]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/page-writeback.c
writeback: add bdi_dirty_limit() kernel-doc
[karo-tx-linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53         if (dirtied < ratelimit_pages)
54                 dirtied = ratelimit_pages;
55
56         return dirtied + dirtied / 2;
57 }
58
59 /* The following parameters are exported via /proc/sys/vm */
60
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109
110 EXPORT_SYMBOL(laptop_mode);
111
112 /* End of sysctl-exported parameters */
113
114
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141         unsigned long dirty_total;
142
143         if (vm_dirty_bytes)
144                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145         else
146                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147                                 100;
148         return 2 + ilog2(dirty_total - 1);
149 }
150
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156         int shift = calc_period_shift();
157         prop_change_shift(&vm_completions, shift);
158         prop_change_shift(&vm_dirties, shift);
159 }
160
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162                 void __user *buffer, size_t *lenp,
163                 loff_t *ppos)
164 {
165         int ret;
166
167         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168         if (ret == 0 && write)
169                 dirty_background_bytes = 0;
170         return ret;
171 }
172
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174                 void __user *buffer, size_t *lenp,
175                 loff_t *ppos)
176 {
177         int ret;
178
179         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180         if (ret == 0 && write)
181                 dirty_background_ratio = 0;
182         return ret;
183 }
184
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186                 void __user *buffer, size_t *lenp,
187                 loff_t *ppos)
188 {
189         int old_ratio = vm_dirty_ratio;
190         int ret;
191
192         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194                 update_completion_period();
195                 vm_dirty_bytes = 0;
196         }
197         return ret;
198 }
199
200
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202                 void __user *buffer, size_t *lenp,
203                 loff_t *ppos)
204 {
205         unsigned long old_bytes = vm_dirty_bytes;
206         int ret;
207
208         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210                 update_completion_period();
211                 vm_dirty_ratio = 0;
212         }
213         return ret;
214 }
215
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223                               bdi->max_prop_frac);
224 }
225
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228         unsigned long flags;
229
230         local_irq_save(flags);
231         __bdi_writeout_inc(bdi);
232         local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238         prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245                 long *numerator, long *denominator)
246 {
247         if (bdi_cap_writeback_dirty(bdi)) {
248                 prop_fraction_percpu(&vm_completions, &bdi->completions,
249                                 numerator, denominator);
250         } else {
251                 *numerator = 0;
252                 *denominator = 1;
253         }
254 }
255
256 static inline void task_dirties_fraction(struct task_struct *tsk,
257                 long *numerator, long *denominator)
258 {
259         prop_fraction_single(&vm_dirties, &tsk->dirties,
260                                 numerator, denominator);
261 }
262
263 /*
264  * task_dirty_limit - scale down dirty throttling threshold for one task
265  *
266  * task specific dirty limit:
267  *
268  *   dirty -= (dirty/8) * p_{t}
269  *
270  * To protect light/slow dirtying tasks from heavier/fast ones, we start
271  * throttling individual tasks before reaching the bdi dirty limit.
272  * Relatively low thresholds will be allocated to heavy dirtiers. So when
273  * dirty pages grow large, heavy dirtiers will be throttled first, which will
274  * effectively curb the growth of dirty pages. Light dirtiers with high enough
275  * dirty threshold may never get throttled.
276  */
277 static unsigned long task_dirty_limit(struct task_struct *tsk,
278                                        unsigned long bdi_dirty)
279 {
280         long numerator, denominator;
281         unsigned long dirty = bdi_dirty;
282         u64 inv = dirty >> 3;
283
284         task_dirties_fraction(tsk, &numerator, &denominator);
285         inv *= numerator;
286         do_div(inv, denominator);
287
288         dirty -= inv;
289
290         return max(dirty, bdi_dirty/2);
291 }
292
293 /*
294  *
295  */
296 static unsigned int bdi_min_ratio;
297
298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299 {
300         int ret = 0;
301
302         spin_lock_bh(&bdi_lock);
303         if (min_ratio > bdi->max_ratio) {
304                 ret = -EINVAL;
305         } else {
306                 min_ratio -= bdi->min_ratio;
307                 if (bdi_min_ratio + min_ratio < 100) {
308                         bdi_min_ratio += min_ratio;
309                         bdi->min_ratio += min_ratio;
310                 } else {
311                         ret = -EINVAL;
312                 }
313         }
314         spin_unlock_bh(&bdi_lock);
315
316         return ret;
317 }
318
319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320 {
321         int ret = 0;
322
323         if (max_ratio > 100)
324                 return -EINVAL;
325
326         spin_lock_bh(&bdi_lock);
327         if (bdi->min_ratio > max_ratio) {
328                 ret = -EINVAL;
329         } else {
330                 bdi->max_ratio = max_ratio;
331                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332         }
333         spin_unlock_bh(&bdi_lock);
334
335         return ret;
336 }
337 EXPORT_SYMBOL(bdi_set_max_ratio);
338
339 /*
340  * Work out the current dirty-memory clamping and background writeout
341  * thresholds.
