]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/shmem.c
spi: omap2-mcspi: fix blatant abuse of the resource subsystem
[karo-tx-linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         int     mode;           /* FALLOC_FL mode currently operating */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 static inline int shmem_reacct_size(unsigned long flags,
153                 loff_t oldsize, loff_t newsize)
154 {
155         if (!(flags & VM_NORESERVE)) {
156                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157                         return security_vm_enough_memory_mm(current->mm,
158                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
159                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161         }
162         return 0;
163 }
164
165 /*
166  * ... whereas tmpfs objects are accounted incrementally as
167  * pages are allocated, in order to allow huge sparse files.
168  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170  */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173         return (flags & VM_NORESERVE) ?
174                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179         if (flags & VM_NORESERVE)
180                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190
191 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
192         .ra_pages       = 0,    /* No readahead */
193         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, gfp_t gfp, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364  */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367         struct pagevec pvec;
368         pgoff_t indices[PAGEVEC_SIZE];
369         pgoff_t index = 0;
370
371         pagevec_init(&pvec, 0);
372         /*
373          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374          */
375         while (!mapping_unevictable(mapping)) {
376                 /*
377                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379                  */
380                 pvec.nr = find_get_entries(mapping, index,
381                                            PAGEVEC_SIZE, pvec.pages, indices);
382                 if (!pvec.nr)
383                         break;
384                 index = indices[pvec.nr - 1] + 1;
385                 pagevec_remove_exceptionals(&pvec);
386                 check_move_unevictable_pages(pvec.pages, pvec.nr);
387                 pagevec_release(&pvec);
388                 cond_resched();
389         }
390 }
391
392 /*
393  * Remove range of pages and swap entries from radix tree, and free them.
394  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395  */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397                                                                  bool unfalloc)
398 {
399         struct address_space *mapping = inode->i_mapping;
400         struct shmem_inode_info *info = SHMEM_I(inode);
401         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405         struct pagevec pvec;
406         pgoff_t indices[PAGEVEC_SIZE];
407         long nr_swaps_freed = 0;
408         pgoff_t index;
409         int i;
410
411         if (lend == -1)
412                 end = -1;       /* unsigned, so actually very big */
413
414         pagevec_init(&pvec, 0);
415         index = start;
416         while (index < end) {
417                 pvec.nr = find_get_entries(mapping, index,
418                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
419                         pvec.pages, indices);
420                 if (!pvec.nr)
421                         break;
422                 for (i = 0; i < pagevec_count(&pvec); i++) {
423                         struct page *page = pvec.pages[i];
424
425                         index = indices[i];
426                         if (index >= end)
427                                 break;
428
429                         if (radix_tree_exceptional_entry(page)) {
430                                 if (unfalloc)
431                                         continue;
432                                 nr_swaps_freed += !shmem_free_swap(mapping,
433                                                                 index, page);
434                                 continue;
435                         }
436
437                         if (!trylock_page(page))
438                                 continue;
439                         if (!unfalloc || !PageUptodate(page)) {
440                                 if (page->mapping == mapping) {
441                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
442                                         truncate_inode_page(mapping, page);
443                                 }
444                         }
445                         unlock_page(page);
446                 }
447                 pagevec_remove_exceptionals(&pvec);
448                 pagevec_release(&pvec);
449                 cond_resched();
450                 index++;
451         }
452
453         if (partial_start) {
454                 struct page *page = NULL;
455                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456                 if (page) {
457                         unsigned int top = PAGE_CACHE_SIZE;
458                         if (start > end) {
459                                 top = partial_end;
460                                 partial_end = 0;
461                         }
462                         zero_user_segment(page, partial_start, top);
463                         set_page_dirty(page);
464                         unlock_page(page);
465                         page_cache_release(page);
466                 }
467         }
468         if (partial_end) {
469                 struct page *page = NULL;
470                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471                 if (page) {
472                         zero_user_segment(page, 0, partial_end);
473                         set_page_dirty(page);
474                         unlock_page(page);
475                         page_cache_release(page);
476                 }
477         }
478         if (start >= end)
479                 return;
480
481         index = start;
482         for ( ; ; ) {
483                 cond_resched();
484
485                 pvec.nr = find_get_entries(mapping, index,
486                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487                                 pvec.pages, indices);
488                 if (!pvec.nr) {
489                         if (index == start || unfalloc)
490                                 break;
491                         index = start;
492                         continue;
493                 }
494                 if ((index == start || unfalloc) && indices[0] >= end) {
495                         pagevec_remove_exceptionals(&pvec);
496                         pagevec_release(&pvec);
497                         break;
498                 }
499                 for (i = 0; i < pagevec_count(&pvec); i++) {
500                         struct page *page = pvec.pages[i];
501
502                         index = indices[i];
503                         if (index >= end)
504                                 break;
505
506                         if (radix_tree_exceptional_entry(page)) {
507                                 if (unfalloc)
508                                         continue;
509                                 nr_swaps_freed += !shmem_free_swap(mapping,
510                                                                 index, page);
511                                 continue;
512                         }
513
514                         lock_page(page);
515                         if (!unfalloc || !PageUptodate(page)) {
516                                 if (page->mapping == mapping) {
517                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
518                                         truncate_inode_page(mapping, page);
519                                 }
520                         }
521                         unlock_page(page);
522                 }
523                 pagevec_remove_exceptionals(&pvec);
524                 pagevec_release(&pvec);
525                 index++;
526         }
527
528         spin_lock(&info->lock);
529         info->swapped -= nr_swaps_freed;
530         shmem_recalc_inode(inode);
531         spin_unlock(&info->lock);
532 }
533
534 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
535 {
536         shmem_undo_range(inode, lstart, lend, false);
537         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
538 }
539 EXPORT_SYMBOL_GPL(shmem_truncate_range);
540
541 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
542 {
543         struct inode *inode = dentry->d_inode;
544         int error;
545
546         error = inode_change_ok(inode, attr);
547         if (error)
548                 return error;
549
550         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
551                 loff_t oldsize = inode->i_size;
552                 loff_t newsize = attr->ia_size;
553
554                 if (newsize != oldsize) {
555                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
556                                         oldsize, newsize);
557                         if (error)
558                                 return error;
559                         i_size_write(inode, newsize);
560                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
561                 }
562                 if (newsize < oldsize) {
563                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
564                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
565                         shmem_truncate_range(inode, newsize, (loff_t)-1);
566                         /* unmap again to remove racily COWed private pages */
567                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
568                 }
569         }
570
571         setattr_copy(inode, attr);
572         if (attr->ia_valid & ATTR_MODE)
573                 error = posix_acl_chmod(inode, inode->i_mode);
574         return error;
575 }
576
577 static void shmem_evict_inode(struct inode *inode)
578 {
579         struct shmem_inode_info *info = SHMEM_I(inode);
580
581         if (inode->i_mapping->a_ops == &shmem_aops) {
582                 shmem_unacct_size(info->flags, inode->i_size);
583                 inode->i_size = 0;
584                 shmem_truncate_range(inode, 0, (loff_t)-1);
585                 if (!list_empty(&info->swaplist)) {
586                         mutex_lock(&shmem_swaplist_mutex);
587                         list_del_init(&info->swaplist);
588                         mutex_unlock(&shmem_swaplist_mutex);
589                 }
590         } else
591                 kfree(info->symlink);
592
593         simple_xattrs_free(&info->xattrs);
594         WARN_ON(inode->i_blocks);
595         shmem_free_inode(inode->i_sb);
596         clear_inode(inode);
597 }
598
599 /*
600  * If swap found in inode, free it and move page from swapcache to filecache.
601  */
602 static int shmem_unuse_inode(struct shmem_inode_info *info,
603                              swp_entry_t swap, struct page **pagep)
604 {
605         struct address_space *mapping = info->vfs_inode.i_mapping;
606         void *radswap;
607         pgoff_t index;
608         gfp_t gfp;
609         int error = 0;
610
611         radswap = swp_to_radix_entry(swap);
612         index = radix_tree_locate_item(&mapping->page_tree, radswap);
613         if (index == -1)
614                 return 0;
615
616         /*
617          * Move _head_ to start search for next from here.
618          * But be careful: shmem_evict_inode checks list_empty without taking
619          * mutex, and there's an instant in list_move_tail when info->swaplist
620          * would appear empty, if it were the only one on shmem_swaplist.
621          */
622         if (shmem_swaplist.next != &info->swaplist)
623                 list_move_tail(&shmem_swaplist, &info->swaplist);
624
625         gfp = mapping_gfp_mask(mapping);
626         if (shmem_should_replace_page(*pagep, gfp)) {
627                 mutex_unlock(&shmem_swaplist_mutex);
628                 error = shmem_replace_page(pagep, gfp, info, index);
629                 mutex_lock(&shmem_swaplist_mutex);
630                 /*
631                  * We needed to drop mutex to make that restrictive page
632                  * allocation, but the inode might have been freed while we
633                  * dropped it: although a racing shmem_evict_inode() cannot
634                  * complete without emptying the radix_tree, our page lock
635                  * on this swapcache page is not enough to prevent that -
636                  * free_swap_and_cache() of our swap entry will only
637                  * trylock_page(), removing swap from radix_tree whatever.
638                  *
639                  * We must not proceed to shmem_add_to_page_cache() if the
640                  * inode has been freed, but of course we cannot rely on
641                  * inode or mapping or info to check that.  However, we can
642                  * safely check if our swap entry is still in use (and here
643                  * it can't have got reused for another page): if it's still
644                  * in use, then the inode cannot have been freed yet, and we
645                  * can safely proceed (if it's no longer in use, that tells
646                  * nothing about the inode, but we don't need to unuse swap).
647                  */
648                 if (!page_swapcount(*pagep))
649                         error = -ENOENT;
650         }
651
652         /*
653          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
654          * but also to hold up shmem_evict_inode(): so inode cannot be freed
655          * beneath us (pagelock doesn't help until the page is in pagecache).
656          */
657         if (!error)
658                 error = shmem_add_to_page_cache(*pagep, mapping, index,
659                                                 GFP_NOWAIT, radswap);
660         if (error != -ENOMEM) {
661                 /*
662                  * Truncation and eviction use free_swap_and_cache(), which
663                  * only does trylock page: if we raced, best clean up here.
664                  */
665                 delete_from_swap_cache(*pagep);
666                 set_page_dirty(*pagep);
667                 if (!error) {
668                         spin_lock(&info->lock);
669                         info->swapped--;
670                         spin_unlock(&info->lock);
671                         swap_free(swap);
672                 }
673                 error = 1;      /* not an error, but entry was found */
674         }
675         return error;
676 }
677
678 /*
679  * Search through swapped inodes to find and replace swap by page.
