]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/nommu.c
mm: kill vma flag VM_RESERVED and mm->reserved_vm counter
[karo-tx-linux.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 #if 0
40 #define kenter(FMT, ...) \
41         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66
67 atomic_long_t mmap_pages_allocated;
68
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79
80 /*
81  * Return the total memory allocated for this pointer, not
82  * just what the caller asked for.
83  *
84  * Doesn't have to be accurate, i.e. may have races.
85  */
86 unsigned int kobjsize(const void *objp)
87 {
88         struct page *page;
89
90         /*
91          * If the object we have should not have ksize performed on it,
92          * return size of 0
93          */
94         if (!objp || !virt_addr_valid(objp))
95                 return 0;
96
97         page = virt_to_head_page(objp);
98
99         /*
100          * If the allocator sets PageSlab, we know the pointer came from
101          * kmalloc().
102          */
103         if (PageSlab(page))
104                 return ksize(objp);
105
106         /*
107          * If it's not a compound page, see if we have a matching VMA
108          * region. This test is intentionally done in reverse order,
109          * so if there's no VMA, we still fall through and hand back
110          * PAGE_SIZE for 0-order pages.
111          */
112         if (!PageCompound(page)) {
113                 struct vm_area_struct *vma;
114
115                 vma = find_vma(current->mm, (unsigned long)objp);
116                 if (vma)
117                         return vma->vm_end - vma->vm_start;
118         }
119
120         /*
121          * The ksize() function is only guaranteed to work for pointers
122          * returned by kmalloc(). So handle arbitrary pointers here.
123          */
124         return PAGE_SIZE << compound_order(page);
125 }
126
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128                      unsigned long start, int nr_pages, unsigned int foll_flags,
129                      struct page **pages, struct vm_area_struct **vmas,
130                      int *retry)
131 {
132         struct vm_area_struct *vma;
133         unsigned long vm_flags;
134         int i;
135
136         /* calculate required read or write permissions.
137          * If FOLL_FORCE is set, we only require the "MAY" flags.
138          */
139         vm_flags  = (foll_flags & FOLL_WRITE) ?
140                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141         vm_flags &= (foll_flags & FOLL_FORCE) ?
142                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143
144         for (i = 0; i < nr_pages; i++) {
145                 vma = find_vma(mm, start);
146                 if (!vma)
147                         goto finish_or_fault;
148
149                 /* protect what we can, including chardevs */
150                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151                     !(vm_flags & vma->vm_flags))
152                         goto finish_or_fault;
153
154                 if (pages) {
155                         pages[i] = virt_to_page(start);
156                         if (pages[i])
157                                 page_cache_get(pages[i]);
158                 }
159                 if (vmas)
160                         vmas[i] = vma;
161                 start = (start + PAGE_SIZE) & PAGE_MASK;
162         }
163
164         return i;
165
166 finish_or_fault:
167         return i ? : -EFAULT;
168 }
169
170 /*
171  * get a list of pages in an address range belonging to the specified process
172  * and indicate the VMA that covers each page
173  * - this is potentially dodgy as we may end incrementing the page count of a
174  *   slab page or a secondary page from a compound page
175  * - don't permit access to VMAs that don't support it, such as I/O mappings
176  */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178         unsigned long start, int nr_pages, int write, int force,
179         struct page **pages, struct vm_area_struct **vmas)
180 {
181         int flags = 0;
182
183         if (write)
184                 flags |= FOLL_WRITE;
185         if (force)
186                 flags |= FOLL_FORCE;
187
188         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
189                                 NULL);
190 }
191 EXPORT_SYMBOL(get_user_pages);
192
193 /**
194  * follow_pfn - look up PFN at a user virtual address
195  * @vma: memory mapping
196  * @address: user virtual address
197  * @pfn: location to store found PFN
198  *
199  * Only IO mappings and raw PFN mappings are allowed.
200  *
201  * Returns zero and the pfn at @pfn on success, -ve otherwise.
202  */
203 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
204         unsigned long *pfn)
205 {
206         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
207                 return -EINVAL;
208
209         *pfn = address >> PAGE_SHIFT;
210         return 0;
211 }
212 EXPORT_SYMBOL(follow_pfn);
213
214 DEFINE_RWLOCK(vmlist_lock);
215 struct vm_struct *vmlist;
216
217 void vfree(const void *addr)
218 {
219         kfree(addr);
220 }
221 EXPORT_SYMBOL(vfree);
222
223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
224 {
225         /*
226          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227          * returns only a logical address.
228          */
229         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 }
231 EXPORT_SYMBOL(__vmalloc);
232
233 void *vmalloc_user(unsigned long size)
234 {
235         void *ret;
236
237         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
238                         PAGE_KERNEL);
239         if (ret) {
240                 struct vm_area_struct *vma;
241
242                 down_write(&current->mm->mmap_sem);
243                 vma = find_vma(current->mm, (unsigned long)ret);
244                 if (vma)
245                         vma->vm_flags |= VM_USERMAP;
246                 up_write(&current->mm->mmap_sem);
247         }
248
249         return ret;
250 }
251 EXPORT_SYMBOL(vmalloc_user);
252
253 struct page *vmalloc_to_page(const void *addr)
254 {
255         return virt_to_page(addr);
256 }
257 EXPORT_SYMBOL(vmalloc_to_page);
258
259 unsigned long vmalloc_to_pfn(const void *addr)
260 {
261         return page_to_pfn(virt_to_page(addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264
265 long vread(char *buf, char *addr, unsigned long count)
266 {
267         memcpy(buf, addr, count);
268         return count;
269 }
270
271 long vwrite(char *buf, char *addr, unsigned long count)
272 {
273         /* Don't allow overflow */
274         if ((unsigned long) addr + count < count)
275                 count = -(unsigned long) addr;
276
277         memcpy(addr, buf, count);
278         return(count);
279 }
280
281 /*
282  *      vmalloc  -  allocate virtually continguos memory
283  *
284  *      @size:          allocation size
285  *
286  *      Allocate enough pages to cover @size from the page level
287  *      allocator and map them into continguos kernel virtual space.
288  *
289  *      For tight control over page level allocator and protection flags
290  *      use __vmalloc() instead.
291  */
292 void *vmalloc(unsigned long size)
293 {
294        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
295 }
296 EXPORT_SYMBOL(vmalloc);
297
298 /*
299  *      vzalloc - allocate virtually continguos memory with zero fill
300  *
301  *      @size:          allocation size
302  *
303  *      Allocate enough pages to cover @size from the page level
304  *      allocator and map them into continguos kernel virtual space.
305  *      The memory allocated is set to zero.
306  *
307  *      For tight control over page level allocator and protection flags
308  *      use __vmalloc() instead.
309  */
310 void *vzalloc(unsigned long size)
311 {
312         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
313                         PAGE_KERNEL);
314 }
315 EXPORT_SYMBOL(vzalloc);
316
317 /**
318  * vmalloc_node - allocate memory on a specific node
319  * @size:       allocation size
320  * @node:       numa node
321  *
322  * Allocate enough pages to cover @size from the page level
323  * allocator and map them into contiguous kernel virtual space.
324  *
325  * For tight control over page level allocator and protection flags
326  * use __vmalloc() instead.
