277                                 vma->vm_start = address;
2278                                 vma->vm_pgoff -= grow;
2279                                 anon_vma_interval_tree_post_update_vma(vma);
2280                                 vma_gap_update(vma);
2281                                 spin_unlock(&mm->page_table_lock);
2282
2283                                 perf_event_mmap(vma);
2284                         }
2285                 }
2286         }
2287         vma_unlock_anon_vma(vma);
2288         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2289         validate_mm(mm);
2290         return error;
2291 }
2292
2293 /*
2294  * Note how expand_stack() refuses to expand the stack all the way to
2295  * abut the next virtual mapping, *unless* that mapping itself is also
2296  * a stack mapping. We want to leave room for a guard page, after all
2297  * (the guard page itself is not added here, that is done by the
2298  * actual page faulting logic)
2299  *
2300  * This matches the behavior of the guard page logic (see mm/memory.c:
2301  * check_stack_guard_page()), which only allows the guard page to be
2302  * removed under these circumstances.
2303  */
2304 #ifdef CONFIG_STACK_GROWSUP
2305 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2306 {
2307         struct vm_area_struct *next;
2308
2309         address &= PAGE_MASK;
2310         next = vma->vm_next;
2311         if (next && next->vm_start == address + PAGE_SIZE) {
2312                 if (!(next->vm_flags & VM_GROWSUP))
2313                         return -ENOMEM;
2314         }
2315         return expand_upwards(vma, address);
2316 }
2317
2318 struct vm_area_struct *
2319 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2320 {
2321         struct vm_area_struct *vma, *prev;
2322
2323         addr &= PAGE_MASK;
2324         vma = find_vma_prev(mm, addr, &prev);
2325         if (vma && (vma->vm_start <= addr))
2326                 return vma;
2327         if (!prev || expand_stack(prev, addr))
2328                 return NULL;
2329         if (prev->vm_flags & VM_LOCKED)
2330                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2331         return prev;
2332 }
2333 #else
2334 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2335 {
2336         struct vm_area_struct *prev;
2337
2338         address &= PAGE_MASK;
2339         prev = vma->vm_prev;
2340         if (prev && prev->vm_end == address) {
2341                 if (!(prev->vm_flags & VM_GROWSDOWN))
2342                         return -ENOMEM;
2343         }
2344         return expand_downwards(vma, address);
2345 }
2346
2347 struct vm_area_struct *
2348 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2349 {
2350         struct vm_area_struct *vma;
2351         unsigned long start;
2352
2353         addr &= PAGE_MASK;
2354         vma = find_vma(mm, addr);
2355         if (!vma)
2356                 return NULL;
2357         if (vma->vm_start <= addr)
2358                 return vma;
2359         if (!(vma->vm_flags & VM_GROWSDOWN))
2360                 return NULL;
2361         start = vma->vm_start;
2362         if (expand_stack(vma, addr))
2363                 return NULL;
2364         if (vma->vm_flags & VM_LOCKED)
2365                 populate_vma_page_range(vma, addr, start, NULL);
2366         return vma;
2367 }
2368 #endif
2369
2370 EXPORT_SYMBOL_GPL(find_extend_vma);
2371
2372 /*
2373  * Ok - we have the memory areas we should free on the vma list,
2374  * so release them, and do the vma updates.
2375  *
2376  * Called with the mm semaphore held.
2377  */
2378 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2379 {
2380         unsigned long nr_accounted = 0;
2381
2382         /* Update high watermark before we lower total_vm */
2383         update_hiwater_vm(mm);
2384         do {
2385                 long nrpages = vma_pages(vma);
2386
2387                 if (vma->vm_flags & VM_ACCOUNT)
2388                         nr_accounted += nrpages;
2389                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2390                 vma = remove_vma(vma);
2391         } while (vma);
2392         vm_unacct_memory(nr_accounted);
2393         validate_mm(mm);
2394 }
2395
2396 /*
2397  * Get rid of page table information in the indicated region.
2398  *
2399  * Called with the mm semaphore held.
2400  */
2401 static void unmap_region(struct mm_struct *mm,
2402                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2403                 unsigned long start, unsigned long end)
2404 {
2405         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2406         struct mmu_gather tlb;
2407
2408         lru_add_drain();
2409         tlb_gather_mmu(&tlb, mm, start, end);
2410         update_hiwater_rss(mm);
2411         unmap_vmas(&tlb, vma, start, end);
2412         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2413                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2414         tlb_finish_mmu(&tlb, start, end);
2415 }
2416
2417 /*
2418  * Create a list of vma's touched by the unmap, removing them from the mm's
2419  * vma list as we go..