680  */
681 int shmem_unuse(swp_entry_t swap, struct page *page)
682 {
683         struct list_head *this, *next;
684         struct shmem_inode_info *info;
685         struct mem_cgroup *memcg;
686         int found = 0;
687         int error = 0;
688
689         /*
690          * There's a faint possibility that swap page was replaced before
691          * caller locked it: caller will come back later with the right page.
692          */
693         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
694                 goto out;
695
696         /*
697          * Charge page using GFP_KERNEL while we can wait, before taking
698          * the shmem_swaplist_mutex which might hold up shmem_writepage().
699          * Charged back to the user (not to caller) when swap account is used.
700          */
701         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
702         if (error)
703                 goto out;
704         /* No radix_tree_preload: swap entry keeps a place for page in tree */
705
706         mutex_lock(&shmem_swaplist_mutex);
707         list_for_each_safe(this, next, &shmem_swaplist) {
708                 info = list_entry(this, struct shmem_inode_info, swaplist);
709                 if (info->swapped)
710                         found = shmem_unuse_inode(info, swap, &page);
711                 else
712                         list_del_init(&info->swaplist);
713                 cond_resched();
714                 if (found)
715                         break;
716         }
717         mutex_unlock(&shmem_swaplist_mutex);
718
719         if (found < 0) {
720                 error = found;
721                 mem_cgroup_cancel_charge(page, memcg);
722         } else
723                 mem_cgroup_commit_charge(page, memcg, true);
724 out:
725         unlock_page(page);
726         page_cache_release(page);
727         return error;
728 }
729
730 /*
731  * Move the page from the page cache to the swap cache.
732  */
733 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
734 {
735         struct shmem_inode_info *info;
736         struct address_space *mapping;
737         struct inode *inode;
738         swp_entry_t swap;
739         pgoff_t index;
740
741         BUG_ON(!PageLocked(page));
742         mapping = page->mapping;
743         index = page->index;
744         inode = mapping->host;
745         info = SHMEM_I(inode);
746         if (info->flags & VM_LOCKED)
747                 goto redirty;
748         if (!total_swap_pages)
749                 goto redirty;
750
751         /*
752          * shmem_backing_dev_info's capabilities prevent regular writeback or
753          * sync from ever calling shmem_writepage; but a stacking filesystem
754          * might use ->writepage of its underlying filesystem, in which case
755          * tmpfs should write out to swap only in response to memory pressure,
756          * and not for the writeback threads or sync.
757          */
758         if (!wbc->for_reclaim) {
759                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
760                 goto redirty;
761         }
762
763         /*
764          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
765          * value into swapfile.c, the only way we can correctly account for a
766          * fallocated page arriving here is now to initialize it and write it.
767          *
768          * That's okay for a page already fallocated earlier, but if we have
769          * not yet completed the fallocation, then (a) we want to keep track
770          * of this page in case we have to undo it, and (b) it may not be a
771          * good idea to continue anyway, once we're pushing into swap.  So
772          * reactivate the page, and let shmem_fallocate() quit when too many.
773          */
774         if (!PageUptodate(page)) {
775                 if (inode->i_private) {
776                         struct shmem_falloc *shmem_falloc;
777                         spin_lock(&inode->i_lock);
778                         shmem_falloc = inode->i_private;
779                         if (shmem_falloc &&
780                             !shmem_falloc->mode &&
781                             index >= shmem_falloc->start &&
782                             index < shmem_falloc->next)
783                                 shmem_falloc->nr_unswapped++;
784                         else
785                                 shmem_falloc = NULL;
786                         spin_unlock(&inode->i_lock);
787                         if (shmem_falloc)
788                                 goto redirty;
789                 }
790                 clear_highpage(page);
791                 flush_dcache_page(page);
792                 SetPageUptodate(page);
793         }
794
795         swap = get_swap_page();
796         if (!swap.val)
797                 goto redirty;
798
799         /*
800          * Add inode to shmem_unuse()'s list of swapped-out inodes,
801          * if it's not already there.  Do it now before the page is
802          * moved to swap cache, when its pagelock no longer protects
803          * the inode from eviction.  But don't unlock the mutex until
804          * we've incremented swapped, because shmem_unuse_inode() will
805          * prune a !swapped inode from the swaplist under this mutex.
806          */
807         mutex_lock(&shmem_swaplist_mutex);
808         if (list_empty(&info->swaplist))
809                 list_add_tail(&info->swaplist, &shmem_swaplist);
810
811         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
812                 swap_shmem_alloc(swap);
813                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
814
815                 spin_lock(&info->lock);
816                 info->swapped++;
817                 shmem_recalc_inode(inode);
818                 spin_unlock(&info->lock);
819
820                 mutex_unlock(&shmem_swaplist_mutex);
821                 BUG_ON(page_mapped(page));
822                 swap_writepage(page, wbc);
823                 return 0;
824         }
825
826         mutex_unlock(&shmem_swaplist_mutex);
827         swapcache_free(swap);
828 redirty:
829         set_page_dirty(page);
830         if (wbc->for_reclaim)
831                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
832         unlock_page(page);
833         return 0;
834 }
835
836 #ifdef CONFIG_NUMA
837 #ifdef CONFIG_TMPFS
838 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
839 {
840         char buffer[64];
841
842         if (!mpol || mpol->mode == MPOL_DEFAULT)
843                 return;         /* show nothing */
844
845         mpol_to_str(buffer, sizeof(buffer), mpol);
846
847         seq_printf(seq, ",mpol=%s", buffer);
848 }
849
850 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
851 {
852         struct mempolicy *mpol = NULL;
853         if (sbinfo->mpol) {
854                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
855                 mpol = sbinfo->mpol;
856                 mpol_get(mpol);
857                 spin_unlock(&sbinfo->stat_lock);
858         }
859         return mpol;
860 }
861 #endif /* CONFIG_TMPFS */
862
863 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
864                         struct shmem_inode_info *info, pgoff_t index)
865 {
866         struct vm_area_struct pvma;
867         struct page *page;
868
869         /* Create a pseudo vma that just contains the policy */
870         pvma.vm_start = 0;
871         /* Bias interleave by inode number to distribute better across nodes */
872         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
873         pvma.vm_ops = NULL;
874         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
875
876         page = swapin_readahead(swap, gfp, &pvma, 0);
877
878         /* Drop reference taken by mpol_shared_policy_lookup() */
879         mpol_cond_put(pvma.vm_policy);
880
881         return page;
882 }
883
884 static struct page *shmem_alloc_page(gfp_t gfp,
885                         struct shmem_inode_info *info, pgoff_t index)
886 {
887         struct vm_area_struct pvma;
888         struct page *page;
889
890         /* Create a pseudo vma that just contains the policy */
891         pvma.vm_start = 0;
892         /* Bias interleave by inode number to distribute better across nodes */
893         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
894         pvma.vm_ops = NULL;
895         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
896
897         page = alloc_page_vma(gfp, &pvma, 0);
898
899         /* Drop reference taken by mpol_shared_policy_lookup() */
900         mpol_cond_put(pvma.vm_policy);
901
902         return page;
903 }
904 #else /* !CONFIG_NUMA */
905 #ifdef CONFIG_TMPFS
906 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
907 {
908 }
909 #endif /* CONFIG_TMPFS */
910
911 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912                         struct shmem_inode_info *info, pgoff_t index)
913 {
914         return swapin_readahead(swap, gfp, NULL, 0);
915 }
916
917 static inline struct page *shmem_alloc_page(gfp_t gfp,
918                         struct shmem_inode_info *info, pgoff_t index)
919 {
920         return alloc_page(gfp);
921 }
922 #endif /* CONFIG_NUMA */
923
924 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
925 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
926 {
927         return NULL;
928 }
929 #endif
930
931 /*
932  * When a page is moved from swapcache to shmem filecache (either by the
933  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
934  * shmem_unuse_inode()), it may have been read in earlier from swap, in
935  * ignorance of the mapping it belongs to.  If that mapping has special
936  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
937  * we may need to copy to a suitable page before moving to filecache.
938  *
939  * In a future release, this may well be extended to respect cpuset and
940  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
941  * but for now it is a simple matter of zone.
942  */
943 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
944 {
945         return page_zonenum(page) > gfp_zone(gfp);
946 }
947
948 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
949                                 struct shmem_inode_info *info, pgoff_t index)
950 {
951         struct page *oldpage, *newpage;
952         struct address_space *swap_mapping;
953         pgoff_t swap_index;
954         int error;
955
956         oldpage = *pagep;
957         swap_index = page_private(oldpage);
958         swap_mapping = page_mapping(oldpage);
959
960         /*
961          * We have arrived here because our zones are constrained, so don't
962          * limit chance of success by further cpuset and node constraints.
963          */
964         gfp &= ~GFP_CONSTRAINT_MASK;
965         newpage = shmem_alloc_page(gfp, info, index);
966         if (!newpage)
967                 return -ENOMEM;
968
969         page_cache_get(newpage);
970         copy_highpage(newpage, oldpage);
971         flush_dcache_page(newpage);
972
973         __set_page_locked(newpage);
974         SetPageUptodate(newpage);
975         SetPageSwapBacked(newpage);
976         set_page_private(newpage, swap_index);
977         SetPageSwapCache(newpage);
978
979         /*
980          * Our caller will very soon move newpage out of swapcache, but it's
981          * a nice clean interface for us to replace oldpage by newpage there.
982          */
983         spin_lock_irq(&swap_mapping->tree_lock);
984         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
985                                                                    newpage);
986         if (!error) {
987                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
988                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
989         }
990         spin_unlock_irq(&swap_mapping->tree_lock);
991
992         if (unlikely(error)) {
993                 /*
994                  * Is this possible?  I think not, now that our callers check
995                  * both PageSwapCache and page_private after getting page lock;
996                  * but be defensive.  Reverse old to newpage for clear and free.
