2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the following:
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
83 #define PCPU_EMPTY_POP_PAGES_LOW 2
84 #define PCPU_EMPTY_POP_PAGES_HIGH 4
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr) \
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr) \
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
100 #else /* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104 #endif /* CONFIG_SMP */
107 struct list_head list; /* linked to pcpu_slot lists */
108 int free_size; /* free bytes in the chunk */
109 int contig_hint; /* max contiguous size hint */
110 void *base_addr; /* base address of this chunk */
112 int map_used; /* # of map entries used before the sentry */
113 int map_alloc; /* # of map entries allocated */
114 int *map; /* allocation map */
115 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
117 void *data; /* chunk data */
118 int first_free; /* no free below this */
119 bool immutable; /* no [de]population allowed */
120 int nr_populated; /* # of populated pages */
121 unsigned long populated[]; /* populated bitmap */
124 static int pcpu_unit_pages __read_mostly;
125 static int pcpu_unit_size __read_mostly;
126 static int pcpu_nr_units __read_mostly;
127 static int pcpu_atom_size __read_mostly;
128 static int pcpu_nr_slots __read_mostly;
129 static size_t pcpu_chunk_struct_size __read_mostly;
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly;
133 static unsigned int pcpu_high_unit_cpu __read_mostly;
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr);
139 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly;
144 static const unsigned long *pcpu_group_offsets __read_mostly;
145 static const size_t *pcpu_group_sizes __read_mostly;
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
152 static struct pcpu_chunk *pcpu_first_chunk;
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
161 static struct pcpu_chunk *pcpu_reserved_chunk;
162 static int pcpu_reserved_chunk_limit;
164 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
169 /* chunks which need their map areas extended, protected by pcpu_lock */
170 static LIST_HEAD(pcpu_map_extend_chunks);
173 * The number of empty populated pages, protected by pcpu_lock. The
174 * reserved chunk doesn't contribute to the count.
176 static int pcpu_nr_empty_pop_pages;
179 * Balance work is used to populate or destroy chunks asynchronously. We
180 * try to keep the number of populated free pages between
181 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184 static void pcpu_balance_workfn(struct work_struct *work);
185 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
186 static bool pcpu_async_enabled __read_mostly;
187 static bool pcpu_atomic_alloc_failed;
189 static void pcpu_schedule_balance_work(void)
191 if (pcpu_async_enabled)
192 schedule_work(&pcpu_balance_work);
195 static bool pcpu_addr_in_first_chunk(void *addr)
197 void *first_start = pcpu_first_chunk->base_addr;
199 return addr >= first_start && addr < first_start + pcpu_unit_size;
202 static bool pcpu_addr_in_reserved_chunk(void *addr)
204 void *first_start = pcpu_first_chunk->base_addr;
206 return addr >= first_start &&
207 addr < first_start + pcpu_reserved_chunk_limit;
210 static int __pcpu_size_to_slot(int size)
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
216 static int pcpu_size_to_slot(int size)
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
228 return pcpu_size_to_slot(chunk->free_size);
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234 page->index = (unsigned long)pcpu;
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240 return (struct pcpu_chunk *)page->index;
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
248 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
249 unsigned int cpu, int page_idx)
251 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
252 (page_idx << PAGE_SHIFT);
255 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
256 int *rs, int *re, int end)
258 *rs = find_next_zero_bit(chunk->populated, end, *rs);
259 *re = find_next_bit(chunk->populated, end, *rs + 1);
262 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
263 int *rs, int *re, int end)
265 *rs = find_next_bit(chunk->populated, end, *rs);
266 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
270 * (Un)populated page region iterators. Iterate over (un)populated
271 * page regions between @start and @end in @chunk. @rs and @re should
272 * be integer variables and will be set to start and end page index of
273 * the current region.
275 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
278 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
280 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
281 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
283 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
286 * pcpu_mem_zalloc - allocate memory
287 * @size: bytes to allocate
289 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
290 * kzalloc() is used; otherwise, vzalloc() is used. The returned
291 * memory is always zeroed.
294 * Does GFP_KERNEL allocation.
297 * Pointer to the allocated area on success, NULL on failure.
299 static void *pcpu_mem_zalloc(size_t size)
301 if (WARN_ON_ONCE(!slab_is_available()))
304 if (size <= PAGE_SIZE)
305 return kzalloc(size, GFP_KERNEL);
307 return vzalloc(size);
311 * pcpu_mem_free - free memory
312 * @ptr: memory to free
314 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
316 static void pcpu_mem_free(void *ptr)
322 * pcpu_count_occupied_pages - count the number of pages an area occupies
323 * @chunk: chunk of interest
324 * @i: index of the area in question
326 * Count the number of pages chunk's @i'th area occupies. When the area's
327 * start and/or end address isn't aligned to page boundary, the straddled
328 * page is included in the count iff the rest of the page is free.
330 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
332 int off = chunk->map[i] & ~1;
333 int end = chunk->map[i + 1] & ~1;
335 if (!PAGE_ALIGNED(off) && i > 0) {
336 int prev = chunk->map[i - 1];
338 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
339 off = round_down(off, PAGE_SIZE);
342 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
343 int next = chunk->map[i + 1];
344 int nend = chunk->map[i + 2] & ~1;
346 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
347 end = round_up(end, PAGE_SIZE);
350 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
354 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
355 * @chunk: chunk of interest
356 * @oslot: the previous slot it was on
358 * This function is called after an allocation or free changed @chunk.
359 * New slot according to the changed state is determined and @chunk is
360 * moved to the slot. Note that the reserved chunk is never put on
366 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
368 int nslot = pcpu_chunk_slot(chunk);
370 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
372 list_move(&chunk->list, &pcpu_slot[nslot]);
374 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
379 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
380 * @chunk: chunk of interest
381 * @is_atomic: the allocation context
383 * Determine whether area map of @chunk needs to be extended. If
384 * @is_atomic, only the amount necessary for a new allocation is
385 * considered; however, async extension is scheduled if the left amount is
386 * low. If !@is_atomic, it aims for more empty space. Combined, this
387 * ensures that the map is likely to have enough available space to
388 * accomodate atomic allocations which can't extend maps directly.
394 * New target map allocation length if extension is necessary, 0
397 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
399 int margin, new_alloc;
401 lockdep_assert_held(&pcpu_lock);
406 if (chunk->map_alloc <
407 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
408 if (list_empty(&chunk->map_extend_list)) {
409 list_add_tail(&chunk->map_extend_list,
410 &pcpu_map_extend_chunks);
411 pcpu_schedule_balance_work();
415 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
418 if (chunk->map_alloc >= chunk->map_used + margin)
421 new_alloc = PCPU_DFL_MAP_ALLOC;
422 while (new_alloc < chunk->map_used + margin)
429 * pcpu_extend_area_map - extend area map of a chunk
430 * @chunk: chunk of interest
431 * @new_alloc: new target allocation length of the area map
433 * Extend area map of @chunk to have @new_alloc entries.