2420  */
2421 static void
2422 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2423         struct vm_area_struct *prev, unsigned long end)
2424 {
2425         struct vm_area_struct **insertion_point;
2426         struct vm_area_struct *tail_vma = NULL;
2427
2428         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2429         vma->vm_prev = NULL;
2430         do {
2431                 vma_rb_erase(vma, &mm->mm_rb);
2432                 mm->map_count--;
2433                 tail_vma = vma;
2434                 vma = vma->vm_next;
2435         } while (vma && vma->vm_start < end);
2436         *insertion_point = vma;
2437         if (vma) {
2438                 vma->vm_prev = prev;
2439                 vma_gap_update(vma);
2440         } else
2441                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2442         tail_vma->vm_next = NULL;
2443
2444         /* Kill the cache */
2445         vmacache_invalidate(mm);
2446 }
2447
2448 /*
2449  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2450  * munmap path where it doesn't make sense to fail.
2451  */
2452 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2453               unsigned long addr, int new_below)
2454 {
2455         struct vm_area_struct *new;
2456         int err;
2457
2458         if (is_vm_hugetlb_page(vma) && (addr &
2459                                         ~(huge_page_mask(hstate_vma(vma)))))
2460                 return -EINVAL;
2461
2462         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2463         if (!new)
2464                 return -ENOMEM;
2465
2466         /* most fields are the same, copy all, and then fixup */
2467         *new = *vma;
2468
2469         INIT_LIST_HEAD(&new->anon_vma_chain);
2470
2471         if (new_below)
2472                 new->vm_end = addr;
2473         else {
2474                 new->vm_start = addr;
2475                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2476         }
2477
2478         err = vma_dup_policy(vma, new);
2479         if (err)
2480                 goto out_free_vma;
2481
2482         err = anon_vma_clone(new, vma);
2483         if (err)
2484                 goto out_free_mpol;
2485
2486         if (new->vm_file)
2487                 get_file(new->vm_file);
2488
2489         if (new->vm_ops && new->vm_ops->open)
2490                 new->vm_ops->open(new);
2491
2492         if (new_below)
2493                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2494                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2495         else
2496                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2497
2498         /* Success. */
2499         if (!err)
2500                 return 0;
2501
2502         /* Clean everything up if vma_adjust failed. */
2503         if (new->vm_ops && new->vm_ops->close)
2504                 new->vm_ops->close(new);
2505         if (new->vm_file)
2506                 fput(new->vm_file);
2507         unlink_anon_vmas(new);
2508  out_free_mpol:
2509         mpol_put(vma_policy(new));
2510  out_free_vma:
2511         kmem_cache_free(vm_area_cachep, new);
2512         return err;
2513 }
2514
2515 /*
2516  * Split a vma into two pieces at address 'addr', a new vma is allocated
2517  * either for the first part or the tail.
2518  */
2519 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2520               unsigned long addr, int new_below)
2521 {
2522         if (mm->map_count >= sysctl_max_map_count)
2523                 return -ENOMEM;
2524
2525         return __split_vma(mm, vma, addr, new_below);
2526 }
2527
2528 /* Munmap is split into 2 main parts -- this part which finds
2529  * what needs doing, and the areas themselves, which do the
2530  * work.  This now handles partial unmappings.
2531  * Jeremy Fitzhardinge <jeremy@goop.org>
2532  */
2533 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2534 {
2535         unsigned long end;
2536         struct vm_area_struct *vma, *prev, *last;
2537
2538         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2539                 return -EINVAL;
2540
2541         len = PAGE_ALIGN(len);
2542         if (len == 0)
2543                 return -EINVAL;
2544
2545         /* Find the first overlapping VMA */
2546         vma = find_vma(mm, start);
2547         if (!vma)
2548                 return 0;
2549         prev = vma->vm_prev;
2550         /* we have  start < vma->vm_end  */
2551
2552         /* if it doesn't overlap, we have nothing.. */
2553         end = start + len;
2554         if (vma->vm_start >= end)
2555                 return 0;
2556
2557         /*
2558          * If we need to split any vma, do it now to save pain later.
2559          *
2560          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2561          * unmapped vm_area_struct will remain in use: so lower split_vma
2562          * places tmp vma above, and higher split_vma places tmp vma below.
2563          */
2564         if (start > vma->vm_start) {
2565                 int error;
2566
2567                 /*
2568                  * Make sure that map_count on return from munmap() will
2569                  * not exceed its limit; but let map_count go just above
2570                  * its limit temporarily, to help free resources as expected.