327  */
328 void *vmalloc_node(unsigned long size, int node)
329 {
330         return vmalloc(size);
331 }
332 EXPORT_SYMBOL(vmalloc_node);
333
334 /**
335  * vzalloc_node - allocate memory on a specific node with zero fill
336  * @size:       allocation size
337  * @node:       numa node
338  *
339  * Allocate enough pages to cover @size from the page level
340  * allocator and map them into contiguous kernel virtual space.
341  * The memory allocated is set to zero.
342  *
343  * For tight control over page level allocator and protection flags
344  * use __vmalloc() instead.
345  */
346 void *vzalloc_node(unsigned long size, int node)
347 {
348         return vzalloc(size);
349 }
350 EXPORT_SYMBOL(vzalloc_node);
351
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355
356 /**
357  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
358  *      @size:          allocation size
359  *
360  *      Kernel-internal function to allocate enough pages to cover @size
361  *      the page level allocator and map them into contiguous and
362  *      executable kernel virtual space.
363  *
364  *      For tight control over page level allocator and protection flags
365  *      use __vmalloc() instead.
366  */
367
368 void *vmalloc_exec(unsigned long size)
369 {
370         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 }
372
373 /**
374  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
375  *      @size:          allocation size
376  *
377  *      Allocate enough 32bit PA addressable pages to cover @size from the
378  *      page level allocator and map them into continguos kernel virtual space.
379  */
380 void *vmalloc_32(unsigned long size)
381 {
382         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
384 EXPORT_SYMBOL(vmalloc_32);
385
386 /**
387  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388  *      @size:          allocation size
389  *
390  * The resulting memory area is 32bit addressable and zeroed so it can be
391  * mapped to userspace without leaking data.
392  *
393  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394  * remap_vmalloc_range() are permissible.
395  */
396 void *vmalloc_32_user(unsigned long size)
397 {
398         /*
399          * We'll have to sort out the ZONE_DMA bits for 64-bit,
400          * but for now this can simply use vmalloc_user() directly.
401          */
402         return vmalloc_user(size);
403 }
404 EXPORT_SYMBOL(vmalloc_32_user);
405
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408         BUG();
409         return NULL;
410 }
411 EXPORT_SYMBOL(vmap);
412
413 void vunmap(const void *addr)
414 {
415         BUG();
416 }
417 EXPORT_SYMBOL(vunmap);
418
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421         BUG();
422         return NULL;
423 }
424 EXPORT_SYMBOL(vm_map_ram);
425
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428         BUG();
429 }
430 EXPORT_SYMBOL(vm_unmap_ram);
431
432 void vm_unmap_aliases(void)
433 {
434 }
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
436
437 /*
438  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439  * have one.
440  */
441 void  __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444
445 /**
446  *      alloc_vm_area - allocate a range of kernel address space
447  *      @size:          size of the area
448  *
449  *      Returns:        NULL on failure, vm_struct on success
450  *
451  *      This function reserves a range of kernel address space, and
452  *      allocates pagetables to map that range.  No actual mappings
453  *      are created.  If the kernel address space is not shared
454  *      between processes, it syncs the pagetable across all
455  *      processes.
456  */
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459         BUG();
460         return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463
464 void free_vm_area(struct vm_struct *area)
465 {
466         BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471                    struct page *page)
472 {
473         return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476
477 /*
478  *  sys_brk() for the most part doesn't need the global kernel
479  *  lock, except when an application is doing something nasty
480  *  like trying to un-brk an area that has already been mapped
481  *  to a regular file.  in this case, the unmapping will need
482  *  to invoke file system routines that need the global lock.
483  */
484 SYSCALL_DEFINE1(brk, unsigned long, brk)
485 {
486         struct mm_struct *mm = current->mm;
487
488         if (brk < mm->start_brk || brk > mm->context.end_brk)
489                 return mm->brk;
490
491         if (mm->brk == brk)
492                 return mm->brk;
493
494         /*
495          * Always allow shrinking brk
496          */
497         if (brk <= mm->brk) {
498                 mm->brk = brk;
499                 return brk;
500         }
501
502         /*
503          * Ok, looks good - let it rip.
504          */
505         flush_icache_range(mm->brk, brk);
506         return mm->brk = brk;
507 }
508
509 /*
510  * initialise the VMA and region record slabs
511  */
512 void __init mmap_init(void)
513 {
514         int ret;
515
516         ret = percpu_counter_init(&vm_committed_as, 0);
517         VM_BUG_ON(ret);
518         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
519 }
520
521 /*
522  * validate the region tree
523  * - the caller must hold the region lock
524  */
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline void validate_nommu_regions(void)
527 {
528         struct vm_region *region, *last;
529         struct rb_node *p, *lastp;
530
531         lastp = rb_first(&nommu_region_tree);
532         if (!lastp)
533                 return;
534
535         last = rb_entry(lastp, struct vm_region, vm_rb);
536         BUG_ON(unlikely(last->vm_end <= last->vm_start));
537         BUG_ON(unlikely(last->vm_top < last->vm_end));
538
539         while ((p = rb_next(lastp))) {
540                 region = rb_entry(p, struct vm_region, vm_rb);
541                 last = rb_entry(lastp, struct vm_region, vm_rb);
542
543                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
544                 BUG_ON(unlikely(region->vm_top < region->vm_end));
545                 BUG_ON(unlikely(region->vm_start < last->vm_top));
546
547                 lastp = p;
548         }
549 }
550 #else
551 static void validate_nommu_regions(void)
552 {
553 }
554 #endif
555
556 /*
557  * add a region into the global tree
558  */
559 static void add_nommu_region(struct vm_region *region)
560 {
561         struct vm_region *pregion;
562         struct rb_node **p, *parent;
563
564         validate_nommu_regions();
565
566         parent = NULL;
567         p = &nommu_region_tree.rb_node;
568         while (*p) {
569                 parent = *p;
570                 pregion = rb_entry(parent, struct vm_region, vm_rb);
571                 if (region->vm_start < pregion->vm_start)
572                         p = &(*p)->rb_left;
573                 else if (region->vm_start > pregion->vm_start)
574                         p = &(*p)->rb_right;
575                 else if (pregion == region)
576                         return;
577                 else
578                         BUG();
579         }
580
581         rb_link_node(&region->vm_rb, parent, p);
582         rb_insert_color(&region->vm_rb, &nommu_region_tree);
583
584         validate_nommu_regions();
585 }
586
587 /*
588  * delete a region from the global tree
589  */
590 static void delete_nommu_region(struct vm_region *region)
591 {
592         BUG_ON(!nommu_region_tree.rb_node);
593
594         validate_nommu_regions();
595         rb_erase(&region->vm_rb, &nommu_region_tree);
596         validate_nommu_regions();
597 }
598
599 /*
600  * free a contiguous series of pages
601  */
602 static void free_page_series(unsigned long from, unsigned long to)
603 {
604         for (; from < to; from += PAGE_SIZE) {
605                 struct page *page = virt_to_page(from);
606
607                 kdebug("- free %lx", from);
608                 atomic_long_dec(&mmap_pages_allocated);
609                 if (page_count(page) != 1)
610                         kdebug("free page %p: refcount not one: %d",
611                                page, page_count(page));
612                 put_page(page);
613         }
614 }
615
616 /*
617  * release a reference to a region
618  * - the caller must hold the region semaphore for writing, which this releases
619  * - the region may not have been added to the tree yet, in which case vm_top
620  *   will equal vm_start
621  */
622 static void __put_nommu_region(struct vm_region *region)
623         __releases(nommu_region_sem)
624 {
625         kenter("%p{%d}", region, region->vm_usage);
626
627         BUG_ON(!nommu_region_tree.rb_node);
628
629         if (--region->vm_usage == 0) {
630                 if (region->vm_top > region->vm_start)
631                         delete_nommu_region(region);
632                 up_write(&nommu_region_sem);
633
634                 if (region->vm_file)
635                         fput(region->vm_file);
636
637                 /* IO memory and memory shared directly out of the pagecache