436 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
439 * 0 on success, -errno on failure.
441 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
443 int *old = NULL, *new = NULL;
444 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
447 lockdep_assert_held(&pcpu_alloc_mutex);
449 new = pcpu_mem_zalloc(new_size);
453 /* acquire pcpu_lock and switch to new area map */
454 spin_lock_irqsave(&pcpu_lock, flags);
456 if (new_alloc <= chunk->map_alloc)
459 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
462 memcpy(new, old, old_size);
464 chunk->map_alloc = new_alloc;
469 spin_unlock_irqrestore(&pcpu_lock, flags);
472 * pcpu_mem_free() might end up calling vfree() which uses
473 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
482 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
483 * @chunk: chunk the candidate area belongs to
484 * @off: the offset to the start of the candidate area
485 * @this_size: the size of the candidate area
486 * @size: the size of the target allocation
487 * @align: the alignment of the target allocation
488 * @pop_only: only allocate from already populated region
490 * We're trying to allocate @size bytes aligned at @align. @chunk's area
491 * at @off sized @this_size is a candidate. This function determines
492 * whether the target allocation fits in the candidate area and returns the
493 * number of bytes to pad after @off. If the target area doesn't fit, -1
496 * If @pop_only is %true, this function only considers the already
497 * populated part of the candidate area.
499 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
500 int size, int align, bool pop_only)
505 int head = ALIGN(cand_off, align) - off;
506 int page_start, page_end, rs, re;
508 if (this_size < head + size)
515 * If the first unpopulated page is beyond the end of the
516 * allocation, the whole allocation is populated;
517 * otherwise, retry from the end of the unpopulated area.
519 page_start = PFN_DOWN(head + off);
520 page_end = PFN_UP(head + off + size);
523 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
526 cand_off = re * PAGE_SIZE;
531 * pcpu_alloc_area - allocate area from a pcpu_chunk
532 * @chunk: chunk of interest
533 * @size: wanted size in bytes
534 * @align: wanted align
535 * @pop_only: allocate only from the populated area
536 * @occ_pages_p: out param for the number of pages the area occupies
538 * Try to allocate @size bytes area aligned at @align from @chunk.
539 * Note that this function only allocates the offset. It doesn't
540 * populate or map the area.
542 * @chunk->map must have at least two free slots.
548 * Allocated offset in @chunk on success, -1 if no matching area is
551 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
552 bool pop_only, int *occ_pages_p)
554 int oslot = pcpu_chunk_slot(chunk);
557 bool seen_free = false;
560 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
568 this_size = (p[1] & ~1) - off;
570 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 chunk->first_free = i;
577 max_contig = max(this_size, max_contig);
582 * If head is small or the previous block is free,
583 * merge'em. Note that 'small' is defined as smaller
584 * than sizeof(int), which is very small but isn't too
585 * uncommon for percpu allocations.
587 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
590 chunk->free_size -= head;
592 max_contig = max(*p - p[-1], max_contig);
597 /* if tail is small, just keep it around */
598 tail = this_size - head - size;
599 if (tail < sizeof(int)) {
601 size = this_size - head;
604 /* split if warranted */
606 int nr_extra = !!head + !!tail;
608 /* insert new subblocks */
609 memmove(p + nr_extra + 1, p + 1,
610 sizeof(chunk->map[0]) * (chunk->map_used - i));
611 chunk->map_used += nr_extra;
615 chunk->first_free = i;
620 max_contig = max(head, max_contig);
624 max_contig = max(tail, max_contig);
629 chunk->first_free = i + 1;
631 /* update hint and mark allocated */
632 if (i + 1 == chunk->map_used)
633 chunk->contig_hint = max_contig; /* fully scanned */
635 chunk->contig_hint = max(chunk->contig_hint,
638 chunk->free_size -= size;
641 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
642 pcpu_chunk_relocate(chunk, oslot);
646 chunk->contig_hint = max_contig; /* fully scanned */
647 pcpu_chunk_relocate(chunk, oslot);
649 /* tell the upper layer that this chunk has no matching area */
654 * pcpu_free_area - free area to a pcpu_chunk
655 * @chunk: chunk of interest
656 * @freeme: offset of area to free
657 * @occ_pages_p: out param for the number of pages the area occupies
659 * Free area starting from @freeme to @chunk. Note that this function
660 * only modifies the allocation map. It doesn't depopulate or unmap
666 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
669 int oslot = pcpu_chunk_slot(chunk);
675 freeme |= 1; /* we are searching for <given offset, in use> pair */
680 unsigned k = (i + j) / 2;
684 else if (off > freeme)
689 BUG_ON(off != freeme);
691 if (i < chunk->first_free)
692 chunk->first_free = i;
696 chunk->free_size += (p[1] & ~1) - off;
698 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
700 /* merge with next? */
703 /* merge with previous? */
704 if (i > 0 && !(p[-1] & 1)) {
710 chunk->map_used -= to_free;
711 memmove(p + 1, p + 1 + to_free,
712 (chunk->map_used - i) * sizeof(chunk->map[0]));
715 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
716 pcpu_chunk_relocate(chunk, oslot);
719 static struct pcpu_chunk *pcpu_alloc_chunk(void)
721 struct pcpu_chunk *chunk;
723 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
728 sizeof(chunk->map[0]));
730 pcpu_mem_free(chunk);
734 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
736 chunk->map[1] = pcpu_unit_size | 1;
739 INIT_LIST_HEAD(&chunk->list);
740 INIT_LIST_HEAD(&chunk->map_extend_list);
741 chunk->free_size = pcpu_unit_size;
742 chunk->contig_hint = pcpu_unit_size;
747 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
751 pcpu_mem_free(chunk->map);
752 pcpu_mem_free(chunk);
756 * pcpu_chunk_populated - post-population bookkeeping
757 * @chunk: pcpu_chunk which got populated
758 * @page_start: the start page
759 * @page_end: the end page
761 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
762 * the bookkeeping information accordingly. Must be called after each
763 * successful population.
