]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/page-writeback.c
The tracing ring-buffer used this function briefly, but not anymore.
[karo-tx-linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 /*
50  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51  * will look to see if it needs to force writeback or throttling.
52  */
53 static long ratelimit_pages = 32;
54
55 /*
56  * When balance_dirty_pages decides that the caller needs to perform some
57  * non-background writeback, this is how many pages it will attempt to write.
58  * It should be somewhat larger than dirtied pages to ensure that reasonably
59  * large amounts of I/O are submitted.
60  */
61 static inline long sync_writeback_pages(unsigned long dirtied)
62 {
63         if (dirtied < ratelimit_pages)
64                 dirtied = ratelimit_pages;
65
66         return dirtied + dirtied / 2;
67 }
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 /*
105  * The longest time for which data is allowed to remain dirty
106  */
107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
108
109 /*
110  * Flag that makes the machine dump writes/reads and block dirtyings.
111  */
112 int block_dump;
113
114 /*
115  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116  * a full sync is triggered after this time elapses without any disk activity.
117  */
118 int laptop_mode;
119
120 EXPORT_SYMBOL(laptop_mode);
121
122 /* End of sysctl-exported parameters */
123
124 unsigned long global_dirty_limit;
125
126 /*
127  * Scale the writeback cache size proportional to the relative writeout speeds.
128  *
129  * We do this by keeping a floating proportion between BDIs, based on page
130  * writeback completions [end_page_writeback()]. Those devices that write out
131  * pages fastest will get the larger share, while the slower will get a smaller
132  * share.
133  *
134  * We use page writeout completions because we are interested in getting rid of
135  * dirty pages. Having them written out is the primary goal.
136  *
137  * We introduce a concept of time, a period over which we measure these events,
138  * because demand can/will vary over time. The length of this period itself is
139  * measured in page writeback completions.
140  *
141  */
142 static struct prop_descriptor vm_completions;
143 static struct prop_descriptor vm_dirties;
144
145 /*
146  * Work out the current dirty-memory clamping and background writeout
147  * thresholds.
148  *
149  * The main aim here is to lower them aggressively if there is a lot of mapped
150  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
151  * pages.  It is better to clamp down on writers than to start swapping, and
152  * performing lots of scanning.
153  *
154  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
155  *
156  * We don't permit the clamping level to fall below 5% - that is getting rather
157  * excessive.
158  *
159  * We make sure that the background writeout level is below the adjusted
160  * clamping level.
161  */
162 static unsigned long highmem_dirtyable_memory(unsigned long total)
163 {
164 #ifdef CONFIG_HIGHMEM
165         int node;
166         unsigned long x = 0;
167
168         for_each_node_state(node, N_HIGH_MEMORY) {
169                 struct zone *z =
170                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
171
172                 x += zone_page_state(z, NR_FREE_PAGES) +
173                      zone_reclaimable_pages(z);
174         }
175         /*
176          * Make sure that the number of highmem pages is never larger
177          * than the number of the total dirtyable memory. This can only
178          * occur in very strange VM situations but we want to make sure
179          * that this does not occur.
180          */
181         return min(x, total);
182 #else
183         return 0;
184 #endif
185 }
186
187 /**
188  * determine_dirtyable_memory - amount of memory that may be used
189  *
190  * Returns the numebr of pages that can currently be freed and used
191  * by the kernel for direct mappings.
192  */
193 static unsigned long determine_dirtyable_memory(void)
194 {
195         unsigned long x;
196
197         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
198
199         if (!vm_highmem_is_dirtyable)
200                 x -= highmem_dirtyable_memory(x);
201
202         return x + 1;   /* Ensure that we never return 0 */
203 }
204
205 /*
206  * couple the period to the dirty_ratio:
207  *
208  *   period/2 ~ roundup_pow_of_two(dirty limit)
209  */
210 static int calc_period_shift(void)
211 {
212         unsigned long dirty_total;
213
214         if (vm_dirty_bytes)
215                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
216         else
217                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
218                                 100;
219         return 2 + ilog2(dirty_total - 1);
220 }
221
222 /*
223  * update the period when the dirty threshold changes.
224  */
225 static void update_completion_period(void)
226 {
227         int shift = calc_period_shift();
228         prop_change_shift(&vm_completions, shift);
229         prop_change_shift(&vm_dirties, shift);
230 }
231
232 int dirty_background_ratio_handler(struct ctl_table *table, int write,
233                 void __user *buffer, size_t *lenp,
234                 loff_t *ppos)
235 {
236         int ret;
237
238         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
239         if (ret == 0 && write)
240                 dirty_background_bytes = 0;
241         return ret;
242 }
243
244 int dirty_background_bytes_handler(struct ctl_table *table, int write,
245                 void __user *buffer, size_t *lenp,
246                 loff_t *ppos)
247 {
248         int ret;
249
250         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
251         if (ret == 0 && write)
252                 dirty_background_ratio = 0;
253         return ret;
254 }
255
256 int dirty_ratio_handler(struct ctl_table *table, int write,
257                 void __user *buffer, size_t *lenp,
258                 loff_t *ppos)
259 {
260         int old_ratio = vm_dirty_ratio;
261         int ret;
262
263         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
264         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
265                 update_completion_period();
266                 vm_dirty_bytes = 0;
267         }
268         return ret;
269 }
270
271 int dirty_bytes_handler(struct ctl_table *table, int write,
272                 void __user *buffer, size_t *lenp,
273                 loff_t *ppos)
274 {
275         unsigned long old_bytes = vm_dirty_bytes;
276         int ret;
277
278         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
279         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
280                 update_completion_period();
281                 vm_dirty_ratio = 0;
282         }
283         return ret;
284 }
285
286 /*
287  * Increment the BDI's writeout completion count and the global writeout
288  * completion count. Called from test_clear_page_writeback().