638                  * from ramfs/tmpfs mustn't be released here */
639                 if (region->vm_flags & VM_MAPPED_COPY) {
640                         kdebug("free series");
641                         free_page_series(region->vm_start, region->vm_top);
642                 }
643                 kmem_cache_free(vm_region_jar, region);
644         } else {
645                 up_write(&nommu_region_sem);
646         }
647 }
648
649 /*
650  * release a reference to a region
651  */
652 static void put_nommu_region(struct vm_region *region)
653 {
654         down_write(&nommu_region_sem);
655         __put_nommu_region(region);
656 }
657
658 /*
659  * update protection on a vma
660  */
661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
662 {
663 #ifdef CONFIG_MPU
664         struct mm_struct *mm = vma->vm_mm;
665         long start = vma->vm_start & PAGE_MASK;
666         while (start < vma->vm_end) {
667                 protect_page(mm, start, flags);
668                 start += PAGE_SIZE;
669         }
670         update_protections(mm);
671 #endif
672 }
673
674 /*
675  * add a VMA into a process's mm_struct in the appropriate place in the list
676  * and tree and add to the address space's page tree also if not an anonymous
677  * page
678  * - should be called with mm->mmap_sem held writelocked
679  */
680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
681 {
682         struct vm_area_struct *pvma, *prev;
683         struct address_space *mapping;
684         struct rb_node **p, *parent, *rb_prev;
685
686         kenter(",%p", vma);
687
688         BUG_ON(!vma->vm_region);
689
690         mm->map_count++;
691         vma->vm_mm = mm;
692
693         protect_vma(vma, vma->vm_flags);
694
695         /* add the VMA to the mapping */
696         if (vma->vm_file) {
697                 mapping = vma->vm_file->f_mapping;
698
699                 mutex_lock(&mapping->i_mmap_mutex);
700                 flush_dcache_mmap_lock(mapping);
701                 vma_prio_tree_insert(vma, &mapping->i_mmap);
702                 flush_dcache_mmap_unlock(mapping);
703                 mutex_unlock(&mapping->i_mmap_mutex);
704         }
705
706         /* add the VMA to the tree */
707         parent = rb_prev = NULL;
708         p = &mm->mm_rb.rb_node;
709         while (*p) {
710                 parent = *p;
711                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712
713                 /* sort by: start addr, end addr, VMA struct addr in that order
714                  * (the latter is necessary as we may get identical VMAs) */
715                 if (vma->vm_start < pvma->vm_start)
716                         p = &(*p)->rb_left;
717                 else if (vma->vm_start > pvma->vm_start) {
718                         rb_prev = parent;
719                         p = &(*p)->rb_right;
720                 } else if (vma->vm_end < pvma->vm_end)
721                         p = &(*p)->rb_left;
722                 else if (vma->vm_end > pvma->vm_end) {
723                         rb_prev = parent;
724                         p = &(*p)->rb_right;
725                 } else if (vma < pvma)
726                         p = &(*p)->rb_left;
727                 else if (vma > pvma) {
728                         rb_prev = parent;
729                         p = &(*p)->rb_right;
730                 } else
731                         BUG();
732         }
733
734         rb_link_node(&vma->vm_rb, parent, p);
735         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736
737         /* add VMA to the VMA list also */
738         prev = NULL;
739         if (rb_prev)
740                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741
742         __vma_link_list(mm, vma, prev, parent);
743 }
744
745 /*
746  * delete a VMA from its owning mm_struct and address space
747  */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750         struct address_space *mapping;
751         struct mm_struct *mm = vma->vm_mm;
752
753         kenter("%p", vma);
754
755         protect_vma(vma, 0);
756
757         mm->map_count--;
758         if (mm->mmap_cache == vma)
759                 mm->mmap_cache = NULL;
760
761         /* remove the VMA from the mapping */
762         if (vma->vm_file) {
763                 mapping = vma->vm_file->f_mapping;
764
765                 mutex_lock(&mapping->i_mmap_mutex);
766                 flush_dcache_mmap_lock(mapping);
767                 vma_prio_tree_remove(vma, &mapping->i_mmap);
768                 flush_dcache_mmap_unlock(mapping);
769                 mutex_unlock(&mapping->i_mmap_mutex);
770         }
771
772         /* remove from the MM's tree and list */
773         rb_erase(&vma->vm_rb, &mm->mm_rb);
774
775         if (vma->vm_prev)
776                 vma->vm_prev->vm_next = vma->vm_next;
777         else
778                 mm->mmap = vma->vm_next;
779
780         if (vma->vm_next)
781                 vma->vm_next->vm_prev = vma->vm_prev;
782 }
783
784 /*
785  * destroy a VMA record
786  */
787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 {
789         kenter("%p", vma);
790         if (vma->vm_ops && vma->vm_ops->close)
791                 vma->vm_ops->close(vma);
792         if (vma->vm_file)
793                 fput(vma->vm_file);
794         put_nommu_region(vma->vm_region);
795         kmem_cache_free(vm_area_cachep, vma);
796 }
797
798 /*
799  * look up the first VMA in which addr resides, NULL if none
800  * - should be called with mm->mmap_sem at least held readlocked
801  */
802 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
803 {
804         struct vm_area_struct *vma;
805
806         /* check the cache first */
807         vma = mm->mmap_cache;
808         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
809                 return vma;
810
811         /* trawl the list (there may be multiple mappings in which addr
812          * resides) */
813         for (vma = mm->mmap; vma; vma = vma->vm_next) {
814                 if (vma->vm_start > addr)
815                         return NULL;
816                 if (vma->vm_end > addr) {
817                         mm->mmap_cache = vma;
818                         return vma;
819                 }
820         }
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(find_vma);
825
826 /*
827  * find a VMA
828  * - we don't extend stack VMAs under NOMMU conditions
829  */
830 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
831 {
832         return find_vma(mm, addr);
833 }
834
835 /*
836  * expand a stack to a given address
837  * - not supported under NOMMU conditions
838  */
839 int expand_stack(struct vm_area_struct *vma, unsigned long address)
840 {
841         return -ENOMEM;
842 }
843
844 /*
845  * look up the first VMA exactly that exactly matches addr
846  * - should be called with mm->mmap_sem at least held readlocked
847  */
848 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
849                                              unsigned long addr,
850                                              unsigned long len)
851 {
852         struct vm_area_struct *vma;
853         unsigned long end = addr + len;
854
855         /* check the cache first */
856         vma = mm->mmap_cache;
857         if (vma && vma->vm_start == addr && vma->vm_end == end)
858                 return vma;
859
860         /* trawl the list (there may be multiple mappings in which addr
861          * resides) */
862         for (vma = mm->mmap; vma; vma = vma->vm_next) {
863                 if (vma->vm_start < addr)
864                         continue;
865                 if (vma->vm_start > addr)
866                         return NULL;
867                 if (vma->vm_end == end) {
868                         mm->mmap_cache = vma;
869                         return vma;
870                 }
871         }
872
873         return NULL;
874 }
875
876 /*
877  * determine whether a mapping should be permitted and, if so, what sort of
878  * mapping we're capable of supporting
879  */
880 static int validate_mmap_request(struct file *file,
881                                  unsigned long addr,
882                                  unsigned long len,
883                                  unsigned long prot,
884                                  unsigned long flags,
885                                  unsigned long pgoff,
886                                  unsigned long *_capabilities)
887 {
888         unsigned long capabilities, rlen;
889         int ret;
890
891         /* do the simple checks first */
892         if (flags & MAP_FIXED) {
893                 printk(KERN_DEBUG
894                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
895                        current->pid);
896                 return -EINVAL;
897         }
898
899         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
900             (flags & MAP_TYPE) != MAP_SHARED)
901                 return -EINVAL;
902
903         if (!len)
904                 return -EINVAL;
905
906         /* Careful about overflows.. */
907         rlen = PAGE_ALIGN(len);
908         if (!rlen || rlen > TASK_SIZE)
909                 return -ENOMEM;
910
911         /* offset overflow? */
912         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