997                  */
998                 oldpage = newpage;
999         } else {
1000                 mem_cgroup_migrate(oldpage, newpage, false);
1001                 lru_cache_add_anon(newpage);
1002                 *pagep = newpage;
1003         }
1004
1005         ClearPageSwapCache(oldpage);
1006         set_page_private(oldpage, 0);
1007
1008         unlock_page(oldpage);
1009         page_cache_release(oldpage);
1010         page_cache_release(oldpage);
1011         return error;
1012 }
1013
1014 /*
1015  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1016  *
1017  * If we allocate a new one we do not mark it dirty. That's up to the
1018  * vm. If we swap it in we mark it dirty since we also free the swap
1019  * entry since a page cannot live in both the swap and page cache
1020  */
1021 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1022         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1023 {
1024         struct address_space *mapping = inode->i_mapping;
1025         struct shmem_inode_info *info;
1026         struct shmem_sb_info *sbinfo;
1027         struct mem_cgroup *memcg;
1028         struct page *page;
1029         swp_entry_t swap;
1030         int error;
1031         int once = 0;
1032         int alloced = 0;
1033
1034         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1035                 return -EFBIG;
1036 repeat:
1037         swap.val = 0;
1038         page = find_lock_entry(mapping, index);
1039         if (radix_tree_exceptional_entry(page)) {
1040                 swap = radix_to_swp_entry(page);
1041                 page = NULL;
1042         }
1043
1044         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1045             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1046                 error = -EINVAL;
1047                 goto failed;
1048         }
1049
1050         /* fallocated page? */
1051         if (page && !PageUptodate(page)) {
1052                 if (sgp != SGP_READ)
1053                         goto clear;
1054                 unlock_page(page);
1055                 page_cache_release(page);
1056                 page = NULL;
1057         }
1058         if (page || (sgp == SGP_READ && !swap.val)) {
1059                 *pagep = page;
1060                 return 0;
1061         }
1062
1063         /*
1064          * Fast cache lookup did not find it:
1065          * bring it back from swap or allocate.
1066          */
1067         info = SHMEM_I(inode);
1068         sbinfo = SHMEM_SB(inode->i_sb);
1069
1070         if (swap.val) {
1071                 /* Look it up and read it in.. */
1072                 page = lookup_swap_cache(swap);
1073                 if (!page) {
1074                         /* here we actually do the io */
1075                         if (fault_type)
1076                                 *fault_type |= VM_FAULT_MAJOR;
1077                         page = shmem_swapin(swap, gfp, info, index);
1078                         if (!page) {
1079                                 error = -ENOMEM;
1080                                 goto failed;
1081                         }
1082                 }
1083
1084                 /* We have to do this with page locked to prevent races */
1085                 lock_page(page);
1086                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1087                     !shmem_confirm_swap(mapping, index, swap)) {
1088                         error = -EEXIST;        /* try again */
1089                         goto unlock;
1090                 }
1091                 if (!PageUptodate(page)) {
1092                         error = -EIO;
1093                         goto failed;
1094                 }
1095                 wait_on_page_writeback(page);
1096
1097                 if (shmem_should_replace_page(page, gfp)) {
1098                         error = shmem_replace_page(&page, gfp, info, index);
1099                         if (error)
1100                                 goto failed;
1101                 }
1102
1103                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1104                 if (!error) {
1105                         error = shmem_add_to_page_cache(page, mapping, index,
1106                                                 gfp, swp_to_radix_entry(swap));
1107                         /*
1108                          * We already confirmed swap under page lock, and make
1109                          * no memory allocation here, so usually no possibility
1110                          * of error; but free_swap_and_cache() only trylocks a
1111                          * page, so it is just possible that the entry has been
1112                          * truncated or holepunched since swap was confirmed.
1113                          * shmem_undo_range() will have done some of the
1114                          * unaccounting, now delete_from_swap_cache() will do
1115                          * the rest (including mem_cgroup_uncharge_swapcache).
1116                          * Reset swap.val? No, leave it so "failed" goes back to
1117                          * "repeat": reading a hole and writing should succeed.
1118                          */
1119                         if (error) {
1120                                 mem_cgroup_cancel_charge(page, memcg);
1121                                 delete_from_swap_cache(page);
1122                         }
1123                 }
1124                 if (error)
1125                         goto failed;
1126
1127                 mem_cgroup_commit_charge(page, memcg, true);
1128
1129                 spin_lock(&info->lock);
1130                 info->swapped--;
1131                 shmem_recalc_inode(inode);
1132                 spin_unlock(&info->lock);
1133
1134                 delete_from_swap_cache(page);
1135                 set_page_dirty(page);
1136                 swap_free(swap);
1137
1138         } else {
1139                 if (shmem_acct_block(info->flags)) {
1140                         error = -ENOSPC;
1141                         goto failed;
1142                 }
1143                 if (sbinfo->max_blocks) {
1144                         if (percpu_counter_compare(&sbinfo->used_blocks,
1145                                                 sbinfo->max_blocks) >= 0) {
1146                                 error = -ENOSPC;
1147                                 goto unacct;
1148                         }
1149                         percpu_counter_inc(&sbinfo->used_blocks);
1150                 }
1151
1152                 page = shmem_alloc_page(gfp, info, index);
1153                 if (!page) {
1154                         error = -ENOMEM;
1155                         goto decused;
1156                 }
1157
1158                 __SetPageSwapBacked(page);
1159                 __set_page_locked(page);
1160                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1161                 if (error)
1162                         goto decused;
1163                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1164                 if (!error) {
1165                         error = shmem_add_to_page_cache(page, mapping, index,
1166                                                         gfp, NULL);
1167                         radix_tree_preload_end();
1168                 }
1169                 if (error) {
1170                         mem_cgroup_cancel_charge(page, memcg);
1171                         goto decused;
1172                 }
1173                 mem_cgroup_commit_charge(page, memcg, false);
1174                 lru_cache_add_anon(page);
1175
1176                 spin_lock(&info->lock);
1177                 info->alloced++;
1178                 inode->i_blocks += BLOCKS_PER_PAGE;
1179                 shmem_recalc_inode(inode);
1180                 spin_unlock(&info->lock);
1181                 alloced = true;
1182
1183                 /*
1184                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1185                  */
1186                 if (sgp == SGP_FALLOC)
1187                         sgp = SGP_WRITE;
1188 clear:
1189                 /*
1190                  * Let SGP_WRITE caller clear ends if write does not fill page;
1191                  * but SGP_FALLOC on a page fallocated earlier must initialize
1192                  * it now, lest undo on failure cancel our earlier guarantee.
1193                  */
1194                 if (sgp != SGP_WRITE) {
1195                         clear_highpage(page);
1196                         flush_dcache_page(page);
1197                         SetPageUptodate(page);
1198                 }
1199                 if (sgp == SGP_DIRTY)
1200                         set_page_dirty(page);
1201         }
1202
1203         /* Perhaps the file has been truncated since we checked */
1204         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1205             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1206                 error = -EINVAL;
1207                 if (alloced)
1208                         goto trunc;
1209                 else
1210                         goto failed;
1211         }
1212         *pagep = page;
1213         return 0;
1214
1215         /*
1216          * Error recovery.
1217          */
1218 trunc:
1219         info = SHMEM_I(inode);
1220         ClearPageDirty(page);
1221         delete_from_page_cache(page);
1222         spin_lock(&info->lock);
1223         info->alloced--;
1224         inode->i_blocks -= BLOCKS_PER_PAGE;
1225         spin_unlock(&info->lock);
1226 decused:
1227         sbinfo = SHMEM_SB(inode->i_sb);
1228         if (sbinfo->max_blocks)
1229                 percpu_counter_add(&sbinfo->used_blocks, -1);
1230 unacct:
1231         shmem_unacct_blocks(info->flags, 1);
1232 failed:
1233         if (swap.val && error != -EINVAL &&
1234             !shmem_confirm_swap(mapping, index, swap))
1235                 error = -EEXIST;
1236 unlock:
1237         if (page) {
1238                 unlock_page(page);
1239                 page_cache_release(page);
1240         }
1241         if (error == -ENOSPC && !once++) {
1242                 info = SHMEM_I(inode);
1243                 spin_lock(&info->lock);
1244                 shmem_recalc_inode(inode);
1245                 spin_unlock(&info->lock);
1246                 goto repeat;
1247         }
1248         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1249                 goto repeat;
1250         return error;
1251 }
1252
1253 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1254 {
1255         struct inode *inode = file_inode(vma->vm_file);
1256         int error;
1257         int ret = VM_FAULT_LOCKED;
1258
1259         /*
1260          * Trinity finds that probing a hole which tmpfs is punching can
1261          * prevent the hole-punch from ever completing: which in turn
1262          * locks writers out with its hold on i_mutex.  So refrain from
1263          * faulting pages into the hole while it's being punched, and
1264          * wait on i_mutex to be released if vmf->flags permits.
1265          */
1266         if (unlikely(inode->i_private)) {
1267                 struct shmem_falloc *shmem_falloc;
1268
1269                 spin_lock(&inode->i_lock);
1270                 shmem_falloc = inode->i_private;
1271                 if (!shmem_falloc ||
1272                     shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1273                     vmf->pgoff < shmem_falloc->start ||
1274                     vmf->pgoff >= shmem_falloc->next)
1275                         shmem_falloc = NULL;
1276                 spin_unlock(&inode->i_lock);
1277                 /*
1278                  * i_lock has protected us from taking shmem_falloc seriously
1279                  * once return from shmem_fallocate() went back up that stack.
1280                  * i_lock does not serialize with i_mutex at all, but it does
1281                  * not matter if sometimes we wait unnecessarily, or sometimes
1282                  * miss out on waiting: we just need to make those cases rare.