289  */
290 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
291 {
292         __inc_bdi_stat(bdi, BDI_WRITTEN);
293         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
294                               bdi->max_prop_frac);
295 }
296
297 void bdi_writeout_inc(struct backing_dev_info *bdi)
298 {
299         unsigned long flags;
300
301         local_irq_save(flags);
302         __bdi_writeout_inc(bdi);
303         local_irq_restore(flags);
304 }
305 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
306
307 void task_dirty_inc(struct task_struct *tsk)
308 {
309         prop_inc_single(&vm_dirties, &tsk->dirties);
310 }
311
312 /*
313  * Obtain an accurate fraction of the BDI's portion.
314  */
315 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
316                 long *numerator, long *denominator)
317 {
318         prop_fraction_percpu(&vm_completions, &bdi->completions,
319                                 numerator, denominator);
320 }
321
322 static inline void task_dirties_fraction(struct task_struct *tsk,
323                 long *numerator, long *denominator)
324 {
325         prop_fraction_single(&vm_dirties, &tsk->dirties,
326                                 numerator, denominator);
327 }
328
329 /*
330  * task_dirty_limit - scale down dirty throttling threshold for one task
331  *
332  * task specific dirty limit:
333  *
334  *   dirty -= (dirty/8) * p_{t}
335  *
336  * To protect light/slow dirtying tasks from heavier/fast ones, we start
337  * throttling individual tasks before reaching the bdi dirty limit.
338  * Relatively low thresholds will be allocated to heavy dirtiers. So when
339  * dirty pages grow large, heavy dirtiers will be throttled first, which will
340  * effectively curb the growth of dirty pages. Light dirtiers with high enough
341  * dirty threshold may never get throttled.
342  */
343 #define TASK_LIMIT_FRACTION 8
344 static unsigned long task_dirty_limit(struct task_struct *tsk,
345                                        unsigned long bdi_dirty)
346 {
347         long numerator, denominator;
348         unsigned long dirty = bdi_dirty;
349         u64 inv = dirty / TASK_LIMIT_FRACTION;
350
351         task_dirties_fraction(tsk, &numerator, &denominator);
352         inv *= numerator;
353         do_div(inv, denominator);
354
355         dirty -= inv;
356
357         return max(dirty, bdi_dirty/2);
358 }
359
360 /* Minimum limit for any task */
361 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
362 {
363         return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
364 }
365
366 /*
367  *
368  */
369 static unsigned int bdi_min_ratio;
370
371 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
372 {
373         int ret = 0;
374
375         spin_lock_bh(&bdi_lock);
376         if (min_ratio > bdi->max_ratio) {
377                 ret = -EINVAL;
378         } else {
379                 min_ratio -= bdi->min_ratio;
380                 if (bdi_min_ratio + min_ratio < 100) {
381                         bdi_min_ratio += min_ratio;
382                         bdi->min_ratio += min_ratio;
383                 } else {
384                         ret = -EINVAL;
385                 }
386         }
387         spin_unlock_bh(&bdi_lock);
388
389         return ret;
390 }
391
392 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
393 {
394         int ret = 0;
395
396         if (max_ratio > 100)
397                 return -EINVAL;
398
399         spin_lock_bh(&bdi_lock);
400         if (bdi->min_ratio > max_ratio) {
401                 ret = -EINVAL;
402         } else {
403                 bdi->max_ratio = max_ratio;
404                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
405         }
406         spin_unlock_bh(&bdi_lock);
407
408         return ret;
409 }
410 EXPORT_SYMBOL(bdi_set_max_ratio);
411
412 static unsigned long hard_dirty_limit(unsigned long thresh)
413 {
414         return max(thresh, global_dirty_limit);
415 }
416
417 /*
418  * global_dirty_limits - background-writeback and dirty-throttling thresholds
419  *
420  * Calculate the dirty thresholds based on sysctl parameters
421  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
422  * - vm.dirty_ratio             or  vm.dirty_bytes
423  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
424  * real-time tasks.
425  */
426 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
427 {
428         unsigned long background;
429         unsigned long dirty;
430         unsigned long uninitialized_var(available_memory);
431         struct task_struct *tsk;
432
433         if (!vm_dirty_bytes || !dirty_background_bytes)
434                 available_memory = determine_dirtyable_memory();
435
436         if (vm_dirty_bytes)
437                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
438         else
439                 dirty = (vm_dirty_ratio * available_memory) / 100;
440
441         if (dirty_background_bytes)
442                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
443         else
444                 background = (dirty_background_ratio * available_memory) / 100;
445
446         if (background >= dirty)
447                 background = dirty / 2;
448         tsk = current;
449         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
450                 background += background / 4;
451                 dirty += dirty / 4;
452         }
453         *pbackground = background;
454         *pdirty = dirty;
455         trace_global_dirty_state(background, dirty);
456 }
457
458 /**
459  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
460  * @bdi: the backing_dev_info to query
461  * @dirty: global dirty limit in pages
462  *
463  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
464  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
465  * And the "limit" in the name is not seriously taken as hard limit in
466  * balance_dirty_pages().
467  *
468  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
469  * - starving fast devices
470  * - piling up dirty pages (that will take long time to sync) on slow devices
471  *
472  * The bdi's share of dirty limit will be adapting to its throughput and
473  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
474  */
475 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
476 {
477         u64 bdi_dirty;
478         long numerator, denominator;
479
480         /*
481          * Calculate this BDI's share of the dirty ratio.