913                 return -EOVERFLOW;
914
915         if (file) {
916                 /* validate file mapping requests */
917                 struct address_space *mapping;
918
919                 /* files must support mmap */
920                 if (!file->f_op || !file->f_op->mmap)
921                         return -ENODEV;
922
923                 /* work out if what we've got could possibly be shared
924                  * - we support chardevs that provide their own "memory"
925                  * - we support files/blockdevs that are memory backed
926                  */
927                 mapping = file->f_mapping;
928                 if (!mapping)
929                         mapping = file->f_path.dentry->d_inode->i_mapping;
930
931                 capabilities = 0;
932                 if (mapping && mapping->backing_dev_info)
933                         capabilities = mapping->backing_dev_info->capabilities;
934
935                 if (!capabilities) {
936                         /* no explicit capabilities set, so assume some
937                          * defaults */
938                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
939                         case S_IFREG:
940                         case S_IFBLK:
941                                 capabilities = BDI_CAP_MAP_COPY;
942                                 break;
943
944                         case S_IFCHR:
945                                 capabilities =
946                                         BDI_CAP_MAP_DIRECT |
947                                         BDI_CAP_READ_MAP |
948                                         BDI_CAP_WRITE_MAP;
949                                 break;
950
951                         default:
952                                 return -EINVAL;
953                         }
954                 }
955
956                 /* eliminate any capabilities that we can't support on this
957                  * device */
958                 if (!file->f_op->get_unmapped_area)
959                         capabilities &= ~BDI_CAP_MAP_DIRECT;
960                 if (!file->f_op->read)
961                         capabilities &= ~BDI_CAP_MAP_COPY;
962
963                 /* The file shall have been opened with read permission. */
964                 if (!(file->f_mode & FMODE_READ))
965                         return -EACCES;
966
967                 if (flags & MAP_SHARED) {
968                         /* do checks for writing, appending and locking */
969                         if ((prot & PROT_WRITE) &&
970                             !(file->f_mode & FMODE_WRITE))
971                                 return -EACCES;
972
973                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
974                             (file->f_mode & FMODE_WRITE))
975                                 return -EACCES;
976
977                         if (locks_verify_locked(file->f_path.dentry->d_inode))
978                                 return -EAGAIN;
979
980                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
981                                 return -ENODEV;
982
983                         /* we mustn't privatise shared mappings */
984                         capabilities &= ~BDI_CAP_MAP_COPY;
985                 }
986                 else {
987                         /* we're going to read the file into private memory we
988                          * allocate */
989                         if (!(capabilities & BDI_CAP_MAP_COPY))
990                                 return -ENODEV;
991
992                         /* we don't permit a private writable mapping to be
993                          * shared with the backing device */
994                         if (prot & PROT_WRITE)
995                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
996                 }
997
998                 if (capabilities & BDI_CAP_MAP_DIRECT) {
999                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1000                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1001                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1002                             ) {
1003                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1004                                 if (flags & MAP_SHARED) {
1005                                         printk(KERN_WARNING
1006                                                "MAP_SHARED not completely supported on !MMU\n");
1007                                         return -EINVAL;
1008                                 }
1009                         }
1010                 }
1011
1012                 /* handle executable mappings and implied executable
1013                  * mappings */
1014                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015                         if (prot & PROT_EXEC)
1016                                 return -EPERM;
1017                 }
1018                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1019                         /* handle implication of PROT_EXEC by PROT_READ */
1020                         if (current->personality & READ_IMPLIES_EXEC) {
1021                                 if (capabilities & BDI_CAP_EXEC_MAP)
1022                                         prot |= PROT_EXEC;
1023                         }
1024                 }
1025                 else if ((prot & PROT_READ) &&
1026                          (prot & PROT_EXEC) &&
1027                          !(capabilities & BDI_CAP_EXEC_MAP)
1028                          ) {
1029                         /* backing file is not executable, try to copy */
1030                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1031                 }
1032         }
1033         else {
1034                 /* anonymous mappings are always memory backed and can be
1035                  * privately mapped
1036                  */
1037                 capabilities = BDI_CAP_MAP_COPY;
1038
1039                 /* handle PROT_EXEC implication by PROT_READ */
1040                 if ((prot & PROT_READ) &&
1041                     (current->personality & READ_IMPLIES_EXEC))
1042                         prot |= PROT_EXEC;
1043         }
1044
1045         /* allow the security API to have its say */
1046         ret = security_mmap_addr(addr);
1047         if (ret < 0)
1048                 return ret;
1049
1050         /* looks okay */
1051         *_capabilities = capabilities;
1052         return 0;
1053 }
1054
1055 /*
1056  * we've determined that we can make the mapping, now translate what we
1057  * now know into VMA flags
1058  */
1059 static unsigned long determine_vm_flags(struct file *file,
1060                                         unsigned long prot,
1061                                         unsigned long flags,
1062                                         unsigned long capabilities)
1063 {
1064         unsigned long vm_flags;
1065
1066         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1067         /* vm_flags |= mm->def_flags; */
1068
1069         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1070                 /* attempt to share read-only copies of mapped file chunks */
1071                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1072                 if (file && !(prot & PROT_WRITE))
1073                         vm_flags |= VM_MAYSHARE;
1074         } else {
1075                 /* overlay a shareable mapping on the backing device or inode
1076                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1077                  * romfs/cramfs */
1078                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1079                 if (flags & MAP_SHARED)
1080                         vm_flags |= VM_SHARED;
1081         }
1082
1083         /* refuse to let anyone share private mappings with this process if
1084          * it's being traced - otherwise breakpoints set in it may interfere
1085          * with another untraced process
1086          */
1087         if ((flags & MAP_PRIVATE) && current->ptrace)
1088                 vm_flags &= ~VM_MAYSHARE;
1089
1090         return vm_flags;
1091 }
1092
1093 /*
1094  * set up a shared mapping on a file (the driver or filesystem provides and
1095  * pins the storage)
1096  */
1097 static int do_mmap_shared_file(struct vm_area_struct *vma)
1098 {
1099         int ret;
1100
1101         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1102         if (ret == 0) {
1103                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1104                 return 0;
1105         }
1106         if (ret != -ENOSYS)
1107                 return ret;
1108
1109         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1110          * opposed to tried but failed) so we can only give a suitable error as
1111          * it's not possible to make a private copy if MAP_SHARED was given */
1112         return -ENODEV;
1113 }
1114
1115 /*
1116  * set up a private mapping or an anonymous shared mapping
1117  */
1118 static int do_mmap_private(struct vm_area_struct *vma,
1119                            struct vm_region *region,
1120                            unsigned long len,
1121                            unsigned long capabilities)