1283                  */
1284                 if (shmem_falloc) {
1285                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1286                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1287                                 up_read(&vma->vm_mm->mmap_sem);
1288                                 mutex_lock(&inode->i_mutex);
1289                                 mutex_unlock(&inode->i_mutex);
1290                                 return VM_FAULT_RETRY;
1291                         }
1292                         /* cond_resched? Leave that to GUP or return to user */
1293                         return VM_FAULT_NOPAGE;
1294                 }
1295         }
1296
1297         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1298         if (error)
1299                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1300
1301         if (ret & VM_FAULT_MAJOR) {
1302                 count_vm_event(PGMAJFAULT);
1303                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1304         }
1305         return ret;
1306 }
1307
1308 #ifdef CONFIG_NUMA
1309 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1310 {
1311         struct inode *inode = file_inode(vma->vm_file);
1312         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1313 }
1314
1315 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1316                                           unsigned long addr)
1317 {
1318         struct inode *inode = file_inode(vma->vm_file);
1319         pgoff_t index;
1320
1321         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1322         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1323 }
1324 #endif
1325
1326 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1327 {
1328         struct inode *inode = file_inode(file);
1329         struct shmem_inode_info *info = SHMEM_I(inode);
1330         int retval = -ENOMEM;
1331
1332         spin_lock(&info->lock);
1333         if (lock && !(info->flags & VM_LOCKED)) {
1334                 if (!user_shm_lock(inode->i_size, user))
1335                         goto out_nomem;
1336                 info->flags |= VM_LOCKED;
1337                 mapping_set_unevictable(file->f_mapping);
1338         }
1339         if (!lock && (info->flags & VM_LOCKED) && user) {
1340                 user_shm_unlock(inode->i_size, user);
1341                 info->flags &= ~VM_LOCKED;
1342                 mapping_clear_unevictable(file->f_mapping);
1343         }
1344         retval = 0;
1345
1346 out_nomem:
1347         spin_unlock(&info->lock);
1348         return retval;
1349 }
1350
1351 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1352 {
1353         file_accessed(file);
1354         vma->vm_ops = &shmem_vm_ops;
1355         return 0;
1356 }
1357
1358 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1359                                      umode_t mode, dev_t dev, unsigned long flags)
1360 {
1361         struct inode *inode;
1362         struct shmem_inode_info *info;
1363         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1364
1365         if (shmem_reserve_inode(sb))
1366                 return NULL;
1367
1368         inode = new_inode(sb);
1369         if (inode) {
1370                 inode->i_ino = get_next_ino();
1371                 inode_init_owner(inode, dir, mode);
1372                 inode->i_blocks = 0;
1373                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1374                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1375                 inode->i_generation = get_seconds();
1376                 info = SHMEM_I(inode);
1377                 memset(info, 0, (char *)inode - (char *)info);
1378                 spin_lock_init(&info->lock);
1379                 info->flags = flags & VM_NORESERVE;
1380                 INIT_LIST_HEAD(&info->swaplist);
1381                 simple_xattrs_init(&info->xattrs);
1382                 cache_no_acl(inode);
1383
1384                 switch (mode & S_IFMT) {
1385                 default:
1386                         inode->i_op = &shmem_special_inode_operations;
1387                         init_special_inode(inode, mode, dev);
1388                         break;
1389                 case S_IFREG:
1390                         inode->i_mapping->a_ops = &shmem_aops;
1391                         inode->i_op = &shmem_inode_operations;
1392                         inode->i_fop = &shmem_file_operations;
1393                         mpol_shared_policy_init(&info->policy,
1394                                                  shmem_get_sbmpol(sbinfo));
1395                         break;
1396                 case S_IFDIR:
1397                         inc_nlink(inode);
1398                         /* Some things misbehave if size == 0 on a directory */
1399                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1400                         inode->i_op = &shmem_dir_inode_operations;
1401                         inode->i_fop = &simple_dir_operations;
1402                         break;
1403                 case S_IFLNK:
1404                         /*
1405                          * Must not load anything in the rbtree,
1406                          * mpol_free_shared_policy will not be called.
1407                          */
1408                         mpol_shared_policy_init(&info->policy, NULL);
1409                         break;
1410                 }
1411         } else
1412                 shmem_free_inode(sb);
1413         return inode;
1414 }
1415
1416 bool shmem_mapping(struct address_space *mapping)
1417 {
1418         return mapping->backing_dev_info == &shmem_backing_dev_info;
1419 }
1420
1421 #ifdef CONFIG_TMPFS
1422 static const struct inode_operations shmem_symlink_inode_operations;
1423 static const struct inode_operations shmem_short_symlink_operations;
1424
1425 #ifdef CONFIG_TMPFS_XATTR
1426 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1427 #else
1428 #define shmem_initxattrs NULL
1429 #endif
1430
1431 static int
1432 shmem_write_begin(struct file *file, struct address_space *mapping,
1433                         loff_t pos, unsigned len, unsigned flags,
1434                         struct page **pagep, void **fsdata)
1435 {
1436         int ret;
1437         struct inode *inode = mapping->host;
1438         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1439         ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1440         if (ret == 0 && *pagep)
1441                 init_page_accessed(*pagep);
1442         return ret;
1443 }
1444
1445 static int
1446 shmem_write_end(struct file *file, struct address_space *mapping,
1447                         loff_t pos, unsigned len, unsigned copied,
1448                         struct page *page, void *fsdata)
1449 {
1450         struct inode *inode = mapping->host;
1451
1452         if (pos + copied > inode->i_size)
1453                 i_size_write(inode, pos + copied);
1454
1455         if (!PageUptodate(page)) {
1456                 if (copied < PAGE_CACHE_SIZE) {
1457                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1458                         zero_user_segments(page, 0, from,
1459                                         from + copied, PAGE_CACHE_SIZE);
1460                 }
1461                 SetPageUptodate(page);
1462         }
1463         set_page_dirty(page);
1464         unlock_page(page);
1465         page_cache_release(page);
1466
1467         return copied;
1468 }
1469
1470 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1471 {
1472         struct file *file = iocb->ki_filp;
1473         struct inode *inode = file_inode(file);
1474         struct address_space *mapping = inode->i_mapping;
1475         pgoff_t index;
1476         unsigned long offset;
1477         enum sgp_type sgp = SGP_READ;
1478         int error = 0;
1479         ssize_t retval = 0;
1480         loff_t *ppos = &iocb->ki_pos;
1481
1482         /*
1483          * Might this read be for a stacking filesystem?  Then when reading
1484          * holes of a sparse file, we actually need to allocate those pages,
1485          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1486          */
1487         if (segment_eq(get_fs(), KERNEL_DS))
1488                 sgp = SGP_DIRTY;
1489
1490         index = *ppos >> PAGE_CACHE_SHIFT;
1491         offset = *ppos & ~PAGE_CACHE_MASK;
1492
1493         for (;;) {
1494                 struct page *page = NULL;
1495                 pgoff_t end_index;
1496                 unsigned long nr, ret;
1497                 loff_t i_size = i_size_read(inode);
1498
1499                 end_index = i_size >> PAGE_CACHE_SHIFT;
1500                 if (index > end_index)
1501                         break;
1502                 if (index == end_index) {
1503                         nr = i_size & ~PAGE_CACHE_MASK;
1504                         if (nr <= offset)
1505                                 break;
1506                 }
1507
1508                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1509                 if (error) {
1510                         if (error == -EINVAL)
1511                                 error = 0;
1512                         break;
1513                 }
1514                 if (page)
1515                         unlock_page(page);
1516
1517                 /*
1518                  * We must evaluate after, since reads (unlike writes)
1519                  * are called without i_mutex protection against truncate
1520                  */
1521                 nr = PAGE_CACHE_SIZE;
1522                 i_size = i_size_read(inode);
1523                 end_index = i_size >> PAGE_CACHE_SHIFT;
1524                 if (index == end_index) {
1525                         nr = i_size & ~PAGE_CACHE_MASK;
1526                         if (nr <= offset) {
1527                                 if (page)
1528                                         page_cache_release(page);
1529                                 break;
1530                         }
1531                 }
1532                 nr -= offset;
1533
1534                 if (page) {
1535                         /*
1536                          * If users can be writing to this page using arbitrary
1537                          * virtual addresses, take care about potential aliasing
1538                          * before reading the page on the kernel side.
1539                          */
1540                         if (mapping_writably_mapped(mapping))
1541                                 flush_dcache_page(page);
1542                         /*
1543                          * Mark the page accessed if we read the beginning.
1544                          */
1545                         if (!offset)
1546                                 mark_page_accessed(page);
1547                 } else {
1548                         page = ZERO_PAGE(0);
1549                         page_cache_get(page);
1550                 }
1551
1552                 /*
1553                  * Ok, we have the page, and it's up-to-date, so
1554                  * now we can copy it to user space...
1555                  */
1556                 ret = copy_page_to_iter(page, offset, nr, to);
1557                 retval += ret;
1558                 offset += ret;
1559                 index += offset >> PAGE_CACHE_SHIFT;
1560                 offset &= ~PAGE_CACHE_MASK;
1561
1562                 page_cache_release(page);
1563                 if (!iov_iter_count(to))
1564                         break;
1565                 if (ret < nr) {
1566                         error = -EFAULT;
1567                         break;
1568                 }
1569                 cond_resched();
1570         }
1571
1572         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1573         file_accessed(file);
1574         return retval ? retval : error;
1575 }
1576
1577 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1578                                 struct pipe_inode_info *pipe, size_t len,
1579                                 unsigned int flags)
1580 {
1581         struct address_space *mapping = in->f_mapping;
1582         struct inode *inode = mapping->host;
1583         unsigned int loff, nr_pages, req_pages;
1584         struct page *pages[PIPE_DEF_BUFFERS];
1585         struct partial_page partial[PIPE_DEF_BUFFERS];
1586         struct page *page;
1587         pgoff_t index, end_index;
1588         loff_t isize, left;
1589         int error, page_nr;
1590         struct splice_pipe_desc spd = {
1591                 .pages = pages,
1592                 .partial = partial,
1593                 .nr_pages_max = PIPE_DEF_BUFFERS,
1594                 .flags = flags,
1595                 .ops = &page_cache_pipe_buf_ops,
1596                 .spd_release = spd_release_page,
1597         };
1598
1599         isize = i_size_read(inode);
1600         if (unlikely(*ppos >= isize))
1601                 return 0;
1602
1603         left = isize - *ppos;
1604         if (unlikely(left < len))
1605                 len = left;
1606
1607         if (splice_grow_spd(pipe, &spd))
1608                 return -ENOMEM;
1609
1610         index = *ppos >> PAGE_CACHE_SHIFT;
1611         loff = *ppos & ~PAGE_CACHE_MASK;
1612         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1613         nr_pages = min(req_pages, spd.nr_pages_max);
1614
1615         spd.nr_pages = find_get_pages_contig(mapping, index,
1616                                                 nr_pages, spd.pages);
1617         index += spd.nr_pages;
1618         error = 0;
1619
1620         while (spd.nr_pages < nr_pages) {
1621                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1622                 if (error)
1623                         break;
1624                 unlock_page(page);
1625                 spd.pages[spd.nr_pages++] = page;
1626                 index++;
1627         }
1628
1629         index = *ppos >> PAGE_CACHE_SHIFT;
1630         nr_pages = spd.nr_pages;
1631         spd.nr_pages = 0;
1632
1633         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1634                 unsigned int this_len;
1635
1636                 if (!len)
1637                         break;
1638
1639                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1640                 page = spd.pages[page_nr];