765 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
766 int page_start, int page_end)
768 int nr = page_end - page_start;
770 lockdep_assert_held(&pcpu_lock);
772 bitmap_set(chunk->populated, page_start, nr);
773 chunk->nr_populated += nr;
774 pcpu_nr_empty_pop_pages += nr;
778 * pcpu_chunk_depopulated - post-depopulation bookkeeping
779 * @chunk: pcpu_chunk which got depopulated
780 * @page_start: the start page
781 * @page_end: the end page
783 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
784 * Update the bookkeeping information accordingly. Must be called after
785 * each successful depopulation.
787 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
788 int page_start, int page_end)
790 int nr = page_end - page_start;
792 lockdep_assert_held(&pcpu_lock);
794 bitmap_clear(chunk->populated, page_start, nr);
795 chunk->nr_populated -= nr;
796 pcpu_nr_empty_pop_pages -= nr;
800 * Chunk management implementation.
802 * To allow different implementations, chunk alloc/free and
803 * [de]population are implemented in a separate file which is pulled
804 * into this file and compiled together. The following functions
805 * should be implemented.
807 * pcpu_populate_chunk - populate the specified range of a chunk
808 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
809 * pcpu_create_chunk - create a new chunk
810 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
811 * pcpu_addr_to_page - translate address to physical address
812 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
814 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
815 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
816 static struct pcpu_chunk *pcpu_create_chunk(void);
817 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
818 static struct page *pcpu_addr_to_page(void *addr);
819 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
821 #ifdef CONFIG_NEED_PER_CPU_KM
822 #include "percpu-km.c"
824 #include "percpu-vm.c"
828 * pcpu_chunk_addr_search - determine chunk containing specified address
829 * @addr: address for which the chunk needs to be determined.
832 * The address of the found chunk.
834 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
836 /* is it in the first chunk? */
837 if (pcpu_addr_in_first_chunk(addr)) {
838 /* is it in the reserved area? */
839 if (pcpu_addr_in_reserved_chunk(addr))
840 return pcpu_reserved_chunk;
841 return pcpu_first_chunk;
845 * The address is relative to unit0 which might be unused and
846 * thus unmapped. Offset the address to the unit space of the
847 * current processor before looking it up in the vmalloc
848 * space. Note that any possible cpu id can be used here, so
849 * there's no need to worry about preemption or cpu hotplug.
851 addr += pcpu_unit_offsets[raw_smp_processor_id()];
852 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
856 * pcpu_alloc - the percpu allocator
857 * @size: size of area to allocate in bytes
858 * @align: alignment of area (max PAGE_SIZE)
859 * @reserved: allocate from the reserved chunk if available
860 * @gfp: allocation flags
862 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
863 * contain %GFP_KERNEL, the allocation is atomic.
866 * Percpu pointer to the allocated area on success, NULL on failure.
868 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
871 static int warn_limit = 10;
872 struct pcpu_chunk *chunk;
874 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
876 int slot, off, new_alloc, cpu, ret;
881 * We want the lowest bit of offset available for in-use/free
882 * indicator, so force >= 16bit alignment and make size even.
884 if (unlikely(align < 2))
887 size = ALIGN(size, 2);
889 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
890 !is_power_of_2(align))) {
891 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
897 mutex_lock(&pcpu_alloc_mutex);
899 spin_lock_irqsave(&pcpu_lock, flags);
901 /* serve reserved allocations from the reserved chunk if available */
902 if (reserved && pcpu_reserved_chunk) {
903 chunk = pcpu_reserved_chunk;
905 if (size > chunk->contig_hint) {
906 err = "alloc from reserved chunk failed";
910 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
911 spin_unlock_irqrestore(&pcpu_lock, flags);
913 pcpu_extend_area_map(chunk, new_alloc) < 0) {
914 err = "failed to extend area map of reserved chunk";
917 spin_lock_irqsave(&pcpu_lock, flags);
920 off = pcpu_alloc_area(chunk, size, align, is_atomic,
925 err = "alloc from reserved chunk failed";
930 /* search through normal chunks */
931 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
932 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
933 if (size > chunk->contig_hint)
936 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
940 spin_unlock_irqrestore(&pcpu_lock, flags);
941 if (pcpu_extend_area_map(chunk,
943 err = "failed to extend area map";
946 spin_lock_irqsave(&pcpu_lock, flags);
948 * pcpu_lock has been dropped, need to
949 * restart cpu_slot list walking.
954 off = pcpu_alloc_area(chunk, size, align, is_atomic,
961 spin_unlock_irqrestore(&pcpu_lock, flags);
964 * No space left. Create a new chunk. We don't want multiple
965 * tasks to create chunks simultaneously. Serialize and create iff
966 * there's still no empty chunk after grabbing the mutex.
971 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
972 chunk = pcpu_create_chunk();
974 err = "failed to allocate new chunk";
978 spin_lock_irqsave(&pcpu_lock, flags);
979 pcpu_chunk_relocate(chunk, -1);
981 spin_lock_irqsave(&pcpu_lock, flags);
987 spin_unlock_irqrestore(&pcpu_lock, flags);
989 /* populate if not all pages are already there */
991 int page_start, page_end, rs, re;
993 page_start = PFN_DOWN(off);
994 page_end = PFN_UP(off + size);
996 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
997 WARN_ON(chunk->immutable);
999 ret = pcpu_populate_chunk(chunk, rs, re);
1001 spin_lock_irqsave(&pcpu_lock, flags);
1003 pcpu_free_area(chunk, off, &occ_pages);
1004 err = "failed to populate";
1007 pcpu_chunk_populated(chunk, rs, re);
1008 spin_unlock_irqrestore(&pcpu_lock, flags);
1011 mutex_unlock(&pcpu_alloc_mutex);
1014 if (chunk != pcpu_reserved_chunk) {
1015 spin_lock_irqsave(&pcpu_lock, flags);
1016 pcpu_nr_empty_pop_pages -= occ_pages;
1017 spin_unlock_irqrestore(&pcpu_lock, flags);
1020 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1021 pcpu_schedule_balance_work();
1023 /* clear the areas and return address relative to base address */
1024 for_each_possible_cpu(cpu)
1025 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1027 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1028 kmemleak_alloc_percpu(ptr, size, gfp);
1032 spin_unlock_irqrestore(&pcpu_lock, flags);
1034 if (!is_atomic && warn_limit) {
1035 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1036 size, align, is_atomic, err);
1039 pr_info("limit reached, disable warning\n");
1042 /* see the flag handling in pcpu_blance_workfn() */
1043 pcpu_atomic_alloc_failed = true;
1044 pcpu_schedule_balance_work();
1046 mutex_unlock(&pcpu_alloc_mutex);
1052 * __alloc_percpu_gfp - allocate dynamic percpu area
1053 * @size: size of area to allocate in bytes
1054 * @align: alignment of area (max PAGE_SIZE)
1055 * @gfp: allocation flags
1057 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1058 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059 * be called from any context but is a lot more likely to fail.