1122 {
1123         struct page *pages;
1124         unsigned long total, point, n;
1125         void *base;
1126         int ret, order;
1127
1128         /* invoke the file's mapping function so that it can keep track of
1129          * shared mappings on devices or memory
1130          * - VM_MAYSHARE will be set if it may attempt to share
1131          */
1132         if (capabilities & BDI_CAP_MAP_DIRECT) {
1133                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1134                 if (ret == 0) {
1135                         /* shouldn't return success if we're not sharing */
1136                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1137                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1138                         return 0;
1139                 }
1140                 if (ret != -ENOSYS)
1141                         return ret;
1142
1143                 /* getting an ENOSYS error indicates that direct mmap isn't
1144                  * possible (as opposed to tried but failed) so we'll try to
1145                  * make a private copy of the data and map that instead */
1146         }
1147
1148
1149         /* allocate some memory to hold the mapping
1150          * - note that this may not return a page-aligned address if the object
1151          *   we're allocating is smaller than a page
1152          */
1153         order = get_order(len);
1154         kdebug("alloc order %d for %lx", order, len);
1155
1156         pages = alloc_pages(GFP_KERNEL, order);
1157         if (!pages)
1158                 goto enomem;
1159
1160         total = 1 << order;
1161         atomic_long_add(total, &mmap_pages_allocated);
1162
1163         point = len >> PAGE_SHIFT;
1164
1165         /* we allocated a power-of-2 sized page set, so we may want to trim off
1166          * the excess */
1167         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1168                 while (total > point) {
1169                         order = ilog2(total - point);
1170                         n = 1 << order;
1171                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1172                         atomic_long_sub(n, &mmap_pages_allocated);
1173                         total -= n;
1174                         set_page_refcounted(pages + total);
1175                         __free_pages(pages + total, order);
1176                 }
1177         }
1178
1179         for (point = 1; point < total; point++)
1180                 set_page_refcounted(&pages[point]);
1181
1182         base = page_address(pages);
1183         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1184         region->vm_start = (unsigned long) base;
1185         region->vm_end   = region->vm_start + len;
1186         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1187
1188         vma->vm_start = region->vm_start;
1189         vma->vm_end   = region->vm_start + len;
1190
1191         if (vma->vm_file) {
1192                 /* read the contents of a file into the copy */
1193                 mm_segment_t old_fs;
1194                 loff_t fpos;
1195
1196                 fpos = vma->vm_pgoff;
1197                 fpos <<= PAGE_SHIFT;
1198
1199                 old_fs = get_fs();
1200                 set_fs(KERNEL_DS);
1201                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1202                 set_fs(old_fs);
1203
1204                 if (ret < 0)
1205                         goto error_free;
1206
1207                 /* clear the last little bit */
1208                 if (ret < len)
1209                         memset(base + ret, 0, len - ret);
1210
1211         }
1212
1213         return 0;
1214
1215 error_free:
1216         free_page_series(region->vm_start, region->vm_top);
1217         region->vm_start = vma->vm_start = 0;
1218         region->vm_end   = vma->vm_end = 0;
1219         region->vm_top   = 0;
1220         return ret;
1221
1222 enomem:
1223         printk("Allocation of length %lu from process %d (%s) failed\n",
1224                len, current->pid, current->comm);
1225         show_free_areas(0);
1226         return -ENOMEM;
1227 }
1228
1229 /*
1230  * handle mapping creation for uClinux
1231  */
1232 unsigned long do_mmap_pgoff(struct file *file,
1233                             unsigned long addr,
1234                             unsigned long len,
1235                             unsigned long prot,
1236                             unsigned long flags,
1237                             unsigned long pgoff)
1238 {
1239         struct vm_area_struct *vma;
1240         struct vm_region *region;
1241         struct rb_node *rb;
1242         unsigned long capabilities, vm_flags, result;
1243         int ret;
1244
1245         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1246
1247         /* decide whether we should attempt the mapping, and if so what sort of
1248          * mapping */
1249         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1250                                     &capabilities);
1251         if (ret < 0) {
1252                 kleave(" = %d [val]", ret);
1253                 return ret;
1254         }
1255
1256         /* we ignore the address hint */
1257         addr = 0;
1258         len = PAGE_ALIGN(len);
1259
1260         /* we've determined that we can make the mapping, now translate what we
1261          * now know into VMA flags */
1262         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1263
1264         /* we're going to need to record the mapping */
1265         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1266         if (!region)
1267                 goto error_getting_region;
1268
1269         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270         if (!vma)
1271                 goto error_getting_vma;
1272
1273         region->vm_usage = 1;
1274         region->vm_flags = vm_flags;
1275         region->vm_pgoff = pgoff;
1276
1277         INIT_LIST_HEAD(&vma->anon_vma_chain);
1278         vma->vm_flags = vm_flags;
1279         vma->vm_pgoff = pgoff;
1280
1281         if (file) {
1282                 region->vm_file = file;
1283                 get_file(file);
1284                 vma->vm_file = file;
1285                 get_file(file);
1286         }
1287
1288         down_write(&nommu_region_sem);
1289
1290         /* if we want to share, we need to check for regions created by other
1291          * mmap() calls that overlap with our proposed mapping
1292          * - we can only share with a superset match on most regular files
1293          * - shared mappings on character devices and memory backed files are
1294          *   permitted to overlap inexactly as far as we are concerned for in
1295          *   these cases, sharing is handled in the driver or filesystem rather
1296          *   than here
1297          */
1298         if (vm_flags & VM_MAYSHARE) {
1299                 struct vm_region *pregion;
1300                 unsigned long pglen, rpglen, pgend, rpgend, start;
1301
1302                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1303                 pgend = pgoff + pglen;
1304
1305                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1306                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1307
1308                         if (!(pregion->vm_flags & VM_MAYSHARE))
1309                                 continue;
1310
1311                         /* search for overlapping mappings on the same file */
1312                         if (pregion->vm_file->f_path.dentry->d_inode !=
1313                             file->f_path.dentry->d_inode)
1314                                 continue;
1315
1316                         if (pregion->vm_pgoff >= pgend)
1317                                 continue;
1318
1319                         rpglen = pregion->vm_end - pregion->vm_start;
1320                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1321                         rpgend = pregion->vm_pgoff + rpglen;
1322                         if (pgoff >= rpgend)
1323                                 continue;
1324
1325                         /* handle inexactly overlapping matches between
1326                          * mappings */
1327                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1328                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1329                                 /* new mapping is not a subset of the region */
1330                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1331                                         goto sharing_violation;
1332                                 continue;
1333                         }
1334
1335                         /* we've found a region we can share */
1336                         pregion->vm_usage++;
1337                         vma->vm_region = pregion;
1338                         start = pregion->vm_start;
1339                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1340                         vma->vm_start = start;
1341                         vma->vm_end = start + len;
1342
1343                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1344                                 kdebug("share copy");