1641
1642                 if (!PageUptodate(page) || page->mapping != mapping) {
1643                         error = shmem_getpage(inode, index, &page,
1644                                                         SGP_CACHE, NULL);
1645                         if (error)
1646                                 break;
1647                         unlock_page(page);
1648                         page_cache_release(spd.pages[page_nr]);
1649                         spd.pages[page_nr] = page;
1650                 }
1651
1652                 isize = i_size_read(inode);
1653                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1654                 if (unlikely(!isize || index > end_index))
1655                         break;
1656
1657                 if (end_index == index) {
1658                         unsigned int plen;
1659
1660                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1661                         if (plen <= loff)
1662                                 break;
1663
1664                         this_len = min(this_len, plen - loff);
1665                         len = this_len;
1666                 }
1667
1668                 spd.partial[page_nr].offset = loff;
1669                 spd.partial[page_nr].len = this_len;
1670                 len -= this_len;
1671                 loff = 0;
1672                 spd.nr_pages++;
1673                 index++;
1674         }
1675
1676         while (page_nr < nr_pages)
1677                 page_cache_release(spd.pages[page_nr++]);
1678
1679         if (spd.nr_pages)
1680                 error = splice_to_pipe(pipe, &spd);
1681
1682         splice_shrink_spd(&spd);
1683
1684         if (error > 0) {
1685                 *ppos += error;
1686                 file_accessed(in);
1687         }
1688         return error;
1689 }
1690
1691 /*
1692  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1693  */
1694 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1695                                     pgoff_t index, pgoff_t end, int whence)
1696 {
1697         struct page *page;
1698         struct pagevec pvec;
1699         pgoff_t indices[PAGEVEC_SIZE];
1700         bool done = false;
1701         int i;
1702
1703         pagevec_init(&pvec, 0);
1704         pvec.nr = 1;            /* start small: we may be there already */
1705         while (!done) {
1706                 pvec.nr = find_get_entries(mapping, index,
1707                                         pvec.nr, pvec.pages, indices);
1708                 if (!pvec.nr) {
1709                         if (whence == SEEK_DATA)
1710                                 index = end;
1711                         break;
1712                 }
1713                 for (i = 0; i < pvec.nr; i++, index++) {
1714                         if (index < indices[i]) {
1715                                 if (whence == SEEK_HOLE) {
1716                                         done = true;
1717                                         break;
1718                                 }
1719                                 index = indices[i];
1720                         }
1721                         page = pvec.pages[i];
1722                         if (page && !radix_tree_exceptional_entry(page)) {
1723                                 if (!PageUptodate(page))
1724                                         page = NULL;
1725                         }
1726                         if (index >= end ||
1727                             (page && whence == SEEK_DATA) ||
1728                             (!page && whence == SEEK_HOLE)) {
1729                                 done = true;
1730                                 break;
1731                         }
1732                 }
1733                 pagevec_remove_exceptionals(&pvec);
1734                 pagevec_release(&pvec);
1735                 pvec.nr = PAGEVEC_SIZE;
1736                 cond_resched();
1737         }
1738         return index;
1739 }
1740
1741 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1742 {
1743         struct address_space *mapping = file->f_mapping;
1744         struct inode *inode = mapping->host;
1745         pgoff_t start, end;
1746         loff_t new_offset;
1747
1748         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1749                 return generic_file_llseek_size(file, offset, whence,
1750                                         MAX_LFS_FILESIZE, i_size_read(inode));
1751         mutex_lock(&inode->i_mutex);
1752         /* We're holding i_mutex so we can access i_size directly */
1753
1754         if (offset < 0)
1755                 offset = -EINVAL;
1756         else if (offset >= inode->i_size)
1757                 offset = -ENXIO;
1758         else {
1759                 start = offset >> PAGE_CACHE_SHIFT;
1760                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1761                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1762                 new_offset <<= PAGE_CACHE_SHIFT;
1763                 if (new_offset > offset) {
1764                         if (new_offset < inode->i_size)
1765                                 offset = new_offset;
1766                         else if (whence == SEEK_DATA)
1767                                 offset = -ENXIO;
1768                         else
1769                                 offset = inode->i_size;
1770                 }
1771         }
1772
1773         if (offset >= 0)
1774                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1775         mutex_unlock(&inode->i_mutex);
1776         return offset;
1777 }
1778
1779 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1780                                                          loff_t len)
1781 {
1782         struct inode *inode = file_inode(file);
1783         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1784         struct shmem_falloc shmem_falloc;
1785         pgoff_t start, index, end;
1786         int error;
1787
1788         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1789                 return -EOPNOTSUPP;
1790
1791         mutex_lock(&inode->i_mutex);
1792
1793         shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1794
1795         if (mode & FALLOC_FL_PUNCH_HOLE) {
1796                 struct address_space *mapping = file->f_mapping;
1797                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1798                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1799
1800                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1801                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1802                 spin_lock(&inode->i_lock);
1803                 inode->i_private = &shmem_falloc;
1804                 spin_unlock(&inode->i_lock);
1805
1806                 if ((u64)unmap_end > (u64)unmap_start)
1807                         unmap_mapping_range(mapping, unmap_start,
1808                                             1 + unmap_end - unmap_start, 0);
1809                 shmem_truncate_range(inode, offset, offset + len - 1);
1810                 /* No need to unmap again: hole-punching leaves COWed pages */
1811                 error = 0;
1812                 goto undone;
1813         }
1814
1815         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1816         error = inode_newsize_ok(inode, offset + len);
1817         if (error)
1818                 goto out;
1819
1820         start = offset >> PAGE_CACHE_SHIFT;
1821         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1822         /* Try to avoid a swapstorm if len is impossible to satisfy */
1823         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1824                 error = -ENOSPC;
1825                 goto out;
1826         }
1827
1828         shmem_falloc.start = start;
1829         shmem_falloc.next  = start;
1830         shmem_falloc.nr_falloced = 0;
1831         shmem_falloc.nr_unswapped = 0;
1832         spin_lock(&inode->i_lock);
1833         inode->i_private = &shmem_falloc;
1834         spin_unlock(&inode->i_lock);
1835
1836         for (index = start; index < end; index++) {
1837                 struct page *page;
1838
1839                 /*
1840                  * Good, the fallocate(2) manpage permits EINTR: we may have
1841                  * been interrupted because we are using up too much memory.
1842                  */
1843                 if (signal_pending(current))
1844                         error = -EINTR;
1845                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1846                         error = -ENOMEM;
1847                 else
1848                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1849                                                                         NULL);
1850                 if (error) {
1851                         /* Remove the !PageUptodate pages we added */
1852                         shmem_undo_range(inode,
1853                                 (loff_t)start << PAGE_CACHE_SHIFT,
1854                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1855                         goto undone;
1856                 }
1857
1858                 /*
1859                  * Inform shmem_writepage() how far we have reached.
1860                  * No need for lock or barrier: we have the page lock.
1861                  */
1862                 shmem_falloc.next++;
1863                 if (!PageUptodate(page))
1864                         shmem_falloc.nr_falloced++;
1865
1866                 /*
1867                  * If !PageUptodate, leave it that way so that freeable pages
1868                  * can be recognized if we need to rollback on error later.
1869                  * But set_page_dirty so that memory pressure will swap rather
1870                  * than free the pages we are allocating (and SGP_CACHE pages
1871                  * might still be clean: we now need to mark those dirty too).
1872                  */
1873                 set_page_dirty(page);
1874                 unlock_page(page);
1875                 page_cache_release(page);
1876                 cond_resched();
1877         }
1878
1879         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1880                 i_size_write(inode, offset + len);
1881         inode->i_ctime = CURRENT_TIME;
1882 undone:
1883         spin_lock(&inode->i_lock);
1884         inode->i_private = NULL;
1885         spin_unlock(&inode->i_lock);
1886 out:
1887         mutex_unlock(&inode->i_mutex);
1888         return error;
1889 }
1890
1891 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1892 {
1893         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1894
1895         buf->f_type = TMPFS_MAGIC;
1896         buf->f_bsize = PAGE_CACHE_SIZE;
1897         buf->f_namelen = NAME_MAX;
1898         if (sbinfo->max_blocks) {
1899                 buf->f_blocks = sbinfo->max_blocks;
1900                 buf->f_bavail =
1901                 buf->f_bfree  = sbinfo->max_blocks -
1902                                 percpu_counter_sum(&sbinfo->used_blocks);
1903         }
1904         if (sbinfo->max_inodes) {
1905                 buf->f_files = sbinfo->max_inodes;
1906                 buf->f_ffree = sbinfo->free_inodes;
1907         }
1908         /* else leave those fields 0 like simple_statfs */
1909         return 0;
1910 }
1911
1912 /*
1913  * File creation. Allocate an inode, and we're done..
1914  */
1915 static int
1916 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1917 {
1918         struct inode *inode;
1919         int error = -ENOSPC;
1920
1921         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1922         if (inode) {
1923                 error = simple_acl_create(dir, inode);
1924                 if (error)
1925                         goto out_iput;
1926                 error = security_inode_init_security(inode, dir,
1927                                                      &dentry->d_name,
1928                                                      shmem_initxattrs, NULL);
1929                 if (error && error != -EOPNOTSUPP)
1930                         goto out_iput;
1931
1932                 error = 0;
1933                 dir->i_size += BOGO_DIRENT_SIZE;
1934                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1935                 d_instantiate(dentry, inode);
1936                 dget(dentry); /* Extra count - pin the dentry in core */
1937         }
1938         return error;
1939 out_iput:
1940         iput(inode);
1941         return error;
1942 }
1943
1944 static int
1945 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1946 {
1947         struct inode *inode;
1948         int error = -ENOSPC;
1949
1950         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1951         if (inode) {
1952                 error = security_inode_init_security(inode, dir,
1953                                                      NULL,
1954                                                      shmem_initxattrs, NULL);
1955                 if (error && error != -EOPNOTSUPP)
1956                         goto out_iput;
1957                 error = simple_acl_create(dir, inode);
1958                 if (error)
1959                         goto out_iput;
1960                 d_tmpfile(dentry, inode);
1961         }
1962         return error;
1963 out_iput:
1964         iput(inode);
1965         return error;
1966 }
1967
1968 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1969 {
1970         int error;
1971
1972         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1973                 return error;
1974         inc_nlink(dir);
1975         return 0;
1976 }
1977
1978 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1979                 bool excl)
1980 {
1981         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1982 }
1983
1984 /*
1985  * Link a file..
1986  */
1987 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1988 {
1989         struct inode *inode = old_dentry->d_inode;
1990         int ret;
1991
1992         /*
1993          * No ordinary (disk based) filesystem counts links as inodes;
1994          * but each new link needs a new dentry, pinning lowmem, and
1995          * tmpfs dentries cannot be pruned until they are unlinked.