342  *
343  * The main aim here is to lower them aggressively if there is a lot of mapped
344  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
345  * pages.  It is better to clamp down on writers than to start swapping, and
346  * performing lots of scanning.
347  *
348  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349  *
350  * We don't permit the clamping level to fall below 5% - that is getting rather
351  * excessive.
352  *
353  * We make sure that the background writeout level is below the adjusted
354  * clamping level.
355  */
356
357 static unsigned long highmem_dirtyable_memory(unsigned long total)
358 {
359 #ifdef CONFIG_HIGHMEM
360         int node;
361         unsigned long x = 0;
362
363         for_each_node_state(node, N_HIGH_MEMORY) {
364                 struct zone *z =
365                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
367                 x += zone_page_state(z, NR_FREE_PAGES) +
368                      zone_reclaimable_pages(z);
369         }
370         /*
371          * Make sure that the number of highmem pages is never larger
372          * than the number of the total dirtyable memory. This can only
373          * occur in very strange VM situations but we want to make sure
374          * that this does not occur.
375          */
376         return min(x, total);
377 #else
378         return 0;
379 #endif
380 }
381
382 /**
383  * determine_dirtyable_memory - amount of memory that may be used
384  *
385  * Returns the numebr of pages that can currently be freed and used
386  * by the kernel for direct mappings.
387  */
388 unsigned long determine_dirtyable_memory(void)
389 {
390         unsigned long x;
391
392         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393
394         if (!vm_highmem_is_dirtyable)
395                 x -= highmem_dirtyable_memory(x);
396
397         return x + 1;   /* Ensure that we never return 0 */
398 }
399
400 /*
401  * global_dirty_limits - background-writeback and dirty-throttling thresholds
402  *
403  * Calculate the dirty thresholds based on sysctl parameters
404  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
405  * - vm.dirty_ratio             or  vm.dirty_bytes
406  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407  * real-time tasks.
408  */
409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410 {
411         unsigned long background;
412         unsigned long dirty;
413         unsigned long uninitialized_var(available_memory);
414         struct task_struct *tsk;
415
416         if (!vm_dirty_bytes || !dirty_background_bytes)
417                 available_memory = determine_dirtyable_memory();
418
419         if (vm_dirty_bytes)
420                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
421         else
422                 dirty = (vm_dirty_ratio * available_memory) / 100;
423
424         if (dirty_background_bytes)
425                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426         else
427                 background = (dirty_background_ratio * available_memory) / 100;
428
429         if (background >= dirty)
430                 background = dirty / 2;
431         tsk = current;
432         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433                 background += background / 4;
434                 dirty += dirty / 4;
435         }
436         *pbackground = background;
437         *pdirty = dirty;
438 }
439
440 /**
441  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
442  * @bdi: the backing_dev_info to query
443  * @dirty: global dirty limit in pages
444  *
445  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
446  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
447  * And the "limit" in the name is not seriously taken as hard limit in
448  * balance_dirty_pages().
449  *
450  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
451  * - starving fast devices
452  * - piling up dirty pages (that will take long time to sync) on slow devices
453  *
454  * The bdi's share of dirty limit will be adapting to its throughput and
455  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
456  */
457 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
458 {
459         u64 bdi_dirty;
460         long numerator, denominator;
461
462         /*
463          * Calculate this BDI's share of the dirty ratio.
464          */
465         bdi_writeout_fraction(bdi, &numerator, &denominator);
466
467         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
468         bdi_dirty *= numerator;
469         do_div(bdi_dirty, denominator);
470
471         bdi_dirty += (dirty * bdi->min_ratio) / 100;
472         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
473                 bdi_dirty = dirty * bdi->max_ratio / 100;
474
475         return bdi_dirty;
476 }
477
478 /*
479  * balance_dirty_pages() must be called by processes which are generating dirty
480  * data.  It looks at the number of dirty pages in the machine and will force
481  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
482  * If we're over `background_thresh' then the writeback threads are woken to
483  * perform some writeout.
484  */
485 static void balance_dirty_pages(struct address_space *mapping,
486                                 unsigned long write_chunk)
487 {
488         long nr_reclaimable, bdi_nr_reclaimable;
489         long nr_writeback, bdi_nr_writeback;
490         unsigned long background_thresh;
491         unsigned long dirty_thresh;
492         unsigned long bdi_thresh;
493         unsigned long pages_written = 0;
494         unsigned long pause = 1;
495         bool dirty_exceeded = false;
496         struct backing_dev_info *bdi = mapping->backing_dev_info;
497
498         for (;;) {
499                 struct writeback_control wbc = {
500                         .sync_mode      = WB_SYNC_NONE,
501                         .older_than_this = NULL,
502                         .nr_to_write    = write_chunk,
503                         .range_cyclic   = 1,
504                 };
505
506                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
507                                         global_page_state(NR_UNSTABLE_NFS);
508                 nr_writeback = global_page_state(NR_WRITEBACK);
509
510                 global_dirty_limits(&background_thresh, &dirty_thresh);
511
512                 /*
513                  * Throttle it only when the background writeback cannot
514                  * catch-up. This avoids (excessively) small writeouts
515                  * when the bdi limits are ramping up.