1062 * Percpu pointer to the allocated area on success, NULL on failure.
1064 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1066 return pcpu_alloc(size, align, false, gfp);
1068 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1071 * __alloc_percpu - allocate dynamic percpu area
1072 * @size: size of area to allocate in bytes
1073 * @align: alignment of area (max PAGE_SIZE)
1075 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1077 void __percpu *__alloc_percpu(size_t size, size_t align)
1079 return pcpu_alloc(size, align, false, GFP_KERNEL);
1081 EXPORT_SYMBOL_GPL(__alloc_percpu);
1084 * __alloc_reserved_percpu - allocate reserved percpu area
1085 * @size: size of area to allocate in bytes
1086 * @align: alignment of area (max PAGE_SIZE)
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align
1089 * from reserved percpu area if arch has set it up; otherwise,
1090 * allocation is served from the same dynamic area. Might sleep.
1091 * Might trigger writeouts.
1094 * Does GFP_KERNEL allocation.
1097 * Percpu pointer to the allocated area on success, NULL on failure.
1099 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1101 return pcpu_alloc(size, align, true, GFP_KERNEL);
1105 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1108 * Reclaim all fully free chunks except for the first one.
1110 static void pcpu_balance_workfn(struct work_struct *work)
1113 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1114 struct pcpu_chunk *chunk, *next;
1115 int slot, nr_to_pop, ret;
1118 * There's no reason to keep around multiple unused chunks and VM
1119 * areas can be scarce. Destroy all free chunks except for one.
1121 mutex_lock(&pcpu_alloc_mutex);
1122 spin_lock_irq(&pcpu_lock);
1124 list_for_each_entry_safe(chunk, next, free_head, list) {
1125 WARN_ON(chunk->immutable);
1127 /* spare the first one */
1128 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1131 list_del_init(&chunk->map_extend_list);
1132 list_move(&chunk->list, &to_free);
1135 spin_unlock_irq(&pcpu_lock);
1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
1146 pcpu_destroy_chunk(chunk);
1149 /* service chunks which requested async area map extension */
1153 spin_lock_irq(&pcpu_lock);
1155 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156 struct pcpu_chunk, map_extend_list);
1158 list_del_init(&chunk->map_extend_list);
1159 new_alloc = pcpu_need_to_extend(chunk, false);
1162 spin_unlock_irq(&pcpu_lock);
1165 pcpu_extend_area_map(chunk, new_alloc);
1169 * Ensure there are certain number of free populated pages for
1170 * atomic allocs. Fill up from the most packed so that atomic
1171 * allocs don't increase fragmentation. If atomic allocation
1172 * failed previously, always populate the maximum amount. This
1173 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174 * failing indefinitely; however, large atomic allocs are not
1175 * something we support properly and can be highly unreliable and
1179 if (pcpu_atomic_alloc_failed) {
1180 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181 /* best effort anyway, don't worry about synchronization */
1182 pcpu_atomic_alloc_failed = false;
1184 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185 pcpu_nr_empty_pop_pages,
1186 0, PCPU_EMPTY_POP_PAGES_HIGH);
1189 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190 int nr_unpop = 0, rs, re;
1195 spin_lock_irq(&pcpu_lock);
1196 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1201 spin_unlock_irq(&pcpu_lock);
1206 /* @chunk can't go away while pcpu_alloc_mutex is held */
1207 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208 int nr = min(re - rs, nr_to_pop);
1210 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1213 spin_lock_irq(&pcpu_lock);
1214 pcpu_chunk_populated(chunk, rs, rs + nr);
1215 spin_unlock_irq(&pcpu_lock);
1226 /* ran out of chunks to populate, create a new one and retry */
1227 chunk = pcpu_create_chunk();
1229 spin_lock_irq(&pcpu_lock);
1230 pcpu_chunk_relocate(chunk, -1);
1231 spin_unlock_irq(&pcpu_lock);
1236 mutex_unlock(&pcpu_alloc_mutex);
1240 * free_percpu - free percpu area
1241 * @ptr: pointer to area to free
1243 * Free percpu area @ptr.
1246 * Can be called from atomic context.
1248 void free_percpu(void __percpu *ptr)
1251 struct pcpu_chunk *chunk;
1252 unsigned long flags;
1258 kmemleak_free_percpu(ptr);
1260 addr = __pcpu_ptr_to_addr(ptr);
1262 spin_lock_irqsave(&pcpu_lock, flags);
1264 chunk = pcpu_chunk_addr_search(addr);
1265 off = addr - chunk->base_addr;
1267 pcpu_free_area(chunk, off, &occ_pages);
1269 if (chunk != pcpu_reserved_chunk)
1270 pcpu_nr_empty_pop_pages += occ_pages;
1272 /* if there are more than one fully free chunks, wake up grim reaper */
1273 if (chunk->free_size == pcpu_unit_size) {
1274 struct pcpu_chunk *pos;
1276 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1278 pcpu_schedule_balance_work();
1283 spin_unlock_irqrestore(&pcpu_lock, flags);
1285 EXPORT_SYMBOL_GPL(free_percpu);
1287 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1290 const size_t static_size = __per_cpu_end - __per_cpu_start;
1291 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1294 for_each_possible_cpu(cpu) {
1295 void *start = per_cpu_ptr(base, cpu);
1296 void *va = (void *)addr;
1298 if (va >= start && va < start + static_size) {
1300 *can_addr = (unsigned long) (va - start);
1301 *can_addr += (unsigned long)
1302 per_cpu_ptr(base, get_boot_cpu_id());
1308 /* on UP, can't distinguish from other static vars, always false */
1313 * is_kernel_percpu_address - test whether address is from static percpu area
1314 * @addr: address to test
1316 * Test whether @addr belongs to in-kernel static percpu area. Module
1317 * static percpu areas are not considered. For those, use
1318 * is_module_percpu_address().
1321 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1323 bool is_kernel_percpu_address(unsigned long addr)
1325 return __is_kernel_percpu_address(addr, NULL);
1329 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1330 * @addr: the address to be converted to physical address
1332 * Given @addr which is dereferenceable address obtained via one of
1333 * percpu access macros, this function translates it into its physical
1334 * address. The caller is responsible for ensuring @addr stays valid
1335 * until this function finishes.
1337 * percpu allocator has special setup for the first chunk, which currently
1338 * supports either embedding in linear address space or vmalloc mapping,
1339 * and, from the second one, the backing allocator (currently either vm or
1340 * km) provides translation.