482          */
483         bdi_writeout_fraction(bdi, &numerator, &denominator);
484
485         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
486         bdi_dirty *= numerator;
487         do_div(bdi_dirty, denominator);
488
489         bdi_dirty += (dirty * bdi->min_ratio) / 100;
490         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
491                 bdi_dirty = dirty * bdi->max_ratio / 100;
492
493         return bdi_dirty;
494 }
495
496 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
497                                        unsigned long elapsed,
498                                        unsigned long written)
499 {
500         const unsigned long period = roundup_pow_of_two(3 * HZ);
501         unsigned long avg = bdi->avg_write_bandwidth;
502         unsigned long old = bdi->write_bandwidth;
503         u64 bw;
504
505         /*
506          * bw = written * HZ / elapsed
507          *
508          *                   bw * elapsed + write_bandwidth * (period - elapsed)
509          * write_bandwidth = ---------------------------------------------------
510          *                                          period
511          */
512         bw = written - bdi->written_stamp;
513         bw *= HZ;
514         if (unlikely(elapsed > period)) {
515                 do_div(bw, elapsed);
516                 avg = bw;
517                 goto out;
518         }
519         bw += (u64)bdi->write_bandwidth * (period - elapsed);
520         bw >>= ilog2(period);
521
522         /*
523          * one more level of smoothing, for filtering out sudden spikes
524          */
525         if (avg > old && old >= (unsigned long)bw)
526                 avg -= (avg - old) >> 3;
527
528         if (avg < old && old <= (unsigned long)bw)
529                 avg += (old - avg) >> 3;
530
531 out:
532         bdi->write_bandwidth = bw;
533         bdi->avg_write_bandwidth = avg;
534 }
535
536 /*
537  * The global dirtyable memory and dirty threshold could be suddenly knocked
538  * down by a large amount (eg. on the startup of KVM in a swapless system).
539  * This may throw the system into deep dirty exceeded state and throttle
540  * heavy/light dirtiers alike. To retain good responsiveness, maintain
541  * global_dirty_limit for tracking slowly down to the knocked down dirty
542  * threshold.
543  */
544 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
545 {
546         unsigned long limit = global_dirty_limit;
547
548         /*
549          * Follow up in one step.
550          */
551         if (limit < thresh) {
552                 limit = thresh;
553                 goto update;
554         }
555
556         /*
557          * Follow down slowly. Use the higher one as the target, because thresh
558          * may drop below dirty. This is exactly the reason to introduce
559          * global_dirty_limit which is guaranteed to lie above the dirty pages.
560          */
561         thresh = max(thresh, dirty);
562         if (limit > thresh) {
563                 limit -= (limit - thresh) >> 5;
564                 goto update;
565         }
566         return;
567 update:
568         global_dirty_limit = limit;
569 }
570
571 static void global_update_bandwidth(unsigned long thresh,
572                                     unsigned long dirty,
573                                     unsigned long now)
574 {
575         static DEFINE_SPINLOCK(dirty_lock);
576         static unsigned long update_time;
577
578         /*
579          * check locklessly first to optimize away locking for the most time
580          */
581         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
582                 return;
583
584         spin_lock(&dirty_lock);
585         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
586                 update_dirty_limit(thresh, dirty);
587                 update_time = now;
588         }
589         spin_unlock(&dirty_lock);
590 }
591
592 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
593                             unsigned long thresh,
594                             unsigned long dirty,
595                             unsigned long bdi_thresh,
596                             unsigned long bdi_dirty,
597                             unsigned long start_time)
598 {
599         unsigned long now = jiffies;
600         unsigned long elapsed = now - bdi->bw_time_stamp;
601         unsigned long written;
602
603         /*
604          * rate-limit, only update once every 200ms.
605          */
606         if (elapsed < BANDWIDTH_INTERVAL)
607                 return;
608
609         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
610
611         /*
612          * Skip quiet periods when disk bandwidth is under-utilized.
613          * (at least 1s idle time between two flusher runs)
614          */
615         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
616                 goto snapshot;
617
618         if (thresh)
619                 global_update_bandwidth(thresh, dirty, now);
620
621         bdi_update_write_bandwidth(bdi, elapsed, written);
622
623 snapshot:
624         bdi->written_stamp = written;
625         bdi->bw_time_stamp = now;
626 }
627
628 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
629                                  unsigned long thresh,
630                                  unsigned long dirty,
631                                  unsigned long bdi_thresh,
632                                  unsigned long bdi_dirty,
633                                  unsigned long start_time)
634 {
635         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
636                 return;
637         spin_lock(&bdi->wb.list_lock);
638         __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
639                                start_time);
640         spin_unlock(&bdi->wb.list_lock);
641 }
642
643 /*
644  * balance_dirty_pages() must be called by processes which are generating dirty
645  * data.  It looks at the number of dirty pages in the machine and will force
646  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
647  * If we're over `background_thresh' then the writeback threads are woken to
648  * perform some writeout.
649  */
650 static void balance_dirty_pages(struct address_space *mapping,
651                                 unsigned long write_chunk)
652 {
653         unsigned long nr_reclaimable, bdi_nr_reclaimable;
654         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
655         unsigned long bdi_dirty;
656         unsigned long background_thresh;
657         unsigned long dirty_thresh;
658         unsigned long bdi_thresh;
659         unsigned long task_bdi_thresh;
660         unsigned long min_task_bdi_thresh;
661         unsigned long pages_written = 0;
662         unsigned long pause = 1;
663         bool dirty_exceeded = false;
664         bool clear_dirty_exceeded = true;
665         struct backing_dev_info *bdi = mapping->backing_dev_info;
666         unsigned long start_time = jiffies;
667
668         for (;;) {
669                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
670                                         global_page_state(NR_UNSTABLE_NFS);
671                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
672
673                 global_dirty_limits(&background_thresh, &dirty_thresh);
674
675                 /*
676                  * Throttle it only when the background writeback cannot
677                  * catch-up. This avoids (excessively) small writeouts
678                  * when the bdi limits are ramping up.
679                  */
680                 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
681                         break;
682
683                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
684                 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
685                 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
686
687                 /*
688                  * In order to avoid the stacked BDI deadlock we need
689                  * to ensure we accurately count the 'dirty' pages when
690                  * the threshold is low.
691                  *
692                  * Otherwise it would be possible to get thresh+n pages
693                  * reported dirty, even though there are thresh-m pages
694                  * actually dirty; with m+n sitting in the percpu
695                  * deltas.
696                  */
697                 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
698                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
699                         bdi_dirty = bdi_nr_reclaimable +
700                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
701                 } else {
702                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
703                         bdi_dirty = bdi_nr_reclaimable +
704                                     bdi_stat(bdi, BDI_WRITEBACK);
705                 }
706
707                 /*
708                  * The bdi thresh is somehow "soft" limit derived from the
709                  * global "hard" limit. The former helps to prevent heavy IO
710                  * bdi or process from holding back light ones; The latter is
711                  * the last resort safeguard.