1996          */
1997         ret = shmem_reserve_inode(inode->i_sb);
1998         if (ret)
1999                 goto out;
2000
2001         dir->i_size += BOGO_DIRENT_SIZE;
2002         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2003         inc_nlink(inode);
2004         ihold(inode);   /* New dentry reference */
2005         dget(dentry);           /* Extra pinning count for the created dentry */
2006         d_instantiate(dentry, inode);
2007 out:
2008         return ret;
2009 }
2010
2011 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2012 {
2013         struct inode *inode = dentry->d_inode;
2014
2015         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2016                 shmem_free_inode(inode->i_sb);
2017
2018         dir->i_size -= BOGO_DIRENT_SIZE;
2019         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2020         drop_nlink(inode);
2021         dput(dentry);   /* Undo the count from "create" - this does all the work */
2022         return 0;
2023 }
2024
2025 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2026 {
2027         if (!simple_empty(dentry))
2028                 return -ENOTEMPTY;
2029
2030         drop_nlink(dentry->d_inode);
2031         drop_nlink(dir);
2032         return shmem_unlink(dir, dentry);
2033 }
2034
2035 /*
2036  * The VFS layer already does all the dentry stuff for rename,
2037  * we just have to decrement the usage count for the target if
2038  * it exists so that the VFS layer correctly free's it when it
2039  * gets overwritten.
2040  */
2041 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2042 {
2043         struct inode *inode = old_dentry->d_inode;
2044         int they_are_dirs = S_ISDIR(inode->i_mode);
2045
2046         if (!simple_empty(new_dentry))
2047                 return -ENOTEMPTY;
2048
2049         if (new_dentry->d_inode) {
2050                 (void) shmem_unlink(new_dir, new_dentry);
2051                 if (they_are_dirs)
2052                         drop_nlink(old_dir);
2053         } else if (they_are_dirs) {
2054                 drop_nlink(old_dir);
2055                 inc_nlink(new_dir);
2056         }
2057
2058         old_dir->i_size -= BOGO_DIRENT_SIZE;
2059         new_dir->i_size += BOGO_DIRENT_SIZE;
2060         old_dir->i_ctime = old_dir->i_mtime =
2061         new_dir->i_ctime = new_dir->i_mtime =
2062         inode->i_ctime = CURRENT_TIME;
2063         return 0;
2064 }
2065
2066 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2067 {
2068         int error;
2069         int len;
2070         struct inode *inode;
2071         struct page *page;
2072         char *kaddr;
2073         struct shmem_inode_info *info;
2074
2075         len = strlen(symname) + 1;
2076         if (len > PAGE_CACHE_SIZE)
2077                 return -ENAMETOOLONG;
2078
2079         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2080         if (!inode)
2081                 return -ENOSPC;
2082
2083         error = security_inode_init_security(inode, dir, &dentry->d_name,
2084                                              shmem_initxattrs, NULL);
2085         if (error) {
2086                 if (error != -EOPNOTSUPP) {
2087                         iput(inode);
2088                         return error;
2089                 }
2090                 error = 0;
2091         }
2092
2093         info = SHMEM_I(inode);
2094         inode->i_size = len-1;
2095         if (len <= SHORT_SYMLINK_LEN) {
2096                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2097                 if (!info->symlink) {
2098                         iput(inode);
2099                         return -ENOMEM;
2100                 }
2101                 inode->i_op = &shmem_short_symlink_operations;
2102         } else {
2103                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2104                 if (error) {
2105                         iput(inode);
2106                         return error;
2107                 }
2108                 inode->i_mapping->a_ops = &shmem_aops;
2109                 inode->i_op = &shmem_symlink_inode_operations;
2110                 kaddr = kmap_atomic(page);
2111                 memcpy(kaddr, symname, len);
2112                 kunmap_atomic(kaddr);
2113                 SetPageUptodate(page);
2114                 set_page_dirty(page);
2115                 unlock_page(page);
2116                 page_cache_release(page);
2117         }
2118         dir->i_size += BOGO_DIRENT_SIZE;
2119         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2120         d_instantiate(dentry, inode);
2121         dget(dentry);
2122         return 0;
2123 }
2124
2125 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2126 {
2127         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2128         return NULL;
2129 }
2130
2131 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2132 {
2133         struct page *page = NULL;
2134         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2135         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2136         if (page)
2137                 unlock_page(page);
2138         return page;
2139 }
2140
2141 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2142 {
2143         if (!IS_ERR(nd_get_link(nd))) {
2144                 struct page *page = cookie;
2145                 kunmap(page);
2146                 mark_page_accessed(page);
2147                 page_cache_release(page);
2148         }
2149 }
2150
2151 #ifdef CONFIG_TMPFS_XATTR
2152 /*
2153  * Superblocks without xattr inode operations may get some security.* xattr
2154  * support from the LSM "for free". As soon as we have any other xattrs
2155  * like ACLs, we also need to implement the security.* handlers at
2156  * filesystem level, though.
2157  */
2158
2159 /*
2160  * Callback for security_inode_init_security() for acquiring xattrs.
2161  */
2162 static int shmem_initxattrs(struct inode *inode,
2163                             const struct xattr *xattr_array,
2164                             void *fs_info)
2165 {
2166         struct shmem_inode_info *info = SHMEM_I(inode);
2167         const struct xattr *xattr;
2168         struct simple_xattr *new_xattr;
2169         size_t len;
2170
2171         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2172                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2173                 if (!new_xattr)
2174                         return -ENOMEM;
2175
2176                 len = strlen(xattr->name) + 1;
2177                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2178                                           GFP_KERNEL);
2179                 if (!new_xattr->name) {
2180                         kfree(new_xattr);
2181                         return -ENOMEM;
2182                 }
2183
2184                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2185                        XATTR_SECURITY_PREFIX_LEN);
2186                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2187                        xattr->name, len);
2188
2189                 simple_xattr_list_add(&info->xattrs, new_xattr);
2190         }
2191
2192         return 0;
2193 }
2194
2195 static const struct xattr_handler *shmem_xattr_handlers[] = {
2196 #ifdef CONFIG_TMPFS_POSIX_ACL
2197         &posix_acl_access_xattr_handler,
2198         &posix_acl_default_xattr_handler,
2199 #endif
2200         NULL
2201 };
2202
2203 static int shmem_xattr_validate(const char *name)
2204 {
2205         struct { const char *prefix; size_t len; } arr[] = {
2206                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2207                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2208         };
2209         int i;
2210
2211         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2212                 size_t preflen = arr[i].len;
2213                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2214                         if (!name[preflen])
2215                                 return -EINVAL;
2216                         return 0;
2217                 }
2218         }
2219         return -EOPNOTSUPP;
2220 }
2221
2222 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2223                               void *buffer, size_t size)
2224 {
2225         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2226         int err;
2227
2228         /*
2229          * If this is a request for a synthetic attribute in the system.*
2230          * namespace use the generic infrastructure to resolve a handler
2231          * for it via sb->s_xattr.
2232          */
2233         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2234                 return generic_getxattr(dentry, name, buffer, size);
2235
2236         err = shmem_xattr_validate(name);
2237         if (err)
2238                 return err;
2239
2240         return simple_xattr_get(&info->xattrs, name, buffer, size);
2241 }
2242
2243 static int shmem_setxattr(struct dentry *dentry, const char *name,
2244                           const void *value, size_t size, int flags)
2245 {
2246         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2247         int err;
2248
2249         /*
2250          * If this is a request for a synthetic attribute in the system.*
2251          * namespace use the generic infrastructure to resolve a handler
2252          * for it via sb->s_xattr.
2253          */
2254         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2255                 return generic_setxattr(dentry, name, value, size, flags);
2256
2257         err = shmem_xattr_validate(name);
2258         if (err)
2259                 return err;
2260
2261         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2262 }
2263
2264 static int shmem_removexattr(struct dentry *dentry, const char *name)
2265 {
2266         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2267         int err;
2268
2269         /*
2270          * If this is a request for a synthetic attribute in the system.*
2271          * namespace use the generic infrastructure to resolve a handler
2272          * for it via sb->s_xattr.
2273          */
2274         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2275                 return generic_removexattr(dentry, name);
2276
2277         err = shmem_xattr_validate(name);
2278         if (err)
2279                 return err;
2280
2281         return simple_xattr_remove(&info->xattrs, name);
2282 }
2283
2284 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2285 {
2286         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2287         return simple_xattr_list(&info->xattrs, buffer, size);
2288 }
2289 #endif /* CONFIG_TMPFS_XATTR */
2290
2291 static const struct inode_operations shmem_short_symlink_operations = {
2292         .readlink       = generic_readlink,
2293         .follow_link    = shmem_follow_short_symlink,
2294 #ifdef CONFIG_TMPFS_XATTR
2295         .setxattr       = shmem_setxattr,
2296         .getxattr       = shmem_getxattr,
2297         .listxattr      = shmem_listxattr,
2298         .removexattr    = shmem_removexattr,
2299 #endif
2300 };
2301
2302 static const struct inode_operations shmem_symlink_inode_operations = {
2303         .readlink       = generic_readlink,
2304         .follow_link    = shmem_follow_link,
2305         .put_link       = shmem_put_link,
2306 #ifdef CONFIG_TMPFS_XATTR
2307         .setxattr       = shmem_setxattr,
2308         .getxattr       = shmem_getxattr,
2309         .listxattr      = shmem_listxattr,
2310         .removexattr    = shmem_removexattr,
2311 #endif
2312 };
2313
2314 static struct dentry *shmem_get_parent(struct dentry *child)
2315 {
2316         return ERR_PTR(-ESTALE);
2317 }
2318
2319 static int shmem_match(struct inode *ino, void *vfh)
2320 {
2321         __u32 *fh = vfh;
2322         __u64 inum = fh[2];
2323         inum = (inum << 32) | fh[1];
2324         return ino->i_ino == inum && fh[0] == ino->i_generation;
2325 }
2326
2327 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2328                 struct fid *fid, int fh_len, int fh_type)
2329 {
2330         struct inode *inode;
2331         struct dentry *dentry = NULL;
2332         u64 inum;
2333
2334         if (fh_len < 3)
2335                 return NULL;
2336
2337         inum = fid->raw[2];
2338         inum = (inum << 32) | fid->raw[1];
2339
2340         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2341                         shmem_match, fid->raw);
2342         if (inode) {
2343                 dentry = d_find_alias(inode);
2344                 iput(inode);
2345         }
2346
2347         return dentry;
2348 }
2349
2350 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2351                                 struct inode *parent)
2352 {
2353         if (*len < 3) {
2354                 *len = 3;
2355                 return FILEID_INVALID;
2356         }
2357
2358         if (inode_unhashed(inode)) {
2359                 /* Unfortunately insert_inode_hash is not idempotent,
2360                  * so as we hash inodes here rather than at creation
2361                  * time, we need a lock to ensure we only try
2362                  * to do it once
2363                  */
2364                 static DEFINE_SPINLOCK(lock);
2365                 spin_lock(&lock);
2366                 if (inode_unhashed(inode))
2367                         __insert_inode_hash(inode,
2368                                             inode->i_ino + inode->i_generation);
2369                 spin_unlock(&lock);
2370         }
2371
2372         fh[0] = inode->i_generation;
2373         fh[1] = inode->i_ino;
2374         fh[2] = ((__u64)inode->i_ino) >> 32;
2375
2376         *len = 3;
2377         return 1;
2378 }
2379
2380 static const struct export_operations shmem_export_ops = {
2381         .get_parent     = shmem_get_parent,
2382         .encode_fh      = shmem_encode_fh,
2383         .fh_to_dentry   = shmem_fh_to_dentry,
2384 };
2385
2386 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2387                                bool remount)
2388 {
2389         char *this_char, *value, *rest;
2390         struct mempolicy *mpol = NULL;
2391         uid_t uid;
2392         gid_t gid;
2393
2394         while (options != NULL) {
2395                 this_char = options;
2396                 for (;;) {
2397                         /*
2398                          * NUL-terminate this option: unfortunately,
2399                          * mount options form a comma-separated list,
2400                          * but mpol's nodelist may also contain commas.