1345                                 vma->vm_flags |= VM_MAPPED_COPY;
1346                         } else {
1347                                 kdebug("share mmap");
1348                                 ret = do_mmap_shared_file(vma);
1349                                 if (ret < 0) {
1350                                         vma->vm_region = NULL;
1351                                         vma->vm_start = 0;
1352                                         vma->vm_end = 0;
1353                                         pregion->vm_usage--;
1354                                         pregion = NULL;
1355                                         goto error_just_free;
1356                                 }
1357                         }
1358                         fput(region->vm_file);
1359                         kmem_cache_free(vm_region_jar, region);
1360                         region = pregion;
1361                         result = start;
1362                         goto share;
1363                 }
1364
1365                 /* obtain the address at which to make a shared mapping
1366                  * - this is the hook for quasi-memory character devices to
1367                  *   tell us the location of a shared mapping
1368                  */
1369                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1370                         addr = file->f_op->get_unmapped_area(file, addr, len,
1371                                                              pgoff, flags);
1372                         if (IS_ERR_VALUE(addr)) {
1373                                 ret = addr;
1374                                 if (ret != -ENOSYS)
1375                                         goto error_just_free;
1376
1377                                 /* the driver refused to tell us where to site
1378                                  * the mapping so we'll have to attempt to copy
1379                                  * it */
1380                                 ret = -ENODEV;
1381                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1382                                         goto error_just_free;
1383
1384                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1385                         } else {
1386                                 vma->vm_start = region->vm_start = addr;
1387                                 vma->vm_end = region->vm_end = addr + len;
1388                         }
1389                 }
1390         }
1391
1392         vma->vm_region = region;
1393
1394         /* set up the mapping
1395          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1396          */
1397         if (file && vma->vm_flags & VM_SHARED)
1398                 ret = do_mmap_shared_file(vma);
1399         else
1400                 ret = do_mmap_private(vma, region, len, capabilities);
1401         if (ret < 0)
1402                 goto error_just_free;
1403         add_nommu_region(region);
1404
1405         /* clear anonymous mappings that don't ask for uninitialized data */
1406         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1407                 memset((void *)region->vm_start, 0,
1408                        region->vm_end - region->vm_start);
1409
1410         /* okay... we have a mapping; now we have to register it */
1411         result = vma->vm_start;
1412
1413         current->mm->total_vm += len >> PAGE_SHIFT;
1414
1415 share:
1416         add_vma_to_mm(current->mm, vma);
1417
1418         /* we flush the region from the icache only when the first executable
1419          * mapping of it is made  */
1420         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1421                 flush_icache_range(region->vm_start, region->vm_end);
1422                 region->vm_icache_flushed = true;
1423         }
1424
1425         up_write(&nommu_region_sem);
1426
1427         kleave(" = %lx", result);
1428         return result;
1429
1430 error_just_free:
1431         up_write(&nommu_region_sem);
1432 error:
1433         if (region->vm_file)
1434                 fput(region->vm_file);
1435         kmem_cache_free(vm_region_jar, region);
1436         if (vma->vm_file)
1437                 fput(vma->vm_file);
1438         kmem_cache_free(vm_area_cachep, vma);
1439         kleave(" = %d", ret);
1440         return ret;
1441
1442 sharing_violation:
1443         up_write(&nommu_region_sem);
1444         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1445         ret = -EINVAL;
1446         goto error;
1447
1448 error_getting_vma:
1449         kmem_cache_free(vm_region_jar, region);
1450         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1451                " from process %d failed\n",
1452                len, current->pid);
1453         show_free_areas(0);
1454         return -ENOMEM;
1455
1456 error_getting_region:
1457         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1458                " from process %d failed\n",
1459                len, current->pid);
1460         show_free_areas(0);
1461         return -ENOMEM;
1462 }
1463
1464 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1465                 unsigned long, prot, unsigned long, flags,
1466                 unsigned long, fd, unsigned long, pgoff)
1467 {
1468         struct file *file = NULL;
1469         unsigned long retval = -EBADF;
1470
1471         audit_mmap_fd(fd, flags);
1472         if (!(flags & MAP_ANONYMOUS)) {
1473                 file = fget(fd);
1474                 if (!file)
1475                         goto out;
1476         }
1477
1478         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1479
1480         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1481
1482         if (file)
1483                 fput(file);
1484 out:
1485         return retval;
1486 }
1487
1488 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1489 struct mmap_arg_struct {
1490         unsigned long addr;
1491         unsigned long len;
1492         unsigned long prot;
1493         unsigned long flags;
1494         unsigned long fd;
1495         unsigned long offset;
1496 };
1497
1498 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1499 {
1500         struct mmap_arg_struct a;
1501
1502         if (copy_from_user(&a, arg, sizeof(a)))
1503                 return -EFAULT;
1504         if (a.offset & ~PAGE_MASK)
1505                 return -EINVAL;
1506
1507         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1508                               a.offset >> PAGE_SHIFT);
1509 }
1510 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1511
1512 /*
1513  * split a vma into two pieces at address 'addr', a new vma is allocated either
1514  * for the first part or the tail.
1515  */
1516 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1517               unsigned long addr, int new_below)
1518 {
1519         struct vm_area_struct *new;
1520         struct vm_region *region;
1521         unsigned long npages;
1522
1523         kenter("");
1524
1525         /* we're only permitted to split anonymous regions (these should have
1526          * only a single usage on the region) */
1527         if (vma->vm_file)
1528                 return -ENOMEM;
1529
1530         if (mm->map_count >= sysctl_max_map_count)
1531                 return -ENOMEM;
1532
1533         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1534         if (!region)
1535                 return -ENOMEM;
1536
1537         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1538         if (!new) {
1539                 kmem_cache_free(vm_region_jar, region);
1540                 return -ENOMEM;
1541         }
1542
1543         /* most fields are the same, copy all, and then fixup */
1544         *new = *vma;
1545         *region = *vma->vm_region;
1546         new->vm_region = region;
1547
1548         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1549
1550         if (new_below) {
1551                 region->vm_top = region->vm_end = new->vm_end = addr;
1552         } else {
1553                 region->vm_start = new->vm_start = addr;
1554                 region->vm_pgoff = new->vm_pgoff += npages;
1555         }
1556
1557         if (new->vm_ops && new->vm_ops->open)
1558                 new->vm_ops->open(new);
1559
1560         delete_vma_from_mm(vma);
1561         down_write(&nommu_region_sem);
1562         delete_nommu_region(vma->vm_region);
1563         if (new_below) {
1564                 vma->vm_region->vm_start = vma->vm_start = addr;
1565                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1566         } else {
1567                 vma->vm_region->vm_end = vma->vm_end = addr;
1568                 vma->vm_region->vm_top = addr;
1569         }
1570         add_nommu_region(vma->vm_region);
1571         add_nommu_region(new->vm_region);
1572         up_write(&nommu_region_sem);
1573         add_vma_to_mm(mm, vma);
1574         add_vma_to_mm(mm, new);
1575         return 0;
1576 }
1577
1578 /*
1579  * shrink a VMA by removing the specified chunk from either the beginning or
1580  * the end
1581  */
1582 static int shrink_vma(struct mm_struct *mm,
1583                       struct vm_area_struct *vma,
1584                       unsigned long from, unsigned long to)