516                  */
517                 if (nr_reclaimable + nr_writeback <=
518                                 (background_thresh + dirty_thresh) / 2)
519                         break;
520
521                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
522                 bdi_thresh = task_dirty_limit(current, bdi_thresh);
523
524                 /*
525                  * In order to avoid the stacked BDI deadlock we need
526                  * to ensure we accurately count the 'dirty' pages when
527                  * the threshold is low.
528                  *
529                  * Otherwise it would be possible to get thresh+n pages
530                  * reported dirty, even though there are thresh-m pages
531                  * actually dirty; with m+n sitting in the percpu
532                  * deltas.
533                  */
534                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
535                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
536                         bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
537                 } else {
538                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
539                         bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
540                 }
541
542                 /*
543                  * The bdi thresh is somehow "soft" limit derived from the
544                  * global "hard" limit. The former helps to prevent heavy IO
545                  * bdi or process from holding back light ones; The latter is
546                  * the last resort safeguard.
547                  */
548                 dirty_exceeded =
549                         (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
550                         || (nr_reclaimable + nr_writeback > dirty_thresh);
551
552                 if (!dirty_exceeded)
553                         break;
554
555                 if (!bdi->dirty_exceeded)
556                         bdi->dirty_exceeded = 1;
557
558                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
559                  * Unstable writes are a feature of certain networked
560                  * filesystems (i.e. NFS) in which data may have been
561                  * written to the server's write cache, but has not yet
562                  * been flushed to permanent storage.
563                  * Only move pages to writeback if this bdi is over its
564                  * threshold otherwise wait until the disk writes catch
565                  * up.
566                  */
567                 trace_wbc_balance_dirty_start(&wbc, bdi);
568                 if (bdi_nr_reclaimable > bdi_thresh) {
569                         writeback_inodes_wb(&bdi->wb, &wbc);
570                         pages_written += write_chunk - wbc.nr_to_write;
571                         trace_wbc_balance_dirty_written(&wbc, bdi);
572                         if (pages_written >= write_chunk)
573                                 break;          /* We've done our duty */
574                 }
575                 trace_wbc_balance_dirty_wait(&wbc, bdi);
576                 __set_current_state(TASK_UNINTERRUPTIBLE);
577                 io_schedule_timeout(pause);
578
579                 /*
580                  * Increase the delay for each loop, up to our previous
581                  * default of taking a 100ms nap.
582                  */
583                 pause <<= 1;
584                 if (pause > HZ / 10)
585                         pause = HZ / 10;
586         }
587
588         if (!dirty_exceeded && bdi->dirty_exceeded)
589                 bdi->dirty_exceeded = 0;
590
591         if (writeback_in_progress(bdi))
592                 return;
593
594         /*
595          * In laptop mode, we wait until hitting the higher threshold before
596          * starting background writeout, and then write out all the way down
597          * to the lower threshold.  So slow writers cause minimal disk activity.
598          *
599          * In normal mode, we start background writeout at the lower
600          * background_thresh, to keep the amount of dirty memory low.
601          */
602         if ((laptop_mode && pages_written) ||
603             (!laptop_mode && (nr_reclaimable > background_thresh)))
604                 bdi_start_background_writeback(bdi);
605 }
606
607 void set_page_dirty_balance(struct page *page, int page_mkwrite)
608 {
609         if (set_page_dirty(page) || page_mkwrite) {
610                 struct address_space *mapping = page_mapping(page);
611
612                 if (mapping)
613                         balance_dirty_pages_ratelimited(mapping);
614         }
615 }
616
617 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
618
619 /**
620  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
621  * @mapping: address_space which was dirtied
622  * @nr_pages_dirtied: number of pages which the caller has just dirtied
623  *
624  * Processes which are dirtying memory should call in here once for each page
625  * which was newly dirtied.  The function will periodically check the system's
626  * dirty state and will initiate writeback if needed.
627  *
628  * On really big machines, get_writeback_state is expensive, so try to avoid
629  * calling it too often (ratelimiting).  But once we're over the dirty memory
630  * limit we decrease the ratelimiting by a lot, to prevent individual processes
631  * from overshooting the limit by (ratelimit_pages) each.
632  */
633 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
634                                         unsigned long nr_pages_dirtied)
635 {
636         unsigned long ratelimit;
637         unsigned long *p;
638
639         ratelimit = ratelimit_pages;
640         if (mapping->backing_dev_info->dirty_exceeded)
641                 ratelimit = 8;
642
643         /*
644          * Check the rate limiting. Also, we do not want to throttle real-time
645          * tasks in balance_dirty_pages(). Period.
