2 #include <linux/highmem.h>
3 #include <linux/sched.h>
4 #include <linux/hugetlb.h>
6 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
12 pte = pte_offset_map(pmd, addr);
14 err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
27 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
34 pmd = pmd_offset(pud, addr);
37 next = pmd_addr_end(addr, end);
38 if (pmd_none(*pmd) || !walk->vma) {
40 err = walk->pte_hole(addr, next, walk);
46 * This implies that each ->pmd_entry() handler
47 * needs to know about pmd_trans_huge() pmds
50 err = walk->pmd_entry(pmd, addr, next, walk);
55 * Check this here so we only break down trans_huge
56 * pages when we _need_ to
61 split_huge_pmd(walk->vma, pmd, addr);
62 if (pmd_trans_unstable(pmd))
64 err = walk_pte_range(pmd, addr, next, walk);
67 } while (pmd++, addr = next, addr != end);
72 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
79 pud = pud_offset(p4d, addr);
82 next = pud_addr_end(addr, end);
83 if (pud_none(*pud) || !walk->vma) {
85 err = walk->pte_hole(addr, next, walk);
91 if (walk->pud_entry) {
92 spinlock_t *ptl = pud_trans_huge_lock(pud, walk->vma);
95 err = walk->pud_entry(pud, addr, next, walk);
103 split_huge_pud(walk->vma, pud, addr);
107 if (walk->pmd_entry || walk->pte_entry)
108 err = walk_pmd_range(pud, addr, next, walk);
111 } while (pud++, addr = next, addr != end);
116 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
117 struct mm_walk *walk)
123 p4d = p4d_offset(pgd, addr);
125 next = p4d_addr_end(addr, end);
126 if (p4d_none_or_clear_bad(p4d)) {
128 err = walk->pte_hole(addr, next, walk);
133 if (walk->pmd_entry || walk->pte_entry)
134 err = walk_pud_range(p4d, addr, next, walk);
137 } while (p4d++, addr = next, addr != end);
142 static int walk_pgd_range(unsigned long addr, unsigned long end,
143 struct mm_walk *walk)
149 pgd = pgd_offset(walk->mm, addr);
151 next = pgd_addr_end(addr, end);
152 if (pgd_none_or_clear_bad(pgd)) {
154 err = walk->pte_hole(addr, next, walk);
159 if (walk->pmd_entry || walk->pte_entry)
160 err = walk_p4d_range(pgd, addr, next, walk);
163 } while (pgd++, addr = next, addr != end);
168 #ifdef CONFIG_HUGETLB_PAGE
169 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
172 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
173 return boundary < end ? boundary : end;
176 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
177 struct mm_walk *walk)
179 struct vm_area_struct *vma = walk->vma;
180 struct hstate *h = hstate_vma(vma);
182 unsigned long hmask = huge_page_mask(h);
187 next = hugetlb_entry_end(h, addr, end);
188 pte = huge_pte_offset(walk->mm, addr & hmask);
189 if (pte && walk->hugetlb_entry)
190 err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
193 } while (addr = next, addr != end);
198 #else /* CONFIG_HUGETLB_PAGE */
199 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
200 struct mm_walk *walk)
205 #endif /* CONFIG_HUGETLB_PAGE */
208 * Decide whether we really walk over the current vma on [@start, @end)
209 * or skip it via the returned value. Return 0 if we do walk over the
210 * current vma, and return 1 if we skip the vma. Negative values means
211 * error, where we abort the current walk.
213 static int walk_page_test(unsigned long start, unsigned long end,
214 struct mm_walk *walk)
216 struct vm_area_struct *vma = walk->vma;
219 return walk->test_walk(start, end, walk);
222 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
223 * range, so we don't walk over it as we do for normal vmas. However,
224 * Some callers are interested in handling hole range and they don't
225 * want to just ignore any single address range. Such users certainly
226 * define their ->pte_hole() callbacks, so let's delegate them to handle
229 if (vma->vm_flags & VM_PFNMAP) {
232 err = walk->pte_hole(start, end, walk);
233 return err ? err : 1;
238 static int __walk_page_range(unsigned long start, unsigned long end,
239 struct mm_walk *walk)
242 struct vm_area_struct *vma = walk->vma;
244 if (vma && is_vm_hugetlb_page(vma)) {
245 if (walk->hugetlb_entry)
246 err = walk_hugetlb_range(start, end, walk);
248 err = walk_pgd_range(start, end, walk);
254 * walk_page_range - walk page table with caller specific callbacks
256 * Recursively walk the page table tree of the process represented by @walk->mm
257 * within the virtual address range [@start, @end). During walking, we can do
258 * some caller-specific works for each entry, by setting up pmd_entry(),
259 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
260 * callbacks, the associated entries/pages are just ignored.
261 * The return values of these callbacks are commonly defined like below:
262 * - 0 : succeeded to handle the current entry, and if you don't reach the
263 * end address yet, continue to walk.
264 * - >0 : succeeded to handle the current entry, and return to the caller
265 * with caller specific value.
266 * - <0 : failed to handle the current entry, and return to the caller
269 * Before starting to walk page table, some callers want to check whether
270 * they really want to walk over the current vma, typically by checking
271 * its vm_flags. walk_page_test() and @walk->test_walk() are used for this
274 * struct mm_walk keeps current values of some common data like vma and pmd,
275 * which are useful for the access from callbacks. If you want to pass some
276 * caller-specific data to callbacks, @walk->private should be helpful.
279 * Callers of walk_page_range() and walk_page_vma() should hold
280 * @walk->mm->mmap_sem, because these function traverse vma list and/or
281 * access to vma's data.
283 int walk_page_range(unsigned long start, unsigned long end,
284 struct mm_walk *walk)
288 struct vm_area_struct *vma;
296 VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm);
298 vma = find_vma(walk->mm, start);
300 if (!vma) { /* after the last vma */
303 } else if (start < vma->vm_start) { /* outside vma */
305 next = min(end, vma->vm_start);
306 } else { /* inside vma */
308 next = min(end, vma->vm_end);
311 err = walk_page_test(start, next, walk);
314 * positive return values are purely for
315 * controlling the pagewalk, so should never
316 * be passed to the callers.
324 if (walk->vma || walk->pte_hole)
325 err = __walk_page_range(start, next, walk);
328 } while (start = next, start < end);
332 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk)
339 VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
342 err = walk_page_test(vma->vm_start, vma->vm_end, walk);
347 return __walk_page_range(vma->vm_start, vma->vm_end, walk);