1342 * The addr can be translated simply without checking if it falls into the
1343 * first chunk. But the current code reflects better how percpu allocator
1344 * actually works, and the verification can discover both bugs in percpu
1345 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1349 * The physical address for @addr.
1351 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1353 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1354 bool in_first_chunk = false;
1355 unsigned long first_low, first_high;
1359 * The following test on unit_low/high isn't strictly
1360 * necessary but will speed up lookups of addresses which
1361 * aren't in the first chunk.
1363 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1364 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1366 if ((unsigned long)addr >= first_low &&
1367 (unsigned long)addr < first_high) {
1368 for_each_possible_cpu(cpu) {
1369 void *start = per_cpu_ptr(base, cpu);
1371 if (addr >= start && addr < start + pcpu_unit_size) {
1372 in_first_chunk = true;
1378 if (in_first_chunk) {
1379 if (!is_vmalloc_addr(addr))
1382 return page_to_phys(vmalloc_to_page(addr)) +
1383 offset_in_page(addr);
1385 return page_to_phys(pcpu_addr_to_page(addr)) +
1386 offset_in_page(addr);
1390 * pcpu_alloc_alloc_info - allocate percpu allocation info
1391 * @nr_groups: the number of groups
1392 * @nr_units: the number of units
1394 * Allocate ai which is large enough for @nr_groups groups containing
1395 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1396 * cpu_map array which is long enough for @nr_units and filled with
1397 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1398 * pointer of other groups.
1401 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1404 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1407 struct pcpu_alloc_info *ai;
1408 size_t base_size, ai_size;
1412 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1413 __alignof__(ai->groups[0].cpu_map[0]));
1414 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1416 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1422 ai->groups[0].cpu_map = ptr;
1424 for (unit = 0; unit < nr_units; unit++)
1425 ai->groups[0].cpu_map[unit] = NR_CPUS;
1427 ai->nr_groups = nr_groups;
1428 ai->__ai_size = PFN_ALIGN(ai_size);
1434 * pcpu_free_alloc_info - free percpu allocation info
1435 * @ai: pcpu_alloc_info to free
1437 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1439 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1441 memblock_free_early(__pa(ai), ai->__ai_size);
1445 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1447 * @ai: allocation info to dump
1449 * Print out information about @ai using loglevel @lvl.
1451 static void pcpu_dump_alloc_info(const char *lvl,
1452 const struct pcpu_alloc_info *ai)
1454 int group_width = 1, cpu_width = 1, width;
1455 char empty_str[] = "--------";
1456 int alloc = 0, alloc_end = 0;
1458 int upa, apl; /* units per alloc, allocs per line */
1464 v = num_possible_cpus();
1467 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1469 upa = ai->alloc_size / ai->unit_size;
1470 width = upa * (cpu_width + 1) + group_width + 3;
1471 apl = rounddown_pow_of_two(max(60 / width, 1));
1473 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1474 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1475 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1477 for (group = 0; group < ai->nr_groups; group++) {
1478 const struct pcpu_group_info *gi = &ai->groups[group];
1479 int unit = 0, unit_end = 0;
1481 BUG_ON(gi->nr_units % upa);
1482 for (alloc_end += gi->nr_units / upa;
1483 alloc < alloc_end; alloc++) {
1484 if (!(alloc % apl)) {
1486 printk("%spcpu-alloc: ", lvl);
1488 pr_cont("[%0*d] ", group_width, group);
1490 for (unit_end += upa; unit < unit_end; unit++)
1491 if (gi->cpu_map[unit] != NR_CPUS)
1493 cpu_width, gi->cpu_map[unit]);
1495 pr_cont("%s ", empty_str);
1502 * pcpu_setup_first_chunk - initialize the first percpu chunk
1503 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1504 * @base_addr: mapped address
1506 * Initialize the first percpu chunk which contains the kernel static
1507 * perpcu area. This function is to be called from arch percpu area
1510 * @ai contains all information necessary to initialize the first
1511 * chunk and prime the dynamic percpu allocator.
1513 * @ai->static_size is the size of static percpu area.
1515 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1516 * reserve after the static area in the first chunk. This reserves
1517 * the first chunk such that it's available only through reserved
1518 * percpu allocation. This is primarily used to serve module percpu
1519 * static areas on architectures where the addressing model has
1520 * limited offset range for symbol relocations to guarantee module
1521 * percpu symbols fall inside the relocatable range.
1523 * @ai->dyn_size determines the number of bytes available for dynamic
1524 * allocation in the first chunk. The area between @ai->static_size +
1525 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1527 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1528 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1531 * @ai->atom_size is the allocation atom size and used as alignment
1534 * @ai->alloc_size is the allocation size and always multiple of
1535 * @ai->atom_size. This is larger than @ai->atom_size if
1536 * @ai->unit_size is larger than @ai->atom_size.
1538 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1539 * percpu areas. Units which should be colocated are put into the
1540 * same group. Dynamic VM areas will be allocated according to these
1541 * groupings. If @ai->nr_groups is zero, a single group containing
1542 * all units is assumed.
1544 * The caller should have mapped the first chunk at @base_addr and
1545 * copied static data to each unit.
1547 * If the first chunk ends up with both reserved and dynamic areas, it
1548 * is served by two chunks - one to serve the core static and reserved
1549 * areas and the other for the dynamic area. They share the same vm
1550 * and page map but uses different area allocation map to stay away
1551 * from each other. The latter chunk is circulated in the chunk slots
1552 * and available for dynamic allocation like any other chunks.
1555 * 0 on success, -errno on failure.