646          */
647         preempt_disable();
648         p =  &__get_cpu_var(bdp_ratelimits);
649         *p += nr_pages_dirtied;
650         if (unlikely(*p >= ratelimit)) {
651                 ratelimit = sync_writeback_pages(*p);
652                 *p = 0;
653                 preempt_enable();
654                 balance_dirty_pages(mapping, ratelimit);
655                 return;
656         }
657         preempt_enable();
658 }
659 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
660
661 void throttle_vm_writeout(gfp_t gfp_mask)
662 {
663         unsigned long background_thresh;
664         unsigned long dirty_thresh;
665
666         for ( ; ; ) {
667                 global_dirty_limits(&background_thresh, &dirty_thresh);
668
669                 /*
670                  * Boost the allowable dirty threshold a bit for page
671                  * allocators so they don't get DoS'ed by heavy writers
672                  */
673                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
674
675                 if (global_page_state(NR_UNSTABLE_NFS) +
676                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
677                                 break;
678                 congestion_wait(BLK_RW_ASYNC, HZ/10);
679
680                 /*
681                  * The caller might hold locks which can prevent IO completion
682                  * or progress in the filesystem.  So we cannot just sit here
683                  * waiting for IO to complete.
684                  */
685                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
686                         break;
687         }
688 }
689
690 /*
691  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
692  */
693 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
694         void __user *buffer, size_t *length, loff_t *ppos)
695 {
696         proc_dointvec(table, write, buffer, length, ppos);
697         bdi_arm_supers_timer();
698         return 0;
699 }
700
701 #ifdef CONFIG_BLOCK
702 void laptop_mode_timer_fn(unsigned long data)
703 {
704         struct request_queue *q = (struct request_queue *)data;
705         int nr_pages = global_page_state(NR_FILE_DIRTY) +
706                 global_page_state(NR_UNSTABLE_NFS);
707
708         /*
709          * We want to write everything out, not just down to the dirty
710          * threshold
711          */
712         if (bdi_has_dirty_io(&q->backing_dev_info))
713                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
714 }
715
716 /*
717  * We've spun up the disk and we're in laptop mode: schedule writeback
718  * of all dirty data a few seconds from now.  If the flush is already scheduled
719  * then push it back - the user is still using the disk.
720  */
721 void laptop_io_completion(struct backing_dev_info *info)
722 {
723         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
724 }
725
726 /*
727  * We're in laptop mode and we've just synced. The sync's writes will have
728  * caused another writeback to be scheduled by laptop_io_completion.
729  * Nothing needs to be written back anymore, so we unschedule the writeback.
730  */
731 void laptop_sync_completion(void)
732 {
733         struct backing_dev_info *bdi;
734
735         rcu_read_lock();
736
737         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
738                 del_timer(&bdi->laptop_mode_wb_timer);
739
740         rcu_read_unlock();
741 }
742 #endif
743
744 /*
745  * If ratelimit_pages is too high then we can get into dirty-data overload
746  * if a large number of processes all perform writes at the same time.
747  * If it is too low then SMP machines will call the (expensive)
748  * get_writeback_state too often.
749  *
750  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
751  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
752  * thresholds before writeback cuts in.
753  *
754  * But the limit should not be set too high.  Because it also controls the
755  * amount of memory which the balance_dirty_pages() caller has to write back.
756  * If this is too large then the caller will block on the IO queue all the
757  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
758  * will write six megabyte chunks, max.
759  */
760
761 void writeback_set_ratelimit(void)
762 {
763         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
764         if (ratelimit_pages < 16)
765                 ratelimit_pages = 16;
766         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
767                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
768 }
769
770 static int __cpuinit
771 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
772 {
773         writeback_set_ratelimit();
774         return NOTIFY_DONE;
775 }
776
777 static struct notifier_block __cpuinitdata ratelimit_nb = {
778         .notifier_call  = ratelimit_handler,
779         .next           = NULL,
780 };
781
782 /*
783  * Called early on to tune the page writeback dirty limits.
784  *
785  * We used to scale dirty pages according to how total memory
786  * related to pages that could be allocated for buffers (by
787  * comparing nr_free_buffer_pages() to vm_total_pages.
788  *
789  * However, that was when we used "dirty_ratio" to scale with
790  * all memory, and we don't do that any more. "dirty_ratio"
791  * is now applied to total non-HIGHPAGE memory (by subtracting
792  * totalhigh_pages from vm_total_pages), and as such we can't
793  * get into the old insane situation any more where we had
794  * large amounts of dirty pages compared to a small amount of
795  * non-HIGHMEM memory.
796  *
797  * But we might still want to scale the dirty_ratio by how
798  * much memory the box has..
799  */
800 void __init page_writeback_init(void)
801 {
802         int shift;
803
804         writeback_set_ratelimit();
805         register_cpu_notifier(&ratelimit_nb);
806
807         shift = calc_period_shift();
808         prop_descriptor_init(&vm_completions, shift);
809         prop_descriptor_init(&vm_dirties, shift);
810 }
811
812 /**
813  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
814  * @mapping: address space structure to write
815  * @start: starting page index
816  * @end: ending page index (inclusive)
817  *
818  * This function scans the page range from @start to @end (inclusive) and tags
819  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
820  * that write_cache_pages (or whoever calls this function) will then use
821  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
822  * used to avoid livelocking of writeback by a process steadily creating new
823  * dirty pages in the file (thus it is important for this function to be quick
824  * so that it can tag pages faster than a dirtying process can create them).