2571                  */
2572                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2573                         return -ENOMEM;
2574
2575                 error = __split_vma(mm, vma, start, 0);
2576                 if (error)
2577                         return error;
2578                 prev = vma;
2579         }
2580
2581         /* Does it split the last one? */
2582         last = find_vma(mm, end);
2583         if (last && end > last->vm_start) {
2584                 int error = __split_vma(mm, last, end, 1);
2585                 if (error)
2586                         return error;
2587         }
2588         vma = prev ? prev->vm_next : mm->mmap;
2589
2590         /*
2591          * unlock any mlock()ed ranges before detaching vmas
2592          */
2593         if (mm->locked_vm) {
2594                 struct vm_area_struct *tmp = vma;
2595                 while (tmp && tmp->vm_start < end) {
2596                         if (tmp->vm_flags & VM_LOCKED) {
2597                                 mm->locked_vm -= vma_pages(tmp);
2598                                 munlock_vma_pages_all(tmp);
2599                         }
2600                         tmp = tmp->vm_next;
2601                 }
2602         }
2603
2604         /*
2605          * Remove the vma's, and unmap the actual pages
2606          */
2607         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2608         unmap_region(mm, vma, prev, start, end);
2609
2610         arch_unmap(mm, vma, start, end);
2611
2612         /* Fix up all other VM information */
2613         remove_vma_list(mm, vma);
2614
2615         return 0;
2616 }
2617
2618 int vm_munmap(unsigned long start, size_t len)
2619 {
2620         int ret;
2621         struct mm_struct *mm = current->mm;
2622
2623         down_write(&mm->mmap_sem);
2624         ret = do_munmap(mm, start, len);
2625         up_write(&mm->mmap_sem);
2626         return ret;
2627 }
2628 EXPORT_SYMBOL(vm_munmap);
2629
2630 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2631 {
2632         profile_munmap(addr);
2633         return vm_munmap(addr, len);
2634 }
2635
2636
2637 /*
2638  * Emulation of deprecated remap_file_pages() syscall.
2639  */
2640 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2641                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2642 {
2643
2644         struct mm_struct *mm = current->mm;
2645         struct vm_area_struct *vma;
2646         unsigned long populate = 0;
2647         unsigned long ret = -EINVAL;
2648         struct file *file;
2649
2650         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2651                         "See Documentation/vm/remap_file_pages.txt.\n",
2652                         current->comm, current->pid);
2653
2654         if (prot)
2655                 return ret;
2656         start = start & PAGE_MASK;
2657         size = size & PAGE_MASK;
2658
2659         if (start + size <= start)
2660                 return ret;
2661
2662         /* Does pgoff wrap? */
2663         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2664                 return ret;
2665
2666         down_write(&mm->mmap_sem);
2667         vma = find_vma(mm, start);
2668
2669         if (!vma || !(vma->vm_flags & VM_SHARED))
2670                 goto out;
2671
2672         if (start < vma->vm_start || start + size > vma->vm_end)
2673                 goto out;
2674
2675         if (pgoff == linear_page_index(vma, start)) {
2676                 ret = 0;
2677                 goto out;
2678         }
2679
2680         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2681         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2682         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2683
2684         flags &= MAP_NONBLOCK;
2685         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2686         if (vma->vm_flags & VM_LOCKED) {
2687                 flags |= MAP_LOCKED;
2688                 /* drop PG_Mlocked flag for over-mapped range */
2689                 munlock_vma_pages_range(vma, start, start + size);
2690         }
2691
2692         file = get_file(vma->vm_file);
2693         ret = do_mmap_pgoff(vma->vm_file, start, size,
2694                         prot, flags, pgoff, &populate);
2695         fput(file);
2696 out:
2697         up_write(&mm->mmap_sem);
2698         if (populate)
2699                 mm_populate(ret, populate);
2700         if (!IS_ERR_VALUE(ret))
2701                 ret = 0;
2702         return ret;
2703 }
2704
2705 static inline void verify_mm_writelocked(struct mm_struct *mm)
2706 {
2707 #ifdef CONFIG_DEBUG_VM
2708         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2709                 WARN_ON(1);
2710                 up_read(&mm->mmap_sem);
2711         }
2712 #endif
2713 }
2714
2715 /*
2716  *  this is really a simplified "do_mmap".  it only handles
2717  *  anonymous maps.  eventually we may be able to do some
2718  *  brk-specific accounting here.