712                  */
713                 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
714                                   (nr_dirty > dirty_thresh);
715                 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
716                                         (nr_dirty <= dirty_thresh);
717
718                 if (!dirty_exceeded)
719                         break;
720
721                 if (!bdi->dirty_exceeded)
722                         bdi->dirty_exceeded = 1;
723
724                 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
725                                      bdi_thresh, bdi_dirty, start_time);
726
727                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
728                  * Unstable writes are a feature of certain networked
729                  * filesystems (i.e. NFS) in which data may have been
730                  * written to the server's write cache, but has not yet
731                  * been flushed to permanent storage.
732                  * Only move pages to writeback if this bdi is over its
733                  * threshold otherwise wait until the disk writes catch
734                  * up.
735                  */
736                 trace_balance_dirty_start(bdi);
737                 if (bdi_nr_reclaimable > task_bdi_thresh) {
738                         pages_written += writeback_inodes_wb(&bdi->wb,
739                                                              write_chunk);
740                         trace_balance_dirty_written(bdi, pages_written);
741                         if (pages_written >= write_chunk)
742                                 break;          /* We've done our duty */
743                 }
744                 __set_current_state(TASK_UNINTERRUPTIBLE);
745                 io_schedule_timeout(pause);
746                 trace_balance_dirty_wait(bdi);
747
748                 dirty_thresh = hard_dirty_limit(dirty_thresh);
749                 /*
750                  * max-pause area. If dirty exceeded but still within this
751                  * area, no need to sleep for more than 200ms: (a) 8 pages per
752                  * 200ms is typically more than enough to curb heavy dirtiers;
753                  * (b) the pause time limit makes the dirtiers more responsive.
754                  */
755                 if (nr_dirty < dirty_thresh +
756                                dirty_thresh / DIRTY_MAXPAUSE_AREA &&
757                     time_after(jiffies, start_time + MAX_PAUSE))
758                         break;
759                 /*
760                  * pass-good area. When some bdi gets blocked (eg. NFS server
761                  * not responding), or write bandwidth dropped dramatically due
762                  * to concurrent reads, or dirty threshold suddenly dropped and
763                  * the dirty pages cannot be brought down anytime soon (eg. on
764                  * slow USB stick), at least let go of the good bdi's.
765                  */
766                 if (nr_dirty < dirty_thresh +
767                                dirty_thresh / DIRTY_PASSGOOD_AREA &&
768                     bdi_dirty < bdi_thresh)
769                         break;
770
771                 /*
772                  * Increase the delay for each loop, up to our previous
773                  * default of taking a 100ms nap.
774                  */
775                 pause <<= 1;
776                 if (pause > HZ / 10)
777                         pause = HZ / 10;
778         }
779
780         /* Clear dirty_exceeded flag only when no task can exceed the limit */
781         if (clear_dirty_exceeded && bdi->dirty_exceeded)
782                 bdi->dirty_exceeded = 0;
783
784         if (writeback_in_progress(bdi))
785                 return;
786
787         /*
788          * In laptop mode, we wait until hitting the higher threshold before
789          * starting background writeout, and then write out all the way down
790          * to the lower threshold.  So slow writers cause minimal disk activity.
791          *
792          * In normal mode, we start background writeout at the lower
793          * background_thresh, to keep the amount of dirty memory low.
794          */
795         if ((laptop_mode && pages_written) ||
796             (!laptop_mode && (nr_reclaimable > background_thresh)))
797                 bdi_start_background_writeback(bdi);
798 }
799
800 void set_page_dirty_balance(struct page *page, int page_mkwrite)
801 {
802         if (set_page_dirty(page) || page_mkwrite) {
803                 struct address_space *mapping = page_mapping(page);
804
805                 if (mapping)
806                         balance_dirty_pages_ratelimited(mapping);
807         }
808 }
809
810 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
811
812 /**
813  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
814  * @mapping: address_space which was dirtied
815  * @nr_pages_dirtied: number of pages which the caller has just dirtied
816  *
817  * Processes which are dirtying memory should call in here once for each page
818  * which was newly dirtied.  The function will periodically check the system's
819  * dirty state and will initiate writeback if needed.
820  *
821  * On really big machines, get_writeback_state is expensive, so try to avoid
822  * calling it too often (ratelimiting).  But once we're over the dirty memory
823  * limit we decrease the ratelimiting by a lot, to prevent individual processes
824  * from overshooting the limit by (ratelimit_pages) each.
825  */
826 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
827                                         unsigned long nr_pages_dirtied)
828 {
829         struct backing_dev_info *bdi = mapping->backing_dev_info;
830         unsigned long ratelimit;
831         unsigned long *p;
832
833         if (!bdi_cap_account_dirty(bdi))
834                 return;
835
836         ratelimit = ratelimit_pages;
837         if (mapping->backing_dev_info->dirty_exceeded)
838                 ratelimit = 8;
839
840         /*
841          * Check the rate limiting. Also, we do not want to throttle real-time
842          * tasks in balance_dirty_pages(). Period.
843          */
844         preempt_disable();
845         p =  &__get_cpu_var(bdp_ratelimits);
846         *p += nr_pages_dirtied;
847         if (unlikely(*p >= ratelimit)) {
848                 ratelimit = sync_writeback_pages(*p);
849                 *p = 0;
850                 preempt_enable();
851                 balance_dirty_pages(mapping, ratelimit);
852                 return;
853         }
854         preempt_enable();
855 }
856 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
857
858 void throttle_vm_writeout(gfp_t gfp_mask)
859 {
860         unsigned long background_thresh;
861         unsigned long dirty_thresh;
862
863         for ( ; ; ) {
864                 global_dirty_limits(&background_thresh, &dirty_thresh);
865
866                 /*
867                  * Boost the allowable dirty threshold a bit for page
868                  * allocators so they don't get DoS'ed by heavy writers
869                  */
870                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
871
872                 if (global_page_state(NR_UNSTABLE_NFS) +
873                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
874                                 break;
875                 congestion_wait(BLK_RW_ASYNC, HZ/10);
876
877                 /*
878                  * The caller might hold locks which can prevent IO completion
879                  * or progress in the filesystem.  So we cannot just sit here
880                  * waiting for IO to complete.