825  */
826 /*
827  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
828  */
829 void tag_pages_for_writeback(struct address_space *mapping,
830                              pgoff_t start, pgoff_t end)
831 {
832 #define WRITEBACK_TAG_BATCH 4096
833         unsigned long tagged;
834
835         do {
836                 spin_lock_irq(&mapping->tree_lock);
837                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
838                                 &start, end, WRITEBACK_TAG_BATCH,
839                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
840                 spin_unlock_irq(&mapping->tree_lock);
841                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
842                 cond_resched();
843                 /* We check 'start' to handle wrapping when end == ~0UL */
844         } while (tagged >= WRITEBACK_TAG_BATCH && start);
845 }
846 EXPORT_SYMBOL(tag_pages_for_writeback);
847
848 /**
849  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
850  * @mapping: address space structure to write
851  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
852  * @writepage: function called for each page
853  * @data: data passed to writepage function
854  *
855  * If a page is already under I/O, write_cache_pages() skips it, even
856  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
857  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
858  * and msync() need to guarantee that all the data which was dirty at the time
859  * the call was made get new I/O started against them.  If wbc->sync_mode is
860  * WB_SYNC_ALL then we were called for data integrity and we must wait for
861  * existing IO to complete.
862  *
863  * To avoid livelocks (when other process dirties new pages), we first tag
864  * pages which should be written back with TOWRITE tag and only then start
865  * writing them. For data-integrity sync we have to be careful so that we do
866  * not miss some pages (e.g., because some other process has cleared TOWRITE
867  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
868  * by the process clearing the DIRTY tag (and submitting the page for IO).
869  */
870 int write_cache_pages(struct address_space *mapping,
871                       struct writeback_control *wbc, writepage_t writepage,
872                       void *data)
873 {
874         int ret = 0;
875         int done = 0;
876         struct pagevec pvec;
877         int nr_pages;
878         pgoff_t uninitialized_var(writeback_index);
879         pgoff_t index;
880         pgoff_t end;            /* Inclusive */
881         pgoff_t done_index;
882         int cycled;
883         int range_whole = 0;
884         int tag;
885
886         pagevec_init(&pvec, 0);
887         if (wbc->range_cyclic) {
888                 writeback_index = mapping->writeback_index; /* prev offset */
889                 index = writeback_index;
890                 if (index == 0)
891                         cycled = 1;
892                 else
893                         cycled = 0;
894                 end = -1;
895         } else {
896                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
897                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
898                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
899                         range_whole = 1;
900                 cycled = 1; /* ignore range_cyclic tests */
901         }
902         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
903                 tag = PAGECACHE_TAG_TOWRITE;
904         else
905                 tag = PAGECACHE_TAG_DIRTY;
906 retry:
907         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
908                 tag_pages_for_writeback(mapping, index, end);
909         done_index = index;
910         while (!done && (index <= end)) {
911                 int i;
912
913                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
914                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
915                 if (nr_pages == 0)
916                         break;
917
918                 for (i = 0; i < nr_pages; i++) {
919                         struct page *page = pvec.pages[i];
920
921                         /*
922                          * At this point, the page may be truncated or
923                          * invalidated (changing page->mapping to NULL), or
924                          * even swizzled back from swapper_space to tmpfs file
925                          * mapping. However, page->index will not change
926                          * because we have a reference on the page.
927                          */
928                         if (page->index > end) {
929                                 /*
930                                  * can't be range_cyclic (1st pass) because
931                                  * end == -1 in that case.
932                                  */
933                                 done = 1;
934                                 break;
935                         }
936
937                         done_index = page->index;
938
939                         lock_page(page);
940
941                         /*
942                          * Page truncated or invalidated. We can freely skip it
943                          * then, even for data integrity operations: the page
944                          * has disappeared concurrently, so there could be no
945                          * real expectation of this data interity operation
946                          * even if there is now a new, dirty page at the same
947                          * pagecache address.
948                          */
949                         if (unlikely(page->mapping != mapping)) {
950 continue_unlock:
951                                 unlock_page(page);
952                                 continue;
953                         }
954
955                         if (!PageDirty(page)) {
956                                 /* someone wrote it for us */
957                                 goto continue_unlock;
958                         }
959
960                         if (PageWriteback(page)) {
961                                 if (wbc->sync_mode != WB_SYNC_NONE)
962                                         wait_on_page_writeback(page);
963                                 else
964                                         goto continue_unlock;
965                         }
966
967                         BUG_ON(PageWriteback(page));
968                         if (!clear_page_dirty_for_io(page))
969                                 goto continue_unlock;
970
971                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
972                         ret = (*writepage)(page, wbc, data);
973                         if (unlikely(ret)) {
974                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
975                                         unlock_page(page);
976                                         ret = 0;
977                                 } else {
978                                         /*
979                                          * done_index is set past this page,
980                                          * so media errors will not choke
981                                          * background writeout for the entire
982                                          * file. This has consequences for
983                                          * range_cyclic semantics (ie. it may
984                                          * not be suitable for data integrity
985                                          * writeout).