2719  */
2720 static unsigned long do_brk(unsigned long addr, unsigned long len)
2721 {
2722         struct mm_struct *mm = current->mm;
2723         struct vm_area_struct *vma, *prev;
2724         unsigned long flags;
2725         struct rb_node **rb_link, *rb_parent;
2726         pgoff_t pgoff = addr >> PAGE_SHIFT;
2727         int error;
2728
2729         len = PAGE_ALIGN(len);
2730         if (!len)
2731                 return addr;
2732
2733         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2734
2735         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2736         if (offset_in_page(error))
2737                 return error;
2738
2739         error = mlock_future_check(mm, mm->def_flags, len);
2740         if (error)
2741                 return error;
2742
2743         /*
2744          * mm->mmap_sem is required to protect against another thread
2745          * changing the mappings in case we sleep.
2746          */
2747         verify_mm_writelocked(mm);
2748
2749         /*
2750          * Clear old maps.  this also does some error checking for us
2751          */
2752         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2753                               &rb_parent)) {
2754                 if (do_munmap(mm, addr, len))
2755                         return -ENOMEM;
2756         }
2757
2758         /* Check against address space limits *after* clearing old maps... */
2759         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2760                 return -ENOMEM;
2761
2762         if (mm->map_count > sysctl_max_map_count)
2763                 return -ENOMEM;
2764
2765         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2766                 return -ENOMEM;
2767
2768         /* Can we just expand an old private anonymous mapping? */
2769         vma = vma_merge(mm, prev, addr, addr + len, flags,
2770                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2771         if (vma)
2772                 goto out;
2773
2774         /*
2775          * create a vma struct for an anonymous mapping
2776          */
2777         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2778         if (!vma) {
2779                 vm_unacct_memory(len >> PAGE_SHIFT);
2780                 return -ENOMEM;
2781         }
2782
2783         INIT_LIST_HEAD(&vma->anon_vma_chain);
2784         vma->vm_mm = mm;
2785         vma->vm_start = addr;
2786         vma->vm_end = addr + len;
2787         vma->vm_pgoff = pgoff;
2788         vma->vm_flags = flags;
2789         vma->vm_page_prot = vm_get_page_prot(flags);
2790         vma_link(mm, vma, prev, rb_link, rb_parent);
2791 out:
2792         perf_event_mmap(vma);
2793         mm->total_vm += len >> PAGE_SHIFT;
2794         mm->data_vm += len >> PAGE_SHIFT;
2795         if (flags & VM_LOCKED)
2796                 mm->locked_vm += (len >> PAGE_SHIFT);
2797         vma->vm_flags |= VM_SOFTDIRTY;
2798         return addr;
2799 }
2800
2801 unsigned long vm_brk(unsigned long addr, unsigned long len)
2802 {
2803         struct mm_struct *mm = current->mm;
2804         unsigned long ret;
2805         bool populate;
2806
2807         down_write(&mm->mmap_sem);
2808         ret = do_brk(addr, len);
2809         populate = ((mm->def_flags & VM_LOCKED) != 0);
2810         up_write(&mm->mmap_sem);
2811         if (populate)
2812                 mm_populate(addr, len);
2813         return ret;
2814 }
2815 EXPORT_SYMBOL(vm_brk);
2816
2817 /* Release all mmaps. */
2818 void exit_mmap(struct mm_struct *mm)
2819 {
2820         struct mmu_gather tlb;
2821         struct vm_area_struct *vma;
2822         unsigned long nr_accounted = 0;
2823
2824         /* mm's last user has gone, and its about to be pulled down */
2825         mmu_notifier_release(mm);
2826
2827         if (mm->locked_vm) {
2828                 vma = mm->mmap;
2829                 while (vma) {
2830                         if (vma->vm_flags & VM_LOCKED)
2831                                 munlock_vma_pages_all(vma);
2832                         vma = vma->vm_next;
2833                 }
2834         }
2835
2836         arch_exit_mmap(mm);
2837
2838         vma = mm->mmap;
2839         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2840                 return;
2841
2842         lru_add_drain();
2843         flush_cache_mm(mm);
2844         tlb_gather_mmu(&tlb, mm, 0, -1);
2845         /* update_hiwater_rss(mm) here? but nobody should be looking */
2846         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2847         unmap_vmas(&tlb, vma, 0, -1);
2848
2849         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2850         tlb_finish_mmu(&tlb, 0, -1);
2851
2852         /*
2853          * Walk the list again, actually closing and freeing it,
2854          * with preemption enabled, without holding any MM locks.
2855          */
2856         while (vma) {
2857                 if (vma->vm_flags & VM_ACCOUNT)
2858                         nr_accounted += vma_pages(vma);
2859                 vma = remove_vma(vma);
2860         }
2861         vm_unacct_memory(nr_accounted);
2862 }
2863
2864 /* Insert vm structure into process list sorted by address
2865  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2866  * then i_mmap_rwsem is taken here.