2401                          */
2402                         options = strchr(options, ',');
2403                         if (options == NULL)
2404                                 break;
2405                         options++;
2406                         if (!isdigit(*options)) {
2407                                 options[-1] = '\0';
2408                                 break;
2409                         }
2410                 }
2411                 if (!*this_char)
2412                         continue;
2413                 if ((value = strchr(this_char,'=')) != NULL) {
2414                         *value++ = 0;
2415                 } else {
2416                         printk(KERN_ERR
2417                             "tmpfs: No value for mount option '%s'\n",
2418                             this_char);
2419                         goto error;
2420                 }
2421
2422                 if (!strcmp(this_char,"size")) {
2423                         unsigned long long size;
2424                         size = memparse(value,&rest);
2425                         if (*rest == '%') {
2426                                 size <<= PAGE_SHIFT;
2427                                 size *= totalram_pages;
2428                                 do_div(size, 100);
2429                                 rest++;
2430                         }
2431                         if (*rest)
2432                                 goto bad_val;
2433                         sbinfo->max_blocks =
2434                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2435                 } else if (!strcmp(this_char,"nr_blocks")) {
2436                         sbinfo->max_blocks = memparse(value, &rest);
2437                         if (*rest)
2438                                 goto bad_val;
2439                 } else if (!strcmp(this_char,"nr_inodes")) {
2440                         sbinfo->max_inodes = memparse(value, &rest);
2441                         if (*rest)
2442                                 goto bad_val;
2443                 } else if (!strcmp(this_char,"mode")) {
2444                         if (remount)
2445                                 continue;
2446                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2447                         if (*rest)
2448                                 goto bad_val;
2449                 } else if (!strcmp(this_char,"uid")) {
2450                         if (remount)
2451                                 continue;
2452                         uid = simple_strtoul(value, &rest, 0);
2453                         if (*rest)
2454                                 goto bad_val;
2455                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2456                         if (!uid_valid(sbinfo->uid))
2457                                 goto bad_val;
2458                 } else if (!strcmp(this_char,"gid")) {
2459                         if (remount)
2460                                 continue;
2461                         gid = simple_strtoul(value, &rest, 0);
2462                         if (*rest)
2463                                 goto bad_val;
2464                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2465                         if (!gid_valid(sbinfo->gid))
2466                                 goto bad_val;
2467                 } else if (!strcmp(this_char,"mpol")) {
2468                         mpol_put(mpol);
2469                         mpol = NULL;
2470                         if (mpol_parse_str(value, &mpol))
2471                                 goto bad_val;
2472                 } else {
2473                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2474                                this_char);
2475                         goto error;
2476                 }
2477         }
2478         sbinfo->mpol = mpol;
2479         return 0;
2480
2481 bad_val:
2482         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2483                value, this_char);
2484 error:
2485         mpol_put(mpol);
2486         return 1;
2487
2488 }
2489
2490 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2491 {
2492         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2493         struct shmem_sb_info config = *sbinfo;
2494         unsigned long inodes;
2495         int error = -EINVAL;
2496
2497         config.mpol = NULL;
2498         if (shmem_parse_options(data, &config, true))
2499                 return error;
2500
2501         spin_lock(&sbinfo->stat_lock);
2502         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2503         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2504                 goto out;
2505         if (config.max_inodes < inodes)
2506                 goto out;
2507         /*
2508          * Those tests disallow limited->unlimited while any are in use;
2509          * but we must separately disallow unlimited->limited, because
2510          * in that case we have no record of how much is already in use.
2511          */
2512         if (config.max_blocks && !sbinfo->max_blocks)
2513                 goto out;
2514         if (config.max_inodes && !sbinfo->max_inodes)
2515                 goto out;
2516
2517         error = 0;
2518         sbinfo->max_blocks  = config.max_blocks;
2519         sbinfo->max_inodes  = config.max_inodes;
2520         sbinfo->free_inodes = config.max_inodes - inodes;
2521
2522         /*
2523          * Preserve previous mempolicy unless mpol remount option was specified.
2524          */
2525         if (config.mpol) {
2526                 mpol_put(sbinfo->mpol);
2527                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2528         }
2529 out:
2530         spin_unlock(&sbinfo->stat_lock);
2531         return error;
2532 }
2533
2534 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2535 {
2536         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2537
2538         if (sbinfo->max_blocks != shmem_default_max_blocks())
2539                 seq_printf(seq, ",size=%luk",
2540                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2541         if (sbinfo->max_inodes != shmem_default_max_inodes())
2542                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2543         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2544                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2545         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2546                 seq_printf(seq, ",uid=%u",
2547                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2548         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2549                 seq_printf(seq, ",gid=%u",
2550                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2551         shmem_show_mpol(seq, sbinfo->mpol);
2552         return 0;
2553 }
2554 #endif /* CONFIG_TMPFS */
2555
2556 static void shmem_put_super(struct super_block *sb)
2557 {
2558         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2559
2560         percpu_counter_destroy(&sbinfo->used_blocks);
2561         mpol_put(sbinfo->mpol);
2562         kfree(sbinfo);
2563         sb->s_fs_info = NULL;
2564 }
2565
2566 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2567 {
2568         struct inode *inode;
2569         struct shmem_sb_info *sbinfo;
2570         int err = -ENOMEM;
2571
2572         /* Round up to L1_CACHE_BYTES to resist false sharing */
2573         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2574                                 L1_CACHE_BYTES), GFP_KERNEL);
2575         if (!sbinfo)
2576                 return -ENOMEM;
2577
2578         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2579         sbinfo->uid = current_fsuid();
2580         sbinfo->gid = current_fsgid();
2581         sb->s_fs_info = sbinfo;
2582
2583 #ifdef CONFIG_TMPFS
2584         /*
2585          * Per default we only allow half of the physical ram per
2586          * tmpfs instance, limiting inodes to one per page of lowmem;
2587          * but the internal instance is left unlimited.
2588          */
2589         if (!(sb->s_flags & MS_KERNMOUNT)) {
2590                 sbinfo->max_blocks = shmem_default_max_blocks();
2591                 sbinfo->max_inodes = shmem_default_max_inodes();
2592                 if (shmem_parse_options(data, sbinfo, false)) {
2593                         err = -EINVAL;
2594                         goto failed;
2595                 }
2596         } else {
2597                 sb->s_flags |= MS_NOUSER;
2598         }
2599         sb->s_export_op = &shmem_export_ops;
2600         sb->s_flags |= MS_NOSEC;
2601 #else
2602         sb->s_flags |= MS_NOUSER;
2603 #endif
2604
2605         spin_lock_init(&sbinfo->stat_lock);
2606         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2607                 goto failed;
2608         sbinfo->free_inodes = sbinfo->max_inodes;
2609
2610         sb->s_maxbytes = MAX_LFS_FILESIZE;
2611         sb->s_blocksize = PAGE_CACHE_SIZE;
2612         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2613         sb->s_magic = TMPFS_MAGIC;
2614         sb->s_op = &shmem_ops;
2615         sb->s_time_gran = 1;
2616 #ifdef CONFIG_TMPFS_XATTR
2617         sb->s_xattr = shmem_xattr_handlers;
2618 #endif
2619 #ifdef CONFIG_TMPFS_POSIX_ACL
2620         sb->s_flags |= MS_POSIXACL;
2621 #endif
2622
2623         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2624         if (!inode)
2625                 goto failed;
2626         inode->i_uid = sbinfo->uid;
2627         inode->i_gid = sbinfo->gid;
2628         sb->s_root = d_make_root(inode);
2629         if (!sb->s_root)
2630                 goto failed;
2631         return 0;
2632
2633 failed:
2634         shmem_put_super(sb);
2635         return err;
2636 }
2637
2638 static struct kmem_cache *shmem_inode_cachep;
2639
2640 static struct inode *shmem_alloc_inode(struct super_block *sb)
2641 {
2642         struct shmem_inode_info *info;
2643         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2644         if (!info)
2645                 return NULL;
2646         return &info->vfs_inode;
2647 }
2648
2649 static void shmem_destroy_callback(struct rcu_head *head)
2650 {
2651         struct inode *inode = container_of(head, struct inode, i_rcu);
2652         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2653 }
2654
2655 static void shmem_destroy_inode(struct inode *inode)
2656 {
2657         if (S_ISREG(inode->i_mode))
2658                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2659         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2660 }
2661
2662 static void shmem_init_inode(void *foo)
2663 {
2664         struct shmem_inode_info *info = foo;
2665         inode_init_once(&info->vfs_inode);
2666 }
2667
2668 static int shmem_init_inodecache(void)
2669 {
2670         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2671                                 sizeof(struct shmem_inode_info),
2672                                 0, SLAB_PANIC, shmem_init_inode);
2673         return 0;
2674 }
2675
2676 static void shmem_destroy_inodecache(void)
2677 {
2678         kmem_cache_destroy(shmem_inode_cachep);
2679 }
2680
2681 static const struct address_space_operations shmem_aops = {
2682         .writepage      = shmem_writepage,
2683         .set_page_dirty = __set_page_dirty_no_writeback,
2684 #ifdef CONFIG_TMPFS
2685         .write_begin    = shmem_write_begin,
2686         .write_end      = shmem_write_end,
2687 #endif
2688         .migratepage    = migrate_page,
2689         .error_remove_page = generic_error_remove_page,
2690 };
2691
2692 static const struct file_operations shmem_file_operations = {
2693         .mmap           = shmem_mmap,
2694 #ifdef CONFIG_TMPFS