986                                          */
987                                         done_index = page->index + 1;
988                                         done = 1;
989                                         break;
990                                 }
991                         }
992
993                         /*
994                          * We stop writing back only if we are not doing
995                          * integrity sync. In case of integrity sync we have to
996                          * keep going until we have written all the pages
997                          * we tagged for writeback prior to entering this loop.
998                          */
999                         if (--wbc->nr_to_write <= 0 &&
1000                             wbc->sync_mode == WB_SYNC_NONE) {
1001                                 done = 1;
1002                                 break;
1003                         }
1004                 }
1005                 pagevec_release(&pvec);
1006                 cond_resched();
1007         }
1008         if (!cycled && !done) {
1009                 /*
1010                  * range_cyclic:
1011                  * We hit the last page and there is more work to be done: wrap
1012                  * back to the start of the file
1013                  */
1014                 cycled = 1;
1015                 index = 0;
1016                 end = writeback_index - 1;
1017                 goto retry;
1018         }
1019         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1020                 mapping->writeback_index = done_index;
1021
1022         return ret;
1023 }
1024 EXPORT_SYMBOL(write_cache_pages);
1025
1026 /*
1027  * Function used by generic_writepages to call the real writepage
1028  * function and set the mapping flags on error
1029  */
1030 static int __writepage(struct page *page, struct writeback_control *wbc,
1031                        void *data)
1032 {
1033         struct address_space *mapping = data;
1034         int ret = mapping->a_ops->writepage(page, wbc);
1035         mapping_set_error(mapping, ret);
1036         return ret;
1037 }
1038
1039 /**
1040  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1041  * @mapping: address space structure to write
1042  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1043  *
1044  * This is a library function, which implements the writepages()
1045  * address_space_operation.
1046  */
1047 int generic_writepages(struct address_space *mapping,
1048                        struct writeback_control *wbc)
1049 {
1050         struct blk_plug plug;
1051         int ret;
1052
1053         /* deal with chardevs and other special file */
1054         if (!mapping->a_ops->writepage)
1055                 return 0;
1056
1057         blk_start_plug(&plug);
1058         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1059         blk_finish_plug(&plug);
1060         return ret;
1061 }
1062
1063 EXPORT_SYMBOL(generic_writepages);
1064
1065 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1066 {
1067         int ret;
1068
1069         if (wbc->nr_to_write <= 0)
1070                 return 0;
1071         if (mapping->a_ops->writepages)
1072                 ret = mapping->a_ops->writepages(mapping, wbc);
1073         else
1074                 ret = generic_writepages(mapping, wbc);
1075         return ret;
1076 }
1077
1078 /**
1079  * write_one_page - write out a single page and optionally wait on I/O
1080  * @page: the page to write
1081  * @wait: if true, wait on writeout
1082  *
1083  * The page must be locked by the caller and will be unlocked upon return.
1084  *
1085  * write_one_page() returns a negative error code if I/O failed.
1086  */
1087 int write_one_page(struct page *page, int wait)
1088 {
1089         struct address_space *mapping = page->mapping;
1090         int ret = 0;
1091         struct writeback_control wbc = {
1092                 .sync_mode = WB_SYNC_ALL,
1093                 .nr_to_write = 1,
1094         };
1095
1096         BUG_ON(!PageLocked(page));
1097
1098         if (wait)
1099                 wait_on_page_writeback(page);
1100
1101         if (clear_page_dirty_for_io(page)) {
1102                 page_cache_get(page);
1103                 ret = mapping->a_ops->writepage(page, &wbc);
1104                 if (ret == 0 && wait) {
1105                         wait_on_page_writeback(page);
1106                         if (PageError(page))
1107                                 ret = -EIO;
1108                 }
1109                 page_cache_release(page);
1110         } else {
1111                 unlock_page(page);
1112         }
1113         return ret;
1114 }
1115 EXPORT_SYMBOL(write_one_page);
1116
1117 /*
1118  * For address_spaces which do not use buffers nor write back.
1119  */
1120 int __set_page_dirty_no_writeback(struct page *page)
1121 {
1122         if (!PageDirty(page))
1123                 return !TestSetPageDirty(page);
1124         return 0;
1125 }
1126
1127 /*
1128  * Helper function for set_page_dirty family.
1129  * NOTE: This relies on being atomic wrt interrupts.
1130  */
1131 void account_page_dirtied(struct page *page, struct address_space *mapping)
1132 {
1133         if (mapping_cap_account_dirty(mapping)) {
1134                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1135                 __inc_zone_page_state(page, NR_DIRTIED);
1136                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1137                 task_dirty_inc(current);
1138                 task_io_account_write(PAGE_CACHE_SIZE);
1139         }
1140 }
1141 EXPORT_SYMBOL(account_page_dirtied);
1142
1143 /*
1144  * Helper function for set_page_writeback family.