881                  */
882                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
883                         break;
884         }
885 }
886
887 /*
888  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
889  */
890 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
891         void __user *buffer, size_t *length, loff_t *ppos)
892 {
893         proc_dointvec(table, write, buffer, length, ppos);
894         bdi_arm_supers_timer();
895         return 0;
896 }
897
898 #ifdef CONFIG_BLOCK
899 void laptop_mode_timer_fn(unsigned long data)
900 {
901         struct request_queue *q = (struct request_queue *)data;
902         int nr_pages = global_page_state(NR_FILE_DIRTY) +
903                 global_page_state(NR_UNSTABLE_NFS);
904
905         /*
906          * We want to write everything out, not just down to the dirty
907          * threshold
908          */
909         if (bdi_has_dirty_io(&q->backing_dev_info))
910                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
911 }
912
913 /*
914  * We've spun up the disk and we're in laptop mode: schedule writeback
915  * of all dirty data a few seconds from now.  If the flush is already scheduled
916  * then push it back - the user is still using the disk.
917  */
918 void laptop_io_completion(struct backing_dev_info *info)
919 {
920         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
921 }
922
923 /*
924  * We're in laptop mode and we've just synced. The sync's writes will have
925  * caused another writeback to be scheduled by laptop_io_completion.
926  * Nothing needs to be written back anymore, so we unschedule the writeback.
927  */
928 void laptop_sync_completion(void)
929 {
930         struct backing_dev_info *bdi;
931
932         rcu_read_lock();
933
934         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
935                 del_timer(&bdi->laptop_mode_wb_timer);
936
937         rcu_read_unlock();
938 }
939 #endif
940
941 /*
942  * If ratelimit_pages is too high then we can get into dirty-data overload
943  * if a large number of processes all perform writes at the same time.
944  * If it is too low then SMP machines will call the (expensive)
945  * get_writeback_state too often.
946  *
947  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
948  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
949  * thresholds before writeback cuts in.
950  *
951  * But the limit should not be set too high.  Because it also controls the
952  * amount of memory which the balance_dirty_pages() caller has to write back.
953  * If this is too large then the caller will block on the IO queue all the
954  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
955  * will write six megabyte chunks, max.
956  */
957
958 void writeback_set_ratelimit(void)
959 {
960         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
961         if (ratelimit_pages < 16)
962                 ratelimit_pages = 16;
963         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
964                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
965 }
966
967 static int __cpuinit
968 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
969 {
970         writeback_set_ratelimit();
971         return NOTIFY_DONE;
972 }
973
974 static struct notifier_block __cpuinitdata ratelimit_nb = {
975         .notifier_call  = ratelimit_handler,
976         .next           = NULL,
977 };
978
979 /*
980  * Called early on to tune the page writeback dirty limits.
981  *
982  * We used to scale dirty pages according to how total memory
983  * related to pages that could be allocated for buffers (by
984  * comparing nr_free_buffer_pages() to vm_total_pages.
985  *
986  * However, that was when we used "dirty_ratio" to scale with
987  * all memory, and we don't do that any more. "dirty_ratio"
988  * is now applied to total non-HIGHPAGE memory (by subtracting
989  * totalhigh_pages from vm_total_pages), and as such we can't
990  * get into the old insane situation any more where we had
991  * large amounts of dirty pages compared to a small amount of
992  * non-HIGHMEM memory.
993  *
994  * But we might still want to scale the dirty_ratio by how
995  * much memory the box has..
996  */
997 void __init page_writeback_init(void)
998 {
999         int shift;
1000
1001         writeback_set_ratelimit();
1002         register_cpu_notifier(&ratelimit_nb);
1003
1004         shift = calc_period_shift();
1005         prop_descriptor_init(&vm_completions, shift);
1006         prop_descriptor_init(&vm_dirties, shift);
1007 }
1008
1009 /**
1010  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1011  * @mapping: address space structure to write
1012  * @start: starting page index
1013  * @end: ending page index (inclusive)
1014  *
1015  * This function scans the page range from @start to @end (inclusive) and tags
1016  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1017  * that write_cache_pages (or whoever calls this function) will then use
1018  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1019  * used to avoid livelocking of writeback by a process steadily creating new
1020  * dirty pages in the file (thus it is important for this function to be quick
1021  * so that it can tag pages faster than a dirtying process can create them).
1022  */
1023 /*
1024  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1025  */
1026 void tag_pages_for_writeback(struct address_space *mapping,
1027                              pgoff_t start, pgoff_t end)
1028 {
1029 #define WRITEBACK_TAG_BATCH 4096
1030         unsigned long tagged;
1031
1032         do {
1033                 spin_lock_irq(&mapping->tree_lock);
1034                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1035                                 &start, end, WRITEBACK_TAG_BATCH,
1036                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1037                 spin_unlock_irq(&mapping->tree_lock);
1038                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1039                 cond_resched();
1040                 /* We check 'start' to handle wrapping when end == ~0UL */
1041         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1042 }
1043 EXPORT_SYMBOL(tag_pages_for_writeback);
1044
1045 /**
1046  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1047  * @mapping: address space structure to write
1048  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1049  * @writepage: function called for each page
1050  * @data: data passed to writepage function
1051  *
1052  * If a page is already under I/O, write_cache_pages() skips it, even
1053  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1054  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1055  * and msync() need to guarantee that all the data which was dirty at the time
1056  * the call was made get new I/O started against them.  If wbc->sync_mode is
1057  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1058  * existing IO to complete.
1059  *
1060  * To avoid livelocks (when other process dirties new pages), we first tag
1061  * pages which should be written back with TOWRITE tag and only then start
1062  * writing them. For data-integrity sync we have to be careful so that we do
1063  * not miss some pages (e.g., because some other process has cleared TOWRITE
1064  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1065  * by the process clearing the DIRTY tag (and submitting the page for IO).