2867  */
2868 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2869 {
2870         struct vm_area_struct *prev;
2871         struct rb_node **rb_link, *rb_parent;
2872
2873         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2874                            &prev, &rb_link, &rb_parent))
2875                 return -ENOMEM;
2876         if ((vma->vm_flags & VM_ACCOUNT) &&
2877              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2878                 return -ENOMEM;
2879
2880         /*
2881          * The vm_pgoff of a purely anonymous vma should be irrelevant
2882          * until its first write fault, when page's anon_vma and index
2883          * are set.  But now set the vm_pgoff it will almost certainly
2884          * end up with (unless mremap moves it elsewhere before that
2885          * first wfault), so /proc/pid/maps tells a consistent story.
2886          *
2887          * By setting it to reflect the virtual start address of the
2888          * vma, merges and splits can happen in a seamless way, just
2889          * using the existing file pgoff checks and manipulations.
2890          * Similarly in do_mmap_pgoff and in do_brk.
2891          */
2892         if (vma_is_anonymous(vma)) {
2893                 BUG_ON(vma->anon_vma);
2894                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2895         }
2896
2897         vma_link(mm, vma, prev, rb_link, rb_parent);
2898         return 0;
2899 }
2900
2901 /*
2902  * Copy the vma structure to a new location in the same mm,
2903  * prior to moving page table entries, to effect an mremap move.
2904  */
2905 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2906         unsigned long addr, unsigned long len, pgoff_t pgoff,
2907         bool *need_rmap_locks)
2908 {
2909         struct vm_area_struct *vma = *vmap;
2910         unsigned long vma_start = vma->vm_start;
2911         struct mm_struct *mm = vma->vm_mm;
2912         struct vm_area_struct *new_vma, *prev;
2913         struct rb_node **rb_link, *rb_parent;
2914         bool faulted_in_anon_vma = true;
2915
2916         /*
2917          * If anonymous vma has not yet been faulted, update new pgoff
2918          * to match new location, to increase its chance of merging.
2919          */
2920         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2921                 pgoff = addr >> PAGE_SHIFT;
2922                 faulted_in_anon_vma = false;
2923         }
2924
2925         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2926                 return NULL;    /* should never get here */
2927         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2928                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2929                             vma->vm_userfaultfd_ctx);
2930         if (new_vma) {
2931                 /*
2932                  * Source vma may have been merged into new_vma
2933                  */
2934                 if (unlikely(vma_start >= new_vma->vm_start &&
2935                              vma_start < new_vma->vm_end)) {
2936                         /*
2937                          * The only way we can get a vma_merge with
2938                          * self during an mremap is if the vma hasn't
2939                          * been faulted in yet and we were allowed to
2940                          * reset the dst vma->vm_pgoff to the
2941                          * destination address of the mremap to allow
2942                          * the merge to happen. mremap must change the
2943                          * vm_pgoff linearity between src and dst vmas
2944                          * (in turn preventing a vma_merge) to be
2945                          * safe. It is only safe to keep the vm_pgoff
2946                          * linear if there are no pages mapped yet.
2947                          */
2948                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2949                         *vmap = vma = new_vma;
2950                 }
2951                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2952         } else {
2953                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2954                 if (!new_vma)
2955                         goto out;
2956                 *new_vma = *vma;
2957                 new_vma->vm_start = addr;
2958                 new_vma->vm_end = addr + len;
2959                 new_vma->vm_pgoff = pgoff;
2960                 if (vma_dup_policy(vma, new_vma))
2961                         goto out_free_vma;
2962                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2963                 if (anon_vma_clone(new_vma, vma))
2964                         goto out_free_mempol;
2965                 if (new_vma->vm_file)
2966                         get_file(new_vma->vm_file);
2967                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2968                         new_vma->vm_ops->open(new_vma);
2969                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2970                 *need_rmap_locks = false;
2971         }
2972         return new_vma;
2973
2974 out_free_mempol:
2975         mpol_put(vma_policy(new_vma));
2976 out_free_vma:
2977         kmem_cache_free(vm_area_cachep, new_vma);
2978 out:
2979         return NULL;
2980 }
2981
2982 /*
2983  * Return true if the calling process may expand its vm space by the passed
2984  * number of pages
2985  */
2986 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2987 {
2988         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2989                 return false;
2990
2991         if (is_data_mapping(flags) &&
2992             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2993                 if (ignore_rlimit_data)
2994                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
2995                                      "%lu. Will be forbidden soon.\n",
2996                                      current->comm, current->pid,
2997                                      (mm->data_vm + npages) << PAGE_SHIFT,
2998                                      rlimit(RLIMIT_DATA));
2999                 else
3000                         return false;
3001         }
3002
3003         return true;
3004 }
3005
3006 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3007 {
3008         mm->total_vm += npages;
3009
3010         if (is_exec_mapping(flags))
3011                 mm->exec_vm += npages;
3012         else if (is_stack_mapping(flags))
3013                 mm->stack_vm += npages;
3014         else if (is_data_mapping(flags))
3015                 mm->data_vm += npages;
3016 }
3017
3018 static int special_mapping_fault(struct vm_area_struct *vma,
3019                                  struct vm_fault *vmf);
3020
3021 /*
3022  * Having a close hook prevents vma merging regardless of flags.