1585 {
1586         struct vm_region *region;
1587
1588         kenter("");
1589
1590         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1591          * and list */
1592         delete_vma_from_mm(vma);
1593         if (from > vma->vm_start)
1594                 vma->vm_end = from;
1595         else
1596                 vma->vm_start = to;
1597         add_vma_to_mm(mm, vma);
1598
1599         /* cut the backing region down to size */
1600         region = vma->vm_region;
1601         BUG_ON(region->vm_usage != 1);
1602
1603         down_write(&nommu_region_sem);
1604         delete_nommu_region(region);
1605         if (from > region->vm_start) {
1606                 to = region->vm_top;
1607                 region->vm_top = region->vm_end = from;
1608         } else {
1609                 region->vm_start = to;
1610         }
1611         add_nommu_region(region);
1612         up_write(&nommu_region_sem);
1613
1614         free_page_series(from, to);
1615         return 0;
1616 }
1617
1618 /*
1619  * release a mapping
1620  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1621  *   VMA, though it need not cover the whole VMA
1622  */
1623 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1624 {
1625         struct vm_area_struct *vma;
1626         unsigned long end;
1627         int ret;
1628
1629         kenter(",%lx,%zx", start, len);
1630
1631         len = PAGE_ALIGN(len);
1632         if (len == 0)
1633                 return -EINVAL;
1634
1635         end = start + len;
1636
1637         /* find the first potentially overlapping VMA */
1638         vma = find_vma(mm, start);
1639         if (!vma) {
1640                 static int limit = 0;
1641                 if (limit < 5) {
1642                         printk(KERN_WARNING
1643                                "munmap of memory not mmapped by process %d"
1644                                " (%s): 0x%lx-0x%lx\n",
1645                                current->pid, current->comm,
1646                                start, start + len - 1);
1647                         limit++;
1648                 }
1649                 return -EINVAL;
1650         }
1651
1652         /* we're allowed to split an anonymous VMA but not a file-backed one */
1653         if (vma->vm_file) {
1654                 do {
1655                         if (start > vma->vm_start) {
1656                                 kleave(" = -EINVAL [miss]");
1657                                 return -EINVAL;
1658                         }
1659                         if (end == vma->vm_end)
1660                                 goto erase_whole_vma;
1661                         vma = vma->vm_next;
1662                 } while (vma);
1663                 kleave(" = -EINVAL [split file]");
1664                 return -EINVAL;
1665         } else {
1666                 /* the chunk must be a subset of the VMA found */
1667                 if (start == vma->vm_start && end == vma->vm_end)
1668                         goto erase_whole_vma;
1669                 if (start < vma->vm_start || end > vma->vm_end) {
1670                         kleave(" = -EINVAL [superset]");
1671                         return -EINVAL;
1672                 }
1673                 if (start & ~PAGE_MASK) {
1674                         kleave(" = -EINVAL [unaligned start]");
1675                         return -EINVAL;
1676                 }
1677                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1678                         kleave(" = -EINVAL [unaligned split]");
1679                         return -EINVAL;
1680                 }
1681                 if (start != vma->vm_start && end != vma->vm_end) {
1682                         ret = split_vma(mm, vma, start, 1);
1683                         if (ret < 0) {
1684                                 kleave(" = %d [split]", ret);
1685                                 return ret;
1686                         }
1687                 }
1688                 return shrink_vma(mm, vma, start, end);
1689         }
1690
1691 erase_whole_vma:
1692         delete_vma_from_mm(vma);
1693         delete_vma(mm, vma);
1694         kleave(" = 0");
1695         return 0;
1696 }
1697 EXPORT_SYMBOL(do_munmap);
1698
1699 int vm_munmap(unsigned long addr, size_t len)
1700 {
1701         struct mm_struct *mm = current->mm;
1702         int ret;
1703
1704         down_write(&mm->mmap_sem);
1705         ret = do_munmap(mm, addr, len);
1706         up_write(&mm->mmap_sem);
1707         return ret;
1708 }
1709 EXPORT_SYMBOL(vm_munmap);
1710
1711 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1712 {
1713         return vm_munmap(addr, len);
1714 }
1715
1716 /*
1717  * release all the mappings made in a process's VM space
1718  */
1719 void exit_mmap(struct mm_struct *mm)
1720 {
1721         struct vm_area_struct *vma;
1722
1723         if (!mm)
1724                 return;
1725
1726         kenter("");
1727
1728         mm->total_vm = 0;
1729
1730         while ((vma = mm->mmap)) {
1731                 mm->mmap = vma->vm_next;
1732                 delete_vma_from_mm(vma);
1733                 delete_vma(mm, vma);
1734                 cond_resched();
1735         }
1736
1737         kleave("");
1738 }
1739
1740 unsigned long vm_brk(unsigned long addr, unsigned long len)
1741 {
1742         return -ENOMEM;
1743 }
1744
1745 /*
1746  * expand (or shrink) an existing mapping, potentially moving it at the same
1747  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1748  *
1749  * under NOMMU conditions, we only permit changing a mapping's size, and only
1750  * as long as it stays within the region allocated by do_mmap_private() and the
1751  * block is not shareable
1752  *
1753  * MREMAP_FIXED is not supported under NOMMU conditions
1754  */
1755 unsigned long do_mremap(unsigned long addr,
1756                         unsigned long old_len, unsigned long new_len,
1757                         unsigned long flags, unsigned long new_addr)
1758 {
1759         struct vm_area_struct *vma;
1760
1761         /* insanity checks first */
1762         old_len = PAGE_ALIGN(old_len);
1763         new_len = PAGE_ALIGN(new_len);
1764         if (old_len == 0 || new_len == 0)
1765                 return (unsigned long) -EINVAL;
1766
1767         if (addr & ~PAGE_MASK)
1768                 return -EINVAL;
1769
1770         if (flags & MREMAP_FIXED && new_addr != addr)
1771                 return (unsigned long) -EINVAL;
1772
1773         vma = find_vma_exact(current->mm, addr, old_len);
1774         if (!vma)
1775                 return (unsigned long) -EINVAL;
1776
1777         if (vma->vm_end != vma->vm_start + old_len)
1778                 return (unsigned long) -EFAULT;
1779
1780         if (vma->vm_flags & VM_MAYSHARE)
1781                 return (unsigned long) -EPERM;
1782
1783         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1784                 return (unsigned long) -ENOMEM;
1785
1786         /* all checks complete - do it */
1787         vma->vm_end = vma->vm_start + new_len;
1788         return vma->vm_start;
1789 }
1790 EXPORT_SYMBOL(do_mremap);
1791
1792 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1793                 unsigned long, new_len, unsigned long, flags,
1794                 unsigned long, new_addr)
1795 {
1796         unsigned long ret;
1797
1798         down_write(&current->mm->mmap_sem);
1799         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1800         up_write(&current->mm->mmap_sem);
1801         return ret;
1802 }
1803
1804 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1805                         unsigned int foll_flags)
1806 {
1807         return NULL;
1808 }
1809
1810 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1811                 unsigned long pfn, unsigned long size, pgprot_t prot)
1812 {
1813         if (addr != (pfn << PAGE_SHIFT))
1814                 return -EINVAL;
1815
1816         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1817         return 0;
1818 }
1819 EXPORT_SYMBOL(remap_pfn_range);
1820
1821 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1822                         unsigned long pgoff)
1823 {
1824         unsigned int size = vma->vm_end - vma->vm_start;
1825
1826         if (!(vma->vm_flags & VM_USERMAP))
1827                 return -EINVAL;
1828
1829         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1830         vma->vm_end = vma->vm_start + size;
1831
1832         return 0;
1833 }
1834 EXPORT_SYMBOL(remap_vmalloc_range);
1835
1836 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1837         unsigned long len, unsigned long pgoff, unsigned long flags)
1838 {
1839         return -ENOMEM;
1840 }
1841
1842 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1843 {
1844 }
1845
1846 void unmap_mapping_range(struct address_space *mapping,
1847                          loff_t const holebegin, loff_t const holelen,
1848                          int even_cows)
1849 {
1850 }
1851 EXPORT_SYMBOL(unmap_mapping_range);
1852
1853 /*
1854  * Check that a process has enough memory to allocate a new virtual
1855  * mapping. 0 means there is enough memory for the allocation to
1856  * succeed and -ENOMEM implies there is not.