1066  */
1067 int write_cache_pages(struct address_space *mapping,
1068                       struct writeback_control *wbc, writepage_t writepage,
1069                       void *data)
1070 {
1071         int ret = 0;
1072         int done = 0;
1073         struct pagevec pvec;
1074         int nr_pages;
1075         pgoff_t uninitialized_var(writeback_index);
1076         pgoff_t index;
1077         pgoff_t end;            /* Inclusive */
1078         pgoff_t done_index;
1079         int cycled;
1080         int range_whole = 0;
1081         int tag;
1082
1083         pagevec_init(&pvec, 0);
1084         if (wbc->range_cyclic) {
1085                 writeback_index = mapping->writeback_index; /* prev offset */
1086                 index = writeback_index;
1087                 if (index == 0)
1088                         cycled = 1;
1089                 else
1090                         cycled = 0;
1091                 end = -1;
1092         } else {
1093                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1094                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1095                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1096                         range_whole = 1;
1097                 cycled = 1; /* ignore range_cyclic tests */
1098         }
1099         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1100                 tag = PAGECACHE_TAG_TOWRITE;
1101         else
1102                 tag = PAGECACHE_TAG_DIRTY;
1103 retry:
1104         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1105                 tag_pages_for_writeback(mapping, index, end);
1106         done_index = index;
1107         while (!done && (index <= end)) {
1108                 int i;
1109
1110                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1111                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1112                 if (nr_pages == 0)
1113                         break;
1114
1115                 for (i = 0; i < nr_pages; i++) {
1116                         struct page *page = pvec.pages[i];
1117
1118                         /*
1119                          * At this point, the page may be truncated or
1120                          * invalidated (changing page->mapping to NULL), or
1121                          * even swizzled back from swapper_space to tmpfs file
1122                          * mapping. However, page->index will not change
1123                          * because we have a reference on the page.
1124                          */
1125                         if (page->index > end) {
1126                                 /*
1127                                  * can't be range_cyclic (1st pass) because
1128                                  * end == -1 in that case.
1129                                  */
1130                                 done = 1;
1131                                 break;
1132                         }
1133
1134                         done_index = page->index;
1135
1136                         lock_page(page);
1137
1138                         /*
1139                          * Page truncated or invalidated. We can freely skip it
1140                          * then, even for data integrity operations: the page
1141                          * has disappeared concurrently, so there could be no
1142                          * real expectation of this data interity operation
1143                          * even if there is now a new, dirty page at the same
1144                          * pagecache address.
1145                          */
1146                         if (unlikely(page->mapping != mapping)) {
1147 continue_unlock:
1148                                 unlock_page(page);
1149                                 continue;
1150                         }
1151
1152                         if (!PageDirty(page)) {
1153                                 /* someone wrote it for us */
1154                                 goto continue_unlock;
1155                         }
1156
1157                         if (PageWriteback(page)) {
1158                                 if (wbc->sync_mode != WB_SYNC_NONE)
1159                                         wait_on_page_writeback(page);
1160                                 else
1161                                         goto continue_unlock;
1162                         }
1163
1164                         BUG_ON(PageWriteback(page));
1165                         if (!clear_page_dirty_for_io(page))
1166                                 goto continue_unlock;
1167
1168                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1169                         ret = (*writepage)(page, wbc, data);
1170                         if (unlikely(ret)) {
1171                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1172                                         unlock_page(page);
1173                                         ret = 0;
1174                                 } else {
1175                                         /*
1176                                          * done_index is set past this page,
1177                                          * so media errors will not choke
1178                                          * background writeout for the entire
1179                                          * file. This has consequences for
1180                                          * range_cyclic semantics (ie. it may
1181                                          * not be suitable for data integrity
1182                                          * writeout).
1183                                          */
1184                                         done_index = page->index + 1;
1185                                         done = 1;
1186                                         break;
1187                                 }
1188                         }
1189
1190                         /*
1191                          * We stop writing back only if we are not doing
1192                          * integrity sync. In case of integrity sync we have to
1193                          * keep going until we have written all the pages
1194                          * we tagged for writeback prior to entering this loop.
1195                          */
1196                         if (--wbc->nr_to_write <= 0 &&
1197                             wbc->sync_mode == WB_SYNC_NONE) {
1198                                 done = 1;
1199                                 break;
1200                         }
1201                 }
1202                 pagevec_release(&pvec);
1203                 cond_resched();
1204         }
1205         if (!cycled && !done) {
1206                 /*
1207                  * range_cyclic:
1208                  * We hit the last page and there is more work to be done: wrap
1209                  * back to the start of the file
1210                  */
1211                 cycled = 1;
1212                 index = 0;
1213                 end = writeback_index - 1;
1214                 goto retry;
1215         }
1216         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1217                 mapping->writeback_index = done_index;
1218
1219         return ret;
1220 }
1221 EXPORT_SYMBOL(write_cache_pages);
1222
1223 /*
1224  * Function used by generic_writepages to call the real writepage
1225  * function and set the mapping flags on error
1226  */
1227 static int __writepage(struct page *page, struct writeback_control *wbc,
1228                        void *data)
1229 {
1230         struct address_space *mapping = data;
1231         int ret = mapping->a_ops->writepage(page, wbc);
1232         mapping_set_error(mapping, ret);
1233         return ret;
1234 }
1235
1236 /**
1237  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1238  * @mapping: address space structure to write
1239  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1240  *
1241  * This is a library function, which implements the writepages()
1242  * address_space_operation.
1243  */
1244 int generic_writepages(struct address_space *mapping,
1245                        struct writeback_control *wbc)
1246 {
1247         struct blk_plug plug;
1248         int ret;
1249
1250         /* deal with chardevs and other special file */
1251         if (!mapping->a_ops->writepage)
1252                 return 0;
1253
1254         blk_start_plug(&plug);
1255         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1256         blk_finish_plug(&plug);
1257         return ret;
1258 }
1259
1260 EXPORT_SYMBOL(generic_writepages);
1261
1262 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1263 {
1264         int ret;
1265
1266         if (wbc->nr_to_write <= 0)
1267                 return 0;
1268         if (mapping->a_ops->writepages)
1269                 ret = mapping->a_ops->writepages(mapping, wbc);
1270         else
1271                 ret = generic_writepages(mapping, wbc);
1272         return ret;
1273 }
1274
1275 /**
1276  * write_one_page - write out a single page and optionally wait on I/O
1277  * @page: the page to write
1278  * @wait: if true, wait on writeout
1279  *
1280  * The page must be locked by the caller and will be unlocked upon return.