3023  */
3024 static void special_mapping_close(struct vm_area_struct *vma)
3025 {
3026 }
3027
3028 static const char *special_mapping_name(struct vm_area_struct *vma)
3029 {
3030         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3031 }
3032
3033 static const struct vm_operations_struct special_mapping_vmops = {
3034         .close = special_mapping_close,
3035         .fault = special_mapping_fault,
3036         .name = special_mapping_name,
3037 };
3038
3039 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3040         .close = special_mapping_close,
3041         .fault = special_mapping_fault,
3042 };
3043
3044 static int special_mapping_fault(struct vm_area_struct *vma,
3045                                 struct vm_fault *vmf)
3046 {
3047         pgoff_t pgoff;
3048         struct page **pages;
3049
3050         if (vma->vm_ops == &legacy_special_mapping_vmops)
3051                 pages = vma->vm_private_data;
3052         else
3053                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3054                         pages;
3055
3056         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3057                 pgoff--;
3058
3059         if (*pages) {
3060                 struct page *page = *pages;
3061                 get_page(page);
3062                 vmf->page = page;
3063                 return 0;
3064         }
3065
3066         return VM_FAULT_SIGBUS;
3067 }
3068
3069 static struct vm_area_struct *__install_special_mapping(
3070         struct mm_struct *mm,
3071         unsigned long addr, unsigned long len,
3072         unsigned long vm_flags, void *priv,
3073         const struct vm_operations_struct *ops)
3074 {
3075         int ret;
3076         struct vm_area_struct *vma;
3077
3078         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3079         if (unlikely(vma == NULL))
3080                 return ERR_PTR(-ENOMEM);
3081
3082         INIT_LIST_HEAD(&vma->anon_vma_chain);
3083         vma->vm_mm = mm;
3084         vma->vm_start = addr;
3085         vma->vm_end = addr + len;
3086
3087         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3088         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3089
3090         vma->vm_ops = ops;
3091         vma->vm_private_data = priv;
3092
3093         ret = insert_vm_struct(mm, vma);
3094         if (ret)
3095                 goto out;
3096
3097         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3098
3099         perf_event_mmap(vma);
3100
3101         return vma;
3102
3103 out:
3104         kmem_cache_free(vm_area_cachep, vma);
3105         return ERR_PTR(ret);
3106 }
3107
3108 /*
3109  * Called with mm->mmap_sem held for writing.
3110  * Insert a new vma covering the given region, with the given flags.
3111  * Its pages are supplied by the given array of struct page *.
3112  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3113  * The region past the last page supplied will always produce SIGBUS.
3114  * The array pointer and the pages it points to are assumed to stay alive
3115  * for as long as this mapping might exist.
3116  */
3117 struct vm_area_struct *_install_special_mapping(
3118         struct mm_struct *mm,
3119         unsigned long addr, unsigned long len,
3120         unsigned long vm_flags, const struct vm_special_mapping *spec)
3121 {
3122         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3123                                         &special_mapping_vmops);
3124 }
3125
3126 int install_special_mapping(struct mm_struct *mm,
3127                             unsigned long addr, unsigned long len,
3128                             unsigned long vm_flags, struct page **pages)
3129 {
3130         struct vm_area_struct *vma = __install_special_mapping(
3131                 mm, addr, len, vm_flags, (void *)pages,
3132                 &legacy_special_mapping_vmops);
3133
3134         return PTR_ERR_OR_ZERO(vma);
3135 }
3136
3137 static DEFINE_MUTEX(mm_all_locks_mutex);
3138
3139 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3140 {
3141         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3142                 /*
3143                  * The LSB of head.next can't change from under us
3144                  * because we hold the mm_all_locks_mutex.