1557 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1560 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1561 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1562 size_t dyn_size = ai->dyn_size;
1563 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1564 struct pcpu_chunk *schunk, *dchunk = NULL;
1565 unsigned long *group_offsets;
1566 size_t *group_sizes;
1567 unsigned long *unit_off;
1572 #define PCPU_SETUP_BUG_ON(cond) do { \
1573 if (unlikely(cond)) { \
1574 pr_emerg("failed to initialize, %s\n", #cond); \
1575 pr_emerg("cpu_possible_mask=%*pb\n", \
1576 cpumask_pr_args(cpu_possible_mask)); \
1577 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1583 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1585 PCPU_SETUP_BUG_ON(!ai->static_size);
1586 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1588 PCPU_SETUP_BUG_ON(!base_addr);
1589 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1590 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1591 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1592 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1593 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1594 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1596 /* process group information and build config tables accordingly */
1597 group_offsets = memblock_virt_alloc(ai->nr_groups *
1598 sizeof(group_offsets[0]), 0);
1599 group_sizes = memblock_virt_alloc(ai->nr_groups *
1600 sizeof(group_sizes[0]), 0);
1601 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1602 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1604 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1605 unit_map[cpu] = UINT_MAX;
1607 pcpu_low_unit_cpu = NR_CPUS;
1608 pcpu_high_unit_cpu = NR_CPUS;
1610 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1611 const struct pcpu_group_info *gi = &ai->groups[group];
1613 group_offsets[group] = gi->base_offset;
1614 group_sizes[group] = gi->nr_units * ai->unit_size;
1616 for (i = 0; i < gi->nr_units; i++) {
1617 cpu = gi->cpu_map[i];
1621 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1622 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1623 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1625 unit_map[cpu] = unit + i;
1626 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1628 /* determine low/high unit_cpu */
1629 if (pcpu_low_unit_cpu == NR_CPUS ||
1630 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1631 pcpu_low_unit_cpu = cpu;
1632 if (pcpu_high_unit_cpu == NR_CPUS ||
1633 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1634 pcpu_high_unit_cpu = cpu;
1637 pcpu_nr_units = unit;
1639 for_each_possible_cpu(cpu)
1640 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1642 /* we're done parsing the input, undefine BUG macro and dump config */
1643 #undef PCPU_SETUP_BUG_ON
1644 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1646 pcpu_nr_groups = ai->nr_groups;
1647 pcpu_group_offsets = group_offsets;
1648 pcpu_group_sizes = group_sizes;
1649 pcpu_unit_map = unit_map;
1650 pcpu_unit_offsets = unit_off;
1652 /* determine basic parameters */
1653 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1654 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1655 pcpu_atom_size = ai->atom_size;
1656 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1657 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1660 * Allocate chunk slots. The additional last slot is for
1663 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1664 pcpu_slot = memblock_virt_alloc(
1665 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1666 for (i = 0; i < pcpu_nr_slots; i++)
1667 INIT_LIST_HEAD(&pcpu_slot[i]);
1670 * Initialize static chunk. If reserved_size is zero, the
1671 * static chunk covers static area + dynamic allocation area
1672 * in the first chunk. If reserved_size is not zero, it
1673 * covers static area + reserved area (mostly used for module
1674 * static percpu allocation).
1676 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1677 INIT_LIST_HEAD(&schunk->list);
1678 INIT_LIST_HEAD(&schunk->map_extend_list);
1679 schunk->base_addr = base_addr;
1681 schunk->map_alloc = ARRAY_SIZE(smap);
1682 schunk->immutable = true;
1683 bitmap_fill(schunk->populated, pcpu_unit_pages);
1684 schunk->nr_populated = pcpu_unit_pages;
1686 if (ai->reserved_size) {
1687 schunk->free_size = ai->reserved_size;
1688 pcpu_reserved_chunk = schunk;
1689 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1691 schunk->free_size = dyn_size;
1692 dyn_size = 0; /* dynamic area covered */
1694 schunk->contig_hint = schunk->free_size;
1697 schunk->map[1] = ai->static_size;
1698 schunk->map_used = 1;
1699 if (schunk->free_size)
1700 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1701 schunk->map[schunk->map_used] |= 1;
1703 /* init dynamic chunk if necessary */
1705 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1706 INIT_LIST_HEAD(&dchunk->list);
1707 INIT_LIST_HEAD(&dchunk->map_extend_list);
1708 dchunk->base_addr = base_addr;
1710 dchunk->map_alloc = ARRAY_SIZE(dmap);
1711 dchunk->immutable = true;
1712 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1713 dchunk->nr_populated = pcpu_unit_pages;
1715 dchunk->contig_hint = dchunk->free_size = dyn_size;
1717 dchunk->map[1] = pcpu_reserved_chunk_limit;
1718 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1719 dchunk->map_used = 2;
1722 /* link the first chunk in */
1723 pcpu_first_chunk = dchunk ?: schunk;
1724 pcpu_nr_empty_pop_pages +=
1725 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1726 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1729 pcpu_base_addr = base_addr;
1735 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1736 [PCPU_FC_AUTO] = "auto",
1737 [PCPU_FC_EMBED] = "embed",
1738 [PCPU_FC_PAGE] = "page",
1741 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1743 static int __init percpu_alloc_setup(char *str)
1750 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1751 else if (!strcmp(str, "embed"))
1752 pcpu_chosen_fc = PCPU_FC_EMBED;
1754 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1755 else if (!strcmp(str, "page"))
1756 pcpu_chosen_fc = PCPU_FC_PAGE;
1759 pr_warn("unknown allocator %s specified\n", str);
1763 early_param("percpu_alloc", percpu_alloc_setup);
1766 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1767 * Build it if needed by the arch config or the generic setup is going
1770 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1771 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1772 #define BUILD_EMBED_FIRST_CHUNK
1775 /* build pcpu_page_first_chunk() iff needed by the arch config */
1776 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1777 #define BUILD_PAGE_FIRST_CHUNK
1780 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1781 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1783 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1784 * @reserved_size: the size of reserved percpu area in bytes
1785 * @dyn_size: minimum free size for dynamic allocation in bytes
1786 * @atom_size: allocation atom size
1787 * @cpu_distance_fn: callback to determine distance between cpus, optional
1789 * This function determines grouping of units, their mappings to cpus
1790 * and other parameters considering needed percpu size, allocation
1791 * atom size and distances between CPUs.
1793 * Groups are always multiples of atom size and CPUs which are of
1794 * LOCAL_DISTANCE both ways are grouped together and share space for
1795 * units in the same group. The returned configuration is guaranteed
1796 * to have CPUs on different nodes on different groups and >=75% usage
1797 * of allocated virtual address space.
1800 * On success, pointer to the new allocation_info is returned. On
1801 * failure, ERR_PTR value is returned.
1803 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1804 size_t reserved_size, size_t dyn_size,
1806 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1808 static int group_map[NR_CPUS] __initdata;
1809 static int group_cnt[NR_CPUS] __initdata;
1810 const size_t static_size = __per_cpu_end - __per_cpu_start;
1811 int nr_groups = 1, nr_units = 0;
1812 size_t size_sum, min_unit_size, alloc_size;
1813 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1814 int last_allocs, group, unit;
1815 unsigned int cpu, tcpu;
1816 struct pcpu_alloc_info *ai;
1817 unsigned int *cpu_map;
1819 /* this function may be called multiple times */
1820 memset(group_map, 0, sizeof(group_map));
1821 memset(group_cnt, 0, sizeof(group_cnt));
1823 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1824 size_sum = PFN_ALIGN(static_size + reserved_size +
1825 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1826 dyn_size = size_sum - static_size - reserved_size;
1829 * Determine min_unit_size, alloc_size and max_upa such that
1830 * alloc_size is multiple of atom_size and is the smallest
1831 * which can accommodate 4k aligned segments which are equal to
1832 * or larger than min_unit_size.