1281  *
1282  * write_one_page() returns a negative error code if I/O failed.
1283  */
1284 int write_one_page(struct page *page, int wait)
1285 {
1286         struct address_space *mapping = page->mapping;
1287         int ret = 0;
1288         struct writeback_control wbc = {
1289                 .sync_mode = WB_SYNC_ALL,
1290                 .nr_to_write = 1,
1291         };
1292
1293         BUG_ON(!PageLocked(page));
1294
1295         if (wait)
1296                 wait_on_page_writeback(page);
1297
1298         if (clear_page_dirty_for_io(page)) {
1299                 page_cache_get(page);
1300                 ret = mapping->a_ops->writepage(page, &wbc);
1301                 if (ret == 0 && wait) {
1302                         wait_on_page_writeback(page);
1303                         if (PageError(page))
1304                                 ret = -EIO;
1305                 }
1306                 page_cache_release(page);
1307         } else {
1308                 unlock_page(page);
1309         }
1310         return ret;
1311 }
1312 EXPORT_SYMBOL(write_one_page);
1313
1314 /*
1315  * For address_spaces which do not use buffers nor write back.
1316  */
1317 int __set_page_dirty_no_writeback(struct page *page)
1318 {
1319         if (!PageDirty(page))
1320                 return !TestSetPageDirty(page);
1321         return 0;
1322 }
1323
1324 /*
1325  * Helper function for set_page_dirty family.
1326  * NOTE: This relies on being atomic wrt interrupts.
1327  */
1328 void account_page_dirtied(struct page *page, struct address_space *mapping)
1329 {
1330         if (mapping_cap_account_dirty(mapping)) {
1331                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1332                 __inc_zone_page_state(page, NR_DIRTIED);
1333                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1334                 task_dirty_inc(current);
1335                 task_io_account_write(PAGE_CACHE_SIZE);
1336         }
1337 }
1338 EXPORT_SYMBOL(account_page_dirtied);
1339
1340 /*
1341  * Helper function for set_page_writeback family.
1342  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1343  * wrt interrupts.
1344  */
1345 void account_page_writeback(struct page *page)
1346 {
1347         inc_zone_page_state(page, NR_WRITEBACK);
1348 }
1349 EXPORT_SYMBOL(account_page_writeback);
1350
1351 /*
1352  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1353  * its radix tree.
1354  *
1355  * This is also used when a single buffer is being dirtied: we want to set the
1356  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1357  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1358  *
1359  * Most callers have locked the page, which pins the address_space in memory.
1360  * But zap_pte_range() does not lock the page, however in that case the
1361  * mapping is pinned by the vma's ->vm_file reference.
1362  *
1363  * We take care to handle the case where the page was truncated from the
1364  * mapping by re-checking page_mapping() inside tree_lock.
1365  */
1366 int __set_page_dirty_nobuffers(struct page *page)
1367 {
1368         if (!TestSetPageDirty(page)) {
1369                 struct address_space *mapping = page_mapping(page);
1370                 struct address_space *mapping2;
1371
1372                 if (!mapping)
1373                         return 1;
1374
1375                 spin_lock_irq(&mapping->tree_lock);
1376                 mapping2 = page_mapping(page);
1377                 if (mapping2) { /* Race with truncate? */
1378                         BUG_ON(mapping2 != mapping);
1379                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1380                         account_page_dirtied(page, mapping);
1381                         radix_tree_tag_set(&mapping->page_tree,
1382                                 page_index(page), PAGECACHE_TAG_DIRTY);
1383                 }
1384                 spin_unlock_irq(&mapping->tree_lock);
1385                 if (mapping->host) {
1386                         /* !PageAnon && !swapper_space */
1387                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1388                 }
1389                 return 1;
1390         }
1391         return 0;
1392 }
1393 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1394
1395 /*
1396  * When a writepage implementation decides that it doesn't want to write this
1397  * page for some reason, it should redirty the locked page via
1398  * redirty_page_for_writepage() and it should then unlock the page and return 0
1399  */
1400 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1401 {
1402         wbc->pages_skipped++;
1403         return __set_page_dirty_nobuffers(page);
1404 }
1405 EXPORT_SYMBOL(redirty_page_for_writepage);
1406
1407 /*
1408  * Dirty a page.
1409  *
1410  * For pages with a mapping this should be done under the page lock
1411  * for the benefit of asynchronous memory errors who prefer a consistent
1412  * dirty state. This rule can be broken in some special cases,
1413  * but should be better not to.
1414  *
1415  * If the mapping doesn't provide a set_page_dirty a_op, then
1416  * just fall through and assume that it wants buffer_heads.
1417  */
1418 int set_page_dirty(struct page *page)
1419 {
1420         struct address_space *mapping = page_mapping(page);
1421
1422         if (likely(mapping)) {
1423                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1424                 /*
1425                  * readahead/lru_deactivate_page could remain
1426                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1427                  * About readahead, if the page is written, the flags would be
1428                  * reset. So no problem.
1429                  * About lru_deactivate_page, if the page is redirty, the flag
1430                  * will be reset. So no problem. but if the page is used by readahead
1431                  * it will confuse readahead and make it restart the size rampup
1432                  * process. But it's a trivial problem.
1433                  */
1434                 ClearPageReclaim(page);
1435 #ifdef CONFIG_BLOCK
1436                 if (!spd)
1437                         spd = __set_page_dirty_buffers;
1438 #endif
1439                 return (*spd)(page);
1440         }
1441         if (!PageDirty(page)) {
1442                 if (!TestSetPageDirty(page))
1443                         return 1;
1444         }
1445         return 0;
1446 }
1447 EXPORT_SYMBOL(set_page_dirty);
1448
1449 /*
1450  * set_page_dirty() is racy if the caller has no reference against
1451  * page->mapping->host, and if the page is unlocked.  This is because another
1452  * CPU could truncate the page off the mapping and then free the mapping.