1145  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1146  * wrt interrupts.
1147  */
1148 void account_page_writeback(struct page *page)
1149 {
1150         inc_zone_page_state(page, NR_WRITEBACK);
1151         inc_zone_page_state(page, NR_WRITTEN);
1152 }
1153 EXPORT_SYMBOL(account_page_writeback);
1154
1155 /*
1156  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1157  * its radix tree.
1158  *
1159  * This is also used when a single buffer is being dirtied: we want to set the
1160  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1161  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1162  *
1163  * Most callers have locked the page, which pins the address_space in memory.
1164  * But zap_pte_range() does not lock the page, however in that case the
1165  * mapping is pinned by the vma's ->vm_file reference.
1166  *
1167  * We take care to handle the case where the page was truncated from the
1168  * mapping by re-checking page_mapping() inside tree_lock.
1169  */
1170 int __set_page_dirty_nobuffers(struct page *page)
1171 {
1172         if (!TestSetPageDirty(page)) {
1173                 struct address_space *mapping = page_mapping(page);
1174                 struct address_space *mapping2;
1175
1176                 if (!mapping)
1177                         return 1;
1178
1179                 spin_lock_irq(&mapping->tree_lock);
1180                 mapping2 = page_mapping(page);
1181                 if (mapping2) { /* Race with truncate? */
1182                         BUG_ON(mapping2 != mapping);
1183                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1184                         account_page_dirtied(page, mapping);
1185                         radix_tree_tag_set(&mapping->page_tree,
1186                                 page_index(page), PAGECACHE_TAG_DIRTY);
1187                 }
1188                 spin_unlock_irq(&mapping->tree_lock);
1189                 if (mapping->host) {
1190                         /* !PageAnon && !swapper_space */
1191                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1192                 }
1193                 return 1;
1194         }
1195         return 0;
1196 }
1197 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1198
1199 /*
1200  * When a writepage implementation decides that it doesn't want to write this
1201  * page for some reason, it should redirty the locked page via
1202  * redirty_page_for_writepage() and it should then unlock the page and return 0
1203  */
1204 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1205 {
1206         wbc->pages_skipped++;
1207         return __set_page_dirty_nobuffers(page);
1208 }
1209 EXPORT_SYMBOL(redirty_page_for_writepage);
1210
1211 /*
1212  * Dirty a page.
1213  *
1214  * For pages with a mapping this should be done under the page lock
1215  * for the benefit of asynchronous memory errors who prefer a consistent
1216  * dirty state. This rule can be broken in some special cases,
1217  * but should be better not to.
1218  *
1219  * If the mapping doesn't provide a set_page_dirty a_op, then
1220  * just fall through and assume that it wants buffer_heads.
1221  */
1222 int set_page_dirty(struct page *page)
1223 {
1224         struct address_space *mapping = page_mapping(page);
1225
1226         if (likely(mapping)) {
1227                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1228                 /*
1229                  * readahead/lru_deactivate_page could remain
1230                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1231                  * About readahead, if the page is written, the flags would be
1232                  * reset. So no problem.
1233                  * About lru_deactivate_page, if the page is redirty, the flag
1234                  * will be reset. So no problem. but if the page is used by readahead
1235                  * it will confuse readahead and make it restart the size rampup
1236                  * process. But it's a trivial problem.
1237                  */
1238                 ClearPageReclaim(page);
1239 #ifdef CONFIG_BLOCK
1240                 if (!spd)
1241                         spd = __set_page_dirty_buffers;
1242 #endif
1243                 return (*spd)(page);
1244         }
1245         if (!PageDirty(page)) {
1246                 if (!TestSetPageDirty(page))
1247                         return 1;
1248         }
1249         return 0;
1250 }
1251 EXPORT_SYMBOL(set_page_dirty);
1252
1253 /*
1254  * set_page_dirty() is racy if the caller has no reference against
1255  * page->mapping->host, and if the page is unlocked.  This is because another
1256  * CPU could truncate the page off the mapping and then free the mapping.
1257  *
1258  * Usually, the page _is_ locked, or the caller is a user-space process which
1259  * holds a reference on the inode by having an open file.
1260  *
1261  * In other cases, the page should be locked before running set_page_dirty().
1262  */
1263 int set_page_dirty_lock(struct page *page)
1264 {
1265         int ret;
1266
1267         lock_page(page);
1268         ret = set_page_dirty(page);
1269         unlock_page(page);
1270         return ret;
1271 }
1272 EXPORT_SYMBOL(set_page_dirty_lock);
1273
1274 /*
1275  * Clear a page's dirty flag, while caring for dirty memory accounting.
1276  * Returns true if the page was previously dirty.
1277  *
1278  * This is for preparing to put the page under writeout.  We leave the page
1279  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1280  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1281  * implementation will run either set_page_writeback() or set_page_dirty(),
1282  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1283  * back into sync.