2695         .llseek         = shmem_file_llseek,
2696         .read           = new_sync_read,
2697         .write          = new_sync_write,
2698         .read_iter      = shmem_file_read_iter,
2699         .write_iter     = generic_file_write_iter,
2700         .fsync          = noop_fsync,
2701         .splice_read    = shmem_file_splice_read,
2702         .splice_write   = iter_file_splice_write,
2703         .fallocate      = shmem_fallocate,
2704 #endif
2705 };
2706
2707 static const struct inode_operations shmem_inode_operations = {
2708         .setattr        = shmem_setattr,
2709 #ifdef CONFIG_TMPFS_XATTR
2710         .setxattr       = shmem_setxattr,
2711         .getxattr       = shmem_getxattr,
2712         .listxattr      = shmem_listxattr,
2713         .removexattr    = shmem_removexattr,
2714         .set_acl        = simple_set_acl,
2715 #endif
2716 };
2717
2718 static const struct inode_operations shmem_dir_inode_operations = {
2719 #ifdef CONFIG_TMPFS
2720         .create         = shmem_create,
2721         .lookup         = simple_lookup,
2722         .link           = shmem_link,
2723         .unlink         = shmem_unlink,
2724         .symlink        = shmem_symlink,
2725         .mkdir          = shmem_mkdir,
2726         .rmdir          = shmem_rmdir,
2727         .mknod          = shmem_mknod,
2728         .rename         = shmem_rename,
2729         .tmpfile        = shmem_tmpfile,
2730 #endif
2731 #ifdef CONFIG_TMPFS_XATTR
2732         .setxattr       = shmem_setxattr,
2733         .getxattr       = shmem_getxattr,
2734         .listxattr      = shmem_listxattr,
2735         .removexattr    = shmem_removexattr,
2736 #endif
2737 #ifdef CONFIG_TMPFS_POSIX_ACL
2738         .setattr        = shmem_setattr,
2739         .set_acl        = simple_set_acl,
2740 #endif
2741 };
2742
2743 static const struct inode_operations shmem_special_inode_operations = {
2744 #ifdef CONFIG_TMPFS_XATTR
2745         .setxattr       = shmem_setxattr,
2746         .getxattr       = shmem_getxattr,
2747         .listxattr      = shmem_listxattr,
2748         .removexattr    = shmem_removexattr,
2749 #endif
2750 #ifdef CONFIG_TMPFS_POSIX_ACL
2751         .setattr        = shmem_setattr,
2752         .set_acl        = simple_set_acl,
2753 #endif
2754 };
2755
2756 static const struct super_operations shmem_ops = {
2757         .alloc_inode    = shmem_alloc_inode,
2758         .destroy_inode  = shmem_destroy_inode,
2759 #ifdef CONFIG_TMPFS
2760         .statfs         = shmem_statfs,
2761         .remount_fs     = shmem_remount_fs,
2762         .show_options   = shmem_show_options,
2763 #endif
2764         .evict_inode    = shmem_evict_inode,
2765         .drop_inode     = generic_delete_inode,
2766         .put_super      = shmem_put_super,
2767 };
2768
2769 static const struct vm_operations_struct shmem_vm_ops = {
2770         .fault          = shmem_fault,
2771         .map_pages      = filemap_map_pages,
2772 #ifdef CONFIG_NUMA
2773         .set_policy     = shmem_set_policy,
2774         .get_policy     = shmem_get_policy,
2775 #endif
2776         .remap_pages    = generic_file_remap_pages,
2777 };
2778
2779 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2780         int flags, const char *dev_name, void *data)
2781 {
2782         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2783 }
2784
2785 static struct file_system_type shmem_fs_type = {
2786         .owner          = THIS_MODULE,
2787         .name           = "tmpfs",
2788         .mount          = shmem_mount,
2789         .kill_sb        = kill_litter_super,
2790         .fs_flags       = FS_USERNS_MOUNT,
2791 };
2792
2793 int __init shmem_init(void)
2794 {
2795         int error;
2796
2797         /* If rootfs called this, don't re-init */
2798         if (shmem_inode_cachep)
2799                 return 0;
2800
2801         error = bdi_init(&shmem_backing_dev_info);
2802         if (error)
2803                 goto out4;
2804
2805         error = shmem_init_inodecache();
2806         if (error)
2807                 goto out3;
2808
2809         error = register_filesystem(&shmem_fs_type);
2810         if (error) {
2811                 printk(KERN_ERR "Could not register tmpfs\n");
2812                 goto out2;
2813         }
2814
2815         shm_mnt = kern_mount(&shmem_fs_type);
2816         if (IS_ERR(shm_mnt)) {
2817                 error = PTR_ERR(shm_mnt);
2818                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2819                 goto out1;
2820         }
2821         return 0;
2822
2823 out1:
2824         unregister_filesystem(&shmem_fs_type);
2825 out2:
2826         shmem_destroy_inodecache();
2827 out3:
2828         bdi_destroy(&shmem_backing_dev_info);
2829 out4:
2830         shm_mnt = ERR_PTR(error);
2831         return error;
2832 }
2833
2834 #else /* !CONFIG_SHMEM */
2835
2836 /*
2837  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2838  *
2839  * This is intended for small system where the benefits of the full
2840  * shmem code (swap-backed and resource-limited) are outweighed by
2841  * their complexity. On systems without swap this code should be
2842  * effectively equivalent, but much lighter weight.
2843  */
2844
2845 static struct file_system_type shmem_fs_type = {
2846         .name           = "tmpfs",
2847         .mount          = ramfs_mount,
2848         .kill_sb        = kill_litter_super,
2849         .fs_flags       = FS_USERNS_MOUNT,
2850 };
2851
2852 int __init shmem_init(void)
2853 {
2854         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2855
2856         shm_mnt = kern_mount(&shmem_fs_type);
2857         BUG_ON(IS_ERR(shm_mnt));
2858
2859         return 0;
2860 }
2861
2862 int shmem_unuse(swp_entry_t swap, struct page *page)
2863 {
2864         return 0;
2865 }
2866
2867 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2868 {
2869         return 0;
2870 }
2871
2872 void shmem_unlock_mapping(struct address_space *mapping)
2873 {
2874 }
2875
2876 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2877 {
2878         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2879 }
2880 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2881
2882 #define shmem_vm_ops                            generic_file_vm_ops
2883 #define shmem_file_operations                   ramfs_file_operations
2884 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2885 #define shmem_acct_size(flags, size)            0
2886 #define shmem_unacct_size(flags, size)          do {} while (0)
2887
2888 #endif /* CONFIG_SHMEM */
2889
2890 /* common code */
2891
2892 static struct dentry_operations anon_ops = {
2893         .d_dname = simple_dname
2894 };
2895
2896 static struct file *__shmem_file_setup(const char *name, loff_t size,
2897                                        unsigned long flags, unsigned int i_flags)
2898 {
2899         struct file *res;
2900         struct inode *inode;
2901         struct path path;
2902         struct super_block *sb;
2903         struct qstr this;
2904
2905         if (IS_ERR(shm_mnt))
2906                 return ERR_CAST(shm_mnt);
2907
2908         if (size < 0 || size > MAX_LFS_FILESIZE)
2909                 return ERR_PTR(-EINVAL);
2910
2911         if (shmem_acct_size(flags, size))
2912                 return ERR_PTR(-ENOMEM);
2913
2914         res = ERR_PTR(-ENOMEM);
2915         this.name = name;
2916         this.len = strlen(name);
2917         this.hash = 0; /* will go */
2918         sb = shm_mnt->mnt_sb;
2919         path.mnt = mntget(shm_mnt);
2920         path.dentry = d_alloc_pseudo(sb, &this);
2921         if (!path.dentry)
2922                 goto put_memory;
2923         d_set_d_op(path.dentry, &anon_ops);
2924
2925         res = ERR_PTR(-ENOSPC);
2926         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2927         if (!inode)
2928                 goto put_memory;
2929
2930         inode->i_flags |= i_flags;
2931         d_instantiate(path.dentry, inode);
2932         inode->i_size = size;
2933         clear_nlink(inode);     /* It is unlinked */
2934         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2935         if (IS_ERR(res))
2936                 goto put_path;
2937
2938         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2939                   &shmem_file_operations);
2940         if (IS_ERR(res))
2941                 goto put_path;
2942
2943         return res;
2944
2945 put_memory:
2946         shmem_unacct_size(flags, size);
2947 put_path:
2948         path_put(&path);
2949         return res;
2950 }
2951
2952 /**
2953  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2954  *      kernel internal.  There will be NO LSM permission checks against the
2955  *      underlying inode.  So users of this interface must do LSM checks at a
2956  *      higher layer.  The one user is the big_key implementation.  LSM checks
2957  *      are provided at the key level rather than the inode level.
2958  * @name: name for dentry (to be seen in /proc/<pid>/maps
2959  * @size: size to be set for the file
2960  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2961  */
2962 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2963 {
2964         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2965 }
2966
2967 /**
2968  * shmem_file_setup - get an unlinked file living in tmpfs
2969  * @name: name for dentry (to be seen in /proc/<pid>/maps
2970  * @size: size to be set for the file
2971  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2972  */
2973 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2974 {
2975         return __shmem_file_setup(name, size, flags, 0);
2976 }
2977 EXPORT_SYMBOL_GPL(shmem_file_setup);
2978
2979 /**
2980  * shmem_zero_setup - setup a shared anonymous mapping
2981  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2982  */
2983 int shmem_zero_setup(struct vm_area_struct *vma)
2984 {
2985         struct file *file;
2986         loff_t size = vma->vm_end - vma->vm_start;
2987
2988         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2989         if (IS_ERR(file))
2990                 return PTR_ERR(file);
2991
2992         if (vma->vm_file)
2993                 fput(vma->vm_file);
2994         vma->vm_file = file;
2995         vma->vm_ops = &shmem_vm_ops;
2996         return 0;
2997 }
2998
2999 /**
3000  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3001  * @mapping:    the page's address_space
3002  * @index:      the page index
3003  * @gfp:        the page allocator flags to use if allocating
3004  *
3005  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3006  * with any new page allocations done using the specified allocation flags.
3007  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3008  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3009  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3010  *
3011  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3012  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3013  */
3014 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3015                                          pgoff_t index, gfp_t gfp)
3016 {
3017 #ifdef CONFIG_SHMEM
3018         struct inode *inode = mapping->host;
3019         struct page *page;
3020         int error;
3021
3022         BUG_ON(mapping->a_ops != &shmem_aops);
3023         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3024         if (error)
3025                 page = ERR_PTR(error);
3026         else
3027                 unlock_page(page);
3028         return page;
3029 #else
3030         /*
3031          * The tiny !SHMEM case uses ramfs without swap
3032          */
3033         return read_cache_page_gfp(mapping, index, gfp);
3034 #endif
3035 }
3036 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);