1453  *
1454  * Usually, the page _is_ locked, or the caller is a user-space process which
1455  * holds a reference on the inode by having an open file.
1456  *
1457  * In other cases, the page should be locked before running set_page_dirty().
1458  */
1459 int set_page_dirty_lock(struct page *page)
1460 {
1461         int ret;
1462
1463         lock_page(page);
1464         ret = set_page_dirty(page);
1465         unlock_page(page);
1466         return ret;
1467 }
1468 EXPORT_SYMBOL(set_page_dirty_lock);
1469
1470 /*
1471  * Clear a page's dirty flag, while caring for dirty memory accounting.
1472  * Returns true if the page was previously dirty.
1473  *
1474  * This is for preparing to put the page under writeout.  We leave the page
1475  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1476  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1477  * implementation will run either set_page_writeback() or set_page_dirty(),
1478  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1479  * back into sync.
1480  *
1481  * This incoherency between the page's dirty flag and radix-tree tag is
1482  * unfortunate, but it only exists while the page is locked.
1483  */
1484 int clear_page_dirty_for_io(struct page *page)
1485 {
1486         struct address_space *mapping = page_mapping(page);
1487
1488         BUG_ON(!PageLocked(page));
1489
1490         if (mapping && mapping_cap_account_dirty(mapping)) {
1491                 /*
1492                  * Yes, Virginia, this is indeed insane.
1493                  *
1494                  * We use this sequence to make sure that
1495                  *  (a) we account for dirty stats properly
1496                  *  (b) we tell the low-level filesystem to
1497                  *      mark the whole page dirty if it was
1498                  *      dirty in a pagetable. Only to then
1499                  *  (c) clean the page again and return 1 to
1500                  *      cause the writeback.
1501                  *
1502                  * This way we avoid all nasty races with the
1503                  * dirty bit in multiple places and clearing
1504                  * them concurrently from different threads.
1505                  *
1506                  * Note! Normally the "set_page_dirty(page)"
1507                  * has no effect on the actual dirty bit - since
1508                  * that will already usually be set. But we
1509                  * need the side effects, and it can help us
1510                  * avoid races.
1511                  *
1512                  * We basically use the page "master dirty bit"
1513                  * as a serialization point for all the different
1514                  * threads doing their things.
1515                  */
1516                 if (page_mkclean(page))
1517                         set_page_dirty(page);
1518                 /*
1519                  * We carefully synchronise fault handlers against
1520                  * installing a dirty pte and marking the page dirty
1521                  * at this point. We do this by having them hold the
1522                  * page lock at some point after installing their
1523                  * pte, but before marking the page dirty.
1524                  * Pages are always locked coming in here, so we get
1525                  * the desired exclusion. See mm/memory.c:do_wp_page()
1526                  * for more comments.
1527                  */
1528                 if (TestClearPageDirty(page)) {
1529                         dec_zone_page_state(page, NR_FILE_DIRTY);
1530                         dec_bdi_stat(mapping->backing_dev_info,
1531                                         BDI_RECLAIMABLE);
1532                         return 1;
1533                 }
1534                 return 0;
1535         }
1536         return TestClearPageDirty(page);
1537 }
1538 EXPORT_SYMBOL(clear_page_dirty_for_io);
1539
1540 int test_clear_page_writeback(struct page *page)
1541 {
1542         struct address_space *mapping = page_mapping(page);
1543         int ret;
1544
1545         if (mapping) {
1546                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1547                 unsigned long flags;
1548
1549                 spin_lock_irqsave(&mapping->tree_lock, flags);
1550                 ret = TestClearPageWriteback(page);
1551                 if (ret) {
1552                         radix_tree_tag_clear(&mapping->page_tree,
1553                                                 page_index(page),
1554                                                 PAGECACHE_TAG_WRITEBACK);
1555                         if (bdi_cap_account_writeback(bdi)) {
1556                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1557                                 __bdi_writeout_inc(bdi);
1558                         }
1559                 }
1560                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1561         } else {
1562                 ret = TestClearPageWriteback(page);
1563         }
1564         if (ret) {
1565                 dec_zone_page_state(page, NR_WRITEBACK);
1566                 inc_zone_page_state(page, NR_WRITTEN);
1567         }
1568         return ret;
1569 }
1570
1571 int test_set_page_writeback(struct page *page)
1572 {
1573         struct address_space *mapping = page_mapping(page);
1574         int ret;
1575
1576         if (mapping) {
1577                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1578                 unsigned long flags;
1579
1580                 spin_lock_irqsave(&mapping->tree_lock, flags);
1581                 ret = TestSetPageWriteback(page);
1582                 if (!ret) {
1583                         radix_tree_tag_set(&mapping->page_tree,
1584                                                 page_index(page),
1585                                                 PAGECACHE_TAG_WRITEBACK);
1586                         if (bdi_cap_account_writeback(bdi))
1587                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1588                 }
1589                 if (!PageDirty(page))
1590                         radix_tree_tag_clear(&mapping->page_tree,
1591                                                 page_index(page),
1592                                                 PAGECACHE_TAG_DIRTY);
1593                 radix_tree_tag_clear(&mapping->page_tree,
1594                                      page_index(page),
1595                                      PAGECACHE_TAG_TOWRITE);
1596                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1597         } else {
1598                 ret = TestSetPageWriteback(page);
1599         }
1600         if (!ret)
1601                 account_page_writeback(page);
1602         return ret;
1603
1604 }
1605 EXPORT_SYMBOL(test_set_page_writeback);
1606
1607 /*
1608  * Return true if any of the pages in the mapping are marked with the
1609  * passed tag.
1610  */
1611 int mapping_tagged(struct address_space *mapping, int tag)
1612 {
1613         return radix_tree_tagged(&mapping->page_tree, tag);
1614 }
1615 EXPORT_SYMBOL(mapping_tagged);