3145                  */
3146                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3147                 /*
3148                  * We can safely modify head.next after taking the
3149                  * anon_vma->root->rwsem. If some other vma in this mm shares
3150                  * the same anon_vma we won't take it again.
3151                  *
3152                  * No need of atomic instructions here, head.next
3153                  * can't change from under us thanks to the
3154                  * anon_vma->root->rwsem.
3155                  */
3156                 if (__test_and_set_bit(0, (unsigned long *)
3157                                        &anon_vma->root->rb_root.rb_node))
3158                         BUG();
3159         }
3160 }
3161
3162 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3163 {
3164         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3165                 /*
3166                  * AS_MM_ALL_LOCKS can't change from under us because
3167                  * we hold the mm_all_locks_mutex.
3168                  *
3169                  * Operations on ->flags have to be atomic because
3170                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3171                  * mm_all_locks_mutex, there may be other cpus
3172                  * changing other bitflags in parallel to us.
3173                  */
3174                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3175                         BUG();
3176                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3177         }
3178 }
3179
3180 /*
3181  * This operation locks against the VM for all pte/vma/mm related
3182  * operations that could ever happen on a certain mm. This includes
3183  * vmtruncate, try_to_unmap, and all page faults.
3184  *
3185  * The caller must take the mmap_sem in write mode before calling
3186  * mm_take_all_locks(). The caller isn't allowed to release the
3187  * mmap_sem until mm_drop_all_locks() returns.
3188  *
3189  * mmap_sem in write mode is required in order to block all operations
3190  * that could modify pagetables and free pages without need of
3191  * altering the vma layout. It's also needed in write mode to avoid new
3192  * anon_vmas to be associated with existing vmas.
3193  *
3194  * A single task can't take more than one mm_take_all_locks() in a row
3195  * or it would deadlock.
3196  *
3197  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3198  * mapping->flags avoid to take the same lock twice, if more than one
3199  * vma in this mm is backed by the same anon_vma or address_space.
3200  *
3201  * We take locks in following order, accordingly to comment at beginning
3202  * of mm/rmap.c:
3203  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3204  *     hugetlb mapping);
3205  *   - all i_mmap_rwsem locks;
3206  *   - all anon_vma->rwseml
3207  *
3208  * We can take all locks within these types randomly because the VM code
3209  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3210  * mm_all_locks_mutex.
3211  *
3212  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3213  * that may have to take thousand of locks.
3214  *
3215  * mm_take_all_locks() can fail if it's interrupted by signals.
3216  */
3217 int mm_take_all_locks(struct mm_struct *mm)
3218 {
3219         struct vm_area_struct *vma;
3220         struct anon_vma_chain *avc;
3221
3222         BUG_ON(down_read_trylock(&mm->mmap_sem));
3223
3224         mutex_lock(&mm_all_locks_mutex);
3225
3226         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3227                 if (signal_pending(current))
3228                         goto out_unlock;
3229                 if (vma->vm_file && vma->vm_file->f_mapping &&
3230                                 is_vm_hugetlb_page(vma))
3231                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3232         }
3233
3234         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3235                 if (signal_pending(current))
3236                         goto out_unlock;
3237                 if (vma->vm_file && vma->vm_file->f_mapping &&
3238                                 !is_vm_hugetlb_page(vma))
3239                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3240         }
3241
3242         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3243                 if (signal_pending(current))
3244                         goto out_unlock;
3245                 if (vma->anon_vma)
3246                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3247                                 vm_lock_anon_vma(mm, avc->anon_vma);
3248         }
3249
3250         return 0;
3251
3252 out_unlock:
3253         mm_drop_all_locks(mm);
3254         return -EINTR;
3255 }
3256
3257 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3258 {
3259         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3260                 /*
3261                  * The LSB of head.next can't change to 0 from under
3262                  * us because we hold the mm_all_locks_mutex.
3263                  *
3264                  * We must however clear the bitflag before unlocking
3265                  * the vma so the users using the anon_vma->rb_root will
3266                  * never see our bitflag.
3267                  *
3268                  * No need of atomic instructions here, head.next
3269                  * can't change from under us until we release the
3270                  * anon_vma->root->rwsem.
3271                  */
3272                 if (!__test_and_clear_bit(0, (unsigned long *)
3273                                           &anon_vma->root->rb_root.rb_node))
3274                         BUG();
3275                 anon_vma_unlock_write(anon_vma);
3276         }
3277 }
3278
3279 static void vm_unlock_mapping(struct address_space *mapping)
3280 {
3281         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3282                 /*
3283                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3284                  * because we hold the mm_all_locks_mutex.