1834 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1836 alloc_size = roundup(min_unit_size, atom_size);
1837 upa = alloc_size / min_unit_size;
1838 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1842 /* group cpus according to their proximity */
1843 for_each_possible_cpu(cpu) {
1846 for_each_possible_cpu(tcpu) {
1849 if (group_map[tcpu] == group && cpu_distance_fn &&
1850 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1851 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1853 nr_groups = max(nr_groups, group + 1);
1857 group_map[cpu] = group;
1862 * Expand unit size until address space usage goes over 75%
1863 * and then as much as possible without using more address
1866 last_allocs = INT_MAX;
1867 for (upa = max_upa; upa; upa--) {
1868 int allocs = 0, wasted = 0;
1870 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1873 for (group = 0; group < nr_groups; group++) {
1874 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1875 allocs += this_allocs;
1876 wasted += this_allocs * upa - group_cnt[group];
1880 * Don't accept if wastage is over 1/3. The
1881 * greater-than comparison ensures upa==1 always
1882 * passes the following check.
1884 if (wasted > num_possible_cpus() / 3)
1887 /* and then don't consume more memory */
1888 if (allocs > last_allocs)
1890 last_allocs = allocs;
1895 /* allocate and fill alloc_info */
1896 for (group = 0; group < nr_groups; group++)
1897 nr_units += roundup(group_cnt[group], upa);
1899 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1901 return ERR_PTR(-ENOMEM);
1902 cpu_map = ai->groups[0].cpu_map;
1904 for (group = 0; group < nr_groups; group++) {
1905 ai->groups[group].cpu_map = cpu_map;
1906 cpu_map += roundup(group_cnt[group], upa);
1909 ai->static_size = static_size;
1910 ai->reserved_size = reserved_size;
1911 ai->dyn_size = dyn_size;
1912 ai->unit_size = alloc_size / upa;
1913 ai->atom_size = atom_size;
1914 ai->alloc_size = alloc_size;
1916 for (group = 0, unit = 0; group_cnt[group]; group++) {
1917 struct pcpu_group_info *gi = &ai->groups[group];
1920 * Initialize base_offset as if all groups are located
1921 * back-to-back. The caller should update this to
1922 * reflect actual allocation.
1924 gi->base_offset = unit * ai->unit_size;
1926 for_each_possible_cpu(cpu)
1927 if (group_map[cpu] == group)
1928 gi->cpu_map[gi->nr_units++] = cpu;
1929 gi->nr_units = roundup(gi->nr_units, upa);
1930 unit += gi->nr_units;
1932 BUG_ON(unit != nr_units);
1936 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1938 #if defined(BUILD_EMBED_FIRST_CHUNK)
1940 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1941 * @reserved_size: the size of reserved percpu area in bytes
1942 * @dyn_size: minimum free size for dynamic allocation in bytes
1943 * @atom_size: allocation atom size
1944 * @cpu_distance_fn: callback to determine distance between cpus, optional
1945 * @alloc_fn: function to allocate percpu page
1946 * @free_fn: function to free percpu page
1948 * This is a helper to ease setting up embedded first percpu chunk and
1949 * can be called where pcpu_setup_first_chunk() is expected.
1951 * If this function is used to setup the first chunk, it is allocated
1952 * by calling @alloc_fn and used as-is without being mapped into
1953 * vmalloc area. Allocations are always whole multiples of @atom_size
1954 * aligned to @atom_size.
1956 * This enables the first chunk to piggy back on the linear physical
1957 * mapping which often uses larger page size. Please note that this
1958 * can result in very sparse cpu->unit mapping on NUMA machines thus
1959 * requiring large vmalloc address space. Don't use this allocator if
1960 * vmalloc space is not orders of magnitude larger than distances
1961 * between node memory addresses (ie. 32bit NUMA machines).
1963 * @dyn_size specifies the minimum dynamic area size.
1965 * If the needed size is smaller than the minimum or specified unit
1966 * size, the leftover is returned using @free_fn.
1969 * 0 on success, -errno on failure.
1971 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1973 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1974 pcpu_fc_alloc_fn_t alloc_fn,
1975 pcpu_fc_free_fn_t free_fn)
1977 void *base = (void *)ULONG_MAX;
1978 void **areas = NULL;
1979 struct pcpu_alloc_info *ai;
1980 size_t size_sum, areas_size;
1981 unsigned long max_distance;
1982 int group, i, highest_group, rc;
1984 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1989 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1990 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1992 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1998 /* allocate, copy and determine base address & max_distance */
2000 for (group = 0; group < ai->nr_groups; group++) {
2001 struct pcpu_group_info *gi = &ai->groups[group];
2002 unsigned int cpu = NR_CPUS;
2005 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2006 cpu = gi->cpu_map[i];
2007 BUG_ON(cpu == NR_CPUS);
2009 /* allocate space for the whole group */
2010 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2013 goto out_free_areas;
2015 /* kmemleak tracks the percpu allocations separately */
2019 base = min(ptr, base);
2020 if (ptr > areas[highest_group])
2021 highest_group = group;
2023 max_distance = areas[highest_group] - base;
2024 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2026 /* warn if maximum distance is further than 75% of vmalloc space */
2027 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2028 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2029 max_distance, VMALLOC_TOTAL);
2030 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2031 /* and fail if we have fallback */
2033 goto out_free_areas;
2038 * Copy data and free unused parts. This should happen after all
2039 * allocations are complete; otherwise, we may end up with
2040 * overlapping groups.
2042 for (group = 0; group < ai->nr_groups; group++) {
2043 struct pcpu_group_info *gi = &ai->groups[group];
2044 void *ptr = areas[group];
2046 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2047 if (gi->cpu_map[i] == NR_CPUS) {
2048 /* unused unit, free whole */
2049 free_fn(ptr, ai->unit_size);
2052 /* copy and return the unused part */
2053 memcpy(ptr, __per_cpu_load, ai->static_size);
2054 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2058 /* base address is now known, determine group base offsets */
2059 for (group = 0; group < ai->nr_groups; group++) {
2060 ai->groups[group].base_offset = areas[group] - base;
2063 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2064 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2065 ai->dyn_size, ai->unit_size);
2067 rc = pcpu_setup_first_chunk(ai, base);
2071 for (group = 0; group < ai->nr_groups; group++)
2073 free_fn(areas[group],
2074 ai->groups[group].nr_units * ai->unit_size);
2076 pcpu_free_alloc_info(ai);
2078 memblock_free_early(__pa(areas), areas_size);
2081 #endif /* BUILD_EMBED_FIRST_CHUNK */
2083 #ifdef BUILD_PAGE_FIRST_CHUNK
2085 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2086 * @reserved_size: the size of reserved percpu area in bytes
2087 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2088 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2089 * @populate_pte_fn: function to populate pte
2091 * This is a helper to ease setting up page-remapped first percpu
2092 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2094 * This is the basic allocator. Static percpu area is allocated
2095 * page-by-page into vmalloc area.