1857  *
1858  * We currently support three overcommit policies, which are set via the
1859  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1860  *
1861  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1862  * Additional code 2002 Jul 20 by Robert Love.
1863  *
1864  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1865  *
1866  * Note this is a helper function intended to be used by LSMs which
1867  * wish to use this logic.
1868  */
1869 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1870 {
1871         unsigned long free, allowed;
1872
1873         vm_acct_memory(pages);
1874
1875         /*
1876          * Sometimes we want to use more memory than we have
1877          */
1878         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1879                 return 0;
1880
1881         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1882                 free = global_page_state(NR_FREE_PAGES);
1883                 free += global_page_state(NR_FILE_PAGES);
1884
1885                 /*
1886                  * shmem pages shouldn't be counted as free in this
1887                  * case, they can't be purged, only swapped out, and
1888                  * that won't affect the overall amount of available
1889                  * memory in the system.
1890                  */
1891                 free -= global_page_state(NR_SHMEM);
1892
1893                 free += nr_swap_pages;
1894
1895                 /*
1896                  * Any slabs which are created with the
1897                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1898                  * which are reclaimable, under pressure.  The dentry
1899                  * cache and most inode caches should fall into this
1900                  */
1901                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1902
1903                 /*
1904                  * Leave reserved pages. The pages are not for anonymous pages.
1905                  */
1906                 if (free <= totalreserve_pages)
1907                         goto error;
1908                 else
1909                         free -= totalreserve_pages;
1910
1911                 /*
1912                  * Leave the last 3% for root
1913                  */
1914                 if (!cap_sys_admin)
1915                         free -= free / 32;
1916
1917                 if (free > pages)
1918                         return 0;
1919
1920                 goto error;
1921         }
1922
1923         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1924         /*
1925          * Leave the last 3% for root
1926          */
1927         if (!cap_sys_admin)
1928                 allowed -= allowed / 32;
1929         allowed += total_swap_pages;
1930
1931         /* Don't let a single process grow too big:
1932            leave 3% of the size of this process for other processes */
1933         if (mm)
1934                 allowed -= mm->total_vm / 32;
1935
1936         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1937                 return 0;
1938
1939 error:
1940         vm_unacct_memory(pages);
1941
1942         return -ENOMEM;
1943 }
1944
1945 int in_gate_area_no_mm(unsigned long addr)
1946 {
1947         return 0;
1948 }
1949
1950 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1951 {
1952         BUG();
1953         return 0;
1954 }
1955 EXPORT_SYMBOL(filemap_fault);
1956
1957 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1958                              unsigned long size, pgoff_t pgoff)
1959 {
1960         BUG();
1961         return 0;
1962 }
1963 EXPORT_SYMBOL(generic_file_remap_pages);
1964
1965 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1966                 unsigned long addr, void *buf, int len, int write)
1967 {
1968         struct vm_area_struct *vma;
1969
1970         down_read(&mm->mmap_sem);
1971
1972         /* the access must start within one of the target process's mappings */
1973         vma = find_vma(mm, addr);
1974         if (vma) {
1975                 /* don't overrun this mapping */
1976                 if (addr + len >= vma->vm_end)
1977                         len = vma->vm_end - addr;
1978
1979                 /* only read or write mappings where it is permitted */
1980                 if (write && vma->vm_flags & VM_MAYWRITE)
1981                         copy_to_user_page(vma, NULL, addr,
1982                                          (void *) addr, buf, len);
1983                 else if (!write && vma->vm_flags & VM_MAYREAD)
1984                         copy_from_user_page(vma, NULL, addr,
1985                                             buf, (void *) addr, len);
1986                 else
1987                         len = 0;
1988         } else {
1989                 len = 0;
1990         }
1991
1992         up_read(&mm->mmap_sem);
1993
1994         return len;
1995 }
1996
1997 /**
1998  * @access_remote_vm - access another process' address space
1999  * @mm:         the mm_struct of the target address space
2000  * @addr:       start address to access
2001  * @buf:        source or destination buffer
2002  * @len:        number of bytes to transfer
2003  * @write:      whether the access is a write
2004  *
2005  * The caller must hold a reference on @mm.
2006  */
2007 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2008                 void *buf, int len, int write)
2009 {
2010         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2011 }
2012
2013 /*
2014  * Access another process' address space.
2015  * - source/target buffer must be kernel space
2016  */
2017 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2018 {
2019         struct mm_struct *mm;
2020
2021         if (addr + len < addr)
2022                 return 0;
2023
2024         mm = get_task_mm(tsk);
2025         if (!mm)
2026                 return 0;
2027
2028         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2029
2030         mmput(mm);
2031         return len;
2032 }
2033
2034 /**
2035  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2036  * @inode: The inode to check
2037  * @size: The current filesize of the inode
2038  * @newsize: The proposed filesize of the inode
2039  *
2040  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2041  * make sure that that any outstanding VMAs aren't broken and then shrink the
2042  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2043  * automatically grant mappings that are too large.
2044  */
2045 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2046                                 size_t newsize)
2047 {
2048         struct vm_area_struct *vma;
2049         struct prio_tree_iter iter;
2050         struct vm_region *region;
2051         pgoff_t low, high;
2052         size_t r_size, r_top;
2053
2054         low = newsize >> PAGE_SHIFT;
2055         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2056
2057         down_write(&nommu_region_sem);
2058         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2059
2060         /* search for VMAs that fall within the dead zone */
2061         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2062                               low, high) {
2063                 /* found one - only interested if it's shared out of the page
2064                  * cache */
2065                 if (vma->vm_flags & VM_SHARED) {
2066                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2067                         up_write(&nommu_region_sem);
2068                         return -ETXTBSY; /* not quite true, but near enough */
2069                 }
2070         }
2071
2072         /* reduce any regions that overlap the dead zone - if in existence,
2073          * these will be pointed to by VMAs that don't overlap the dead zone
2074          *
2075          * we don't check for any regions that start beyond the EOF as there
2076          * shouldn't be any
2077          */
2078         vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2079                               0, ULONG_MAX) {
2080                 if (!(vma->vm_flags & VM_SHARED))
2081                         continue;
2082
2083                 region = vma->vm_region;
2084                 r_size = region->vm_top - region->vm_start;
2085                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2086
2087                 if (r_top > newsize) {
2088                         region->vm_top -= r_top - newsize;
2089                         if (region->vm_end > region->vm_top)
2090                                 region->vm_end = region->vm_top;
2091                 }
2092         }
2093
2094         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2095         up_write(&nommu_region_sem);
2096         return 0;
2097 }