3285                  */
3286                 i_mmap_unlock_write(mapping);
3287                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3288                                         &mapping->flags))
3289                         BUG();
3290         }
3291 }
3292
3293 /*
3294  * The mmap_sem cannot be released by the caller until
3295  * mm_drop_all_locks() returns.
3296  */
3297 void mm_drop_all_locks(struct mm_struct *mm)
3298 {
3299         struct vm_area_struct *vma;
3300         struct anon_vma_chain *avc;
3301
3302         BUG_ON(down_read_trylock(&mm->mmap_sem));
3303         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3304
3305         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3306                 if (vma->anon_vma)
3307                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3308                                 vm_unlock_anon_vma(avc->anon_vma);
3309                 if (vma->vm_file && vma->vm_file->f_mapping)
3310                         vm_unlock_mapping(vma->vm_file->f_mapping);
3311         }
3312
3313         mutex_unlock(&mm_all_locks_mutex);
3314 }
3315
3316 /*
3317  * initialise the VMA slab
3318  */
3319 void __init mmap_init(void)
3320 {
3321         int ret;
3322
3323         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3324         VM_BUG_ON(ret);
3325 }
3326
3327 /*
3328  * Initialise sysctl_user_reserve_kbytes.
3329  *
3330  * This is intended to prevent a user from starting a single memory hogging
3331  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3332  * mode.
3333  *
3334  * The default value is min(3% of free memory, 128MB)
3335  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3336  */
3337 static int init_user_reserve(void)
3338 {
3339         unsigned long free_kbytes;
3340
3341         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3342
3343         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3344         return 0;
3345 }
3346 subsys_initcall(init_user_reserve);
3347
3348 /*
3349  * Initialise sysctl_admin_reserve_kbytes.
3350  *
3351  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3352  * to log in and kill a memory hogging process.
3353  *
3354  * Systems with more than 256MB will reserve 8MB, enough to recover
3355  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3356  * only reserve 3% of free pages by default.
3357  */
3358 static int init_admin_reserve(void)
3359 {
3360         unsigned long free_kbytes;
3361
3362         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3363
3364         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3365         return 0;
3366 }
3367 subsys_initcall(init_admin_reserve);
3368
3369 /*
3370  * Reinititalise user and admin reserves if memory is added or removed.
3371  *
3372  * The default user reserve max is 128MB, and the default max for the
3373  * admin reserve is 8MB. These are usually, but not always, enough to
3374  * enable recovery from a memory hogging process using login/sshd, a shell,
3375  * and tools like top. It may make sense to increase or even disable the
3376  * reserve depending on the existence of swap or variations in the recovery
3377  * tools. So, the admin may have changed them.
3378  *
3379  * If memory is added and the reserves have been eliminated or increased above
3380  * the default max, then we'll trust the admin.
3381  *
3382  * If memory is removed and there isn't enough free memory, then we
3383  * need to reset the reserves.
3384  *
3385  * Otherwise keep the reserve set by the admin.
3386  */
3387 static int reserve_mem_notifier(struct notifier_block *nb,
3388                              unsigned long action, void *data)
3389 {
3390         unsigned long tmp, free_kbytes;
3391
3392         switch (action) {
3393         case MEM_ONLINE:
3394                 /* Default max is 128MB. Leave alone if modified by operator. */
3395                 tmp = sysctl_user_reserve_kbytes;
3396                 if (0 < tmp && tmp < (1UL << 17))
3397                         init_user_reserve();
3398
3399                 /* Default max is 8MB.  Leave alone if modified by operator. */
3400                 tmp = sysctl_admin_reserve_kbytes;
3401                 if (0 < tmp && tmp < (1UL << 13))
3402                         init_admin_reserve();
3403
3404                 break;
3405         case MEM_OFFLINE:
3406                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3407
3408                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3409                         init_user_reserve();
3410                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3411                                 sysctl_user_reserve_kbytes);
3412                 }
3413
3414                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3415                         init_admin_reserve();
3416                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3417                                 sysctl_admin_reserve_kbytes);
3418                 }
3419                 break;
3420         default:
3421                 break;
3422         }
3423         return NOTIFY_OK;
3424 }
3425
3426 static struct notifier_block reserve_mem_nb = {
3427         .notifier_call = reserve_mem_notifier,
3428 };
3429
3430 static int __meminit init_reserve_notifier(void)
3431 {
3432         if (register_hotmemory_notifier(&reserve_mem_nb))
3433                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3434
3435         return 0;
3436 }
3437 subsys_initcall(init_reserve_notifier);