2098 * 0 on success, -errno on failure.
2100 int __init pcpu_page_first_chunk(size_t reserved_size,
2101 pcpu_fc_alloc_fn_t alloc_fn,
2102 pcpu_fc_free_fn_t free_fn,
2103 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2105 static struct vm_struct vm;
2106 struct pcpu_alloc_info *ai;
2110 struct page **pages;
2115 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2117 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2120 BUG_ON(ai->nr_groups != 1);
2121 upa = ai->alloc_size/ai->unit_size;
2122 nr_g0_units = roundup(num_possible_cpus(), upa);
2123 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2124 pcpu_free_alloc_info(ai);
2128 unit_pages = ai->unit_size >> PAGE_SHIFT;
2130 /* unaligned allocations can't be freed, round up to page size */
2131 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2133 pages = memblock_virt_alloc(pages_size, 0);
2135 /* allocate pages */
2137 for (unit = 0; unit < num_possible_cpus(); unit++) {
2138 unsigned int cpu = ai->groups[0].cpu_map[unit];
2139 for (i = 0; i < unit_pages; i++) {
2142 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2144 pr_warn("failed to allocate %s page for cpu%u\n",
2148 /* kmemleak tracks the percpu allocations separately */
2150 pages[j++] = virt_to_page(ptr);
2154 /* allocate vm area, map the pages and copy static data */
2155 vm.flags = VM_ALLOC;
2156 vm.size = num_possible_cpus() * ai->unit_size;
2157 vm_area_register_early(&vm, PAGE_SIZE);
2159 for (unit = 0; unit < num_possible_cpus(); unit++) {
2160 unsigned long unit_addr =
2161 (unsigned long)vm.addr + unit * ai->unit_size;
2163 for (i = 0; i < unit_pages; i++)
2164 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2166 /* pte already populated, the following shouldn't fail */
2167 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2170 panic("failed to map percpu area, err=%d\n", rc);
2173 * FIXME: Archs with virtual cache should flush local
2174 * cache for the linear mapping here - something
2175 * equivalent to flush_cache_vmap() on the local cpu.
2176 * flush_cache_vmap() can't be used as most supporting
2177 * data structures are not set up yet.
2180 /* copy static data */
2181 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2184 /* we're ready, commit */
2185 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2186 unit_pages, psize_str, vm.addr, ai->static_size,
2187 ai->reserved_size, ai->dyn_size);
2189 rc = pcpu_setup_first_chunk(ai, vm.addr);
2194 free_fn(page_address(pages[j]), PAGE_SIZE);
2197 memblock_free_early(__pa(pages), pages_size);
2198 pcpu_free_alloc_info(ai);
2201 #endif /* BUILD_PAGE_FIRST_CHUNK */
2203 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2205 * Generic SMP percpu area setup.
2207 * The embedding helper is used because its behavior closely resembles
2208 * the original non-dynamic generic percpu area setup. This is
2209 * important because many archs have addressing restrictions and might
2210 * fail if the percpu area is located far away from the previous
2211 * location. As an added bonus, in non-NUMA cases, embedding is
2212 * generally a good idea TLB-wise because percpu area can piggy back
2213 * on the physical linear memory mapping which uses large page
2214 * mappings on applicable archs.
2216 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2217 EXPORT_SYMBOL(__per_cpu_offset);
2219 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2222 return memblock_virt_alloc_from_nopanic(
2223 size, align, __pa(MAX_DMA_ADDRESS));
2226 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2228 memblock_free_early(__pa(ptr), size);
2231 void __init setup_per_cpu_areas(void)
2233 unsigned long delta;
2238 * Always reserve area for module percpu variables. That's
2239 * what the legacy allocator did.
2241 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2242 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2243 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2245 panic("Failed to initialize percpu areas.");
2247 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2248 for_each_possible_cpu(cpu)
2249 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2251 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2253 #else /* CONFIG_SMP */
2256 * UP percpu area setup.
2258 * UP always uses km-based percpu allocator with identity mapping.
2259 * Static percpu variables are indistinguishable from the usual static
2260 * variables and don't require any special preparation.
2262 void __init setup_per_cpu_areas(void)
2264 const size_t unit_size =
2265 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2266 PERCPU_DYNAMIC_RESERVE));
2267 struct pcpu_alloc_info *ai;
2270 ai = pcpu_alloc_alloc_info(1, 1);
2271 fc = memblock_virt_alloc_from_nopanic(unit_size,
2273 __pa(MAX_DMA_ADDRESS));
2275 panic("Failed to allocate memory for percpu areas.");
2276 /* kmemleak tracks the percpu allocations separately */
2279 ai->dyn_size = unit_size;
2280 ai->unit_size = unit_size;
2281 ai->atom_size = unit_size;
2282 ai->alloc_size = unit_size;
2283 ai->groups[0].nr_units = 1;
2284 ai->groups[0].cpu_map[0] = 0;
2286 if (pcpu_setup_first_chunk(ai, fc) < 0)
2287 panic("Failed to initialize percpu areas.");
2290 #endif /* CONFIG_SMP */
2293 * First and reserved chunks are initialized with temporary allocation
2294 * map in initdata so that they can be used before slab is online.
2295 * This function is called after slab is brought up and replaces those
2296 * with properly allocated maps.
2298 void __init percpu_init_late(void)
2300 struct pcpu_chunk *target_chunks[] =
2301 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2302 struct pcpu_chunk *chunk;
2303 unsigned long flags;
2306 for (i = 0; (chunk = target_chunks[i]); i++) {
2308 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2310 BUILD_BUG_ON(size > PAGE_SIZE);
2312 map = pcpu_mem_zalloc(size);
2315 spin_lock_irqsave(&pcpu_lock, flags);
2316 memcpy(map, chunk->map, size);
2318 spin_unlock_irqrestore(&pcpu_lock, flags);
2323 * Percpu allocator is initialized early during boot when neither slab or
2324 * workqueue is available. Plug async management until everything is up
2327 static int __init percpu_enable_async(void)
2329 pcpu_async_enabled = true;
2332 subsys_initcall(percpu_enable_async);