1284  *
1285  * This incoherency between the page's dirty flag and radix-tree tag is
1286  * unfortunate, but it only exists while the page is locked.
1287  */
1288 int clear_page_dirty_for_io(struct page *page)
1289 {
1290         struct address_space *mapping = page_mapping(page);
1291
1292         BUG_ON(!PageLocked(page));
1293
1294         if (mapping && mapping_cap_account_dirty(mapping)) {
1295                 /*
1296                  * Yes, Virginia, this is indeed insane.
1297                  *
1298                  * We use this sequence to make sure that
1299                  *  (a) we account for dirty stats properly
1300                  *  (b) we tell the low-level filesystem to
1301                  *      mark the whole page dirty if it was
1302                  *      dirty in a pagetable. Only to then
1303                  *  (c) clean the page again and return 1 to
1304                  *      cause the writeback.
1305                  *
1306                  * This way we avoid all nasty races with the
1307                  * dirty bit in multiple places and clearing
1308                  * them concurrently from different threads.
1309                  *
1310                  * Note! Normally the "set_page_dirty(page)"
1311                  * has no effect on the actual dirty bit - since
1312                  * that will already usually be set. But we
1313                  * need the side effects, and it can help us
1314                  * avoid races.
1315                  *
1316                  * We basically use the page "master dirty bit"
1317                  * as a serialization point for all the different
1318                  * threads doing their things.
1319                  */
1320                 if (page_mkclean(page))
1321                         set_page_dirty(page);
1322                 /*
1323                  * We carefully synchronise fault handlers against
1324                  * installing a dirty pte and marking the page dirty
1325                  * at this point. We do this by having them hold the
1326                  * page lock at some point after installing their
1327                  * pte, but before marking the page dirty.
1328                  * Pages are always locked coming in here, so we get
1329                  * the desired exclusion. See mm/memory.c:do_wp_page()
1330                  * for more comments.
1331                  */
1332                 if (TestClearPageDirty(page)) {
1333                         dec_zone_page_state(page, NR_FILE_DIRTY);
1334                         dec_bdi_stat(mapping->backing_dev_info,
1335                                         BDI_RECLAIMABLE);
1336                         return 1;
1337                 }
1338                 return 0;
1339         }
1340         return TestClearPageDirty(page);
1341 }
1342 EXPORT_SYMBOL(clear_page_dirty_for_io);
1343
1344 int test_clear_page_writeback(struct page *page)
1345 {
1346         struct address_space *mapping = page_mapping(page);
1347         int ret;
1348
1349         if (mapping) {
1350                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1351                 unsigned long flags;
1352
1353                 spin_lock_irqsave(&mapping->tree_lock, flags);
1354                 ret = TestClearPageWriteback(page);
1355                 if (ret) {
1356                         radix_tree_tag_clear(&mapping->page_tree,
1357                                                 page_index(page),
1358                                                 PAGECACHE_TAG_WRITEBACK);
1359                         if (bdi_cap_account_writeback(bdi)) {
1360                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1361                                 __bdi_writeout_inc(bdi);
1362                         }
1363                 }
1364                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1365         } else {
1366                 ret = TestClearPageWriteback(page);
1367         }
1368         if (ret)
1369                 dec_zone_page_state(page, NR_WRITEBACK);
1370         return ret;
1371 }
1372
1373 int test_set_page_writeback(struct page *page)
1374 {
1375         struct address_space *mapping = page_mapping(page);
1376         int ret;
1377
1378         if (mapping) {
1379                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1380                 unsigned long flags;
1381
1382                 spin_lock_irqsave(&mapping->tree_lock, flags);
1383                 ret = TestSetPageWriteback(page);
1384                 if (!ret) {
1385                         radix_tree_tag_set(&mapping->page_tree,
1386                                                 page_index(page),
1387                                                 PAGECACHE_TAG_WRITEBACK);
1388                         if (bdi_cap_account_writeback(bdi))
1389                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1390                 }
1391                 if (!PageDirty(page))
1392                         radix_tree_tag_clear(&mapping->page_tree,
1393                                                 page_index(page),
1394                                                 PAGECACHE_TAG_DIRTY);
1395                 radix_tree_tag_clear(&mapping->page_tree,
1396                                      page_index(page),
1397                                      PAGECACHE_TAG_TOWRITE);
1398                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1399         } else {
1400                 ret = TestSetPageWriteback(page);
1401         }
1402         if (!ret)
1403                 account_page_writeback(page);
1404         return ret;
1405
1406 }
1407 EXPORT_SYMBOL(test_set_page_writeback);
1408
1409 /*
1410  * Return true if any of the pages in the mapping are marked with the
1411  * passed tag.
1412  */
1413 int mapping_tagged(struct address_space *mapping, int tag)
1414 {
1415         int ret;
1416         rcu_read_lock();
1417         ret = radix_tree_tagged(&mapping->page_tree, tag);
1418         rcu_read_unlock();
1419         return ret;
1420 }
1421 EXPORT_SYMBOL(mapping_tagged);